1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include "ice.h" 9 10 #define ICE_RX_HDR_SIZE 256 11 12 /** 13 * ice_unmap_and_free_tx_buf - Release a Tx buffer 14 * @ring: the ring that owns the buffer 15 * @tx_buf: the buffer to free 16 */ 17 static void 18 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 19 { 20 if (tx_buf->skb) { 21 dev_kfree_skb_any(tx_buf->skb); 22 if (dma_unmap_len(tx_buf, len)) 23 dma_unmap_single(ring->dev, 24 dma_unmap_addr(tx_buf, dma), 25 dma_unmap_len(tx_buf, len), 26 DMA_TO_DEVICE); 27 } else if (dma_unmap_len(tx_buf, len)) { 28 dma_unmap_page(ring->dev, 29 dma_unmap_addr(tx_buf, dma), 30 dma_unmap_len(tx_buf, len), 31 DMA_TO_DEVICE); 32 } 33 34 tx_buf->next_to_watch = NULL; 35 tx_buf->skb = NULL; 36 dma_unmap_len_set(tx_buf, len, 0); 37 /* tx_buf must be completely set up in the transmit path */ 38 } 39 40 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 41 { 42 return netdev_get_tx_queue(ring->netdev, ring->q_index); 43 } 44 45 /** 46 * ice_clean_tx_ring - Free any empty Tx buffers 47 * @tx_ring: ring to be cleaned 48 */ 49 void ice_clean_tx_ring(struct ice_ring *tx_ring) 50 { 51 u16 i; 52 53 /* ring already cleared, nothing to do */ 54 if (!tx_ring->tx_buf) 55 return; 56 57 /* Free all the Tx ring sk_bufss */ 58 for (i = 0; i < tx_ring->count; i++) 59 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 60 61 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 62 63 /* Zero out the descriptor ring */ 64 memset(tx_ring->desc, 0, tx_ring->size); 65 66 tx_ring->next_to_use = 0; 67 tx_ring->next_to_clean = 0; 68 69 if (!tx_ring->netdev) 70 return; 71 72 /* cleanup Tx queue statistics */ 73 netdev_tx_reset_queue(txring_txq(tx_ring)); 74 } 75 76 /** 77 * ice_free_tx_ring - Free Tx resources per queue 78 * @tx_ring: Tx descriptor ring for a specific queue 79 * 80 * Free all transmit software resources 81 */ 82 void ice_free_tx_ring(struct ice_ring *tx_ring) 83 { 84 ice_clean_tx_ring(tx_ring); 85 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 86 tx_ring->tx_buf = NULL; 87 88 if (tx_ring->desc) { 89 dmam_free_coherent(tx_ring->dev, tx_ring->size, 90 tx_ring->desc, tx_ring->dma); 91 tx_ring->desc = NULL; 92 } 93 } 94 95 /** 96 * ice_clean_tx_irq - Reclaim resources after transmit completes 97 * @vsi: the VSI we care about 98 * @tx_ring: Tx ring to clean 99 * @napi_budget: Used to determine if we are in netpoll 100 * 101 * Returns true if there's any budget left (e.g. the clean is finished) 102 */ 103 static bool 104 ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, int napi_budget) 105 { 106 unsigned int total_bytes = 0, total_pkts = 0; 107 unsigned int budget = vsi->work_lmt; 108 s16 i = tx_ring->next_to_clean; 109 struct ice_tx_desc *tx_desc; 110 struct ice_tx_buf *tx_buf; 111 112 tx_buf = &tx_ring->tx_buf[i]; 113 tx_desc = ICE_TX_DESC(tx_ring, i); 114 i -= tx_ring->count; 115 116 do { 117 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 118 119 /* if next_to_watch is not set then there is no work pending */ 120 if (!eop_desc) 121 break; 122 123 smp_rmb(); /* prevent any other reads prior to eop_desc */ 124 125 /* if the descriptor isn't done, no work yet to do */ 126 if (!(eop_desc->cmd_type_offset_bsz & 127 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 128 break; 129 130 /* clear next_to_watch to prevent false hangs */ 131 tx_buf->next_to_watch = NULL; 132 133 /* update the statistics for this packet */ 134 total_bytes += tx_buf->bytecount; 135 total_pkts += tx_buf->gso_segs; 136 137 /* free the skb */ 138 napi_consume_skb(tx_buf->skb, napi_budget); 139 140 /* unmap skb header data */ 141 dma_unmap_single(tx_ring->dev, 142 dma_unmap_addr(tx_buf, dma), 143 dma_unmap_len(tx_buf, len), 144 DMA_TO_DEVICE); 145 146 /* clear tx_buf data */ 147 tx_buf->skb = NULL; 148 dma_unmap_len_set(tx_buf, len, 0); 149 150 /* unmap remaining buffers */ 151 while (tx_desc != eop_desc) { 152 tx_buf++; 153 tx_desc++; 154 i++; 155 if (unlikely(!i)) { 156 i -= tx_ring->count; 157 tx_buf = tx_ring->tx_buf; 158 tx_desc = ICE_TX_DESC(tx_ring, 0); 159 } 160 161 /* unmap any remaining paged data */ 162 if (dma_unmap_len(tx_buf, len)) { 163 dma_unmap_page(tx_ring->dev, 164 dma_unmap_addr(tx_buf, dma), 165 dma_unmap_len(tx_buf, len), 166 DMA_TO_DEVICE); 167 dma_unmap_len_set(tx_buf, len, 0); 168 } 169 } 170 171 /* move us one more past the eop_desc for start of next pkt */ 172 tx_buf++; 173 tx_desc++; 174 i++; 175 if (unlikely(!i)) { 176 i -= tx_ring->count; 177 tx_buf = tx_ring->tx_buf; 178 tx_desc = ICE_TX_DESC(tx_ring, 0); 179 } 180 181 prefetch(tx_desc); 182 183 /* update budget accounting */ 184 budget--; 185 } while (likely(budget)); 186 187 i += tx_ring->count; 188 tx_ring->next_to_clean = i; 189 u64_stats_update_begin(&tx_ring->syncp); 190 tx_ring->stats.bytes += total_bytes; 191 tx_ring->stats.pkts += total_pkts; 192 u64_stats_update_end(&tx_ring->syncp); 193 tx_ring->q_vector->tx.total_bytes += total_bytes; 194 tx_ring->q_vector->tx.total_pkts += total_pkts; 195 196 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 197 total_bytes); 198 199 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 200 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 201 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 202 /* Make sure that anybody stopping the queue after this 203 * sees the new next_to_clean. 204 */ 205 smp_mb(); 206 if (__netif_subqueue_stopped(tx_ring->netdev, 207 tx_ring->q_index) && 208 !test_bit(__ICE_DOWN, vsi->state)) { 209 netif_wake_subqueue(tx_ring->netdev, 210 tx_ring->q_index); 211 ++tx_ring->tx_stats.restart_q; 212 } 213 } 214 215 return !!budget; 216 } 217 218 /** 219 * ice_setup_tx_ring - Allocate the Tx descriptors 220 * @tx_ring: the Tx ring to set up 221 * 222 * Return 0 on success, negative on error 223 */ 224 int ice_setup_tx_ring(struct ice_ring *tx_ring) 225 { 226 struct device *dev = tx_ring->dev; 227 228 if (!dev) 229 return -ENOMEM; 230 231 /* warn if we are about to overwrite the pointer */ 232 WARN_ON(tx_ring->tx_buf); 233 tx_ring->tx_buf = 234 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 235 GFP_KERNEL); 236 if (!tx_ring->tx_buf) 237 return -ENOMEM; 238 239 /* round up to nearest page */ 240 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 241 PAGE_SIZE); 242 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 243 GFP_KERNEL); 244 if (!tx_ring->desc) { 245 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 246 tx_ring->size); 247 goto err; 248 } 249 250 tx_ring->next_to_use = 0; 251 tx_ring->next_to_clean = 0; 252 tx_ring->tx_stats.prev_pkt = -1; 253 return 0; 254 255 err: 256 devm_kfree(dev, tx_ring->tx_buf); 257 tx_ring->tx_buf = NULL; 258 return -ENOMEM; 259 } 260 261 /** 262 * ice_clean_rx_ring - Free Rx buffers 263 * @rx_ring: ring to be cleaned 264 */ 265 void ice_clean_rx_ring(struct ice_ring *rx_ring) 266 { 267 struct device *dev = rx_ring->dev; 268 u16 i; 269 270 /* ring already cleared, nothing to do */ 271 if (!rx_ring->rx_buf) 272 return; 273 274 /* Free all the Rx ring sk_buffs */ 275 for (i = 0; i < rx_ring->count; i++) { 276 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 277 278 if (rx_buf->skb) { 279 dev_kfree_skb(rx_buf->skb); 280 rx_buf->skb = NULL; 281 } 282 if (!rx_buf->page) 283 continue; 284 285 /* Invalidate cache lines that may have been written to by 286 * device so that we avoid corrupting memory. 