xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20 
21 #define ICE_RX_HDR_SIZE		256
22 
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25 
26 /**
27  * ice_prgm_fdir_fltr - Program a Flow Director filter
28  * @vsi: VSI to send dummy packet
29  * @fdir_desc: flow director descriptor
30  * @raw_packet: allocated buffer for flow director
31  */
32 int
33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 		   u8 *raw_packet)
35 {
36 	struct ice_tx_buf *tx_buf, *first;
37 	struct ice_fltr_desc *f_desc;
38 	struct ice_tx_desc *tx_desc;
39 	struct ice_tx_ring *tx_ring;
40 	struct device *dev;
41 	dma_addr_t dma;
42 	u32 td_cmd;
43 	u16 i;
44 
45 	/* VSI and Tx ring */
46 	if (!vsi)
47 		return -ENOENT;
48 	tx_ring = vsi->tx_rings[0];
49 	if (!tx_ring || !tx_ring->desc)
50 		return -ENOENT;
51 	dev = tx_ring->dev;
52 
53 	/* we are using two descriptors to add/del a filter and we can wait */
54 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 		if (!i)
56 			return -EAGAIN;
57 		msleep_interruptible(1);
58 	}
59 
60 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 			     DMA_TO_DEVICE);
62 
63 	if (dma_mapping_error(dev, dma))
64 		return -EINVAL;
65 
66 	/* grab the next descriptor */
67 	i = tx_ring->next_to_use;
68 	first = &tx_ring->tx_buf[i];
69 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71 
72 	i++;
73 	i = (i < tx_ring->count) ? i : 0;
74 	tx_desc = ICE_TX_DESC(tx_ring, i);
75 	tx_buf = &tx_ring->tx_buf[i];
76 
77 	i++;
78 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79 
80 	memset(tx_buf, 0, sizeof(*tx_buf));
81 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 	dma_unmap_addr_set(tx_buf, dma, dma);
83 
84 	tx_desc->buf_addr = cpu_to_le64(dma);
85 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 		 ICE_TX_DESC_CMD_RE;
87 
88 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
89 	tx_buf->raw_buf = raw_packet;
90 
91 	tx_desc->cmd_type_offset_bsz =
92 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93 
94 	/* Force memory write to complete before letting h/w know
95 	 * there are new descriptors to fetch.
96 	 */
97 	wmb();
98 
99 	/* mark the data descriptor to be watched */
100 	first->next_to_watch = tx_desc;
101 
102 	writel(tx_ring->next_to_use, tx_ring->tail);
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_unmap_and_free_tx_buf - Release a Tx buffer
109  * @ring: the ring that owns the buffer
110  * @tx_buf: the buffer to free
111  */
112 static void
113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 	if (tx_buf->skb) {
116 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
117 			devm_kfree(ring->dev, tx_buf->raw_buf);
118 		else if (ice_ring_is_xdp(ring))
119 			page_frag_free(tx_buf->raw_buf);
120 		else
121 			dev_kfree_skb_any(tx_buf->skb);
122 		if (dma_unmap_len(tx_buf, len))
123 			dma_unmap_single(ring->dev,
124 					 dma_unmap_addr(tx_buf, dma),
125 					 dma_unmap_len(tx_buf, len),
126 					 DMA_TO_DEVICE);
127 	} else if (dma_unmap_len(tx_buf, len)) {
128 		dma_unmap_page(ring->dev,
129 			       dma_unmap_addr(tx_buf, dma),
130 			       dma_unmap_len(tx_buf, len),
131 			       DMA_TO_DEVICE);
132 	}
133 
134 	tx_buf->next_to_watch = NULL;
135 	tx_buf->skb = NULL;
136 	dma_unmap_len_set(tx_buf, len, 0);
137 	/* tx_buf must be completely set up in the transmit path */
138 }
139 
140 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
141 {
142 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
143 }
144 
145 /**
146  * ice_clean_tx_ring - Free any empty Tx buffers
147  * @tx_ring: ring to be cleaned
148  */
149 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
150 {
151 	u32 size;
152 	u16 i;
153 
154 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
155 		ice_xsk_clean_xdp_ring(tx_ring);
156 		goto tx_skip_free;
157 	}
158 
159 	/* ring already cleared, nothing to do */
160 	if (!tx_ring->tx_buf)
161 		return;
162 
163 	/* Free all the Tx ring sk_buffs */
164 	for (i = 0; i < tx_ring->count; i++)
165 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
166 
167 tx_skip_free:
168 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
169 
170 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
171 		     PAGE_SIZE);
172 	/* Zero out the descriptor ring */
173 	memset(tx_ring->desc, 0, size);
174 
175 	tx_ring->next_to_use = 0;
176 	tx_ring->next_to_clean = 0;
177 	tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1;
178 	tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1;
179 
180 	if (!tx_ring->netdev)
181 		return;
182 
183 	/* cleanup Tx queue statistics */
184 	netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186 
187 /**
188  * ice_free_tx_ring - Free Tx resources per queue
189  * @tx_ring: Tx descriptor ring for a specific queue
190  *
191  * Free all transmit software resources
192  */
193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 	u32 size;
196 
197 	ice_clean_tx_ring(tx_ring);
198 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 	tx_ring->tx_buf = NULL;
200 
201 	if (tx_ring->desc) {
202 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 			     PAGE_SIZE);
204 		dmam_free_coherent(tx_ring->dev, size,
205 				   tx_ring->desc, tx_ring->dma);
206 		tx_ring->desc = NULL;
207 	}
208 }
209 
210 /**
211  * ice_clean_tx_irq - Reclaim resources after transmit completes
212  * @tx_ring: Tx ring to clean
213  * @napi_budget: Used to determine if we are in netpoll
214  *
215  * Returns true if there's any budget left (e.g. the clean is finished)
216  */
217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 	unsigned int total_bytes = 0, total_pkts = 0;
220 	unsigned int budget = ICE_DFLT_IRQ_WORK;
221 	struct ice_vsi *vsi = tx_ring->vsi;
222 	s16 i = tx_ring->next_to_clean;
223 	struct ice_tx_desc *tx_desc;
224 	struct ice_tx_buf *tx_buf;
225 
226 	/* get the bql data ready */
227 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228 
229 	tx_buf = &tx_ring->tx_buf[i];
230 	tx_desc = ICE_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	prefetch(&vsi->state);
234 
235 	do {
236 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237 
238 		/* if next_to_watch is not set then there is no work pending */
239 		if (!eop_desc)
240 			break;
241 
242 		/* follow the guidelines of other drivers */
243 		prefetchw(&tx_buf->skb->users);
244 
245 		smp_rmb();	/* prevent any other reads prior to eop_desc */
246 
247 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 		/* if the descriptor isn't done, no work yet to do */
249 		if (!(eop_desc->cmd_type_offset_bsz &
250 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 			break;
252 
253 		/* clear next_to_watch to prevent false hangs */
254 		tx_buf->next_to_watch = NULL;
255 
256 		/* update the statistics for this packet */
257 		total_bytes += tx_buf->bytecount;
258 		total_pkts += tx_buf->gso_segs;
259 
260 		/* free the skb */
261 		napi_consume_skb(tx_buf->skb, napi_budget);
262 
263 		/* unmap skb header data */
264 		dma_unmap_single(tx_ring->dev,
265 				 dma_unmap_addr(tx_buf, dma),
266 				 dma_unmap_len(tx_buf, len),
267 				 DMA_TO_DEVICE);
268 
269 		/* clear tx_buf data */
270 		tx_buf->skb = NULL;
271 		dma_unmap_len_set(tx_buf, len, 0);
272 
273 		/* unmap remaining buffers */
274 		while (tx_desc != eop_desc) {
275 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 			tx_buf++;
277 			tx_desc++;
278 			i++;
279 			if (unlikely(!i)) {
280 				i -= tx_ring->count;
281 				tx_buf = tx_ring->tx_buf;
282 				tx_desc = ICE_TX_DESC(tx_ring, 0);
283 			}
284 
285 			/* unmap any remaining paged data */
286 			if (dma_unmap_len(tx_buf, len)) {
287 				dma_unmap_page(tx_ring->dev,
288 					       dma_unmap_addr(tx_buf, dma),
289 					       dma_unmap_len(tx_buf, len),
290 					       DMA_TO_DEVICE);
291 				dma_unmap_len_set(tx_buf, len, 0);
292 			}
293 		}
294 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295 
296 		/* move us one more past the eop_desc for start of next pkt */
297 		tx_buf++;
298 		tx_desc++;
299 		i++;
300 		if (unlikely(!i)) {
301 			i -= tx_ring->count;
302 			tx_buf = tx_ring->tx_buf;
303 			tx_desc = ICE_TX_DESC(tx_ring, 0);
304 		}
305 
306 		prefetch(tx_desc);
307 
308 		/* update budget accounting */
309 		budget--;
310 	} while (likely(budget));
311 
312 	i += tx_ring->count;
313 	tx_ring->next_to_clean = i;
314 
315 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317 
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 		/* Make sure that anybody stopping the queue after this
322 		 * sees the new next_to_clean.
