1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/xdp.h> 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 #include "ice.h" 15 #include "ice_trace.h" 16 #include "ice_dcb_lib.h" 17 #include "ice_xsk.h" 18 #include "ice_eswitch.h" 19 20 #define ICE_RX_HDR_SIZE 256 21 22 #define FDIR_DESC_RXDID 0x40 23 #define ICE_FDIR_CLEAN_DELAY 10 24 25 /** 26 * ice_prgm_fdir_fltr - Program a Flow Director filter 27 * @vsi: VSI to send dummy packet 28 * @fdir_desc: flow director descriptor 29 * @raw_packet: allocated buffer for flow director 30 */ 31 int 32 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 33 u8 *raw_packet) 34 { 35 struct ice_tx_buf *tx_buf, *first; 36 struct ice_fltr_desc *f_desc; 37 struct ice_tx_desc *tx_desc; 38 struct ice_tx_ring *tx_ring; 39 struct device *dev; 40 dma_addr_t dma; 41 u32 td_cmd; 42 u16 i; 43 44 /* VSI and Tx ring */ 45 if (!vsi) 46 return -ENOENT; 47 tx_ring = vsi->tx_rings[0]; 48 if (!tx_ring || !tx_ring->desc) 49 return -ENOENT; 50 dev = tx_ring->dev; 51 52 /* we are using two descriptors to add/del a filter and we can wait */ 53 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 54 if (!i) 55 return -EAGAIN; 56 msleep_interruptible(1); 57 } 58 59 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 60 DMA_TO_DEVICE); 61 62 if (dma_mapping_error(dev, dma)) 63 return -EINVAL; 64 65 /* grab the next descriptor */ 66 i = tx_ring->next_to_use; 67 first = &tx_ring->tx_buf[i]; 68 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 69 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 70 71 i++; 72 i = (i < tx_ring->count) ? i : 0; 73 tx_desc = ICE_TX_DESC(tx_ring, i); 74 tx_buf = &tx_ring->tx_buf[i]; 75 76 i++; 77 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 78 79 memset(tx_buf, 0, sizeof(*tx_buf)); 80 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 81 dma_unmap_addr_set(tx_buf, dma, dma); 82 83 tx_desc->buf_addr = cpu_to_le64(dma); 84 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 85 ICE_TX_DESC_CMD_RE; 86 87 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 88 tx_buf->raw_buf = raw_packet; 89 90 tx_desc->cmd_type_offset_bsz = 91 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 92 93 /* Force memory write to complete before letting h/w know 94 * there are new descriptors to fetch. 95 */ 96 wmb(); 97 98 /* mark the data descriptor to be watched */ 99 first->next_to_watch = tx_desc; 100 101 writel(tx_ring->next_to_use, tx_ring->tail); 102 103 return 0; 104 } 105 106 /** 107 * ice_unmap_and_free_tx_buf - Release a Tx buffer 108 * @ring: the ring that owns the buffer 109 * @tx_buf: the buffer to free 110 */ 111 static void 112 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 113 { 114 if (tx_buf->skb) { 115 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 116 devm_kfree(ring->dev, tx_buf->raw_buf); 117 else if (ice_ring_is_xdp(ring)) 118 page_frag_free(tx_buf->raw_buf); 119 else 120 dev_kfree_skb_any(tx_buf->skb); 121 if (dma_unmap_len(tx_buf, len)) 122 dma_unmap_single(ring->dev, 123 dma_unmap_addr(tx_buf, dma), 124 dma_unmap_len(tx_buf, len), 125 DMA_TO_DEVICE); 126 } else if (dma_unmap_len(tx_buf, len)) { 127 dma_unmap_page(ring->dev, 128 dma_unmap_addr(tx_buf, dma), 129 dma_unmap_len(tx_buf, len), 130 DMA_TO_DEVICE); 131 } 132 133 tx_buf->next_to_watch = NULL; 134 tx_buf->skb = NULL; 135 dma_unmap_len_set(tx_buf, len, 0); 136 /* tx_buf must be completely set up in the transmit path */ 137 } 138 139 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 140 { 141 return netdev_get_tx_queue(ring->netdev, ring->q_index); 142 } 143 144 /** 145 * ice_clean_tx_ring - Free any empty Tx buffers 146 * @tx_ring: ring to be cleaned 147 */ 148 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 149 { 150 u32 size; 151 u16 i; 152 153 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 154 ice_xsk_clean_xdp_ring(tx_ring); 155 goto tx_skip_free; 156 } 157 158 /* ring already cleared, nothing to do */ 159 if (!tx_ring->tx_buf) 160 return; 161 162 /* Free all the Tx ring sk_buffs */ 163 for (i = 0; i < tx_ring->count; i++) 164 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 165 166 tx_skip_free: 167 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 168 169 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 170 PAGE_SIZE); 171 /* Zero out the descriptor ring */ 172 memset(tx_ring->desc, 0, size); 173 174 tx_ring->next_to_use = 0; 175 tx_ring->next_to_clean = 0; 176 tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1; 177 tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1; 178 179 if (!tx_ring->netdev) 180 return; 181 182 /* cleanup Tx queue statistics */ 183 netdev_tx_reset_queue(txring_txq(tx_ring)); 184 } 185 186 /** 187 * ice_free_tx_ring - Free Tx resources per queue 188 * @tx_ring: Tx descriptor ring for a specific queue 189 * 190 * Free all transmit software resources 191 */ 192 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 193 { 194 u32 size; 195 196 ice_clean_tx_ring(tx_ring); 197 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 198 tx_ring->tx_buf = NULL; 199 200 if (tx_ring->desc) { 201 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 202 PAGE_SIZE); 203 dmam_free_coherent(tx_ring->dev, size, 204 tx_ring->desc, tx_ring->dma); 205 tx_ring->desc = NULL; 206 } 207 } 208 209 /** 210 * ice_clean_tx_irq - Reclaim resources after transmit completes 211 * @tx_ring: Tx ring to clean 212 * @napi_budget: Used to determine if we are in netpoll 213 * 214 * Returns true if there's any budget left (e.g. the clean is finished) 215 */ 216 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 217 { 218 unsigned int total_bytes = 0, total_pkts = 0; 219 unsigned int budget = ICE_DFLT_IRQ_WORK; 220 struct ice_vsi *vsi = tx_ring->vsi; 221 s16 i = tx_ring->next_to_clean; 222 struct ice_tx_desc *tx_desc; 223 struct ice_tx_buf *tx_buf; 224 225 /* get the bql data ready */ 226 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 227 228 tx_buf = &tx_ring->tx_buf[i]; 229 tx_desc = ICE_TX_DESC(tx_ring, i); 230 i -= tx_ring->count; 231 232 prefetch(&vsi->state); 233 234 do { 235 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 236 237 /* if next_to_watch is not set then there is no work pending */ 238 if (!eop_desc) 239 break; 240 241 /* follow the guidelines of other drivers */ 242 prefetchw(&tx_buf->skb->users); 243 244 smp_rmb(); /* prevent any other reads prior to eop_desc */ 245 246 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 247 /* if the descriptor isn't done, no work yet to do */ 248 if (!(eop_desc->cmd_type_offset_bsz & 249 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 250 break; 251 252 /* clear next_to_watch to prevent false hangs */ 253 tx_buf->next_to_watch = NULL; 254 255 /* update the statistics for this packet */ 256 total_bytes += tx_buf->bytecount; 257 total_pkts += tx_buf->gso_segs; 258 259 /* free the skb */ 260 napi_consume_skb(tx_buf->skb, napi_budget); 261 262 /* unmap skb header data */ 263 dma_unmap_single(tx_ring->dev, 264 dma_unmap_addr(tx_buf, dma), 265 dma_unmap_len(tx_buf, len), 266 DMA_TO_DEVICE); 267 268 /* clear tx_buf data */ 269 tx_buf->skb = NULL; 270 dma_unmap_len_set(tx_buf, len, 0); 271 272 /* unmap remaining buffers */ 273 while (tx_desc != eop_desc) { 274 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 275 tx_buf++; 276 tx_desc++; 277 i++; 278 if (unlikely(!i)) { 279 i -= tx_ring->count; 280 tx_buf = tx_ring->tx_buf; 281 tx_desc = ICE_TX_DESC(tx_ring, 0); 282 } 283 284 /* unmap any remaining paged data */ 285 if (dma_unmap_len(tx_buf, len)) { 286 dma_unmap_page(tx_ring->dev, 287 dma_unmap_addr(tx_buf, dma), 288 dma_unmap_len(tx_buf, len), 289 DMA_TO_DEVICE); 290 dma_unmap_len_set(tx_buf, len, 0); 291 } 292 } 293 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 294 295 /* move us one more past the eop_desc for start of next pkt */ 296 tx_buf++; 297 tx_desc++; 298 i++; 299 if (unlikely(!i)) { 300 i -= tx_ring->count; 301 tx_buf = tx_ring->tx_buf; 302 tx_desc = ICE_TX_DESC(tx_ring, 0); 303 } 304 305 prefetch(tx_desc); 306 307 /* update budget accounting */ 308 budget--; 309 } while (likely(budget)); 310 311 i += tx_ring->count; 312 tx_ring->next_to_clean = i; 313 314 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 315 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 316 317 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 318 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 319 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 320 /* Make sure that anybody stopping the queue after this 321 * sees the new next_to_clean. 