287 */ 288 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 289 rx_buf->page_offset, 290 ICE_RXBUF_2048, DMA_FROM_DEVICE); 291 292 /* free resources associated with mapping */ 293 dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE, 294 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 295 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 296 297 rx_buf->page = NULL; 298 rx_buf->page_offset = 0; 299 } 300 301 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 302 303 /* Zero out the descriptor ring */ 304 memset(rx_ring->desc, 0, rx_ring->size); 305 306 rx_ring->next_to_alloc = 0; 307 rx_ring->next_to_clean = 0; 308 rx_ring->next_to_use = 0; 309 } 310 311 /** 312 * ice_free_rx_ring - Free Rx resources 313 * @rx_ring: ring to clean the resources from 314 * 315 * Free all receive software resources 316 */ 317 void ice_free_rx_ring(struct ice_ring *rx_ring) 318 { 319 ice_clean_rx_ring(rx_ring); 320 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 321 rx_ring->rx_buf = NULL; 322 323 if (rx_ring->desc) { 324 dmam_free_coherent(rx_ring->dev, rx_ring->size, 325 rx_ring->desc, rx_ring->dma); 326 rx_ring->desc = NULL; 327 } 328 } 329 330 /** 331 * ice_setup_rx_ring - Allocate the Rx descriptors 332 * @rx_ring: the Rx ring to set up 333 * 334 * Return 0 on success, negative on error 335 */ 336 int ice_setup_rx_ring(struct ice_ring *rx_ring) 337 { 338 struct device *dev = rx_ring->dev; 339 340 if (!dev) 341 return -ENOMEM; 342 343 /* warn if we are about to overwrite the pointer */ 344 WARN_ON(rx_ring->rx_buf); 345 rx_ring->rx_buf = 346 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 347 GFP_KERNEL); 348 if (!rx_ring->rx_buf) 349 return -ENOMEM; 350 351 /* round up to nearest page */ 352 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 353 PAGE_SIZE); 354 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 355 GFP_KERNEL); 356 if (!rx_ring->desc) { 357 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 358 rx_ring->size); 359 goto err; 360 } 361 362 rx_ring->next_to_use = 0; 363 rx_ring->next_to_clean = 0; 364 return 0; 365 366 err: 367 devm_kfree(dev, rx_ring->rx_buf); 368 rx_ring->rx_buf = NULL; 369 return -ENOMEM; 370 } 371 372 /** 373 * ice_release_rx_desc - Store the new tail and head values 374 * @rx_ring: ring to bump 375 * @val: new head index 376 */ 377 static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val) 378 { 379 rx_ring->next_to_use = val; 380 381 /* update next to alloc since we have filled the ring */ 382 rx_ring->next_to_alloc = val; 383 384 /* Force memory writes to complete before letting h/w 385 * know there are new descriptors to fetch. (Only 386 * applicable for weak-ordered memory model archs, 387 * such as IA-64). 388 */ 389 wmb(); 390 writel(val, rx_ring->tail); 391 } 392 393 /** 394 * ice_alloc_mapped_page - recycle or make a new page 395 * @rx_ring: ring to use 396 * @bi: rx_buf struct to modify 397 * 398 * Returns true if the page was successfully allocated or 399 * reused. 400 */ 401 static bool 402 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 403 { 404 struct page *page = bi->page; 405 dma_addr_t dma; 406 407 /* since we are recycling buffers we should seldom need to alloc */ 408 if (likely(page)) { 409 rx_ring->rx_stats.page_reuse_count++; 410 return true; 411 } 412 413 /* alloc new page for storage */ 414 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); 415 if (unlikely(!page)) { 416 rx_ring->rx_stats.alloc_page_failed++; 417 return false; 418 } 419 420 /* map page for use */ 421 dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE, 422 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 423 424 /* if mapping failed free memory back to system since 425 * there isn't much point in holding memory we can't use 426 */ 427 if (dma_mapping_error(rx_ring->dev, dma)) { 428 __free_pages(page, 0); 429 rx_ring->rx_stats.alloc_page_failed++; 430 return false; 431 } 432 433 bi->dma = dma; 434 bi->page = page; 435 bi->page_offset = 0; 436 page_ref_add(page, USHRT_MAX - 1); 437 bi->pagecnt_bias = USHRT_MAX; 438 439 return true; 440 } 441 442 /** 443 * ice_alloc_rx_bufs - Replace used receive buffers 444 * @rx_ring: ring to place buffers on 445 * @cleaned_count: number of buffers to replace 446 * 447 * Returns false if all allocations were successful, true if any fail 448 */ 449 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 450 { 451 union ice_32b_rx_flex_desc *rx_desc; 452 u16 ntu = rx_ring->next_to_use; 453 struct ice_rx_buf *bi; 454 455 /* do nothing if no valid netdev defined */ 456 if (!rx_ring->netdev || !cleaned_count) 457 return false; 458 459 /* get the RX descriptor and buffer based on next_to_use */ 460 rx_desc = ICE_RX_DESC(rx_ring, ntu); 461 bi = &rx_ring->rx_buf[ntu]; 462 463 do { 464 if (!ice_alloc_mapped_page(rx_ring, bi)) 465 goto no_bufs; 466 467 /* sync the buffer for use by the device */ 468 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 469 bi->page_offset, 470 ICE_RXBUF_2048, 471 DMA_FROM_DEVICE); 472 473 /* Refresh the desc even if buffer_addrs didn't change 474 * because each write-back erases this info. 475 */ 476 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 477 478 rx_desc++; 479 bi++; 480 ntu++; 481 if (unlikely(ntu == rx_ring->count)) { 482 rx_desc = ICE_RX_DESC(rx_ring, 0); 483 bi = rx_ring->rx_buf; 484 ntu = 0; 485 } 486 487 /* clear the status bits for the next_to_use descriptor */ 488 rx_desc->wb.status_error0 = 0; 489 490 cleaned_count--; 491 } while (cleaned_count); 492 493 if (rx_ring->next_to_use != ntu) 494 ice_release_rx_desc(rx_ring, ntu); 495 496 return false; 497 498 no_bufs: 499 if (rx_ring->next_to_use != ntu) 500 ice_release_rx_desc(rx_ring, ntu); 501 502 /* make sure to come back via polling to try again after 503 * allocation failure 504 */ 505 return true; 506 } 507 508 /** 509 * ice_page_is_reserved - check if reuse is possible 510 * @page: page struct to check 511 */ 512 static bool ice_page_is_reserved(struct page *page) 513 { 514 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 515 } 516 517 /** 518 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 519 * @rx_buf: Rx buffer to adjust 520 * @size: Size of adjustment 521 * 522 * Update the offset within page so that Rx buf will be ready to be reused. 523 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 524 * so the second half of page assigned to Rx buffer will be used, otherwise 525 * the offset is moved by the @size bytes 526 */ 527 static void 528 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 529 { 530 #if (PAGE_SIZE < 8192) 531 /* flip page offset to other buffer */ 532 rx_buf->page_offset ^= size; 533 #else 534 /* move offset up to the next cache line */ 535 rx_buf->page_offset += size; 536 #endif 537 } 538 539 /** 540 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 541 * @rx_buf: buffer containing the page 542 * 543 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 544 * which will assign the current buffer to the buffer that next_to_alloc is 545 * pointing to; otherwise, the DMA mapping needs to be destroyed and 546 * page freed 547 */ 548 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 549 { 550 #if (PAGE_SIZE >= 8192) 551 unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048; 552 #endif 553 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 554 struct page *page = rx_buf->page; 555 556 /* avoid re-using remote pages */ 557 if (unlikely(ice_page_is_reserved(page))) 558 return false; 559 560 #if (PAGE_SIZE < 8192) 561 /* if we are only owner of page we can reuse it */ 562 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 563 return false; 564 #else 565 if (rx_buf->page_offset > last_offset) 566 return false; 567 #endif /* PAGE_SIZE < 8192) */ 568 569 /* If we have drained the page fragment pool we need to update 570 * the pagecnt_bias and page count so that we fully restock the 571 * number of references the driver holds. 572 */ 573 if (unlikely(pagecnt_bias == 1)) { 574 page_ref_add(page, USHRT_MAX - 1); 575 rx_buf->pagecnt_bias = USHRT_MAX; 576 } 577 578 return true; 579 } 580 581 /** 582 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 583 * @rx_buf: buffer containing page to add 584 * @skb: sk_buff to place the data into 585 * @size: packet length from rx_desc 586 * 587 * This function will add the data contained in rx_buf->page to the skb. 588 * It will just attach the page as a frag to the skb. 589 * The function will then update the page offset. 590 */ 591 static void 592 ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb, 593 unsigned int size) 594 { 595 #if (PAGE_SIZE >= 8192) 596 unsigned int truesize = SKB_DATA_ALIGN(size); 597 #else 598 unsigned int truesize = ICE_RXBUF_2048; 599 #endif 600 601 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 602 rx_buf->page_offset, size, truesize); 603 604 /* page is being used so we must update the page offset */ 605 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 606 } 607 608 /** 609 * ice_reuse_rx_page - page flip buffer and store it back on the ring 610 * @rx_ring: Rx descriptor ring to store buffers on 611 * @old_buf: donor buffer to have page reused 612 * 613 * Synchronizes page for reuse by the adapter 614 */ 615 static void 616 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 617 { 618 u16 nta = rx_ring->next_to_alloc; 619 struct ice_rx_buf *new_buf; 620 621 new_buf = &rx_ring->rx_buf[nta]; 622 623 /* update, and store next to alloc */ 624 nta++; 625 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 626 627 /* Transfer page from old buffer to new buffer. 