1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/xdp.h> 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 #include "ice.h" 15 #include "ice_trace.h" 16 #include "ice_dcb_lib.h" 17 #include "ice_xsk.h" 18 #include "ice_eswitch.h" 19 20 #define ICE_RX_HDR_SIZE 256 21 22 #define FDIR_DESC_RXDID 0x40 23 #define ICE_FDIR_CLEAN_DELAY 10 24 25 /** 26 * ice_prgm_fdir_fltr - Program a Flow Director filter 27 * @vsi: VSI to send dummy packet 28 * @fdir_desc: flow director descriptor 29 * @raw_packet: allocated buffer for flow director 30 */ 31 int 32 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 33 u8 *raw_packet) 34 { 35 struct ice_tx_buf *tx_buf, *first; 36 struct ice_fltr_desc *f_desc; 37 struct ice_tx_desc *tx_desc; 38 struct ice_tx_ring *tx_ring; 39 struct device *dev; 40 dma_addr_t dma; 41 u32 td_cmd; 42 u16 i; 43 44 /* VSI and Tx ring */ 45 if (!vsi) 46 return -ENOENT; 47 tx_ring = vsi->tx_rings[0]; 48 if (!tx_ring || !tx_ring->desc) 49 return -ENOENT; 50 dev = tx_ring->dev; 51 52 /* we are using two descriptors to add/del a filter and we can wait */ 53 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 54 if (!i) 55 return -EAGAIN; 56 msleep_interruptible(1); 57 } 58 59 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 60 DMA_TO_DEVICE); 61 62 if (dma_mapping_error(dev, dma)) 63 return -EINVAL; 64 65 /* grab the next descriptor */ 66 i = tx_ring->next_to_use; 67 first = &tx_ring->tx_buf[i]; 68 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 69 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 70 71 i++; 72 i = (i < tx_ring->count) ? i : 0; 73 tx_desc = ICE_TX_DESC(tx_ring, i); 74 tx_buf = &tx_ring->tx_buf[i]; 75 76 i++; 77 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 78 79 memset(tx_buf, 0, sizeof(*tx_buf)); 80 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 81 dma_unmap_addr_set(tx_buf, dma, dma); 82 83 tx_desc->buf_addr = cpu_to_le64(dma); 84 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 85 ICE_TX_DESC_CMD_RE; 86 87 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 88 tx_buf->raw_buf = raw_packet; 89 90 tx_desc->cmd_type_offset_bsz = 91 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 92 93 /* Force memory write to complete before letting h/w know 94 * there are new descriptors to fetch. 95 */ 96 wmb(); 97 98 /* mark the data descriptor to be watched */ 99 first->next_to_watch = tx_desc; 100 101 writel(tx_ring->next_to_use, tx_ring->tail); 102 103 return 0; 104 } 105 106 /** 107 * ice_unmap_and_free_tx_buf - Release a Tx buffer 108 * @ring: the ring that owns the buffer 109 * @tx_buf: the buffer to free 110 */ 111 static void 112 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 113 { 114 if (tx_buf->skb) { 115 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 116 devm_kfree(ring->dev, tx_buf->raw_buf); 117 else if (ice_ring_is_xdp(ring)) 118 page_frag_free(tx_buf->raw_buf); 119 else 120 dev_kfree_skb_any(tx_buf->skb); 121 if (dma_unmap_len(tx_buf, len)) 122 dma_unmap_single(ring->dev, 123 dma_unmap_addr(tx_buf, dma), 124 dma_unmap_len(tx_buf, len), 125 DMA_TO_DEVICE); 126 } else if (dma_unmap_len(tx_buf, len)) { 127 dma_unmap_page(ring->dev, 128 dma_unmap_addr(tx_buf, dma), 129 dma_unmap_len(tx_buf, len), 130 DMA_TO_DEVICE); 131 } 132 133 tx_buf->next_to_watch = NULL; 134 tx_buf->skb = NULL; 135 dma_unmap_len_set(tx_buf, len, 0); 136 /* tx_buf must be completely set up in the transmit path */ 137 } 138 139 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 140 { 141 return netdev_get_tx_queue(ring->netdev, ring->q_index); 142 } 143 144 /** 145 * ice_clean_tx_ring - Free any empty Tx buffers 146 * @tx_ring: ring to be cleaned 147 */ 148 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 149 { 150 u32 size; 151 u16 i; 152 153 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 154 ice_xsk_clean_xdp_ring(tx_ring); 155 goto tx_skip_free; 156 } 157 158 /* ring already cleared, nothing to do */ 159 if (!tx_ring->tx_buf) 160 return; 161 162 /* Free all the Tx ring sk_buffs */ 163 for (i = 0; i < tx_ring->count; i++) 164 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 165 166 tx_skip_free: 167 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 168 169 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 170 PAGE_SIZE); 171 /* Zero out the descriptor ring */ 172 memset(tx_ring->desc, 0, size); 173 174 tx_ring->next_to_use = 0; 175 tx_ring->next_to_clean = 0; 176 177 if (!tx_ring->netdev) 178 return; 179 180 /* cleanup Tx queue statistics */ 181 netdev_tx_reset_queue(txring_txq(tx_ring)); 182 } 183 184 /** 185 * ice_free_tx_ring - Free Tx resources per queue 186 * @tx_ring: Tx descriptor ring for a specific queue 187 * 188 * Free all transmit software resources 189 */ 190 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 191 { 192 u32 size; 193 194 ice_clean_tx_ring(tx_ring); 195 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 196 tx_ring->tx_buf = NULL; 197 198 if (tx_ring->desc) { 199 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 200 PAGE_SIZE); 201 dmam_free_coherent(tx_ring->dev, size, 202 tx_ring->desc, tx_ring->dma); 203 tx_ring->desc = NULL; 204 } 205 } 206 207 /** 208 * ice_clean_tx_irq - Reclaim resources after transmit completes 209 * @tx_ring: Tx ring to clean 210 * @napi_budget: Used to determine if we are in netpoll 211 * 212 * Returns true if there's any budget left (e.g. the clean is finished) 213 */ 214 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 215 { 216 unsigned int total_bytes = 0, total_pkts = 0; 217 unsigned int budget = ICE_DFLT_IRQ_WORK; 218 struct ice_vsi *vsi = tx_ring->vsi; 219 s16 i = tx_ring->next_to_clean; 220 struct ice_tx_desc *tx_desc; 221 struct ice_tx_buf *tx_buf; 222 223 /* get the bql data ready */ 224 if (!ice_ring_is_xdp(tx_ring)) 225 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 226 227 tx_buf = &tx_ring->tx_buf[i]; 228 tx_desc = ICE_TX_DESC(tx_ring, i); 229 i -= tx_ring->count; 230 231 prefetch(&vsi->state); 232 233 do { 234 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 235 236 /* if next_to_watch is not set then there is no work pending */ 237 if (!eop_desc) 238 break; 239 240 /* follow the guidelines of other drivers */ 241 prefetchw(&tx_buf->skb->users); 242 243 smp_rmb(); /* prevent any other reads prior to eop_desc */ 244 245 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 246 /* if the descriptor isn't done, no work yet to do */ 247 if (!(eop_desc->cmd_type_offset_bsz & 248 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 249 break; 250 251 /* clear next_to_watch to prevent false hangs */ 252 tx_buf->next_to_watch = NULL; 253 254 /* update the statistics for this packet */ 255 total_bytes += tx_buf->bytecount; 256 total_pkts += tx_buf->gso_segs; 257 258 /* free the skb */ 259 napi_consume_skb(tx_buf->skb, napi_budget); 260 261 /* unmap skb header data */ 262 dma_unmap_single(tx_ring->dev, 263 dma_unmap_addr(tx_buf, dma), 264 dma_unmap_len(tx_buf, len), 265 DMA_TO_DEVICE); 266 267 /* clear tx_buf data */ 268 tx_buf->skb = NULL; 269 dma_unmap_len_set(tx_buf, len, 0); 270 271 /* unmap remaining buffers */ 272 while (tx_desc != eop_desc) { 273 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 274 tx_buf++; 275 tx_desc++; 276 i++; 277 if (unlikely(!i)) { 278 i -= tx_ring->count; 279 tx_buf = tx_ring->tx_buf; 280 tx_desc = ICE_TX_DESC(tx_ring, 0); 281 } 282 283 /* unmap any remaining paged data */ 284 if (dma_unmap_len(tx_buf, len)) { 285 dma_unmap_page(tx_ring->dev, 286 dma_unmap_addr(tx_buf, dma), 287 dma_unmap_len(tx_buf, len), 288 DMA_TO_DEVICE); 289 dma_unmap_len_set(tx_buf, len, 0); 290 } 291 } 292 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 293 294 /* move us one more past the eop_desc for start of next pkt */ 295 tx_buf++; 296 tx_desc++; 297 i++; 298 if (unlikely(!i)) { 299 i -= tx_ring->count; 300 tx_buf = tx_ring->tx_buf; 301 tx_desc = ICE_TX_DESC(tx_ring, 0); 302 } 303 304 prefetch(tx_desc); 305 306 /* update budget accounting */ 307 budget--; 308 } while (likely(budget)); 309 310 i += tx_ring->count; 311 tx_ring->next_to_clean = i; 312 313 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 314 315 if (ice_ring_is_xdp(tx_ring)) 316 return !!budget; 317 318 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 319 320 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 321 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 322 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 323 /* Make sure that anybody stopping the queue after this 324 * sees the new next_to_clean. 