323 		 */
324 		smp_mb();
325 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 			netif_tx_wake_queue(txring_txq(tx_ring));
328 			++tx_ring->tx_stats.restart_q;
329 		}
330 	}
331 
332 	return !!budget;
333 }
334 
335 /**
336  * ice_setup_tx_ring - Allocate the Tx descriptors
337  * @tx_ring: the Tx ring to set up
338  *
339  * Return 0 on success, negative on error
340  */
341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 	struct device *dev = tx_ring->dev;
344 	u32 size;
345 
346 	if (!dev)
347 		return -ENOMEM;
348 
349 	/* warn if we are about to overwrite the pointer */
350 	WARN_ON(tx_ring->tx_buf);
351 	tx_ring->tx_buf =
352 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 			     GFP_KERNEL);
354 	if (!tx_ring->tx_buf)
355 		return -ENOMEM;
356 
357 	/* round up to nearest page */
358 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 		     PAGE_SIZE);
360 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 					    GFP_KERNEL);
362 	if (!tx_ring->desc) {
363 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 			size);
365 		goto err;
366 	}
367 
368 	tx_ring->next_to_use = 0;
369 	tx_ring->next_to_clean = 0;
370 	tx_ring->tx_stats.prev_pkt = -1;
371 	return 0;
372 
373 err:
374 	devm_kfree(dev, tx_ring->tx_buf);
375 	tx_ring->tx_buf = NULL;
376 	return -ENOMEM;
377 }
378 
379 /**
380  * ice_clean_rx_ring - Free Rx buffers
381  * @rx_ring: ring to be cleaned
382  */
383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 	struct device *dev = rx_ring->dev;
386 	u32 size;
387 	u16 i;
388 
389 	/* ring already cleared, nothing to do */
390 	if (!rx_ring->rx_buf)
391 		return;
392 
393 	if (rx_ring->skb) {
394 		dev_kfree_skb(rx_ring->skb);
395 		rx_ring->skb = NULL;
396 	}
397 
398 	if (rx_ring->xsk_pool) {
399 		ice_xsk_clean_rx_ring(rx_ring);
400 		goto rx_skip_free;
401 	}
402 
403 	/* Free all the Rx ring sk_buffs */
404 	for (i = 0; i < rx_ring->count; i++) {
405 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
406 
407 		if (!rx_buf->page)
408 			continue;
409 
410 		/* Invalidate cache lines that may have been written to by
411 		 * device so that we avoid corrupting memory.
412 		 */
413 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
414 					      rx_buf->page_offset,
415 					      rx_ring->rx_buf_len,
416 					      DMA_FROM_DEVICE);
417 
418 		/* free resources associated with mapping */
419 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
420 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
421 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
422 
423 		rx_buf->page = NULL;
424 		rx_buf->page_offset = 0;
425 	}
426 
427 rx_skip_free:
428 	if (rx_ring->xsk_pool)
429 		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
430 	else
431 		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
432 
433 	/* Zero out the descriptor ring */
434 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
435 		     PAGE_SIZE);
436 	memset(rx_ring->desc, 0, size);
437 
438 	rx_ring->next_to_alloc = 0;
439 	rx_ring->next_to_clean = 0;
440 	rx_ring->next_to_use = 0;
441 }
442 
443 /**
444  * ice_free_rx_ring - Free Rx resources
445  * @rx_ring: ring to clean the resources from
446  *
447  * Free all receive software resources
448  */
449 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
450 {
451 	u32 size;
452 
453 	ice_clean_rx_ring(rx_ring);
454 	if (rx_ring->vsi->type == ICE_VSI_PF)
455 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
456 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
457 	rx_ring->xdp_prog = NULL;
458 	if (rx_ring->xsk_pool) {
459 		kfree(rx_ring->xdp_buf);
460 		rx_ring->xdp_buf = NULL;
461 	} else {
462 		kfree(rx_ring->rx_buf);
463 		rx_ring->rx_buf = NULL;
464 	}
465 
466 	if (rx_ring->desc) {
467 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 			     PAGE_SIZE);
469 		dmam_free_coherent(rx_ring->dev, size,
470 				   rx_ring->desc, rx_ring->dma);
471 		rx_ring->desc = NULL;
472 	}
473 }
474 
475 /**
476  * ice_setup_rx_ring - Allocate the Rx descriptors
477  * @rx_ring: the Rx ring to set up
478  *
479  * Return 0 on success, negative on error
480  */
481 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
482 {
483 	struct device *dev = rx_ring->dev;
484 	u32 size;
485 
486 	if (!dev)
487 		return -ENOMEM;
488 
489 	/* warn if we are about to overwrite the pointer */
490 	WARN_ON(rx_ring->rx_buf);
491 	rx_ring->rx_buf =
492 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
493 	if (!rx_ring->rx_buf)
494 		return -ENOMEM;
495 
496 	/* round up to nearest page */
497 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
498 		     PAGE_SIZE);
499 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
500 					    GFP_KERNEL);
501 	if (!rx_ring->desc) {
502 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
503 			size);
504 		goto err;
505 	}
506 
507 	rx_ring->next_to_use = 0;
508 	rx_ring->next_to_clean = 0;
509 
510 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
511 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
512 
513 	if (rx_ring->vsi->type == ICE_VSI_PF &&
514 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
515 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
516 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
517 			goto err;
518 	return 0;
519 
520 err:
521 	kfree(rx_ring->rx_buf);
522 	rx_ring->rx_buf = NULL;
523 	return -ENOMEM;
524 }
525 
526 static unsigned int
527 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size)
528 {
529 	unsigned int truesize;
530 
531 #if (PAGE_SIZE < 8192)
532 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
533 #else
534 	truesize = rx_ring->rx_offset ?
535 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
536 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
537 		SKB_DATA_ALIGN(size);
538 #endif
539 	return truesize;
540 }
541 
542 /**
543  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
544  * @rx_ring: Rx ring
545  * @xdp: xdp_buff used as input to the XDP program
546  * @xdp_prog: XDP program to run
547  * @xdp_ring: ring to be used for XDP_TX action
548  *
549  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
550  */
551 static int
552 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
553 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
554 {
555 	int err;
556 	u32 act;
557 
558 	act = bpf_prog_run_xdp(xdp_prog, xdp);
559 	switch (act) {
560 	case XDP_PASS:
561 		return ICE_XDP_PASS;
562 	case XDP_TX:
563 		if (static_branch_unlikely(&ice_xdp_locking_key))
564 			spin_lock(&xdp_ring->tx_lock);
565 		err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
566 		if (static_branch_unlikely(&ice_xdp_locking_key))
567 			spin_unlock(&xdp_ring->tx_lock);
568 		if (err == ICE_XDP_CONSUMED)
569 			goto out_failure;
570 		return err;
571 	case XDP_REDIRECT:
572 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
573 		if (err)
574 			goto out_failure;
575 		return ICE_XDP_REDIR;
576 	default:
577 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
578 		fallthrough;
579 	case XDP_ABORTED:
580 out_failure:
581 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
582 		fallthrough;
583 	case XDP_DROP:
584 		return ICE_XDP_CONSUMED;
585 	}
586 }
587 
588 /**
589  * ice_xdp_xmit - submit packets to XDP ring for transmission
590  * @dev: netdev
591  * @n: number of XDP frames to be transmitted
592  * @frames: XDP frames to be transmitted
593  * @flags: transmit flags
594  *
595  * Returns number of frames successfully sent. Failed frames
596  * will be free'ed by XDP core.
597  * For error cases, a negative errno code is returned and no-frames
598  * are transmitted (caller must handle freeing frames).
599  */
600 int
601 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
602 	     u32 flags)
603 {
604 	struct ice_netdev_priv *np = netdev_priv(dev);
605 	unsigned int queue_index = smp_processor_id();
606 	struct ice_vsi *vsi = np->vsi;
607 	struct ice_tx_ring *xdp_ring;
608 	int nxmit = 0, i;
609 
610 	if (test_bit(ICE_VSI_DOWN, vsi->state))
611 		return -ENETDOWN;
612 
613 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
614 		return -ENXIO;
615 
616 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
617 		return -EINVAL;
618 
619 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
620 		queue_index %= vsi->num_xdp_txq;
621 		xdp_ring = vsi->xdp_rings[queue_index];
622 		spin_lock(&xdp_ring->tx_lock);
623 	} else {
624 		xdp_ring = vsi->xdp_rings[queue_index];
625 	}
626 
627 	for (i = 0; i < n; i++) {
628 		struct xdp_frame *xdpf = frames[i];
629 		int err;
630 
631 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
632 		if (err != ICE_XDP_TX)
633 			break;
634 		nxmit++;
635 	}
636 
637 	if (unlikely(flags & XDP_XMIT_FLUSH))
638 		ice_xdp_ring_update_tail(xdp_ring);
639 
640 	if (static_branch_unlikely(&ice_xdp_locking_key))
641 		spin_unlock(&xdp_ring->tx_lock);
642 
643 	return nxmit;
644 }
645 
646 /**
647  * ice_alloc_mapped_page - recycle or make a new page
648  * @rx_ring: ring to use
649  * @bi: rx_buf struct to modify
650  *
651  * Returns true if the page was successfully allocated or
652  * reused.
