1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20 
21 #define ICE_RX_HDR_SIZE		256
22 
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25 
26 /**
27  * ice_prgm_fdir_fltr - Program a Flow Director filter
28  * @vsi: VSI to send dummy packet
29  * @fdir_desc: flow director descriptor
30  * @raw_packet: allocated buffer for flow director
31  */
32 int
33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 		   u8 *raw_packet)
35 {
36 	struct ice_tx_buf *tx_buf, *first;
37 	struct ice_fltr_desc *f_desc;
38 	struct ice_tx_desc *tx_desc;
39 	struct ice_tx_ring *tx_ring;
40 	struct device *dev;
41 	dma_addr_t dma;
42 	u32 td_cmd;
43 	u16 i;
44 
45 	/* VSI and Tx ring */
46 	if (!vsi)
47 		return -ENOENT;
48 	tx_ring = vsi->tx_rings[0];
49 	if (!tx_ring || !tx_ring->desc)
50 		return -ENOENT;
51 	dev = tx_ring->dev;
52 
53 	/* we are using two descriptors to add/del a filter and we can wait */
54 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 		if (!i)
56 			return -EAGAIN;
57 		msleep_interruptible(1);
58 	}
59 
60 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 			     DMA_TO_DEVICE);
62 
63 	if (dma_mapping_error(dev, dma))
64 		return -EINVAL;
65 
66 	/* grab the next descriptor */
67 	i = tx_ring->next_to_use;
68 	first = &tx_ring->tx_buf[i];
69 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71 
72 	i++;
73 	i = (i < tx_ring->count) ? i : 0;
74 	tx_desc = ICE_TX_DESC(tx_ring, i);
75 	tx_buf = &tx_ring->tx_buf[i];
76 
77 	i++;
78 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79 
80 	memset(tx_buf, 0, sizeof(*tx_buf));
81 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 	dma_unmap_addr_set(tx_buf, dma, dma);
83 
84 	tx_desc->buf_addr = cpu_to_le64(dma);
85 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 		 ICE_TX_DESC_CMD_RE;
87 
88 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
89 	tx_buf->raw_buf = raw_packet;
90 
91 	tx_desc->cmd_type_offset_bsz =
92 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93 
94 	/* Force memory write to complete before letting h/w know
95 	 * there are new descriptors to fetch.
96 	 */
97 	wmb();
98 
99 	/* mark the data descriptor to be watched */
100 	first->next_to_watch = tx_desc;
101 
102 	writel(tx_ring->next_to_use, tx_ring->tail);
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_unmap_and_free_tx_buf - Release a Tx buffer
109  * @ring: the ring that owns the buffer
110  * @tx_buf: the buffer to free
111  */
112 static void
113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 	if (tx_buf->skb) {
116 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
117 			devm_kfree(ring->dev, tx_buf->raw_buf);
118 		else if (ice_ring_is_xdp(ring))
119 			page_frag_free(tx_buf->raw_buf);
120 		else
121 			dev_kfree_skb_any(tx_buf->skb);
122 		if (dma_unmap_len(tx_buf, len))
123 			dma_unmap_single(ring->dev,
124 					 dma_unmap_addr(tx_buf, dma),
125 					 dma_unmap_len(tx_buf, len),
126 					 DMA_TO_DEVICE);
127 	} else if (dma_unmap_len(tx_buf, len)) {
128 		dma_unmap_page(ring->dev,
129 			       dma_unmap_addr(tx_buf, dma),
130 			       dma_unmap_len(tx_buf, len),
131 			       DMA_TO_DEVICE);
132 	}
133 
134 	tx_buf->next_to_watch = NULL;
135 	tx_buf->skb = NULL;
136 	dma_unmap_len_set(tx_buf, len, 0);
137 	/* tx_buf must be completely set up in the transmit path */
138 }
139 
140 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
141 {
142 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
143 }
144 
145 /**
146  * ice_clean_tx_ring - Free any empty Tx buffers
147  * @tx_ring: ring to be cleaned
148  */
149 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
150 {
151 	u32 size;
152 	u16 i;
153 
154 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
155 		ice_xsk_clean_xdp_ring(tx_ring);
156 		goto tx_skip_free;
157 	}
158 
159 	/* ring already cleared, nothing to do */
160 	if (!tx_ring->tx_buf)
161 		return;
162 
163 	/* Free all the Tx ring sk_buffs */
164 	for (i = 0; i < tx_ring->count; i++)
165 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
166 
167 tx_skip_free:
168 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
169 
170 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
171 		     PAGE_SIZE);
172 	/* Zero out the descriptor ring */
173 	memset(tx_ring->desc, 0, size);
174 
175 	tx_ring->next_to_use = 0;
176 	tx_ring->next_to_clean = 0;
177 	tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1;
178 	tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1;
179 
180 	if (!tx_ring->netdev)
181 		return;
182 
183 	/* cleanup Tx queue statistics */
184 	netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186 
187 /**
188  * ice_free_tx_ring - Free Tx resources per queue
189  * @tx_ring: Tx descriptor ring for a specific queue
190  *
191  * Free all transmit software resources
192  */
193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 	u32 size;
196 
197 	ice_clean_tx_ring(tx_ring);
198 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 	tx_ring->tx_buf = NULL;
200 
201 	if (tx_ring->desc) {
202 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 			     PAGE_SIZE);
204 		dmam_free_coherent(tx_ring->dev, size,
205 				   tx_ring->desc, tx_ring->dma);
206 		tx_ring->desc = NULL;
207 	}
208 }
209 
210 /**
211  * ice_clean_tx_irq - Reclaim resources after transmit completes
212  * @tx_ring: Tx ring to clean
213  * @napi_budget: Used to determine if we are in netpoll
214  *
215  * Returns true if there's any budget left (e.g. the clean is finished)
216  */
217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 	unsigned int total_bytes = 0, total_pkts = 0;
220 	unsigned int budget = ICE_DFLT_IRQ_WORK;
221 	struct ice_vsi *vsi = tx_ring->vsi;
222 	s16 i = tx_ring->next_to_clean;
223 	struct ice_tx_desc *tx_desc;
224 	struct ice_tx_buf *tx_buf;
225 
226 	/* get the bql data ready */
227 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228 
229 	tx_buf = &tx_ring->tx_buf[i];
230 	tx_desc = ICE_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	prefetch(&vsi->state);
234 
235 	do {
236 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237 
238 		/* if next_to_watch is not set then there is no work pending */
239 		if (!eop_desc)
240 			break;
241 
242 		/* follow the guidelines of other drivers */
243 		prefetchw(&tx_buf->skb->users);
244 
245 		smp_rmb();	/* prevent any other reads prior to eop_desc */
246 
247 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 		/* if the descriptor isn't done, no work yet to do */
249 		if (!(eop_desc->cmd_type_offset_bsz &
250 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 			break;
252 
253 		/* clear next_to_watch to prevent false hangs */
254 		tx_buf->next_to_watch = NULL;
255 
256 		/* update the statistics for this packet */
257 		total_bytes += tx_buf->bytecount;
258 		total_pkts += tx_buf->gso_segs;
259 
260 		/* free the skb */
261 		napi_consume_skb(tx_buf->skb, napi_budget);
262 
263 		/* unmap skb header data */
264 		dma_unmap_single(tx_ring->dev,
265 				 dma_unmap_addr(tx_buf, dma),
266 				 dma_unmap_len(tx_buf, len),
267 				 DMA_TO_DEVICE);
268 
269 		/* clear tx_buf data */
270 		tx_buf->skb = NULL;
271 		dma_unmap_len_set(tx_buf, len, 0);
272 
273 		/* unmap remaining buffers */
274 		while (tx_desc != eop_desc) {
275 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 			tx_buf++;
277 			tx_desc++;
278 			i++;
279 			if (unlikely(!i)) {
280 				i -= tx_ring->count;
281 				tx_buf = tx_ring->tx_buf;
282 				tx_desc = ICE_TX_DESC(tx_ring, 0);
283 			}
284 
285 			/* unmap any remaining paged data */
286 			if (dma_unmap_len(tx_buf, len)) {
287 				dma_unmap_page(tx_ring->dev,
288 					       dma_unmap_addr(tx_buf, dma),
289 					       dma_unmap_len(tx_buf, len),
290 					       DMA_TO_DEVICE);
291 				dma_unmap_len_set(tx_buf, len, 0);
292 			}
293 		}
294 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295 
296 		/* move us one more past the eop_desc for start of next pkt */
297 		tx_buf++;
298 		tx_desc++;
299 		i++;
300 		if (unlikely(!i)) {
301 			i -= tx_ring->count;
302 			tx_buf = tx_ring->tx_buf;
303 			tx_desc = ICE_TX_DESC(tx_ring, 0);
304 		}
305 
306 		prefetch(tx_desc);
307 
308 		/* update budget accounting */
309 		budget--;
310 	} while (likely(budget));
311 
312 	i += tx_ring->count;
313 	tx_ring->next_to_clean = i;
314 
315 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317 
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 		/* Make sure that anybody stopping the queue after this
322 		 * sees the new next_to_clean.