325 */ 326 smp_mb(); 327 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 328 !test_bit(ICE_VSI_DOWN, vsi->state)) { 329 netif_tx_wake_queue(txring_txq(tx_ring)); 330 ++tx_ring->tx_stats.restart_q; 331 } 332 } 333 334 return !!budget; 335 } 336 337 /** 338 * ice_setup_tx_ring - Allocate the Tx descriptors 339 * @tx_ring: the Tx ring to set up 340 * 341 * Return 0 on success, negative on error 342 */ 343 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 344 { 345 struct device *dev = tx_ring->dev; 346 u32 size; 347 348 if (!dev) 349 return -ENOMEM; 350 351 /* warn if we are about to overwrite the pointer */ 352 WARN_ON(tx_ring->tx_buf); 353 tx_ring->tx_buf = 354 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 355 GFP_KERNEL); 356 if (!tx_ring->tx_buf) 357 return -ENOMEM; 358 359 /* round up to nearest page */ 360 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 361 PAGE_SIZE); 362 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 363 GFP_KERNEL); 364 if (!tx_ring->desc) { 365 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 366 size); 367 goto err; 368 } 369 370 tx_ring->next_to_use = 0; 371 tx_ring->next_to_clean = 0; 372 tx_ring->tx_stats.prev_pkt = -1; 373 return 0; 374 375 err: 376 devm_kfree(dev, tx_ring->tx_buf); 377 tx_ring->tx_buf = NULL; 378 return -ENOMEM; 379 } 380 381 /** 382 * ice_clean_rx_ring - Free Rx buffers 383 * @rx_ring: ring to be cleaned 384 */ 385 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 386 { 387 struct device *dev = rx_ring->dev; 388 u32 size; 389 u16 i; 390 391 /* ring already cleared, nothing to do */ 392 if (!rx_ring->rx_buf) 393 return; 394 395 if (rx_ring->skb) { 396 dev_kfree_skb(rx_ring->skb); 397 rx_ring->skb = NULL; 398 } 399 400 if (rx_ring->xsk_pool) { 401 ice_xsk_clean_rx_ring(rx_ring); 402 goto rx_skip_free; 403 } 404 405 /* Free all the Rx ring sk_buffs */ 406 for (i = 0; i < rx_ring->count; i++) { 407 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 408 409 if (!rx_buf->page) 410 continue; 411 412 /* Invalidate cache lines that may have been written to by 413 * device so that we avoid corrupting memory. 414 */ 415 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 416 rx_buf->page_offset, 417 rx_ring->rx_buf_len, 418 DMA_FROM_DEVICE); 419 420 /* free resources associated with mapping */ 421 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 422 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 423 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 424 425 rx_buf->page = NULL; 426 rx_buf->page_offset = 0; 427 } 428 429 rx_skip_free: 430 if (rx_ring->xsk_pool) 431 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 432 else 433 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 434 435 /* Zero out the descriptor ring */ 436 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 437 PAGE_SIZE); 438 memset(rx_ring->desc, 0, size); 439 440 rx_ring->next_to_alloc = 0; 441 rx_ring->next_to_clean = 0; 442 rx_ring->next_to_use = 0; 443 } 444 445 /** 446 * ice_free_rx_ring - Free Rx resources 447 * @rx_ring: ring to clean the resources from 448 * 449 * Free all receive software resources 450 */ 451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 452 { 453 u32 size; 454 455 ice_clean_rx_ring(rx_ring); 456 if (rx_ring->vsi->type == ICE_VSI_PF) 457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 459 rx_ring->xdp_prog = NULL; 460 if (rx_ring->xsk_pool) { 461 kfree(rx_ring->xdp_buf); 462 rx_ring->xdp_buf = NULL; 463 } else { 464 kfree(rx_ring->rx_buf); 465 rx_ring->rx_buf = NULL; 466 } 467 468 if (rx_ring->desc) { 469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 470 PAGE_SIZE); 471 dmam_free_coherent(rx_ring->dev, size, 472 rx_ring->desc, rx_ring->dma); 473 rx_ring->desc = NULL; 474 } 475 } 476 477 /** 478 * ice_setup_rx_ring - Allocate the Rx descriptors 479 * @rx_ring: the Rx ring to set up 480 * 481 * Return 0 on success, negative on error 482 */ 483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 484 { 485 struct device *dev = rx_ring->dev; 486 u32 size; 487 488 if (!dev) 489 return -ENOMEM; 490 491 /* warn if we are about to overwrite the pointer */ 492 WARN_ON(rx_ring->rx_buf); 493 rx_ring->rx_buf = 494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 495 if (!rx_ring->rx_buf) 496 return -ENOMEM; 497 498 /* round up to nearest page */ 499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 500 PAGE_SIZE); 501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 502 GFP_KERNEL); 503 if (!rx_ring->desc) { 504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 505 size); 506 goto err; 507 } 508 509 rx_ring->next_to_use = 0; 510 rx_ring->next_to_clean = 0; 511 512 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 513 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 514 515 if (rx_ring->vsi->type == ICE_VSI_PF && 516 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 517 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 518 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 519 goto err; 520 return 0; 521 522 err: 523 kfree(rx_ring->rx_buf); 524 rx_ring->rx_buf = NULL; 525 return -ENOMEM; 526 } 527 528 static unsigned int 529 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) 530 { 531 unsigned int truesize; 532 533 #if (PAGE_SIZE < 8192) 534 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 535 #else 536 truesize = rx_ring->rx_offset ? 537 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 538 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 539 SKB_DATA_ALIGN(size); 540 #endif 541 return truesize; 542 } 543 544 /** 545 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 546 * @rx_ring: Rx ring 547 * @xdp: xdp_buff used as input to the XDP program 548 * @xdp_prog: XDP program to run 549 * @xdp_ring: ring to be used for XDP_TX action 550 * 551 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 552 */ 553 static int 554 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 555 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 556 { 557 int err; 558 u32 act; 559 560 act = bpf_prog_run_xdp(xdp_prog, xdp); 561 switch (act) { 562 case XDP_PASS: 563 return ICE_XDP_PASS; 564 case XDP_TX: 565 if (static_branch_unlikely(&ice_xdp_locking_key)) 566 spin_lock(&xdp_ring->tx_lock); 567 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); 568 if (static_branch_unlikely(&ice_xdp_locking_key)) 569 spin_unlock(&xdp_ring->tx_lock); 570 if (err == ICE_XDP_CONSUMED) 571 goto out_failure; 572 return err; 573 case XDP_REDIRECT: 574 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 575 if (err) 576 goto out_failure; 577 return ICE_XDP_REDIR; 578 default: 579 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 580 fallthrough; 581 case XDP_ABORTED: 582 out_failure: 583 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 584 fallthrough; 585 case XDP_DROP: 586 return ICE_XDP_CONSUMED; 587 } 588 } 589 590 /** 591 * ice_xdp_xmit - submit packets to XDP ring for transmission 592 * @dev: netdev 593 * @n: number of XDP frames to be transmitted 594 * @frames: XDP frames to be transmitted 595 * @flags: transmit flags 596 * 597 * Returns number of frames successfully sent. Failed frames 598 * will be free'ed by XDP core. 599 * For error cases, a negative errno code is returned and no-frames 600 * are transmitted (caller must handle freeing frames). 601 */ 602 int 603 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 604 u32 flags) 605 { 606 struct ice_netdev_priv *np = netdev_priv(dev); 607 unsigned int queue_index = smp_processor_id(); 608 struct ice_vsi *vsi = np->vsi; 609 struct ice_tx_ring *xdp_ring; 610 int nxmit = 0, i; 611 612 if (test_bit(ICE_VSI_DOWN, vsi->state)) 613 return -ENETDOWN; 614 615 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 616 return -ENXIO; 617 618 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 619 return -EINVAL; 620 621 if (static_branch_unlikely(&ice_xdp_locking_key)) { 622 queue_index %= vsi->num_xdp_txq; 623 xdp_ring = vsi->xdp_rings[queue_index]; 624 spin_lock(&xdp_ring->tx_lock); 625 } else { 626 xdp_ring = vsi->xdp_rings[queue_index]; 627 } 628 629 for (i = 0; i < n; i++) { 630 struct xdp_frame *xdpf = frames[i]; 631 int err; 632 633 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 634 if (err != ICE_XDP_TX) 635 break; 636 nxmit++; 637 } 638 639 if (unlikely(flags & XDP_XMIT_FLUSH)) 640 ice_xdp_ring_update_tail(xdp_ring); 641 642 if (static_branch_unlikely(&ice_xdp_locking_key)) 643 spin_unlock(&xdp_ring->tx_lock); 644 645 return nxmit; 646 } 647 648 /** 649 * ice_alloc_mapped_page - recycle or make a new page 650 * @rx_ring: ring to use 651 * @bi: rx_buf struct to modify 652 * 653 * Returns true if the page was successfully allocated or 654 * reused. 655 */ 656 static bool 657 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 658 { 659 struct page *page = bi->page; 660 dma_addr_t dma; 661 662 /* since we are recycling buffers we should seldom need to alloc */ 663 if (likely(page)) 664 return true; 665 666 /* alloc new page for storage */ 667 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 668 if (unlikely(!page)) { 669 rx_ring->rx_stats.alloc_page_failed++; 670 return false; 671 } 672 673 /* map page for use */ 674 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 675 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 676 677 /* if mapping failed free memory back to system since 678 * there isn't much point in holding memory we can't use 679 */ 680 if (dma_mapping_error(rx_ring->dev, dma)) { 681 __free_pages(page, ice_rx_pg_order(rx_ring)); 682 rx_ring->rx_stats.alloc_page_failed++; 683 return false; 684 } 685 686 bi->dma = dma; 687 bi->page = page; 688 bi->page_offset = rx_ring->rx_offset; 689 page_ref_add(page, USHRT_MAX - 1); 690 bi->pagecnt_bias = USHRT_MAX; 691 692 return true; 693 } 694 695 /** 696 * ice_alloc_rx_bufs - Replace used receive buffers 697 * @rx_ring: ring to place buffers on 698 * @cleaned_count: number of buffers to replace 699 * 700 * Returns false if all allocations were successful, true if any fail. Returning 701 * true signals to the caller that we didn't replace cleaned_count buffers and 702 * there is more work to do. 703 * 704 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 705 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 706 * multiple tail