653  */
654 static bool
655 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
656 {
657 	struct page *page = bi->page;
658 	dma_addr_t dma;
659 
660 	/* since we are recycling buffers we should seldom need to alloc */
661 	if (likely(page))
662 		return true;
663 
664 	/* alloc new page for storage */
665 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
666 	if (unlikely(!page)) {
667 		rx_ring->rx_stats.alloc_page_failed++;
668 		return false;
669 	}
670 
671 	/* map page for use */
672 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
673 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
674 
675 	/* if mapping failed free memory back to system since
676 	 * there isn't much point in holding memory we can't use
677 	 */
678 	if (dma_mapping_error(rx_ring->dev, dma)) {
679 		__free_pages(page, ice_rx_pg_order(rx_ring));
680 		rx_ring->rx_stats.alloc_page_failed++;
681 		return false;
682 	}
683 
684 	bi->dma = dma;
685 	bi->page = page;
686 	bi->page_offset = rx_ring->rx_offset;
687 	page_ref_add(page, USHRT_MAX - 1);
688 	bi->pagecnt_bias = USHRT_MAX;
689 
690 	return true;
691 }
692 
693 /**
694  * ice_alloc_rx_bufs - Replace used receive buffers
695  * @rx_ring: ring to place buffers on
696  * @cleaned_count: number of buffers to replace
697  *
698  * Returns false if all allocations were successful, true if any fail. Returning
699  * true signals to the caller that we didn't replace cleaned_count buffers and
700  * there is more work to do.
701  *
702  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
703  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
704  * multiple tail writes per call.
705  */
706 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
707 {
708 	union ice_32b_rx_flex_desc *rx_desc;
709 	u16 ntu = rx_ring->next_to_use;
710 	struct ice_rx_buf *bi;
711 
712 	/* do nothing if no valid netdev defined */
713 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
714 	    !cleaned_count)
715 		return false;
716 
717 	/* get the Rx descriptor and buffer based on next_to_use */
718 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
719 	bi = &rx_ring->rx_buf[ntu];
720 
721 	do {
722 		/* if we fail here, we have work remaining */
723 		if (!ice_alloc_mapped_page(rx_ring, bi))
724 			break;
725 
726 		/* sync the buffer for use by the device */
727 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
728 						 bi->page_offset,
729 						 rx_ring->rx_buf_len,
730 						 DMA_FROM_DEVICE);
731 
732 		/* Refresh the desc even if buffer_addrs didn't change
733 		 * because each write-back erases this info.
734 		 */
735 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
736 
737 		rx_desc++;
738 		bi++;
739 		ntu++;
740 		if (unlikely(ntu == rx_ring->count)) {
741 			rx_desc = ICE_RX_DESC(rx_ring, 0);
742 			bi = rx_ring->rx_buf;
743 			ntu = 0;
744 		}
745 
746 		/* clear the status bits for the next_to_use descriptor */
747 		rx_desc->wb.status_error0 = 0;
748 
749 		cleaned_count--;
750 	} while (cleaned_count);
751 
752 	if (rx_ring->next_to_use != ntu)
753 		ice_release_rx_desc(rx_ring, ntu);
754 
755 	return !!cleaned_count;
756 }
757 
758 /**
759  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
760  * @rx_buf: Rx buffer to adjust
761  * @size: Size of adjustment
762  *
763  * Update the offset within page so that Rx buf will be ready to be reused.
764  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
765  * so the second half of page assigned to Rx buffer will be used, otherwise
766  * the offset is moved by "size" bytes
767  */
768 static void
769 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
770 {
771 #if (PAGE_SIZE < 8192)
772 	/* flip page offset to other buffer */
773 	rx_buf->page_offset ^= size;
774 #else
775 	/* move offset up to the next cache line */
776 	rx_buf->page_offset += size;
777 #endif
778 }
779 
780 /**
781  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
782  * @rx_buf: buffer containing the page
783  * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
784  *
785  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
786  * which will assign the current buffer to the buffer that next_to_alloc is
787  * pointing to; otherwise, the DMA mapping needs to be destroyed and
788  * page freed
789  */
790 static bool
791 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
792 {
793 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
794 	struct page *page = rx_buf->page;
795 
796 	/* avoid re-using remote and pfmemalloc pages */
797 	if (!dev_page_is_reusable(page))
798 		return false;
799 
800 #if (PAGE_SIZE < 8192)
801 	/* if we are only owner of page we can reuse it */
802 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
803 		return false;
804 #else
805 #define ICE_LAST_OFFSET \
806 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
807 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
808 		return false;
809 #endif /* PAGE_SIZE < 8192) */
810 
811 	/* If we have drained the page fragment pool we need to update
812 	 * the pagecnt_bias and page count so that we fully restock the
813 	 * number of references the driver holds.
814 	 */
815 	if (unlikely(pagecnt_bias == 1)) {
816 		page_ref_add(page, USHRT_MAX - 1);
817 		rx_buf->pagecnt_bias = USHRT_MAX;
818 	}
819 
820 	return true;
821 }
822 
823 /**
824  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
825  * @rx_ring: Rx descriptor ring to transact packets on
826  * @rx_buf: buffer containing page to add
827  * @skb: sk_buff to place the data into
828  * @size: packet length from rx_desc
829  *
830  * This function will add the data contained in rx_buf->page to the skb.
831  * It will just attach the page as a frag to the skb.
832  * The function will then update the page offset.
833  */
834 static void
835 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
836 		struct sk_buff *skb, unsigned int size)
837 {
838 #if (PAGE_SIZE >= 8192)
839 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
840 #else
841 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
842 #endif
843 
844 	if (!size)
845 		return;
846 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
847 			rx_buf->page_offset, size, truesize);
848 
849 	/* page is being used so we must update the page offset */
850 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
851 }
852 
853 /**
854  * ice_reuse_rx_page - page flip buffer and store it back on the ring
855  * @rx_ring: Rx descriptor ring to store buffers on
856  * @old_buf: donor buffer to have page reused
857  *
858  * Synchronizes page for reuse by the adapter
859  */
860 static void
861 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
862 {
863 	u16 nta = rx_ring->next_to_alloc;
864 	struct ice_rx_buf *new_buf;
865 
866 	new_buf = &rx_ring->rx_buf[nta];
867 
868 	/* update, and store next to alloc */
869 	nta++;
870 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
871 
872 	/* Transfer page from old buffer to new buffer.
873 	 * Move each member individually to avoid possible store
874 	 * forwarding stalls and unnecessary copy of skb.
875 	 */
876 	new_buf->dma = old_buf->dma;
877 	new_buf->page = old_buf->page;
878 	new_buf->page_offset = old_buf->page_offset;
879 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
880 }
881 
882 /**
883  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
884  * @rx_ring: Rx descriptor ring to transact packets on
885  * @size: size of buffer to add to skb
886  * @rx_buf_pgcnt: rx_buf page refcount
887  *
888  * This function will pull an Rx buffer from the ring and synchronize it
889  * for use by the CPU.
890  */
891 static struct ice_rx_buf *
892 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
893 	       int *rx_buf_pgcnt)
894 {
895 	struct ice_rx_buf *rx_buf;
896 
897 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
898 	*rx_buf_pgcnt =
899 #if (PAGE_SIZE < 8192)
900 		page_count(rx_buf->page);
901 #else
902 		0;
903 #endif
904 	prefetchw(rx_buf->page);
905 
906 	if (!size)
907 		return rx_buf;
908 	/* we are reusing so sync this buffer for CPU use */
909 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
910 				      rx_buf->page_offset, size,
911 				      DMA_FROM_DEVICE);
912 
913 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
914 	rx_buf->pagecnt_bias--;
915 
916 	return rx_buf;
917 }
918 
919 /**
920  * ice_build_skb - Build skb around an existing buffer
921  * @rx_ring: Rx descriptor ring to transact packets on
922  * @rx_buf: Rx buffer to pull data from
923  * @xdp: xdp_buff pointing to the data
924  *
925  * This function builds an skb around an existing Rx buffer, taking care
926  * to set up the skb correctly and avoid any memcpy overhead.
927  */
928 static struct sk_buff *
929 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
930 	      struct xdp_buff *xdp)
931 {
932 	u8 metasize = xdp->data - xdp->data_meta;
933 #if (PAGE_SIZE < 8192)
934 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
935 #else
936 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
937 				SKB_DATA_ALIGN(xdp->data_end -
938 					       xdp->data_hard_start);
939 #endif
940 	struct sk_buff *skb;
941 
942 	/* Prefetch first cache line of first page. If xdp->data_meta
943 	 * is unused, this points exactly as xdp->data, otherwise we
944 	 * likely have a consumer accessing first few bytes of meta
945 	 * data, and then actual data.
946 	 */
947 	net_prefetch(xdp->data_meta);
948 	/* build an skb around the page buffer */
949 	skb = napi_build_skb(xdp->data_hard_start, truesize);
950 	if (unlikely(!skb))
951 		return NULL;
952 
953 	/* must to record Rx queue, otherwise OS features such as
954 	 * symmetric queue won't work
955 	 */
956 	skb_record_rx_queue(skb, rx_ring->q_index);
957 
958 	/* update pointers within the skb to store the data */
959 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
960 	__skb_put(skb, xdp->data_end - xdp->data);
961 	if (metasize)
962 		skb_metadata_set(skb, metasize);
963 
964 	/* buffer is used by skb, update page_offset */
965 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
966 
967 	return skb;
968 }
969 
970 /**
971  * ice_construct_skb - Allocate skb and populate it
972  * @rx_ring: Rx descriptor ring to transact packets on
973  * @rx_buf: Rx buffer to pull data from
974  * @xdp: xdp_buff pointing to the data
975  *
976  * This function allocates an skb. It then populates it with the page
977  * data from the current receive descriptor, taking care to set up the
978  * skb correctly.