323 		 */
324 		smp_mb();
325 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 			netif_tx_wake_queue(txring_txq(tx_ring));
328 			++tx_ring->ring_stats->tx_stats.restart_q;
329 		}
330 	}
331 
332 	return !!budget;
333 }
334 
335 /**
336  * ice_setup_tx_ring - Allocate the Tx descriptors
337  * @tx_ring: the Tx ring to set up
338  *
339  * Return 0 on success, negative on error
340  */
341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 	struct device *dev = tx_ring->dev;
344 	u32 size;
345 
346 	if (!dev)
347 		return -ENOMEM;
348 
349 	/* warn if we are about to overwrite the pointer */
350 	WARN_ON(tx_ring->tx_buf);
351 	tx_ring->tx_buf =
352 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 			     GFP_KERNEL);
354 	if (!tx_ring->tx_buf)
355 		return -ENOMEM;
356 
357 	/* round up to nearest page */
358 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 		     PAGE_SIZE);
360 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 					    GFP_KERNEL);
362 	if (!tx_ring->desc) {
363 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 			size);
365 		goto err;
366 	}
367 
368 	tx_ring->next_to_use = 0;
369 	tx_ring->next_to_clean = 0;
370 	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
371 	return 0;
372 
373 err:
374 	devm_kfree(dev, tx_ring->tx_buf);
375 	tx_ring->tx_buf = NULL;
376 	return -ENOMEM;
377 }
378 
379 /**
380  * ice_clean_rx_ring - Free Rx buffers
381  * @rx_ring: ring to be cleaned
382  */
383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 	struct device *dev = rx_ring->dev;
386 	u32 size;
387 	u16 i;
388 
389 	/* ring already cleared, nothing to do */
390 	if (!rx_ring->rx_buf)
391 		return;
392 
393 	if (rx_ring->skb) {
394 		dev_kfree_skb(rx_ring->skb);
395 		rx_ring->skb = NULL;
396 	}
397 
398 	if (rx_ring->xsk_pool) {
399 		ice_xsk_clean_rx_ring(rx_ring);
400 		goto rx_skip_free;
401 	}
402 
403 	/* Free all the Rx ring sk_buffs */
404 	for (i = 0; i < rx_ring->count; i++) {
405 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
406 
407 		if (!rx_buf->page)
408 			continue;
409 
410 		/* Invalidate cache lines that may have been written to by
411 		 * device so that we avoid corrupting memory.
412 		 */
413 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
414 					      rx_buf->page_offset,
415 					      rx_ring->rx_buf_len,
416 					      DMA_FROM_DEVICE);
417 
418 		/* free resources associated with mapping */
419 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
420 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
421 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
422 
423 		rx_buf->page = NULL;
424 		rx_buf->page_offset = 0;
425 	}
426 
427 rx_skip_free:
428 	if (rx_ring->xsk_pool)
429 		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
430 	else
431 		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
432 
433 	/* Zero out the descriptor ring */
434 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
435 		     PAGE_SIZE);
436 	memset(rx_ring->desc, 0, size);
437 
438 	rx_ring->next_to_alloc = 0;
439 	rx_ring->next_to_clean = 0;
440 	rx_ring->next_to_use = 0;
441 }
442 
443 /**
444  * ice_free_rx_ring - Free Rx resources
445  * @rx_ring: ring to clean the resources from
446  *
447  * Free all receive software resources
448  */
449 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
450 {
451 	u32 size;
452 
453 	ice_clean_rx_ring(rx_ring);
454 	if (rx_ring->vsi->type == ICE_VSI_PF)
455 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
456 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
457 	rx_ring->xdp_prog = NULL;
458 	if (rx_ring->xsk_pool) {
459 		kfree(rx_ring->xdp_buf);
460 		rx_ring->xdp_buf = NULL;
461 	} else {
462 		kfree(rx_ring->rx_buf);
463 		rx_ring->rx_buf = NULL;
464 	}
465 
466 	if (rx_ring->desc) {
467 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 			     PAGE_SIZE);
469 		dmam_free_coherent(rx_ring->dev, size,
470 				   rx_ring->desc, rx_ring->dma);
471 		rx_ring->desc = NULL;
472 	}
473 }
474 
475 /**
476  * ice_setup_rx_ring - Allocate the Rx descriptors
477  * @rx_ring: the Rx ring to set up
478  *
479  * Return 0 on success, negative on error
480  */
481 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
482 {
483 	struct device *dev = rx_ring->dev;
484 	u32 size;
485 
486 	if (!dev)
487 		return -ENOMEM;
488 
489 	/* warn if we are about to overwrite the pointer */
490 	WARN_ON(rx_ring->rx_buf);
491 	rx_ring->rx_buf =
492 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
493 	if (!rx_ring->rx_buf)
494 		return -ENOMEM;
495 
496 	/* round up to nearest page */
497 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
498 		     PAGE_SIZE);
499 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
500 					    GFP_KERNEL);
501 	if (!rx_ring->desc) {
502 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
503 			size);
504 		goto err;
505 	}
506 
507 	rx_ring->next_to_use = 0;
508 	rx_ring->next_to_clean = 0;
509 
510 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
511 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
512 
513 	if (rx_ring->vsi->type == ICE_VSI_PF &&
514 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
515 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
516 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
517 			goto err;
518 	return 0;
519 
520 err:
521 	kfree(rx_ring->rx_buf);
522 	rx_ring->rx_buf = NULL;
523 	return -ENOMEM;
524 }
525 
526 /**
527  * ice_rx_frame_truesize
528  * @rx_ring: ptr to Rx ring
529  * @size: size
530  *
531  * calculate the truesize with taking into the account PAGE_SIZE of
532  * underlying arch
533  */
534 static unsigned int
535 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, const unsigned int size)
536 {
537 	unsigned int truesize;
538 
539 #if (PAGE_SIZE < 8192)
540 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
541 #else
542 	truesize = rx_ring->rx_offset ?
543 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
544 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
545 		SKB_DATA_ALIGN(size);
546 #endif
547 	return truesize;
548 }
549 
550 /**
551  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
552  * @rx_ring: Rx ring
553  * @xdp: xdp_buff used as input to the XDP program
554  * @xdp_prog: XDP program to run
555  * @xdp_ring: ring to be used for XDP_TX action
556  *
557  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
558  */
559 static int
560 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
561 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
562 {
563 	int err;
564 	u32 act;
565 
566 	act = bpf_prog_run_xdp(xdp_prog, xdp);
567 	switch (act) {
568 	case XDP_PASS:
569 		return ICE_XDP_PASS;
570 	case XDP_TX:
571 		if (static_branch_unlikely(&ice_xdp_locking_key))
572 			spin_lock(&xdp_ring->tx_lock);
573 		err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
574 		if (static_branch_unlikely(&ice_xdp_locking_key))
575 			spin_unlock(&xdp_ring->tx_lock);
576 		if (err == ICE_XDP_CONSUMED)
577 			goto out_failure;
578 		return err;
579 	case XDP_REDIRECT:
580 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
581 		if (err)
582 			goto out_failure;
583 		return ICE_XDP_REDIR;
584 	default:
585 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
586 		fallthrough;
587 	case XDP_ABORTED:
588 out_failure:
589 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
590 		fallthrough;
591 	case XDP_DROP:
592 		return ICE_XDP_CONSUMED;
593 	}
594 }
595 
596 /**
597  * ice_xdp_xmit - submit packets to XDP ring for transmission
598  * @dev: netdev
599  * @n: number of XDP frames to be transmitted
600  * @frames: XDP frames to be transmitted
601  * @flags: transmit flags
602  *
603  * Returns number of frames successfully sent. Failed frames
604  * will be free'ed by XDP core.
605  * For error cases, a negative errno code is returned and no-frames
606  * are transmitted (caller must handle freeing frames).
607  */
608 int
609 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
610 	     u32 flags)
611 {
612 	struct ice_netdev_priv *np = netdev_priv(dev);
613 	unsigned int queue_index = smp_processor_id();
614 	struct ice_vsi *vsi = np->vsi;
615 	struct ice_tx_ring *xdp_ring;
616 	int nxmit = 0, i;
617 
618 	if (test_bit(ICE_VSI_DOWN, vsi->state))
619 		return -ENETDOWN;
620 
621 	if (!ice_is_xdp_ena_vsi(vsi))
622 		return -ENXIO;
623 
624 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
625 		return -EINVAL;
626 
627 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
628 		queue_index %= vsi->num_xdp_txq;
629 		xdp_ring = vsi->xdp_rings[queue_index];
630 		spin_lock(&xdp_ring->tx_lock);
631 	} else {
632 		/* Generally, should not happen */
633 		if (unlikely(queue_index >= vsi->num_xdp_txq))
634 			return -ENXIO;
635 		xdp_ring = vsi->xdp_rings[queue_index];
636 	}
637 
638 	for (i = 0; i < n; i++) {
639 		struct xdp_frame *xdpf = frames[i];
640 		int err;
641 
642 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
643 		if (err != ICE_XDP_TX)
644 			break;
645 		nxmit++;
646 	}
647 
648 	if (unlikely(flags & XDP_XMIT_FLUSH))
649 		ice_xdp_ring_update_tail(xdp_ring);
650 
651 	if (static_branch_unlikely(&ice_xdp_locking_key))
652 		spin_unlock(&xdp_ring->tx_lock);
653 
654 	return nxmit;
655 }
656 
657 /**
658  * ice_alloc_mapped_page - recycle or make a new page
659  * @rx_ring: ring to use
660  * @bi: rx_buf struct to modify
661  *
662  * Returns true if the page was successfully allocated or
663  * reused.