writes per call. 707 */ 708 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) 709 { 710 union ice_32b_rx_flex_desc *rx_desc; 711 u16 ntu = rx_ring->next_to_use; 712 struct ice_rx_buf *bi; 713 714 /* do nothing if no valid netdev defined */ 715 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 716 !cleaned_count) 717 return false; 718 719 /* get the Rx descriptor and buffer based on next_to_use */ 720 rx_desc = ICE_RX_DESC(rx_ring, ntu); 721 bi = &rx_ring->rx_buf[ntu]; 722 723 do { 724 /* if we fail here, we have work remaining */ 725 if (!ice_alloc_mapped_page(rx_ring, bi)) 726 break; 727 728 /* sync the buffer for use by the device */ 729 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 730 bi->page_offset, 731 rx_ring->rx_buf_len, 732 DMA_FROM_DEVICE); 733 734 /* Refresh the desc even if buffer_addrs didn't change 735 * because each write-back erases this info. 736 */ 737 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 738 739 rx_desc++; 740 bi++; 741 ntu++; 742 if (unlikely(ntu == rx_ring->count)) { 743 rx_desc = ICE_RX_DESC(rx_ring, 0); 744 bi = rx_ring->rx_buf; 745 ntu = 0; 746 } 747 748 /* clear the status bits for the next_to_use descriptor */ 749 rx_desc->wb.status_error0 = 0; 750 751 cleaned_count--; 752 } while (cleaned_count); 753 754 if (rx_ring->next_to_use != ntu) 755 ice_release_rx_desc(rx_ring, ntu); 756 757 return !!cleaned_count; 758 } 759 760 /** 761 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 762 * @rx_buf: Rx buffer to adjust 763 * @size: Size of adjustment 764 * 765 * Update the offset within page so that Rx buf will be ready to be reused. 766 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 767 * so the second half of page assigned to Rx buffer will be used, otherwise 768 * the offset is moved by "size" bytes 769 */ 770 static void 771 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 772 { 773 #if (PAGE_SIZE < 8192) 774 /* flip page offset to other buffer */ 775 rx_buf->page_offset ^= size; 776 #else 777 /* move offset up to the next cache line */ 778 rx_buf->page_offset += size; 779 #endif 780 } 781 782 /** 783 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 784 * @rx_buf: buffer containing the page 785 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 786 * 787 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 788 * which will assign the current buffer to the buffer that next_to_alloc is 789 * pointing to; otherwise, the DMA mapping needs to be destroyed and 790 * page freed 791 */ 792 static bool 793 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 794 { 795 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 796 struct page *page = rx_buf->page; 797 798 /* avoid re-using remote and pfmemalloc pages */ 799 if (!dev_page_is_reusable(page)) 800 return false; 801 802 #if (PAGE_SIZE < 8192) 803 /* if we are only owner of page we can reuse it */ 804 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 805 return false; 806 #else 807 #define ICE_LAST_OFFSET \ 808 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 809 if (rx_buf->page_offset > ICE_LAST_OFFSET) 810 return false; 811 #endif /* PAGE_SIZE < 8192) */ 812 813 /* If we have drained the page fragment pool we need to update 814 * the pagecnt_bias and page count so that we fully restock the 815 * number of references the driver holds. 816 */ 817 if (unlikely(pagecnt_bias == 1)) { 818 page_ref_add(page, USHRT_MAX - 1); 819 rx_buf->pagecnt_bias = USHRT_MAX; 820 } 821 822 return true; 823 } 824 825 /** 826 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 827 * @rx_ring: Rx descriptor ring to transact packets on 828 * @rx_buf: buffer containing page to add 829 * @skb: sk_buff to place the data into 830 * @size: packet length from rx_desc 831 * 832 * This function will add the data contained in rx_buf->page to the skb. 833 * It will just attach the page as a frag to the skb. 834 * The function will then update the page offset. 835 */ 836 static void 837 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 838 struct sk_buff *skb, unsigned int size) 839 { 840 #if (PAGE_SIZE >= 8192) 841 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 842 #else 843 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 844 #endif 845 846 if (!size) 847 return; 848 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 849 rx_buf->page_offset, size, truesize); 850 851 /* page is being used so we must update the page offset */ 852 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 853 } 854 855 /** 856 * ice_reuse_rx_page - page flip buffer and store it back on the ring 857 * @rx_ring: Rx descriptor ring to store buffers on 858 * @old_buf: donor buffer to have page reused 859 * 860 * Synchronizes page for reuse by the adapter 861 */ 862 static void 863 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 864 { 865 u16 nta = rx_ring->next_to_alloc; 866 struct ice_rx_buf *new_buf; 867 868 new_buf = &rx_ring->rx_buf[nta]; 869 870 /* update, and store next to alloc */ 871 nta++; 872 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 873 874 /* Transfer page from old buffer to new buffer. 875 * Move each member individually to avoid possible store 876 * forwarding stalls and unnecessary copy of skb. 877 */ 878 new_buf->dma = old_buf->dma; 879 new_buf->page = old_buf->page; 880 new_buf->page_offset = old_buf->page_offset; 881 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 882 } 883 884 /** 885 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 886 * @rx_ring: Rx descriptor ring to transact packets on 887 * @size: size of buffer to add to skb 888 * @rx_buf_pgcnt: rx_buf page refcount 889 * 890 * This function will pull an Rx buffer from the ring and synchronize it 891 * for use by the CPU. 892 */ 893 static struct ice_rx_buf * 894 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 895 int *rx_buf_pgcnt) 896 { 897 struct ice_rx_buf *rx_buf; 898 899 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 900 *rx_buf_pgcnt = 901 #if (PAGE_SIZE < 8192) 902 page_count(rx_buf->page); 903 #else 904 0; 905 #endif 906 prefetchw(rx_buf->page); 907 908 if (!size) 909 return rx_buf; 910 /* we are reusing so sync this buffer for CPU use */ 911 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 912 rx_buf->page_offset, size, 913 DMA_FROM_DEVICE); 914 915 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 916 rx_buf->pagecnt_bias--; 917 918 return rx_buf; 919 } 920 921 /** 922 * ice_build_skb - Build skb around an existing buffer 923 * @rx_ring: Rx descriptor ring to transact packets on 924 * @rx_buf: Rx buffer to pull data from 925 * @xdp: xdp_buff pointing to the data 926 * 927 * This function builds an skb around an existing Rx buffer, taking care 928 * to set up the skb correctly and avoid any memcpy overhead. 929 */ 930 static struct sk_buff * 931 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 932 struct xdp_buff *xdp) 933 { 934 u8 metasize = xdp->data - xdp->data_meta; 935 #if (PAGE_SIZE < 8192) 936 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 937 #else 938 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 939 SKB_DATA_ALIGN(xdp->data_end - 940 xdp->data_hard_start); 941 #endif 942 struct sk_buff *skb; 943 944 /* Prefetch first cache line of first page. If xdp->data_meta 945 * is unused, this points exactly as xdp->data, otherwise we 946 * likely have a consumer accessing first few bytes of meta 947 * data, and then actual data. 948 */ 949 net_prefetch(xdp->data_meta); 950 /* build an skb around the page buffer */ 951 skb = napi_build_skb(xdp->data_hard_start, truesize); 952 if (unlikely(!skb)) 953 return NULL; 954 955 /* must to record Rx queue, otherwise OS features such as 956 * symmetric queue won't work 957 */ 958 skb_record_rx_queue(skb, rx_ring->q_index); 959 960 /* update pointers within the skb to store the data */ 961 skb_reserve(skb, xdp->data - xdp->data_hard_start); 962 __skb_put(skb, xdp->data_end - xdp->data); 963 if (metasize) 964 skb_metadata_set(skb, metasize); 965 966 /* buffer is used by skb, update page_offset */ 967 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 968 969 return skb; 970 } 971 972 /** 973 * ice_construct_skb - Allocate skb and populate it 974 * @rx_ring: Rx descriptor ring to transact packets on 975 * @rx_buf: Rx buffer to pull data from 976 * @xdp: xdp_buff pointing to the data 977 * 978 * This function allocates an skb. It then populates it with the page 979 * data from the current receive descriptor, taking care to set up the 980 * skb correctly. 