1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #ifndef _ICE_TXRX_H_ 5 #define _ICE_TXRX_H_ 6 7 #include "ice_type.h" 8 9 #define ICE_DFLT_IRQ_WORK 256 10 #define ICE_RXBUF_3072 3072 11 #define ICE_RXBUF_2048 2048 12 #define ICE_RXBUF_1536 1536 13 #define ICE_MAX_CHAINED_RX_BUFS 5 14 #define ICE_MAX_BUF_TXD 8 15 #define ICE_MIN_TX_LEN 17 16 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 18 * In order to align with the read requests we will align the value to 19 * the nearest 4K which represents our maximum read request size. 20 */ 21 #define ICE_MAX_READ_REQ_SIZE 4096 22 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) 23 #define ICE_MAX_DATA_PER_TXD_ALIGNED \ 24 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) 25 26 #define ICE_MAX_TXQ_PER_TXQG 128 27 28 /* Attempt to maximize the headroom available for incoming frames. We use a 2K 29 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. 30 * This leaves us with 512 bytes of room. From that we need to deduct the 31 * space needed for the shared info and the padding needed to IP align the 32 * frame. 33 * 34 * Note: For cache line sizes 256 or larger this value is going to end 35 * up negative. In these cases we should fall back to the legacy 36 * receive path. 37 */ 38 #if (PAGE_SIZE < 8192) 39 #define ICE_2K_TOO_SMALL_WITH_PADDING \ 40 ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \ 41 SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) 42 43 /** 44 * ice_compute_pad - compute the padding 45 * @rx_buf_len: buffer length 46 * 47 * Figure out the size of half page based on given buffer length and 48 * then subtract the skb_shared_info followed by subtraction of the 49 * actual buffer length; this in turn results in the actual space that 50 * is left for padding usage 51 */ 52 static inline int ice_compute_pad(int rx_buf_len) 53 { 54 int half_page_size; 55 56 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 57 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; 58 } 59 60 /** 61 * ice_skb_pad - determine the padding that we can supply 62 * 63 * Figure out the right Rx buffer size and based on that calculate the 64 * padding 65 */ 66 static inline int ice_skb_pad(void) 67 { 68 int rx_buf_len; 69 70 /* If a 2K buffer cannot handle a standard Ethernet frame then 71 * optimize padding for a 3K buffer instead of a 1.5K buffer. 72 * 73 * For a 3K buffer we need to add enough padding to allow for 74 * tailroom due to NET_IP_ALIGN possibly shifting us out of 75 * cache-line alignment. 76 */ 77 if (ICE_2K_TOO_SMALL_WITH_PADDING) 78 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 79 else 80 rx_buf_len = ICE_RXBUF_1536; 81 82 /* if needed make room for NET_IP_ALIGN */ 83 rx_buf_len -= NET_IP_ALIGN; 84 85 return ice_compute_pad(rx_buf_len); 86 } 87 88 #define ICE_SKB_PAD ice_skb_pad() 89 #else 90 #define ICE_2K_TOO_SMALL_WITH_PADDING false 91 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 92 #endif 93 94 /* We are assuming that the cache line is always 64 Bytes here for ice. 95 * In order to make sure that is a correct assumption there is a check in probe 96 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line 97 * size is 128 bytes. We do it this way because we do not want to read the 98 * GLPCI_CNF2 register or a variable containing the value on every pass through 99 * the Tx path. 100 */ 101 #define ICE_CACHE_LINE_BYTES 64 102 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ 103 sizeof(struct ice_tx_desc)) 104 #define ICE_DESCS_FOR_CTX_DESC 1 105 #define ICE_DESCS_FOR_SKB_DATA_PTR 1 106 /* Tx descriptors needed, worst