1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #ifndef _ICE_TXRX_H_ 5 #define _ICE_TXRX_H_ 6 7 #include "ice_type.h" 8 9 #define ICE_DFLT_IRQ_WORK 256 10 #define ICE_RXBUF_3072 3072 11 #define ICE_RXBUF_2048 2048 12 #define ICE_RXBUF_1536 1536 13 #define ICE_MAX_CHAINED_RX_BUFS 5 14 #define ICE_MAX_BUF_TXD 8 15 #define ICE_MIN_TX_LEN 17 16 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 18 * In order to align with the read requests we will align the value to 19 * the nearest 4K which represents our maximum read request size. 20 */ 21 #define ICE_MAX_READ_REQ_SIZE 4096 22 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) 23 #define ICE_MAX_DATA_PER_TXD_ALIGNED \ 24 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) 25 26 #define ICE_MAX_TXQ_PER_TXQG 128 27 28 /* Attempt to maximize the headroom available for incoming frames. We use a 2K 29 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. 30 * This leaves us with 512 bytes of room. From that we need to deduct the 31 * space needed for the shared info and the padding needed to IP align the 32 * frame. 33 * 34 * Note: For cache line sizes 256 or larger this value is going to end 35 * up negative. In these cases we should fall back to the legacy 36 * receive path. 37 */ 38 #if (PAGE_SIZE < 8192) 39 #define ICE_2K_TOO_SMALL_WITH_PADDING \ 40 ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \ 41 SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) 42 43 /** 44 * ice_compute_pad - compute the padding 45 * @rx_buf_len: buffer length 46 * 47 * Figure out the size of half page based on given buffer length and 48 * then subtract the skb_shared_info followed by subtraction of the 49 * actual buffer length; this in turn results in the actual space that 50 * is left for padding usage 51 */ 52 static inline int ice_compute_pad(int rx_buf_len) 53 { 54 int half_page_size; 55 56 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 57 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; 58 } 59 60 /** 61 * ice_skb_pad - determine the padding that we can supply 62 * 63 * Figure out the right Rx buffer size and based on that calculate the 64 * padding 65 */ 66 static inline int ice_skb_pad(void) 67 { 68 int rx_buf_len; 69 70 /* If a 2K buffer cannot handle a standard Ethernet frame then 71 * optimize padding for a 3K buffer instead of a 1.5K buffer. 72 * 73 * For a 3K buffer we need to add enough padding to allow for 74 * tailroom due to NET_IP_ALIGN possibly shifting us out of 75 * cache-line alignment. 76 */ 77 if (ICE_2K_TOO_SMALL_WITH_PADDING) 78 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 79 else 80 rx_buf_len = ICE_RXBUF_1536; 81 82 /* if needed make room for NET_IP_ALIGN */ 83 rx_buf_len -= NET_IP_ALIGN; 84 85 return ice_compute_pad(rx_buf_len); 86 } 87 88 #define ICE_SKB_PAD ice_skb_pad() 89 #else 90 #define ICE_2K_TOO_SMALL_WITH_PADDING false 91 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 92 #endif 93 94 /* We are assuming that the cache line is always 64 Bytes here for ice. 95 * In order to make sure that is a correct assumption there is a check in probe 96 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line 97 * size is 128 bytes. We do it this way because we do not want to read the 98 * GLPCI_CNF2 register or a variable containing the value on every pass through 99 * the Tx path. 100 */ 101 #define ICE_CACHE_LINE_BYTES 64 102 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ 103 sizeof(struct ice_tx_desc)) 104 #define ICE_DESCS_FOR_CTX_DESC 1 105 #define ICE_DESCS_FOR_SKB_DATA_PTR 1 106 /* Tx descriptors needed, worst case */ 107 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ 108 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) 109 #define ICE_DESC_UNUSED(R) \ 110 (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ 111 (R)->next_to_clean - (R)->next_to_use - 1) 112 113 #define ICE_RING_QUARTER(R) ((R)->count >> 2) 114 115 #define ICE_TX_FLAGS_TSO BIT(0) 116 #define ICE_TX_FLAGS_HW_VLAN BIT(1) 117 #define ICE_TX_FLAGS_SW_VLAN BIT(2) 118 /* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be 119 * freed instead of returned like skb packets. 