322 */ 323 smp_mb(); 324 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 325 !test_bit(ICE_VSI_DOWN, vsi->state)) { 326 netif_tx_wake_queue(txring_txq(tx_ring)); 327 ++tx_ring->tx_stats.restart_q; 328 } 329 } 330 331 return !!budget; 332 } 333 334 /** 335 * ice_setup_tx_ring - Allocate the Tx descriptors 336 * @tx_ring: the Tx ring to set up 337 * 338 * Return 0 on success, negative on error 339 */ 340 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 341 { 342 struct device *dev = tx_ring->dev; 343 u32 size; 344 345 if (!dev) 346 return -ENOMEM; 347 348 /* warn if we are about to overwrite the pointer */ 349 WARN_ON(tx_ring->tx_buf); 350 tx_ring->tx_buf = 351 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 352 GFP_KERNEL); 353 if (!tx_ring->tx_buf) 354 return -ENOMEM; 355 356 /* round up to nearest page */ 357 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 358 PAGE_SIZE); 359 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 360 GFP_KERNEL); 361 if (!tx_ring->desc) { 362 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 363 size); 364 goto err; 365 } 366 367 tx_ring->next_to_use = 0; 368 tx_ring->next_to_clean = 0; 369 tx_ring->tx_stats.prev_pkt = -1; 370 return 0; 371 372 err: 373 devm_kfree(dev, tx_ring->tx_buf); 374 tx_ring->tx_buf = NULL; 375 return -ENOMEM; 376 } 377 378 /** 379 * ice_clean_rx_ring - Free Rx buffers 380 * @rx_ring: ring to be cleaned 381 */ 382 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 383 { 384 struct device *dev = rx_ring->dev; 385 u32 size; 386 u16 i; 387 388 /* ring already cleared, nothing to do */ 389 if (!rx_ring->rx_buf) 390 return; 391 392 if (rx_ring->skb) { 393 dev_kfree_skb(rx_ring->skb); 394 rx_ring->skb = NULL; 395 } 396 397 if (rx_ring->xsk_pool) { 398 ice_xsk_clean_rx_ring(rx_ring); 399 goto rx_skip_free; 400 } 401 402 /* Free all the Rx ring sk_buffs */ 403 for (i = 0; i < rx_ring->count; i++) { 404 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 405 406 if (!rx_buf->page) 407 continue; 408 409 /* Invalidate cache lines that may have been written to by 410 * device so that we avoid corrupting memory. 411 */ 412 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 413 rx_buf->page_offset, 414 rx_ring->rx_buf_len, 415 DMA_FROM_DEVICE); 416 417 /* free resources associated with mapping */ 418 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 419 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 420 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 421 422 rx_buf->page = NULL; 423 rx_buf->page_offset = 0; 424 } 425 426 rx_skip_free: 427 if (rx_ring->xsk_pool) 428 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 429 else 430 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 431 432 /* Zero out the descriptor ring */ 433 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 434 PAGE_SIZE); 435 memset(rx_ring->desc, 0, size); 436 437 rx_ring->next_to_alloc = 0; 438 rx_ring->next_to_clean = 0; 439 rx_ring->next_to_use = 0; 440 } 441 442 /** 443 * ice_free_rx_ring - Free Rx resources 444 * @rx_ring: ring to clean the resources from 445 * 446 * Free all receive software resources 447 */ 448 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 449 { 450 u32 size; 451 452 ice_clean_rx_ring(rx_ring); 453 if (rx_ring->vsi->type == ICE_VSI_PF) 454 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 455 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 456 rx_ring->xdp_prog = NULL; 457 if (rx_ring->xsk_pool) { 458 kfree(rx_ring->xdp_buf); 459 rx_ring->xdp_buf = NULL; 460 } else { 461 kfree(rx_ring->rx_buf); 462 rx_ring->rx_buf = NULL; 463 } 464 465 if (rx_ring->desc) { 466 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 467 PAGE_SIZE); 468 dmam_free_coherent(rx_ring->dev, size, 469 rx_ring->desc, rx_ring->dma); 470 rx_ring->desc = NULL; 471 } 472 } 473 474 /** 475 * ice_setup_rx_ring - Allocate the Rx descriptors 476 * @rx_ring: the Rx ring to set up 477 * 478 * Return 0 on success, negative on error 479 */ 480 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 481 { 482 struct device *dev = rx_ring->dev; 483 u32 size; 484 485 if (!dev) 486 return -ENOMEM; 487 488 /* warn if we are about to overwrite the pointer */ 489 WARN_ON(rx_ring->rx_buf); 490 rx_ring->rx_buf = 491 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 492 if (!rx_ring->rx_buf) 493 return -ENOMEM; 494 495 /* round up to nearest page */ 496 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 497 PAGE_SIZE); 498 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 499 GFP_KERNEL); 500 if (!rx_ring->desc) { 501 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 502 size); 503 goto err; 504 } 505 506 rx_ring->next_to_use = 0; 507 rx_ring->next_to_clean = 0; 508 509 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 510 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 511 512 if (rx_ring->vsi->type == ICE_VSI_PF && 513 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 514 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 515 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 516 goto err; 517 return 0; 518 519 err: 520 kfree(rx_ring->rx_buf); 521 rx_ring->rx_buf = NULL; 522 return -ENOMEM; 523 } 524 525 static unsigned int 526 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) 527 { 528 unsigned int truesize; 529 530 #if (PAGE_SIZE < 8192) 531 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 532 #else 533 truesize = rx_ring->rx_offset ? 534 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 535 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 536 SKB_DATA_ALIGN(size); 537 #endif 538 return truesize; 539 } 540 541 /** 542 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 543 * @rx_ring: Rx ring 544 * @xdp: xdp_buff used as input to the XDP program 545 * @xdp_prog: XDP program to run 546 * @xdp_ring: ring to be used for XDP_TX action 547 * 548 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 549 */ 550 static int 551 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 552 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 553 { 554 int err; 555 u32 act; 556 557 act = bpf_prog_run_xdp(xdp_prog, xdp); 558 switch (act) { 559 case XDP_PASS: 560 return ICE_XDP_PASS; 561 case XDP_TX: 562 if (static_branch_unlikely(&ice_xdp_locking_key)) 563 spin_lock(&xdp_ring->tx_lock); 564 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); 565 if (static_branch_unlikely(&ice_xdp_locking_key)) 566 spin_unlock(&xdp_ring->tx_lock); 567 if (err == ICE_XDP_CONSUMED) 568 goto out_failure; 569 return err; 570 case XDP_REDIRECT: 571 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 572 if (err) 573 goto out_failure; 574 return ICE_XDP_REDIR; 575 default: 576 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 577 fallthrough; 578 case XDP_ABORTED: 579 out_failure: 580 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 581 fallthrough; 582 case XDP_DROP: 583 return ICE_XDP_CONSUMED; 584 } 585 } 586 587 /** 588 * ice_xdp_xmit - submit packets to XDP ring for transmission 589 * @dev: netdev 590 * @n: number of XDP frames to be transmitted 591 * @frames: XDP frames to be transmitted 592 * @flags: transmit flags 593 * 594 * Returns number of frames successfully sent. Failed frames 595 * will be free'ed by XDP core. 596 * For error cases, a negative errno code is returned and no-frames 597 * are transmitted (caller must handle freeing frames). 598 */ 599 int 600 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 601 u32 flags) 602 { 603 struct ice_netdev_priv *np = netdev_priv(dev); 604 unsigned int queue_index = smp_processor_id(); 605 struct ice_vsi *vsi = np->vsi; 606 struct ice_tx_ring *xdp_ring; 607 int nxmit = 0, i; 608 609 if (test_bit(ICE_VSI_DOWN, vsi->state)) 610 return -ENETDOWN; 611 612 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 613 return -ENXIO; 614 615 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 616 return -EINVAL; 617 618 if (static_branch_unlikely(&ice_xdp_locking_key)) { 619 queue_index %= vsi->num_xdp_txq; 620 xdp_ring = vsi->xdp_rings[queue_index]; 621 spin_lock(&xdp_ring->tx_lock); 622 } else { 623 xdp_ring = vsi->xdp_rings[queue_index]; 624 } 625 626 for (i = 0; i < n; i++) { 627 struct xdp_frame *xdpf = frames[i]; 628 int err; 629 630 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 631 if (err != ICE_XDP_TX) 632 break; 633 nxmit++; 634 } 635 636 if (unlikely(flags & XDP_XMIT_FLUSH)) 637 ice_xdp_ring_update_tail(xdp_ring); 638 639 if (static_branch_unlikely(&ice_xdp_locking_key)) 640 spin_unlock(&xdp_ring->tx_lock); 641 642 return nxmit; 643 } 644 645 /** 646 * ice_alloc_mapped_page - recycle or make a new page 647 * @rx_ring: ring to use 648 * @bi: rx_buf struct to modify 649 * 650 * Returns true if the page was successfully allocated or 651 * reused. 652 */ 653 static bool 654 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 655 { 656 struct page *page = bi->page; 657 dma_addr_t dma; 658 659 /* since we are recycling buffers we should seldom need to alloc */ 660 if (likely(page)) 661 return true; 662 663 /* alloc new page for storage */ 664 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 665 if (unlikely(!page)) { 666 rx_ring->rx_stats.alloc_page_failed++; 667 return false; 668 } 669 670 /* map page for use */ 671 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 672 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 673 674 /* if mapping failed free memory back to system since 675 * there isn't much point in holding memory we can't use 676 */ 677 if (dma_mapping_error(rx_ring->dev, dma)) { 678 __free_pages(page, ice_rx_pg_order(rx_ring)); 679 rx_ring->rx_stats.alloc_page_failed++; 680 return false; 681 } 682 683 bi->dma = dma; 684 bi->page = page; 685 bi->page_offset = rx_ring->rx_offset; 686 page_ref_add(page, USHRT_MAX - 1); 687 bi->pagecnt_bias = USHRT_MAX; 688 689 return true; 690 } 691 692 /** 693 * ice_alloc_rx_bufs - Replace used receive buffers 694 * @rx_ring: ring to place buffers on 695 * @cleaned_count: number of buffers to replace 696 * 697 * Returns false if all allocations were successful, true if any fail. Returning 698 * true signals to the caller that we didn't replace cleaned_count buffers and 699 * there is more work to do. 700 * 701 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 702 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 703 * multiple tail writes per call. 704 */ 705 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) 706 { 707 