628 * Move each member individually to avoid possible store 629 * forwarding stalls and unnecessary copy of skb. 630 */ 631 new_buf->dma = old_buf->dma; 632 new_buf->page = old_buf->page; 633 new_buf->page_offset = old_buf->page_offset; 634 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 635 } 636 637 /** 638 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 639 * @rx_ring: Rx descriptor ring to transact packets on 640 * @skb: skb to be used 641 * @size: size of buffer to add to skb 642 * 643 * This function will pull an Rx buffer from the ring and synchronize it 644 * for use by the CPU. 645 */ 646 static struct ice_rx_buf * 647 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, 648 const unsigned int size) 649 { 650 struct ice_rx_buf *rx_buf; 651 652 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 653 prefetchw(rx_buf->page); 654 *skb = rx_buf->skb; 655 656 /* we are reusing so sync this buffer for CPU use */ 657 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 658 rx_buf->page_offset, size, 659 DMA_FROM_DEVICE); 660 661 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 662 rx_buf->pagecnt_bias--; 663 664 return rx_buf; 665 } 666 667 /** 668 * ice_construct_skb - Allocate skb and populate it 669 * @rx_ring: Rx descriptor ring to transact packets on 670 * @rx_buf: Rx buffer to pull data from 671 * @size: the length of the packet 672 * 673 * This function allocates an skb. It then populates it with the page 674 * data from the current receive descriptor, taking care to set up the 675 * skb correctly. 676 */ 677 static struct sk_buff * 678 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 679 unsigned int size) 680 { 681 void *va = page_address(rx_buf->page) + rx_buf->page_offset; 682 unsigned int headlen; 683 struct sk_buff *skb; 684 685 /* prefetch first cache line of first page */ 686 prefetch(va); 687 #if L1_CACHE_BYTES < 128 688 prefetch((u8 *)va + L1_CACHE_BYTES); 689 #endif /* L1_CACHE_BYTES */ 690 691 /* allocate a skb to store the frags */ 692 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 693 GFP_ATOMIC | __GFP_NOWARN); 694 if (unlikely(!skb)) 695 return NULL; 696 697 skb_record_rx_queue(skb, rx_ring->q_index); 698 /* Determine available headroom for copy */ 699 headlen = size; 700 if (headlen > ICE_RX_HDR_SIZE) 701 headlen = eth_get_headlen(va, ICE_RX_HDR_SIZE); 702 703 /* align pull length to size of long to optimize memcpy performance */ 704 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 705 706 /* if we exhaust the linear part then add what is left as a frag */ 707 size -= headlen; 708 if (size) { 709 #if (PAGE_SIZE >= 8192) 710 unsigned int truesize = SKB_DATA_ALIGN(size); 711 #else 712 unsigned int truesize = ICE_RXBUF_2048; 713 #endif 714 skb_add_rx_frag(skb, 0, rx_buf->page, 715 rx_buf->page_offset + headlen, size, truesize); 716 /* buffer is used by skb, update page_offset */ 717 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 718 } else { 719 /* buffer is unused, reset bias back to rx_buf; data was copied 720 * onto skb's linear part so there's no need for adjusting 721 * page offset and we can reuse this buffer as-is 722 */ 723 rx_buf->pagecnt_bias++; 724 } 725 726 return skb; 727 } 728 729 /** 730 * ice_put_rx_buf - Clean up used buffer and either recycle or free 731 * @rx_ring: Rx descriptor ring to transact packets on 732 * @rx_buf: Rx buffer to pull data from 733 * 734 * This function will clean up the contents of the rx_buf. It will 735 * either recycle the buffer or unmap it and free the associated resources. 736 */ 737 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) 738 { 739 /* hand second half of page back to the ring */ 740 if (ice_can_reuse_rx_page(rx_buf)) { 741 ice_reuse_rx_page(rx_ring, rx_buf); 742 rx_ring->rx_stats.page_reuse_count++; 743 } else { 744 /* we are not reusing the buffer so unmap it */ 745 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE, 746 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 747 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 748 } 749 750 /* clear contents of buffer_info */ 751 rx_buf->page = NULL; 752 rx_buf->skb = NULL; 753 } 754 755 /** 756 * ice_cleanup_headers - Correct empty headers 757 * @skb: pointer to current skb being fixed 758 * 759 * Also address the case where we are pulling data in on pages only 760 * and as such no data is present in the skb header. 761 * 762 * In addition if skb is not at least 60 bytes we need to pad it so that 763 * it is large enough to qualify as a valid Ethernet frame. 764 * 765 * Returns true if an error was encountered and skb was freed. 766 */ 767 static bool ice_cleanup_headers(struct sk_buff *skb) 768 { 769 /* if eth_skb_pad returns an error the skb was freed */ 770 if (eth_skb_pad(skb)) 771 return true; 772 773 return false; 774 } 775 776 /** 777 * ice_test_staterr - tests bits in Rx descriptor status and error fields 778 * @rx_desc: pointer to receive descriptor (in le64 format) 779 * @stat_err_bits: value to mask 780 * 781 * This function does some fast chicanery in order to return the 782 * value of the mask which is really only used for boolean tests. 783 * The status_error_len doesn't need to be shifted because it begins 784 * at offset zero. 785 */ 786 static bool 787 ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits) 788 { 789 return !!(rx_desc->wb.status_error0 & 790 cpu_to_le16(stat_err_bits)); 791 } 792 793 /** 794 * ice_is_non_eop - process handling of non-EOP buffers 795 * @rx_ring: Rx ring being processed 796 * @rx_desc: Rx descriptor for current buffer 797 * @skb: Current socket buffer containing buffer in progress 798 * 799 * This function updates next to clean. If the buffer is an EOP buffer 800 * this function exits returning false, otherwise it will place the 801 * sk_buff in the next buffer to be chained and return true indicating 802 * that this is in fact a non-EOP buffer. 803 */ 804 static bool 805 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 806 struct sk_buff *skb) 807 { 808 u32 ntc = rx_ring->next_to_clean + 1; 809 810 /* fetch, update, and store next to clean */ 811 ntc = (ntc < rx_ring->count) ? ntc : 0; 812 rx_ring->next_to_clean = ntc; 813 814 prefetch(ICE_RX_DESC(rx_ring, ntc)); 815 816 /* if we are the last buffer then there is nothing else to do */ 817 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 818 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 819 return false; 820 821 /* place skb in next buffer to be received */ 822 rx_ring->rx_buf[ntc].skb = skb; 823 rx_ring->rx_stats.non_eop_descs++; 824 825 return true; 826 } 827 828 /** 829 * ice_ptype_to_htype - get a hash type 830 * @ptype: the ptype value from the descriptor 831 * 832 * Returns a hash type to be used by skb_set_hash 833 */ 834 static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype) 835 { 836 return PKT_HASH_TYPE_NONE; 837 } 838 839 /** 840 * ice_rx_hash - set the hash value in the skb 841 * @rx_ring: descriptor ring 842 * @rx_desc: specific descriptor 843 * @skb: pointer to current skb 844 * @rx_ptype: the ptype value from the descriptor 845 */ 846 static void 847 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 848 struct sk_buff *skb, u8 rx_ptype) 849 { 850 struct ice_32b_rx_flex_desc_nic *nic_mdid; 851 u32 hash; 852 853 if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) 854 return; 855 856 if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) 857 return; 858 859 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 860 hash = le32_to_cpu(nic_mdid->rss_hash); 861 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); 862 } 863 864 /** 865 * ice_rx_csum - Indicate in skb if checksum is good 866 * @vsi: the VSI we care about 867 * @skb: skb currently being received and modified 868 * @rx_desc: the receive descriptor 869 * @ptype: the packet type decoded by hardware 870 * 871 * skb->protocol must be set before this function is called 872 */ 873 static void 874 ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb, 875 union ice_32b_rx_flex_desc *rx_desc, u8 ptype) 876 { 877 struct ice_rx_ptype_decoded decoded; 878 u32 rx_error, rx_status; 879 bool ipv4, ipv6; 880 881 rx_status = le16_to_cpu(rx_desc->wb.status_error0); 882 rx_error = rx_status; 883 884 decoded = ice_decode_rx_desc_ptype(ptype); 885 886 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 887 skb->ip_summed = CHECKSUM_NONE; 888 skb_checksum_none_assert(skb); 889 890 /* check if Rx checksum is enabled */ 891 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 892 return; 893 894 /* check if HW has decoded the packet and checksum */ 895 if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 896 return; 897 898 if (!