1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #ifndef _ICE_TXRX_H_ 5 #define _ICE_TXRX_H_ 6 7 #include "ice_type.h" 8 9 #define ICE_DFLT_IRQ_WORK 256 10 #define ICE_RXBUF_3072 3072 11 #define ICE_RXBUF_2048 2048 12 #define ICE_RXBUF_1536 1536 13 #define ICE_MAX_CHAINED_RX_BUFS 5 14 #define ICE_MAX_BUF_TXD 8 15 #define ICE_MIN_TX_LEN 17 16 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 18 * In order to align with the read requests we will align the value to 19 * the nearest 4K which represents our maximum read request size. 20 */ 21 #define ICE_MAX_READ_REQ_SIZE 4096 22 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) 23 #define ICE_MAX_DATA_PER_TXD_ALIGNED \ 24 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) 25 26 #define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */ 27 #define ICE_MAX_TXQ_PER_TXQG 128 28 29 /* Attempt to maximize the headroom available for incoming frames. We use a 2K 30 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. 31 * This leaves us with 512 bytes of room. From that we need to deduct the 32 * space needed for the shared info and the padding needed to IP align the 33 * frame. 34 * 35 * Note: For cache line sizes 256 or larger this value is going to end 36 * up negative. In these cases we should fall back to the legacy 37 * receive path. 38 */ 39 #if (PAGE_SIZE < 8192) 40 #define ICE_2K_TOO_SMALL_WITH_PADDING \ 41 ((NET_SKB_PAD + ICE_RXBUF_1536) > SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) 42 43 /** 44 * ice_compute_pad - compute the padding 45 * rx_buf_len: buffer length 46 * 47 * Figure out the size of half page based on given buffer length and 48 * then subtract the skb_shared_info followed by subtraction of the 49 * actual buffer length; this in turn results in the actual space that 50 * is left for padding usage 51 */ 52 static inline int ice_compute_pad(int rx_buf_len) 53 { 54 int half_page_size; 55 56 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 57 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; 58 } 59 60 /** 61 * ice_skb_pad - determine the padding that we can supply 62 * 63 * Figure out the right Rx buffer size and based on that calculate the 64 * padding 65 */ 66 static inline int ice_skb_pad(void) 67 { 68 int rx_buf_len; 69 70 /* If a 2K buffer cannot handle a standard Ethernet frame then 71 * optimize padding for a 3K buffer instead of a 1.5K buffer. 72 * 73 * For a 3K buffer we need to add enough padding to allow for 74 * tailroom due to NET_IP_ALIGN possibly shifting us out of 75 * cache-line alignment. 76 */ 77 if (ICE_2K_TOO_SMALL_WITH_PADDING) 78 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 79 else 80 rx_buf_len = ICE_RXBUF_1536; 81 82 /* if needed make room for NET_IP_ALIGN */ 83 rx_buf_len -= NET_IP_ALIGN; 84 85 return ice_compute_pad(rx_buf_len); 86 } 87 88 #define ICE_SKB_PAD ice_skb_pad() 89 #else 90 #define ICE_2K_TOO_SMALL_WITH_PADDING false 91 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 92 #endif 93 94 /* We are assuming that the cache line is always 64 Bytes here for ice. 95 * In order to make sure that is a correct assumption there is a check in probe 96 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line 97 * size is 128 bytes. We do it this way because we do not want to read the 98 * GLPCI_CNF2 register or a variable containing the value on every pass through 99 * the Tx path. 100 */ 101 #define ICE_CACHE_LINE_BYTES 64 102 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ 103 sizeof(struct ice_tx_desc)) 104 #define ICE_DESCS_FOR_CTX_DESC 1 105 #define ICE_DESCS_FOR_SKB_DATA_PTR 1 106 /* Tx descriptors needed, worst case */ 107 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ 108 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) 109 #define ICE_DESC_UNUSED(R) \ 110 ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ 111 (R)->next_to_clean - (R)->next_to_use - 1) 112 113 #define ICE_TX_FLAGS_TSO BIT(0) 114 #define ICE_TX_FLAGS_HW_VLAN BIT(1) 115 #define ICE_TX_FLAGS_SW_VLAN BIT(2) 116 #define ICE_TX_FLAGS_VLAN_M 0xffff0000 117 #define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000 