981 */ 982 static struct sk_buff * 983 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 984 struct xdp_buff *xdp) 985 { 986 unsigned int size = xdp->data_end - xdp->data; 987 unsigned int headlen; 988 struct sk_buff *skb; 989 990 /* prefetch first cache line of first page */ 991 net_prefetch(xdp->data); 992 993 /* allocate a skb to store the frags */ 994 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 995 GFP_ATOMIC | __GFP_NOWARN); 996 if (unlikely(!skb)) 997 return NULL; 998 999 skb_record_rx_queue(skb, rx_ring->q_index); 1000 /* Determine available headroom for copy */ 1001 headlen = size; 1002 if (headlen > ICE_RX_HDR_SIZE) 1003 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1004 1005 /* align pull length to size of long to optimize memcpy performance */ 1006 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 1007 sizeof(long))); 1008 1009 /* if we exhaust the linear part then add what is left as a frag */ 1010 size -= headlen; 1011 if (size) { 1012 #if (PAGE_SIZE >= 8192) 1013 unsigned int truesize = SKB_DATA_ALIGN(size); 1014 #else 1015 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 1016 #endif 1017 skb_add_rx_frag(skb, 0, rx_buf->page, 1018 rx_buf->page_offset + headlen, size, truesize); 1019 /* buffer is used by skb, update page_offset */ 1020 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1021 } else { 1022 /* buffer is unused, reset bias back to rx_buf; data was copied 1023 * onto skb's linear part so there's no need for adjusting 1024 * page offset and we can reuse this buffer as-is 1025 */ 1026 rx_buf->pagecnt_bias++; 1027 } 1028 1029 return skb; 1030 } 1031 1032 /** 1033 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1034 * @rx_ring: Rx descriptor ring to transact packets on 1035 * @rx_buf: Rx buffer to pull data from 1036 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1037 * 1038 * This function will update next_to_clean and then clean up the contents 1039 * of the rx_buf. It will either recycle the buffer or unmap it and free 1040 * the associated resources. 1041 */ 1042 static void 1043 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 1044 int rx_buf_pgcnt) 1045 { 1046 u16 ntc = rx_ring->next_to_clean + 1; 1047 1048 /* fetch, update, and store next to clean */ 1049 ntc = (ntc < rx_ring->count) ? ntc : 0; 1050 rx_ring->next_to_clean = ntc; 1051 1052 if (!rx_buf) 1053 return; 1054 1055 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1056 /* hand second half of page back to the ring */ 1057 ice_reuse_rx_page(rx_ring, rx_buf); 1058 } else { 1059 /* we are not reusing the buffer so unmap it */ 1060 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1061 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1062 ICE_RX_DMA_ATTR); 1063 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1064 } 1065 1066 /* clear contents of buffer_info */ 1067 rx_buf->page = NULL; 1068 } 1069 1070 /** 1071 * ice_is_non_eop - process handling of non-EOP buffers 1072 * @rx_ring: Rx ring being processed 1073 * @rx_desc: Rx descriptor for current buffer 1074 * 1075 * If the buffer is an EOP buffer, this function exits returning false, 1076 * otherwise return true indicating that this is in fact a non-EOP buffer. 1077 */ 1078 static bool 1079 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1080 { 1081 /* if we are the last buffer then there is nothing else to do */ 1082 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1083 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1084 return false; 1085 1086 rx_ring->rx_stats.non_eop_descs++; 1087 1088 return true; 1089 } 1090 1091 /** 1092 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1093 * @rx_ring: Rx descriptor ring to transact packets on 1094 * @budget: Total limit on number of packets to process 1095 * 1096 * This function provides a "bounce buffer" approach to Rx interrupt 1097 * processing. The advantage to this is that on systems that have 1098 * expensive overhead for IOMMU access this provides a means of avoiding 1099 * it by maintaining the mapping of the page to the system. 1100 * 1101 * Returns amount of work completed 1102 */ 1103 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1104 { 1105 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1106 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1107 unsigned int offset = rx_ring->rx_offset; 1108 struct ice_tx_ring *xdp_ring = NULL; 1109 unsigned int xdp_res, xdp_xmit = 0; 1110 struct sk_buff *skb = rx_ring->skb; 1111 struct bpf_prog *xdp_prog = NULL; 1112 struct xdp_buff xdp; 1113 bool failure; 1114 1115 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1116 #if (PAGE_SIZE < 8192) 1117 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1118 #endif 1119 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1120 1121 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1122 if (xdp_prog) 1123 xdp_ring = rx_ring->xdp_ring; 1124 1125 /* start the loop to process Rx packets bounded by 'budget' */ 1126 while (likely(total_rx_pkts < (unsigned int)budget)) { 1127 union ice_32b_rx_flex_desc *rx_desc; 1128 struct ice_rx_buf *rx_buf; 1129 unsigned char *hard_start; 1130 unsigned int size; 1131 u16 stat_err_bits; 1132 int rx_buf_pgcnt; 1133 u16 vlan_tag = 0; 1134 u16 rx_ptype; 1135 1136 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1137 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1138 1139 /* status_error_len will always be zero for unused descriptors 1140 * because it's cleared in cleanup, and overlaps with hdr_addr 1141 * which is always zero because packet split isn't used, if the 1142 * hardware wrote DD then it will be non-zero 1143 */ 1144 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1145 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1146 break; 1147 1148 /* This memory barrier is needed to keep us from reading 1149 * any other fields out of the rx_desc until we know the 1150 * DD bit is set. 1151 */ 1152 dma_rmb(); 1153 1154 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1155 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1156 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1157 1158 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1159 ctrl_vsi->vf_id != ICE_INVAL_VFID) 1160 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1161 ice_put_rx_buf(rx_ring, NULL, 0); 1162 cleaned_count++; 1163 continue; 1164 } 1165 1166 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1167 ICE_RX_FLX_DESC_PKT_LEN_M; 1168 1169 /* retrieve a buffer from the ring */ 1170 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1171 1172 if (!size) { 1173 xdp.data = NULL; 1174 xdp.data_end = NULL; 1175 xdp.data_hard_start = NULL; 1176 xdp.data_meta = NULL; 1177 goto construct_skb; 1178 } 1179 1180 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1181 offset; 1182 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1183 #if (PAGE_SIZE > 4096) 1184 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1185 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1186 #endif 1187 1188 if (!xdp_prog) 1189 goto construct_skb; 1190 1191 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); 1192 if (!xdp_res) 1193 goto construct_skb; 1194 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1195 xdp_xmit |= xdp_res; 1196 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1197 } else { 1198 rx_buf->pagecnt_bias++; 1199 } 1200 total_rx_bytes += size; 1201 total_rx_pkts++; 1202 1203 cleaned_count++; 1204 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1205 continue; 1206 construct_skb: 1207 if (skb) { 1208 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1209 } else if (likely(xdp.data)) { 1210 if (ice_ring_uses_build_skb(rx_ring)) 1211 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1212 else 1213 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1214 } 1215 /* exit if we failed to retrieve a buffer */ 1216 if (!skb) { 1217 rx_ring->rx_stats.alloc_buf_failed++; 1218 if (rx_buf) 1219 rx_buf->pagecnt_bias++; 1220 break; 1221 } 1222 1223 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1224 cleaned_count++; 1225 1226 /* skip if it is NOP desc */ 1227 if (ice_is_non_eop(rx_ring, rx_desc)) 1228 continue; 1229 1230 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1231 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1232 dev_kfree_skb_any(skb); 1233 continue; 1234 } 1235 1236 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1237 if (ice_test_staterr(rx_desc, stat_err_bits)) 1238 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1239 1240 /* pad the skb if needed, to make a valid ethernet frame */ 1241 if (eth_skb_pad(skb)) { 1242 skb = NULL; 1243 continue; 1244 } 1245 1246 /* probably a little skewed due to removing CRC */ 1247 total_rx_bytes += skb->len; 1248 1249 /* populate checksum, VLAN, and protocol */ 1250 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1251 ICE_RX_FLEX_DESC_PTYPE_M; 1252 1253 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1254 1255 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1256 /* send completed skb up the stack */ 1257 ice_receive_skb(rx_ring, skb, vlan_tag); 1258 skb = NULL; 1259 1260 /* update budget accounting */ 1261 total_rx_pkts++; 1262 } 1263 1264 /* return up to cleaned_count buffers to hardware */ 1265 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1266 1267 if (xdp_prog) 1268 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 1269 rx_ring->skb = skb; 1270 1271 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1272 1273 /* guarantee a trip back through this routine if there was a failure */ 1274 return failure ? budget : (int)total_rx_pkts; 1275 } 1276 1277 static void __ice_update_sample(struct ice_q_vector *q_vector, 1278 struct ice_ring_container *rc, 1279 struct dim_sample *sample, 1280 bool is_tx) 1281 { 1282 u64 packets = 0, bytes = 0; 1283 1284 if (is_tx) { 1285 struct ice_tx_ring *tx_ring; 1286 1287 ice_for_each_tx_ring(tx_ring, *rc) { 1288 packets += tx_ring->stats.pkts; 1289 bytes += tx_ring->stats.bytes; 1290 } 1291 } else { 1292 struct ice_rx_ring *rx_ring; 1293 1294 ice_for_each_rx_ring(rx_ring, *rc) { 1295 packets += rx_ring->stats.pkts; 1296 bytes += rx_ring->stats.bytes; 1297 } 1298 } 1299 1300 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1301 sample->comp_ctr = 0; 1302 1303 /* if dim settings get stale, like when not updated for 1 1304 * second or longer, force it to start again. This addresses the 1305 * frequent case of an idle queue being switched to by the 1306 * scheduler. The 1,000 here means 1,000 milliseconds. 