1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/dsfield.h> 10 #include <net/xdp.h> 11 #include "ice_txrx_lib.h" 12 #include "ice_lib.h" 13 #include "ice.h" 14 #include "ice_trace.h" 15 #include "ice_dcb_lib.h" 16 #include "ice_xsk.h" 17 #include "ice_eswitch.h" 18 19 #define ICE_RX_HDR_SIZE 256 20 21 #define FDIR_DESC_RXDID 0x40 22 #define ICE_FDIR_CLEAN_DELAY 10 23 24 /** 25 * ice_prgm_fdir_fltr - Program a Flow Director filter 26 * @vsi: VSI to send dummy packet 27 * @fdir_desc: flow director descriptor 28 * @raw_packet: allocated buffer for flow director 29 */ 30 int 31 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 32 u8 *raw_packet) 33 { 34 struct ice_tx_buf *tx_buf, *first; 35 struct ice_fltr_desc *f_desc; 36 struct ice_tx_desc *tx_desc; 37 struct ice_tx_ring *tx_ring; 38 struct device *dev; 39 dma_addr_t dma; 40 u32 td_cmd; 41 u16 i; 42 43 /* VSI and Tx ring */ 44 if (!vsi) 45 return -ENOENT; 46 tx_ring = vsi->tx_rings[0]; 47 if (!tx_ring || !tx_ring->desc) 48 return -ENOENT; 49 dev = tx_ring->dev; 50 51 /* we are using two descriptors to add/del a filter and we can wait */ 52 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 53 if (!i) 54 return -EAGAIN; 55 msleep_interruptible(1); 56 } 57 58 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 59 DMA_TO_DEVICE); 60 61 if (dma_mapping_error(dev, dma)) 62 return -EINVAL; 63 64 /* grab the next descriptor */ 65 i = tx_ring->next_to_use; 66 first = &tx_ring->tx_buf[i]; 67 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 68 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 69 70 i++; 71 i = (i < tx_ring->count) ? i : 0; 72 tx_desc = ICE_TX_DESC(tx_ring, i); 73 tx_buf = &tx_ring->tx_buf[i]; 74 75 i++; 76 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 77 78 memset(tx_buf, 0, sizeof(*tx_buf)); 79 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 80 dma_unmap_addr_set(tx_buf, dma, dma); 81 82 tx_desc->buf_addr = cpu_to_le64(dma); 83 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 84 ICE_TX_DESC_CMD_RE; 85 86 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 87 tx_buf->raw_buf = raw_packet; 88 89 tx_desc->cmd_type_offset_bsz = 90 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 91 92 /* Force memory write to complete before letting h/w know 93 * there are new descriptors to fetch. 94 */ 95 wmb(); 96 97 /* mark the data descriptor to be watched */ 98 first->next_to_watch = tx_desc; 99 100 writel(tx_ring->next_to_use, tx_ring->tail); 101 102 return 0; 103 } 104 105 /** 106 * ice_unmap_and_free_tx_buf - Release a Tx buffer 107 * @ring: the ring that owns the buffer 108 * @tx_buf: the buffer to free 109 */ 110 static void 111 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 112 { 113 if (tx_buf->skb) { 114 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 115 devm_kfree(ring->dev, tx_buf->raw_buf); 116 else if (ice_ring_is_xdp(ring)) 117 page_frag_free(tx_buf->raw_buf); 118 else 119 dev_kfree_skb_any(tx_buf->skb); 120 if (dma_unmap_len(tx_buf, len)) 121 dma_unmap_single(ring->dev, 122 dma_unmap_addr(tx_buf, dma), 123 dma_unmap_len(tx_buf, len), 124 DMA_TO_DEVICE); 125 } else if (dma_unmap_len(tx_buf, len)) { 126 dma_unmap_page(ring->dev, 127 dma_unmap_addr(tx_buf, dma), 128 dma_unmap_len(tx_buf, len), 129 DMA_TO_DEVICE); 130 } 131 132 tx_buf->next_to_watch = NULL; 133 tx_buf->skb = NULL; 134 dma_unmap_len_set(tx_buf, len, 0); 135 /* tx_buf must be completely set up in the transmit path */ 136 } 137 138 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 139 { 140 return netdev_get_tx_queue(ring->netdev, ring->q_index); 141 } 142 143 /** 144 * ice_clean_tx_ring - Free any empty Tx buffers 145 * @tx_ring: ring to be cleaned 146 */ 147 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 148 { 149 u32 size; 150 u16 i; 151 152 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 153 ice_xsk_clean_xdp_ring(tx_ring); 154 goto tx_skip_free; 155 } 156 157 /* ring already cleared, nothing to do */ 158 if (!tx_ring->tx_buf) 159 return; 160 161 /* Free all the Tx ring sk_buffs */ 162 for (i = 0; i < tx_ring->count; i++) 163 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 164 165 tx_skip_free: 166 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 167 168 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 169 PAGE_SIZE); 170 /* Zero out the descriptor ring */ 171 memset(tx_ring->desc, 0, size); 172 173 tx_ring->next_to_use = 0; 174 tx_ring->next_to_clean = 0; 175 176 if (!tx_ring->netdev) 177 return; 178 179 /* cleanup Tx queue statistics */ 180 netdev_tx_reset_queue(txring_txq(tx_ring)); 181 } 182 183 /** 184 * ice_free_tx_ring - Free Tx resources per queue 185 * @tx_ring: Tx descriptor ring for a specific queue 186 * 187 * Free all transmit software resources 188 */ 189 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 190 { 191 u32 size; 192 193 ice_clean_tx_ring(tx_ring); 194 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 195 tx_ring->tx_buf = NULL; 196 197 if (tx_ring->desc) { 198 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 199 PAGE_SIZE); 200 dmam_free_coherent(tx_ring->dev, size, 201 tx_ring->desc, tx_ring->dma); 202 tx_ring->desc = NULL; 203 } 204 } 205 206 /** 207 * ice_clean_tx_irq - Reclaim resources after transmit completes 208 * @tx_ring: Tx ring to clean 209 * @napi_budget: Used to determine if we are in netpoll 210 * 211 * Returns true if there's any budget left (e.g. the clean is finished) 212 */ 213 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 214 { 215 unsigned int total_bytes = 0, total_pkts = 0; 216 unsigned int budget = ICE_DFLT_IRQ_WORK; 217 struct ice_vsi *vsi = tx_ring->vsi; 218 s16 i = tx_ring->next_to_clean; 219 struct ice_tx_desc *tx_desc; 220 struct ice_tx_buf *tx_buf; 221 222 tx_buf = &tx_ring->tx_buf[i]; 223 tx_desc = ICE_TX_DESC(tx_ring, i); 224 i -= tx_ring->count; 225 226 prefetch(&vsi->state); 227 228 do { 229 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 230 231 /* if next_to_watch is not set then there is no work pending */ 232 if (!eop_desc) 233 break; 234 235 smp_rmb(); /* prevent any other reads prior to eop_desc */ 236 237 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 238 /* if the descriptor isn't done, no work yet to do */ 239 if (!(eop_desc->cmd_type_offset_bsz & 240 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 241 break; 242 243 /* clear next_to_watch to prevent false hangs */ 244 tx_buf->next_to_watch = NULL; 245 246 /* update the statistics for this packet */ 247 total_bytes += tx_buf->bytecount; 248 total_pkts += tx_buf->gso_segs; 249 250 /* free the skb */ 251 napi_consume_skb(tx_buf->skb, napi_budget); 252 253 /* unmap skb header data */ 254 dma_unmap_single(tx_ring->dev, 255 dma_unmap_addr(tx_buf, dma), 256 dma_unmap_len(tx_buf, len), 257 DMA_TO_DEVICE); 258 259 /* clear tx_buf data */ 260 tx_buf->skb = NULL; 261 dma_unmap_len_set(tx_buf, len, 0); 262 263 /* unmap remaining buffers */ 264 while (tx_desc != eop_desc) { 265 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 266 tx_buf++; 267 tx_desc++; 268 i++; 269 if (unlikely(!i)) { 270 i -= tx_ring->count; 271 tx_buf = tx_ring->tx_buf; 272 tx_desc = ICE_TX_DESC(tx_ring, 0); 273 } 274 275 /* unmap any remaining paged data */ 276 if (dma_unmap_len(tx_buf, len)) { 277 dma_unmap_page(tx_ring->dev, 278 dma_unmap_addr(tx_buf, dma), 279 dma_unmap_len(tx_buf, len), 280 DMA_TO_DEVICE); 281 dma_unmap_len_set(tx_buf, len, 0); 282 } 283 } 284 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 285 286 /* move us one more past the eop_desc for start of next pkt */ 287 tx_buf++; 288 tx_desc++; 289 i++; 290 if (unlikely(!i)) { 291 i -= tx_ring->count; 292 tx_buf = tx_ring->tx_buf; 293 tx_desc = ICE_TX_DESC(tx_ring, 0); 294 } 295 296 prefetch(tx_desc); 297 298 /* update budget accounting */ 299 budget--; 300 } while (likely(budget)); 301 302 i += tx_ring->count; 303 tx_ring->next_to_clean = i; 304 305 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 306 307 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 308 total_bytes); 309 310 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 311 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 312 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 313 /* Make sure that anybody stopping the queue after this 314 * sees the new next_to_clean. 