(decoded.known && decoded.outer_ip)) 899 return; 900 901 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 902 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); 903 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 904 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); 905 906 if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | 907 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) 908 goto checksum_fail; 909 else if (ipv6 && (rx_status & 910 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 911 goto checksum_fail; 912 913 /* check for L4 errors and handle packets that were not able to be 914 * checksummed due to arrival speed 915 */ 916 if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 917 goto checksum_fail; 918 919 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 920 switch (decoded.inner_prot) { 921 case ICE_RX_PTYPE_INNER_PROT_TCP: 922 case ICE_RX_PTYPE_INNER_PROT_UDP: 923 case ICE_RX_PTYPE_INNER_PROT_SCTP: 924 skb->ip_summed = CHECKSUM_UNNECESSARY; 925 default: 926 break; 927 } 928 return; 929 930 checksum_fail: 931 vsi->back->hw_csum_rx_error++; 932 } 933 934 /** 935 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 936 * @rx_ring: Rx descriptor ring packet is being transacted on 937 * @rx_desc: pointer to the EOP Rx descriptor 938 * @skb: pointer to current skb being populated 939 * @ptype: the packet type decoded by hardware 940 * 941 * This function checks the ring, descriptor, and packet information in 942 * order to populate the hash, checksum, VLAN, protocol, and 943 * other fields within the skb. 944 */ 945 static void 946 ice_process_skb_fields(struct ice_ring *rx_ring, 947 union ice_32b_rx_flex_desc *rx_desc, 948 struct sk_buff *skb, u8 ptype) 949 { 950 ice_rx_hash(rx_ring, rx_desc, skb, ptype); 951 952 /* modifies the skb - consumes the enet header */ 953 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 954 955 ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype); 956 } 957 958 /** 959 * ice_receive_skb - Send a completed packet up the stack 960 * @rx_ring: Rx ring in play 961 * @skb: packet to send up 962 * @vlan_tag: vlan tag for packet 963 * 964 * This function sends the completed packet (via. skb) up the stack using 965 * gro receive functions (with/without vlan tag) 966 */ 967 static void 968 ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) 969 { 970 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 971 (vlan_tag & VLAN_VID_MASK)) 972 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 973 napi_gro_receive(&rx_ring->q_vector->napi, skb); 974 } 975 976 /** 977 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 978 * @rx_ring: Rx descriptor ring to transact packets on 979 * @budget: Total limit on number of packets to process 980 * 981 * This function provides a "bounce buffer" approach to Rx interrupt 982 * processing. The advantage to this is that on systems that have 983 * expensive overhead for IOMMU access this provides a means of avoiding 984 * it by maintaining the mapping of the page to the system. 985 * 986 * Returns amount of work completed 987 */ 988 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 989 { 990 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 991 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 992 bool failure = false; 993 994 /* start the loop to process RX packets bounded by 'budget' */ 995 while (likely(total_rx_pkts < (unsigned int)budget)) { 996 union ice_32b_rx_flex_desc *rx_desc; 997 struct ice_rx_buf *rx_buf; 998 struct sk_buff *skb; 999 unsigned int size; 1000 u16 stat_err_bits; 1001 u16 vlan_tag = 0; 1002 u8 rx_ptype; 1003 1004 /* return some buffers to hardware, one at a time is too slow */ 1005 if (cleaned_count >= ICE_RX_BUF_WRITE) { 1006 failure = failure || 1007 ice_alloc_rx_bufs(rx_ring, cleaned_count); 1008 cleaned_count = 0; 1009 } 1010 1011 /* get the RX desc from RX ring based on 'next_to_clean' */ 1012 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1013 1014 /* status_error_len will always be zero for unused descriptors 1015 * because it's cleared in cleanup, and overlaps with hdr_addr 1016 * which is always zero because packet split isn't used, if the 1017 * hardware wrote DD then it will be non-zero 1018 */ 1019 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1020 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1021 break; 1022 1023 /* This memory barrier is needed to keep us from reading 1024 * any other fields out of the rx_desc until we know the 1025 * DD bit is set. 1026 */ 1027 dma_rmb(); 1028 1029 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1030 ICE_RX_FLX_DESC_PKT_LEN_M; 1031 1032 rx_buf = ice_get_rx_buf(rx_ring, &skb, size); 1033 /* allocate (if needed) and populate skb */ 1034 if (skb) 1035 ice_add_rx_frag(rx_buf, skb, size); 1036 else 1037 skb = ice_construct_skb(rx_ring, rx_buf, size); 1038 1039 /* exit if we failed to retrieve a buffer */ 1040 if (!skb) { 1041 rx_ring->rx_stats.alloc_buf_failed++; 1042 rx_buf->pagecnt_bias++; 1043 break; 1044 } 1045 1046 ice_put_rx_buf(rx_ring, rx_buf); 1047 cleaned_count++; 1048 1049 /* skip if it is NOP desc */ 1050 if (ice_is_non_eop(rx_ring, rx_desc, skb)) 1051 continue; 1052 1053 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1054 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1055 dev_kfree_skb_any(skb); 1056 continue; 1057 } 1058 1059 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1060 ICE_RX_FLEX_DESC_PTYPE_M; 1061 1062 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1063 if (ice_test_staterr(rx_desc, stat_err_bits)) 1064 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1065 1066 /* correct empty headers and pad skb if needed (to make valid 1067 * ethernet frame 1068 */ 1069 if (ice_cleanup_headers(skb)) { 1070 skb = NULL; 1071 continue; 1072 } 1073 1074 /* probably a little skewed due to removing CRC */ 1075 total_rx_bytes += skb->len; 1076 1077 /* populate checksum, VLAN, and protocol */ 1078 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1079 1080 /* send completed skb up the stack */ 1081 ice_receive_skb(rx_ring, skb, vlan_tag); 1082 1083 /* update budget accounting */ 1084 total_rx_pkts++; 1085 } 1086 1087 /* update queue and vector specific stats */ 1088 u64_stats_update_begin(&rx_ring->syncp); 1089 rx_ring->stats.pkts += total_rx_pkts; 1090 rx_ring->stats.bytes += total_rx_bytes; 1091 u64_stats_update_end(&rx_ring->syncp); 1092 rx_ring->q_vector->rx.total_pkts += total_rx_pkts; 1093 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1094 1095 /* guarantee a trip back through this routine if there was a failure */ 1096 return failure ? budget : (int)total_rx_pkts; 1097 } 1098 1099 static unsigned int ice_itr_divisor(struct ice_port_info *pi) 1100 { 1101 switch (pi->phy.link_info.link_speed) { 1102 case ICE_AQ_LINK_SPEED_40GB: 1103 return ICE_ITR_ADAPTIVE_MIN_INC * 1024; 1104 case ICE_AQ_LINK_SPEED_25GB: 1105 case ICE_AQ_LINK_SPEED_20GB: 1106 return ICE_ITR_ADAPTIVE_MIN_INC * 512; 1107 case ICE_AQ_LINK_SPEED_100MB: 1108 return ICE_ITR_ADAPTIVE_MIN_INC * 32; 1109 default: 1110 return ICE_ITR_ADAPTIVE_MIN_INC * 256; 1111 } 1112 } 1113 1114 /** 1115 * ice_update_itr - update the adaptive ITR value based on statistics 1116 * @q_vector: structure containing interrupt and ring information 1117 * @rc: structure containing ring performance data 1118 * 1119 * Stores a new ITR value based on packets and byte 1120 * counts during the last interrupt. The advantage of per interrupt 1121 * computation is faster updates and more accurate ITR for the current 1122 * traffic pattern. Constants in this function were computed 1123 * based on theoretical maximum wire speed and thresholds were set based 1124 * on testing data as well as attempting to minimize response time 1125 * while increasing bulk throughput. 