union ice_32b_rx_flex_desc *rx_desc; 708 u16 ntu = rx_ring->next_to_use; 709 struct ice_rx_buf *bi; 710 711 /* do nothing if no valid netdev defined */ 712 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 713 !cleaned_count) 714 return false; 715 716 /* get the Rx descriptor and buffer based on next_to_use */ 717 rx_desc = ICE_RX_DESC(rx_ring, ntu); 718 bi = &rx_ring->rx_buf[ntu]; 719 720 do { 721 /* if we fail here, we have work remaining */ 722 if (!ice_alloc_mapped_page(rx_ring, bi)) 723 break; 724 725 /* sync the buffer for use by the device */ 726 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 727 bi->page_offset, 728 rx_ring->rx_buf_len, 729 DMA_FROM_DEVICE); 730 731 /* Refresh the desc even if buffer_addrs didn't change 732 * because each write-back erases this info. 733 */ 734 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 735 736 rx_desc++; 737 bi++; 738 ntu++; 739 if (unlikely(ntu == rx_ring->count)) { 740 rx_desc = ICE_RX_DESC(rx_ring, 0); 741 bi = rx_ring->rx_buf; 742 ntu = 0; 743 } 744 745 /* clear the status bits for the next_to_use descriptor */ 746 rx_desc->wb.status_error0 = 0; 747 748 cleaned_count--; 749 } while (cleaned_count); 750 751 if (rx_ring->next_to_use != ntu) 752 ice_release_rx_desc(rx_ring, ntu); 753 754 return !!cleaned_count; 755 } 756 757 /** 758 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 759 * @rx_buf: Rx buffer to adjust 760 * @size: Size of adjustment 761 * 762 * Update the offset within page so that Rx buf will be ready to be reused. 763 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 764 * so the second half of page assigned to Rx buffer will be used, otherwise 765 * the offset is moved by "size" bytes 766 */ 767 static void 768 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 769 { 770 #if (PAGE_SIZE < 8192) 771 /* flip page offset to other buffer */ 772 rx_buf->page_offset ^= size; 773 #else 774 /* move offset up to the next cache line */ 775 rx_buf->page_offset += size; 776 #endif 777 } 778 779 /** 780 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 781 * @rx_buf: buffer containing the page 782 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 783 * 784 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 785 * which will assign the current buffer to the buffer that next_to_alloc is 786 * pointing to; otherwise, the DMA mapping needs to be destroyed and 787 * page freed 788 */ 789 static bool 790 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 791 { 792 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 793 struct page *page = rx_buf->page; 794 795 /* avoid re-using remote and pfmemalloc pages */ 796 if (!dev_page_is_reusable(page)) 797 return false; 798 799 #if (PAGE_SIZE < 8192) 800 /* if we are only owner of page we can reuse it */ 801 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 802 return false; 803 #else 804 #define ICE_LAST_OFFSET \ 805 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 806 if (rx_buf->page_offset > ICE_LAST_OFFSET) 807 return false; 808 #endif /* PAGE_SIZE < 8192) */ 809 810 /* If we have drained the page fragment pool we need to update 811 * the pagecnt_bias and page count so that we fully restock the 812 * number of references the driver holds. 813 */ 814 if (unlikely(pagecnt_bias == 1)) { 815 page_ref_add(page, USHRT_MAX - 1); 816 rx_buf->pagecnt_bias = USHRT_MAX; 817 } 818 819 return true; 820 } 821 822 /** 823 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 824 * @rx_ring: Rx descriptor ring to transact packets on 825 * @rx_buf: buffer containing page to add 826 * @skb: sk_buff to place the data into 827 * @size: packet length from rx_desc 828 * 829 * This function will add the data contained in rx_buf->page to the skb. 830 * It will just attach the page as a frag to the skb. 831 * The function will then update the page offset. 832 */ 833 static void 834 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 835 struct sk_buff *skb, unsigned int size) 836 { 837 #if (PAGE_SIZE >= 8192) 838 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 839 #else 840 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 841 #endif 842 843 if (!size) 844 return; 845 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 846 rx_buf->page_offset, size, truesize); 847 848 /* page is being used so we must update the page offset */ 849 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 850 } 851 852 /** 853 * ice_reuse_rx_page - page flip buffer and store it back on the ring 854 * @rx_ring: Rx descriptor ring to store buffers on 855 * @old_buf: donor buffer to have page reused 856 * 857 * Synchronizes page for reuse by the adapter 858 */ 859 static void 860 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 861 { 862 u16 nta = rx_ring->next_to_alloc; 863 struct ice_rx_buf *new_buf; 864 865 new_buf = &rx_ring->rx_buf[nta]; 866 867 /* update, and store next to alloc */ 868 nta++; 869 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 870 871 /* Transfer page from old buffer to new buffer. 872 * Move each member individually to avoid possible store 873 * forwarding stalls and unnecessary copy of skb. 874 */ 875 new_buf->dma = old_buf->dma; 876 new_buf->page = old_buf->page; 877 new_buf->page_offset = old_buf->page_offset; 878 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 879 } 880 881 /** 882 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 883 * @rx_ring: Rx descriptor ring to transact packets on 884 * @size: size of buffer to add to skb 885 * @rx_buf_pgcnt: rx_buf page refcount 886 * 887 * This function will pull an Rx buffer from the ring and synchronize it 888 * for use by the CPU. 889 */ 890 static struct ice_rx_buf * 891 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 892 int *rx_buf_pgcnt) 893 { 894 struct ice_rx_buf *rx_buf; 895 896 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 897 *rx_buf_pgcnt = 898 #if (PAGE_SIZE < 8192) 899 page_count(rx_buf->page); 900 #else 901 0; 902 #endif 903 prefetchw(rx_buf->page); 904 905 if (!size) 906 return rx_buf; 907 /* we are reusing so sync this buffer for CPU use */ 908 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 909 rx_buf->page_offset, size, 910 DMA_FROM_DEVICE); 911 912 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 913 rx_buf->pagecnt_bias--; 914 915 return rx_buf; 916 } 917 918 /** 919 * ice_build_skb - Build skb around an existing buffer 920 * @rx_ring: Rx descriptor ring to transact packets on 921 * @rx_buf: Rx buffer to pull data from 922 * @xdp: xdp_buff pointing to the data 923 * 924 * This function builds an skb around an existing Rx buffer, taking care 925 * to set up the skb correctly and avoid any memcpy overhead. 926 */ 927 static struct sk_buff * 928 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 929 struct xdp_buff *xdp) 930 { 931 u8 metasize = xdp->data - xdp->data_meta; 932 #if (PAGE_SIZE < 8192) 933 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 934 #else 935 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 936 SKB_DATA_ALIGN(xdp->data_end - 937 xdp->data_hard_start); 938 #endif 939 struct sk_buff *skb; 940 941 /* Prefetch first cache line of first page. If xdp->data_meta 942 * is unused, this points exactly as xdp->data, otherwise we 943 * likely have a consumer accessing first few bytes of meta 944 * data, and then actual data. 945 */ 946 net_prefetch(xdp->data_meta); 947 /* build an skb around the page buffer */ 948 skb = napi_build_skb(xdp->data_hard_start, truesize); 949 if (unlikely(!skb)) 950 return NULL; 951 952 /* must to record Rx queue, otherwise OS features such as 953 * symmetric queue won't work 954 */ 955 skb_record_rx_queue(skb, rx_ring->q_index); 956 957 /* update pointers within the skb to store the data */ 958 skb_reserve(skb, xdp->data - xdp->data_hard_start); 959 __skb_put(skb, xdp->data_end - xdp->data); 960 if (metasize) 961 skb_metadata_set(skb, metasize); 962 963 /* buffer is used by skb, update page_offset */ 964 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 965 966 return skb; 967 } 968 969 /** 970 * ice_construct_skb - Allocate skb and populate it 971 * @rx_ring: Rx descriptor ring to transact packets on 972 * @rx_buf: Rx buffer to pull data from 973 * @xdp: xdp_buff pointing to the data 974 * 975 * This function allocates an skb. It then populates it with the page 976 * data from the current receive descriptor, taking care to set up the 977 * skb correctly. 