1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #ifndef _ICE_TXRX_H_
5 #define _ICE_TXRX_H_
6 
7 #include "ice_type.h"
8 
9 #define ICE_DFLT_IRQ_WORK	256
10 #define ICE_RXBUF_3072		3072
11 #define ICE_RXBUF_2048		2048
12 #define ICE_RXBUF_1664		1664
13 #define ICE_RXBUF_1536		1536
14 #define ICE_MAX_CHAINED_RX_BUFS	5
15 #define ICE_MAX_BUF_TXD		8
16 #define ICE_MIN_TX_LEN		17
17 #define ICE_MAX_FRAME_LEGACY_RX 8320
18 
19 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
20  * In order to align with the read requests we will align the value to
21  * the nearest 4K which represents our maximum read request size.
22  */
23 #define ICE_MAX_READ_REQ_SIZE	4096
24 #define ICE_MAX_DATA_PER_TXD	(16 * 1024 - 1)
25 #define ICE_MAX_DATA_PER_TXD_ALIGNED \
26 	(~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
27 
28 #define ICE_MAX_TXQ_PER_TXQG	128
29 
30 /* Attempt to maximize the headroom available for incoming frames. We use a 2K
31  * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
32  * This leaves us with 512 bytes of room.  From that we need to deduct the
33  * space needed for the shared info and the padding needed to IP align the
34  * frame.
35  *
36  * Note: For cache line sizes 256 or larger this value is going to end
37  *	 up negative.  In these cases we should fall back to the legacy
38  *	 receive path.
39  */
40 #if (PAGE_SIZE < 8192)
41 #define ICE_2K_TOO_SMALL_WITH_PADDING \
42 	((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
43 			SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
44 
45 /**
46  * ice_compute_pad - compute the padding
47  * @rx_buf_len: buffer length
48  *
49  * Figure out the size of half page based on given buffer length and
50  * then subtract the skb_shared_info followed by subtraction of the
51  * actual buffer length; this in turn results in the actual space that
52  * is left for padding usage
53  */
54 static inline int ice_compute_pad(int rx_buf_len)
55 {
56 	int half_page_size;
57 
58 	half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
59 	return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
60 }
61 
62 /**
63  * ice_skb_pad - determine the padding that we can supply
64  *
65  * Figure out the right Rx buffer size and based on that calculate the
66  * padding
67  */
68 static inline int ice_skb_pad(void)
69 {
70 	int rx_buf_len;
71 
72 	/* If a 2K buffer cannot handle a standard Ethernet frame then
73 	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
74 	 *
75 	 * For a 3K buffer we need to add enough padding to allow for
76 	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
77 	 * cache-line alignment.
78 	 */
79 	if (ICE_2K_TOO_SMALL_WITH_PADDING)
80 		rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
81 	else
82 		rx_buf_len = ICE_RXBUF_1536;
83 
84 	/* if needed make room for NET_IP_ALIGN */
85 	rx_buf_len -= NET_IP_ALIGN;
86 
87 	return ice_compute_pad(rx_buf_len);
88 }
89 
90 #define ICE_SKB_PAD ice_skb_pad()
91 #else
92 #define ICE_2K_TOO_SMALL_WITH_PADDING false
93 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
94 #endif
95 
96 /* We are assuming that the cache line is always 64 Bytes here for ice.
97  * In order to make sure that is a correct assumption there is a check in probe
98  * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
99  * size is 128 bytes. We do it this way because we do not want to read the
100  * GLPCI_CNF2 register or a variable containing the value on every pass through
101  * the Tx path.