664  */
665 static bool
666 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
667 {
668 	struct page *page = bi->page;
669 	dma_addr_t dma;
670 
671 	/* since we are recycling buffers we should seldom need to alloc */
672 	if (likely(page))
673 		return true;
674 
675 	/* alloc new page for storage */
676 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
677 	if (unlikely(!page)) {
678 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
679 		return false;
680 	}
681 
682 	/* map page for use */
683 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
684 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
685 
686 	/* if mapping failed free memory back to system since
687 	 * there isn't much point in holding memory we can't use
688 	 */
689 	if (dma_mapping_error(rx_ring->dev, dma)) {
690 		__free_pages(page, ice_rx_pg_order(rx_ring));
691 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
692 		return false;
693 	}
694 
695 	bi->dma = dma;
696 	bi->page = page;
697 	bi->page_offset = rx_ring->rx_offset;
698 	page_ref_add(page, USHRT_MAX - 1);
699 	bi->pagecnt_bias = USHRT_MAX;
700 
701 	return true;
702 }
703 
704 /**
705  * ice_alloc_rx_bufs - Replace used receive buffers
706  * @rx_ring: ring to place buffers on
707  * @cleaned_count: number of buffers to replace
708  *
709  * Returns false if all allocations were successful, true if any fail. Returning
710  * true signals to the caller that we didn't replace cleaned_count buffers and
711  * there is more work to do.
712  *
713  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
714  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
715  * multiple tail writes per call.
716  */
717 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
718 {
719 	union ice_32b_rx_flex_desc *rx_desc;
720 	u16 ntu = rx_ring->next_to_use;
721 	struct ice_rx_buf *bi;
722 
723 	/* do nothing if no valid netdev defined */
724 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
725 	    !cleaned_count)
726 		return false;
727 
728 	/* get the Rx descriptor and buffer based on next_to_use */
729 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
730 	bi = &rx_ring->rx_buf[ntu];
731 
732 	do {
733 		/* if we fail here, we have work remaining */
734 		if (!ice_alloc_mapped_page(rx_ring, bi))
735 			break;
736 
737 		/* sync the buffer for use by the device */
738 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
739 						 bi->page_offset,
740 						 rx_ring->rx_buf_len,
741 						 DMA_FROM_DEVICE);
742 
743 		/* Refresh the desc even if buffer_addrs didn't change
744 		 * because each write-back erases this info.
745 		 */
746 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
747 
748 		rx_desc++;
749 		bi++;
750 		ntu++;
751 		if (unlikely(ntu == rx_ring->count)) {
752 			rx_desc = ICE_RX_DESC(rx_ring, 0);
753 			bi = rx_ring->rx_buf;
754 			ntu = 0;
755 		}
756 
757 		/* clear the status bits for the next_to_use descriptor */
758 		rx_desc->wb.status_error0 = 0;
759 
760 		cleaned_count--;
761 	} while (cleaned_count);
762 
763 	if (rx_ring->next_to_use != ntu)
764 		ice_release_rx_desc(rx_ring, ntu);
765 
766 	return !!cleaned_count;
767 }
768 
769 /**
770  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
771  * @rx_buf: Rx buffer to adjust
772  * @size: Size of adjustment
773  *
774  * Update the offset within page so that Rx buf will be ready to be reused.
775  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
776  * so the second half of page assigned to Rx buffer will be used, otherwise
777  * the offset is moved by "size" bytes
778  */
779 static void
780 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
781 {
782 #if (PAGE_SIZE < 8192)
783 	/* flip page offset to other buffer */
784 	rx_buf->page_offset ^= size;
785 #else
786 	/* move offset up to the next cache line */
787 	rx_buf->page_offset += size;
788 #endif
789 }
790 
791 /**
792  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
793  * @rx_buf: buffer containing the page
794  *
795  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
796  * which will assign the current buffer to the buffer that next_to_alloc is
797  * pointing to; otherwise, the DMA mapping needs to be destroyed and
798  * page freed
799  */
800 static bool
801 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
802 {
803 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
804 	struct page *page = rx_buf->page;
805 
806 	/* avoid re-using remote and pfmemalloc pages */
807 	if (!dev_page_is_reusable(page))
808 		return false;
809 
810 #if (PAGE_SIZE < 8192)
811 	/* if we are only owner of page we can reuse it */
812 	if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
813 		return false;
814 #else
815 #define ICE_LAST_OFFSET \
816 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
817 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
818 		return false;
819 #endif /* PAGE_SIZE < 8192) */
820 
821 	/* If we have drained the page fragment pool we need to update
822 	 * the pagecnt_bias and page count so that we fully restock the
823 	 * number of references the driver holds.
824 	 */
825 	if (unlikely(pagecnt_bias == 1)) {
826 		page_ref_add(page, USHRT_MAX - 1);
827 		rx_buf->pagecnt_bias = USHRT_MAX;
828 	}
829 
830 	return true;
831 }
832 
833 /**
834  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
835  * @rx_ring: Rx descriptor ring to transact packets on
836  * @rx_buf: buffer containing page to add
837  * @skb: sk_buff to place the data into
838  * @size: packet length from rx_desc
839  *
840  * This function will add the data contained in rx_buf->page to the skb.
841  * It will just attach the page as a frag to the skb.
842  * The function will then update the page offset.
843  */
844 static void
845 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
846 		struct sk_buff *skb, unsigned int size)
847 {
848 #if (PAGE_SIZE >= 8192)
849 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
850 #else
851 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
852 #endif
853 
854 	if (!size)
855 		return;
856 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
857 			rx_buf->page_offset, size, truesize);
858 
859 	/* page is being used so we must update the page offset */
860 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
861 }
862 
863 /**
864  * ice_reuse_rx_page - page flip buffer and store it back on the ring
865  * @rx_ring: Rx descriptor ring to store buffers on
866  * @old_buf: donor buffer to have page reused
867  *
868  * Synchronizes page for reuse by the adapter
869  */
870 static void
871 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
872 {
873 	u16 nta = rx_ring->next_to_alloc;
874 	struct ice_rx_buf *new_buf;
875 
876 	new_buf = &rx_ring->rx_buf[nta];
877 
878 	/* update, and store next to alloc */
879 	nta++;
880 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
881 
882 	/* Transfer page from old buffer to new buffer.
883 	 * Move each member individually to avoid possible store
884 	 * forwarding stalls and unnecessary copy of skb.
885 	 */
886 	new_buf->dma = old_buf->dma;
887 	new_buf->page = old_buf->page;
888 	new_buf->page_offset = old_buf->page_offset;
889 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
890 }
891 
892 /**
893  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
894  * @rx_ring: Rx descriptor ring to transact packets on
895  * @size: size of buffer to add to skb
896  *
897  * This function will pull an Rx buffer from the ring and synchronize it
898  * for use by the CPU.
899  */
900 static struct ice_rx_buf *
901 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
902 	       const unsigned int ntc)
903 {
904 	struct ice_rx_buf *rx_buf;
905 
906 	rx_buf = &rx_ring->rx_buf[ntc];
907 	rx_buf->pgcnt =
908 #if (PAGE_SIZE < 8192)
909 		page_count(rx_buf->page);
910 #else
911 		0;
912 #endif
913 	prefetchw(rx_buf->page);
914 
915 	if (!size)
916 		return rx_buf;
917 	/* we are reusing so sync this buffer for CPU use */
918 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
919 				      rx_buf->page_offset, size,
920 				      DMA_FROM_DEVICE);
921 
922 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
923 	rx_buf->pagecnt_bias--;
924 
925 	return rx_buf;
926 }
927 
928 /**
929  * ice_build_skb - Build skb around an existing buffer
930  * @rx_ring: Rx descriptor ring to transact packets on
931  * @rx_buf: Rx buffer to pull data from
932  * @xdp: xdp_buff pointing to the data
933  *
934  * This function builds an skb around an existing Rx buffer, taking care
935  * to set up the skb correctly and avoid any memcpy overhead.
936  */
937 static struct sk_buff *
938 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
939 	      struct xdp_buff *xdp)
940 {
941 	u8 metasize = xdp->data - xdp->data_meta;
942 #if (PAGE_SIZE < 8192)
943 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
944 #else
945 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
946 				SKB_DATA_ALIGN(xdp->data_end -
947 					       xdp->data_hard_start);
948 #endif
949 	struct sk_buff *skb;
950 
951 	/* Prefetch first cache line of first page. If xdp->data_meta
952 	 * is unused, this points exactly as xdp->data, otherwise we
953 	 * likely have a consumer accessing first few bytes of meta
954 	 * data, and then actual data.
955 	 */
956 	net_prefetch(xdp->data_meta);
957 	/* build an skb around the page buffer */
958 	skb = napi_build_skb(xdp->data_hard_start, truesize);
959 	if (unlikely(!skb))
960 		return NULL;
961 
962 	/* must to record Rx queue, otherwise OS features such as
963 	 * symmetric queue won't work
964 	 */
965 	skb_record_rx_queue(skb, rx_ring->q_index);
966 
967 	/* update pointers within the skb to store the data */
968 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
969 	__skb_put(skb, xdp->data_end - xdp->data);
970 	if (metasize)
971 		skb_metadata_set(skb, metasize);
972 
973 	/* buffer is used by skb, update page_offset */
974 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
975 
976 	return skb;
977 }
978 
979 /**
980  * ice_construct_skb - Allocate skb and populate it
981  * @rx_ring: Rx descriptor ring to transact packets on
982  * @rx_buf: Rx buffer to pull data from
983  * @xdp: xdp_buff pointing to the data
984  *
985  * This function allocates an skb. It then populates it with the page
986  * data from the current receive descriptor, taking care to set up the
987  * skb correctly.