1307 */ 1308 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1309 rc->dim.state = DIM_START_MEASURE; 1310 } 1311 1312 /** 1313 * ice_net_dim - Update net DIM algorithm 1314 * @q_vector: the vector associated with the interrupt 1315 * 1316 * Create a DIM sample and notify net_dim() so that it can possibly decide 1317 * a new ITR value based on incoming packets, bytes, and interrupts. 1318 * 1319 * This function is a no-op if the ring is not configured to dynamic ITR. 1320 */ 1321 static void ice_net_dim(struct ice_q_vector *q_vector) 1322 { 1323 struct ice_ring_container *tx = &q_vector->tx; 1324 struct ice_ring_container *rx = &q_vector->rx; 1325 1326 if (ITR_IS_DYNAMIC(tx)) { 1327 struct dim_sample dim_sample; 1328 1329 __ice_update_sample(q_vector, tx, &dim_sample, true); 1330 net_dim(&tx->dim, dim_sample); 1331 } 1332 1333 if (ITR_IS_DYNAMIC(rx)) { 1334 struct dim_sample dim_sample; 1335 1336 __ice_update_sample(q_vector, rx, &dim_sample, false); 1337 net_dim(&rx->dim, dim_sample); 1338 } 1339 } 1340 1341 /** 1342 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1343 * @itr_idx: interrupt throttling index 1344 * @itr: interrupt throttling value in usecs 1345 */ 1346 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1347 { 1348 /* The ITR value is reported in microseconds, and the register value is 1349 * recorded in 2 microsecond units. For this reason we only need to 1350 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1351 * granularity as a shift instead of division. The mask makes sure the 1352 * ITR value is never odd so we don't accidentally write into the field 1353 * prior to the ITR field. 1354 */ 1355 itr &= ICE_ITR_MASK; 1356 1357 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1358 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1359 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1360 } 1361 1362 /** 1363 * ice_enable_interrupt - re-enable MSI-X interrupt 1364 * @q_vector: the vector associated with the interrupt to enable 1365 * 1366 * If the VSI is down, the interrupt will not be re-enabled. Also, 1367 * when enabling the interrupt always reset the wb_on_itr to false 1368 * and trigger a software interrupt to clean out internal state. 1369 */ 1370 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1371 { 1372 struct ice_vsi *vsi = q_vector->vsi; 1373 bool wb_en = q_vector->wb_on_itr; 1374 u32 itr_val; 1375 1376 if (test_bit(ICE_DOWN, vsi->state)) 1377 return; 1378 1379 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1380 * make sure to catch any pending cleanups that might have been missed 1381 * due to interrupt state transition. If busy poll or poll isn't 1382 * enabled, then don't update ITR, and just enable the interrupt. 1383 */ 1384 if (!wb_en) { 1385 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1386 } else { 1387 q_vector->wb_on_itr = false; 1388 1389 /* do two things here with a single write. Set up the third ITR 1390 * index to be used for software interrupt moderation, and then 1391 * trigger a software interrupt with a rate limit of 20K on 1392 * software interrupts, this will help avoid high interrupt 1393 * loads due to frequently polling and exiting polling. 1394 */ 1395 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1396 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1397 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1398 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1399 } 1400 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1401 } 1402 1403 /** 1404 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1405 * @q_vector: q_vector to set WB_ON_ITR on 1406 * 1407 * We need to tell hardware to write-back completed descriptors even when 1408 * interrupts are disabled. Descriptors will be written back on cache line 1409 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1410 * descriptors may not be written back if they don't fill a cache line until 1411 * the next interrupt. 1412 * 1413 * This sets the write-back frequency to whatever was set previously for the 1414 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1415 * aren't meddling with the INTENA_M bit. 1416 */ 1417 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1418 { 1419 struct ice_vsi *vsi = q_vector->vsi; 1420 1421 /* already in wb_on_itr mode no need to change it */ 1422 if (q_vector->wb_on_itr) 1423 return; 1424 1425 /* use previously set ITR values for all of the ITR indices by 1426 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1427 * be static in non-adaptive mode (user configured) 1428 */ 1429 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1430 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1431 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1432 GLINT_DYN_CTL_WB_ON_ITR_M); 1433 1434 q_vector->wb_on_itr = true; 1435 } 1436 1437 /** 1438 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1439 * @napi: napi struct with our devices info in it 1440 * @budget: amount of work driver is allowed to do this pass, in packets 1441 * 1442 * This function will clean all queues associated with a q_vector. 1443 * 1444 * Returns the amount of work done 1445 */ 1446 int ice_napi_poll(struct napi_struct *napi, int budget) 1447 { 1448 struct ice_q_vector *q_vector = 1449 container_of(napi, struct ice_q_vector, napi); 1450 struct ice_tx_ring *tx_ring; 1451 struct ice_rx_ring *rx_ring; 1452 bool clean_complete = true; 1453 int budget_per_ring; 1454 int work_done = 0; 1455 1456 /* Since the actual Tx work is minimal, we can give the Tx a larger 1457 * budget and be more aggressive about cleaning up the Tx descriptors. 1458 */ 1459 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1460 bool wd; 1461 1462 if (tx_ring->xsk_pool) 1463 wd = ice_clean_tx_irq_zc(tx_ring, budget); 1464 else if (ice_ring_is_xdp(tx_ring)) 1465 wd = true; 1466 else 1467 wd = ice_clean_tx_irq(tx_ring, budget); 1468 1469 if (!wd) 1470 clean_complete = false; 1471 } 1472 1473 /* Handle case where we are called by netpoll with a budget of 0 */ 1474 if (unlikely(budget <= 0)) 1475 return budget; 1476 1477 /* normally we have 1 Rx ring per q_vector */ 1478 if (unlikely(q_vector->num_ring_rx > 1)) 1479 /* We attempt to distribute budget to each Rx queue fairly, but 1480 * don't allow the budget to go below 1 because that would exit 1481 * polling early. 1482 */ 1483 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1484 else 1485 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1486 budget_per_ring = budget; 1487 1488 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1489 int cleaned; 1490 1491 /* A dedicated path for zero-copy allows making a single 1492 * comparison in the irq context instead of many inside the 1493 * ice_clean_rx_irq function and makes the codebase cleaner. 1494 */ 1495 cleaned = rx_ring->xsk_pool ? 1496 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1497 ice_clean_rx_irq(rx_ring, budget_per_ring); 1498 work_done += cleaned; 1499 /* if we clean as many as budgeted, we must not be done */ 1500 if (cleaned >= budget_per_ring) 1501 clean_complete = false; 1502 } 1503 1504 /* If work not completed, return budget and polling will return */ 1505 if (!clean_complete) { 1506 /* Set the writeback on ITR so partial completions of 1507 * cache-lines will still continue even if we're polling. 1508 */ 1509 ice_set_wb_on_itr(q_vector); 1510 return budget; 1511 } 1512 1513 /* Exit the polling mode, but don't re-enable interrupts if stack might 1514 * poll us due to busy-polling 1515 */ 1516 if (likely(napi_complete_done(napi, work_done))) { 1517 ice_net_dim(q_vector); 1518 ice_enable_interrupt(q_vector); 1519 } else { 1520 ice_set_wb_on_itr(q_vector); 1521 } 1522 1523 return min_t(int, work_done, budget - 1); 1524 } 1525 1526 /** 1527 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1528 * @tx_ring: the ring to be checked 1529 * @size: the size buffer we want to assure is available 1530 * 1531 * Returns -EBUSY if a stop is needed, else 0 1532 */ 1533 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1534 { 1535 netif_tx_stop_queue(txring_txq(tx_ring)); 1536 /* Memory barrier before checking head and tail */ 1537 smp_mb(); 1538 1539 /* Check again in a case another CPU has just made room available. */ 1540 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1541 return -EBUSY; 1542 1543 /* A reprieve! - use start_queue because it doesn't call schedule */ 1544 netif_tx_start_queue(txring_txq(tx_ring)); 1545 ++tx_ring->tx_stats.restart_q; 1546 return 0; 1547 } 1548 1549 /** 1550 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1551 * @tx_ring: the ring to be checked 1552 * @size: the size buffer we want to assure is available 1553 * 1554 * Returns 0 if stop is not needed 1555 */ 1556 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1557 { 1558 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1559 return 0; 1560 1561 return __ice_maybe_stop_tx(tx_ring, size); 1562 } 1563 1564 /** 1565 * ice_tx_map - Build the Tx descriptor 1566 * @tx_ring: ring to send buffer on 1567 * @first: first buffer info buffer to use 1568 * @off: pointer to struct that holds offload parameters 1569 * 1570 * This function loops over the skb data pointed to by *first 1571 * and gets a physical address for each memory location and programs 1572 * it and the length into the transmit descriptor. 