315 */ 316 smp_mb(); 317 if (__netif_subqueue_stopped(tx_ring->netdev, 318 tx_ring->q_index) && 319 !test_bit(ICE_VSI_DOWN, vsi->state)) { 320 netif_wake_subqueue(tx_ring->netdev, 321 tx_ring->q_index); 322 ++tx_ring->tx_stats.restart_q; 323 } 324 } 325 326 return !!budget; 327 } 328 329 /** 330 * ice_setup_tx_ring - Allocate the Tx descriptors 331 * @tx_ring: the Tx ring to set up 332 * 333 * Return 0 on success, negative on error 334 */ 335 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 336 { 337 struct device *dev = tx_ring->dev; 338 u32 size; 339 340 if (!dev) 341 return -ENOMEM; 342 343 /* warn if we are about to overwrite the pointer */ 344 WARN_ON(tx_ring->tx_buf); 345 tx_ring->tx_buf = 346 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 347 GFP_KERNEL); 348 if (!tx_ring->tx_buf) 349 return -ENOMEM; 350 351 /* round up to nearest page */ 352 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 353 PAGE_SIZE); 354 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 355 GFP_KERNEL); 356 if (!tx_ring->desc) { 357 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 358 size); 359 goto err; 360 } 361 362 tx_ring->next_to_use = 0; 363 tx_ring->next_to_clean = 0; 364 tx_ring->tx_stats.prev_pkt = -1; 365 return 0; 366 367 err: 368 devm_kfree(dev, tx_ring->tx_buf); 369 tx_ring->tx_buf = NULL; 370 return -ENOMEM; 371 } 372 373 /** 374 * ice_clean_rx_ring - Free Rx buffers 375 * @rx_ring: ring to be cleaned 376 */ 377 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 378 { 379 struct device *dev = rx_ring->dev; 380 u32 size; 381 u16 i; 382 383 /* ring already cleared, nothing to do */ 384 if (!rx_ring->rx_buf) 385 return; 386 387 if (rx_ring->skb) { 388 dev_kfree_skb(rx_ring->skb); 389 rx_ring->skb = NULL; 390 } 391 392 if (rx_ring->xsk_pool) { 393 ice_xsk_clean_rx_ring(rx_ring); 394 goto rx_skip_free; 395 } 396 397 /* Free all the Rx ring sk_buffs */ 398 for (i = 0; i < rx_ring->count; i++) { 399 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 400 401 if (!rx_buf->page) 402 continue; 403 404 /* Invalidate cache lines that may have been written to by 405 * device so that we avoid corrupting memory. 406 */ 407 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 408 rx_buf->page_offset, 409 rx_ring->rx_buf_len, 410 DMA_FROM_DEVICE); 411 412 /* free resources associated with mapping */ 413 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 414 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 415 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 416 417 rx_buf->page = NULL; 418 rx_buf->page_offset = 0; 419 } 420 421 rx_skip_free: 422 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 423 424 /* Zero out the descriptor ring */ 425 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 426 PAGE_SIZE); 427 memset(rx_ring->desc, 0, size); 428 429 rx_ring->next_to_alloc = 0; 430 rx_ring->next_to_clean = 0; 431 rx_ring->next_to_use = 0; 432 } 433 434 /** 435 * ice_free_rx_ring - Free Rx resources 436 * @rx_ring: ring to clean the resources from 437 * 438 * Free all receive software resources 439 */ 440 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 441 { 442 u32 size; 443 444 ice_clean_rx_ring(rx_ring); 445 if (rx_ring->vsi->type == ICE_VSI_PF) 446 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 447 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 448 rx_ring->xdp_prog = NULL; 449 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 450 rx_ring->rx_buf = NULL; 451 452 if (rx_ring->desc) { 453 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 454 PAGE_SIZE); 455 dmam_free_coherent(rx_ring->dev, size, 456 rx_ring->desc, rx_ring->dma); 457 rx_ring->desc = NULL; 458 } 459 } 460 461 /** 462 * ice_setup_rx_ring - Allocate the Rx descriptors 463 * @rx_ring: the Rx ring to set up 464 * 465 * Return 0 on success, negative on error 466 */ 467 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 468 { 469 struct device *dev = rx_ring->dev; 470 u32 size; 471 472 if (!dev) 473 return -ENOMEM; 474 475 /* warn if we are about to overwrite the pointer */ 476 WARN_ON(rx_ring->rx_buf); 477 rx_ring->rx_buf = 478 devm_kcalloc(dev, sizeof(*rx_ring->rx_buf), rx_ring->count, 479 GFP_KERNEL); 480 if (!rx_ring->rx_buf) 481 return -ENOMEM; 482 483 /* round up to nearest page */ 484 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 485 PAGE_SIZE); 486 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 487 GFP_KERNEL); 488 if (!rx_ring->desc) { 489 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 490 size); 491 goto err; 492 } 493 494 rx_ring->next_to_use = 0; 495 rx_ring->next_to_clean = 0; 496 497 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 498 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 499 500 if (rx_ring->vsi->type == ICE_VSI_PF && 501 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 502 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 503 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 504 goto err; 505 return 0; 506 507 err: 508 devm_kfree(dev, rx_ring->rx_buf); 509 rx_ring->rx_buf = NULL; 510 return -ENOMEM; 511 } 512 513 static unsigned int 514 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) 515 { 516 unsigned int truesize; 517 518 #if (PAGE_SIZE < 8192) 519 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 520 #else 521 truesize = rx_ring->rx_offset ? 522 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 523 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 524 SKB_DATA_ALIGN(size); 525 #endif 526 return truesize; 527 } 528 529 /** 530 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 531 * @rx_ring: Rx ring 532 * @xdp: xdp_buff used as input to the XDP program 533 * @xdp_prog: XDP program to run 534 * @xdp_ring: ring to be used for XDP_TX action 535 * 536 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 537 */ 538 static int 539 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 540 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 541 { 542 int err; 543 u32 act; 544 545 act = bpf_prog_run_xdp(xdp_prog, xdp); 546 switch (act) { 547 case XDP_PASS: 548 return ICE_XDP_PASS; 549 case XDP_TX: 550 if (static_branch_unlikely(&ice_xdp_locking_key)) 551 spin_lock(&xdp_ring->tx_lock); 552 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); 553 if (static_branch_unlikely(&ice_xdp_locking_key)) 554 spin_unlock(&xdp_ring->tx_lock); 555 if (err == ICE_XDP_CONSUMED) 556 goto out_failure; 557 return err; 558 case XDP_REDIRECT: 559 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 560 if (err) 561 goto out_failure; 562 return ICE_XDP_REDIR; 563 default: 564 bpf_warn_invalid_xdp_action(act); 565 fallthrough; 566 case XDP_ABORTED: 567 out_failure: 568 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 569 fallthrough; 570 case XDP_DROP: 571 return ICE_XDP_CONSUMED; 572 } 573 } 574 575 /** 576 * ice_xdp_xmit - submit packets to XDP ring for transmission 577 * @dev: netdev 578 * @n: number of XDP frames to be transmitted 579 * @frames: XDP frames to be transmitted 580 * @flags: transmit flags 581 * 582 * Returns number of frames successfully sent. Failed frames 583 * will be free'ed by XDP core. 584 * For error cases, a negative errno code is returned and no-frames 585 * are transmitted (caller must handle freeing frames). 586 */ 587 int 588 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 589 u32 flags) 590 { 591 struct ice_netdev_priv *np = netdev_priv(dev); 592 unsigned int queue_index = smp_processor_id(); 593 struct ice_vsi *vsi = np->vsi; 594 struct ice_tx_ring *xdp_ring; 595 int nxmit = 0, i; 596 597 if (test_bit(ICE_VSI_DOWN, vsi->state)) 598 return -ENETDOWN; 599 600 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 601 return -ENXIO; 602 603 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 604 return -EINVAL; 605 606 if (static_branch_unlikely(&ice_xdp_locking_key)) { 607 queue_index %= vsi->num_xdp_txq; 608 xdp_ring = vsi->xdp_rings[queue_index]; 609 spin_lock(&xdp_ring->tx_lock); 610 } else { 611 xdp_ring = vsi->xdp_rings[queue_index]; 612 } 613 614 for (i = 0; i < n; i++) { 615 struct xdp_frame *xdpf = frames[i]; 616 int err; 617 618 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 619 if (err != ICE_XDP_TX) 620 break; 621 nxmit++; 622 } 623 624 if (unlikely(flags & XDP_XMIT_FLUSH)) 625 ice_xdp_ring_update_tail(xdp_ring); 626 627 if (static_branch_unlikely(&ice_xdp_locking_key)) 628 spin_unlock(&xdp_ring->tx_lock); 629 630 return nxmit; 631 } 632 633 /** 634 * ice_alloc_mapped_page - recycle or make a new page 635 * @rx_ring: ring to use 636 * @bi: rx_buf struct to modify 637 * 638 * Returns true if the page was successfully allocated or 639 * reused. 640 */ 641 static bool 642 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 643 { 644 struct page *page = bi->page; 645 dma_addr_t dma; 646 647 /* since we are recycling buffers we should seldom need to alloc */ 648 if (likely(page)) 649 return true; 650 651 /* alloc new page for storage */ 652 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 653 if (unlikely(!page)) { 654 rx_ring->rx_stats.alloc_page_failed++; 655 return false; 656 } 657 658 /* map page for use */ 659 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 660 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 661 662 /* if mapping failed free memory back to system since 663 * there isn't much point in holding memory we can't use 664 */ 665 if (dma_mapping_error(rx_ring->dev, dma)) { 666 __free_pages(page, ice_rx_pg_order(rx_ring)); 667 rx_ring->rx_stats.alloc_page_failed++; 668 return false; 669 } 670 671 bi->dma = dma; 672 bi->page = page; 673 bi->page_offset = rx_ring->rx_offset; 674 page_ref_add(page, USHRT_MAX - 1); 675 bi->pagecnt_bias = USHRT_MAX; 676 677 return true; 678 } 679 680 /** 681 * ice_alloc_rx_bufs - Replace used receive buffers 682 * @rx_ring: ring to place buffers on 683 * @cleaned_count: number of buffers to replace 684 * 685 * Returns false if all allocations were successful, true if any fail. Returning 686 * true signals to the caller that we didn't replace cleaned_count buffers and 687 * there is more work to do. 688 * 689 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 690 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 691 * multiple tail writes per call. 692 */ 693 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) 694 { 695 union ice_32b_rx_flex_desc *rx_desc; 696 u16 ntu = rx_ring->next_to_use; 697 struct ice_rx_buf *bi; 698 699 /* do nothing if no valid netdev defined */ 700 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 701 !cleaned_count) 702 return false; 703 704 /* get the Rx descriptor and buffer based on next_to_use */ 705 rx_desc = ICE_RX_DESC(rx_ring, ntu); 706 bi = &rx_ring->rx_buf[ntu]; 707 708 do { 709 /* if we fail here, we have work remaining */ 710 if (!ice_alloc_mapped_page(rx_ring, bi)) 711 break; 712 713 /* sync the buffer for use by the device */ 714 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 715 bi->page_offset, 716 rx_ring->rx_buf_len, 717 DMA_FROM_DEVICE); 718 719 /* Refresh the desc even if buffer_addrs didn't change 720 * because each write-back erases this info. 721 */ 722 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 723 724 rx_desc++; 725 bi++; 726 ntu++; 727 if (unlikely(ntu == rx_ring->count)) { 728 rx_desc = ICE_RX_DESC(rx_ring, 0); 729 bi = rx_ring->rx_buf; 730 ntu = 0; 731 } 732 733 /* clear the status bits for the next_to_use descriptor */ 734 rx_desc->wb.status_error0 = 0; 735 736 cleaned_count--; 737 } while (cleaned_count); 738 739 if (rx_ring->next_to_use != ntu) 740 ice_release_rx_desc(rx_ring, ntu); 741 742 return !!cleaned_count; 743 } 744 745 /** 746 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 747 * @rx_buf: Rx buffer to adjust 748 * @size: Size of adjustment 749 * 750 * Update the offset within page so that Rx buf will be ready to be reused. 751 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 752 * so the second half of page assigned to Rx buffer will be used, otherwise 753 * the offset is moved by "size" bytes 754 */ 755 static void 756 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 757 { 758 #if (PAGE_SIZE < 8192) 759 /* flip page offset to other buffer */ 760 rx_buf->page_offset ^= size; 761 #else 762 /* move offset up to the next cache line */ 763 rx_buf->page_offset += size; 764 #endif 765 } 766 767 /** 768 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 769 * @rx_buf: buffer containing the page 770 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 771 * 772 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 773 * which will assign the current buffer to the buffer that next_to_alloc is 774 * pointing to; otherwise, the DMA mapping needs to be destroyed and 775 * page freed 776 */ 777 static bool 778 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 779 { 780 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 781 struct page *page = rx_buf->page; 782 783 /* avoid re-using remote and pfmemalloc pages */ 784 if (!dev_page_is_reusable(page)) 785 return false; 786 787 #if (PAGE_SIZE < 8192) 788 /* if we are only owner of page we can reuse it */ 789 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 790 return false; 791 #else 792 #define ICE_LAST_OFFSET \ 793 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 794 if (rx_buf->page_offset > ICE_LAST_OFFSET) 795 return false; 796 #endif /* PAGE_SIZE < 8192) */ 797 798 /* If we have drained the page fragment pool we need to update 799 * the pagecnt_bias and page count so that we fully restock the 800 * number of references the driver holds. 801 */ 802 if (unlikely(pagecnt_bias == 1)) { 803 page_ref_add(page, USHRT_MAX - 1); 804 rx_buf->pagecnt_bias = USHRT_MAX; 805 } 806 807 return true; 808 } 809 810 /** 811 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 812 * @rx_ring: Rx descriptor ring to transact packets on 813 * @rx_buf: buffer containing page to add 814 * @skb: sk_buff to place the data into 815 * @size: packet length from rx_desc 816 * 817 * This function will add the data contained in rx_buf->page to the skb. 818 * It will just attach the page as a frag to the skb. 819 * The function will then update the page offset. 820 */ 821 static void 822 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 823 struct sk_buff *skb, unsigned int size) 824 { 825 #if (PAGE_SIZE >= 8192) 826 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 827 #else 828 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 829 #endif 830 831 if (!size) 832 return; 833 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 834 rx_buf->page_offset, size, truesize); 835 836 /* page is being used so we must update the page offset */ 837 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 838 } 839 840 /** 841 * ice_reuse_rx_page - page flip buffer and store it back on the ring 842 * @rx_ring: Rx descriptor ring to store buffers on 843 * @old_buf: donor buffer to have page reused 844 * 845 * Synchronizes page for reuse by the adapter 846 */ 847 static void 848 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 849 { 850 u16 nta = rx_ring->next_to_alloc; 851 struct ice_rx_buf *new_buf; 852 853 new_buf = &rx_ring->rx_buf[nta]; 854 855 /* update, and store next to alloc */ 856 nta++; 857 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 858 859 /* Transfer page from old buffer to new buffer. 860 * Move each member individually to avoid possible store 861 * forwarding stalls and unnecessary copy of skb. 862 */ 863 new_buf->dma = old_buf->dma; 864 new_buf->page = old_buf->page; 865 new_buf->page_offset = old_buf->page_offset; 866 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 867 } 868 869 /** 870 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 871 * @rx_ring: Rx descriptor ring to transact packets on 872 * @size: size of buffer to add to skb 873 * @rx_buf_pgcnt: rx_buf page refcount 874 * 875 * This function will pull an Rx buffer from the ring and synchronize it 876 * for use by the CPU. 877 */ 878 static struct ice_rx_buf * 879 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 880 int *rx_buf_pgcnt) 881 { 882 struct ice_rx_buf *rx_buf; 883 884 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 885 *rx_buf_pgcnt = 886 #if (PAGE_SIZE < 8192) 887 page_count(rx_buf->page); 888 #else 889 0; 890 #endif 891 prefetchw(rx_buf->page); 892 893 if (!size) 894 return rx_buf; 895 /* we are reusing so sync this buffer for CPU use */ 896 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 897 rx_buf->page_offset, size, 898 DMA_FROM_DEVICE); 899 900 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 901 rx_buf->pagecnt_bias--; 902 903 return rx_buf; 904 } 905 906 /** 907 * ice_build_skb - Build skb around an existing buffer 908 * @rx_ring: Rx descriptor ring to transact packets on 909 * @rx_buf: Rx buffer to pull data from 910 * @xdp: xdp_buff pointing to the data 911 * 912 * This function builds an skb around an existing Rx buffer, taking care 913 * to set up the skb correctly and avoid any memcpy overhead. 914 */ 915 static struct sk_buff * 916 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 917 struct xdp_buff *xdp) 918 { 919 u8 metasize = xdp->data - xdp->data_meta; 920 #if (PAGE_SIZE < 8192) 921 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 922 #else 923 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 924 SKB_DATA_ALIGN(xdp->data_end - 925 xdp->data_hard_start); 926 #endif 927 struct sk_buff *skb; 928 929 /* Prefetch first cache line of first page. If xdp->data_meta 930 * is unused, this points exactly as xdp->data, otherwise we 931 * likely have a consumer accessing first few bytes of meta 932 * data, and then actual data. 933 */ 934 net_prefetch(xdp->data_meta); 935 /* build an skb around the page buffer */ 936 skb = build_skb(xdp->data_hard_start, truesize); 937 if (unlikely(!skb)) 938 return NULL; 939 940 /* must to record Rx queue, otherwise OS features such as 941 * symmetric queue won't work 942 */ 943 skb_record_rx_queue(skb, rx_ring->q_index); 944 945 /* update pointers within the skb to store the data */ 946 skb_reserve(skb, xdp->data - xdp->data_hard_start); 947 __skb_put(skb, xdp->data_end - xdp->data); 948 if (metasize) 949 skb_metadata_set(skb, metasize); 950 951 /* buffer is used by skb, update page_offset */ 952 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 953 954 return skb; 955 } 956 957 /** 958 * ice_construct_skb - Allocate skb and populate it 959 * @rx_ring: Rx descriptor ring to transact packets on 960 * @rx_buf: Rx buffer to pull data from 961 * @xdp: xdp_buff pointing to the data 962 * 963 * This function allocates an skb. It then populates it with the page 964 * data from the current receive descriptor, taking care to set up the 965 * skb correctly. 966 */ 967 static struct sk_buff * 968 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 969 struct xdp_buff *xdp) 970 { 971 unsigned int size = xdp->data_end - xdp->data; 972 unsigned int headlen; 973 struct sk_buff *skb; 974 975 /* prefetch first cache line of first page */ 976 net_prefetch(xdp->data); 977 978 /* allocate a skb to store the frags */ 979 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 980 GFP_ATOMIC | __GFP_NOWARN); 981 if (unlikely(!skb)) 982 return NULL; 983 984 skb_record_rx_queue(skb, rx_ring->q_index); 985 /* Determine available headroom for copy */ 986 headlen = size; 987 if (headlen > ICE_RX_HDR_SIZE) 988 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 989 990 /* align pull length to size of long to optimize memcpy performance */ 991 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 992 sizeof(long))); 993 994 /* if we exhaust the linear part then add what is left as a frag */ 995 size -= headlen; 996 if (size) { 997 #if (PAGE_SIZE >= 8192) 998 unsigned int truesize = SKB_DATA_ALIGN(size); 999 #else 1000 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 1001 #endif 1002 skb_add_rx_frag(skb, 0, rx_buf->page, 1003 rx_buf->page_offset + headlen, size, truesize); 1004 /* buffer is used by skb, update page_offset */ 1005 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1006 } else { 1007 /* buffer is unused, reset bias back to rx_buf; data was copied 1008 * onto skb's linear part so there's no need for adjusting 1009 * page offset and we can reuse this buffer as-is 1010 */ 1011 rx_buf->pagecnt_bias++; 1012 } 1013 1014 return skb; 1015 } 1016 1017 /** 1018 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1019 * @rx_ring: Rx descriptor ring to transact packets on 1020 * @rx_buf: Rx buffer to pull data from 1021 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1022 * 1023 * This function will update next_to_clean and then clean up the contents 1024 * of the rx_buf. It will either recycle the buffer or unmap it and free 1025 * the associated resources. 