1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #ifndef _ICE_TXRX_H_ 5 #define _ICE_TXRX_H_ 6 7 #include "ice_type.h" 8 9 #define ICE_DFLT_IRQ_WORK 256 10 #define ICE_RXBUF_3072 3072 11 #define ICE_RXBUF_2048 2048 12 #define ICE_RXBUF_1536 1536 13 #define ICE_MAX_CHAINED_RX_BUFS 5 14 #define ICE_MAX_BUF_TXD 8 15 #define ICE_MIN_TX_LEN 17 16 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 18 * In order to align with the read requests we will align the value to 19 * the nearest 4K which represents our maximum read request size. 20 */ 21 #define ICE_MAX_READ_REQ_SIZE 4096 22 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) 23 #define ICE_MAX_DATA_PER_TXD_ALIGNED \ 24 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) 25 26 #define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */ 27 #define ICE_MAX_TXQ_PER_TXQG 128 28 29 /* Attempt to maximize the headroom available for incoming frames. We use a 2K 30 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. 31 * This leaves us with 512 bytes of room. From that we need to deduct the 32 * space needed for the shared info and the padding needed to IP align the 33 * frame. 34 * 35 * Note: For cache line sizes 256 or larger this value is going to end 36 * up negative. In these cases we should fall back to the legacy 37 * receive path. 38 */ 39 #if (PAGE_SIZE < 8192) 40 #define ICE_2K_TOO_SMALL_WITH_PADDING \ 41 ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \ 42 SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) 43 44 /** 45 * ice_compute_pad - compute the padding 46 * @rx_buf_len: buffer length 47 * 48 * Figure out the size of half page based on given buffer length and 49 * then subtract the skb_shared_info followed by subtraction of the 50 * actual buffer length; this in turn results in the actual space that 51 * is left for padding usage 52 */ 53 static inline int ice_compute_pad(int rx_buf_len) 54 { 55 int half_page_size; 56 57 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 58 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; 59 } 60 61 /** 62 * ice_skb_pad - determine the padding that we can supply 63 * 64 * Figure out the right Rx buffer size and based on that calculate the 65 * padding 66 */ 67 static inline int ice_skb_pad(void) 68 { 69 int rx_buf_len; 70 71 /* If a 2K buffer cannot handle a standard Ethernet frame then 72 * optimize padding for a 3K buffer instead of a 1.5K buffer. 73 * 74 * For a 3K buffer we need to add enough padding to allow for 75 * tailroom due to NET_IP_ALIGN possibly shifting us out of 76 * cache-line alignment. 77 */ 78 if (ICE_2K_TOO_SMALL_WITH_PADDING) 79 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 80 else 81 rx_buf_len = ICE_RXBUF_1536; 82 83 /* if needed make room for NET_IP_ALIGN */ 84 rx_buf_len -= NET_IP_ALIGN; 85 86 return ice_compute_pad(rx_buf_len); 87 } 88 89 #define ICE_SKB_PAD ice_skb_pad() 90 #else 91 #define ICE_2K_TOO_SMALL_WITH_PADDING false 92 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 93 #endif 94 95 /* We are assuming that the cache line is always 64 Bytes here for ice. 96 * In order to make sure that is a correct assumption there is a check in probe 97 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line 98 * size is 128 bytes. We do it this way because we do not want to read the 99 * GLPCI_CNF2 register or a variable containing the value on every pass through 100 * the Tx path. 101 */ 102 #define ICE_CACHE_LINE_BYTES 64 103 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ 104 sizeof(struct ice_tx_desc)) 105 #define ICE_DESCS_FOR_CTX_DESC 1 106 #define ICE_DESCS_FOR_SKB_DATA_PTR 1 107 /* Tx descriptors needed, worst case */ 108 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ 109 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) 110 #define ICE_DESC_UNUSED(R) \ 111 (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ 112 (R)->next_to_clean - (R)->next_to_use - 1) 113 114 #define ICE_TX_FLAGS_TSO BIT(0) 115 #define ICE_TX_FLAGS_HW_VLAN BIT(1) 116 #define ICE_TX_FLAGS_SW_VLAN BIT(2) 117 /* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be 118 * freed instead of returned like skb packets. 