1573 */ 1574 static void 1575 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1576 struct ice_tx_offload_params *off) 1577 { 1578 u64 td_offset, td_tag, td_cmd; 1579 u16 i = tx_ring->next_to_use; 1580 unsigned int data_len, size; 1581 struct ice_tx_desc *tx_desc; 1582 struct ice_tx_buf *tx_buf; 1583 struct sk_buff *skb; 1584 skb_frag_t *frag; 1585 dma_addr_t dma; 1586 bool kick; 1587 1588 td_tag = off->td_l2tag1; 1589 td_cmd = off->td_cmd; 1590 td_offset = off->td_offset; 1591 skb = first->skb; 1592 1593 data_len = skb->data_len; 1594 size = skb_headlen(skb); 1595 1596 tx_desc = ICE_TX_DESC(tx_ring, i); 1597 1598 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1599 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1600 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1601 ICE_TX_FLAGS_VLAN_S; 1602 } 1603 1604 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1605 1606 tx_buf = first; 1607 1608 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1609 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1610 1611 if (dma_mapping_error(tx_ring->dev, dma)) 1612 goto dma_error; 1613 1614 /* record length, and DMA address */ 1615 dma_unmap_len_set(tx_buf, len, size); 1616 dma_unmap_addr_set(tx_buf, dma, dma); 1617 1618 /* align size to end of page */ 1619 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1620 tx_desc->buf_addr = cpu_to_le64(dma); 1621 1622 /* account for data chunks larger than the hardware 1623 * can handle 1624 */ 1625 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1626 tx_desc->cmd_type_offset_bsz = 1627 ice_build_ctob(td_cmd, td_offset, max_data, 1628 td_tag); 1629 1630 tx_desc++; 1631 i++; 1632 1633 if (i == tx_ring->count) { 1634 tx_desc = ICE_TX_DESC(tx_ring, 0); 1635 i = 0; 1636 } 1637 1638 dma += max_data; 1639 size -= max_data; 1640 1641 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1642 tx_desc->buf_addr = cpu_to_le64(dma); 1643 } 1644 1645 if (likely(!data_len)) 1646 break; 1647 1648 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1649 size, td_tag); 1650 1651 tx_desc++; 1652 i++; 1653 1654 if (i == tx_ring->count) { 1655 tx_desc = ICE_TX_DESC(tx_ring, 0); 1656 i = 0; 1657 } 1658 1659 size = skb_frag_size(frag); 1660 data_len -= size; 1661 1662 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1663 DMA_TO_DEVICE); 1664 1665 tx_buf = &tx_ring->tx_buf[i]; 1666 } 1667 1668 /* record SW timestamp if HW timestamp is not available */ 1669 skb_tx_timestamp(first->skb); 1670 1671 i++; 1672 if (i == tx_ring->count) 1673 i = 0; 1674 1675 /* write last descriptor with RS and EOP bits */ 1676 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1677 tx_desc->cmd_type_offset_bsz = 1678 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1679 1680 /* Force memory writes to complete before letting h/w know there 1681 * are new descriptors to fetch. 1682 * 1683 * We also use this memory barrier to make certain all of the 1684 * status bits have been updated before next_to_watch is written. 1685 */ 1686 wmb(); 1687 1688 /* set next_to_watch value indicating a packet is present */ 1689 first->next_to_watch = tx_desc; 1690 1691 tx_ring->next_to_use = i; 1692 1693 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1694 1695 /* notify HW of packet */ 1696 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1697 netdev_xmit_more()); 1698 if (kick) 1699 /* notify HW of packet */ 1700 writel(i, tx_ring->tail); 1701 1702 return; 1703 1704 dma_error: 1705 /* clear DMA mappings for failed tx_buf map */ 1706 for (;;) { 1707 tx_buf = &tx_ring->tx_buf[i]; 1708 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1709 if (tx_buf == first) 1710 break; 1711 if (i == 0) 1712 i = tx_ring->count; 1713 i--; 1714 } 1715 1716 tx_ring->next_to_use = i; 1717 } 1718 1719 /** 1720 * ice_tx_csum - Enable Tx checksum offloads 1721 * @first: pointer to the first descriptor 1722 * @off: pointer to struct that holds offload parameters 1723 * 1724 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1725 */ 1726 static 1727 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1728 { 1729 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1730 struct sk_buff *skb = first->skb; 1731 union { 1732 struct iphdr *v4; 1733 struct ipv6hdr *v6; 1734 unsigned char *hdr; 1735 } ip; 1736 union { 1737 struct tcphdr *tcp; 1738 unsigned char *hdr; 1739 } l4; 1740 __be16 frag_off, protocol; 1741 unsigned char *exthdr; 1742 u32 offset, cmd = 0; 1743 u8 l4_proto = 0; 1744 1745 if (skb->ip_summed != CHECKSUM_PARTIAL) 1746 return 0; 1747 1748 ip.hdr = skb_network_header(skb); 1749 l4.hdr = skb_transport_header(skb); 1750 1751 /* compute outer L2 header size */ 1752 l2_len = ip.hdr - skb->data; 1753 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1754 1755 protocol = vlan_get_protocol(skb); 1756 1757 if (protocol == htons(ETH_P_IP)) 1758 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1759 else if (protocol == htons(ETH_P_IPV6)) 1760 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1761 1762 if (skb->encapsulation) { 1763 bool gso_ena = false; 1764 u32 tunnel = 0; 1765 1766 /* define outer network header type */ 1767 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1768 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1769 ICE_TX_CTX_EIPT_IPV4 : 1770 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1771 l4_proto = ip.v4->protocol; 1772 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1773 int ret; 1774 1775 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1776 exthdr = ip.hdr + sizeof(*ip.v6); 1777 l4_proto = ip.v6->nexthdr; 1778 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1779 &l4_proto, &frag_off); 1780 if (ret < 0) 1781 return -1; 1782 } 1783 1784 /* define outer transport */ 1785 switch (l4_proto) { 1786 case IPPROTO_UDP: 1787 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1788 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1789 break; 1790 case IPPROTO_GRE: 1791 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1792 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1793 break; 1794 case IPPROTO_IPIP: 1795 case IPPROTO_IPV6: 1796 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1797 l4.hdr = skb_inner_network_header(skb); 1798 break; 1799 default: 1800 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1801 return -1; 1802 1803 skb_checksum_help(skb); 1804 return 0; 1805 } 1806 1807 /* compute outer L3 header size */ 1808 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1809 ICE_TXD_CTX_QW0_EIPLEN_S; 1810 1811 /* switch IP header pointer from outer to inner header */ 1812 ip.hdr = skb_inner_network_header(skb); 1813 1814 /* compute tunnel header size */ 1815 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1816 ICE_TXD_CTX_QW0_NATLEN_S; 1817 1818 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1819 /* indicate if we need to offload outer UDP header */ 1820 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1821 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1822 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1823 1824 /* record tunnel offload values */ 1825 off->cd_tunnel_params |= tunnel; 1826 1827 /* set DTYP=1 to indicate that it's an Tx context descriptor 1828 * in IPsec tunnel mode with Tx offloads in Quad word 1 1829 */ 1830 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1831 1832 /* switch L4 header pointer from outer to inner */ 1833 l4.hdr = skb_inner_transport_header(skb); 1834 l4_proto = 0; 1835 1836 /* reset type as we transition from outer to inner headers */ 1837 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1838 if (ip.v4->version == 4) 1839 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1840 if (ip.v6->version == 6) 1841 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1842 } 1843 1844 /* Enable IP checksum offloads */ 1845 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1846 l4_proto = ip.v4->protocol; 1847 /* the stack computes the IP header already, the only time we 1848 * need the hardware to recompute it is in the case of TSO. 1849 */ 1850 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1851 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1852 else 1853 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1854 1855 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1856 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1857 exthdr = ip.hdr + sizeof(*ip.v6); 1858 l4_proto = ip.v6->nexthdr; 1859 if (l4.hdr != exthdr) 1860 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1861 &frag_off); 1862 } else { 1863 return -1; 1864 } 1865 1866 /* compute inner L3 header size */ 1867 l3_len = l4.hdr - ip.hdr; 1868 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1869 1870 /* Enable L4 checksum offloads */ 1871 switch (l4_proto) { 1872 case IPPROTO_TCP: 1873 /* enable checksum offloads */ 1874 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1875 l4_len = l4.tcp->doff; 1876 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1877 break; 1878 case IPPROTO_UDP: 1879 /* enable UDP checksum offload */ 1880 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1881 l4_len = (sizeof(struct udphdr) >> 2); 1882 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1883 break; 1884 case IPPROTO_SCTP: 1885 /* enable SCTP checksum offload */ 1886 