978 */ 979 static struct sk_buff * 980 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 981 struct xdp_buff *xdp) 982 { 983 unsigned int metasize = xdp->data - xdp->data_meta; 984 unsigned int size = xdp->data_end - xdp->data; 985 unsigned int headlen; 986 struct sk_buff *skb; 987 988 /* prefetch first cache line of first page */ 989 net_prefetch(xdp->data_meta); 990 991 /* allocate a skb to store the frags */ 992 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 993 ICE_RX_HDR_SIZE + metasize, 994 GFP_ATOMIC | __GFP_NOWARN); 995 if (unlikely(!skb)) 996 return NULL; 997 998 skb_record_rx_queue(skb, rx_ring->q_index); 999 /* Determine available headroom for copy */ 1000 headlen = size; 1001 if (headlen > ICE_RX_HDR_SIZE) 1002 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1003 1004 /* align pull length to size of long to optimize memcpy performance */ 1005 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1006 ALIGN(headlen + metasize, sizeof(long))); 1007 1008 if (metasize) { 1009 skb_metadata_set(skb, metasize); 1010 __skb_pull(skb, metasize); 1011 } 1012 1013 /* if we exhaust the linear part then add what is left as a frag */ 1014 size -= headlen; 1015 if (size) { 1016 #if (PAGE_SIZE >= 8192) 1017 unsigned int truesize = SKB_DATA_ALIGN(size); 1018 #else 1019 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 1020 #endif 1021 skb_add_rx_frag(skb, 0, rx_buf->page, 1022 rx_buf->page_offset + headlen, size, truesize); 1023 /* buffer is used by skb, update page_offset */ 1024 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1025 } else { 1026 /* buffer is unused, reset bias back to rx_buf; data was copied 1027 * onto skb's linear part so there's no need for adjusting 1028 * page offset and we can reuse this buffer as-is 1029 */ 1030 rx_buf->pagecnt_bias++; 1031 } 1032 1033 return skb; 1034 } 1035 1036 /** 1037 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1038 * @rx_ring: Rx descriptor ring to transact packets on 1039 * @rx_buf: Rx buffer to pull data from 1040 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1041 * 1042 * This function will update next_to_clean and then clean up the contents 1043 * of the rx_buf. It will either recycle the buffer or unmap it and free 1044 * the associated resources. 1045 */ 1046 static void 1047 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 1048 int rx_buf_pgcnt) 1049 { 1050 u16 ntc = rx_ring->next_to_clean + 1; 1051 1052 /* fetch, update, and store next to clean */ 1053 ntc = (ntc < rx_ring->count) ? ntc : 0; 1054 rx_ring->next_to_clean = ntc; 1055 1056 if (!rx_buf) 1057 return; 1058 1059 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1060 /* hand second half of page back to the ring */ 1061 ice_reuse_rx_page(rx_ring, rx_buf); 1062 } else { 1063 /* we are not reusing the buffer so unmap it */ 1064 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1065 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1066 ICE_RX_DMA_ATTR); 1067 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1068 } 1069 1070 /* clear contents of buffer_info */ 1071 rx_buf->page = NULL; 1072 } 1073 1074 /** 1075 * ice_is_non_eop - process handling of non-EOP buffers 1076 * @rx_ring: Rx ring being processed 1077 * @rx_desc: Rx descriptor for current buffer 1078 * 1079 * If the buffer is an EOP buffer, this function exits returning false, 1080 * otherwise return true indicating that this is in fact a non-EOP buffer. 1081 */ 1082 static bool 1083 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1084 { 1085 /* if we are the last buffer then there is nothing else to do */ 1086 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1087 if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF))) 1088 return false; 1089 1090 rx_ring->rx_stats.non_eop_descs++; 1091 1092 return true; 1093 } 1094 1095 /** 1096 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1097 * @rx_ring: Rx descriptor ring to transact packets on 1098 * @budget: Total limit on number of packets to process 1099 * 1100 * This function provides a "bounce buffer" approach to Rx interrupt 1101 * processing. The advantage to this is that on systems that have 1102 * expensive overhead for IOMMU access this provides a means of avoiding 1103 * it by maintaining the mapping of the page to the system. 1104 * 1105 * Returns amount of work completed 1106 */ 1107 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1108 { 1109 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1110 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1111 unsigned int offset = rx_ring->rx_offset; 1112 struct ice_tx_ring *xdp_ring = NULL; 1113 unsigned int xdp_res, xdp_xmit = 0; 1114 struct sk_buff *skb = rx_ring->skb; 1115 struct bpf_prog *xdp_prog = NULL; 1116 struct xdp_buff xdp; 1117 bool failure; 1118 1119 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1120 #if (PAGE_SIZE < 8192) 1121 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1122 #endif 1123 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1124 1125 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1126 if (xdp_prog) 1127 xdp_ring = rx_ring->xdp_ring; 1128 1129 /* start the loop to process Rx packets bounded by 'budget' */ 1130 while (likely(total_rx_pkts < (unsigned int)budget)) { 1131 union ice_32b_rx_flex_desc *rx_desc; 1132 struct ice_rx_buf *rx_buf; 1133 unsigned char *hard_start; 1134 unsigned int size; 1135 u16 stat_err_bits; 1136 int rx_buf_pgcnt; 1137 u16 vlan_tag = 0; 1138 u16 rx_ptype; 1139 1140 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1141 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1142 1143 /* status_error_len will always be zero for unused descriptors 1144 * because it's cleared in cleanup, and overlaps with hdr_addr 1145 * which is always zero because packet split isn't used, if the 1146 * hardware wrote DD then it will be non-zero 1147 */ 1148 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1149 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1150 break; 1151 1152 /* This memory barrier is needed to keep us from reading 1153 * any other fields out of the rx_desc until we know the 1154 * DD bit is set. 1155 */ 1156 dma_rmb(); 1157 1158 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1159 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1160 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1161 1162 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1163 ctrl_vsi->vf) 1164 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1165 ice_put_rx_buf(rx_ring, NULL, 0); 1166 cleaned_count++; 1167 continue; 1168 } 1169 1170 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1171 ICE_RX_FLX_DESC_PKT_LEN_M; 1172 1173 /* retrieve a buffer from the ring */ 1174 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1175 1176 if (!size) { 1177 xdp.data = NULL; 1178 xdp.data_end = NULL; 1179 xdp.data_hard_start = NULL; 1180 xdp.data_meta = NULL; 1181 goto construct_skb; 1182 } 1183 1184 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1185 offset; 1186 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1187 #if (PAGE_SIZE > 4096) 1188 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1189 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1190 #endif 1191 1192 if (!xdp_prog) 1193 goto construct_skb; 1194 1195 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); 1196 if (!xdp_res) 1197 goto construct_skb; 1198 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1199 xdp_xmit |= xdp_res; 1200 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1201 } else { 1202 rx_buf->pagecnt_bias++; 1203 } 1204 total_rx_bytes += size; 1205 total_rx_pkts++; 1206 1207 cleaned_count++; 1208 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1209 continue; 1210 construct_skb: 1211 if (skb) { 1212 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1213 } else if (likely(xdp.data)) { 1214 if (ice_ring_uses_build_skb(rx_ring)) 1215 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1216 else 1217 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1218 } 1219 /* exit if we failed to retrieve a buffer */ 1220 if (!skb) { 1221 rx_ring->rx_stats.alloc_buf_failed++; 1222 if (rx_buf) 1223 rx_buf->pagecnt_bias++; 1224 break; 1225 } 1226 1227 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1228 cleaned_count++; 1229 1230 /* skip if it is NOP desc */ 1231 if (ice_is_non_eop(rx_ring, rx_desc)) 1232 continue; 1233 1234 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1235 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1236 stat_err_bits))) { 1237 dev_kfree_skb_any(skb); 1238 continue; 1239 } 1240 1241 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 1242 1243 /* pad the skb if needed, to make a valid ethernet frame */ 1244 if (eth_skb_pad(skb)) { 1245 skb = NULL; 1246 continue; 1247 } 1248 1249 /* probably a little skewed due to removing CRC */ 1250 total_rx_bytes += skb->len; 1251 1252 /* populate checksum, VLAN, and protocol */ 1253 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1254 ICE_RX_FLEX_DESC_PTYPE_M; 1255 1256 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1257 1258 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1259 /* send completed skb up the stack */ 1260 ice_receive_skb(rx_ring, skb, vlan_tag); 1261 skb = NULL; 1262 1263 /* update budget accounting */ 1264 total_rx_pkts++; 1265 } 1266 1267 /* return up to cleaned_count buffers to hardware */ 1268 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1269 1270 if (xdp_prog) 1271 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 1272 rx_ring->skb = skb; 1273 1274 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1275 1276 /* guarantee a trip back through this routine if there was a failure */ 1277 return failure ? budget : (int)total_rx_pkts; 1278 } 1279 1280 static void __ice_update_sample(struct ice_q_vector *q_vector, 1281 struct ice_ring_container *rc, 1282 struct dim_sample *sample, 1283 bool is_tx) 1284 { 1285 u64 packets = 0, bytes = 0; 1286 1287 if (is_tx) { 1288 struct ice_tx_ring *tx_ring; 1289 1290 ice_for_each_tx_ring(tx_ring, *rc) { 1291 packets += tx_ring->stats.pkts; 1292 bytes += tx_ring->stats.bytes; 1293 } 1294 } else { 1295 struct ice_rx_ring *rx_ring; 1296 1297 ice_for_each_rx_ring(rx_ring, *rc) { 1298 packets += rx_ring->stats.pkts; 1299 bytes += rx_ring->stats.bytes; 1300 } 1301 } 1302 1303 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1304 sample->comp_ctr = 0; 1305 1306 /* if dim settings get stale, like when not updated for 1 1307 * second or longer, force it to start again. This addresses the 1308 * frequent case of an idle queue being switched to by the 1309 * scheduler. The 1,000 here means 1,000 milliseconds. 