988  */
989 static struct sk_buff *
990 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
991 		  struct xdp_buff *xdp)
992 {
993 	unsigned int size = xdp->data_end - xdp->data;
994 	unsigned int headlen;
995 	struct sk_buff *skb;
996 
997 	/* prefetch first cache line of first page */
998 	net_prefetch(xdp->data);
999 
1000 	/* allocate a skb to store the frags */
1001 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
1002 			       GFP_ATOMIC | __GFP_NOWARN);
1003 	if (unlikely(!skb))
1004 		return NULL;
1005 
1006 	skb_record_rx_queue(skb, rx_ring->q_index);
1007 	/* Determine available headroom for copy */
1008 	headlen = size;
1009 	if (headlen > ICE_RX_HDR_SIZE)
1010 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1011 
1012 	/* align pull length to size of long to optimize memcpy performance */
1013 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1014 							 sizeof(long)));
1015 
1016 	/* if we exhaust the linear part then add what is left as a frag */
1017 	size -= headlen;
1018 	if (size) {
1019 #if (PAGE_SIZE >= 8192)
1020 		unsigned int truesize = SKB_DATA_ALIGN(size);
1021 #else
1022 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
1023 #endif
1024 		skb_add_rx_frag(skb, 0, rx_buf->page,
1025 				rx_buf->page_offset + headlen, size, truesize);
1026 		/* buffer is used by skb, update page_offset */
1027 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1028 	} else {
1029 		/* buffer is unused, reset bias back to rx_buf; data was copied
1030 		 * onto skb's linear part so there's no need for adjusting
1031 		 * page offset and we can reuse this buffer as-is
1032 		 */
1033 		rx_buf->pagecnt_bias++;
1034 	}
1035 
1036 	return skb;
1037 }
1038 
1039 /**
1040  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1041  * @rx_ring: Rx descriptor ring to transact packets on
1042  * @rx_buf: Rx buffer to pull data from
1043  *
1044  * This function will clean up the contents of the rx_buf. It will either
1045  * recycle the buffer or unmap it and free the associated resources.
1046  */
1047 static void
1048 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
1049 {
1050 	if (!rx_buf)
1051 		return;
1052 
1053 	if (ice_can_reuse_rx_page(rx_buf)) {
1054 		/* hand second half of page back to the ring */
1055 		ice_reuse_rx_page(rx_ring, rx_buf);
1056 	} else {
1057 		/* we are not reusing the buffer so unmap it */
1058 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1059 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1060 				     ICE_RX_DMA_ATTR);
1061 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1062 	}
1063 
1064 	/* clear contents of buffer_info */
1065 	rx_buf->page = NULL;
1066 }
1067 
1068 /**
1069  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1070  * @rx_ring: Rx descriptor ring to transact packets on
1071  * @budget: Total limit on number of packets to process
1072  *
1073  * This function provides a "bounce buffer" approach to Rx interrupt
1074  * processing. The advantage to this is that on systems that have
1075  * expensive overhead for IOMMU access this provides a means of avoiding
1076  * it by maintaining the mapping of the page to the system.
1077  *
1078  * Returns amount of work completed
1079  */
1080 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1081 {
1082 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1083 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1084 	unsigned int offset = rx_ring->rx_offset;
1085 	struct xdp_buff *xdp = &rx_ring->xdp;
1086 	struct ice_tx_ring *xdp_ring = NULL;
1087 	unsigned int xdp_res, xdp_xmit = 0;
1088 	struct sk_buff *skb = rx_ring->skb;
1089 	struct bpf_prog *xdp_prog = NULL;
1090 	u32 ntc = rx_ring->next_to_clean;
1091 	u32 cnt = rx_ring->count;
1092 	bool failure;
1093 
1094 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1095 #if (PAGE_SIZE < 8192)
1096 	xdp->frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1097 #endif
1098 
1099 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1100 	if (xdp_prog)
1101 		xdp_ring = rx_ring->xdp_ring;
1102 
1103 	/* start the loop to process Rx packets bounded by 'budget' */
1104 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1105 		union ice_32b_rx_flex_desc *rx_desc;
1106 		struct ice_rx_buf *rx_buf;
1107 		unsigned char *hard_start;
1108 		unsigned int size;
1109 		u16 stat_err_bits;
1110 		u16 vlan_tag = 0;
1111 		u16 rx_ptype;
1112 
1113 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1114 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
1115 
1116 		/* status_error_len will always be zero for unused descriptors
1117 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1118 		 * which is always zero because packet split isn't used, if the
1119 		 * hardware wrote DD then it will be non-zero
1120 		 */
1121 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1122 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1123 			break;
1124 
1125 		/* This memory barrier is needed to keep us from reading
1126 		 * any other fields out of the rx_desc until we know the
1127 		 * DD bit is set.
1128 		 */
1129 		dma_rmb();
1130 
1131 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1132 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1133 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1134 
1135 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1136 			    ctrl_vsi->vf)
1137 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1138 			if (++ntc == cnt)
1139 				ntc = 0;
1140 			ice_put_rx_buf(rx_ring, NULL);
1141 			cleaned_count++;
1142 			continue;
1143 		}
1144 
1145 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1146 			ICE_RX_FLX_DESC_PKT_LEN_M;
1147 
1148 		/* retrieve a buffer from the ring */
1149 		rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1150 
1151 		if (!size) {
1152 			xdp->data = NULL;
1153 			xdp->data_end = NULL;
1154 			xdp->data_hard_start = NULL;
1155 			xdp->data_meta = NULL;
1156 			goto construct_skb;
1157 		}
1158 
1159 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1160 			     offset;
1161 		xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1162 #if (PAGE_SIZE > 4096)
1163 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1164 		xdp->frame_sz = ice_rx_frame_truesize(rx_ring, size);
1165 #endif
1166 
1167 		if (!xdp_prog)
1168 			goto construct_skb;
1169 
1170 		xdp_res = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring);
1171 		if (!xdp_res)
1172 			goto construct_skb;
1173 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1174 			xdp_xmit |= xdp_res;
1175 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp->frame_sz);
1176 		} else {
1177 			rx_buf->pagecnt_bias++;
1178 		}
1179 		total_rx_bytes += size;
1180 		total_rx_pkts++;
1181 
1182 		cleaned_count++;
1183 		if (++ntc == cnt)
1184 			ntc = 0;
1185 		ice_put_rx_buf(rx_ring, rx_buf);
1186 		continue;
1187 construct_skb:
1188 		if (skb) {
1189 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1190 		} else if (likely(xdp->data)) {
1191 			if (ice_ring_uses_build_skb(rx_ring))
1192 				skb = ice_build_skb(rx_ring, rx_buf, xdp);
1193 			else
1194 				skb = ice_construct_skb(rx_ring, rx_buf, xdp);
1195 		}
1196 		/* exit if we failed to retrieve a buffer */
1197 		if (!skb) {
1198 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
1199 			if (rx_buf)
1200 				rx_buf->pagecnt_bias++;
1201 			break;
1202 		}
1203 
1204 		if (++ntc == cnt)
1205 			ntc = 0;
1206 		ice_put_rx_buf(rx_ring, rx_buf);
1207 		cleaned_count++;
1208 
1209 		/* skip if it is NOP desc */
1210 		if (ice_is_non_eop(rx_ring, rx_desc))
1211 			continue;
1212 
1213 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1214 		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1215 					      stat_err_bits))) {
1216 			dev_kfree_skb_any(skb);
1217 			continue;
1218 		}
1219 
1220 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1221 
1222 		/* pad the skb if needed, to make a valid ethernet frame */
1223 		if (eth_skb_pad(skb)) {
1224 			skb = NULL;
1225 			continue;
1226 		}
1227 
1228 		/* probably a little skewed due to removing CRC */
1229 		total_rx_bytes += skb->len;
1230 
1231 		/* populate checksum, VLAN, and protocol */
1232 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1233 			ICE_RX_FLEX_DESC_PTYPE_M;
1234 
1235 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1236 
1237 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1238 		/* send completed skb up the stack */
1239 		ice_receive_skb(rx_ring, skb, vlan_tag);
1240 		skb = NULL;
1241 
1242 		/* update budget accounting */
1243 		total_rx_pkts++;
1244 	}
1245 
1246 	rx_ring->next_to_clean = ntc;
1247 	/* return up to cleaned_count buffers to hardware */
1248 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1249 
1250 	if (xdp_prog)
1251 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
1252 	rx_ring->skb = skb;
1253 
1254 	if (rx_ring->ring_stats)
1255 		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1256 					 total_rx_bytes);
1257 
1258 	/* guarantee a trip back through this routine if there was a failure */
1259 	return failure ? budget : (int)total_rx_pkts;
1260 }
1261 
1262 static void __ice_update_sample(struct ice_q_vector *q_vector,
1263 				struct ice_ring_container *rc,
1264 				struct dim_sample *sample,
1265 				bool is_tx)
1266 {
1267 	u64 packets = 0, bytes = 0;
1268 
1269 	if (is_tx) {
1270 		struct ice_tx_ring *tx_ring;
1271 
1272 		ice_for_each_tx_ring(tx_ring, *rc) {
1273 			struct ice_ring_stats *ring_stats;
1274 
1275 			ring_stats = tx_ring->ring_stats;
1276 			if (!ring_stats)
1277 				continue;
1278 			packets += ring_stats->stats.pkts;
1279 			bytes += ring_stats->stats.bytes;
1280 		}
1281 	} else {
1282 		struct ice_rx_ring *rx_ring;
1283 
1284 		ice_for_each_rx_ring(rx_ring, *rc) {
1285 			struct ice_ring_stats *ring_stats;
1286 
1287 			ring_stats = rx_ring->ring_stats;
1288 			if (!ring_stats)
1289 				continue;
1290 			packets += ring_stats->stats.pkts;
1291 			bytes += ring_stats->stats.bytes;
1292 		}
1293 	}
1294 
1295 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1296 	sample->comp_ctr = 0;
1297 
1298 	/* if dim settings get stale, like when not updated for 1
1299 	 * second or longer, force it to start again. This addresses the
1300 	 * frequent case of an idle queue being switched to by the
1301 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1302 	 */
1303 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1304 		rc->dim.state = DIM_START_MEASURE;
1305 }
1306 
1307 /**
1308  * ice_net_dim - Update net DIM algorithm
1309  * @q_vector: the vector associated with the interrupt
1310  *
1311  * Create a DIM sample and notify net_dim() so that it can possibly decide
1312  * a new ITR value based on incoming packets, bytes, and interrupts.