979  */
980 static struct sk_buff *
981 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
982 		  struct xdp_buff *xdp)
983 {
984 	unsigned int metasize = xdp->data - xdp->data_meta;
985 	unsigned int size = xdp->data_end - xdp->data;
986 	unsigned int headlen;
987 	struct sk_buff *skb;
988 
989 	/* prefetch first cache line of first page */
990 	net_prefetch(xdp->data_meta);
991 
992 	/* allocate a skb to store the frags */
993 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
994 			       ICE_RX_HDR_SIZE + metasize,
995 			       GFP_ATOMIC | __GFP_NOWARN);
996 	if (unlikely(!skb))
997 		return NULL;
998 
999 	skb_record_rx_queue(skb, rx_ring->q_index);
1000 	/* Determine available headroom for copy */
1001 	headlen = size;
1002 	if (headlen > ICE_RX_HDR_SIZE)
1003 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1004 
1005 	/* align pull length to size of long to optimize memcpy performance */
1006 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1007 	       ALIGN(headlen + metasize, sizeof(long)));
1008 
1009 	if (metasize) {
1010 		skb_metadata_set(skb, metasize);
1011 		__skb_pull(skb, metasize);
1012 	}
1013 
1014 	/* if we exhaust the linear part then add what is left as a frag */
1015 	size -= headlen;
1016 	if (size) {
1017 #if (PAGE_SIZE >= 8192)
1018 		unsigned int truesize = SKB_DATA_ALIGN(size);
1019 #else
1020 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
1021 #endif
1022 		skb_add_rx_frag(skb, 0, rx_buf->page,
1023 				rx_buf->page_offset + headlen, size, truesize);
1024 		/* buffer is used by skb, update page_offset */
1025 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1026 	} else {
1027 		/* buffer is unused, reset bias back to rx_buf; data was copied
1028 		 * onto skb's linear part so there's no need for adjusting
1029 		 * page offset and we can reuse this buffer as-is
1030 		 */
1031 		rx_buf->pagecnt_bias++;
1032 	}
1033 
1034 	return skb;
1035 }
1036 
1037 /**
1038  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1039  * @rx_ring: Rx descriptor ring to transact packets on
1040  * @rx_buf: Rx buffer to pull data from
1041  * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1042  *
1043  * This function will update next_to_clean and then clean up the contents
1044  * of the rx_buf. It will either recycle the buffer or unmap it and free
1045  * the associated resources.
1046  */
1047 static void
1048 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
1049 	       int rx_buf_pgcnt)
1050 {
1051 	u16 ntc = rx_ring->next_to_clean + 1;
1052 
1053 	/* fetch, update, and store next to clean */
1054 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1055 	rx_ring->next_to_clean = ntc;
1056 
1057 	if (!rx_buf)
1058 		return;
1059 
1060 	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1061 		/* hand second half of page back to the ring */
1062 		ice_reuse_rx_page(rx_ring, rx_buf);
1063 	} else {
1064 		/* we are not reusing the buffer so unmap it */
1065 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1066 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1067 				     ICE_RX_DMA_ATTR);
1068 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1069 	}
1070 
1071 	/* clear contents of buffer_info */
1072 	rx_buf->page = NULL;
1073 }
1074 
1075 /**
1076  * ice_is_non_eop - process handling of non-EOP buffers
1077  * @rx_ring: Rx ring being processed
1078  * @rx_desc: Rx descriptor for current buffer
1079  *
1080  * If the buffer is an EOP buffer, this function exits returning false,
1081  * otherwise return true indicating that this is in fact a non-EOP buffer.
1082  */
1083 static bool
1084 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1085 {
1086 	/* if we are the last buffer then there is nothing else to do */
1087 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1088 	if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF)))
1089 		return false;
1090 
1091 	rx_ring->rx_stats.non_eop_descs++;
1092 
1093 	return true;
1094 }
1095 
1096 /**
1097  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1098  * @rx_ring: Rx descriptor ring to transact packets on
1099  * @budget: Total limit on number of packets to process
1100  *
1101  * This function provides a "bounce buffer" approach to Rx interrupt
1102  * processing. The advantage to this is that on systems that have
1103  * expensive overhead for IOMMU access this provides a means of avoiding
1104  * it by maintaining the mapping of the page to the system.
1105  *
1106  * Returns amount of work completed
1107  */
1108 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1109 {
1110 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1111 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1112 	unsigned int offset = rx_ring->rx_offset;
1113 	struct ice_tx_ring *xdp_ring = NULL;
1114 	unsigned int xdp_res, xdp_xmit = 0;
1115 	struct sk_buff *skb = rx_ring->skb;
1116 	struct bpf_prog *xdp_prog = NULL;
1117 	struct xdp_buff xdp;
1118 	bool failure;
1119 
1120 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1121 #if (PAGE_SIZE < 8192)
1122 	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1123 #endif
1124 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1125 
1126 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1127 	if (xdp_prog)
1128 		xdp_ring = rx_ring->xdp_ring;
1129 
1130 	/* start the loop to process Rx packets bounded by 'budget' */
1131 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1132 		union ice_32b_rx_flex_desc *rx_desc;
1133 		struct ice_rx_buf *rx_buf;
1134 		unsigned char *hard_start;
1135 		unsigned int size;
1136 		u16 stat_err_bits;
1137 		int rx_buf_pgcnt;
1138 		u16 vlan_tag = 0;
1139 		u16 rx_ptype;
1140 
1141 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1142 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1143 
1144 		/* status_error_len will always be zero for unused descriptors
1145 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1146 		 * which is always zero because packet split isn't used, if the
1147 		 * hardware wrote DD then it will be non-zero
1148 		 */
1149 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1150 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1151 			break;
1152 
1153 		/* This memory barrier is needed to keep us from reading
1154 		 * any other fields out of the rx_desc until we know the
1155 		 * DD bit is set.
1156 		 */
1157 		dma_rmb();
1158 
1159 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1160 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1161 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1162 
1163 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1164 			    ctrl_vsi->vf)
1165 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1166 			ice_put_rx_buf(rx_ring, NULL, 0);
1167 			cleaned_count++;
1168 			continue;
1169 		}
1170 
1171 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1172 			ICE_RX_FLX_DESC_PKT_LEN_M;
1173 
1174 		/* retrieve a buffer from the ring */
1175 		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1176 
1177 		if (!size) {
1178 			xdp.data = NULL;
1179 			xdp.data_end = NULL;
1180 			xdp.data_hard_start = NULL;
1181 			xdp.data_meta = NULL;
1182 			goto construct_skb;
1183 		}
1184 
1185 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1186 			     offset;
1187 		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1188 #if (PAGE_SIZE > 4096)
1189 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1190 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1191 #endif
1192 
1193 		if (!xdp_prog)
1194 			goto construct_skb;
1195 
1196 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring);
1197 		if (!xdp_res)
1198 			goto construct_skb;
1199 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1200 			xdp_xmit |= xdp_res;
1201 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1202 		} else {
1203 			rx_buf->pagecnt_bias++;
1204 		}
1205 		total_rx_bytes += size;
1206 		total_rx_pkts++;
1207 
1208 		cleaned_count++;
1209 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1210 		continue;
1211 construct_skb:
1212 		if (skb) {
1213 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1214 		} else if (likely(xdp.data)) {
1215 			if (ice_ring_uses_build_skb(rx_ring))
1216 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1217 			else
1218 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1219 		}
1220 		/* exit if we failed to retrieve a buffer */
1221 		if (!skb) {
1222 			rx_ring->rx_stats.alloc_buf_failed++;
1223 			if (rx_buf)
1224 				rx_buf->pagecnt_bias++;
1225 			break;
1226 		}
1227 
1228 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1229 		cleaned_count++;
1230 
1231 		/* skip if it is NOP desc */
1232 		if (ice_is_non_eop(rx_ring, rx_desc))
1233 			continue;
1234 
1235 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1236 		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1237 					      stat_err_bits))) {
1238 			dev_kfree_skb_any(skb);
1239 			continue;
1240 		}
1241 
1242 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1243 
1244 		/* pad the skb if needed, to make a valid ethernet frame */
1245 		if (eth_skb_pad(skb)) {
1246 			skb = NULL;
1247 			continue;
1248 		}
1249 
1250 		/* probably a little skewed due to removing CRC */
1251 		total_rx_bytes += skb->len;
1252 
1253 		/* populate checksum, VLAN, and protocol */
1254 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1255 			ICE_RX_FLEX_DESC_PTYPE_M;
1256 
1257 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1258 
1259 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1260 		/* send completed skb up the stack */
1261 		ice_receive_skb(rx_ring, skb, vlan_tag);
1262 		skb = NULL;
1263 
1264 		/* update budget accounting */
1265 		total_rx_pkts++;
1266 	}
1267 
1268 	/* return up to cleaned_count buffers to hardware */
1269 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1270 
1271 	if (xdp_prog)
1272 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
1273 	rx_ring->skb = skb;
1274 
1275 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1276 
1277 	/* guarantee a trip back through this routine if there was a failure */
1278 	return failure ? budget : (int)total_rx_pkts;
1279 }
1280 
1281 static void __ice_update_sample(struct ice_q_vector *q_vector,
1282 				struct ice_ring_container *rc,
1283 				struct dim_sample *sample,
1284 				bool is_tx)
1285 {
1286 	u64 packets = 0, bytes = 0;
1287 
1288 	if (is_tx) {
1289 		struct ice_tx_ring *tx_ring;
1290 
1291 		ice_for_each_tx_ring(tx_ring, *rc) {
1292 			packets += tx_ring->stats.pkts;
1293 			bytes += tx_ring->stats.bytes;
1294 		}
1295 	} else {
1296 		struct ice_rx_ring *rx_ring;
1297 
1298 		ice_for_each_rx_ring(rx_ring, *rc) {
1299 			packets += rx_ring->stats.pkts;
1300 			bytes += rx_ring->stats.bytes;
1301 		}
1302 	}
1303 
1304 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1305 	sample->comp_ctr = 0;
1306 
1307 	/* if dim settings get stale, like when not updated for 1
1308 	 * second or longer, force it to start again. This addresses the
1309 	 * frequent case of an idle queue being switched to by the
1310 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1311 	 */
1312 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1313 		rc->dim.state = DIM_START_MEASURE;
1314 }
1315 
1316 /**
1317  * ice_net_dim - Update net DIM algorithm
1318  * @q_vector: the vector associated with the interrupt
1319  *
1320  * Create a DIM sample and notify net_dim() so that it can possibly decide
1321  * a new ITR value based on incoming packets, bytes, and interrupts.