1310 */ 1311 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1312 rc->dim.state = DIM_START_MEASURE; 1313 } 1314 1315 /** 1316 * ice_net_dim - Update net DIM algorithm 1317 * @q_vector: the vector associated with the interrupt 1318 * 1319 * Create a DIM sample and notify net_dim() so that it can possibly decide 1320 * a new ITR value based on incoming packets, bytes, and interrupts. 1321 * 1322 * This function is a no-op if the ring is not configured to dynamic ITR. 1323 */ 1324 static void ice_net_dim(struct ice_q_vector *q_vector) 1325 { 1326 struct ice_ring_container *tx = &q_vector->tx; 1327 struct ice_ring_container *rx = &q_vector->rx; 1328 1329 if (ITR_IS_DYNAMIC(tx)) { 1330 struct dim_sample dim_sample; 1331 1332 __ice_update_sample(q_vector, tx, &dim_sample, true); 1333 net_dim(&tx->dim, dim_sample); 1334 } 1335 1336 if (ITR_IS_DYNAMIC(rx)) { 1337 struct dim_sample dim_sample; 1338 1339 __ice_update_sample(q_vector, rx, &dim_sample, false); 1340 net_dim(&rx->dim, dim_sample); 1341 } 1342 } 1343 1344 /** 1345 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1346 * @itr_idx: interrupt throttling index 1347 * @itr: interrupt throttling value in usecs 1348 */ 1349 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1350 { 1351 /* The ITR value is reported in microseconds, and the register value is 1352 * recorded in 2 microsecond units. For this reason we only need to 1353 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1354 * granularity as a shift instead of division. The mask makes sure the 1355 * ITR value is never odd so we don't accidentally write into the field 1356 * prior to the ITR field. 1357 */ 1358 itr &= ICE_ITR_MASK; 1359 1360 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1361 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1362 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1363 } 1364 1365 /** 1366 * ice_enable_interrupt - re-enable MSI-X interrupt 1367 * @q_vector: the vector associated with the interrupt to enable 1368 * 1369 * If the VSI is down, the interrupt will not be re-enabled. Also, 1370 * when enabling the interrupt always reset the wb_on_itr to false 1371 * and trigger a software interrupt to clean out internal state. 1372 */ 1373 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1374 { 1375 struct ice_vsi *vsi = q_vector->vsi; 1376 bool wb_en = q_vector->wb_on_itr; 1377 u32 itr_val; 1378 1379 if (test_bit(ICE_DOWN, vsi->state)) 1380 return; 1381 1382 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1383 * make sure to catch any pending cleanups that might have been missed 1384 * due to interrupt state transition. If busy poll or poll isn't 1385 * enabled, then don't update ITR, and just enable the interrupt. 1386 */ 1387 if (!wb_en) { 1388 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1389 } else { 1390 q_vector->wb_on_itr = false; 1391 1392 /* do two things here with a single write. Set up the third ITR 1393 * index to be used for software interrupt moderation, and then 1394 * trigger a software interrupt with a rate limit of 20K on 1395 * software interrupts, this will help avoid high interrupt 1396 * loads due to frequently polling and exiting polling. 1397 */ 1398 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1399 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1400 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1401 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1402 } 1403 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1404 } 1405 1406 /** 1407 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1408 * @q_vector: q_vector to set WB_ON_ITR on 1409 * 1410 * We need to tell hardware to write-back completed descriptors even when 1411 * interrupts are disabled. Descriptors will be written back on cache line 1412 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1413 * descriptors may not be written back if they don't fill a cache line until 1414 * the next interrupt. 1415 * 1416 * This sets the write-back frequency to whatever was set previously for the 1417 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1418 * aren't meddling with the INTENA_M bit. 1419 */ 1420 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1421 { 1422 struct ice_vsi *vsi = q_vector->vsi; 1423 1424 /* already in wb_on_itr mode no need to change it */ 1425 if (q_vector->wb_on_itr) 1426 return; 1427 1428 /* use previously set ITR values for all of the ITR indices by 1429 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1430 * be static in non-adaptive mode (user configured) 1431 */ 1432 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1433 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1434 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1435 GLINT_DYN_CTL_WB_ON_ITR_M); 1436 1437 q_vector->wb_on_itr = true; 1438 } 1439 1440 /** 1441 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1442 * @napi: napi struct with our devices info in it 1443 * @budget: amount of work driver is allowed to do this pass, in packets 1444 * 1445 * This function will clean all queues associated with a q_vector. 1446 * 1447 * Returns the amount of work done 1448 */ 1449 int ice_napi_poll(struct napi_struct *napi, int budget) 1450 { 1451 struct ice_q_vector *q_vector = 1452 container_of(napi, struct ice_q_vector, napi); 1453 struct ice_tx_ring *tx_ring; 1454 struct ice_rx_ring *rx_ring; 1455 bool clean_complete = true; 1456 int budget_per_ring; 1457 int work_done = 0; 1458 1459 /* Since the actual Tx work is minimal, we can give the Tx a larger 1460 * budget and be more aggressive about cleaning up the Tx descriptors. 1461 */ 1462 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1463 bool wd; 1464 1465 if (tx_ring->xsk_pool) 1466 wd = ice_xmit_zc(tx_ring, ICE_DESC_UNUSED(tx_ring), budget); 1467 else if (ice_ring_is_xdp(tx_ring)) 1468 wd = true; 1469 else 1470 wd = ice_clean_tx_irq(tx_ring, budget); 1471 1472 if (!wd) 1473 clean_complete = false; 1474 } 1475 1476 /* Handle case where we are called by netpoll with a budget of 0 */ 1477 if (unlikely(budget <= 0)) 1478 return budget; 1479 1480 /* normally we have 1 Rx ring per q_vector */ 1481 if (unlikely(q_vector->num_ring_rx > 1)) 1482 /* We attempt to distribute budget to each Rx queue fairly, but 1483 * don't allow the budget to go below 1 because that would exit 1484 * polling early. 1485 */ 1486 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1487 else 1488 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1489 budget_per_ring = budget; 1490 1491 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1492 int cleaned; 1493 1494 /* A dedicated path for zero-copy allows making a single 1495 * comparison in the irq context instead of many inside the 1496 * ice_clean_rx_irq function and makes the codebase cleaner. 1497 */ 1498 cleaned = rx_ring->xsk_pool ? 1499 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1500 ice_clean_rx_irq(rx_ring, budget_per_ring); 1501 work_done += cleaned; 1502 /* if we clean as many as budgeted, we must not be done */ 1503 if (cleaned >= budget_per_ring) 1504 clean_complete = false; 1505 } 1506 1507 /* If work not completed, return budget and polling will return */ 1508 if (!clean_complete) { 1509 /* Set the writeback on ITR so partial completions of 1510 * cache-lines will still continue even if we're polling. 1511 */ 1512 ice_set_wb_on_itr(q_vector); 1513 return budget; 1514 } 1515 1516 /* Exit the polling mode, but don't re-enable interrupts if stack might 1517 * poll us due to busy-polling 1518 */ 1519 if (napi_complete_done(napi, work_done)) { 1520 ice_net_dim(q_vector); 1521 ice_enable_interrupt(q_vector); 1522 } else { 1523 ice_set_wb_on_itr(q_vector); 1524 } 1525 1526 return min_t(int, work_done, budget - 1); 1527 } 1528 1529 /** 1530 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1531 * @tx_ring: the ring to be checked 1532 * @size: the size buffer we want to assure is available 1533 * 1534 * Returns -EBUSY if a stop is needed, else 0 1535 */ 1536 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1537 { 1538 netif_tx_stop_queue(txring_txq(tx_ring)); 1539 /* Memory barrier before checking head and tail */ 1540 smp_mb(); 1541 1542 /* Check again in a case another CPU has just made room available. */ 1543 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1544 return -EBUSY; 1545 1546 /* A reprieve! - use start_queue because it doesn't call schedule */ 1547 netif_tx_start_queue(txring_txq(tx_ring)); 1548 ++tx_ring->tx_stats.restart_q; 1549 return 0; 1550 } 1551 1552 /** 1553 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1554 * @tx_ring: the ring to be checked 1555 * @size: the size buffer we want to assure is available 1556 * 1557 * Returns 0 if stop is not needed 1558 */ 1559 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1560 { 1561 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1562 return 0; 1563 1564 return __ice_maybe_stop_tx(tx_ring, size); 1565 } 1566 1567 /** 1568 * ice_tx_map - Build the Tx descriptor 1569 * @tx_ring: ring to send buffer on 1570 * @first: first buffer info buffer to use 1571 * @off: pointer to struct that holds offload parameters 1572 * 1573 * This function loops over the skb data pointed to by *first 1574 * and gets a physical address for each memory location and programs 1575 * it and the length into the transmit descriptor. 