1313  *
1314  * This function is a no-op if the ring is not configured to dynamic ITR.
1315  */
1316 static void ice_net_dim(struct ice_q_vector *q_vector)
1317 {
1318 	struct ice_ring_container *tx = &q_vector->tx;
1319 	struct ice_ring_container *rx = &q_vector->rx;
1320 
1321 	if (ITR_IS_DYNAMIC(tx)) {
1322 		struct dim_sample dim_sample;
1323 
1324 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1325 		net_dim(&tx->dim, dim_sample);
1326 	}
1327 
1328 	if (ITR_IS_DYNAMIC(rx)) {
1329 		struct dim_sample dim_sample;
1330 
1331 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1332 		net_dim(&rx->dim, dim_sample);
1333 	}
1334 }
1335 
1336 /**
1337  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1338  * @itr_idx: interrupt throttling index
1339  * @itr: interrupt throttling value in usecs
1340  */
1341 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1342 {
1343 	/* The ITR value is reported in microseconds, and the register value is
1344 	 * recorded in 2 microsecond units. For this reason we only need to
1345 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1346 	 * granularity as a shift instead of division. The mask makes sure the
1347 	 * ITR value is never odd so we don't accidentally write into the field
1348 	 * prior to the ITR field.
1349 	 */
1350 	itr &= ICE_ITR_MASK;
1351 
1352 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1353 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1354 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1355 }
1356 
1357 /**
1358  * ice_enable_interrupt - re-enable MSI-X interrupt
1359  * @q_vector: the vector associated with the interrupt to enable
1360  *
1361  * If the VSI is down, the interrupt will not be re-enabled. Also,
1362  * when enabling the interrupt always reset the wb_on_itr to false
1363  * and trigger a software interrupt to clean out internal state.
1364  */
1365 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1366 {
1367 	struct ice_vsi *vsi = q_vector->vsi;
1368 	bool wb_en = q_vector->wb_on_itr;
1369 	u32 itr_val;
1370 
1371 	if (test_bit(ICE_DOWN, vsi->state))
1372 		return;
1373 
1374 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1375 	 * make sure to catch any pending cleanups that might have been missed
1376 	 * due to interrupt state transition. If busy poll or poll isn't
1377 	 * enabled, then don't update ITR, and just enable the interrupt.
1378 	 */
1379 	if (!wb_en) {
1380 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1381 	} else {
1382 		q_vector->wb_on_itr = false;
1383 
1384 		/* do two things here with a single write. Set up the third ITR
1385 		 * index to be used for software interrupt moderation, and then
1386 		 * trigger a software interrupt with a rate limit of 20K on
1387 		 * software interrupts, this will help avoid high interrupt
1388 		 * loads due to frequently polling and exiting polling.
1389 		 */
1390 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1391 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1392 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1393 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1394 	}
1395 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1396 }
1397 
1398 /**
1399  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1400  * @q_vector: q_vector to set WB_ON_ITR on
1401  *
1402  * We need to tell hardware to write-back completed descriptors even when
1403  * interrupts are disabled. Descriptors will be written back on cache line
1404  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1405  * descriptors may not be written back if they don't fill a cache line until
1406  * the next interrupt.
1407  *
1408  * This sets the write-back frequency to whatever was set previously for the
1409  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1410  * aren't meddling with the INTENA_M bit.
1411  */
1412 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1413 {
1414 	struct ice_vsi *vsi = q_vector->vsi;
1415 
1416 	/* already in wb_on_itr mode no need to change it */
1417 	if (q_vector->wb_on_itr)
1418 		return;
1419 
1420 	/* use previously set ITR values for all of the ITR indices by
1421 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1422 	 * be static in non-adaptive mode (user configured)
1423 	 */
1424 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1425 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1426 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1427 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1428 
1429 	q_vector->wb_on_itr = true;
1430 }
1431 
1432 /**
1433  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1434  * @napi: napi struct with our devices info in it
1435  * @budget: amount of work driver is allowed to do this pass, in packets
1436  *
1437  * This function will clean all queues associated with a q_vector.
1438  *
1439  * Returns the amount of work done
1440  */
1441 int ice_napi_poll(struct napi_struct *napi, int budget)
1442 {
1443 	struct ice_q_vector *q_vector =
1444 				container_of(napi, struct ice_q_vector, napi);
1445 	struct ice_tx_ring *tx_ring;
1446 	struct ice_rx_ring *rx_ring;
1447 	bool clean_complete = true;
1448 	int budget_per_ring;
1449 	int work_done = 0;
1450 
1451 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1452 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1453 	 */
1454 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1455 		bool wd;
1456 
1457 		if (tx_ring->xsk_pool)
1458 			wd = ice_xmit_zc(tx_ring);
1459 		else if (ice_ring_is_xdp(tx_ring))
1460 			wd = true;
1461 		else
1462 			wd = ice_clean_tx_irq(tx_ring, budget);
1463 
1464 		if (!wd)
1465 			clean_complete = false;
1466 	}
1467 
1468 	/* Handle case where we are called by netpoll with a budget of 0 */
1469 	if (unlikely(budget <= 0))
1470 		return budget;
1471 
1472 	/* normally we have 1 Rx ring per q_vector */
1473 	if (unlikely(q_vector->num_ring_rx > 1))
1474 		/* We attempt to distribute budget to each Rx queue fairly, but
1475 		 * don't allow the budget to go below 1 because that would exit
1476 		 * polling early.
1477 		 */
1478 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1479 	else
1480 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1481 		budget_per_ring = budget;
1482 
1483 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1484 		int cleaned;
1485 
1486 		/* A dedicated path for zero-copy allows making a single
1487 		 * comparison in the irq context instead of many inside the
1488 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1489 		 */
1490 		cleaned = rx_ring->xsk_pool ?
1491 			  ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1492 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1493 		work_done += cleaned;
1494 		/* if we clean as many as budgeted, we must not be done */
1495 		if (cleaned >= budget_per_ring)
1496 			clean_complete = false;
1497 	}
1498 
1499 	/* If work not completed, return budget and polling will return */
1500 	if (!clean_complete) {
1501 		/* Set the writeback on ITR so partial completions of
1502 		 * cache-lines will still continue even if we're polling.
1503 		 */
1504 		ice_set_wb_on_itr(q_vector);
1505 		return budget;
1506 	}
1507 
1508 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1509 	 * poll us due to busy-polling
1510 	 */
1511 	if (napi_complete_done(napi, work_done)) {
1512 		ice_net_dim(q_vector);
1513 		ice_enable_interrupt(q_vector);
1514 	} else {
1515 		ice_set_wb_on_itr(q_vector);
1516 	}
1517 
1518 	return min_t(int, work_done, budget - 1);
1519 }
1520 
1521 /**
1522  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1523  * @tx_ring: the ring to be checked
1524  * @size: the size buffer we want to assure is available
1525  *
1526  * Returns -EBUSY if a stop is needed, else 0
1527  */
1528 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1529 {
1530 	netif_tx_stop_queue(txring_txq(tx_ring));
1531 	/* Memory barrier before checking head and tail */
1532 	smp_mb();
1533 
1534 	/* Check again in a case another CPU has just made room available. */
1535 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1536 		return -EBUSY;
1537 
1538 	/* A reprieve! - use start_queue because it doesn't call schedule */
1539 	netif_tx_start_queue(txring_txq(tx_ring));
1540 	++tx_ring->ring_stats->tx_stats.restart_q;
1541 	return 0;
1542 }
1543 
1544 /**
1545  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1546  * @tx_ring: the ring to be checked
1547  * @size:    the size buffer we want to assure is available
1548  *
1549  * Returns 0 if stop is not needed
1550  */
1551 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1552 {
1553 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1554 		return 0;
1555 
1556 	return __ice_maybe_stop_tx(tx_ring, size);
1557 }
1558 
1559 /**
1560  * ice_tx_map - Build the Tx descriptor
1561  * @tx_ring: ring to send buffer on
1562  * @first: first buffer info buffer to use
1563  * @off: pointer to struct that holds offload parameters
1564  *
1565  * This function loops over the skb data pointed to by *first
1566  * and gets a physical address for each memory location and programs
1567  * it and the length into the transmit descriptor.