1026 */ 1027 static void 1028 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 1029 int rx_buf_pgcnt) 1030 { 1031 u16 ntc = rx_ring->next_to_clean + 1; 1032 1033 /* fetch, update, and store next to clean */ 1034 ntc = (ntc < rx_ring->count) ? ntc : 0; 1035 rx_ring->next_to_clean = ntc; 1036 1037 if (!rx_buf) 1038 return; 1039 1040 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1041 /* hand second half of page back to the ring */ 1042 ice_reuse_rx_page(rx_ring, rx_buf); 1043 } else { 1044 /* we are not reusing the buffer so unmap it */ 1045 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1046 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1047 ICE_RX_DMA_ATTR); 1048 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1049 } 1050 1051 /* clear contents of buffer_info */ 1052 rx_buf->page = NULL; 1053 } 1054 1055 /** 1056 * ice_is_non_eop - process handling of non-EOP buffers 1057 * @rx_ring: Rx ring being processed 1058 * @rx_desc: Rx descriptor for current buffer 1059 * 1060 * If the buffer is an EOP buffer, this function exits returning false, 1061 * otherwise return true indicating that this is in fact a non-EOP buffer. 1062 */ 1063 static bool 1064 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1065 { 1066 /* if we are the last buffer then there is nothing else to do */ 1067 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1068 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1069 return false; 1070 1071 rx_ring->rx_stats.non_eop_descs++; 1072 1073 return true; 1074 } 1075 1076 /** 1077 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1078 * @rx_ring: Rx descriptor ring to transact packets on 1079 * @budget: Total limit on number of packets to process 1080 * 1081 * This function provides a "bounce buffer" approach to Rx interrupt 1082 * processing. The advantage to this is that on systems that have 1083 * expensive overhead for IOMMU access this provides a means of avoiding 1084 * it by maintaining the mapping of the page to the system. 1085 * 1086 * Returns amount of work completed 1087 */ 1088 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1089 { 1090 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1091 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1092 unsigned int offset = rx_ring->rx_offset; 1093 struct ice_tx_ring *xdp_ring = NULL; 1094 unsigned int xdp_res, xdp_xmit = 0; 1095 struct sk_buff *skb = rx_ring->skb; 1096 struct bpf_prog *xdp_prog = NULL; 1097 struct xdp_buff xdp; 1098 bool failure; 1099 1100 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1101 #if (PAGE_SIZE < 8192) 1102 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1103 #endif 1104 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1105 1106 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1107 if (xdp_prog) 1108 xdp_ring = rx_ring->xdp_ring; 1109 1110 /* start the loop to process Rx packets bounded by 'budget' */ 1111 while (likely(total_rx_pkts < (unsigned int)budget)) { 1112 union ice_32b_rx_flex_desc *rx_desc; 1113 struct ice_rx_buf *rx_buf; 1114 unsigned char *hard_start; 1115 unsigned int size; 1116 u16 stat_err_bits; 1117 int rx_buf_pgcnt; 1118 u16 vlan_tag = 0; 1119 u16 rx_ptype; 1120 1121 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1122 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1123 1124 /* status_error_len will always be zero for unused descriptors 1125 * because it's cleared in cleanup, and overlaps with hdr_addr 1126 * which is always zero because packet split isn't used, if the 1127 * hardware wrote DD then it will be non-zero 1128 */ 1129 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1130 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1131 break; 1132 1133 /* This memory barrier is needed to keep us from reading 1134 * any other fields out of the rx_desc until we know the 1135 * DD bit is set. 1136 */ 1137 dma_rmb(); 1138 1139 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1140 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1141 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1142 1143 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1144 ctrl_vsi->vf_id != ICE_INVAL_VFID) 1145 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1146 ice_put_rx_buf(rx_ring, NULL, 0); 1147 cleaned_count++; 1148 continue; 1149 } 1150 1151 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1152 ICE_RX_FLX_DESC_PKT_LEN_M; 1153 1154 /* retrieve a buffer from the ring */ 1155 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1156 1157 if (!size) { 1158 xdp.data = NULL; 1159 xdp.data_end = NULL; 1160 xdp.data_hard_start = NULL; 1161 xdp.data_meta = NULL; 1162 goto construct_skb; 1163 } 1164 1165 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1166 offset; 1167 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1168 #if (PAGE_SIZE > 4096) 1169 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1170 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1171 #endif 1172 1173 if (!xdp_prog) 1174 goto construct_skb; 1175 1176 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); 1177 if (!xdp_res) 1178 goto construct_skb; 1179 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1180 xdp_xmit |= xdp_res; 1181 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1182 } else { 1183 rx_buf->pagecnt_bias++; 1184 } 1185 total_rx_bytes += size; 1186 total_rx_pkts++; 1187 1188 cleaned_count++; 1189 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1190 continue; 1191 construct_skb: 1192 if (skb) { 1193 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1194 } else if (likely(xdp.data)) { 1195 if (ice_ring_uses_build_skb(rx_ring)) 1196 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1197 else 1198 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1199 } 1200 /* exit if we failed to retrieve a buffer */ 1201 if (!skb) { 1202 rx_ring->rx_stats.alloc_buf_failed++; 1203 if (rx_buf) 1204 rx_buf->pagecnt_bias++; 1205 break; 1206 } 1207 1208 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1209 cleaned_count++; 1210 1211 /* skip if it is NOP desc */ 1212 if (ice_is_non_eop(rx_ring, rx_desc)) 1213 continue; 1214 1215 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1216 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1217 dev_kfree_skb_any(skb); 1218 continue; 1219 } 1220 1221 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1222 if (ice_test_staterr(rx_desc, stat_err_bits)) 1223 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1224 1225 /* pad the skb if needed, to make a valid ethernet frame */ 1226 if (eth_skb_pad(skb)) { 1227 skb = NULL; 1228 continue; 1229 } 1230 1231 /* probably a little skewed due to removing CRC */ 1232 total_rx_bytes += skb->len; 1233 1234 /* populate checksum, VLAN, and protocol */ 1235 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1236 ICE_RX_FLEX_DESC_PTYPE_M; 1237 1238 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1239 1240 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1241 /* send completed skb up the stack */ 1242 ice_receive_skb(rx_ring, skb, vlan_tag); 1243 skb = NULL; 1244 1245 /* update budget accounting */ 1246 total_rx_pkts++; 1247 } 1248 1249 /* return up to cleaned_count buffers to hardware */ 1250 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1251 1252 if (xdp_prog) 1253 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 1254 rx_ring->skb = skb; 1255 1256 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1257 1258 /* guarantee a trip back through this routine if there was a failure */ 1259 return failure ? budget : (int)total_rx_pkts; 1260 } 1261 1262 static void __ice_update_sample(struct ice_q_vector *q_vector, 1263 struct ice_ring_container *rc, 1264 struct dim_sample *sample, 1265 bool is_tx) 1266 { 1267 u64 packets = 0, bytes = 0; 1268 1269 if (is_tx) { 1270 struct ice_tx_ring *tx_ring; 1271 1272 ice_for_each_tx_ring(tx_ring, *rc) { 1273 packets += tx_ring->stats.pkts; 1274 bytes += tx_ring->stats.bytes; 1275 } 1276 } else { 1277 struct ice_rx_ring *rx_ring; 1278 1279 ice_for_each_rx_ring(rx_ring, *rc) { 1280 packets += rx_ring->stats.pkts; 1281 bytes += rx_ring->stats.bytes; 1282 } 1283 } 1284 1285 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1286 sample->comp_ctr = 0; 1287 1288 /* if dim settings get stale, like when not updated for 1 1289 * second or longer, force it to start again. This addresses the 1290 * frequent case of an idle queue being switched to by the 1291 * scheduler. The 1,000 here means 1,000 milliseconds. 