1576 */ 1577 static void 1578 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1579 struct ice_tx_offload_params *off) 1580 { 1581 u64 td_offset, td_tag, td_cmd; 1582 u16 i = tx_ring->next_to_use; 1583 unsigned int data_len, size; 1584 struct ice_tx_desc *tx_desc; 1585 struct ice_tx_buf *tx_buf; 1586 struct sk_buff *skb; 1587 skb_frag_t *frag; 1588 dma_addr_t dma; 1589 bool kick; 1590 1591 td_tag = off->td_l2tag1; 1592 td_cmd = off->td_cmd; 1593 td_offset = off->td_offset; 1594 skb = first->skb; 1595 1596 data_len = skb->data_len; 1597 size = skb_headlen(skb); 1598 1599 tx_desc = ICE_TX_DESC(tx_ring, i); 1600 1601 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1602 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1603 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1604 ICE_TX_FLAGS_VLAN_S; 1605 } 1606 1607 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1608 1609 tx_buf = first; 1610 1611 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1612 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1613 1614 if (dma_mapping_error(tx_ring->dev, dma)) 1615 goto dma_error; 1616 1617 /* record length, and DMA address */ 1618 dma_unmap_len_set(tx_buf, len, size); 1619 dma_unmap_addr_set(tx_buf, dma, dma); 1620 1621 /* align size to end of page */ 1622 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1623 tx_desc->buf_addr = cpu_to_le64(dma); 1624 1625 /* account for data chunks larger than the hardware 1626 * can handle 1627 */ 1628 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1629 tx_desc->cmd_type_offset_bsz = 1630 ice_build_ctob(td_cmd, td_offset, max_data, 1631 td_tag); 1632 1633 tx_desc++; 1634 i++; 1635 1636 if (i == tx_ring->count) { 1637 tx_desc = ICE_TX_DESC(tx_ring, 0); 1638 i = 0; 1639 } 1640 1641 dma += max_data; 1642 size -= max_data; 1643 1644 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1645 tx_desc->buf_addr = cpu_to_le64(dma); 1646 } 1647 1648 if (likely(!data_len)) 1649 break; 1650 1651 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1652 size, td_tag); 1653 1654 tx_desc++; 1655 i++; 1656 1657 if (i == tx_ring->count) { 1658 tx_desc = ICE_TX_DESC(tx_ring, 0); 1659 i = 0; 1660 } 1661 1662 size = skb_frag_size(frag); 1663 data_len -= size; 1664 1665 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1666 DMA_TO_DEVICE); 1667 1668 tx_buf = &tx_ring->tx_buf[i]; 1669 } 1670 1671 /* record SW timestamp if HW timestamp is not available */ 1672 skb_tx_timestamp(first->skb); 1673 1674 i++; 1675 if (i == tx_ring->count) 1676 i = 0; 1677 1678 /* write last descriptor with RS and EOP bits */ 1679 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1680 tx_desc->cmd_type_offset_bsz = 1681 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1682 1683 /* Force memory writes to complete before letting h/w know there 1684 * are new descriptors to fetch. 1685 * 1686 * We also use this memory barrier to make certain all of the 1687 * status bits have been updated before next_to_watch is written. 1688 */ 1689 wmb(); 1690 1691 /* set next_to_watch value indicating a packet is present */ 1692 first->next_to_watch = tx_desc; 1693 1694 tx_ring->next_to_use = i; 1695 1696 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1697 1698 /* notify HW of packet */ 1699 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1700 netdev_xmit_more()); 1701 if (kick) 1702 /* notify HW of packet */ 1703 writel(i, tx_ring->tail); 1704 1705 return; 1706 1707 dma_error: 1708 /* clear DMA mappings for failed tx_buf map */ 1709 for (;;) { 1710 tx_buf = &tx_ring->tx_buf[i]; 1711 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1712 if (tx_buf == first) 1713 break; 1714 if (i == 0) 1715 i = tx_ring->count; 1716 i--; 1717 } 1718 1719 tx_ring->next_to_use = i; 1720 } 1721 1722 /** 1723 * ice_tx_csum - Enable Tx checksum offloads 1724 * @first: pointer to the first descriptor 1725 * @off: pointer to struct that holds offload parameters 1726 * 1727 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1728 */ 1729 static 1730 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1731 { 1732 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1733 struct sk_buff *skb = first->skb; 1734 union { 1735 struct iphdr *v4; 1736 struct ipv6hdr *v6; 1737 unsigned char *hdr; 1738 } ip; 1739 union { 1740 struct tcphdr *tcp; 1741 unsigned char *hdr; 1742 } l4; 1743 __be16 frag_off, protocol; 1744 unsigned char *exthdr; 1745 u32 offset, cmd = 0; 1746 u8 l4_proto = 0; 1747 1748 if (skb->ip_summed != CHECKSUM_PARTIAL) 1749 return 0; 1750 1751 ip.hdr = skb_network_header(skb); 1752 l4.hdr = skb_transport_header(skb); 1753 1754 /* compute outer L2 header size */ 1755 l2_len = ip.hdr - skb->data; 1756 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1757 1758 protocol = vlan_get_protocol(skb); 1759 1760 if (protocol == htons(ETH_P_IP)) 1761 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1762 else if (protocol == htons(ETH_P_IPV6)) 1763 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1764 1765 if (skb->encapsulation) { 1766 bool gso_ena = false; 1767 u32 tunnel = 0; 1768 1769 /* define outer network header type */ 1770 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1771 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1772 ICE_TX_CTX_EIPT_IPV4 : 1773 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1774 l4_proto = ip.v4->protocol; 1775 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1776 int ret; 1777 1778 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1779 exthdr = ip.hdr + sizeof(*ip.v6); 1780 l4_proto = ip.v6->nexthdr; 1781 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1782 &l4_proto, &frag_off); 1783 if (ret < 0) 1784 return -1; 1785 } 1786 1787 /* define outer transport */ 1788 switch (l4_proto) { 1789 case IPPROTO_UDP: 1790 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1791 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1792 break; 1793 case IPPROTO_GRE: 1794 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1795 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1796 break; 1797 case IPPROTO_IPIP: 1798 case IPPROTO_IPV6: 1799 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1800 l4.hdr = skb_inner_network_header(skb); 1801 break; 1802 default: 1803 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1804 return -1; 1805 1806 skb_checksum_help(skb); 1807 return 0; 1808 } 1809 1810 /* compute outer L3 header size */ 1811 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1812 ICE_TXD_CTX_QW0_EIPLEN_S; 1813 1814 /* switch IP header pointer from outer to inner header */ 1815 ip.hdr = skb_inner_network_header(skb); 1816 1817 /* compute tunnel header size */ 1818 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1819 ICE_TXD_CTX_QW0_NATLEN_S; 1820 1821 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1822 /* indicate if we need to offload outer UDP header */ 1823 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1824 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1825 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1826 1827 /* record tunnel offload values */ 1828 off->cd_tunnel_params |= tunnel; 1829 1830 /* set DTYP=1 to indicate that it's an Tx context descriptor 1831 * in IPsec tunnel mode with Tx offloads in Quad word 1 1832 */ 1833 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1834 1835 /* switch L4 header pointer from outer to inner */ 1836 l4.hdr = skb_inner_transport_header(skb); 1837 l4_proto = 0; 1838 1839 /* reset type as we transition from outer to inner headers */ 1840 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1841 if (ip.v4->version == 4) 1842 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1843 if (ip.v6->version == 6) 1844 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1845 } 1846 1847 /* Enable IP checksum offloads */ 1848 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1849 l4_proto = ip.v4->protocol; 1850 /* the stack computes the IP header already, the only time we 1851 * need the hardware to recompute it is in the case of TSO. 1852 */ 1853 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1854 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1855 else 1856 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1857 1858 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1859 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1860 exthdr = ip.hdr + sizeof(*ip.v6); 1861 l4_proto = ip.v6->nexthdr; 1862 if (l4.hdr != exthdr) 1863 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1864 &frag_off); 1865 } else { 1866 return -1; 1867 } 1868 1869 /* compute inner L3 header size */ 1870 l3_len = l4.hdr - ip.hdr; 1871 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1872 1873 /* Enable L4 checksum offloads */ 1874 switch (l4_proto) { 1875 case IPPROTO_TCP: 1876 /* enable checksum offloads */ 1877 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1878 l4_len = l4.tcp->doff; 1879 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1880 break; 1881 case IPPROTO_UDP: 1882 /* enable UDP checksum offload */ 1883 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1884 l4_len = (sizeof(struct udphdr) >> 2); 1885 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1886 break; 1887 case IPPROTO_SCTP: 1888 /* enable SCTP checksum offload */ 1889 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1890 l4_len = sizeof(struct sctphdr) >> 2; 1891 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1892 break; 1893 1894 default: 1895 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1896 return -1; 1897 skb_checksum_help(skb); 1898 return 0; 1899 } 1900 1901 off->td_cmd |= cmd; 1902 