1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_txrx_lib.h" 5 6 /** 7 * ice_release_rx_desc - Store the new tail and head values 8 * @rx_ring: ring to bump 9 * @val: new head index 10 */ 11 void ice_release_rx_desc(struct ice_ring *rx_ring, u16 val) 12 { 13 u16 prev_ntu = rx_ring->next_to_use & ~0x7; 14 15 rx_ring->next_to_use = val; 16 17 /* update next to alloc since we have filled the ring */ 18 rx_ring->next_to_alloc = val; 19 20 /* QRX_TAIL will be updated with any tail value, but hardware ignores 21 * the lower 3 bits. This makes it so we only bump tail on meaningful 22 * boundaries. Also, this allows us to bump tail on intervals of 8 up to 23 * the budget depending on the current traffic load. 24 */ 25 val &= ~0x7; 26 if (prev_ntu != val) { 27 /* Force memory writes to complete before letting h/w 28 * know there are new descriptors to fetch. (Only 29 * applicable for weak-ordered memory model archs, 30 * such as IA-64). 31 */ 32 wmb(); 33 writel(val, rx_ring->tail); 34 } 35 } 36 37 /** 38 * ice_ptype_to_htype - get a hash type 39 * @ptype: the ptype value from the descriptor 40 * 41 * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by 42 * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of 43 * Rx desc. 44 */ 45 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype) 46 { 47 struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype); 48 49 if (!decoded.known) 50 return PKT_HASH_TYPE_NONE; 51 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4) 52 return PKT_HASH_TYPE_L4; 53 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3) 54 return PKT_HASH_TYPE_L3; 55 if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2) 56 return PKT_HASH_TYPE_L2; 57 58 return PKT_HASH_TYPE_NONE; 59 } 60 61 /** 62 * ice_rx_hash - set the hash value in the skb 63 * @rx_ring: descriptor ring 64 * @rx_desc: specific descriptor 65 * @skb: pointer to current skb 66 * @rx_ptype: the ptype value from the descriptor 67 */ 68 static void 69 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 70 struct sk_buff *skb, u16 rx_ptype) 71 { 72 struct ice_32b_rx_flex_desc_nic *nic_mdid; 73 u32 hash; 74 75 if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) 76 return; 77 78 if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) 79 return; 80 81 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 82 hash = le32_to_cpu(nic_mdid->rss_hash); 83 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); 84 } 85 86 /** 87 * ice_rx_csum - Indicate in skb if checksum is good 88 * @ring: the ring we care about 89 * @skb: skb currently being received and modified 90 * @rx_desc: the receive descriptor 91 * @ptype: the packet type decoded by hardware 92 * 93 * skb->protocol must be set before this function is called 94 */ 95 static void 96 ice_rx_csum(struct ice_ring *ring, struct sk_buff *skb, 97 union ice_32b_rx_flex_desc *rx_desc, u16 ptype) 98 { 99 struct ice_rx_ptype_decoded decoded; 100 u16 rx_status0, rx_status1; 101 bool ipv4, ipv6; 102 103 rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); 104 rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); 105 106 decoded = ice_decode_rx_desc_ptype(ptype); 107 108 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 109 skb->ip_summed = CHECKSUM_NONE; 110 skb_checksum_none_assert(skb); 111 112 /* check if Rx checksum is enabled */ 113 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 114 return; 115 116 /* check if HW has decoded the packet and checksum */ 117 if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 118 return; 119 120 if (!(decoded.known && decoded.outer_ip)) 121 return; 122 123 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 124 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); 125 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 126 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); 127 128 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | 129 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) 130 goto checksum_fail; 131 132 if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 133 goto checksum_fail; 134 135 /* check for L4 errors and handle packets that were not able to be 136 * checksummed due to arrival speed 137 */ 138 if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 139 goto checksum_fail; 140 141 /* check for outer UDP checksum error in tunneled packets */ 142 if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && 143 (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) 144 goto checksum_fail; 145 146 /* If there is an outer header present that might contain a checksum 147 * we need to bump the checksum level by 1 to reflect the fact that 148 * we are indicating we validated the inner checksum. 