1126 */ 1127 static void 1128 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) 1129 { 1130 unsigned int avg_wire_size, packets, bytes, itr; 1131 unsigned long next_update = jiffies; 1132 bool container_is_rx; 1133 1134 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) 1135 return; 1136 1137 /* If itr_countdown is set it means we programmed an ITR within 1138 * the last 4 interrupt cycles. This has a side effect of us 1139 * potentially firing an early interrupt. In order to work around 1140 * this we need to throw out any data received for a few 1141 * interrupts following the update. 1142 */ 1143 if (q_vector->itr_countdown) { 1144 itr = rc->target_itr; 1145 goto clear_counts; 1146 } 1147 1148 container_is_rx = (&q_vector->rx == rc); 1149 /* For Rx we want to push the delay up and default to low latency. 1150 * for Tx we want to pull the delay down and default to high latency. 1151 */ 1152 itr = container_is_rx ? 1153 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : 1154 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; 1155 1156 /* If we didn't update within up to 1 - 2 jiffies we can assume 1157 * that either packets are coming in so slow there hasn't been 1158 * any work, or that there is so much work that NAPI is dealing 1159 * with interrupt moderation and we don't need to do anything. 1160 */ 1161 if (time_after(next_update, rc->next_update)) 1162 goto clear_counts; 1163 1164 packets = rc->total_pkts; 1165 bytes = rc->total_bytes; 1166 1167 if (container_is_rx) { 1168 /* If Rx there are 1 to 4 packets and bytes are less than 1169 * 9000 assume insufficient data to use bulk rate limiting 1170 * approach unless Tx is already in bulk rate limiting. We 1171 * are likely latency driven. 1172 */ 1173 if (packets && packets < 4 && bytes < 9000 && 1174 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { 1175 itr = ICE_ITR_ADAPTIVE_LATENCY; 1176 goto adjust_by_size; 1177 } 1178 } else if (packets < 4) { 1179 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1180 * bulk mode and we are receiving 4 or fewer packets just 1181 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1182 * that the Rx can relax. 1183 */ 1184 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && 1185 (q_vector->rx.target_itr & ICE_ITR_MASK) == 1186 ICE_ITR_ADAPTIVE_MAX_USECS) 1187 goto clear_counts; 1188 } else if (packets > 32) { 1189 /* If we have processed over 32 packets in a single interrupt 1190 * for Tx assume we need to switch over to "bulk" mode. 1191 */ 1192 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; 1193 } 1194 1195 /* We have no packets to actually measure against. This means 1196 * either one of the other queues on this vector is active or 1197 * we are a Tx queue doing TSO with too high of an interrupt rate. 1198 * 1199 * Between 4 and 56 we can assume that our current interrupt delay 1200 * is only slightly too low. As such we should increase it by a small 1201 * fixed amount. 1202 */ 1203 if (packets < 56) { 1204 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; 1205 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1206 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1207 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1208 } 1209 goto clear_counts; 1210 } 1211 1212 if (packets <= 256) { 1213 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1214 itr &= ICE_ITR_MASK; 1215 1216 /* Between 56 and 112 is our "goldilocks" zone where we are 1217 * working out "just right". Just report that our current 1218 * ITR is good for us. 1219 */ 1220 if (packets <= 112) 1221 goto clear_counts; 1222 1223 /* If packet count is 128 or greater we are likely looking 1224 * at a slight overrun of the delay we want. Try halving 1225 * our delay to see if that will cut the number of packets 1226 * in half per interrupt. 1227 */ 1228 itr >>= 1; 1229 itr &= ICE_ITR_MASK; 1230 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) 1231 itr = ICE_ITR_ADAPTIVE_MIN_USECS; 1232 1233 goto clear_counts; 1234 } 1235 1236 /* The paths below assume we are dealing with a bulk ITR since 1237 * number of packets is greater than 256. We are just going to have 1238 * to compute a value and try to bring the count under control, 1239 * though for smaller packet sizes there isn't much we can do as 1240 * NAPI polling will likely be kicking in sooner rather than later. 1241 */ 1242 itr = ICE_ITR_ADAPTIVE_BULK; 1243 1244 adjust_by_size: 1245 /* If packet counts are 256 or greater we can assume we have a gross 1246 * overestimation of what the rate should be. Instead of trying to fine 1247 * tune it just use the formula below to try and dial in an exact value 1248 * gives the current packet size of the frame. 1249 */ 1250 avg_wire_size = bytes / packets; 1251 1252 /* The following is a crude approximation of: 1253 * wmem_default / (size + overhead) = desired_pkts_per_int 1254 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1255 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1256 * 1257 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1258 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1259 * formula down to 1260 * 1261 * (170 * (size + 24)) / (size + 640) = ITR 1262 * 1263 * We first do some math on the packet size and then finally bitshift 1264 * by 8 after rounding up. We also have to account for PCIe link speed 1265 * difference as ITR scales based on this. 1266 */ 1267 if (avg_wire_size <= 60) { 1268 /* Start at 250k ints/sec */ 1269 avg_wire_size = 4096; 1270 } else if (avg_wire_size <= 380) { 1271 /* 250K ints/sec to 60K ints/sec */ 1272 avg_wire_size *= 40; 1273 avg_wire_size += 1696; 1274 } else if (avg_wire_size <= 1084) { 1275 /* 60K ints/sec to 36K ints/sec */ 1276 avg_wire_size *= 15; 1277 avg_wire_size += 11452; 1278 } else if (avg_wire_size <= 1980) { 1279 /* 36K ints/sec to 30K ints/sec */ 1280 avg_wire_size *= 5; 1281 avg_wire_size += 22420; 1282 } else { 1283 /* plateau at a limit of 30K ints/sec */ 1284 avg_wire_size = 32256; 1285 } 1286 1287 /* If we are in low latency mode halve our delay which doubles the 1288 * rate to somewhere between 100K to 16K ints/sec 1289 */ 1290 if (itr & ICE_ITR_ADAPTIVE_LATENCY) 1291 avg_wire_size >>= 1; 1292 1293 /* Resultant value is 256 times larger than it needs to be. This 1294 * gives us room to adjust the value as needed to either increase 1295 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1296 * 1297 * Use addition as we have already recorded the new latency flag 1298 * for the ITR value. 1299 */ 1300 itr += DIV_ROUND_UP(avg_wire_size, 1301 ice_itr_divisor(q_vector->vsi->port_info)) * 1302 ICE_ITR_ADAPTIVE_MIN_INC; 1303 1304 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1305 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1306 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1307 } 1308 1309 clear_counts: 1310 /* write back value */ 1311 rc->target_itr = itr; 1312 1313 /* next update should occur within next jiffy */ 1314 rc->next_update = next_update + 1; 1315 1316 rc->total_bytes = 0; 1317 rc->total_pkts = 0; 1318 } 1319 1320 /** 1321 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1322 * @itr_idx: interrupt throttling index 1323 * @itr: interrupt throttling value in usecs 1324 */ 1325 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1326 { 1327 /* The itr value is reported in microseconds, and the register value is 1328 * recorded in 2 microsecond units. For this reason we only need to 1329 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1330 * granularity as a shift instead of division. The mask makes sure the 1331 * ITR value is never odd so we don't accidentally write into the field 1332 * prior to the ITR field. 1333 */ 1334 itr &= ICE_ITR_MASK; 1335 1336 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1337 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1338 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1339 } 1340 1341 /* The act of updating the ITR will cause it to immediately trigger. In order 1342 * to prevent this from throwing off adaptive update statistics we defer the 1343 * update so that it can only happen so often. So after either Tx or Rx are 1344 * updated we make the adaptive scheme wait until either the ITR completely 1345 * expires via the next_update expiration or we have been through at least 1346 * 3 interrupts. 