off->td_offset |= offset; 1903 return 1; 1904 } 1905 1906 /** 1907 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1908 * @tx_ring: ring to send buffer on 1909 * @first: pointer to struct ice_tx_buf 1910 * 1911 * Checks the skb and set up correspondingly several generic transmit flags 1912 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1913 */ 1914 static void 1915 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1916 { 1917 struct sk_buff *skb = first->skb; 1918 1919 /* nothing left to do, software offloaded VLAN */ 1920 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1921 return; 1922 1923 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 1924 * feature flags, which the driver only allows either 802.1Q or 802.1ad 1925 * VLAN offloads exclusively so we only care about the VLAN ID here 1926 */ 1927 if (skb_vlan_tag_present(skb)) { 1928 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1929 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 1930 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 1931 else 1932 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1933 } 1934 1935 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1936 } 1937 1938 /** 1939 * ice_tso - computes mss and TSO length to prepare for TSO 1940 * @first: pointer to struct ice_tx_buf 1941 * @off: pointer to struct that holds offload parameters 1942 * 1943 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1944 */ 1945 static 1946 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1947 { 1948 struct sk_buff *skb = first->skb; 1949 union { 1950 struct iphdr *v4; 1951 struct ipv6hdr *v6; 1952 unsigned char *hdr; 1953 } ip; 1954 union { 1955 struct tcphdr *tcp; 1956 struct udphdr *udp; 1957 unsigned char *hdr; 1958 } l4; 1959 u64 cd_mss, cd_tso_len; 1960 u32 paylen; 1961 u8 l4_start; 1962 int err; 1963 1964 if (skb->ip_summed != CHECKSUM_PARTIAL) 1965 return 0; 1966 1967 if (!skb_is_gso(skb)) 1968 return 0; 1969 1970 err = skb_cow_head(skb, 0); 1971 if (err < 0) 1972 return err; 1973 1974 /* cppcheck-suppress unreadVariable */ 1975 ip.hdr = skb_network_header(skb); 1976 l4.hdr = skb_transport_header(skb); 1977 1978 /* initialize outer IP header fields */ 1979 if (ip.v4->version == 4) { 1980 ip.v4->tot_len = 0; 1981 ip.v4->check = 0; 1982 } else { 1983 ip.v6->payload_len = 0; 1984 } 1985 1986 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1987 SKB_GSO_GRE_CSUM | 1988 SKB_GSO_IPXIP4 | 1989 SKB_GSO_IPXIP6 | 1990 SKB_GSO_UDP_TUNNEL | 1991 SKB_GSO_UDP_TUNNEL_CSUM)) { 1992 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1993 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1994 l4.udp->len = 0; 1995 1996 /* determine offset of outer transport header */ 1997 l4_start = (u8)(l4.hdr - skb->data); 1998 1999 /* remove payload length from outer checksum */ 2000 paylen = skb->len - l4_start; 2001 csum_replace_by_diff(&l4.udp->check, 2002 (__force __wsum)htonl(paylen)); 2003 } 2004 2005 /* reset pointers to inner headers */ 2006 2007 /* cppcheck-suppress unreadVariable */ 2008 ip.hdr = skb_inner_network_header(skb); 2009 l4.hdr = skb_inner_transport_header(skb); 2010 2011 /* initialize inner IP header fields */ 2012 if (ip.v4->version == 4) { 2013 ip.v4->tot_len = 0; 2014 ip.v4->check = 0; 2015 } else { 2016 ip.v6->payload_len = 0; 2017 } 2018 } 2019 2020 /* determine offset of transport header */ 2021 l4_start = (u8)(l4.hdr - skb->data); 2022 2023 /* remove payload length from checksum */ 2024 paylen = skb->len - l4_start; 2025 2026 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2027 csum_replace_by_diff(&l4.udp->check, 2028 (__force __wsum)htonl(paylen)); 2029 /* compute length of UDP segmentation header */ 2030 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2031 } else { 2032 csum_replace_by_diff(&l4.tcp->check, 2033 (__force __wsum)htonl(paylen)); 2034 /* compute length of TCP segmentation header */ 2035 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2036 } 2037 2038 /* update gso_segs and bytecount */ 2039 first->gso_segs = skb_shinfo(skb)->gso_segs; 2040 first->bytecount += (first->gso_segs - 1) * off->header_len; 2041 2042 cd_tso_len = skb->len - off->header_len; 2043 cd_mss = skb_shinfo(skb)->gso_size; 2044 2045 /* record cdesc_qw1 with TSO parameters */ 2046 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2047 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2048 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2049 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2050 first->tx_flags |= ICE_TX_FLAGS_TSO; 2051 return 1; 2052 } 2053 2054 /** 2055 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2056 * @size: transmit request size in bytes 2057 * 2058 * Due to hardware alignment restrictions (4K alignment), we need to 2059 * assume that we can have no more than 12K of data per descriptor, even 2060 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2061 * Thus, we need to divide by 12K. But division is slow! Instead, 2062 * we decompose the operation into shifts and one relatively cheap 2063 * multiply operation. 2064 * 2065 * To divide by 12K, we first divide by 4K, then divide by 3: 2066 * To divide by 4K, shift right by 12 bits 2067 * To divide by 3, multiply by 85, then divide by 256 2068 * (Divide by 256 is done by shifting right by 8 bits) 2069 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2070 * 3, we'll underestimate near each multiple of 12K. This is actually more 2071 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2072 * segment. For our purposes this is accurate out to 1M which is orders of 2073 * magnitude greater than our largest possible GSO size. 2074 * 2075 * This would then be implemented as: 2076 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2077 * 2078 * Since multiplication and division are commutative, we can reorder 2079 * operations into: 2080 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2081 */ 2082 static unsigned int ice_txd_use_count(unsigned int size) 2083 { 2084 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2085 } 2086 2087 /** 2088 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2089 * @skb: send buffer 2090 * 2091 * Returns number of data descriptors needed for this skb. 2092 */ 2093 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2094 { 2095 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2096 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2097 unsigned int count = 0, size = skb_headlen(skb); 2098 2099 for (;;) { 2100 count += ice_txd_use_count(size); 2101 2102 if (!nr_frags--) 2103 break; 2104 2105 size = skb_frag_size(frag++); 2106 } 2107 2108 return count; 2109 } 2110 2111 /** 2112 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2113 * @skb: send buffer 2114 * 2115 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2116 * and so we need to figure out the cases where we need to linearize the skb. 2117 * 2118 * For TSO we need to count the TSO header and segment payload separately. 2119 * As such we need to check cases where we have 7 fragments or more as we 2120 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2121 * the segment payload in the first descriptor, and another 7 for the 2122 * fragments. 2123 */ 2124 static bool __ice_chk_linearize(struct sk_buff *skb) 2125 { 2126 const skb_frag_t *frag, *stale; 2127 int nr_frags, sum; 2128 2129 /* no need to check if number of frags is less than 7 */ 2130 nr_frags = skb_shinfo(skb)->nr_frags; 2131 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2132 return false; 2133 2134 /* We need to walk through the list and validate that each group 2135 * of 6 fragments totals at least gso_size. 2136 */ 2137 nr_frags -= ICE_MAX_BUF_TXD - 2; 2138 frag = &skb_shinfo(skb)->frags[0]; 2139 2140 /* Initialize size to the negative value of gso_size minus 1. We 2141 * use this as the worst case scenario in which the frag ahead 2142 * of us only provides one byte which is why we are limited to 6 2143 * descriptors for a single transmit as the header and previous 2144 * fragment are already consuming 2 descriptors. 2145 */ 2146 sum = 1 - skb_shinfo(skb)->gso_size; 2147 2148 /* Add size of frags 0 through 4 to create our initial sum */ 2149 sum += skb_frag_size(frag++); 2150 sum += skb_frag_size(frag++); 2151 sum += skb_frag_size(frag++); 2152 sum += skb_frag_size(frag++); 2153 sum += skb_frag_size(frag++); 2154 2155 /* Walk through fragments adding latest fragment, testing it, and 2156 * then removing stale fragments from the sum. 2157 */ 2158 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2159 int stale_size = skb_frag_size(stale); 2160 2161 sum += skb_frag_size(frag++); 2162 2163 /* The stale fragment may present us with a smaller 2164 * descriptor than the actual fragment size. To account 2165 * for that we need to remove all the data on the front and 2166 * figure out what the remainder would be in the last 2167 * descriptor associated with the fragment. 