119 */ 120 #define ICE_TX_FLAGS_DUMMY_PKT BIT(3) 121 #define ICE_TX_FLAGS_TSYN BIT(4) 122 #define ICE_TX_FLAGS_IPV4 BIT(5) 123 #define ICE_TX_FLAGS_IPV6 BIT(6) 124 #define ICE_TX_FLAGS_TUNNEL BIT(7) 125 #define ICE_TX_FLAGS_VLAN_M 0xffff0000 126 #define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000 127 #define ICE_TX_FLAGS_VLAN_PR_S 29 128 #define ICE_TX_FLAGS_VLAN_S 16 129 130 #define ICE_XDP_PASS 0 131 #define ICE_XDP_CONSUMED BIT(0) 132 #define ICE_XDP_TX BIT(1) 133 #define ICE_XDP_REDIR BIT(2) 134 135 #define ICE_RX_DMA_ATTR \ 136 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 137 138 #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 139 140 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) 141 142 struct ice_tx_buf { 143 struct ice_tx_desc *next_to_watch; 144 union { 145 struct sk_buff *skb; 146 void *raw_buf; /* used for XDP */ 147 }; 148 unsigned int bytecount; 149 unsigned short gso_segs; 150 u32 tx_flags; 151 DEFINE_DMA_UNMAP_LEN(len); 152 DEFINE_DMA_UNMAP_ADDR(dma); 153 }; 154 155 struct ice_tx_offload_params { 156 u64 cd_qw1; 157 struct ice_ring *tx_ring; 158 u32 td_cmd; 159 u32 td_offset; 160 u32 td_l2tag1; 161 u32 cd_tunnel_params; 162 u16 cd_l2tag2; 163 u8 header_len; 164 }; 165 166 struct ice_rx_buf { 167 union { 168 struct { 169 dma_addr_t dma; 170 struct page *page; 171 unsigned int page_offset; 172 u16 pagecnt_bias; 173 }; 174 struct { 175 struct xdp_buff *xdp; 176 }; 177 }; 178 }; 179 180 struct ice_q_stats { 181 u64 pkts; 182 u64 bytes; 183 }; 184 185 struct ice_txq_stats { 186 u64 restart_q; 187 u64 tx_busy; 188 u64 tx_linearize; 189 int prev_pkt; /* negative if no pending Tx descriptors */ 190 }; 191 192 struct ice_rxq_stats { 193 u64 non_eop_descs; 194 u64 alloc_page_failed; 195 u64 alloc_buf_failed; 196 }; 197 198 enum ice_ring_state_t { 199 ICE_TX_XPS_INIT_DONE, 200 ICE_TX_NBITS, 201 }; 202 203 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 204 * registers and QINT registers or more generally anywhere in the manual 205 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 206 * register but instead is a special value meaning "don't update" ITR0/1/2. 207 */ 208 enum ice_dyn_idx_t { 209 ICE_IDX_ITR0 = 0, 210 ICE_IDX_ITR1 = 1, 211 ICE_IDX_ITR2 = 2, 212 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 213 }; 214 215 /* Header split modes defined by DTYPE field of Rx RLAN context */ 216 enum ice_rx_dtype { 217 ICE_RX_DTYPE_NO_SPLIT = 0, 218 ICE_RX_DTYPE_HEADER_SPLIT = 1, 219 ICE_RX_DTYPE_SPLIT_ALWAYS = 2, 220 }; 221 222 /* indices into GLINT_ITR registers */ 223 #define ICE_RX_ITR ICE_IDX_ITR0 224 #define ICE_TX_ITR ICE_IDX_ITR1 225 #define ICE_ITR_8K 124 226 #define ICE_ITR_20K 50 227 #define ICE_ITR_MAX 8160 /* 0x1FE0 */ 228 #define ICE_DFLT_TX_ITR ICE_ITR_20K 229 #define ICE_DFLT_RX_ITR ICE_ITR_20K 230 enum ice_dynamic_itr { 231 ITR_STATIC = 0, 232 ITR_DYNAMIC = 1 233 }; 234 235 #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC) 236 #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ 237 #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) 238 #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 239 #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK) 240 241 #define ICE_DFLT_INTRL 0 242 #define ICE_MAX_INTRL 236 243 244 #define ICE_IN_WB_ON_ITR_MODE 255 245 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows 246 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, 247 * set the write-back latency to the usecs passed in. 248 */ 249 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ 250 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ 251 GLINT_DYN_CTL_INTERVAL_M) | \ 252 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ 253 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ 254 GLINT_DYN_CTL_WB_ON_ITR_M) 255 256 /* Legacy or Advanced Mode Queue */ 257 #define ICE_TX_ADVANCED 0 258 #define ICE_TX_LEGACY 1 259 260 /* descriptor ring, associated with a VSI */ 261 struct ice_ring { 262 /* CL1 - 1st cacheline starts here */ 263 struct ice_ring *next; /* pointer to next ring in q_vector */ 264 void *desc; /* Descriptor ring memory */ 265 struct device *dev; /* Used for DMA mapping */ 266 struct net_device *netdev; /* netdev ring maps to */ 267 struct ice_vsi *vsi; /* Backreference to associated VSI */ 268 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 269 u8 __iomem *tail; 270 union { 271 struct ice_tx_buf *tx_buf; 272 struct ice_rx_buf *rx_buf; 273 }; 274 /* CL2 - 2nd cacheline starts here */ 275 u16 q_index; /* Queue number of ring */ 276 u16 q_handle; /* Queue handle per TC */ 277 278 u8 ring_active:1; /* is ring online or not */ 279 280 u16 count; /* Number of descriptors */ 281 u16 reg_idx; /* HW register index of the ring */ 282 283 /* used in interrupt processing */ 284 u16 next_to_use; 285 u16 next_to_clean; 286 u16 next_to_alloc; 287 288 /* stats structs */ 289 struct ice_q_stats stats; 290 struct u64_stats_sync syncp; 291 union { 292 struct ice_txq_stats tx_stats; 293 struct ice_rxq_stats rx_stats; 294 }; 295 296 struct rcu_head rcu; /* to avoid race on free */ 297 DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */ 298 struct bpf_prog *xdp_prog; 299 struct xsk_buff_pool *xsk_pool; 300 u16 rx_offset; 301 /* CL3 - 3rd cacheline starts here */ 302 struct xdp_rxq_info xdp_rxq; 303 struct sk_buff *skb; 304 /* CLX - the below items are only accessed infrequently and should be 305 * in their own cache line if possible 306 */ 307 #define ICE_TX_FLAGS_RING_XDP BIT(0) 308 #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) 309 u8 flags; 310 dma_addr_t dma; /* physical address of ring */ 311 unsigned int size; /* length of descriptor ring in bytes */ 312 u32 txq_teid; /* Added Tx queue TEID */ 313 u16 rx_buf_len; 314 u8 dcb_tc; /* Traffic class of ring */ 315 struct ice_ptp_tx *tx_tstamps; 316 u64 cached_phctime; 317 u8 ptp_rx:1; 318 u8 ptp_tx:1; 319 } ____cacheline_internodealigned_in_smp; 320 321 static inline bool ice_ring_uses_build_skb(struct ice_ring *ring) 322 { 323 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); 324 } 325 326 static inline void ice_set_ring_build_skb_ena(struct ice_ring *ring) 327 { 328 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; 329 } 330 331 static inline void ice_clear_ring_build_skb_ena(struct ice_ring *ring) 332 { 333 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; 334 } 335 336 static inline bool ice_ring_is_xdp(struct ice_ring *ring) 337 { 338 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); 339 } 340 341 struct ice_ring_container { 342 /* head of linked-list of rings */ 343 struct ice_ring *ring; 344 struct dim dim; /* data for net_dim algorithm */ 345 u16 itr_idx; /* index in the interrupt vector */ 346 /* this matches the maximum number of ITR bits, but in usec 347 * values, so it is shifted left one bit (bit zero is ignored) 348 */ 349 u16 itr_setting:13; 350 u16 itr_reserved:2; 351 u16 itr_mode:1; 352 }; 353 354 struct ice_coalesce_stored { 355 u16 itr_tx; 356 u16 itr_rx; 357 u8 intrl; 358 u8 tx_valid; 359 u8 rx_valid; 360 }; 361 362 /* iterator for handling rings in ring container */ 363 #define ice_for_each_ring(pos, head) \ 364 for (pos = (head).ring; pos; pos = pos->next) 365 366 static inline unsigned int ice_rx_pg_order(struct ice_ring *ring) 367 { 368 #if (PAGE_SIZE < 8192) 369 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 370 return 1; 371 #endif 372 return 0; 373 } 374 375 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) 376 377 union ice_32b_rx_flex_desc; 378 379 bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count); 380 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); 381 void ice_clean_tx_ring(struct ice_ring *tx_ring); 382 void ice_clean_rx_ring(struct ice_ring *rx_ring); 383 int ice_setup_tx_ring(struct ice_ring *tx_ring); 384 int ice_setup_rx_ring(struct ice_ring *rx_ring); 385 void ice_free_tx_ring(struct ice_ring *tx_ring); 386 void ice_free_rx_ring(struct ice_ring *rx_ring); 387 int ice_napi_poll(struct napi_struct *napi, int budget); 388 int 389 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 390 u8 *raw_packet); 391 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget); 392 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring); 393 #endif /* _ICE_TXRX_H_ */ 394