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1887 l4_len = sizeof(struct sctphdr) >> 2; 1888 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1889 break; 1890 1891 default: 1892 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1893 return -1; 1894 skb_checksum_help(skb); 1895 return 0; 1896 } 1897 1898 off->td_cmd |= cmd; 1899 off->td_offset |= offset; 1900 return 1; 1901 } 1902 1903 /** 1904 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1905 * @tx_ring: ring to send buffer on 1906 * @first: pointer to struct ice_tx_buf 1907 * 1908 * Checks the skb and set up correspondingly several generic transmit flags 1909 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1910 */ 1911 static void 1912 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1913 { 1914 struct sk_buff *skb = first->skb; 1915 1916 /* nothing left to do, software offloaded VLAN */ 1917 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1918 return; 1919 1920 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 1921 * insertion for 802.1AD is not supported 1922 */ 1923 if (skb_vlan_tag_present(skb)) { 1924 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1925 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1926 } 1927 1928 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1929 } 1930 1931 /** 1932 * ice_tso - computes mss and TSO length to prepare for TSO 1933 * @first: pointer to struct ice_tx_buf 1934 * @off: pointer to struct that holds offload parameters 1935 * 1936 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1937 */ 1938 static 1939 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1940 { 1941 struct sk_buff *skb = first->skb; 1942 union { 1943 struct iphdr *v4; 1944 struct ipv6hdr *v6; 1945 unsigned char *hdr; 1946 } ip; 1947 union { 1948 struct tcphdr *tcp; 1949 struct udphdr *udp; 1950 unsigned char *hdr; 1951 } l4; 1952 u64 cd_mss, cd_tso_len; 1953 u32 paylen; 1954 u8 l4_start; 1955 int err; 1956 1957 if (skb->ip_summed != CHECKSUM_PARTIAL) 1958 return 0; 1959 1960 if (!skb_is_gso(skb)) 1961 return 0; 1962 1963 err = skb_cow_head(skb, 0); 1964 if (err < 0) 1965 return err; 1966 1967 /* cppcheck-suppress unreadVariable */ 1968 ip.hdr = skb_network_header(skb); 1969 l4.hdr = skb_transport_header(skb); 1970 1971 /* initialize outer IP header fields */ 1972 if (ip.v4->version == 4) { 1973 ip.v4->tot_len = 0; 1974 ip.v4->check = 0; 1975 } else { 1976 ip.v6->payload_len = 0; 1977 } 1978 1979 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1980 SKB_GSO_GRE_CSUM | 1981 SKB_GSO_IPXIP4 | 1982 SKB_GSO_IPXIP6 | 1983 SKB_GSO_UDP_TUNNEL | 1984 SKB_GSO_UDP_TUNNEL_CSUM)) { 1985 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1986 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1987 l4.udp->len = 0; 1988 1989 /* determine offset of outer transport header */ 1990 l4_start = (u8)(l4.hdr - skb->data); 1991 1992 /* remove payload length from outer checksum */ 1993 paylen = skb->len - l4_start; 1994 csum_replace_by_diff(&l4.udp->check, 1995 (__force __wsum)htonl(paylen)); 1996 } 1997 1998 /* reset pointers to inner headers */ 1999 2000 /* cppcheck-suppress unreadVariable */ 2001 ip.hdr = skb_inner_network_header(skb); 2002 l4.hdr = skb_inner_transport_header(skb); 2003 2004 /* initialize inner IP header fields */ 2005 if (ip.v4->version == 4) { 2006 ip.v4->tot_len = 0; 2007 ip.v4->check = 0; 2008 } else { 2009 ip.v6->payload_len = 0; 2010 } 2011 } 2012 2013 /* determine offset of transport header */ 2014 l4_start = (u8)(l4.hdr - skb->data); 2015 2016 /* remove payload length from checksum */ 2017 paylen = skb->len - l4_start; 2018 2019 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2020 csum_replace_by_diff(&l4.udp->check, 2021 (__force __wsum)htonl(paylen)); 2022 /* compute length of UDP segmentation header */ 2023 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2024 } else { 2025 csum_replace_by_diff(&l4.tcp->check, 2026 (__force __wsum)htonl(paylen)); 2027 /* compute length of TCP segmentation header */ 2028 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2029 } 2030 2031 /* update gso_segs and bytecount */ 2032 first->gso_segs = skb_shinfo(skb)->gso_segs; 2033 first->bytecount += (first->gso_segs - 1) * off->header_len; 2034 2035 cd_tso_len = skb->len - off->header_len; 2036 cd_mss = skb_shinfo(skb)->gso_size; 2037 2038 /* record cdesc_qw1 with TSO parameters */ 2039 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2040 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2041 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2042 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2043 first->tx_flags |= ICE_TX_FLAGS_TSO; 2044 return 1; 2045 } 2046 2047 /** 2048 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2049 * @size: transmit request size in bytes 2050 * 2051 * Due to hardware alignment restrictions (4K alignment), we need to 2052 * assume that we can have no more than 12K of data per descriptor, even 2053 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2054 * Thus, we need to divide by 12K. But division is slow! Instead, 2055 * we decompose the operation into shifts and one relatively cheap 2056 * multiply operation. 2057 * 2058 * To divide by 12K, we first divide by 4K, then divide by 3: 2059 * To divide by 4K, shift right by 12 bits 2060 * To divide by 3, multiply by 85, then divide by 256 2061 * (Divide by 256 is done by shifting right by 8 bits) 2062 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2063 * 3, we'll underestimate near each multiple of 12K. This is actually more 2064 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2065 * segment. For our purposes this is accurate out to 1M which is orders of 2066 * magnitude greater than our largest possible GSO size. 2067 * 2068 * This would then be implemented as: 2069 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2070 * 2071 * Since multiplication and division are commutative, we can reorder 2072 * operations into: 2073 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2074 */ 2075 static unsigned int ice_txd_use_count(unsigned int size) 2076 { 2077 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2078 } 2079 2080 /** 2081 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2082 * @skb: send buffer 2083 * 2084 * Returns number of data descriptors needed for this skb. 2085 */ 2086 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2087 { 2088 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2089 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2090 unsigned int count = 0, size = skb_headlen(skb); 2091 2092 for (;;) { 2093 count += ice_txd_use_count(size); 2094 2095 if (!nr_frags--) 2096 break; 2097 2098 size = skb_frag_size(frag++); 2099 } 2100 2101 return count; 2102 } 2103 2104 /** 2105 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2106 * @skb: send buffer 2107 * 2108 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2109 * and so we need to figure out the cases where we need to linearize the skb. 2110 * 2111 * For TSO we need to count the TSO header and segment payload separately. 2112 * As such we need to check cases where we have 7 fragments or more as we 2113 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2114 * the segment payload in the first descriptor, and another 7 for the 2115 * fragments. 2116 */ 2117 static bool __ice_chk_linearize(struct sk_buff *skb) 2118 { 2119 const skb_frag_t *frag, *stale; 2120 int nr_frags, sum; 2121 2122 /* no need to check if number of frags is less than 7 */ 2123 nr_frags = skb_shinfo(skb)->nr_frags; 2124 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2125 return false; 2126 2127 /* We need to walk through the list and validate that each group 2128 * of 6 fragments totals at least gso_size. 2129 */ 2130 nr_frags -= ICE_MAX_BUF_TXD - 2; 2131 frag = &skb_shinfo(skb)->frags[0]; 2132 2133 /* Initialize size to the negative value of gso_size minus 1. We 2134 * use this as the worst case scenario in which the frag ahead 2135 * of us only provides one byte which is why we are limited to 6 2136 * descriptors for a single transmit as the header and previous 2137 * fragment are already consuming 2 descriptors. 2138 */ 2139 sum = 1 - skb_shinfo(skb)->gso_size; 2140 2141 /* Add size of frags 0 through 4 to create our initial sum */ 2142 sum += skb_frag_size(frag++); 2143 sum += skb_frag_size(frag++); 2144 sum += skb_frag_size(frag++); 2145 sum += skb_frag_size(frag++); 2146 sum += skb_frag_size(frag++); 2147 2148 /* Walk through fragments adding latest fragment, testing it, and 2149 * then removing stale fragments from the sum. 2150 */ 2151 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2152 int stale_size = skb_frag_size(stale); 2153 2154 sum += skb_frag_size(frag++); 2155 2156 /* The stale fragment may present us with a smaller 2157 * descriptor than the actual fragment size. To account 2158 * for that we need to remove all the data on the front and 2159 * figure out what the remainder would be in the last 2160 * descriptor associated with the fragment. 