1347 */ 1348 #define ITR_COUNTDOWN_START 3 1349 1350 /** 1351 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt 1352 * @vsi: the VSI associated with the q_vector 1353 * @q_vector: q_vector for which ITR is being updated and interrupt enabled 1354 */ 1355 static void 1356 ice_update_ena_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 1357 { 1358 struct ice_ring_container *tx = &q_vector->tx; 1359 struct ice_ring_container *rx = &q_vector->rx; 1360 u32 itr_val; 1361 1362 /* This will do nothing if dynamic updates are not enabled */ 1363 ice_update_itr(q_vector, tx); 1364 ice_update_itr(q_vector, rx); 1365 1366 /* This block of logic allows us to get away with only updating 1367 * one ITR value with each interrupt. The idea is to perform a 1368 * pseudo-lazy update with the following criteria. 1369 * 1370 * 1. Rx is given higher priority than Tx if both are in same state 1371 * 2. If we must reduce an ITR that is given highest priority. 1372 * 3. We then give priority to increasing ITR based on amount. 1373 */ 1374 if (rx->target_itr < rx->current_itr) { 1375 /* Rx ITR needs to be reduced, this is highest priority */ 1376 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1377 rx->current_itr = rx->target_itr; 1378 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1379 } else if ((tx->target_itr < tx->current_itr) || 1380 ((rx->target_itr - rx->current_itr) < 1381 (tx->target_itr - tx->current_itr))) { 1382 /* Tx ITR needs to be reduced, this is second priority 1383 * Tx ITR needs to be increased more than Rx, fourth priority 1384 */ 1385 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); 1386 tx->current_itr = tx->target_itr; 1387 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1388 } else if (rx->current_itr != rx->target_itr) { 1389 /* Rx ITR needs to be increased, third priority */ 1390 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1391 rx->current_itr = rx->target_itr; 1392 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1393 } else { 1394 /* Still have to re-enable the interrupts */ 1395 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1396 if (q_vector->itr_countdown) 1397 q_vector->itr_countdown--; 1398 } 1399 1400 if (!test_bit(__ICE_DOWN, vsi->state)) 1401 wr32(&vsi->back->hw, 1402 GLINT_DYN_CTL(vsi->hw_base_vector + q_vector->v_idx), 1403 itr_val); 1404 } 1405 1406 /** 1407 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1408 * @napi: napi struct with our devices info in it 1409 * @budget: amount of work driver is allowed to do this pass, in packets 1410 * 1411 * This function will clean all queues associated with a q_vector. 1412 * 1413 * Returns the amount of work done 1414 */ 1415 int ice_napi_poll(struct napi_struct *napi, int budget) 1416 { 1417 struct ice_q_vector *q_vector = 1418 container_of(napi, struct ice_q_vector, napi); 1419 struct ice_vsi *vsi = q_vector->vsi; 1420 struct ice_pf *pf = vsi->back; 1421 bool clean_complete = true; 1422 int budget_per_ring = 0; 1423 struct ice_ring *ring; 1424 int work_done = 0; 1425 1426 /* Since the actual Tx work is minimal, we can give the Tx a larger 1427 * budget and be more aggressive about cleaning up the Tx descriptors. 1428 */ 1429 ice_for_each_ring(ring, q_vector->tx) 1430 if (!ice_clean_tx_irq(vsi, ring, budget)) 1431 clean_complete = false; 1432 1433 /* Handle case where we are called by netpoll with a budget of 0 */ 1434 if (budget <= 0) 1435 return budget; 1436 1437 /* We attempt to distribute budget to each Rx queue fairly, but don't 1438 * allow the budget to go below 1 because that would exit polling early. 1439 */ 1440 if (q_vector->num_ring_rx) 1441 budget_per_ring = max(budget / q_vector->num_ring_rx, 1); 1442 1443 ice_for_each_ring(ring, q_vector->rx) { 1444 int cleaned; 1445 1446 cleaned = ice_clean_rx_irq(ring, budget_per_ring); 1447 work_done += cleaned; 1448 /* if we clean as many as budgeted, we must not be done */ 1449 if (cleaned >= budget_per_ring) 1450 clean_complete = false; 1451 } 1452 1453 /* If work not completed, return budget and polling will return */ 1454 if (!clean_complete) 1455 return budget; 1456 1457 /* Exit the polling mode, but don't re-enable interrupts if stack might 1458 * poll us due to busy-polling 1459 */ 1460 if (likely(napi_complete_done(napi, work_done))) 1461 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1462 ice_update_ena_itr(vsi, q_vector); 1463 1464 return min_t(int, work_done, budget - 1); 1465 } 1466 1467 /* helper function for building cmd/type/offset */ 1468 static __le64 1469 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag) 1470 { 1471 return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | 1472 (td_cmd << ICE_TXD_QW1_CMD_S) | 1473 (td_offset << ICE_TXD_QW1_OFFSET_S) | 1474 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | 1475 (td_tag << ICE_TXD_QW1_L2TAG1_S)); 1476 } 1477 1478 /** 1479 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1480 * @tx_ring: the ring to be checked 1481 * @size: the size buffer we want to assure is available 1482 * 1483 * Returns -EBUSY if a stop is needed, else 0 1484 */ 1485 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1486 { 1487 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1488 /* Memory barrier before checking head and tail */ 1489 smp_mb(); 1490 1491 /* Check again in a case another CPU has just made room available. */ 1492 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1493 return -EBUSY; 1494 1495 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1496 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1497 ++tx_ring->tx_stats.restart_q; 1498 return 0; 1499 } 1500 1501 /** 1502 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1503 * @tx_ring: the ring to be checked 1504 * @size: the size buffer we want to assure is available 1505 * 1506 * Returns 0 if stop is not needed 1507 */ 1508 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1509 { 1510 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1511 return 0; 1512 1513 return __ice_maybe_stop_tx(tx_ring, size); 1514 } 1515 1516 /** 1517 * ice_tx_map - Build the Tx descriptor 1518 * @tx_ring: ring to send buffer on 1519 * @first: first buffer info buffer to use 1520 * @off: pointer to struct that holds offload parameters 1521 * 1522 * This function loops over the skb data pointed to by *first 1523 * and gets a physical address for each memory location and programs 1524 * it and the length into the transmit descriptor. 1525 */ 1526 static void 1527 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1528 struct ice_tx_offload_params *off) 1529 { 1530 u64 td_offset, td_tag, td_cmd; 1531 u16 i = tx_ring->next_to_use; 1532 struct skb_frag_struct *frag; 1533 unsigned int data_len, size; 1534 struct ice_tx_desc *tx_desc; 1535 struct ice_tx_buf *tx_buf; 1536 struct sk_buff *skb; 1537 dma_addr_t dma; 1538 1539 td_tag = off->td_l2tag1; 1540 td_cmd = off->td_cmd; 1541 td_offset = off->td_offset; 1542 skb = first->skb; 1543 1544 data_len = skb->data_len; 1545 size = skb_headlen(skb); 1546 1547 tx_desc = ICE_TX_DESC(tx_ring, i); 1548 1549 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1550 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1551 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1552 ICE_TX_FLAGS_VLAN_S; 1553 } 1554 1555 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1556 1557 tx_buf = first; 1558 1559 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1560 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1561 1562 if (dma_mapping_error(tx_ring->dev, dma)) 1563 goto dma_error; 1564 1565 /* record length, and DMA address */ 1566 dma_unmap_len_set(tx_buf, len, size); 1567 dma_unmap_addr_set(tx_buf, dma, dma); 1568 1569 /* align size to end of page */ 1570 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1571 tx_desc->buf_addr = cpu_to_le64(dma); 1572 1573 /* account for data chunks larger than the hardware 1574 * can handle 1575 */ 1576 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1577 tx_desc->cmd_type_offset_bsz = 1578 build_ctob(td_cmd, td_offset, max_data, td_tag); 1579 1580 tx_desc++; 1581 i++; 1582 1583 if (i == tx_ring->count) { 1584 tx_desc = ICE_TX_DESC(tx_ring, 0); 1585 i = 0; 1586 } 1587 1588 dma += max_data; 1589 size -= max_data; 1590 1591 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1592 tx_desc->buf_addr = cpu_to_le64(dma); 1593 } 1594 1595 if (likely(!data_len)) 1596 break; 1597 1598 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 1599 size, td_tag); 1600 1601 tx_desc++; 1602 i++; 1603 1604 if (i == tx_ring->count) { 1605 tx_desc = ICE_TX_DESC(tx_ring, 0); 1606 i = 0; 1607 } 1608 1609 size = skb_frag_size(frag); 1610 data_len -= size; 1611 1612 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1613 DMA_TO_DEVICE); 1614 1615 tx_buf = &tx_ring->tx_buf[i]; 1616 } 1617 1618 /* record bytecount for BQL */ 1619 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1620 1621 /* record SW timestamp if HW timestamp is not available */ 1622 skb_tx_timestamp(first->skb); 1623 1624 i++; 1625 if (i == tx_ring->count) 1626 i = 0; 1627 1628 /* write last descriptor with RS and EOP bits */ 1629 td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); 1630 tx_desc->cmd_type_offset_bsz = 1631 build_ctob(td_cmd, td_offset, size, td_tag); 1632 1633 /* Force memory writes to complete before letting h/w know there 1634 * are new descriptors to fetch. 