118 #define ICE_TX_FLAGS_VLAN_PR_S 29 119 #define ICE_TX_FLAGS_VLAN_S 16 120 121 #define ICE_XDP_PASS 0 122 #define ICE_XDP_CONSUMED BIT(0) 123 #define ICE_XDP_TX BIT(1) 124 #define ICE_XDP_REDIR BIT(2) 125 126 #define ICE_RX_DMA_ATTR \ 127 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 128 129 #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 130 131 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) 132 133 struct ice_tx_buf { 134 struct ice_tx_desc *next_to_watch; 135 union { 136 struct sk_buff *skb; 137 void *raw_buf; /* used for XDP */ 138 }; 139 unsigned int bytecount; 140 unsigned short gso_segs; 141 u32 tx_flags; 142 DEFINE_DMA_UNMAP_LEN(len); 143 DEFINE_DMA_UNMAP_ADDR(dma); 144 }; 145 146 struct ice_tx_offload_params { 147 u64 cd_qw1; 148 struct ice_ring *tx_ring; 149 u32 td_cmd; 150 u32 td_offset; 151 u32 td_l2tag1; 152 u32 cd_tunnel_params; 153 u16 cd_l2tag2; 154 u8 header_len; 155 }; 156 157 struct ice_rx_buf { 158 struct sk_buff *skb; 159 dma_addr_t dma; 160 union { 161 struct { 162 struct page *page; 163 unsigned int page_offset; 164 u16 pagecnt_bias; 165 }; 166 struct { 167 void *addr; 168 u64 handle; 169 }; 170 }; 171 }; 172 173 struct ice_q_stats { 174 u64 pkts; 175 u64 bytes; 176 }; 177 178 struct ice_txq_stats { 179 u64 restart_q; 180 u64 tx_busy; 181 u64 tx_linearize; 182 int prev_pkt; /* negative if no pending Tx descriptors */ 183 }; 184 185 struct ice_rxq_stats { 186 u64 non_eop_descs; 187 u64 alloc_page_failed; 188 u64 alloc_buf_failed; 189 u64 page_reuse_count; 190 }; 191 192 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 193 * registers and QINT registers or more generally anywhere in the manual 194 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 195 * register but instead is a special value meaning "don't update" ITR0/1/2. 196 */ 197 enum ice_dyn_idx_t { 198 ICE_IDX_ITR0 = 0, 199 ICE_IDX_ITR1 = 1, 200 ICE_IDX_ITR2 = 2, 201 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 202 }; 203 204 /* Header split modes defined by DTYPE field of Rx RLAN context */ 205 enum ice_rx_dtype { 206 ICE_RX_DTYPE_NO_SPLIT = 0, 207 ICE_RX_DTYPE_HEADER_SPLIT = 1, 208 ICE_RX_DTYPE_SPLIT_ALWAYS = 2, 209 }; 210 211 /* indices into GLINT_ITR registers */ 212 #define ICE_RX_ITR ICE_IDX_ITR0 213 #define ICE_TX_ITR ICE_IDX_ITR1 214 #define ICE_ITR_8K 124 215 #define ICE_ITR_20K 50 216 #define ICE_ITR_MAX 8160 217 #define ICE_DFLT_TX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC) 218 #define ICE_DFLT_RX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC) 219 #define ICE_ITR_DYNAMIC 0x8000 /* used as flag for itr_setting */ 220 #define ITR_IS_DYNAMIC(setting) (!!((setting) & ICE_ITR_DYNAMIC)) 221 #define ITR_TO_REG(setting) ((setting) & ~ICE_ITR_DYNAMIC) 222 #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ 223 #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) 224 #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 225 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~ICE_ITR_MASK) 226 227 #define ICE_ITR_ADAPTIVE_MIN_INC 0x0002 228 #define ICE_ITR_ADAPTIVE_MIN_USECS 0x0002 229 #define ICE_ITR_ADAPTIVE_MAX_USECS 0x00FA 230 #define ICE_ITR_ADAPTIVE_LATENCY 0x8000 231 #define ICE_ITR_ADAPTIVE_BULK 0x0000 232 233 #define ICE_DFLT_INTRL 0 234 #define ICE_MAX_INTRL 236 235 236 #define ICE_WB_ON_ITR_USECS 2 237 #define ICE_IN_WB_ON_ITR_MODE 255 238 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows 239 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, 240 * set the write-back latency to the usecs passed in. 241 */ 242 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ 243 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ 244 GLINT_DYN_CTL_INTERVAL_M) | \ 245 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ 246 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ 247 GLINT_DYN_CTL_WB_ON_ITR_M) 248 249 /* Legacy or Advanced Mode Queue */ 250 #define ICE_TX_ADVANCED 0 251 #define ICE_TX_LEGACY 1 252 253 /* descriptor ring, associated with a VSI */ 254 struct ice_ring { 255 /* CL1 - 1st cacheline starts here */ 256 struct ice_ring *next; /* pointer to next ring in q_vector */ 257 void *desc; /* Descriptor ring memory */ 258 struct device *dev; /* Used for DMA mapping */ 259 struct net_device *netdev; /* netdev ring maps to */ 260 struct ice_vsi *vsi; /* Backreference to associated VSI */ 261 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 262 u8 __iomem *tail; 263 union { 264 struct ice_tx_buf *tx_buf; 265 struct ice_rx_buf *rx_buf; 266 }; 267 /* CL2 - 2nd cacheline starts here */ 268 u16 q_index; /* Queue number of ring */ 269 u16 q_handle; /* Queue handle per TC */ 270 271 u8 ring_active:1; /* is ring online or not */ 272 273 u16 count; /* Number of descriptors */ 274 u16 reg_idx; /* HW register index of the ring */ 275 276 /* used in interrupt processing */ 277 u16 next_to_use; 278 u16 next_to_clean; 279 u16 next_to_alloc; 280 281 /* stats structs */ 282 struct ice_q_stats stats; 283 struct u64_stats_sync syncp; 284 union { 285 struct ice_txq_stats tx_stats; 286 struct ice_rxq_stats rx_stats; 287 }; 288 289 struct rcu_head rcu; /* to avoid race on free */ 290 struct bpf_prog *xdp_prog; 291 struct xdp_umem *xsk_umem; 292 struct zero_copy_allocator zca; 293 /* CL3 - 3rd cacheline starts here */ 294 struct xdp_rxq_info xdp_rxq; 295 /* CLX - the below items are only accessed infrequently and should be 296 * in their own cache line if possible 297 */ 298 #define ICE_TX_FLAGS_RING_XDP BIT(0) 299 #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) 300 u8 flags; 301 dma_addr_t dma; /* physical address of ring */ 302 unsigned int size; /* length of descriptor ring in bytes */ 303 u32 txq_teid; /* Added Tx queue TEID */ 304 u16 rx_buf_len; 305 u8 dcb_tc; /* Traffic class of ring */ 306 } ____cacheline_internodealigned_in_smp; 307 308 static inline bool ice_ring_uses_build_skb(struct ice_ring *ring) 309 { 310 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); 311 } 312 313 static inline void ice_set_ring_build_skb_ena(struct ice_ring *ring) 314 { 315 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; 316 } 317 318 static inline void ice_clear_ring_build_skb_ena(struct ice_ring *ring) 319 { 320 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; 321 } 322 323 static inline bool ice_ring_is_xdp(struct ice_ring *ring) 324 { 325 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); 326 } 327 328 struct ice_ring_container { 329 /* head of linked-list of rings */ 330 struct ice_ring *ring; 331 unsigned long next_update; /* jiffies value of next queue update */ 332 unsigned int total_bytes; /* total bytes processed this int */ 333 unsigned int total_pkts; /* total packets processed this int */ 334 u16 itr_idx; /* index in the interrupt vector */ 335 u16 target_itr; /* value in usecs divided by the hw->itr_gran */ 336 u16 current_itr; /* value in usecs divided by the hw->itr_gran */ 337 /* high bit set means dynamic ITR, rest is used to store user 338 * readable ITR value in usecs and must be converted before programming 339 * to a register. 340 */ 341 u16 itr_setting; 342 }; 343 344 struct ice_coalesce_stored { 345 u16 itr_tx; 346 u16 itr_rx; 347 u8 intrl; 348 }; 349 350 /* iterator for handling rings in ring container */ 351 #define ice_for_each_ring(pos, head) \ 352 for (pos = (head).ring; pos; pos = pos->next) 353 354 static inline unsigned int ice_rx_pg_order(struct ice_ring *ring) 355 { 356 #if (PAGE_SIZE < 8192) 357 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 358 return 1; 359 #endif 360 return 0; 361 } 362 363 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) 364 365 union ice_32b_rx_flex_desc; 366 367 bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count); 368 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); 369 void ice_clean_tx_ring(struct ice_ring *tx_ring); 370 void ice_clean_rx_ring(struct ice_ring *rx_ring); 371 int ice_setup_tx_ring(struct ice_ring *tx_ring); 372 int ice_setup_rx_ring(struct ice_ring *rx_ring); 373 void ice_free_tx_ring(struct ice_ring *tx_ring); 374 void ice_free_rx_ring(struct ice_ring *rx_ring); 375 int ice_napi_poll(struct napi_struct *napi, int budget); 376 377 #endif /* _ICE_TXRX_H_ */ 378