case */ 107 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ 108 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) 109 #define ICE_DESC_UNUSED(R) \ 110 (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ 111 (R)->next_to_clean - (R)->next_to_use - 1) 112 113 #define ICE_RING_QUARTER(R) ((R)->count >> 2) 114 115 #define ICE_TX_FLAGS_TSO BIT(0) 116 #define ICE_TX_FLAGS_HW_VLAN BIT(1) 117 #define ICE_TX_FLAGS_SW_VLAN BIT(2) 118 /* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be 119 * freed instead of returned like skb packets. 120 */ 121 #define ICE_TX_FLAGS_DUMMY_PKT BIT(3) 122 #define ICE_TX_FLAGS_TSYN BIT(4) 123 #define ICE_TX_FLAGS_IPV4 BIT(5) 124 #define ICE_TX_FLAGS_IPV6 BIT(6) 125 #define ICE_TX_FLAGS_TUNNEL BIT(7) 126 #define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(8) 127 #define ICE_TX_FLAGS_VLAN_M 0xffff0000 128 #define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000 129 #define ICE_TX_FLAGS_VLAN_PR_S 29 130 #define ICE_TX_FLAGS_VLAN_S 16 131 132 #define ICE_XDP_PASS 0 133 #define ICE_XDP_CONSUMED BIT(0) 134 #define ICE_XDP_TX BIT(1) 135 #define ICE_XDP_REDIR BIT(2) 136 #define ICE_XDP_EXIT BIT(3) 137 138 #define ICE_RX_DMA_ATTR \ 139 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 140 141 #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 142 143 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) 144 145 struct ice_tx_buf { 146 struct ice_tx_desc *next_to_watch; 147 union { 148 struct sk_buff *skb; 149 void *raw_buf; /* used for XDP */ 150 }; 151 unsigned int bytecount; 152 unsigned short gso_segs; 153 u32 tx_flags; 154 DEFINE_DMA_UNMAP_LEN(len); 155 DEFINE_DMA_UNMAP_ADDR(dma); 156 }; 157 158 struct ice_tx_offload_params { 159 u64 cd_qw1; 160 struct ice_tx_ring *tx_ring; 161 u32 td_cmd; 162 u32 td_offset; 163 u32 td_l2tag1; 164 u32 cd_tunnel_params; 165 u16 cd_l2tag2; 166 u8 header_len; 167 }; 168 169 struct ice_rx_buf { 170 dma_addr_t dma; 171 struct page *page; 172 unsigned int page_offset; 173 u16 pagecnt_bias; 174 }; 175 176 struct ice_q_stats { 177 u64 pkts; 178 u64 bytes; 179 }; 180 181 struct ice_txq_stats { 182 u64 restart_q; 183 u64 tx_busy; 184 u64 tx_linearize; 185 int prev_pkt; /* negative if no pending Tx descriptors */ 186 }; 187 188 struct ice_rxq_stats { 189 u64 non_eop_descs; 190 u64 alloc_page_failed; 191 u64 alloc_buf_failed; 192 }; 193 194 struct ice_ring_stats { 195 struct rcu_head rcu; /* to avoid race on free */ 196 struct ice_q_stats stats; 197 struct u64_stats_sync syncp; 198 union { 199 struct ice_txq_stats tx_stats; 200 struct ice_rxq_stats rx_stats; 201 }; 202 }; 203 204 enum ice_ring_state_t { 205 ICE_TX_XPS_INIT_DONE, 206 ICE_TX_NBITS, 207 }; 208 209 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 210 * registers and QINT registers or more generally anywhere in the manual 211 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 212 * register but instead is a special value meaning "don't update" ITR0/1/2. 213 */ 214 enum ice_dyn_idx_t { 215 ICE_IDX_ITR0 = 0, 216 ICE_IDX_ITR1 = 1, 217 ICE_IDX_ITR2 = 2, 218 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 219 }; 220 221 /* Header split modes defined by DTYPE field of Rx RLAN context */ 222 enum ice_rx_dtype { 223 ICE_RX_DTYPE_NO_SPLIT = 0, 224 ICE_RX_DTYPE_HEADER_SPLIT = 1, 225 ICE_RX_DTYPE_SPLIT_ALWAYS = 2, 226 }; 227 228 /* indices into GLINT_ITR registers */ 229 #define ICE_RX_ITR ICE_IDX_ITR0 230 #define ICE_TX_ITR ICE_IDX_ITR1 231 #define ICE_ITR_8K 124 232 #define ICE_ITR_20K 50 233 #define ICE_ITR_MAX 8160 /* 0x1FE0 */ 234 #define ICE_DFLT_TX_ITR ICE_ITR_20K 235 #define