1635 * 1636 * We also use this memory barrier to make certain all of the 1637 * status bits have been updated before next_to_watch is written. 1638 */ 1639 wmb(); 1640 1641 /* set next_to_watch value indicating a packet is present */ 1642 first->next_to_watch = tx_desc; 1643 1644 tx_ring->next_to_use = i; 1645 1646 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1647 1648 /* notify HW of packet */ 1649 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1650 writel(i, tx_ring->tail); 1651 1652 /* we need this if more than one processor can write to our tail 1653 * at a time, it synchronizes IO on IA64/Altix systems 1654 */ 1655 mmiowb(); 1656 } 1657 1658 return; 1659 1660 dma_error: 1661 /* clear dma mappings for failed tx_buf map */ 1662 for (;;) { 1663 tx_buf = &tx_ring->tx_buf[i]; 1664 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1665 if (tx_buf == first) 1666 break; 1667 if (i == 0) 1668 i = tx_ring->count; 1669 i--; 1670 } 1671 1672 tx_ring->next_to_use = i; 1673 } 1674 1675 /** 1676 * ice_tx_csum - Enable Tx checksum offloads 1677 * @first: pointer to the first descriptor 1678 * @off: pointer to struct that holds offload parameters 1679 * 1680 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1681 */ 1682 static 1683 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1684 { 1685 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1686 struct sk_buff *skb = first->skb; 1687 union { 1688 struct iphdr *v4; 1689 struct ipv6hdr *v6; 1690 unsigned char *hdr; 1691 } ip; 1692 union { 1693 struct tcphdr *tcp; 1694 unsigned char *hdr; 1695 } l4; 1696 __be16 frag_off, protocol; 1697 unsigned char *exthdr; 1698 u32 offset, cmd = 0; 1699 u8 l4_proto = 0; 1700 1701 if (skb->ip_summed != CHECKSUM_PARTIAL) 1702 return 0; 1703 1704 ip.hdr = skb_network_header(skb); 1705 l4.hdr = skb_transport_header(skb); 1706 1707 /* compute outer L2 header size */ 1708 l2_len = ip.hdr - skb->data; 1709 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1710 1711 if (skb->encapsulation) 1712 return -1; 1713 1714 /* Enable IP checksum offloads */ 1715 protocol = vlan_get_protocol(skb); 1716 if (protocol == htons(ETH_P_IP)) { 1717 l4_proto = ip.v4->protocol; 1718 /* the stack computes the IP header already, the only time we 1719 * need the hardware to recompute it is in the case of TSO. 1720 */ 1721 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1722 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1723 else 1724 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1725 1726 } else if (protocol == htons(ETH_P_IPV6)) { 1727 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1728 exthdr = ip.hdr + sizeof(*ip.v6); 1729 l4_proto = ip.v6->nexthdr; 1730 if (l4.hdr != exthdr) 1731 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1732 &frag_off); 1733 } else { 1734 return -1; 1735 } 1736 1737 /* compute inner L3 header size */ 1738 l3_len = l4.hdr - ip.hdr; 1739 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1740 1741 /* Enable L4 checksum offloads */ 1742 switch (l4_proto) { 1743 case IPPROTO_TCP: 1744 /* enable checksum offloads */ 1745 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1746 l4_len = l4.tcp->doff; 1747 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1748 break; 1749 case IPPROTO_UDP: 1750 /* enable UDP checksum offload */ 1751 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1752 l4_len = (sizeof(struct udphdr) >> 2); 1753 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1754 break; 1755 case IPPROTO_SCTP: 1756 /* enable SCTP checksum offload */ 1757 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1758 l4_len = sizeof(struct sctphdr) >> 2; 1759 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1760 break; 1761 1762 default: 1763 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1764 return -1; 1765 skb_checksum_help(skb); 1766 return 0; 1767 } 1768 1769 off->td_cmd |= cmd; 1770 off->td_offset |= offset; 1771 return 1; 1772 } 1773 1774 /** 1775 * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 1776 * @tx_ring: ring to send buffer on 1777 * @first: pointer to struct ice_tx_buf 1778 * 1779 * Checks the skb and set up correspondingly several generic transmit flags 1780 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1781 * 1782 * Returns error code indicate the frame should be dropped upon error and the 1783 * otherwise returns 0 to indicate the flags has been set properly. 1784 */ 1785 static int 1786 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 1787 { 1788 struct sk_buff *skb = first->skb; 1789 __be16 protocol = skb->protocol; 1790 1791 if (protocol == htons(ETH_P_8021Q) && 1792 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1793 /* when HW VLAN acceleration is turned off by the user the 1794 * stack sets the protocol to 8021q so that the driver 1795 * can take any steps required to support the SW only 1796 * VLAN handling. In our case the driver doesn't need 1797 * to take any further steps so just set the protocol 1798 * to the encapsulated ethertype. 1799 */ 1800 skb->protocol = vlan_get_protocol(skb); 1801 goto out; 1802 } 1803 1804 /* if we have a HW VLAN tag being added, default to the HW one */ 1805 if (skb_vlan_tag_present(skb)) { 1806 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1807 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1808 } else if (protocol == htons(ETH_P_8021Q)) { 1809 struct vlan_hdr *vhdr, _vhdr; 1810 1811 /* for SW VLAN, check the next protocol and store the tag */ 1812 vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN, 1813 sizeof(_vhdr), 1814 &_vhdr); 1815 if (!vhdr) 1816 return -EINVAL; 1817 1818 first->tx_flags |= ntohs(vhdr->h_vlan_TCI) << 1819 ICE_TX_FLAGS_VLAN_S; 1820 first->tx_flags |= ICE_TX_FLAGS_SW_VLAN; 1821 } 1822 1823 out: 1824 return 0; 1825 } 1826 1827 /** 1828 * ice_tso - computes mss and TSO length to prepare for TSO 1829 * @first: pointer to struct ice_tx_buf 1830 * @off: pointer to struct that holds offload parameters 1831 * 1832 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1833 */ 1834 static 1835 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1836 { 1837 struct sk_buff *skb = first->skb; 1838 union { 1839 struct iphdr *v4; 1840 struct ipv6hdr *v6; 1841 unsigned char *hdr; 1842 } ip; 1843 union { 1844 struct tcphdr *tcp; 1845 unsigned char *hdr; 1846 } l4; 1847 u64 cd_mss, cd_tso_len; 1848 u32 paylen, l4_start; 1849 int err; 1850 1851 if (skb->ip_summed != CHECKSUM_PARTIAL) 1852 return 0; 1853 1854 if (!skb_is_gso(skb)) 1855 return 0; 1856 1857 err = skb_cow_head(skb, 0); 1858 if (err < 0) 1859 return err; 1860 1861 ip.hdr = skb_network_header(skb); 1862 l4.hdr = skb_transport_header(skb); 1863 1864 /* initialize outer IP header fields */ 1865 if (ip.v4->version == 4) { 1866 ip.v4->tot_len = 0; 1867 ip.v4->check = 0; 1868 } else { 1869 ip.v6->payload_len = 0; 1870 } 1871 1872 /* determine offset of transport header */ 1873 l4_start = l4.hdr - skb->data; 1874 1875 /* remove payload length from checksum */ 1876 paylen = skb->len - l4_start; 1877 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 1878 1879 /* compute length of segmentation header */ 1880 off->header_len = (l4.tcp->doff * 4) + l4_start; 1881 1882 /* update gso_segs and bytecount */ 1883 first->gso_segs = skb_shinfo(skb)->gso_segs; 1884 first->bytecount += (first->gso_segs - 1) * off->header_len; 1885 1886 cd_tso_len = skb->len - off->header_len; 1887 cd_mss = skb_shinfo(skb)->gso_size; 1888 1889 /* record cdesc_qw1 with TSO parameters */ 1890 off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX | 1891 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 1892 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 1893 (cd_mss << ICE_TXD_CTX_QW1_MSS_S); 1894 first->tx_flags |= ICE_TX_FLAGS_TSO; 1895 return 1; 1896 } 1897 1898 /** 1899 * ice_txd_use_count - estimate the number of descriptors needed for Tx 1900 * @size: transmit request size in bytes 1901 * 1902 * Due to hardware alignment restrictions (4K alignment), we need to 1903 * assume that we can have no more than 12K of data per descriptor, even 1904 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 1905 * Thus, we need to divide by 12K. But division is slow! Instead, 1906 * we decompose the operation into shifts and one relatively cheap 1907 * multiply operation. 