1322  *
1323  * This function is a no-op if the ring is not configured to dynamic ITR.
1324  */
1325 static void ice_net_dim(struct ice_q_vector *q_vector)
1326 {
1327 	struct ice_ring_container *tx = &q_vector->tx;
1328 	struct ice_ring_container *rx = &q_vector->rx;
1329 
1330 	if (ITR_IS_DYNAMIC(tx)) {
1331 		struct dim_sample dim_sample;
1332 
1333 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1334 		net_dim(&tx->dim, dim_sample);
1335 	}
1336 
1337 	if (ITR_IS_DYNAMIC(rx)) {
1338 		struct dim_sample dim_sample;
1339 
1340 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1341 		net_dim(&rx->dim, dim_sample);
1342 	}
1343 }
1344 
1345 /**
1346  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1347  * @itr_idx: interrupt throttling index
1348  * @itr: interrupt throttling value in usecs
1349  */
1350 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1351 {
1352 	/* The ITR value is reported in microseconds, and the register value is
1353 	 * recorded in 2 microsecond units. For this reason we only need to
1354 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1355 	 * granularity as a shift instead of division. The mask makes sure the
1356 	 * ITR value is never odd so we don't accidentally write into the field
1357 	 * prior to the ITR field.
1358 	 */
1359 	itr &= ICE_ITR_MASK;
1360 
1361 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1362 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1363 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1364 }
1365 
1366 /**
1367  * ice_enable_interrupt - re-enable MSI-X interrupt
1368  * @q_vector: the vector associated with the interrupt to enable
1369  *
1370  * If the VSI is down, the interrupt will not be re-enabled. Also,
1371  * when enabling the interrupt always reset the wb_on_itr to false
1372  * and trigger a software interrupt to clean out internal state.
1373  */
1374 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1375 {
1376 	struct ice_vsi *vsi = q_vector->vsi;
1377 	bool wb_en = q_vector->wb_on_itr;
1378 	u32 itr_val;
1379 
1380 	if (test_bit(ICE_DOWN, vsi->state))
1381 		return;
1382 
1383 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1384 	 * make sure to catch any pending cleanups that might have been missed
1385 	 * due to interrupt state transition. If busy poll or poll isn't
1386 	 * enabled, then don't update ITR, and just enable the interrupt.
1387 	 */
1388 	if (!wb_en) {
1389 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1390 	} else {
1391 		q_vector->wb_on_itr = false;
1392 
1393 		/* do two things here with a single write. Set up the third ITR
1394 		 * index to be used for software interrupt moderation, and then
1395 		 * trigger a software interrupt with a rate limit of 20K on
1396 		 * software interrupts, this will help avoid high interrupt
1397 		 * loads due to frequently polling and exiting polling.
1398 		 */
1399 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1400 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1401 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1402 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1403 	}
1404 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1405 }
1406 
1407 /**
1408  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1409  * @q_vector: q_vector to set WB_ON_ITR on
1410  *
1411  * We need to tell hardware to write-back completed descriptors even when
1412  * interrupts are disabled. Descriptors will be written back on cache line
1413  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1414  * descriptors may not be written back if they don't fill a cache line until
1415  * the next interrupt.
1416  *
1417  * This sets the write-back frequency to whatever was set previously for the
1418  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1419  * aren't meddling with the INTENA_M bit.
1420  */
1421 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1422 {
1423 	struct ice_vsi *vsi = q_vector->vsi;
1424 
1425 	/* already in wb_on_itr mode no need to change it */
1426 	if (q_vector->wb_on_itr)
1427 		return;
1428 
1429 	/* use previously set ITR values for all of the ITR indices by
1430 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1431 	 * be static in non-adaptive mode (user configured)
1432 	 */
1433 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1434 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1435 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1436 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1437 
1438 	q_vector->wb_on_itr = true;
1439 }
1440 
1441 /**
1442  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1443  * @napi: napi struct with our devices info in it
1444  * @budget: amount of work driver is allowed to do this pass, in packets
1445  *
1446  * This function will clean all queues associated with a q_vector.
1447  *
1448  * Returns the amount of work done
1449  */
1450 int ice_napi_poll(struct napi_struct *napi, int budget)
1451 {
1452 	struct ice_q_vector *q_vector =
1453 				container_of(napi, struct ice_q_vector, napi);
1454 	struct ice_tx_ring *tx_ring;
1455 	struct ice_rx_ring *rx_ring;
1456 	bool clean_complete = true;
1457 	int budget_per_ring;
1458 	int work_done = 0;
1459 
1460 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1461 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1462 	 */
1463 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1464 		bool wd;
1465 
1466 		if (tx_ring->xsk_pool)
1467 			wd = ice_xmit_zc(tx_ring, ICE_DESC_UNUSED(tx_ring), budget);
1468 		else if (ice_ring_is_xdp(tx_ring))
1469 			wd = true;
1470 		else
1471 			wd = ice_clean_tx_irq(tx_ring, budget);
1472 
1473 		if (!wd)
1474 			clean_complete = false;
1475 	}
1476 
1477 	/* Handle case where we are called by netpoll with a budget of 0 */
1478 	if (unlikely(budget <= 0))
1479 		return budget;
1480 
1481 	/* normally we have 1 Rx ring per q_vector */
1482 	if (unlikely(q_vector->num_ring_rx > 1))
1483 		/* We attempt to distribute budget to each Rx queue fairly, but
1484 		 * don't allow the budget to go below 1 because that would exit
1485 		 * polling early.
1486 		 */
1487 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1488 	else
1489 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1490 		budget_per_ring = budget;
1491 
1492 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1493 		int cleaned;
1494 
1495 		/* A dedicated path for zero-copy allows making a single
1496 		 * comparison in the irq context instead of many inside the
1497 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1498 		 */
1499 		cleaned = rx_ring->xsk_pool ?
1500 			  ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1501 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1502 		work_done += cleaned;
1503 		/* if we clean as many as budgeted, we must not be done */
1504 		if (cleaned >= budget_per_ring)
1505 			clean_complete = false;
1506 	}
1507 
1508 	/* If work not completed, return budget and polling will return */
1509 	if (!clean_complete) {
1510 		/* Set the writeback on ITR so partial completions of
1511 		 * cache-lines will still continue even if we're polling.
1512 		 */
1513 		ice_set_wb_on_itr(q_vector);
1514 		return budget;
1515 	}
1516 
1517 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1518 	 * poll us due to busy-polling
1519 	 */
1520 	if (napi_complete_done(napi, work_done)) {
1521 		ice_net_dim(q_vector);
1522 		ice_enable_interrupt(q_vector);
1523 	} else {
1524 		ice_set_wb_on_itr(q_vector);
1525 	}
1526 
1527 	return min_t(int, work_done, budget - 1);
1528 }
1529 
1530 /**
1531  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1532  * @tx_ring: the ring to be checked
1533  * @size: the size buffer we want to assure is available
1534  *
1535  * Returns -EBUSY if a stop is needed, else 0
1536  */
1537 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1538 {
1539 	netif_tx_stop_queue(txring_txq(tx_ring));
1540 	/* Memory barrier before checking head and tail */
1541 	smp_mb();
1542 
1543 	/* Check again in a case another CPU has just made room available. */
1544 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1545 		return -EBUSY;
1546 
1547 	/* A reprieve! - use start_queue because it doesn't call schedule */
1548 	netif_tx_start_queue(txring_txq(tx_ring));
1549 	++tx_ring->tx_stats.restart_q;
1550 	return 0;
1551 }
1552 
1553 /**
1554  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1555  * @tx_ring: the ring to be checked
1556  * @size:    the size buffer we want to assure is available
1557  *
1558  * Returns 0 if stop is not needed
1559  */
1560 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1561 {
1562 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1563 		return 0;
1564 
1565 	return __ice_maybe_stop_tx(tx_ring, size);
1566 }
1567 
1568 /**
1569  * ice_tx_map - Build the Tx descriptor
1570  * @tx_ring: ring to send buffer on
1571  * @first: first buffer info buffer to use
1572  * @off: pointer to struct that holds offload parameters
1573  *
1574  * This function loops over the skb data pointed to by *first
1575  * and gets a physical address for each memory location and programs
1576  * it and the length into the transmit descriptor.