ICE_DFLT_RX_ITR ICE_ITR_20K 236 enum ice_dynamic_itr { 237 ITR_STATIC = 0, 238 ITR_DYNAMIC = 1 239 }; 240 241 #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC) 242 #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ 243 #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) 244 #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 245 #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK) 246 247 #define ICE_DFLT_INTRL 0 248 #define ICE_MAX_INTRL 236 249 250 #define ICE_IN_WB_ON_ITR_MODE 255 251 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows 252 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, 253 * set the write-back latency to the usecs passed in. 254 */ 255 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ 256 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ 257 GLINT_DYN_CTL_INTERVAL_M) | \ 258 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ 259 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ 260 GLINT_DYN_CTL_WB_ON_ITR_M) 261 262 /* Legacy or Advanced Mode Queue */ 263 #define ICE_TX_ADVANCED 0 264 #define ICE_TX_LEGACY 1 265 266 /* descriptor ring, associated with a VSI */ 267 struct ice_rx_ring { 268 /* CL1 - 1st cacheline starts here */ 269 struct ice_rx_ring *next; /* pointer to next ring in q_vector */ 270 void *desc; /* Descriptor ring memory */ 271 struct device *dev; /* Used for DMA mapping */ 272 struct net_device *netdev; /* netdev ring maps to */ 273 struct ice_vsi *vsi; /* Backreference to associated VSI */ 274 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 275 u8 __iomem *tail; 276 union { 277 struct ice_rx_buf *rx_buf; 278 struct xdp_buff **xdp_buf; 279 }; 280 /* CL2 - 2nd cacheline starts here */ 281 struct xdp_rxq_info xdp_rxq; 282 /* CL3 - 3rd cacheline starts here */ 283 u16 q_index; /* Queue number of ring */ 284 285 u16 count; /* Number of descriptors */ 286 u16 reg_idx; /* HW register index of the ring */ 287 288 /* used in interrupt processing */ 289 u16 next_to_use; 290 u16 next_to_clean; 291 u16 next_to_alloc; 292 u16 rx_offset; 293 u16 rx_buf_len; 294 295 /* stats structs */ 296 struct ice_ring_stats *ring_stats; 297 298 struct rcu_head rcu; /* to avoid race on free */ 299 /* CL4 - 3rd cacheline starts here */ 300 struct ice_channel *ch; 301 struct bpf_prog *xdp_prog; 302 struct ice_tx_ring *xdp_ring; 303 struct xsk_buff_pool *xsk_pool; 304 struct sk_buff *skb; 305 dma_addr_t dma; /* physical address of ring */ 306 u64 cached_phctime; 307 u8 dcb_tc; /* Traffic class of ring */ 308 u8 ptp_rx; 309 #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) 310 #define ICE_RX_FLAGS_CRC_STRIP_DIS BIT(2) 311 u8 flags; 312 } ____cacheline_internodealigned_in_smp; 313 314 struct ice_tx_ring { 315 /* CL1 - 1st cacheline starts here */ 316 struct ice_tx_ring *next; /* pointer to next ring in q_vector */ 317 void *desc; /* Descriptor ring memory */ 318 struct device *dev; /* Used for DMA mapping */ 319 u8 __iomem *tail; 320 struct ice_tx_buf *tx_buf; 321 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 322 struct net_device *netdev; /* netdev ring maps to */ 323 struct ice_vsi *vsi; /* Backreference to associated VSI */ 324 /* CL2 - 2nd cacheline starts here */ 325 dma_addr_t dma; /* physical address of ring */ 326 struct xsk_buff_pool *xsk_pool; 327 u16 next_to_use; 328 u16 next_to_clean; 329 u16 next_rs; 330 u16 next_dd; 331 u16 q_handle; /* Queue handle per TC */ 332 u16 reg_idx; /* HW register index of the ring */ 333 u16 count; /* Number of descriptors */ 334 u16 q_index; /* Queue number of ring */ 335 /* stats structs */ 336 struct ice_ring_stats *ring_stats; 337 /* CL3 - 3rd cacheline starts here */ 338 struct rcu_head rcu; /* to avoid race on free */ 339 DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */ 340 struct ice_channel *ch; 341 struct ice_ptp_tx *tx_tstamps; 342 spinlock_t tx_lock; 343 u32 txq_teid; /* Added Tx queue TEID */ 344 /* CL4 - 4th cacheline starts here */ 345 u16 xdp_tx_active; 346 #define ICE_TX_FLAGS_RING_XDP BIT(0) 347 #define ICE_TX_FLAGS_RING_VLAN_L2TAG1 BIT(1) 348 #define ICE_TX_FLAGS_RING_VLAN_L2TAG2 BIT(2) 349 u8 flags; 350 u8 dcb_tc; /* Traffic class of ring */ 351 u8 ptp_tx; 352 } ____cacheline_internodealigned_in_smp; 353 354 static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring) 355 { 356 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); 357 } 358 359 static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring) 360 { 361 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; 362 } 363 364 static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring) 365 { 366 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; 367 } 368 369 static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring) 370 { 371 return !!ring->ch; 372 } 373 374 static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring) 375 { 376 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); 377 } 378 379 enum ice_container_type { 380 ICE_RX_CONTAINER, 381 ICE_TX_CONTAINER, 382 }; 383 384 struct ice_ring_container { 385 /* head of linked-list of rings */ 386 union { 387 struct ice_rx_ring *rx_ring; 388 struct ice_tx_ring *tx_ring; 389 }; 390 struct dim dim; /* data for net_dim algorithm */ 391 u16 itr_idx; /* index in the interrupt vector */ 392 /* this matches the maximum number of ITR bits, but in usec 393 * values, so it is shifted left one bit (bit zero is ignored) 394 */ 395 union { 396 struct { 397 u16 itr_setting:13; 398 u16 itr_reserved:2; 399 u16 itr_mode:1; 400 }; 401 u16 itr_settings; 402 }; 403 enum ice_container_type type; 404 }; 405 406 struct ice_coalesce_stored { 407 u16 itr_tx; 408 u16 itr_rx; 409 u8 intrl; 410 u8 tx_valid; 411 u8 rx_valid; 412 }; 413 414 /* iterator for handling rings in ring container */ 415 #define ice_for_each_rx_ring(pos, head) \ 416 for (pos = (head).rx_ring; pos; pos = pos->next) 417 418 #define ice_for_each_tx_ring(pos, head) \ 419 for (pos = (head).tx_ring; pos; pos = pos->next) 420 421 static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring) 422 { 423 #if (PAGE_SIZE < 8192) 424 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 425 return 1; 426 #endif 427 return 0; 428 } 429 430 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) 431 432 union ice_32b_rx_flex_desc; 433 434 bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, u16 cleaned_count); 435 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); 436 u16 437 ice_select_queue(struct net_device *dev, struct sk_buff *skb, 438 struct net_device *sb_dev); 439 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring); 440 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring); 441 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring); 442 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring); 443 void ice_free_tx_ring(struct ice_tx_ring *tx_ring); 444 void ice_free_rx_ring(struct ice_rx_ring *rx_ring); 445 int ice_napi_poll(struct napi_struct *napi, int budget); 446 int 447 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 448 u8 *raw_packet); 449 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget); 450 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring); 451 #endif /* _ICE_TXRX_H_ */ 452