149 */ 150 if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT) 151 skb->csum_level = 1; 152 153 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 154 switch (decoded.inner_prot) { 155 case ICE_RX_PTYPE_INNER_PROT_TCP: 156 case ICE_RX_PTYPE_INNER_PROT_UDP: 157 case ICE_RX_PTYPE_INNER_PROT_SCTP: 158 skb->ip_summed = CHECKSUM_UNNECESSARY; 159 break; 160 default: 161 break; 162 } 163 return; 164 165 checksum_fail: 166 ring->vsi->back->hw_csum_rx_error++; 167 } 168 169 /** 170 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 171 * @rx_ring: Rx descriptor ring packet is being transacted on 172 * @rx_desc: pointer to the EOP Rx descriptor 173 * @skb: pointer to current skb being populated 174 * @ptype: the packet type decoded by hardware 175 * 176 * This function checks the ring, descriptor, and packet information in 177 * order to populate the hash, checksum, VLAN, protocol, and 178 * other fields within the skb. 179 */ 180 void 181 ice_process_skb_fields(struct ice_ring *rx_ring, 182 union ice_32b_rx_flex_desc *rx_desc, 183 struct sk_buff *skb, u16 ptype) 184 { 185 ice_rx_hash(rx_ring, rx_desc, skb, ptype); 186 187 /* modifies the skb - consumes the enet header */ 188 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 189 190 ice_rx_csum(rx_ring, skb, rx_desc, ptype); 191 192 if (rx_ring->ptp_rx) 193 ice_ptp_rx_hwtstamp(rx_ring, rx_desc, skb); 194 } 195 196 /** 197 * ice_receive_skb - Send a completed packet up the stack 198 * @rx_ring: Rx ring in play 199 * @skb: packet to send up 200 * @vlan_tag: VLAN tag for packet 201 * 202 * This function sends the completed packet (via. skb) up the stack using 203 * gro receive functions (with/without VLAN tag) 204 */ 205 void 206 ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) 207 { 208 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 209 (vlan_tag & VLAN_VID_MASK)) 210 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 211 napi_gro_receive(&rx_ring->q_vector->napi, skb); 212 } 213 214 /** 215 * ice_xmit_xdp_ring - submit single packet to XDP ring for transmission 216 * @data: packet data pointer 217 * @size: packet data size 218 * @xdp_ring: XDP ring for transmission 219 */ 220 int ice_xmit_xdp_ring(void *data, u16 size, struct ice_ring *xdp_ring) 221 { 222 u16 i = xdp_ring->next_to_use; 223 struct ice_tx_desc *tx_desc; 224 struct ice_tx_buf *tx_buf; 225 dma_addr_t dma; 226 227 if (!unlikely(ICE_DESC_UNUSED(xdp_ring))) { 228 xdp_ring->tx_stats.tx_busy++; 229 return ICE_XDP_CONSUMED; 230 } 231 232 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 233 if (dma_mapping_error(xdp_ring->dev, dma)) 234 return ICE_XDP_CONSUMED; 235 236 tx_buf = &xdp_ring->tx_buf[i]; 237 tx_buf->bytecount = size; 238 tx_buf->gso_segs = 1; 239 tx_buf->raw_buf = data; 240 241 /* record length, and DMA address */ 242 dma_unmap_len_set(tx_buf, len, size); 243 dma_unmap_addr_set(tx_buf, dma, dma); 244 245 tx_desc = ICE_TX_DESC(xdp_ring, i); 246 tx_desc->buf_addr = cpu_to_le64(dma); 247 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, 248 size, 0); 249 250 /* Make certain all of the status bits have been updated 251 * before next_to_watch is written. 252 */ 253 smp_wmb(); 254 255 i++; 256 if (i == xdp_ring->count) 257 i = 0; 258 259 tx_buf->next_to_watch = tx_desc; 260 xdp_ring->next_to_use = i; 261 262 return ICE_XDP_TX; 263 } 264 265 /** 266 * ice_xmit_xdp_buff - convert an XDP buffer to an XDP frame and send it 267 * @xdp: XDP buffer 268 * @xdp_ring: XDP Tx ring 269 * 270 * Returns negative on failure, 0 on success. 271 */ 272 int ice_xmit_xdp_buff(struct xdp_buff *xdp, struct ice_ring *xdp_ring) 273 { 274 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 275 276 if (unlikely(!xdpf)) 277 return ICE_XDP_CONSUMED; 278 279 return ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 280 } 281 282 /** 283 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 284 * @rx_ring: Rx ring 285 * @xdp_res: Result of the receive batch 286 * 287 * This function bumps XDP Tx tail and/or flush redirect map, and 288 * should be called when a batch of packets has been processed in the 289 * napi loop. 290 */ 291 void ice_finalize_xdp_rx(struct ice_ring *rx_ring, unsigned int xdp_res) 292 { 293 if (xdp_res & ICE_XDP_REDIR) 294 xdp_do_flush_map(); 295 296 if (xdp_res & ICE_XDP_TX) { 297 struct ice_ring *xdp_ring = 298 rx_ring->vsi->xdp_rings[rx_ring->q_index]; 299 300 ice_xdp_ring_update_tail(xdp_ring); 301 } 302 } 303