1577  */
1578 static void
1579 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1580 	   struct ice_tx_offload_params *off)
1581 {
1582 	u64 td_offset, td_tag, td_cmd;
1583 	u16 i = tx_ring->next_to_use;
1584 	unsigned int data_len, size;
1585 	struct ice_tx_desc *tx_desc;
1586 	struct ice_tx_buf *tx_buf;
1587 	struct sk_buff *skb;
1588 	skb_frag_t *frag;
1589 	dma_addr_t dma;
1590 	bool kick;
1591 
1592 	td_tag = off->td_l2tag1;
1593 	td_cmd = off->td_cmd;
1594 	td_offset = off->td_offset;
1595 	skb = first->skb;
1596 
1597 	data_len = skb->data_len;
1598 	size = skb_headlen(skb);
1599 
1600 	tx_desc = ICE_TX_DESC(tx_ring, i);
1601 
1602 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1603 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1604 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1605 			  ICE_TX_FLAGS_VLAN_S;
1606 	}
1607 
1608 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1609 
1610 	tx_buf = first;
1611 
1612 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1613 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1614 
1615 		if (dma_mapping_error(tx_ring->dev, dma))
1616 			goto dma_error;
1617 
1618 		/* record length, and DMA address */
1619 		dma_unmap_len_set(tx_buf, len, size);
1620 		dma_unmap_addr_set(tx_buf, dma, dma);
1621 
1622 		/* align size to end of page */
1623 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1624 		tx_desc->buf_addr = cpu_to_le64(dma);
1625 
1626 		/* account for data chunks larger than the hardware
1627 		 * can handle
1628 		 */
1629 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1630 			tx_desc->cmd_type_offset_bsz =
1631 				ice_build_ctob(td_cmd, td_offset, max_data,
1632 					       td_tag);
1633 
1634 			tx_desc++;
1635 			i++;
1636 
1637 			if (i == tx_ring->count) {
1638 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1639 				i = 0;
1640 			}
1641 
1642 			dma += max_data;
1643 			size -= max_data;
1644 
1645 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1646 			tx_desc->buf_addr = cpu_to_le64(dma);
1647 		}
1648 
1649 		if (likely(!data_len))
1650 			break;
1651 
1652 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1653 							      size, td_tag);
1654 
1655 		tx_desc++;
1656 		i++;
1657 
1658 		if (i == tx_ring->count) {
1659 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1660 			i = 0;
1661 		}
1662 
1663 		size = skb_frag_size(frag);
1664 		data_len -= size;
1665 
1666 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1667 				       DMA_TO_DEVICE);
1668 
1669 		tx_buf = &tx_ring->tx_buf[i];
1670 	}
1671 
1672 	/* record SW timestamp if HW timestamp is not available */
1673 	skb_tx_timestamp(first->skb);
1674 
1675 	i++;
1676 	if (i == tx_ring->count)
1677 		i = 0;
1678 
1679 	/* write last descriptor with RS and EOP bits */
1680 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1681 	tx_desc->cmd_type_offset_bsz =
1682 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1683 
1684 	/* Force memory writes to complete before letting h/w know there
1685 	 * are new descriptors to fetch.
1686 	 *
1687 	 * We also use this memory barrier to make certain all of the
1688 	 * status bits have been updated before next_to_watch is written.
1689 	 */
1690 	wmb();
1691 
1692 	/* set next_to_watch value indicating a packet is present */
1693 	first->next_to_watch = tx_desc;
1694 
1695 	tx_ring->next_to_use = i;
1696 
1697 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1698 
1699 	/* notify HW of packet */
1700 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1701 				      netdev_xmit_more());
1702 	if (kick)
1703 		/* notify HW of packet */
1704 		writel(i, tx_ring->tail);
1705 
1706 	return;
1707 
1708 dma_error:
1709 	/* clear DMA mappings for failed tx_buf map */
1710 	for (;;) {
1711 		tx_buf = &tx_ring->tx_buf[i];
1712 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1713 		if (tx_buf == first)
1714 			break;
1715 		if (i == 0)
1716 			i = tx_ring->count;
1717 		i--;
1718 	}
1719 
1720 	tx_ring->next_to_use = i;
1721 }
1722 
1723 /**
1724  * ice_tx_csum - Enable Tx checksum offloads
1725  * @first: pointer to the first descriptor
1726  * @off: pointer to struct that holds offload parameters
1727  *
1728  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1729  */
1730 static
1731 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1732 {
1733 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1734 	struct sk_buff *skb = first->skb;
1735 	union {
1736 		struct iphdr *v4;
1737 		struct ipv6hdr *v6;
1738 		unsigned char *hdr;
1739 	} ip;
1740 	union {
1741 		struct tcphdr *tcp;
1742 		unsigned char *hdr;
1743 	} l4;
1744 	__be16 frag_off, protocol;
1745 	unsigned char *exthdr;
1746 	u32 offset, cmd = 0;
1747 	u8 l4_proto = 0;
1748 
1749 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1750 		return 0;
1751 
1752 	protocol = vlan_get_protocol(skb);
1753 
1754 	if (eth_p_mpls(protocol))
1755 		ip.hdr = skb_inner_network_header(skb);
1756 	else
1757 		ip.hdr = skb_network_header(skb);
1758 	l4.hdr = skb_checksum_start(skb);
1759 
1760 	/* compute outer L2 header size */
1761 	l2_len = ip.hdr - skb->data;
1762 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1763 
1764 	/* set the tx_flags to indicate the IP protocol type. this is
1765 	 * required so that checksum header computation below is accurate.
1766 	 */
1767 	if (ip.v4->version == 4)
1768 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1769 	else if (ip.v6->version == 6)
1770 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1771 
1772 	if (skb->encapsulation) {
1773 		bool gso_ena = false;
1774 		u32 tunnel = 0;
1775 
1776 		/* define outer network header type */
1777 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1778 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1779 				  ICE_TX_CTX_EIPT_IPV4 :
1780 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1781 			l4_proto = ip.v4->protocol;
1782 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1783 			int ret;
1784 
1785 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1786 			exthdr = ip.hdr + sizeof(*ip.v6);
1787 			l4_proto = ip.v6->nexthdr;
1788 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1789 					       &l4_proto, &frag_off);
1790 			if (ret < 0)
1791 				return -1;
1792 		}
1793 
1794 		/* define outer transport */
1795 		switch (l4_proto) {
1796 		case IPPROTO_UDP:
1797 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1798 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1799 			break;
1800 		case IPPROTO_GRE:
1801 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1802 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1803 			break;
1804 		case IPPROTO_IPIP:
1805 		case IPPROTO_IPV6:
1806 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1807 			l4.hdr = skb_inner_network_header(skb);
1808 			break;
1809 		default:
1810 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1811 				return -1;
1812 
1813 			skb_checksum_help(skb);
1814 			return 0;
1815 		}
1816 
1817 		/* compute outer L3 header size */
1818 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1819 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1820 
1821 		/* switch IP header pointer from outer to inner header */
1822 		ip.hdr = skb_inner_network_header(skb);
1823 
1824 		/* compute tunnel header size */
1825 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1826 			   ICE_TXD_CTX_QW0_NATLEN_S;
1827 
1828 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1829 		/* indicate if we need to offload outer UDP header */
1830 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1831 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1832 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1833 
1834 		/* record tunnel offload values */
1835 		off->cd_tunnel_params |= tunnel;
1836 
1837 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1838 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1839 		 */
1840 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1841 
1842 		/* switch L4 header pointer from outer to inner */
1843 		l4.hdr = skb_inner_transport_header(skb);
1844 		l4_proto = 0;
1845 
1846 		/* reset type as we transition from outer to inner headers */
1847 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1848 		if (ip.v4->version == 4)
1849 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1850 		if (ip.v6->version == 6)
1851 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1852 	}
1853 
1854 	/* Enable IP checksum offloads */
1855 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1856 		l4_proto = ip.v4->protocol;
1857 		/* the stack computes the IP header already, the only time we
1858 		 * need the hardware to recompute it is in the case of TSO.