1292 */ 1293 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1294 rc->dim.state = DIM_START_MEASURE; 1295 } 1296 1297 /** 1298 * ice_net_dim - Update net DIM algorithm 1299 * @q_vector: the vector associated with the interrupt 1300 * 1301 * Create a DIM sample and notify net_dim() so that it can possibly decide 1302 * a new ITR value based on incoming packets, bytes, and interrupts. 1303 * 1304 * This function is a no-op if the ring is not configured to dynamic ITR. 1305 */ 1306 static void ice_net_dim(struct ice_q_vector *q_vector) 1307 { 1308 struct ice_ring_container *tx = &q_vector->tx; 1309 struct ice_ring_container *rx = &q_vector->rx; 1310 1311 if (ITR_IS_DYNAMIC(tx)) { 1312 struct dim_sample dim_sample; 1313 1314 __ice_update_sample(q_vector, tx, &dim_sample, true); 1315 net_dim(&tx->dim, dim_sample); 1316 } 1317 1318 if (ITR_IS_DYNAMIC(rx)) { 1319 struct dim_sample dim_sample; 1320 1321 __ice_update_sample(q_vector, rx, &dim_sample, false); 1322 net_dim(&rx->dim, dim_sample); 1323 } 1324 } 1325 1326 /** 1327 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1328 * @itr_idx: interrupt throttling index 1329 * @itr: interrupt throttling value in usecs 1330 */ 1331 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1332 { 1333 /* The ITR value is reported in microseconds, and the register value is 1334 * recorded in 2 microsecond units. For this reason we only need to 1335 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1336 * granularity as a shift instead of division. The mask makes sure the 1337 * ITR value is never odd so we don't accidentally write into the field 1338 * prior to the ITR field. 1339 */ 1340 itr &= ICE_ITR_MASK; 1341 1342 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1343 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1344 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1345 } 1346 1347 /** 1348 * ice_enable_interrupt - re-enable MSI-X interrupt 1349 * @q_vector: the vector associated with the interrupt to enable 1350 * 1351 * If the VSI is down, the interrupt will not be re-enabled. Also, 1352 * when enabling the interrupt always reset the wb_on_itr to false 1353 * and trigger a software interrupt to clean out internal state. 1354 */ 1355 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1356 { 1357 struct ice_vsi *vsi = q_vector->vsi; 1358 bool wb_en = q_vector->wb_on_itr; 1359 u32 itr_val; 1360 1361 if (test_bit(ICE_DOWN, vsi->state)) 1362 return; 1363 1364 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1365 * make sure to catch any pending cleanups that might have been missed 1366 * due to interrupt state transition. If busy poll or poll isn't 1367 * enabled, then don't update ITR, and just enable the interrupt. 1368 */ 1369 if (!wb_en) { 1370 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1371 } else { 1372 q_vector->wb_on_itr = false; 1373 1374 /* do two things here with a single write. Set up the third ITR 1375 * index to be used for software interrupt moderation, and then 1376 * trigger a software interrupt with a rate limit of 20K on 1377 * software interrupts, this will help avoid high interrupt 1378 * loads due to frequently polling and exiting polling. 1379 */ 1380 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1381 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1382 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1383 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1384 } 1385 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1386 } 1387 1388 /** 1389 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1390 * @q_vector: q_vector to set WB_ON_ITR on 1391 * 1392 * We need to tell hardware to write-back completed descriptors even when 1393 * interrupts are disabled. Descriptors will be written back on cache line 1394 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1395 * descriptors may not be written back if they don't fill a cache line until 1396 * the next interrupt. 1397 * 1398 * This sets the write-back frequency to whatever was set previously for the 1399 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1400 * aren't meddling with the INTENA_M bit. 1401 */ 1402 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1403 { 1404 struct ice_vsi *vsi = q_vector->vsi; 1405 1406 /* already in wb_on_itr mode no need to change it */ 1407 if (q_vector->wb_on_itr) 1408 return; 1409 1410 /* use previously set ITR values for all of the ITR indices by 1411 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1412 * be static in non-adaptive mode (user configured) 1413 */ 1414 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1415 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1416 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1417 GLINT_DYN_CTL_WB_ON_ITR_M); 1418 1419 q_vector->wb_on_itr = true; 1420 } 1421 1422 /** 1423 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1424 * @napi: napi struct with our devices info in it 1425 * @budget: amount of work driver is allowed to do this pass, in packets 1426 * 1427 * This function will clean all queues associated with a q_vector. 1428 * 1429 * Returns the amount of work done 1430 */ 1431 int ice_napi_poll(struct napi_struct *napi, int budget) 1432 { 1433 struct ice_q_vector *q_vector = 1434 container_of(napi, struct ice_q_vector, napi); 1435 struct ice_tx_ring *tx_ring; 1436 struct ice_rx_ring *rx_ring; 1437 bool clean_complete = true; 1438 int budget_per_ring; 1439 int work_done = 0; 1440 1441 /* Since the actual Tx work is minimal, we can give the Tx a larger 1442 * budget and be more aggressive about cleaning up the Tx descriptors. 1443 */ 1444 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1445 bool wd; 1446 1447 if (tx_ring->xsk_pool) 1448 wd = ice_clean_tx_irq_zc(tx_ring, budget); 1449 else if (ice_ring_is_xdp(tx_ring)) 1450 wd = true; 1451 else 1452 wd = ice_clean_tx_irq(tx_ring, budget); 1453 1454 if (!wd) 1455 clean_complete = false; 1456 } 1457 1458 /* Handle case where we are called by netpoll with a budget of 0 */ 1459 if (unlikely(budget <= 0)) 1460 return budget; 1461 1462 /* normally we have 1 Rx ring per q_vector */ 1463 if (unlikely(q_vector->num_ring_rx > 1)) 1464 /* We attempt to distribute budget to each Rx queue fairly, but 1465 * don't allow the budget to go below 1 because that would exit 1466 * polling early. 1467 */ 1468 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1469 else 1470 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1471 budget_per_ring = budget; 1472 1473 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1474 int cleaned; 1475 1476 /* A dedicated path for zero-copy allows making a single 1477 * comparison in the irq context instead of many inside the 1478 * ice_clean_rx_irq function and makes the codebase cleaner. 1479 */ 1480 cleaned = rx_ring->xsk_pool ? 1481 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1482 ice_clean_rx_irq(rx_ring, budget_per_ring); 1483 work_done += cleaned; 1484 /* if we clean as many as budgeted, we must not be done */ 1485 if (cleaned >= budget_per_ring) 1486 clean_complete = false; 1487 } 1488 1489 /* If work not completed, return budget and polling will return */ 1490 if (!clean_complete) { 1491 /* Set the writeback on ITR so partial completions of 1492 * cache-lines will still continue even if we're polling. 1493 */ 1494 ice_set_wb_on_itr(q_vector); 1495 return budget; 1496 } 1497 1498 /* Exit the polling mode, but don't re-enable interrupts if stack might 1499 * poll us due to busy-polling 1500 */ 1501 if (likely(napi_complete_done(napi, work_done))) { 1502 ice_net_dim(q_vector); 1503 ice_enable_interrupt(q_vector); 1504 } else { 1505 ice_set_wb_on_itr(q_vector); 1506 } 1507 1508 return min_t(int, work_done, budget - 1); 1509 } 1510 1511 /** 1512 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1513 * @tx_ring: the ring to be checked 1514 * @size: the size buffer we want to assure is available 1515 * 1516 * Returns -EBUSY if a stop is needed, else 0 1517 */ 1518 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1519 { 1520 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1521 /* Memory barrier before checking head and tail */ 1522 smp_mb(); 1523 1524 /* Check again in a case another CPU has just made room available. */ 1525 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1526 return -EBUSY; 1527 1528 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1529 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1530 ++tx_ring->tx_stats.restart_q; 1531 return 0; 1532 } 1533 1534 /** 1535 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1536 * @tx_ring: the ring to be checked 1537 * @size: the size buffer we want to assure is available 1538 * 1539 * Returns 0 if stop is not needed 1540 */ 1541 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1542 { 1543 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1544 return 0; 1545 1546 return __ice_maybe_stop_tx(tx_ring, size); 1547 } 1548 1549 /** 1550 * ice_tx_map - Build the Tx descriptor 1551 * @tx_ring: ring to send buffer on 1552 * @first: first buffer info buffer to use 1553 * @off: pointer to struct that holds offload parameters 1554 * 1555 * This function loops over the skb data pointed to by *first 1556 * and gets a physical address for each memory location and programs 1557 * it and the length into the transmit descriptor. 