2168 */ 2169 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2170 int align_pad = -(skb_frag_off(stale)) & 2171 (ICE_MAX_READ_REQ_SIZE - 1); 2172 2173 sum -= align_pad; 2174 stale_size -= align_pad; 2175 2176 do { 2177 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2178 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2179 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2180 } 2181 2182 /* if sum is negative we failed to make sufficient progress */ 2183 if (sum < 0) 2184 return true; 2185 2186 if (!nr_frags--) 2187 break; 2188 2189 sum -= stale_size; 2190 } 2191 2192 return false; 2193 } 2194 2195 /** 2196 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2197 * @skb: send buffer 2198 * @count: number of buffers used 2199 * 2200 * Note: Our HW can't scatter-gather more than 8 fragments to build 2201 * a packet on the wire and so we need to figure out the cases where we 2202 * need to linearize the skb. 2203 */ 2204 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2205 { 2206 /* Both TSO and single send will work if count is less than 8 */ 2207 if (likely(count < ICE_MAX_BUF_TXD)) 2208 return false; 2209 2210 if (skb_is_gso(skb)) 2211 return __ice_chk_linearize(skb); 2212 2213 /* we can support up to 8 data buffers for a single send */ 2214 return count != ICE_MAX_BUF_TXD; 2215 } 2216 2217 /** 2218 * ice_tstamp - set up context descriptor for hardware timestamp 2219 * @tx_ring: pointer to the Tx ring to send buffer on 2220 * @skb: pointer to the SKB we're sending 2221 * @first: Tx buffer 2222 * @off: Tx offload parameters 2223 */ 2224 static void 2225 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2226 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2227 { 2228 s8 idx; 2229 2230 /* only timestamp the outbound packet if the user has requested it */ 2231 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2232 return; 2233 2234 if (!tx_ring->ptp_tx) 2235 return; 2236 2237 /* Tx timestamps cannot be sampled when doing TSO */ 2238 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2239 return; 2240 2241 /* Grab an open timestamp slot */ 2242 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2243 if (idx < 0) 2244 return; 2245 2246 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2247 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2248 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2249 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2250 } 2251 2252 /** 2253 * ice_xmit_frame_ring - Sends buffer on Tx ring 2254 * @skb: send buffer 2255 * @tx_ring: ring to send buffer on 2256 * 2257 * Returns NETDEV_TX_OK if sent, else an error code 2258 */ 2259 static netdev_tx_t 2260 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2261 { 2262 struct ice_tx_offload_params offload = { 0 }; 2263 struct ice_vsi *vsi = tx_ring->vsi; 2264 struct ice_tx_buf *first; 2265 struct ethhdr *eth; 2266 unsigned int count; 2267 int tso, csum; 2268 2269 ice_trace(xmit_frame_ring, tx_ring, skb); 2270 2271 count = ice_xmit_desc_count(skb); 2272 if (ice_chk_linearize(skb, count)) { 2273 if (__skb_linearize(skb)) 2274 goto out_drop; 2275 count = ice_txd_use_count(skb->len); 2276 tx_ring->tx_stats.tx_linearize++; 2277 } 2278 2279 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2280 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2281 * + 4 desc gap to avoid the cache line where head is, 2282 * + 1 desc for context descriptor, 2283 * otherwise try next time 2284 */ 2285 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2286 ICE_DESCS_FOR_CTX_DESC)) { 2287 tx_ring->tx_stats.tx_busy++; 2288 return NETDEV_TX_BUSY; 2289 } 2290 2291 /* prefetch for bql data which is infrequently used */ 2292 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2293 2294 offload.tx_ring = tx_ring; 2295 2296 /* record the location of the first descriptor for this packet */ 2297 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2298 first->skb = skb; 2299 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2300 first->gso_segs = 1; 2301 first->tx_flags = 0; 2302 2303 /* prepare the VLAN tagging flags for Tx */ 2304 ice_tx_prepare_vlan_flags(tx_ring, first); 2305 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2306 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2307 (ICE_TX_CTX_DESC_IL2TAG2 << 2308 ICE_TXD_CTX_QW1_CMD_S)); 2309 offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 2310 ICE_TX_FLAGS_VLAN_S; 2311 } 2312 2313 /* set up TSO offload */ 2314 tso = ice_tso(first, &offload); 2315 if (tso < 0) 2316 goto out_drop; 2317 2318 /* always set up Tx checksum offload */ 2319 csum = ice_tx_csum(first, &offload); 2320 if (csum < 0) 2321 goto out_drop; 2322 2323 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2324 eth = (struct ethhdr *)skb_mac_header(skb); 2325 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2326 eth->h_proto == htons(ETH_P_LLDP)) && 2327 vsi->type == ICE_VSI_PF && 2328 vsi->port_info->qos_cfg.is_sw_lldp)) 2329 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2330 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2331 ICE_TXD_CTX_QW1_CMD_S); 2332 2333 ice_tstamp(tx_ring, skb, first, &offload); 2334 if (ice_is_switchdev_running(vsi->back)) 2335 ice_eswitch_set_target_vsi(skb, &offload); 2336 2337 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2338 struct ice_tx_ctx_desc *cdesc; 2339 u16 i = tx_ring->next_to_use; 2340 2341 /* grab the next descriptor */ 2342 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2343 i++; 2344 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2345 2346 /* setup context descriptor */ 2347 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2348 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2349 cdesc->rsvd = cpu_to_le16(0); 2350 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2351 } 2352 2353 ice_tx_map(tx_ring, first, &offload); 2354 return NETDEV_TX_OK; 2355 2356 out_drop: 2357 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2358 dev_kfree_skb_any(skb); 2359 return NETDEV_TX_OK; 2360 } 2361 2362 /** 2363 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2364 * @skb: send buffer 2365 * @netdev: network interface device structure 2366 * 2367 * Returns NETDEV_TX_OK if sent, else an error code 2368 */ 2369 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2370 { 2371 struct ice_netdev_priv *np = netdev_priv(netdev); 2372 struct ice_vsi *vsi = np->vsi; 2373 struct ice_tx_ring *tx_ring; 2374 2375 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2376 2377 /* hardware can't handle really short frames, hardware padding works 2378 * beyond this point 2379 */ 2380 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2381 return NETDEV_TX_OK; 2382 2383 return ice_xmit_frame_ring(skb, tx_ring); 2384 } 2385 2386 /** 2387 * ice_get_dscp_up - return the UP/TC value for a SKB 2388 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2389 * @skb: SKB to query for info to determine UP/TC 2390 * 2391 * This function is to only be called when the PF is in L3 DSCP PFC mode 2392 */ 2393 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2394 { 2395 u8 dscp = 0; 2396 2397 if (skb->protocol == htons(ETH_P_IP)) 2398 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2399 else if (skb->protocol == htons(ETH_P_IPV6)) 2400 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2401 2402 return dcbcfg->dscp_map[dscp]; 2403 } 2404 2405 u16 2406 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2407 struct net_device *sb_dev) 2408 { 2409 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2410 struct ice_dcbx_cfg *dcbcfg; 2411 2412 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2413 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2414 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2415 2416 return netdev_pick_tx(netdev, skb, sb_dev); 2417 } 2418 2419 /** 2420 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2421 * @tx_ring: tx_ring to clean 2422 */ 2423 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2424 { 2425 struct ice_vsi *vsi = tx_ring->vsi; 2426 s16 i = tx_ring->next_to_clean; 2427 int budget = ICE_DFLT_IRQ_WORK; 2428 struct ice_tx_desc *tx_desc; 2429 struct ice_tx_buf *tx_buf; 2430 2431 tx_buf = &tx_ring->tx_buf[i]; 2432 tx_desc = ICE_TX_DESC(tx_ring, i); 2433 i -= tx_ring->count; 2434 2435 do { 2436 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2437 2438 /* if next_to_watch is not set then there is no pending work */ 2439 if (!eop_desc) 2440 break; 2441 2442 /* prevent any other reads prior to eop_desc */ 2443 smp_rmb(); 2444 2445 /* if the descriptor isn't done, no work to do */ 2446 if (!(eop_desc->cmd_type_offset_bsz & 2447 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2448 break; 2449 2450 /* clear next_to_watch to prevent false hangs */ 2451 tx_buf->next_to_watch = NULL; 2452 tx_desc->buf_addr = 0; 2453 tx_desc->cmd_type_offset_bsz = 0; 2454 2455 /* move past filter desc */ 2456 tx_buf++; 2457 tx_desc++; 2458 i++; 2459 if (unlikely(!i)) { 2460 i -= tx_ring->count; 2461 tx_buf = tx_ring->tx_buf; 2462 tx_desc = ICE_TX_DESC(tx_ring, 0); 2463 } 2464 2465 /* unmap the data header */ 2466 if (dma_unmap_len(tx_buf, len)) 2467 dma_unmap_single(tx_ring->dev, 2468 dma_unmap_addr(tx_buf, dma), 2469 dma_unmap_len(tx_buf, len), 2470 DMA_TO_DEVICE); 2471 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2472 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2473 2474 /* clear next_to_watch to prevent false hangs */ 2475 tx_buf->raw_buf = NULL; 2476 tx_buf->tx_flags = 0; 2477 tx_buf->next_to_watch = NULL; 2478 dma_unmap_len_set(tx_buf, len, 0); 2479 tx_desc->buf_addr = 0; 2480 tx_desc->cmd_type_offset_bsz = 0; 2481 2482 /* move past eop_desc for start of next FD desc */ 2483 tx_buf++; 2484 tx_desc++; 2485 i++; 2486 if (unlikely(!i)) { 2487 i -= tx_ring->count; 2488 tx_buf = tx_ring->tx_buf; 2489 tx_desc = ICE_TX_DESC(tx_ring, 0); 2490 } 2491 2492 budget--; 2493 } while (likely(budget)); 2494 2495 i += tx_ring->count; 2496 tx_ring->next_to_clean = i; 2497 2498 /* re-enable interrupt if needed */ 2499 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2500 } 2501