120 */ 121 #define ICE_TX_FLAGS_DUMMY_PKT BIT(3) 122 #define ICE_TX_FLAGS_TSYN BIT(4) 123 #define ICE_TX_FLAGS_IPV4 BIT(5) 124 #define ICE_TX_FLAGS_IPV6 BIT(6) 125 #define ICE_TX_FLAGS_TUNNEL BIT(7) 126 #define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(8) 127 #define ICE_TX_FLAGS_VLAN_M 0xffff0000 128 #define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000 129 #define ICE_TX_FLAGS_VLAN_PR_S 29 130 #define ICE_TX_FLAGS_VLAN_S 16 131 132 #define ICE_XDP_PASS 0 133 #define ICE_XDP_CONSUMED BIT(0) 134 #define ICE_XDP_TX BIT(1) 135 #define ICE_XDP_REDIR BIT(2) 136 137 #define ICE_RX_DMA_ATTR \ 138 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 139 140 #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 141 142 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) 143 144 struct ice_tx_buf { 145 struct ice_tx_desc *next_to_watch; 146 union { 147 struct sk_buff *skb; 148 void *raw_buf; /* used for XDP */ 149 }; 150 unsigned int bytecount; 151 unsigned short gso_segs; 152 u32 tx_flags; 153 DEFINE_DMA_UNMAP_LEN(len); 154 DEFINE_DMA_UNMAP_ADDR(dma); 155 }; 156 157 struct ice_tx_offload_params { 158 u64 cd_qw1; 159 struct ice_tx_ring *tx_ring; 160 u32 td_cmd; 161 u32 td_offset; 162 u32 td_l2tag1; 163 u32 cd_tunnel_params; 164 u16 cd_l2tag2; 165 u8 header_len; 166 }; 167 168 struct ice_rx_buf { 169 dma_addr_t dma; 170 struct page *page; 171 unsigned int page_offset; 172 u16 pagecnt_bias; 173 }; 174 175 struct ice_q_stats { 176 u64 pkts; 177 u64 bytes; 178 }; 179 180 struct ice_txq_stats { 181 u64 restart_q; 182 u64 tx_busy; 183 u64 tx_linearize; 184 int prev_pkt; /* negative if no pending Tx descriptors */ 185 }; 186 187 struct ice_rxq_stats { 188 u64 non_eop_descs; 189 u64 alloc_page_failed; 190 u64 alloc_buf_failed; 191 }; 192 193 enum ice_ring_state_t { 194 ICE_TX_XPS_INIT_DONE, 195 ICE_TX_NBITS, 196 }; 197 198 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 199 * registers and QINT registers or more generally anywhere in the manual 200 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 201 * register but instead is a special value meaning "don't update" ITR0/1/2. 202 */ 203 enum ice_dyn_idx_t { 204 ICE_IDX_ITR0 = 0, 205 ICE_IDX_ITR1 = 1, 206 ICE_IDX_ITR2 = 2, 207 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 208 }; 209 210 /* Header split modes defined by DTYPE field of Rx RLAN context */ 211 enum ice_rx_dtype { 212 ICE_RX_DTYPE_NO_SPLIT = 0, 213 ICE_RX_DTYPE_HEADER_SPLIT = 1, 214 ICE_RX_DTYPE_SPLIT_ALWAYS = 2, 215 }; 216 217 /* indices into GLINT_ITR registers */ 218 #define ICE_RX_ITR ICE_IDX_ITR0 219 #define ICE_TX_ITR ICE_IDX_ITR1 220 #define ICE_ITR_8K 124 221 #define ICE_ITR_20K 50 222 #define ICE_ITR_MAX 8160 /* 0x1FE0 */ 223 #define ICE_DFLT_TX_ITR ICE_ITR_20K 224 #define ICE_DFLT_RX_ITR ICE_ITR_20K 225 enum ice_dynamic_itr { 226 ITR_STATIC = 0, 227 ITR_DYNAMIC = 1 228 }; 229 230 #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC) 231 #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ 232 #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) 233 #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 234 #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK) 235 236 #define ICE_DFLT_INTRL 0 237 #define ICE_MAX_INTRL 236 238 239 #define ICE_IN_WB_ON_ITR_MODE 255 240 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows 241 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, 242 * set the write-back latency to the usecs passed in. 243 */ 244 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ 245 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ 246 GLINT_DYN_CTL_INTERVAL_M) | \ 247 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ 248 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ 249 GLINT_DYN_CTL_WB_ON_ITR_M) 250 251 /* Legacy or Advanced Mode Queue */ 252 #define ICE_TX_ADVANCED 0 253 #define ICE_TX_LEGACY 1 254 255 /* descriptor ring, associated with a VSI */ 256 struct ice_rx_ring { 257 /* CL1 - 1st cacheline starts here */ 258 struct ice_rx_ring *next; /* pointer to next ring in q_vector */ 259 void *desc; /* Descriptor ring memory */ 260 struct device *dev; /* Used for DMA mapping */ 261 struct net_device *netdev; /* netdev ring maps to */ 262 struct ice_vsi *vsi; /* Backreference to associated VSI */ 263 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 264 u8 __iomem *tail; 265 union { 266 struct ice_rx_buf *rx_buf; 267 struct xdp_buff **xdp_buf; 268 }; 269 /* CL2 - 2nd cacheline starts here */ 270 struct xdp_rxq_info xdp_rxq; 271 /* CL3 - 3rd cacheline starts here */ 272 u16 q_index; /* Queue number of ring */ 273 274 u16 count; /* Number of descriptors */ 275 u16 reg_idx; /* HW register index of the ring */ 276 277 /* used in interrupt processing */ 278 u16 next_to_use; 279 u16 next_to_clean; 280 u16 next_to_alloc; 281 u16 rx_offset; 282 u16 rx_buf_len; 283 284 /* stats structs */ 285 struct ice_rxq_stats rx_stats; 286 struct ice_q_stats stats; 287 struct u64_stats_sync syncp; 288 289 struct rcu_head rcu; /* to avoid race on free */ 290 /* CL4 - 3rd cacheline starts here */ 291 struct ice_channel *ch; 292 struct bpf_prog *xdp_prog; 293 struct ice_tx_ring *xdp_ring; 294 struct xsk_buff_pool *xsk_pool; 295 struct sk_buff *skb; 296 dma_addr_t dma; /* physical address of