1568  */
1569 static void
1570 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1571 	   struct ice_tx_offload_params *off)
1572 {
1573 	u64 td_offset, td_tag, td_cmd;
1574 	u16 i = tx_ring->next_to_use;
1575 	unsigned int data_len, size;
1576 	struct ice_tx_desc *tx_desc;
1577 	struct ice_tx_buf *tx_buf;
1578 	struct sk_buff *skb;
1579 	skb_frag_t *frag;
1580 	dma_addr_t dma;
1581 	bool kick;
1582 
1583 	td_tag = off->td_l2tag1;
1584 	td_cmd = off->td_cmd;
1585 	td_offset = off->td_offset;
1586 	skb = first->skb;
1587 
1588 	data_len = skb->data_len;
1589 	size = skb_headlen(skb);
1590 
1591 	tx_desc = ICE_TX_DESC(tx_ring, i);
1592 
1593 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1594 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1595 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1596 			  ICE_TX_FLAGS_VLAN_S;
1597 	}
1598 
1599 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1600 
1601 	tx_buf = first;
1602 
1603 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1604 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1605 
1606 		if (dma_mapping_error(tx_ring->dev, dma))
1607 			goto dma_error;
1608 
1609 		/* record length, and DMA address */
1610 		dma_unmap_len_set(tx_buf, len, size);
1611 		dma_unmap_addr_set(tx_buf, dma, dma);
1612 
1613 		/* align size to end of page */
1614 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1615 		tx_desc->buf_addr = cpu_to_le64(dma);
1616 
1617 		/* account for data chunks larger than the hardware
1618 		 * can handle
1619 		 */
1620 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1621 			tx_desc->cmd_type_offset_bsz =
1622 				ice_build_ctob(td_cmd, td_offset, max_data,
1623 					       td_tag);
1624 
1625 			tx_desc++;
1626 			i++;
1627 
1628 			if (i == tx_ring->count) {
1629 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1630 				i = 0;
1631 			}
1632 
1633 			dma += max_data;
1634 			size -= max_data;
1635 
1636 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1637 			tx_desc->buf_addr = cpu_to_le64(dma);
1638 		}
1639 
1640 		if (likely(!data_len))
1641 			break;
1642 
1643 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1644 							      size, td_tag);
1645 
1646 		tx_desc++;
1647 		i++;
1648 
1649 		if (i == tx_ring->count) {
1650 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1651 			i = 0;
1652 		}
1653 
1654 		size = skb_frag_size(frag);
1655 		data_len -= size;
1656 
1657 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1658 				       DMA_TO_DEVICE);
1659 
1660 		tx_buf = &tx_ring->tx_buf[i];
1661 	}
1662 
1663 	/* record SW timestamp if HW timestamp is not available */
1664 	skb_tx_timestamp(first->skb);
1665 
1666 	i++;
1667 	if (i == tx_ring->count)
1668 		i = 0;
1669 
1670 	/* write last descriptor with RS and EOP bits */
1671 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1672 	tx_desc->cmd_type_offset_bsz =
1673 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1674 
1675 	/* Force memory writes to complete before letting h/w know there
1676 	 * are new descriptors to fetch.
1677 	 *
1678 	 * We also use this memory barrier to make certain all of the
1679 	 * status bits have been updated before next_to_watch is written.
1680 	 */
1681 	wmb();
1682 
1683 	/* set next_to_watch value indicating a packet is present */
1684 	first->next_to_watch = tx_desc;
1685 
1686 	tx_ring->next_to_use = i;
1687 
1688 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1689 
1690 	/* notify HW of packet */
1691 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1692 				      netdev_xmit_more());
1693 	if (kick)
1694 		/* notify HW of packet */
1695 		writel(i, tx_ring->tail);
1696 
1697 	return;
1698 
1699 dma_error:
1700 	/* clear DMA mappings for failed tx_buf map */
1701 	for (;;) {
1702 		tx_buf = &tx_ring->tx_buf[i];
1703 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1704 		if (tx_buf == first)
1705 			break;
1706 		if (i == 0)
1707 			i = tx_ring->count;
1708 		i--;
1709 	}
1710 
1711 	tx_ring->next_to_use = i;
1712 }
1713 
1714 /**
1715  * ice_tx_csum - Enable Tx checksum offloads
1716  * @first: pointer to the first descriptor
1717  * @off: pointer to struct that holds offload parameters
1718  *
1719  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1720  */
1721 static
1722 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1723 {
1724 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1725 	struct sk_buff *skb = first->skb;
1726 	union {
1727 		struct iphdr *v4;
1728 		struct ipv6hdr *v6;
1729 		unsigned char *hdr;
1730 	} ip;
1731 	union {
1732 		struct tcphdr *tcp;
1733 		unsigned char *hdr;
1734 	} l4;
1735 	__be16 frag_off, protocol;
1736 	unsigned char *exthdr;
1737 	u32 offset, cmd = 0;
1738 	u8 l4_proto = 0;
1739 
1740 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1741 		return 0;
1742 
1743 	protocol = vlan_get_protocol(skb);
1744 
1745 	if (eth_p_mpls(protocol)) {
1746 		ip.hdr = skb_inner_network_header(skb);
1747 		l4.hdr = skb_checksum_start(skb);
1748 	} else {
1749 		ip.hdr = skb_network_header(skb);
1750 		l4.hdr = skb_transport_header(skb);
1751 	}
1752 
1753 	/* compute outer L2 header size */
1754 	l2_len = ip.hdr - skb->data;
1755 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1756 
1757 	/* set the tx_flags to indicate the IP protocol type. this is
1758 	 * required so that checksum header computation below is accurate.
1759 	 */
1760 	if (ip.v4->version == 4)
1761 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1762 	else if (ip.v6->version == 6)
1763 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1764 
1765 	if (skb->encapsulation) {
1766 		bool gso_ena = false;
1767 		u32 tunnel = 0;
1768 
1769 		/* define outer network header type */
1770 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1771 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1772 				  ICE_TX_CTX_EIPT_IPV4 :
1773 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1774 			l4_proto = ip.v4->protocol;
1775 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1776 			int ret;
1777 
1778 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1779 			exthdr = ip.hdr + sizeof(*ip.v6);
1780 			l4_proto = ip.v6->nexthdr;
1781 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1782 					       &l4_proto, &frag_off);
1783 			if (ret < 0)
1784 				return -1;
1785 		}
1786 
1787 		/* define outer transport */
1788 		switch (l4_proto) {
1789 		case IPPROTO_UDP:
1790 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1791 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1792 			break;
1793 		case IPPROTO_GRE:
1794 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1795 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1796 			break;
1797 		case IPPROTO_IPIP:
1798 		case IPPROTO_IPV6:
1799 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1800 			l4.hdr = skb_inner_network_header(skb);
1801 			break;
1802 		default:
1803 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1804 				return -1;
1805 
1806 			skb_checksum_help(skb);
1807 			return 0;
1808 		}
1809 
1810 		/* compute outer L3 header size */
1811 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1812 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1813 
1814 		/* switch IP header pointer from outer to inner header */
1815 		ip.hdr = skb_inner_network_header(skb);
1816 
1817 		/* compute tunnel header size */
1818 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1819 			   ICE_TXD_CTX_QW0_NATLEN_S;
1820 
1821 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1822 		/* indicate if we need to offload outer UDP header */
1823 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1824 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1825 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1826 
1827 		/* record tunnel offload values */
1828 		off->cd_tunnel_params |= tunnel;
1829 
1830 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1831 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1832 		 */
1833 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1834 
1835 		/* switch L4 header pointer from outer to inner */
1836 		l4.hdr = skb_inner_transport_header(skb);
1837 		l4_proto = 0;
1838 
1839 		/* reset type as we transition from outer to inner headers */
1840 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1841 		if (ip.v4->version == 4)
1842 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1843 		if (ip.v6->version == 6)
1844 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1845 	}
1846 
1847 	/* Enable IP checksum offloads */
1848 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1849 		l4_proto = ip.v4->protocol;
1850 		/* the stack computes the IP header already, the only time we
1851 		 * need the hardware to recompute it is in the case of TSO.