102  */
103 #define ICE_CACHE_LINE_BYTES		64
104 #define ICE_DESCS_PER_CACHE_LINE	(ICE_CACHE_LINE_BYTES / \
105 					 sizeof(struct ice_tx_desc))
106 #define ICE_DESCS_FOR_CTX_DESC		1
107 #define ICE_DESCS_FOR_SKB_DATA_PTR	1
108 /* Tx descriptors needed, worst case */
109 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
110 		     ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
111 #define ICE_DESC_UNUSED(R)	\
112 	(u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
113 	      (R)->next_to_clean - (R)->next_to_use - 1)
114 
115 #define ICE_RX_DESC_UNUSED(R)	\
116 	((((R)->first_desc > (R)->next_to_use) ? 0 : (R)->count) + \
117 	      (R)->first_desc - (R)->next_to_use - 1)
118 
119 #define ICE_RING_QUARTER(R) ((R)->count >> 2)
120 
121 #define ICE_TX_FLAGS_TSO	BIT(0)
122 #define ICE_TX_FLAGS_HW_VLAN	BIT(1)
123 #define ICE_TX_FLAGS_SW_VLAN	BIT(2)
124 /* Free, was ICE_TX_FLAGS_DUMMY_PKT */
125 #define ICE_TX_FLAGS_TSYN	BIT(4)
126 #define ICE_TX_FLAGS_IPV4	BIT(5)
127 #define ICE_TX_FLAGS_IPV6	BIT(6)
128 #define ICE_TX_FLAGS_TUNNEL	BIT(7)
129 #define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(8)
130 
131 #define ICE_XDP_PASS		0
132 #define ICE_XDP_CONSUMED	BIT(0)
133 #define ICE_XDP_TX		BIT(1)
134 #define ICE_XDP_REDIR		BIT(2)
135 #define ICE_XDP_EXIT		BIT(3)
136 #define ICE_SKB_CONSUMED	ICE_XDP_CONSUMED
137 
138 #define ICE_RX_DMA_ATTR \
139 	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140 
141 #define ICE_ETH_PKT_HDR_PAD	(ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
142 
143 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
144 
145 /**
146  * enum ice_tx_buf_type - type of &ice_tx_buf to act on Tx completion
147  * @ICE_TX_BUF_EMPTY: unused OR XSk frame, no action required
148  * @ICE_TX_BUF_DUMMY: dummy Flow Director packet, unmap and kfree()
149  * @ICE_TX_BUF_FRAG: mapped skb OR &xdp_buff frag, only unmap DMA
150  * @ICE_TX_BUF_SKB: &sk_buff, unmap and consume_skb(), update stats
151  * @ICE_TX_BUF_XDP_TX: &xdp_buff, unmap and page_frag_free(), stats
152  * @ICE_TX_BUF_XDP_XMIT: &xdp_frame, unmap and xdp_return_frame(), stats
153  * @ICE_TX_BUF_XSK_TX: &xdp_buff on XSk queue, xsk_buff_free(), stats
154  */
155 enum ice_tx_buf_type {
156 	ICE_TX_BUF_EMPTY	= 0U,
157 	ICE_TX_BUF_DUMMY,
158 	ICE_TX_BUF_FRAG,
159 	ICE_TX_BUF_SKB,
160 	ICE_TX_BUF_XDP_TX,
161 	ICE_TX_BUF_XDP_XMIT,
162 	ICE_TX_BUF_XSK_TX,
163 };
164 
165 struct ice_tx_buf {
166 	union {
167 		struct ice_tx_desc *next_to_watch;
168 		u32 rs_idx;
169 	};
170 	union {
171 		void *raw_buf;		/* used for XDP_TX and FDir rules */
172 		struct sk_buff *skb;	/* used for .ndo_start_xmit() */
173 		struct xdp_frame *xdpf;	/* used for .ndo_xdp_xmit() */
174 		struct xdp_buff *xdp;	/* used for XDP_TX ZC */
175 	};
176 	unsigned int bytecount;
177 	union {
178 		unsigned int gso_segs;
179 		unsigned int nr_frags;	/* used for mbuf XDP */
180 	};
181 	u32 tx_flags:12;
182 	u32 type:4;			/* &ice_tx_buf_type */
183 	u32 vid:16;
184 	DEFINE_DMA_UNMAP_LEN(len);
185 	DEFINE_DMA_UNMAP_ADDR(dma);
186 };
187 
188 struct ice_tx_offload_params {
189 	u64 cd_qw1;
190 	struct ice_tx_ring *tx_ring;
191 	u32 td_cmd;
192 	u32 td_offset;
193 	u32 td_l2tag1;
194 	u32 cd_tunnel_params;
195 	u16 cd_l2tag2;
196 	u8 header_len;
197 };
198 
199 struct ice_rx_buf {
200 	dma_addr_t dma;
201 	struct page *page;
202 	unsigned int page_offset;
203 	unsigned int pgcnt;
204 	unsigned int act;
205 	unsigned int pagecnt_bias;
206 };
207 
208 struct ice_q_stats {
209 	u64 pkts;
210 	u64 bytes;
211 };
212 
213 struct ice_txq_stats {
214 	u64 restart_q;
215 	u64 tx_busy;
216 	u64 tx_linearize;
217 	int prev_pkt; /* negative if no pending Tx descriptors */
218 };
219 
220 struct ice_rxq_stats {
221 	u64 non_eop_descs;
222 	u64 alloc_page_failed;
223 	u64 alloc_buf_failed;
224 };
225 
226 struct ice_ring_stats {
227 	struct rcu_head rcu;	/* to avoid race on free */
228 	struct ice_q_stats stats;
229 	struct u64_stats_sync syncp;
230 	union {
231 		struct ice_txq_stats tx_stats;
232 		struct ice_rxq_stats rx_stats;
233 	};
234 };
235 
236 enum ice_ring_state_t {
237 	ICE_TX_XPS_INIT_DONE,
238 	ICE_TX_NBITS,
239 };
240 
241 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
242  * registers and QINT registers or more generally anywhere in the manual
243  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
244  * register but instead is a special value meaning "don't update" ITR0/1/2.