ring */ 297 #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) 298 u64 cached_phctime; 299 u8 dcb_tc; /* Traffic class of ring */ 300 u8 ptp_rx; 301 u8 flags; 302 } ____cacheline_internodealigned_in_smp; 303 304 struct ice_tx_ring { 305 /* CL1 - 1st cacheline starts here */ 306 struct ice_tx_ring *next; /* pointer to next ring in q_vector */ 307 void *desc; /* Descriptor ring memory */ 308 struct device *dev; /* Used for DMA mapping */ 309 u8 __iomem *tail; 310 struct ice_tx_buf *tx_buf; 311 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 312 struct net_device *netdev; /* netdev ring maps to */ 313 struct ice_vsi *vsi; /* Backreference to associated VSI */ 314 /* CL2 - 2nd cacheline starts here */ 315 dma_addr_t dma; /* physical address of ring */ 316 struct xsk_buff_pool *xsk_pool; 317 u16 next_to_use; 318 u16 next_to_clean; 319 u16 next_rs; 320 u16 next_dd; 321 u16 q_handle; /* Queue handle per TC */ 322 u16 reg_idx; /* HW register index of the ring */ 323 u16 count; /* Number of descriptors */ 324 u16 q_index; /* Queue number of ring */ 325 /* stats structs */ 326 struct ice_txq_stats tx_stats; 327 /* CL3 - 3rd cacheline starts here */ 328 struct ice_q_stats stats; 329 struct u64_stats_sync syncp; 330 struct rcu_head rcu; /* to avoid race on free */ 331 DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */ 332 struct ice_channel *ch; 333 struct ice_ptp_tx *tx_tstamps; 334 spinlock_t tx_lock; 335 u32 txq_teid; /* Added Tx queue TEID */ 336 /* CL4 - 4th cacheline starts here */ 337 u16 xdp_tx_active; 338 #define ICE_TX_FLAGS_RING_XDP BIT(0) 339 #define ICE_TX_FLAGS_RING_VLAN_L2TAG1 BIT(1) 340 #define ICE_TX_FLAGS_RING_VLAN_L2TAG2 BIT(2) 341 u8 flags; 342 u8 dcb_tc; /* Traffic class of ring */ 343 u8 ptp_tx; 344 } ____cacheline_internodealigned_in_smp; 345 346 static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring) 347 { 348 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); 349 } 350 351 static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring) 352 { 353 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; 354 } 355 356 static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring) 357 { 358 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; 359 } 360 361 static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring) 362 { 363 return !!ring->ch; 364 } 365 366 static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring) 367 { 368 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); 369 } 370 371 enum ice_container_type { 372 ICE_RX_CONTAINER, 373 ICE_TX_CONTAINER, 374 }; 375 376 struct ice_ring_container { 377 /* head of linked-list of rings */ 378 union { 379 struct ice_rx_ring *rx_ring; 380 struct ice_tx_ring *tx_ring; 381 }; 382 struct dim dim; /* data for net_dim algorithm */ 383 u16 itr_idx; /* index in the interrupt vector */ 384 /* this matches the maximum number of ITR bits, but in usec 385 * values, so it is shifted left one bit (bit zero is ignored) 386 */ 387 u16 itr_setting:13; 388 u16 itr_reserved:2; 389 u16 itr_mode:1; 390 enum ice_container_type type; 391 }; 392 393 struct ice_coalesce_stored { 394 u16 itr_tx; 395 u16 itr_rx; 396 u8 intrl; 397 u8 tx_valid; 398 u8 rx_valid; 399 }; 400 401 /* iterator for handling rings in ring container */ 402 #define ice_for_each_rx_ring(pos, head) \ 403 for (pos = (head).rx_ring; pos; pos = pos->next) 404 405 #define ice_for_each_tx_ring(pos, head) \ 406 for (pos = (head).tx_ring; pos; pos = pos->next) 407 408 static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring) 409 { 410 #if (PAGE_SIZE < 8192) 411 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 412 return 1; 413 #endif 414 return 0; 415 } 416 417 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) 418 419 union ice_32b_rx_flex_desc; 420 421 bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, u16 cleaned_count); 422 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); 423 u16 424 ice_select_queue(struct net_device *dev, struct sk_buff *skb, 425 struct net_device *sb_dev); 426 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring); 427 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring); 428 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring); 429 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring); 430 void ice_free_tx_ring(struct ice_tx_ring *tx_ring); 431 void ice_free_rx_ring(struct ice_rx_ring *rx_ring); 432 int ice_napi_poll(struct napi_struct *napi, int budget); 433 int 434 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 435 u8 *raw_packet); 436 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget); 437 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring); 438 #endif /* _ICE_TXRX_H_ */ 439