1852 		 */
1853 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1854 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1855 		else
1856 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1857 
1858 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1859 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1860 		exthdr = ip.hdr + sizeof(*ip.v6);
1861 		l4_proto = ip.v6->nexthdr;
1862 		if (l4.hdr != exthdr)
1863 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1864 					 &frag_off);
1865 	} else {
1866 		return -1;
1867 	}
1868 
1869 	/* compute inner L3 header size */
1870 	l3_len = l4.hdr - ip.hdr;
1871 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1872 
1873 	/* Enable L4 checksum offloads */
1874 	switch (l4_proto) {
1875 	case IPPROTO_TCP:
1876 		/* enable checksum offloads */
1877 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1878 		l4_len = l4.tcp->doff;
1879 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1880 		break;
1881 	case IPPROTO_UDP:
1882 		/* enable UDP checksum offload */
1883 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1884 		l4_len = (sizeof(struct udphdr) >> 2);
1885 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1886 		break;
1887 	case IPPROTO_SCTP:
1888 		/* enable SCTP checksum offload */
1889 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1890 		l4_len = sizeof(struct sctphdr) >> 2;
1891 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1892 		break;
1893 
1894 	default:
1895 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1896 			return -1;
1897 		skb_checksum_help(skb);
1898 		return 0;
1899 	}
1900 
1901 	off->td_cmd |= cmd;
1902 	off->td_offset |= offset;
1903 	return 1;
1904 }
1905 
1906 /**
1907  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1908  * @tx_ring: ring to send buffer on
1909  * @first: pointer to struct ice_tx_buf
1910  *
1911  * Checks the skb and set up correspondingly several generic transmit flags
1912  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1913  */
1914 static void
1915 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1916 {
1917 	struct sk_buff *skb = first->skb;
1918 
1919 	/* nothing left to do, software offloaded VLAN */
1920 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1921 		return;
1922 
1923 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1924 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1925 	 * VLAN offloads exclusively so we only care about the VLAN ID here
1926 	 */
1927 	if (skb_vlan_tag_present(skb)) {
1928 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1929 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
1930 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1931 		else
1932 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1933 	}
1934 
1935 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1936 }
1937 
1938 /**
1939  * ice_tso - computes mss and TSO length to prepare for TSO
1940  * @first: pointer to struct ice_tx_buf
1941  * @off: pointer to struct that holds offload parameters
1942  *
1943  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1944  */
1945 static
1946 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1947 {
1948 	struct sk_buff *skb = first->skb;
1949 	union {
1950 		struct iphdr *v4;
1951 		struct ipv6hdr *v6;
1952 		unsigned char *hdr;
1953 	} ip;
1954 	union {
1955 		struct tcphdr *tcp;
1956 		struct udphdr *udp;
1957 		unsigned char *hdr;
1958 	} l4;
1959 	u64 cd_mss, cd_tso_len;
1960 	__be16 protocol;
1961 	u32 paylen;
1962 	u8 l4_start;
1963 	int err;
1964 
1965 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1966 		return 0;
1967 
1968 	if (!skb_is_gso(skb))
1969 		return 0;
1970 
1971 	err = skb_cow_head(skb, 0);
1972 	if (err < 0)
1973 		return err;
1974 
1975 	protocol = vlan_get_protocol(skb);
1976 
1977 	if (eth_p_mpls(protocol))
1978 		ip.hdr = skb_inner_network_header(skb);
1979 	else
1980 		ip.hdr = skb_network_header(skb);
1981 	l4.hdr = skb_checksum_start(skb);
1982 
1983 	/* initialize outer IP header fields */
1984 	if (ip.v4->version == 4) {
1985 		ip.v4->tot_len = 0;
1986 		ip.v4->check = 0;
1987 	} else {
1988 		ip.v6->payload_len = 0;
1989 	}
1990 
1991 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1992 					 SKB_GSO_GRE_CSUM |
1993 					 SKB_GSO_IPXIP4 |
1994 					 SKB_GSO_IPXIP6 |
1995 					 SKB_GSO_UDP_TUNNEL |
1996 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1997 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1998 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1999 			l4.udp->len = 0;
2000 
2001 			/* determine offset of outer transport header */
2002 			l4_start = (u8)(l4.hdr - skb->data);
2003 
2004 			/* remove payload length from outer checksum */
2005 			paylen = skb->len - l4_start;
2006 			csum_replace_by_diff(&l4.udp->check,
2007 					     (__force __wsum)htonl(paylen));
2008 		}
2009 
2010 		/* reset pointers to inner headers */
2011 		ip.hdr = skb_inner_network_header(skb);
2012 		l4.hdr = skb_inner_transport_header(skb);
2013 
2014 		/* initialize inner IP header fields */
2015 		if (ip.v4->version == 4) {
2016 			ip.v4->tot_len = 0;
2017 			ip.v4->check = 0;
2018 		} else {
2019 			ip.v6->payload_len = 0;
2020 		}
2021 	}
2022 
2023 	/* determine offset of transport header */
2024 	l4_start = (u8)(l4.hdr - skb->data);
2025 
2026 	/* remove payload length from checksum */
2027 	paylen = skb->len - l4_start;
2028 
2029 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2030 		csum_replace_by_diff(&l4.udp->check,
2031 				     (__force __wsum)htonl(paylen));
2032 		/* compute length of UDP segmentation header */
2033 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2034 	} else {
2035 		csum_replace_by_diff(&l4.tcp->check,
2036 				     (__force __wsum)htonl(paylen));
2037 		/* compute length of TCP segmentation header */
2038 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2039 	}
2040 
2041 	/* update gso_segs and bytecount */
2042 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2043 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2044 
2045 	cd_tso_len = skb->len - off->header_len;
2046 	cd_mss = skb_shinfo(skb)->gso_size;
2047 
2048 	/* record cdesc_qw1 with TSO parameters */
2049 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2050 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2051 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2052 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2053 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2054 	return 1;
2055 }
2056 
2057 /**
2058  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2059  * @size: transmit request size in bytes
2060  *
2061  * Due to hardware alignment restrictions (4K alignment), we need to
2062  * assume that we can have no more than 12K of data per descriptor, even
2063  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2064  * Thus, we need to divide by 12K. But division is slow! Instead,
2065  * we decompose the operation into shifts and one relatively cheap
2066  * multiply operation.
2067  *
2068  * To divide by 12K, we first divide by 4K, then divide by 3:
2069  *     To divide by 4K, shift right by 12 bits
2070  *     To divide by 3, multiply by 85, then divide by 256
2071  *     (Divide by 256 is done by shifting right by 8 bits)
2072  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2073  * 3, we'll underestimate near each multiple of 12K. This is actually more
2074  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2075  * segment. For our purposes this is accurate out to 1M which is orders of
2076  * magnitude greater than our largest possible GSO size.
2077  *
2078  * This would then be implemented as:
2079  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2080  *
2081  * Since multiplication and division are commutative, we can reorder
2082  * operations into:
2083  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2084  */
2085 static unsigned int ice_txd_use_count(unsigned int size)
2086 {
2087 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2088 }
2089 
2090 /**
2091  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2092  * @skb: send buffer
2093  *
2094  * Returns number of data descriptors needed for this skb.
2095  */
2096 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2097 {
2098 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2099 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2100 	unsigned int count = 0, size = skb_headlen(skb);
2101 
2102 	for (;;) {
2103 		count += ice_txd_use_count(size);
2104 
2105 		if (!nr_frags--)
2106 			break;
2107 
2108 		size = skb_frag_size(frag++);
2109 	}
2110 
2111 	return count;
2112 }
2113 
2114 /**
2115  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2116  * @skb: send buffer
2117  *
2118  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2119  * and so we need to figure out the cases where we need to linearize the skb.
2120  *
2121  * For TSO we need to count the TSO header and segment payload separately.
2122  * As such we need to check cases where we have 7 fragments or more as we
2123  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2124  * the segment payload in the first descriptor, and another 7 for the
2125  * fragments.
2126  */
2127 static bool __ice_chk_linearize(struct sk_buff *skb)
2128 {
2129 	const skb_frag_t *frag, *stale;
2130 	int nr_frags, sum;
2131 
2132 	/* no need to check if number of frags is less than 7 */
2133 	nr_frags = skb_shinfo(skb)->nr_frags;
2134 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2135 		return false;
2136 
2137 	/* We need to walk through the list and validate that each group
2138 	 * of 6 fragments totals at least gso_size.
2139 	 */
2140 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2141 	frag = &skb_shinfo(skb)->frags[0];
2142 
2143 	/* Initialize size to the negative value of gso_size minus 1. We
2144 	 * use this as the worst case scenario in which the frag ahead
2145 	 * of us only provides one byte which is why we are limited to 6
2146 	 * descriptors for a single transmit as the header and previous
2147 	 * fragment are already consuming 2 descriptors.
2148 	 */
2149 	sum = 1 - skb_shinfo(skb)->gso_size;
2150 
2151 	/* Add size of frags 0 through 4 to create our initial sum */
2152 	sum += skb_frag_size(frag++);
2153 	sum += skb_frag_size(frag++);
2154 	sum += skb_frag_size(frag++);
2155 	sum += skb_frag_size(frag++);
2156 	sum += skb_frag_size(frag++);
2157 
2158 	/* Walk through fragments adding latest fragment, testing it, and
2159 	 * then removing stale fragments from the sum.
2160 	 */
2161 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2162 		int stale_size = skb_frag_size(stale);
2163 
2164 		sum += skb_frag_size(frag++);
2165 
2166 		/* The stale fragment may present us with a smaller
2167 		 * descriptor than the actual fragment size. To account
2168 		 * for that we need to remove all the data on the front and
2169 		 * figure out what the remainder would be in the last
2170 		 * descriptor associated with the fragment.
2171 		 */
2172 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2173 			int align_pad = -(skb_frag_off(stale)) &
2174 					(ICE_MAX_READ_REQ_SIZE - 1);
2175 
2176 			sum -= align_pad;
2177 			stale_size -= align_pad;
2178 
2179 			do {
2180 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2181 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2182 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2183 		}
2184 
2185 		/* if sum is negative we failed to make sufficient progress */
2186 		if (sum < 0)
2187 			return true;
2188 
2189 		if (!nr_frags--)
2190 			break;
2191 
2192 		sum -= stale_size;
2193 	}
2194 
2195 	return false;
2196 }
2197 
2198 /**
2199  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2200  * @skb:      send buffer
2201  * @count:    number of buffers used
2202  *
2203  * Note: Our HW can't scatter-gather more than 8 fragments to build
2204  * a packet on the wire and so we need to figure out the cases where we
2205  * need to linearize the skb.