1558 */ 1559 static void 1560 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1561 struct ice_tx_offload_params *off) 1562 { 1563 u64 td_offset, td_tag, td_cmd; 1564 u16 i = tx_ring->next_to_use; 1565 unsigned int data_len, size; 1566 struct ice_tx_desc *tx_desc; 1567 struct ice_tx_buf *tx_buf; 1568 struct sk_buff *skb; 1569 skb_frag_t *frag; 1570 dma_addr_t dma; 1571 1572 td_tag = off->td_l2tag1; 1573 td_cmd = off->td_cmd; 1574 td_offset = off->td_offset; 1575 skb = first->skb; 1576 1577 data_len = skb->data_len; 1578 size = skb_headlen(skb); 1579 1580 tx_desc = ICE_TX_DESC(tx_ring, i); 1581 1582 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1583 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1584 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1585 ICE_TX_FLAGS_VLAN_S; 1586 } 1587 1588 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1589 1590 tx_buf = first; 1591 1592 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1593 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1594 1595 if (dma_mapping_error(tx_ring->dev, dma)) 1596 goto dma_error; 1597 1598 /* record length, and DMA address */ 1599 dma_unmap_len_set(tx_buf, len, size); 1600 dma_unmap_addr_set(tx_buf, dma, dma); 1601 1602 /* align size to end of page */ 1603 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1604 tx_desc->buf_addr = cpu_to_le64(dma); 1605 1606 /* account for data chunks larger than the hardware 1607 * can handle 1608 */ 1609 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1610 tx_desc->cmd_type_offset_bsz = 1611 ice_build_ctob(td_cmd, td_offset, max_data, 1612 td_tag); 1613 1614 tx_desc++; 1615 i++; 1616 1617 if (i == tx_ring->count) { 1618 tx_desc = ICE_TX_DESC(tx_ring, 0); 1619 i = 0; 1620 } 1621 1622 dma += max_data; 1623 size -= max_data; 1624 1625 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1626 tx_desc->buf_addr = cpu_to_le64(dma); 1627 } 1628 1629 if (likely(!data_len)) 1630 break; 1631 1632 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1633 size, td_tag); 1634 1635 tx_desc++; 1636 i++; 1637 1638 if (i == tx_ring->count) { 1639 tx_desc = ICE_TX_DESC(tx_ring, 0); 1640 i = 0; 1641 } 1642 1643 size = skb_frag_size(frag); 1644 data_len -= size; 1645 1646 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1647 DMA_TO_DEVICE); 1648 1649 tx_buf = &tx_ring->tx_buf[i]; 1650 } 1651 1652 /* record bytecount for BQL */ 1653 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1654 1655 /* record SW timestamp if HW timestamp is not available */ 1656 skb_tx_timestamp(first->skb); 1657 1658 i++; 1659 if (i == tx_ring->count) 1660 i = 0; 1661 1662 /* write last descriptor with RS and EOP bits */ 1663 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1664 tx_desc->cmd_type_offset_bsz = 1665 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1666 1667 /* Force memory writes to complete before letting h/w know there 1668 * are new descriptors to fetch. 1669 * 1670 * We also use this memory barrier to make certain all of the 1671 * status bits have been updated before next_to_watch is written. 1672 */ 1673 wmb(); 1674 1675 /* set next_to_watch value indicating a packet is present */ 1676 first->next_to_watch = tx_desc; 1677 1678 tx_ring->next_to_use = i; 1679 1680 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1681 1682 /* notify HW of packet */ 1683 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1684 writel(i, tx_ring->tail); 1685 1686 return; 1687 1688 dma_error: 1689 /* clear DMA mappings for failed tx_buf map */ 1690 for (;;) { 1691 tx_buf = &tx_ring->tx_buf[i]; 1692 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1693 if (tx_buf == first) 1694 break; 1695 if (i == 0) 1696 i = tx_ring->count; 1697 i--; 1698 } 1699 1700 tx_ring->next_to_use = i; 1701 } 1702 1703 /** 1704 * ice_tx_csum - Enable Tx checksum offloads 1705 * @first: pointer to the first descriptor 1706 * @off: pointer to struct that holds offload parameters 1707 * 1708 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1709 */ 1710 static 1711 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1712 { 1713 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1714 struct sk_buff *skb = first->skb; 1715 union { 1716 struct iphdr *v4; 1717 struct ipv6hdr *v6; 1718 unsigned char *hdr; 1719 } ip; 1720 union { 1721 struct tcphdr *tcp; 1722 unsigned char *hdr; 1723 } l4; 1724 __be16 frag_off, protocol; 1725 unsigned char *exthdr; 1726 u32 offset, cmd = 0; 1727 u8 l4_proto = 0; 1728 1729 if (skb->ip_summed != CHECKSUM_PARTIAL) 1730 return 0; 1731 1732 ip.hdr = skb_network_header(skb); 1733 l4.hdr = skb_transport_header(skb); 1734 1735 /* compute outer L2 header size */ 1736 l2_len = ip.hdr - skb->data; 1737 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1738 1739 protocol = vlan_get_protocol(skb); 1740 1741 if (protocol == htons(ETH_P_IP)) 1742 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1743 else if (protocol == htons(ETH_P_IPV6)) 1744 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1745 1746 if (skb->encapsulation) { 1747 bool gso_ena = false; 1748 u32 tunnel = 0; 1749 1750 /* define outer network header type */ 1751 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1752 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1753 ICE_TX_CTX_EIPT_IPV4 : 1754 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1755 l4_proto = ip.v4->protocol; 1756 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1757 int ret; 1758 1759 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1760 exthdr = ip.hdr + sizeof(*ip.v6); 1761 l4_proto = ip.v6->nexthdr; 1762 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1763 &l4_proto, &frag_off); 1764 if (ret < 0) 1765 return -1; 1766 } 1767 1768 /* define outer transport */ 1769 switch (l4_proto) { 1770 case IPPROTO_UDP: 1771 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1772 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1773 break; 1774 case IPPROTO_GRE: 1775 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1776 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1777 break; 1778 case IPPROTO_IPIP: 1779 case IPPROTO_IPV6: 1780 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1781 l4.hdr = skb_inner_network_header(skb); 1782 break; 1783 default: 1784 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1785 return -1; 1786 1787 skb_checksum_help(skb); 1788 return 0; 1789 } 1790 1791 /* compute outer L3 header size */ 1792 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1793 ICE_TXD_CTX_QW0_EIPLEN_S; 1794 1795 /* switch IP header pointer from outer to inner header */ 1796 ip.hdr = skb_inner_network_header(skb); 1797 1798 /* compute tunnel header size */ 1799 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1800 ICE_TXD_CTX_QW0_NATLEN_S; 1801 1802 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1803 /* indicate if we need to offload outer UDP header */ 1804 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1805 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1806 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1807 1808 /* record tunnel offload values */ 1809 off->cd_tunnel_params |= tunnel; 1810 1811 /* set DTYP=1 to indicate that it's an Tx context descriptor 1812 * in IPsec tunnel mode with Tx offloads in Quad word 1 1813 */ 1814 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1815 1816 /* switch L4 header pointer from outer to inner */ 1817 l4.hdr = skb_inner_transport_header(skb); 1818 l4_proto = 0; 1819 1820 /* reset type as we transition from outer to inner headers */ 1821 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1822 if (ip.v4->version == 4) 1823 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1824 if (ip.v6->version == 6) 1825 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1826 } 1827 1828 /* Enable IP checksum offloads */ 1829 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1830 l4_proto = ip.v4->protocol; 1831 /* the stack computes the IP header already, the only time we 1832 * need the hardware to recompute it is in the case of TSO. 1833 */ 1834 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1835 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1836 else 1837 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1838 1839 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1840 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1841 exthdr = ip.hdr + sizeof(*ip.v6); 1842 l4_proto = ip.v6->nexthdr; 1843 if (l4.hdr != exthdr) 1844 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1845 &frag_off); 1846 } else { 1847 return -1; 1848 } 1849 1850 /* compute inner L3 header size */ 1851 l3_len = l4.hdr - ip.hdr; 1852 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1853 1854 /* Enable L4 checksum offloads */ 1855 switch (l4_proto) { 1856 case IPPROTO_TCP: 1857 /* enable checksum offloads */ 1858 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1859 l4_len = l4.tcp->doff; 1860 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1861 break; 1862 case IPPROTO_UDP: 1863 /* enable UDP checksum offload */ 1864 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1865 l4_len = (sizeof(struct udphdr) >> 2); 1866 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1867 break; 1868 case IPPROTO_SCTP: 1869 /* enable SCTP checksum offload */ 1870 