2161 */ 2162 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2163 int align_pad = -(skb_frag_off(stale)) & 2164 (ICE_MAX_READ_REQ_SIZE - 1); 2165 2166 sum -= align_pad; 2167 stale_size -= align_pad; 2168 2169 do { 2170 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2171 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2172 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2173 } 2174 2175 /* if sum is negative we failed to make sufficient progress */ 2176 if (sum < 0) 2177 return true; 2178 2179 if (!nr_frags--) 2180 break; 2181 2182 sum -= stale_size; 2183 } 2184 2185 return false; 2186 } 2187 2188 /** 2189 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2190 * @skb: send buffer 2191 * @count: number of buffers used 2192 * 2193 * Note: Our HW can't scatter-gather more than 8 fragments to build 2194 * a packet on the wire and so we need to figure out the cases where we 2195 * need to linearize the skb. 2196 */ 2197 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2198 { 2199 /* Both TSO and single send will work if count is less than 8 */ 2200 if (likely(count < ICE_MAX_BUF_TXD)) 2201 return false; 2202 2203 if (skb_is_gso(skb)) 2204 return __ice_chk_linearize(skb); 2205 2206 /* we can support up to 8 data buffers for a single send */ 2207 return count != ICE_MAX_BUF_TXD; 2208 } 2209 2210 /** 2211 * ice_tstamp - set up context descriptor for hardware timestamp 2212 * @tx_ring: pointer to the Tx ring to send buffer on 2213 * @skb: pointer to the SKB we're sending 2214 * @first: Tx buffer 2215 * @off: Tx offload parameters 2216 */ 2217 static void 2218 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2219 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2220 { 2221 s8 idx; 2222 2223 /* only timestamp the outbound packet if the user has requested it */ 2224 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2225 return; 2226 2227 if (!tx_ring->ptp_tx) 2228 return; 2229 2230 /* Tx timestamps cannot be sampled when doing TSO */ 2231 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2232 return; 2233 2234 /* Grab an open timestamp slot */ 2235 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2236 if (idx < 0) 2237 return; 2238 2239 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2240 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2241 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2242 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2243 } 2244 2245 /** 2246 * ice_xmit_frame_ring - Sends buffer on Tx ring 2247 * @skb: send buffer 2248 * @tx_ring: ring to send buffer on 2249 * 2250 * Returns NETDEV_TX_OK if sent, else an error code 2251 */ 2252 static netdev_tx_t 2253 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2254 { 2255 struct ice_tx_offload_params offload = { 0 }; 2256 struct ice_vsi *vsi = tx_ring->vsi; 2257 struct ice_tx_buf *first; 2258 struct ethhdr *eth; 2259 unsigned int count; 2260 int tso, csum; 2261 2262 ice_trace(xmit_frame_ring, tx_ring, skb); 2263 2264 count = ice_xmit_desc_count(skb); 2265 if (ice_chk_linearize(skb, count)) { 2266 if (__skb_linearize(skb)) 2267 goto out_drop; 2268 count = ice_txd_use_count(skb->len); 2269 tx_ring->tx_stats.tx_linearize++; 2270 } 2271 2272 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2273 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2274 * + 4 desc gap to avoid the cache line where head is, 2275 * + 1 desc for context descriptor, 2276 * otherwise try next time 2277 */ 2278 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2279 ICE_DESCS_FOR_CTX_DESC)) { 2280 tx_ring->tx_stats.tx_busy++; 2281 return NETDEV_TX_BUSY; 2282 } 2283 2284 /* prefetch for bql data which is infrequently used */ 2285 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2286 2287 offload.tx_ring = tx_ring; 2288 2289 /* record the location of the first descriptor for this packet */ 2290 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2291 first->skb = skb; 2292 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2293 first->gso_segs = 1; 2294 first->tx_flags = 0; 2295 2296 /* prepare the VLAN tagging flags for Tx */ 2297 ice_tx_prepare_vlan_flags(tx_ring, first); 2298 2299 /* set up TSO offload */ 2300 tso = ice_tso(first, &offload); 2301 if (tso < 0) 2302 goto out_drop; 2303 2304 /* always set up Tx checksum offload */ 2305 csum = ice_tx_csum(first, &offload); 2306 if (csum < 0) 2307 goto out_drop; 2308 2309 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2310 eth = (struct ethhdr *)skb_mac_header(skb); 2311 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2312 eth->h_proto == htons(ETH_P_LLDP)) && 2313 vsi->type == ICE_VSI_PF && 2314 vsi->port_info->qos_cfg.is_sw_lldp)) 2315 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2316 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2317 ICE_TXD_CTX_QW1_CMD_S); 2318 2319 ice_tstamp(tx_ring, skb, first, &offload); 2320 if (ice_is_switchdev_running(vsi->back)) 2321 ice_eswitch_set_target_vsi(skb, &offload); 2322 2323 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2324 struct ice_tx_ctx_desc *cdesc; 2325 u16 i = tx_ring->next_to_use; 2326 2327 /* grab the next descriptor */ 2328 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2329 i++; 2330 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2331 2332 /* setup context descriptor */ 2333 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2334 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2335 cdesc->rsvd = cpu_to_le16(0); 2336 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2337 } 2338 2339 ice_tx_map(tx_ring, first, &offload); 2340 return NETDEV_TX_OK; 2341 2342 out_drop: 2343 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2344 dev_kfree_skb_any(skb); 2345 return NETDEV_TX_OK; 2346 } 2347 2348 /** 2349 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2350 * @skb: send buffer 2351 * @netdev: network interface device structure 2352 * 2353 * Returns NETDEV_TX_OK if sent, else an error code 2354 */ 2355 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2356 { 2357 struct ice_netdev_priv *np = netdev_priv(netdev); 2358 struct ice_vsi *vsi = np->vsi; 2359 struct ice_tx_ring *tx_ring; 2360 2361 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2362 2363 /* hardware can't handle really short frames, hardware padding works 2364 * beyond this point 2365 */ 2366 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2367 return NETDEV_TX_OK; 2368 2369 return ice_xmit_frame_ring(skb, tx_ring); 2370 } 2371 2372 /** 2373 * ice_get_dscp_up - return the UP/TC value for a SKB 2374 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2375 * @skb: SKB to query for info to determine UP/TC 2376 * 2377 * This function is to only be called when the PF is in L3 DSCP PFC mode 2378 */ 2379 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2380 { 2381 u8 dscp = 0; 2382 2383 if (skb->protocol == htons(ETH_P_IP)) 2384 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2385 else if (skb->protocol == htons(ETH_P_IPV6)) 2386 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2387 2388 return dcbcfg->dscp_map[dscp]; 2389 } 2390 2391 u16 2392 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2393 struct net_device *sb_dev) 2394 { 2395 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2396 struct ice_dcbx_cfg *dcbcfg; 2397 2398 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2399 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2400 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2401 2402 return netdev_pick_tx(netdev, skb, sb_dev); 2403 } 2404 2405 /** 2406 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2407 * @tx_ring: tx_ring to clean 2408 */ 2409 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2410 { 2411 struct ice_vsi *vsi = tx_ring->vsi; 2412 s16 i = tx_ring->next_to_clean; 2413 int budget = ICE_DFLT_IRQ_WORK; 2414 struct ice_tx_desc *tx_desc; 2415 struct ice_tx_buf *tx_buf; 2416 2417 tx_buf = &tx_ring->tx_buf[i]; 2418 tx_desc = ICE_TX_DESC(tx_ring, i); 2419 i -= tx_ring->count; 2420 2421 do { 2422 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2423 2424 /* if next_to_watch is not set then there is no pending work */ 2425 if (!eop_desc) 2426 break; 2427 2428 /* prevent any other reads prior to eop_desc */ 2429 smp_rmb(); 2430 2431 /* if the descriptor isn't done, no work to do */ 2432 if (!(eop_desc->cmd_type_offset_bsz & 2433 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2434 break; 2435 2436 /* clear next_to_watch to prevent false hangs */ 2437 tx_buf->next_to_watch = NULL; 2438 tx_desc->buf_addr = 0; 2439 tx_desc->cmd_type_offset_bsz = 0; 2440 2441 /* move past filter desc */ 2442 tx_buf++; 2443 tx_desc++; 2444 i++; 2445 if (unlikely(!i)) { 2446 i -= tx_ring->count; 2447 tx_buf = tx_ring->tx_buf; 2448 tx_desc = ICE_TX_DESC(tx_ring, 0); 2449 } 2450 2451 /* unmap the data header */ 2452 if (dma_unmap_len(tx_buf, len)) 2453 dma_unmap_single(tx_ring->dev, 2454 dma_unmap_addr(tx_buf, dma), 2455 dma_unmap_len(tx_buf, len), 2456 DMA_TO_DEVICE); 2457 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2458 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2459 2460 /* clear next_to_watch to prevent false hangs */ 2461 tx_buf->raw_buf = NULL; 2462 tx_buf->tx_flags = 0; 2463 tx_buf->next_to_watch = NULL; 2464 dma_unmap_len_set(tx_buf, len, 0); 2465 tx_desc->buf_addr = 0; 2466 tx_desc->cmd_type_offset_bsz = 0; 2467 2468 /* move past eop_desc for start of next FD desc */ 2469 tx_buf++; 2470 tx_desc++; 2471 i++; 2472 if (unlikely(!i)) { 2473 i -= tx_ring->count; 2474 tx_buf = tx_ring->tx_buf; 2475 tx_desc = ICE_TX_DESC(tx_ring, 0); 2476 } 2477 2478 budget--; 2479 } while (likely(budget)); 2480 2481 i += tx_ring->count; 2482 tx_ring->next_to_clean = i; 2483 2484 /* re-enable interrupt if needed */ 2485 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2486 } 2487