245  */
246 enum ice_dyn_idx_t {
247 	ICE_IDX_ITR0 = 0,
248 	ICE_IDX_ITR1 = 1,
249 	ICE_IDX_ITR2 = 2,
250 	ICE_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
251 };
252 
253 /* Header split modes defined by DTYPE field of Rx RLAN context */
254 enum ice_rx_dtype {
255 	ICE_RX_DTYPE_NO_SPLIT		= 0,
256 	ICE_RX_DTYPE_HEADER_SPLIT	= 1,
257 	ICE_RX_DTYPE_SPLIT_ALWAYS	= 2,
258 };
259 
260 /* indices into GLINT_ITR registers */
261 #define ICE_RX_ITR	ICE_IDX_ITR0
262 #define ICE_TX_ITR	ICE_IDX_ITR1
263 #define ICE_ITR_8K	124
264 #define ICE_ITR_20K	50
265 #define ICE_ITR_MAX	8160 /* 0x1FE0 */
266 #define ICE_DFLT_TX_ITR	ICE_ITR_20K
267 #define ICE_DFLT_RX_ITR	ICE_ITR_20K
268 enum ice_dynamic_itr {
269 	ITR_STATIC = 0,
270 	ITR_DYNAMIC = 1
271 };
272 
273 #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
274 #define ICE_ITR_GRAN_S		1	/* ITR granularity is always 2us */
275 #define ICE_ITR_GRAN_US		BIT(ICE_ITR_GRAN_S)
276 #define ICE_ITR_MASK		0x1FFE	/* ITR register value alignment mask */
277 #define ITR_REG_ALIGN(setting)	((setting) & ICE_ITR_MASK)
278 
279 #define ICE_DFLT_INTRL	0
280 #define ICE_MAX_INTRL	236
281 
282 #define ICE_IN_WB_ON_ITR_MODE	255
283 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
284  * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
285  * set the write-back latency to the usecs passed in.
286  */
287 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx)	\
288 	((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
289 	  GLINT_DYN_CTL_INTERVAL_M) | \
290 	 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
291 	  GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
292 	 GLINT_DYN_CTL_WB_ON_ITR_M)
293 
294 /* Legacy or Advanced Mode Queue */
295 #define ICE_TX_ADVANCED	0
296 #define ICE_TX_LEGACY	1
297 
298 /* descriptor ring, associated with a VSI */
299 struct ice_rx_ring {
300 	/* CL1 - 1st cacheline starts here */
301 	struct ice_rx_ring *next;	/* pointer to next ring in q_vector */
302 	void *desc;			/* Descriptor ring memory */
303 	struct device *dev;		/* Used for DMA mapping */
304 	struct net_device *netdev;	/* netdev ring maps to */
305 	struct ice_vsi *vsi;		/* Backreference to associated VSI */
306 	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
307 	u8 __iomem *tail;
308 	u16 q_index;			/* Queue number of ring */
309 
310 	u16 count;			/* Number of descriptors */
311 	u16 reg_idx;			/* HW register index of the ring */
312 	u16 next_to_alloc;
313 	/* CL2 - 2nd cacheline starts here */
314 	union {
315 		struct ice_rx_buf *rx_buf;
316 		struct xdp_buff **xdp_buf;
317 	};
318 	struct xdp_buff xdp;
319 	/* CL3 - 3rd cacheline starts here */
320 	struct bpf_prog *xdp_prog;
321 	u16 rx_offset;
322 
323 	/* used in interrupt processing */
324 	u16 next_to_use;
325 	u16 next_to_clean;
326 	u16 first_desc;
327 
328 	/* stats structs */
329 	struct ice_ring_stats *ring_stats;
330 
331 	struct rcu_head rcu;		/* to avoid race on free */
332 	/* CL4 - 4th cacheline starts here */
333 	struct ice_channel *ch;
334 	struct ice_tx_ring *xdp_ring;
335 	struct xsk_buff_pool *xsk_pool;
336 	u32 nr_frags;
337 	dma_addr_t dma;			/* physical address of ring */
338 	u64 cached_phctime;
339 	u16 rx_buf_len;
340 	u8 dcb_tc;			/* Traffic class of ring */
341 	u8 ptp_rx;
342 #define ICE_RX_FLAGS_RING_BUILD_SKB	BIT(1)
343 #define ICE_RX_FLAGS_CRC_STRIP_DIS	BIT(2)
344 	u8 flags;
345 	/* CL5 - 5th cacheline starts here */
346 	struct xdp_rxq_info xdp_rxq;
347 } ____cacheline_internodealigned_in_smp;
348 
349 struct ice_tx_ring {
350 	/* CL1 - 1st cacheline starts here */
351 	struct ice_tx_ring *next;	/* pointer to next ring in q_vector */
352 	void *desc;			/* Descriptor ring memory */
353 	struct device *dev;		/* Used for DMA mapping */
354 	u8 __iomem *tail;
355 	struct ice_tx_buf *tx_buf;
356 	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
357 	struct net_device *netdev;	/* netdev ring maps to */
358 	struct ice_vsi *vsi;		/* Backreference to associated VSI */
359 	/* CL2 - 2nd cacheline starts here */