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1871 l4_len = sizeof(struct sctphdr) >> 2; 1872 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1873 break; 1874 1875 default: 1876 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1877 return -1; 1878 skb_checksum_help(skb); 1879 return 0; 1880 } 1881 1882 off->td_cmd |= cmd; 1883 off->td_offset |= offset; 1884 return 1; 1885 } 1886 1887 /** 1888 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1889 * @tx_ring: ring to send buffer on 1890 * @first: pointer to struct ice_tx_buf 1891 * 1892 * Checks the skb and set up correspondingly several generic transmit flags 1893 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1894 */ 1895 static void 1896 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1897 { 1898 struct sk_buff *skb = first->skb; 1899 1900 /* nothing left to do, software offloaded VLAN */ 1901 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1902 return; 1903 1904 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 1905 * insertion for 802.1AD is not supported 1906 */ 1907 if (skb_vlan_tag_present(skb)) { 1908 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1909 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1910 } 1911 1912 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1913 } 1914 1915 /** 1916 * ice_tso - computes mss and TSO length to prepare for TSO 1917 * @first: pointer to struct ice_tx_buf 1918 * @off: pointer to struct that holds offload parameters 1919 * 1920 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1921 */ 1922 static 1923 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1924 { 1925 struct sk_buff *skb = first->skb; 1926 union { 1927 struct iphdr *v4; 1928 struct ipv6hdr *v6; 1929 unsigned char *hdr; 1930 } ip; 1931 union { 1932 struct tcphdr *tcp; 1933 struct udphdr *udp; 1934 unsigned char *hdr; 1935 } l4; 1936 u64 cd_mss, cd_tso_len; 1937 u32 paylen; 1938 u8 l4_start; 1939 int err; 1940 1941 if (skb->ip_summed != CHECKSUM_PARTIAL) 1942 return 0; 1943 1944 if (!skb_is_gso(skb)) 1945 return 0; 1946 1947 err = skb_cow_head(skb, 0); 1948 if (err < 0) 1949 return err; 1950 1951 /* cppcheck-suppress unreadVariable */ 1952 ip.hdr = skb_network_header(skb); 1953 l4.hdr = skb_transport_header(skb); 1954 1955 /* initialize outer IP header fields */ 1956 if (ip.v4->version == 4) { 1957 ip.v4->tot_len = 0; 1958 ip.v4->check = 0; 1959 } else { 1960 ip.v6->payload_len = 0; 1961 } 1962 1963 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1964 SKB_GSO_GRE_CSUM | 1965 SKB_GSO_IPXIP4 | 1966 SKB_GSO_IPXIP6 | 1967 SKB_GSO_UDP_TUNNEL | 1968 SKB_GSO_UDP_TUNNEL_CSUM)) { 1969 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1970 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1971 l4.udp->len = 0; 1972 1973 /* determine offset of outer transport header */ 1974 l4_start = (u8)(l4.hdr - skb->data); 1975 1976 /* remove payload length from outer checksum */ 1977 paylen = skb->len - l4_start; 1978 csum_replace_by_diff(&l4.udp->check, 1979 (__force __wsum)htonl(paylen)); 1980 } 1981 1982 /* reset pointers to inner headers */ 1983 1984 /* cppcheck-suppress unreadVariable */ 1985 ip.hdr = skb_inner_network_header(skb); 1986 l4.hdr = skb_inner_transport_header(skb); 1987 1988 /* initialize inner IP header fields */ 1989 if (ip.v4->version == 4) { 1990 ip.v4->tot_len = 0; 1991 ip.v4->check = 0; 1992 } else { 1993 ip.v6->payload_len = 0; 1994 } 1995 } 1996 1997 /* determine offset of transport header */ 1998 l4_start = (u8)(l4.hdr - skb->data); 1999 2000 /* remove payload length from checksum */ 2001 paylen = skb->len - l4_start; 2002 2003 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2004 csum_replace_by_diff(&l4.udp->check, 2005 (__force __wsum)htonl(paylen)); 2006 /* compute length of UDP segmentation header */ 2007 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2008 } else { 2009 csum_replace_by_diff(&l4.tcp->check, 2010 (__force __wsum)htonl(paylen)); 2011 /* compute length of TCP segmentation header */ 2012 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2013 } 2014 2015 /* update gso_segs and bytecount */ 2016 first->gso_segs = skb_shinfo(skb)->gso_segs; 2017 first->bytecount += (first->gso_segs - 1) * off->header_len; 2018 2019 cd_tso_len = skb->len - off->header_len; 2020 cd_mss = skb_shinfo(skb)->gso_size; 2021 2022 /* record cdesc_qw1 with TSO parameters */ 2023 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2024 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2025 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2026 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2027 first->tx_flags |= ICE_TX_FLAGS_TSO; 2028 return 1; 2029 } 2030 2031 /** 2032 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2033 * @size: transmit request size in bytes 2034 * 2035 * Due to hardware alignment restrictions (4K alignment), we need to 2036 * assume that we can have no more than 12K of data per descriptor, even 2037 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2038 * Thus, we need to divide by 12K. But division is slow! Instead, 2039 * we decompose the operation into shifts and one relatively cheap 2040 * multiply operation. 2041 * 2042 * To divide by 12K, we first divide by 4K, then divide by 3: 2043 * To divide by 4K, shift right by 12 bits 2044 * To divide by 3, multiply by 85, then divide by 256 2045 * (Divide by 256 is done by shifting right by 8 bits) 2046 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2047 * 3, we'll underestimate near each multiple of 12K. This is actually more 2048 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2049 * segment. For our purposes this is accurate out to 1M which is orders of 2050 * magnitude greater than our largest possible GSO size. 2051 * 2052 * This would then be implemented as: 2053 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2054 * 2055 * Since multiplication and division are commutative, we can reorder 2056 * operations into: 2057 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2058 */ 2059 static unsigned int ice_txd_use_count(unsigned int size) 2060 { 2061 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2062 } 2063 2064 /** 2065 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2066 * @skb: send buffer 2067 * 2068 * Returns number of data descriptors needed for this skb. 2069 */ 2070 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2071 { 2072 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2073 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2074 unsigned int count = 0, size = skb_headlen(skb); 2075 2076 for (;;) { 2077 count += ice_txd_use_count(size); 2078 2079 if (!nr_frags--) 2080 break; 2081 2082 size = skb_frag_size(frag++); 2083 } 2084 2085 return count; 2086 } 2087 2088 /** 2089 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2090 * @skb: send buffer 2091 * 2092 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2093 * and so we need to figure out the cases where we need to linearize the skb. 2094 * 2095 * For TSO we need to count the TSO header and segment payload separately. 2096 * As such we need to check cases where we have 7 fragments or more as we 2097 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2098 * the segment payload in the first descriptor, and another 7 for the 2099 * fragments. 2100 */ 2101 static bool __ice_chk_linearize(struct sk_buff *skb) 2102 { 2103 const skb_frag_t *frag, *stale; 2104 int nr_frags, sum; 2105 2106 /* no need to check if number of frags is less than 7 */ 2107 nr_frags = skb_shinfo(skb)->nr_frags; 2108 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2109 return false; 2110 2111 /* We need to walk through the list and validate that each group 2112 * of 6 fragments totals at least gso_size. 2113 */ 2114 nr_frags -= ICE_MAX_BUF_TXD - 2; 2115 frag = &skb_shinfo(skb)->frags[0]; 2116 2117 /* Initialize size to the negative value of gso_size minus 1. We 2118 * use this as the worst case scenario in which the frag ahead 2119 * of us only provides one byte which is why we are limited to 6 2120 * descriptors for a single transmit as the header and previous 2121 * fragment are already consuming 2 descriptors. 2122 */ 2123 sum = 1 - skb_shinfo(skb)->gso_size; 2124 2125 /* Add size of frags 0 through 4 to create our initial sum */ 2126 sum += skb_frag_size(frag++); 2127 sum += skb_frag_size(frag++); 2128 sum += skb_frag_size(frag++); 2129 sum += skb_frag_size(frag++); 2130 sum += skb_frag_size(frag++); 2131 2132 /* Walk through fragments adding latest fragment, testing it, and 2133 * then removing stale fragments from the sum. 2134 */ 2135 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2136 int stale_size = skb_frag_size(stale); 2137 2138 sum += skb_frag_size(frag++); 2139 2140 /* The stale fragment may present us with a smaller 2141 * descriptor than the actual fragment size. To account 2142 * for that we need to remove all the data on the front and 2143 * figure out what the remainder would be in the last 2144 * descriptor associated with the fragment. 