1859 		 */
1860 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1861 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1862 		else
1863 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1864 
1865 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1866 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1867 		exthdr = ip.hdr + sizeof(*ip.v6);
1868 		l4_proto = ip.v6->nexthdr;
1869 		if (l4.hdr != exthdr)
1870 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1871 					 &frag_off);
1872 	} else {
1873 		return -1;
1874 	}
1875 
1876 	/* compute inner L3 header size */
1877 	l3_len = l4.hdr - ip.hdr;
1878 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1879 
1880 	/* Enable L4 checksum offloads */
1881 	switch (l4_proto) {
1882 	case IPPROTO_TCP:
1883 		/* enable checksum offloads */
1884 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1885 		l4_len = l4.tcp->doff;
1886 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1887 		break;
1888 	case IPPROTO_UDP:
1889 		/* enable UDP checksum offload */
1890 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1891 		l4_len = (sizeof(struct udphdr) >> 2);
1892 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1893 		break;
1894 	case IPPROTO_SCTP:
1895 		/* enable SCTP checksum offload */
1896 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1897 		l4_len = sizeof(struct sctphdr) >> 2;
1898 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1899 		break;
1900 
1901 	default:
1902 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1903 			return -1;
1904 		skb_checksum_help(skb);
1905 		return 0;
1906 	}
1907 
1908 	off->td_cmd |= cmd;
1909 	off->td_offset |= offset;
1910 	return 1;
1911 }
1912 
1913 /**
1914  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1915  * @tx_ring: ring to send buffer on
1916  * @first: pointer to struct ice_tx_buf
1917  *
1918  * Checks the skb and set up correspondingly several generic transmit flags
1919  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1920  */
1921 static void
1922 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1923 {
1924 	struct sk_buff *skb = first->skb;
1925 
1926 	/* nothing left to do, software offloaded VLAN */
1927 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1928 		return;
1929 
1930 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1931 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1932 	 * VLAN offloads exclusively so we only care about the VLAN ID here
1933 	 */
1934 	if (skb_vlan_tag_present(skb)) {
1935 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1936 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
1937 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1938 		else
1939 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1940 	}
1941 
1942 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1943 }
1944 
1945 /**
1946  * ice_tso - computes mss and TSO length to prepare for TSO
1947  * @first: pointer to struct ice_tx_buf
1948  * @off: pointer to struct that holds offload parameters
1949  *
1950  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1951  */
1952 static
1953 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1954 {
1955 	struct sk_buff *skb = first->skb;
1956 	union {
1957 		struct iphdr *v4;
1958 		struct ipv6hdr *v6;
1959 		unsigned char *hdr;
1960 	} ip;
1961 	union {
1962 		struct tcphdr *tcp;
1963 		struct udphdr *udp;
1964 		unsigned char *hdr;
1965 	} l4;
1966 	u64 cd_mss, cd_tso_len;
1967 	__be16 protocol;
1968 	u32 paylen;
1969 	u8 l4_start;
1970 	int err;
1971 
1972 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1973 		return 0;
1974 
1975 	if (!skb_is_gso(skb))
1976 		return 0;
1977 
1978 	err = skb_cow_head(skb, 0);
1979 	if (err < 0)
1980 		return err;
1981 
1982 	/* cppcheck-suppress unreadVariable */
1983 	protocol = vlan_get_protocol(skb);
1984 
1985 	if (eth_p_mpls(protocol))
1986 		ip.hdr = skb_inner_network_header(skb);
1987 	else
1988 		ip.hdr = skb_network_header(skb);
1989 	l4.hdr = skb_checksum_start(skb);
1990 
1991 	/* initialize outer IP header fields */
1992 	if (ip.v4->version == 4) {
1993 		ip.v4->tot_len = 0;
1994 		ip.v4->check = 0;
1995 	} else {
1996 		ip.v6->payload_len = 0;
1997 	}
1998 
1999 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2000 					 SKB_GSO_GRE_CSUM |
2001 					 SKB_GSO_IPXIP4 |
2002 					 SKB_GSO_IPXIP6 |
2003 					 SKB_GSO_UDP_TUNNEL |
2004 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2005 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2006 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2007 			l4.udp->len = 0;
2008 
2009 			/* determine offset of outer transport header */
2010 			l4_start = (u8)(l4.hdr - skb->data);
2011 
2012 			/* remove payload length from outer checksum */
2013 			paylen = skb->len - l4_start;
2014 			csum_replace_by_diff(&l4.udp->check,
2015 					     (__force __wsum)htonl(paylen));
2016 		}
2017 
2018 		/* reset pointers to inner headers */
2019 
2020 		/* cppcheck-suppress unreadVariable */
2021 		ip.hdr = skb_inner_network_header(skb);
2022 		l4.hdr = skb_inner_transport_header(skb);
2023 
2024 		/* initialize inner IP header fields */
2025 		if (ip.v4->version == 4) {
2026 			ip.v4->tot_len = 0;
2027 			ip.v4->check = 0;
2028 		} else {
2029 			ip.v6->payload_len = 0;
2030 		}
2031 	}
2032 
2033 	/* determine offset of transport header */
2034 	l4_start = (u8)(l4.hdr - skb->data);
2035 
2036 	/* remove payload length from checksum */
2037 	paylen = skb->len - l4_start;
2038 
2039 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2040 		csum_replace_by_diff(&l4.udp->check,
2041 				     (__force __wsum)htonl(paylen));
2042 		/* compute length of UDP segmentation header */
2043 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2044 	} else {
2045 		csum_replace_by_diff(&l4.tcp->check,
2046 				     (__force __wsum)htonl(paylen));
2047 		/* compute length of TCP segmentation header */
2048 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2049 	}
2050 
2051 	/* update gso_segs and bytecount */
2052 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2053 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2054 
2055 	cd_tso_len = skb->len - off->header_len;
2056 	cd_mss = skb_shinfo(skb)->gso_size;
2057 
2058 	/* record cdesc_qw1 with TSO parameters */
2059 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2060 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2061 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2062 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2063 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2064 	return 1;
2065 }
2066 
2067 /**
2068  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2069  * @size: transmit request size in bytes
2070  *
2071  * Due to hardware alignment restrictions (4K alignment), we need to
2072  * assume that we can have no more than 12K of data per descriptor, even
2073  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2074  * Thus, we need to divide by 12K. But division is slow! Instead,
2075  * we decompose the operation into shifts and one relatively cheap
2076  * multiply operation.
2077  *
2078  * To divide by 12K, we first divide by 4K, then divide by 3:
2079  *     To divide by 4K, shift right by 12 bits
2080  *     To divide by 3, multiply by 85, then divide by 256
2081  *     (Divide by 256 is done by shifting right by 8 bits)
2082  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2083  * 3, we'll underestimate near each multiple of 12K. This is actually more
2084  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2085  * segment. For our purposes this is accurate out to 1M which is orders of
2086  * magnitude greater than our largest possible GSO size.
2087  *
2088  * This would then be implemented as:
2089  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2090  *
2091  * Since multiplication and division are commutative, we can reorder
2092  * operations into:
2093  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2094  */
2095 static unsigned int ice_txd_use_count(unsigned int size)
2096 {
2097 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2098 }
2099 
2100 /**
2101  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2102  * @skb: send buffer
2103  *
2104  * Returns number of data descriptors needed for this skb.
2105  */
2106 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2107 {
2108 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2109 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2110 	unsigned int count = 0, size = skb_headlen(skb);
2111 
2112 	for (;;) {
2113 		count += ice_txd_use_count(size);
2114 
2115 		if (!nr_frags--)
2116 			break;
2117 
2118 		size = skb_frag_size(frag++);
2119 	}
2120 
2121 	return count;
2122 }
2123 
2124 /**
2125  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2126  * @skb: send buffer
2127  *
2128  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2129  * and so we need to figure out the cases where we need to linearize the skb.
2130  *
2131  * For TSO we need to count the TSO header and segment payload separately.
2132  * As such we need to check cases where we have 7 fragments or more as we
2133  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2134  * the segment payload in the first descriptor, and another 7 for the
2135  * fragments.
2136  */
2137 static bool __ice_chk_linearize(struct sk_buff *skb)
2138 {
2139 	const skb_frag_t *frag, *stale;
2140 	int nr_frags, sum;
2141 
2142 	/* no need to check if number of frags is less than 7 */
2143 	nr_frags = skb_shinfo(skb)->nr_frags;
2144 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2145 		return false;
2146 
2147 	/* We need to walk through the list and validate that each group
2148 	 * of 6 fragments totals at least gso_size.
2149 	 */
2150 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2151 	frag = &skb_shinfo(skb)->frags[0];
2152 
2153 	/* Initialize size to the negative value of gso_size minus 1. We
2154 	 * use this as the worst case scenario in which the frag ahead
2155 	 * of us only provides one byte which is why we are limited to 6
2156 	 * descriptors for a single transmit as the header and previous
2157 	 * fragment are already consuming 2 descriptors.
2158 	 */
2159 	sum = 1 - skb_shinfo(skb)->gso_size;
2160 
2161 	/* Add size of frags 0 through 4 to create our initial sum */
2162 	sum += skb_frag_size(frag++);
2163 	sum += skb_frag_size(frag++);
2164 	sum += skb_frag_size(frag++);
2165 	sum += skb_frag_size(frag++);
2166 	sum += skb_frag_size(frag++);
2167 
2168 	/* Walk through fragments adding latest fragment, testing it, and
2169 	 * then removing stale fragments from the sum.
2170 	 */
2171 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2172 		int stale_size = skb_frag_size(stale);
2173 
2174 		sum += skb_frag_size(frag++);
2175 
2176 		/* The stale fragment may present us with a smaller
2177 		 * descriptor than the actual fragment size. To account
2178 		 * for that we need to remove all the data on the front and
2179 		 * figure out what the remainder would be in the last
2180 		 * descriptor associated with the fragment.
2181 		 */
2182 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2183 			int align_pad = -(skb_frag_off(stale)) &
2184 					(ICE_MAX_READ_REQ_SIZE - 1);
2185 
2186 			sum -= align_pad;
2187 			stale_size -= align_pad;
2188 
2189 			do {
2190 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2191 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2192 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2193 		}
2194 
2195 		/* if sum is negative we failed to make sufficient progress */
2196 		if (sum < 0)
2197 			return true;
2198 
2199 		if (!nr_frags--)
2200 			break;
2201 
2202 		sum -= stale_size;
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 /**
2209  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2210  * @skb:      send buffer
2211  * @count:    number of buffers used
2212  *
2213  * Note: Our HW can't scatter-gather more than 8 fragments to build
2214  * a packet on the wire and so we need to figure out the cases where we
2215  * need to linearize the skb.