360 	dma_addr_t dma;			/* physical address of ring */
361 	struct xsk_buff_pool *xsk_pool;
362 	u16 next_to_use;
363 	u16 next_to_clean;
364 	u16 q_handle;			/* Queue handle per TC */
365 	u16 reg_idx;			/* HW register index of the ring */
366 	u16 count;			/* Number of descriptors */
367 	u16 q_index;			/* Queue number of ring */
368 	u16 xdp_tx_active;
369 	/* stats structs */
370 	struct ice_ring_stats *ring_stats;
371 	/* CL3 - 3rd cacheline starts here */
372 	struct rcu_head rcu;		/* to avoid race on free */
373 	DECLARE_BITMAP(xps_state, ICE_TX_NBITS);	/* XPS Config State */
374 	struct ice_channel *ch;
375 	struct ice_ptp_tx *tx_tstamps;
376 	spinlock_t tx_lock;
377 	u32 txq_teid;			/* Added Tx queue TEID */
378 	/* CL4 - 4th cacheline starts here */
379 #define ICE_TX_FLAGS_RING_XDP		BIT(0)
380 #define ICE_TX_FLAGS_RING_VLAN_L2TAG1	BIT(1)
381 #define ICE_TX_FLAGS_RING_VLAN_L2TAG2	BIT(2)
382 	u8 flags;
383 	u8 dcb_tc;			/* Traffic class of ring */
384 	u8 ptp_tx;
385 } ____cacheline_internodealigned_in_smp;
386 
387 static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring)
388 {
389 	return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
390 }
391 
392 static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring)
393 {
394 	ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
395 }
396 
397 static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring)
398 {
399 	ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
400 }
401 
402 static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring)
403 {
404 	return !!ring->ch;
405 }
406 
407 static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring)
408 {
409 	return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
410 }
411 
412 enum ice_container_type {
413 	ICE_RX_CONTAINER,
414 	ICE_TX_CONTAINER,
415 };
416 
417 struct ice_ring_container {
418 	/* head of linked-list of rings */
419 	union {
420 		struct ice_rx_ring *rx_ring;
421 		struct ice_tx_ring *tx_ring;
422 	};
423 	struct dim dim;		/* data for net_dim algorithm */
424 	u16 itr_idx;		/* index in the interrupt vector */
425 	/* this matches the maximum number of ITR bits, but in usec
426 	 * values, so it is shifted left one bit (bit zero is ignored)
427 	 */
428 	union {
429 		struct {
430 			u16 itr_setting:13;
431 			u16 itr_reserved:2;
432 			u16 itr_mode:1;
433 		};
434 		u16 itr_settings;
435 	};
436 	enum ice_container_type type;
437 };
438 
439 struct ice_coalesce_stored {
440 	u16 itr_tx;
441 	u16 itr_rx;
442 	u8 intrl;
443 	u8 tx_valid;
444 	u8 rx_valid;
445 };
446 
447 /* iterator for handling rings in ring container */
448 #define ice_for_each_rx_ring(pos, head) \
449 	for (pos = (head).rx_ring; pos; pos = pos->next)
450 
451 #define ice_for_each_tx_ring(pos, head) \
452 	for (pos = (head).tx_ring; pos; pos = pos->next)
453 
454 static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring)
455 {
456 #if (PAGE_SIZE < 8192)
457 	if (ring->rx_buf_len > (PAGE_SIZE / 2))
458 		return 1;
459 #endif
460 	return 0;
461 }
462 
463 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
464 
465 union ice_32b_rx_flex_desc;
466 
467 bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, unsigned int cleaned_count);
468 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
469 u16
470 ice_select_queue(struct net_device *dev, struct sk_buff *skb,
471 		 struct net_device *sb_dev);
472 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring);
473 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring);
474 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring);
475 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring);
476 void ice_free_tx_ring(struct ice_tx_ring *tx_ring);
477 void ice_free_rx_ring(struct ice_rx_ring *rx_ring);
478 int ice_napi_poll(struct napi_struct *napi, int budget);
479 int
480 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
481 		   u8 *raw_packet);
482 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget);
483 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring);
484 #endif /* _ICE_TXRX_H_ */
485