1908 * 1909 * To divide by 12K, we first divide by 4K, then divide by 3: 1910 * To divide by 4K, shift right by 12 bits 1911 * To divide by 3, multiply by 85, then divide by 256 1912 * (Divide by 256 is done by shifting right by 8 bits) 1913 * Finally, we add one to round up. Because 256 isn't an exact multiple of 1914 * 3, we'll underestimate near each multiple of 12K. This is actually more 1915 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 1916 * segment. For our purposes this is accurate out to 1M which is orders of 1917 * magnitude greater than our largest possible GSO size. 1918 * 1919 * This would then be implemented as: 1920 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 1921 * 1922 * Since multiplication and division are commutative, we can reorder 1923 * operations into: 1924 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 1925 */ 1926 static unsigned int ice_txd_use_count(unsigned int size) 1927 { 1928 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 1929 } 1930 1931 /** 1932 * ice_xmit_desc_count - calculate number of Tx descriptors needed 1933 * @skb: send buffer 1934 * 1935 * Returns number of data descriptors needed for this skb. 1936 */ 1937 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 1938 { 1939 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 1940 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 1941 unsigned int count = 0, size = skb_headlen(skb); 1942 1943 for (;;) { 1944 count += ice_txd_use_count(size); 1945 1946 if (!nr_frags--) 1947 break; 1948 1949 size = skb_frag_size(frag++); 1950 } 1951 1952 return count; 1953 } 1954 1955 /** 1956 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 1957 * @skb: send buffer 1958 * 1959 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 1960 * and so we need to figure out the cases where we need to linearize the skb. 1961 * 1962 * For TSO we need to count the TSO header and segment payload separately. 1963 * As such we need to check cases where we have 7 fragments or more as we 1964 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 1965 * the segment payload in the first descriptor, and another 7 for the 1966 * fragments. 1967 */ 1968 static bool __ice_chk_linearize(struct sk_buff *skb) 1969 { 1970 const struct skb_frag_struct *frag, *stale; 1971 int nr_frags, sum; 1972 1973 /* no need to check if number of frags is less than 7 */ 1974 nr_frags = skb_shinfo(skb)->nr_frags; 1975 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 1976 return false; 1977 1978 /* We need to walk through the list and validate that each group 1979 * of 6 fragments totals at least gso_size. 1980 */ 1981 nr_frags -= ICE_MAX_BUF_TXD - 2; 1982 frag = &skb_shinfo(skb)->frags[0]; 1983 1984 /* Initialize size to the negative value of gso_size minus 1. We 1985 * use this as the worst case scenerio in which the frag ahead 1986 * of us only provides one byte which is why we are limited to 6 1987 * descriptors for a single transmit as the header and previous 1988 * fragment are already consuming 2 descriptors. 1989 */ 1990 sum = 1 - skb_shinfo(skb)->gso_size; 1991 1992 /* Add size of frags 0 through 4 to create our initial sum */ 1993 sum += skb_frag_size(frag++); 1994 sum += skb_frag_size(frag++); 1995 sum += skb_frag_size(frag++); 1996 sum += skb_frag_size(frag++); 1997 sum += skb_frag_size(frag++); 1998 1999 /* Walk through fragments adding latest fragment, testing it, and 2000 * then removing stale fragments from the sum. 2001 */ 2002 stale = &skb_shinfo(skb)->frags[0]; 2003 for (;;) { 2004 sum += skb_frag_size(frag++); 2005 2006 /* if sum is negative we failed to make sufficient progress */ 2007 if (sum < 0) 2008 return true; 2009 2010 if (!nr_frags--) 2011 break; 2012 2013 sum -= skb_frag_size(stale++); 2014 } 2015 2016 return false; 2017 } 2018 2019 /** 2020 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2021 * @skb: send buffer 2022 * @count: number of buffers used 2023 * 2024 * Note: Our HW can't scatter-gather more than 8 fragments to build 2025 * a packet on the wire and so we need to figure out the cases where we 2026 * need to linearize the skb. 2027 */ 2028 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2029 { 2030 /* Both TSO and single send will work if count is less than 8 */ 2031 if (likely(count < ICE_MAX_BUF_TXD)) 2032 return false; 2033 2034 if (skb_is_gso(skb)) 2035 return __ice_chk_linearize(skb); 2036 2037 /* we can support up to 8 data buffers for a single send */ 2038 return count != ICE_MAX_BUF_TXD; 2039 } 2040 2041 /** 2042 * ice_xmit_frame_ring - Sends buffer on Tx ring 2043 * @skb: send buffer 2044 * @tx_ring: ring to send buffer on 2045 * 2046 * Returns NETDEV_TX_OK if sent, else an error code 2047 */ 2048 static netdev_tx_t 2049 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2050 { 2051 struct ice_tx_offload_params offload = { 0 }; 2052 struct ice_tx_buf *first; 2053 unsigned int count; 2054 int tso, csum; 2055 2056 count = ice_xmit_desc_count(skb); 2057 if (ice_chk_linearize(skb, count)) { 2058 if (__skb_linearize(skb)) 2059 goto out_drop; 2060 count = ice_txd_use_count(skb->len); 2061 tx_ring->tx_stats.tx_linearize++; 2062 } 2063 2064 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2065 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2066 * + 4 desc gap to avoid the cache line where head is, 2067 * + 1 desc for context descriptor, 2068 * otherwise try next time 2069 */ 2070 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2071 ICE_DESCS_FOR_CTX_DESC)) { 2072 tx_ring->tx_stats.tx_busy++; 2073 return NETDEV_TX_BUSY; 2074 } 2075 2076 offload.tx_ring = tx_ring; 2077 2078 /* record the location of the first descriptor for this packet */ 2079 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2080 first->skb = skb; 2081 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2082 first->gso_segs = 1; 2083 first->tx_flags = 0; 2084 2085 /* prepare the VLAN tagging flags for Tx */ 2086 if (ice_tx_prepare_vlan_flags(tx_ring, first)) 2087 goto out_drop; 2088 2089 /* set up TSO offload */ 2090 tso = ice_tso(first, &offload); 2091 if (tso < 0) 2092 goto out_drop; 2093 2094 /* always set up Tx checksum offload */ 2095 csum = ice_tx_csum(first, &offload); 2096 if (csum < 0) 2097 goto out_drop; 2098 2099 if (tso || offload.cd_tunnel_params) { 2100 struct ice_tx_ctx_desc *cdesc; 2101 int i = tx_ring->next_to_use; 2102 2103 /* grab the next descriptor */ 2104 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2105 i++; 2106 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2107 2108 /* setup context descriptor */ 2109 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2110 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2111 cdesc->rsvd = cpu_to_le16(0); 2112 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2113 } 2114 2115 ice_tx_map(tx_ring, first, &offload); 2116 return NETDEV_TX_OK; 2117 2118 out_drop: 2119 dev_kfree_skb_any(skb); 2120 return NETDEV_TX_OK; 2121 } 2122 2123 /** 2124 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2125 * @skb: send buffer 2126 * @netdev: network interface device structure 2127 * 2128 * Returns NETDEV_TX_OK if sent, else an error code 2129 */ 2130 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2131 { 2132 struct ice_netdev_priv *np = netdev_priv(netdev); 2133 struct ice_vsi *vsi = np->vsi; 2134 struct ice_ring *tx_ring; 2135 2136 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2137 2138 /* hardware can't handle really short frames, hardware padding works 2139 * beyond this point 2140 */ 2141 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2142 return NETDEV_TX_OK; 2143 2144 return ice_xmit_frame_ring(skb, tx_ring); 2145 } 2146