2206  */
2207 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2208 {
2209 	/* Both TSO and single send will work if count is less than 8 */
2210 	if (likely(count < ICE_MAX_BUF_TXD))
2211 		return false;
2212 
2213 	if (skb_is_gso(skb))
2214 		return __ice_chk_linearize(skb);
2215 
2216 	/* we can support up to 8 data buffers for a single send */
2217 	return count != ICE_MAX_BUF_TXD;
2218 }
2219 
2220 /**
2221  * ice_tstamp - set up context descriptor for hardware timestamp
2222  * @tx_ring: pointer to the Tx ring to send buffer on
2223  * @skb: pointer to the SKB we're sending
2224  * @first: Tx buffer
2225  * @off: Tx offload parameters
2226  */
2227 static void
2228 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2229 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2230 {
2231 	s8 idx;
2232 
2233 	/* only timestamp the outbound packet if the user has requested it */
2234 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2235 		return;
2236 
2237 	if (!tx_ring->ptp_tx)
2238 		return;
2239 
2240 	/* Tx timestamps cannot be sampled when doing TSO */
2241 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2242 		return;
2243 
2244 	/* Grab an open timestamp slot */
2245 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2246 	if (idx < 0) {
2247 		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2248 		return;
2249 	}
2250 
2251 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2252 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2253 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2254 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2255 }
2256 
2257 /**
2258  * ice_xmit_frame_ring - Sends buffer on Tx ring
2259  * @skb: send buffer
2260  * @tx_ring: ring to send buffer on
2261  *
2262  * Returns NETDEV_TX_OK if sent, else an error code
2263  */
2264 static netdev_tx_t
2265 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2266 {
2267 	struct ice_tx_offload_params offload = { 0 };
2268 	struct ice_vsi *vsi = tx_ring->vsi;
2269 	struct ice_tx_buf *first;
2270 	struct ethhdr *eth;
2271 	unsigned int count;
2272 	int tso, csum;
2273 
2274 	ice_trace(xmit_frame_ring, tx_ring, skb);
2275 
2276 	count = ice_xmit_desc_count(skb);
2277 	if (ice_chk_linearize(skb, count)) {
2278 		if (__skb_linearize(skb))
2279 			goto out_drop;
2280 		count = ice_txd_use_count(skb->len);
2281 		tx_ring->ring_stats->tx_stats.tx_linearize++;
2282 	}
2283 
2284 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2285 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2286 	 *       + 4 desc gap to avoid the cache line where head is,
2287 	 *       + 1 desc for context descriptor,
2288 	 * otherwise try next time
2289 	 */
2290 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2291 			      ICE_DESCS_FOR_CTX_DESC)) {
2292 		tx_ring->ring_stats->tx_stats.tx_busy++;
2293 		return NETDEV_TX_BUSY;
2294 	}
2295 
2296 	/* prefetch for bql data which is infrequently used */
2297 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2298 
2299 	offload.tx_ring = tx_ring;
2300 
2301 	/* record the location of the first descriptor for this packet */
2302 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2303 	first->skb = skb;
2304 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2305 	first->gso_segs = 1;
2306 	first->tx_flags = 0;
2307 
2308 	/* prepare the VLAN tagging flags for Tx */
2309 	ice_tx_prepare_vlan_flags(tx_ring, first);
2310 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2311 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2312 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2313 					ICE_TXD_CTX_QW1_CMD_S));
2314 		offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
2315 			ICE_TX_FLAGS_VLAN_S;
2316 	}
2317 
2318 	/* set up TSO offload */
2319 	tso = ice_tso(first, &offload);
2320 	if (tso < 0)
2321 		goto out_drop;
2322 
2323 	/* always set up Tx checksum offload */
2324 	csum = ice_tx_csum(first, &offload);
2325 	if (csum < 0)
2326 		goto out_drop;
2327 
2328 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2329 	eth = (struct ethhdr *)skb_mac_header(skb);
2330 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2331 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2332 		     vsi->type == ICE_VSI_PF &&
2333 		     vsi->port_info->qos_cfg.is_sw_lldp))
2334 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2335 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2336 					ICE_TXD_CTX_QW1_CMD_S);
2337 
2338 	ice_tstamp(tx_ring, skb, first, &offload);
2339 	if (ice_is_switchdev_running(vsi->back))
2340 		ice_eswitch_set_target_vsi(skb, &offload);
2341 
2342 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2343 		struct ice_tx_ctx_desc *cdesc;
2344 		u16 i = tx_ring->next_to_use;
2345 
2346 		/* grab the next descriptor */
2347 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2348 		i++;
2349 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2350 
2351 		/* setup context descriptor */
2352 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2353 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2354 		cdesc->rsvd = cpu_to_le16(0);
2355 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2356 	}
2357 
2358 	ice_tx_map(tx_ring, first, &offload);
2359 	return NETDEV_TX_OK;
2360 
2361 out_drop:
2362 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2363 	dev_kfree_skb_any(skb);
2364 	return NETDEV_TX_OK;
2365 }
2366 
2367 /**
2368  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2369  * @skb: send buffer
2370  * @netdev: network interface device structure
2371  *
2372  * Returns NETDEV_TX_OK if sent, else an error code
2373  */
2374 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2375 {
2376 	struct ice_netdev_priv *np = netdev_priv(netdev);
2377 	struct ice_vsi *vsi = np->vsi;
2378 	struct ice_tx_ring *tx_ring;
2379 
2380 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2381 
2382 	/* hardware can't handle really short frames, hardware padding works
2383 	 * beyond this point
2384 	 */
2385 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2386 		return NETDEV_TX_OK;
2387 
2388 	return ice_xmit_frame_ring(skb, tx_ring);
2389 }
2390 
2391 /**
2392  * ice_get_dscp_up - return the UP/TC value for a SKB
2393  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2394  * @skb: SKB to query for info to determine UP/TC
2395  *
2396  * This function is to only be called when the PF is in L3 DSCP PFC mode
2397  */
2398 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2399 {
2400 	u8 dscp = 0;
2401 
2402 	if (skb->protocol == htons(ETH_P_IP))
2403 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2404 	else if (skb->protocol == htons(ETH_P_IPV6))
2405 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2406 
2407 	return dcbcfg->dscp_map[dscp];
2408 }
2409 
2410 u16
2411 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2412 		 struct net_device *sb_dev)
2413 {
2414 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2415 	struct ice_dcbx_cfg *dcbcfg;
2416 
2417 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2418 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2419 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2420 
2421 	return netdev_pick_tx(netdev, skb, sb_dev);
2422 }
2423 
2424 /**
2425  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2426  * @tx_ring: tx_ring to clean
2427  */
2428 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2429 {
2430 	struct ice_vsi *vsi = tx_ring->vsi;
2431 	s16 i = tx_ring->next_to_clean;
2432 	int budget = ICE_DFLT_IRQ_WORK;
2433 	struct ice_tx_desc *tx_desc;
2434 	struct ice_tx_buf *tx_buf;
2435 
2436 	tx_buf = &tx_ring->tx_buf[i];
2437 	tx_desc = ICE_TX_DESC(tx_ring, i);
2438 	i -= tx_ring->count;
2439 
2440 	do {
2441 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2442 
2443 		/* if next_to_watch is not set then there is no pending work */
2444 		if (!eop_desc)
2445 			break;
2446 
2447 		/* prevent any other reads prior to eop_desc */
2448 		smp_rmb();
2449 
2450 		/* if the descriptor isn't done, no work to do */
2451 		if (!(eop_desc->cmd_type_offset_bsz &
2452 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2453 			break;
2454 
2455 		/* clear next_to_watch to prevent false hangs */
2456 		tx_buf->next_to_watch = NULL;
2457 		tx_desc->buf_addr = 0;
2458 		tx_desc->cmd_type_offset_bsz = 0;
2459 
2460 		/* move past filter desc */
2461 		tx_buf++;
2462 		tx_desc++;
2463 		i++;
2464 		if (unlikely(!i)) {
2465 			i -= tx_ring->count;
2466 			tx_buf = tx_ring->tx_buf;
2467 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2468 		}
2469 
2470 		/* unmap the data header */
2471 		if (dma_unmap_len(tx_buf, len))
2472 			dma_unmap_single(tx_ring->dev,
2473 					 dma_unmap_addr(tx_buf, dma),
2474 					 dma_unmap_len(tx_buf, len),
2475 					 DMA_TO_DEVICE);
2476 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2477 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2478 
2479 		/* clear next_to_watch to prevent false hangs */
2480 		tx_buf->raw_buf = NULL;
2481 		tx_buf->tx_flags = 0;
2482 		tx_buf->next_to_watch = NULL;
2483 		dma_unmap_len_set(tx_buf, len, 0);
2484 		tx_desc->buf_addr = 0;
2485 		tx_desc->cmd_type_offset_bsz = 0;
2486 
2487 		/* move past eop_desc for start of next FD desc */
2488 		tx_buf++;
2489 		tx_desc++;
2490 		i++;
2491 		if (unlikely(!i)) {
2492 			i -= tx_ring->count;
2493 			tx_buf = tx_ring->tx_buf;
2494 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2495 		}
2496 
2497 		budget--;
2498 	} while (likely(budget));
2499 
2500 	i += tx_ring->count;
2501 	tx_ring->next_to_clean = i;
2502 
2503 	/* re-enable interrupt if needed */
2504 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2505 }
2506