2145 */ 2146 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2147 int align_pad = -(skb_frag_off(stale)) & 2148 (ICE_MAX_READ_REQ_SIZE - 1); 2149 2150 sum -= align_pad; 2151 stale_size -= align_pad; 2152 2153 do { 2154 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2155 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2156 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2157 } 2158 2159 /* if sum is negative we failed to make sufficient progress */ 2160 if (sum < 0) 2161 return true; 2162 2163 if (!nr_frags--) 2164 break; 2165 2166 sum -= stale_size; 2167 } 2168 2169 return false; 2170 } 2171 2172 /** 2173 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2174 * @skb: send buffer 2175 * @count: number of buffers used 2176 * 2177 * Note: Our HW can't scatter-gather more than 8 fragments to build 2178 * a packet on the wire and so we need to figure out the cases where we 2179 * need to linearize the skb. 2180 */ 2181 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2182 { 2183 /* Both TSO and single send will work if count is less than 8 */ 2184 if (likely(count < ICE_MAX_BUF_TXD)) 2185 return false; 2186 2187 if (skb_is_gso(skb)) 2188 return __ice_chk_linearize(skb); 2189 2190 /* we can support up to 8 data buffers for a single send */ 2191 return count != ICE_MAX_BUF_TXD; 2192 } 2193 2194 /** 2195 * ice_tstamp - set up context descriptor for hardware timestamp 2196 * @tx_ring: pointer to the Tx ring to send buffer on 2197 * @skb: pointer to the SKB we're sending 2198 * @first: Tx buffer 2199 * @off: Tx offload parameters 2200 */ 2201 static void 2202 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2203 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2204 { 2205 s8 idx; 2206 2207 /* only timestamp the outbound packet if the user has requested it */ 2208 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2209 return; 2210 2211 if (!tx_ring->ptp_tx) 2212 return; 2213 2214 /* Tx timestamps cannot be sampled when doing TSO */ 2215 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2216 return; 2217 2218 /* Grab an open timestamp slot */ 2219 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2220 if (idx < 0) 2221 return; 2222 2223 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2224 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2225 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2226 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2227 } 2228 2229 /** 2230 * ice_xmit_frame_ring - Sends buffer on Tx ring 2231 * @skb: send buffer 2232 * @tx_ring: ring to send buffer on 2233 * 2234 * Returns NETDEV_TX_OK if sent, else an error code 2235 */ 2236 static netdev_tx_t 2237 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2238 { 2239 struct ice_tx_offload_params offload = { 0 }; 2240 struct ice_vsi *vsi = tx_ring->vsi; 2241 struct ice_tx_buf *first; 2242 struct ethhdr *eth; 2243 unsigned int count; 2244 int tso, csum; 2245 2246 ice_trace(xmit_frame_ring, tx_ring, skb); 2247 2248 count = ice_xmit_desc_count(skb); 2249 if (ice_chk_linearize(skb, count)) { 2250 if (__skb_linearize(skb)) 2251 goto out_drop; 2252 count = ice_txd_use_count(skb->len); 2253 tx_ring->tx_stats.tx_linearize++; 2254 } 2255 2256 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2257 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2258 * + 4 desc gap to avoid the cache line where head is, 2259 * + 1 desc for context descriptor, 2260 * otherwise try next time 2261 */ 2262 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2263 ICE_DESCS_FOR_CTX_DESC)) { 2264 tx_ring->tx_stats.tx_busy++; 2265 return NETDEV_TX_BUSY; 2266 } 2267 2268 offload.tx_ring = tx_ring; 2269 2270 /* record the location of the first descriptor for this packet */ 2271 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2272 first->skb = skb; 2273 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2274 first->gso_segs = 1; 2275 first->tx_flags = 0; 2276 2277 /* prepare the VLAN tagging flags for Tx */ 2278 ice_tx_prepare_vlan_flags(tx_ring, first); 2279 2280 /* set up TSO offload */ 2281 tso = ice_tso(first, &offload); 2282 if (tso < 0) 2283 goto out_drop; 2284 2285 /* always set up Tx checksum offload */ 2286 csum = ice_tx_csum(first, &offload); 2287 if (csum < 0) 2288 goto out_drop; 2289 2290 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2291 eth = (struct ethhdr *)skb_mac_header(skb); 2292 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2293 eth->h_proto == htons(ETH_P_LLDP)) && 2294 vsi->type == ICE_VSI_PF && 2295 vsi->port_info->qos_cfg.is_sw_lldp)) 2296 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2297 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2298 ICE_TXD_CTX_QW1_CMD_S); 2299 2300 ice_tstamp(tx_ring, skb, first, &offload); 2301 if (ice_is_switchdev_running(vsi->back)) 2302 ice_eswitch_set_target_vsi(skb, &offload); 2303 2304 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2305 struct ice_tx_ctx_desc *cdesc; 2306 u16 i = tx_ring->next_to_use; 2307 2308 /* grab the next descriptor */ 2309 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2310 i++; 2311 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2312 2313 /* setup context descriptor */ 2314 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2315 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2316 cdesc->rsvd = cpu_to_le16(0); 2317 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2318 } 2319 2320 ice_tx_map(tx_ring, first, &offload); 2321 return NETDEV_TX_OK; 2322 2323 out_drop: 2324 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2325 dev_kfree_skb_any(skb); 2326 return NETDEV_TX_OK; 2327 } 2328 2329 /** 2330 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2331 * @skb: send buffer 2332 * @netdev: network interface device structure 2333 * 2334 * Returns NETDEV_TX_OK if sent, else an error code 2335 */ 2336 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2337 { 2338 struct ice_netdev_priv *np = netdev_priv(netdev); 2339 struct ice_vsi *vsi = np->vsi; 2340 struct ice_tx_ring *tx_ring; 2341 2342 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2343 2344 /* hardware can't handle really short frames, hardware padding works 2345 * beyond this point 2346 */ 2347 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2348 return NETDEV_TX_OK; 2349 2350 return ice_xmit_frame_ring(skb, tx_ring); 2351 } 2352 2353 /** 2354 * ice_get_dscp_up - return the UP/TC value for a SKB 2355 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2356 * @skb: SKB to query for info to determine UP/TC 2357 * 2358 * This function is to only be called when the PF is in L3 DSCP PFC mode 2359 */ 2360 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2361 { 2362 u8 dscp = 0; 2363 2364 if (skb->protocol == htons(ETH_P_IP)) 2365 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2366 else if (skb->protocol == htons(ETH_P_IPV6)) 2367 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2368 2369 return dcbcfg->dscp_map[dscp]; 2370 } 2371 2372 u16 2373 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2374 struct net_device *sb_dev) 2375 { 2376 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2377 struct ice_dcbx_cfg *dcbcfg; 2378 2379 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2380 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2381 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2382 2383 return netdev_pick_tx(netdev, skb, sb_dev); 2384 } 2385 2386 /** 2387 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2388 * @tx_ring: tx_ring to clean 2389 */ 2390 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2391 { 2392 struct ice_vsi *vsi = tx_ring->vsi; 2393 s16 i = tx_ring->next_to_clean; 2394 int budget = ICE_DFLT_IRQ_WORK; 2395 struct ice_tx_desc *tx_desc; 2396 struct ice_tx_buf *tx_buf; 2397 2398 tx_buf = &tx_ring->tx_buf[i]; 2399 tx_desc = ICE_TX_DESC(tx_ring, i); 2400 i -= tx_ring->count; 2401 2402 do { 2403 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2404 2405 /* if next_to_watch is not set then there is no pending work */ 2406 if (!eop_desc) 2407 break; 2408 2409 /* prevent any other reads prior to eop_desc */ 2410 smp_rmb(); 2411 2412 /* if the descriptor isn't done, no work to do */ 2413 if (!(eop_desc->cmd_type_offset_bsz & 2414 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2415 break; 2416 2417 /* clear next_to_watch to prevent false hangs */ 2418 tx_buf->next_to_watch = NULL; 2419 tx_desc->buf_addr = 0; 2420 tx_desc->cmd_type_offset_bsz = 0; 2421 2422 /* move past filter desc */ 2423 tx_buf++; 2424 tx_desc++; 2425 i++; 2426 if (unlikely(!i)) { 2427 i -= tx_ring->count; 2428 tx_buf = tx_ring->tx_buf; 2429 tx_desc = ICE_TX_DESC(tx_ring, 0); 2430 } 2431 2432 /* unmap the data header */ 2433 if (dma_unmap_len(tx_buf, len)) 2434 dma_unmap_single(tx_ring->dev, 2435 dma_unmap_addr(tx_buf, dma), 2436 dma_unmap_len(tx_buf, len), 2437 DMA_TO_DEVICE); 2438 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2439 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2440 2441 /* clear next_to_watch to prevent false hangs */ 2442 tx_buf->raw_buf = NULL; 2443 tx_buf->tx_flags = 0; 2444 tx_buf->next_to_watch = NULL; 2445 dma_unmap_len_set(tx_buf, len, 0); 2446 tx_desc->buf_addr = 0; 2447 tx_desc->cmd_type_offset_bsz = 0; 2448 2449 /* move past eop_desc for start of next FD desc */ 2450 tx_buf++; 2451 tx_desc++; 2452 i++; 2453 if (unlikely(!i)) { 2454 i -= tx_ring->count; 2455 tx_buf = tx_ring->tx_buf; 2456 tx_desc = ICE_TX_DESC(tx_ring, 0); 2457 } 2458 2459 budget--; 2460 } while (likely(budget)); 2461 2462 i += tx_ring->count; 2463 tx_ring->next_to_clean = i; 2464 2465 /* re-enable interrupt if needed */ 2466 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2467 } 2468