2216  */
2217 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2218 {
2219 	/* Both TSO and single send will work if count is less than 8 */
2220 	if (likely(count < ICE_MAX_BUF_TXD))
2221 		return false;
2222 
2223 	if (skb_is_gso(skb))
2224 		return __ice_chk_linearize(skb);
2225 
2226 	/* we can support up to 8 data buffers for a single send */
2227 	return count != ICE_MAX_BUF_TXD;
2228 }
2229 
2230 /**
2231  * ice_tstamp - set up context descriptor for hardware timestamp
2232  * @tx_ring: pointer to the Tx ring to send buffer on
2233  * @skb: pointer to the SKB we're sending
2234  * @first: Tx buffer
2235  * @off: Tx offload parameters
2236  */
2237 static void
2238 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2239 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2240 {
2241 	s8 idx;
2242 
2243 	/* only timestamp the outbound packet if the user has requested it */
2244 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2245 		return;
2246 
2247 	if (!tx_ring->ptp_tx)
2248 		return;
2249 
2250 	/* Tx timestamps cannot be sampled when doing TSO */
2251 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2252 		return;
2253 
2254 	/* Grab an open timestamp slot */
2255 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2256 	if (idx < 0)
2257 		return;
2258 
2259 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2260 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2261 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2262 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2263 }
2264 
2265 /**
2266  * ice_xmit_frame_ring - Sends buffer on Tx ring
2267  * @skb: send buffer
2268  * @tx_ring: ring to send buffer on
2269  *
2270  * Returns NETDEV_TX_OK if sent, else an error code
2271  */
2272 static netdev_tx_t
2273 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2274 {
2275 	struct ice_tx_offload_params offload = { 0 };
2276 	struct ice_vsi *vsi = tx_ring->vsi;
2277 	struct ice_tx_buf *first;
2278 	struct ethhdr *eth;
2279 	unsigned int count;
2280 	int tso, csum;
2281 
2282 	ice_trace(xmit_frame_ring, tx_ring, skb);
2283 
2284 	count = ice_xmit_desc_count(skb);
2285 	if (ice_chk_linearize(skb, count)) {
2286 		if (__skb_linearize(skb))
2287 			goto out_drop;
2288 		count = ice_txd_use_count(skb->len);
2289 		tx_ring->tx_stats.tx_linearize++;
2290 	}
2291 
2292 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2293 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2294 	 *       + 4 desc gap to avoid the cache line where head is,
2295 	 *       + 1 desc for context descriptor,
2296 	 * otherwise try next time
2297 	 */
2298 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2299 			      ICE_DESCS_FOR_CTX_DESC)) {
2300 		tx_ring->tx_stats.tx_busy++;
2301 		return NETDEV_TX_BUSY;
2302 	}
2303 
2304 	/* prefetch for bql data which is infrequently used */
2305 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2306 
2307 	offload.tx_ring = tx_ring;
2308 
2309 	/* record the location of the first descriptor for this packet */
2310 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2311 	first->skb = skb;
2312 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2313 	first->gso_segs = 1;
2314 	first->tx_flags = 0;
2315 
2316 	/* prepare the VLAN tagging flags for Tx */
2317 	ice_tx_prepare_vlan_flags(tx_ring, first);
2318 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2319 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2320 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2321 					ICE_TXD_CTX_QW1_CMD_S));
2322 		offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
2323 			ICE_TX_FLAGS_VLAN_S;
2324 	}
2325 
2326 	/* set up TSO offload */
2327 	tso = ice_tso(first, &offload);
2328 	if (tso < 0)
2329 		goto out_drop;
2330 
2331 	/* always set up Tx checksum offload */
2332 	csum = ice_tx_csum(first, &offload);
2333 	if (csum < 0)
2334 		goto out_drop;
2335 
2336 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2337 	eth = (struct ethhdr *)skb_mac_header(skb);
2338 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2339 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2340 		     vsi->type == ICE_VSI_PF &&
2341 		     vsi->port_info->qos_cfg.is_sw_lldp))
2342 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2343 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2344 					ICE_TXD_CTX_QW1_CMD_S);
2345 
2346 	ice_tstamp(tx_ring, skb, first, &offload);
2347 	if (ice_is_switchdev_running(vsi->back))
2348 		ice_eswitch_set_target_vsi(skb, &offload);
2349 
2350 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2351 		struct ice_tx_ctx_desc *cdesc;
2352 		u16 i = tx_ring->next_to_use;
2353 
2354 		/* grab the next descriptor */
2355 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2356 		i++;
2357 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2358 
2359 		/* setup context descriptor */
2360 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2361 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2362 		cdesc->rsvd = cpu_to_le16(0);
2363 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2364 	}
2365 
2366 	ice_tx_map(tx_ring, first, &offload);
2367 	return NETDEV_TX_OK;
2368 
2369 out_drop:
2370 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2371 	dev_kfree_skb_any(skb);
2372 	return NETDEV_TX_OK;
2373 }
2374 
2375 /**
2376  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2377  * @skb: send buffer
2378  * @netdev: network interface device structure
2379  *
2380  * Returns NETDEV_TX_OK if sent, else an error code
2381  */
2382 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2383 {
2384 	struct ice_netdev_priv *np = netdev_priv(netdev);
2385 	struct ice_vsi *vsi = np->vsi;
2386 	struct ice_tx_ring *tx_ring;
2387 
2388 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2389 
2390 	/* hardware can't handle really short frames, hardware padding works
2391 	 * beyond this point
2392 	 */
2393 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2394 		return NETDEV_TX_OK;
2395 
2396 	return ice_xmit_frame_ring(skb, tx_ring);
2397 }
2398 
2399 /**
2400  * ice_get_dscp_up - return the UP/TC value for a SKB
2401  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2402  * @skb: SKB to query for info to determine UP/TC
2403  *
2404  * This function is to only be called when the PF is in L3 DSCP PFC mode
2405  */
2406 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2407 {
2408 	u8 dscp = 0;
2409 
2410 	if (skb->protocol == htons(ETH_P_IP))
2411 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2412 	else if (skb->protocol == htons(ETH_P_IPV6))
2413 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2414 
2415 	return dcbcfg->dscp_map[dscp];
2416 }
2417 
2418 u16
2419 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2420 		 struct net_device *sb_dev)
2421 {
2422 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2423 	struct ice_dcbx_cfg *dcbcfg;
2424 
2425 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2426 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2427 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2428 
2429 	return netdev_pick_tx(netdev, skb, sb_dev);
2430 }
2431 
2432 /**
2433  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2434  * @tx_ring: tx_ring to clean
2435  */
2436 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2437 {
2438 	struct ice_vsi *vsi = tx_ring->vsi;
2439 	s16 i = tx_ring->next_to_clean;
2440 	int budget = ICE_DFLT_IRQ_WORK;
2441 	struct ice_tx_desc *tx_desc;
2442 	struct ice_tx_buf *tx_buf;
2443 
2444 	tx_buf = &tx_ring->tx_buf[i];
2445 	tx_desc = ICE_TX_DESC(tx_ring, i);
2446 	i -= tx_ring->count;
2447 
2448 	do {
2449 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2450 
2451 		/* if next_to_watch is not set then there is no pending work */
2452 		if (!eop_desc)
2453 			break;
2454 
2455 		/* prevent any other reads prior to eop_desc */
2456 		smp_rmb();
2457 
2458 		/* if the descriptor isn't done, no work to do */
2459 		if (!(eop_desc->cmd_type_offset_bsz &
2460 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2461 			break;
2462 
2463 		/* clear next_to_watch to prevent false hangs */
2464 		tx_buf->next_to_watch = NULL;
2465 		tx_desc->buf_addr = 0;
2466 		tx_desc->cmd_type_offset_bsz = 0;
2467 
2468 		/* move past filter desc */
2469 		tx_buf++;
2470 		tx_desc++;
2471 		i++;
2472 		if (unlikely(!i)) {
2473 			i -= tx_ring->count;
2474 			tx_buf = tx_ring->tx_buf;
2475 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2476 		}
2477 
2478 		/* unmap the data header */
2479 		if (dma_unmap_len(tx_buf, len))
2480 			dma_unmap_single(tx_ring->dev,
2481 					 dma_unmap_addr(tx_buf, dma),
2482 					 dma_unmap_len(tx_buf, len),
2483 					 DMA_TO_DEVICE);
2484 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2485 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2486 
2487 		/* clear next_to_watch to prevent false hangs */
2488 		tx_buf->raw_buf = NULL;
2489 		tx_buf->tx_flags = 0;
2490 		tx_buf->next_to_watch = NULL;
2491 		dma_unmap_len_set(tx_buf, len, 0);
2492 		tx_desc->buf_addr = 0;
2493 		tx_desc->cmd_type_offset_bsz = 0;
2494 
2495 		/* move past eop_desc for start of next FD desc */
2496 		tx_buf++;
2497 		tx_desc++;
2498 		i++;
2499 		if (unlikely(!i)) {
2500 			i -= tx_ring->count;
2501 			tx_buf = tx_ring->tx_buf;
2502 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2503 		}
2504 
2505 		budget--;
2506 	} while (likely(budget));
2507 
2508 	i += tx_ring->count;
2509 	tx_ring->next_to_clean = i;
2510 
2511 	/* re-enable interrupt if needed */
2512 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2513 }
2514