1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20 
21 #define ICE_RX_HDR_SIZE		256
22 
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25 
26 /**
27  * ice_prgm_fdir_fltr - Program a Flow Director filter
28  * @vsi: VSI to send dummy packet
29  * @fdir_desc: flow director descriptor
30  * @raw_packet: allocated buffer for flow director
31  */
32 int
33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 		   u8 *raw_packet)
35 {
36 	struct ice_tx_buf *tx_buf, *first;
37 	struct ice_fltr_desc *f_desc;
38 	struct ice_tx_desc *tx_desc;
39 	struct ice_tx_ring *tx_ring;
40 	struct device *dev;
41 	dma_addr_t dma;
42 	u32 td_cmd;
43 	u16 i;
44 
45 	/* VSI and Tx ring */
46 	if (!vsi)
47 		return -ENOENT;
48 	tx_ring = vsi->tx_rings[0];
49 	if (!tx_ring || !tx_ring->desc)
50 		return -ENOENT;
51 	dev = tx_ring->dev;
52 
53 	/* we are using two descriptors to add/del a filter and we can wait */
54 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 		if (!i)
56 			return -EAGAIN;
57 		msleep_interruptible(1);
58 	}
59 
60 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 			     DMA_TO_DEVICE);
62 
63 	if (dma_mapping_error(dev, dma))
64 		return -EINVAL;
65 
66 	/* grab the next descriptor */
67 	i = tx_ring->next_to_use;
68 	first = &tx_ring->tx_buf[i];
69 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71 
72 	i++;
73 	i = (i < tx_ring->count) ? i : 0;
74 	tx_desc = ICE_TX_DESC(tx_ring, i);
75 	tx_buf = &tx_ring->tx_buf[i];
76 
77 	i++;
78 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79 
80 	memset(tx_buf, 0, sizeof(*tx_buf));
81 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 	dma_unmap_addr_set(tx_buf, dma, dma);
83 
84 	tx_desc->buf_addr = cpu_to_le64(dma);
85 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 		 ICE_TX_DESC_CMD_RE;
87 
88 	tx_buf->type = ICE_TX_BUF_DUMMY;
89 	tx_buf->raw_buf = raw_packet;
90 
91 	tx_desc->cmd_type_offset_bsz =
92 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93 
94 	/* Force memory write to complete before letting h/w know
95 	 * there are new descriptors to fetch.
96 	 */
97 	wmb();
98 
99 	/* mark the data descriptor to be watched */
100 	first->next_to_watch = tx_desc;
101 
102 	writel(tx_ring->next_to_use, tx_ring->tail);
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_unmap_and_free_tx_buf - Release a Tx buffer
109  * @ring: the ring that owns the buffer
110  * @tx_buf: the buffer to free
111  */
112 static void
113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 	if (dma_unmap_len(tx_buf, len))
116 		dma_unmap_page(ring->dev,
117 			       dma_unmap_addr(tx_buf, dma),
118 			       dma_unmap_len(tx_buf, len),
119 			       DMA_TO_DEVICE);
120 
121 	switch (tx_buf->type) {
122 	case ICE_TX_BUF_DUMMY:
123 		devm_kfree(ring->dev, tx_buf->raw_buf);
124 		break;
125 	case ICE_TX_BUF_SKB:
126 		dev_kfree_skb_any(tx_buf->skb);
127 		break;
128 	case ICE_TX_BUF_XDP_TX:
129 		page_frag_free(tx_buf->raw_buf);
130 		break;
131 	case ICE_TX_BUF_XDP_XMIT:
132 		xdp_return_frame(tx_buf->xdpf);
133 		break;
134 	}
135 
136 	tx_buf->next_to_watch = NULL;
137 	tx_buf->type = ICE_TX_BUF_EMPTY;
138 	dma_unmap_len_set(tx_buf, len, 0);
139 	/* tx_buf must be completely set up in the transmit path */
140 }
141 
142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
143 {
144 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
145 }
146 
147 /**
148  * ice_clean_tx_ring - Free any empty Tx buffers
149  * @tx_ring: ring to be cleaned
150  */
151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
152 {
153 	u32 size;
154 	u16 i;
155 
156 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
157 		ice_xsk_clean_xdp_ring(tx_ring);
158 		goto tx_skip_free;
159 	}
160 
161 	/* ring already cleared, nothing to do */
162 	if (!tx_ring->tx_buf)
163 		return;
164 
165 	/* Free all the Tx ring sk_buffs */
166 	for (i = 0; i < tx_ring->count; i++)
167 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
168 
169 tx_skip_free:
170 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
171 
172 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
173 		     PAGE_SIZE);
174 	/* Zero out the descriptor ring */
175 	memset(tx_ring->desc, 0, size);
176 
177 	tx_ring->next_to_use = 0;
178 	tx_ring->next_to_clean = 0;
179 
180 	if (!tx_ring->netdev)
181 		return;
182 
183 	/* cleanup Tx queue statistics */
184 	netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186 
187 /**
188  * ice_free_tx_ring - Free Tx resources per queue
189  * @tx_ring: Tx descriptor ring for a specific queue
190  *
191  * Free all transmit software resources
192  */
193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 	u32 size;
196 
197 	ice_clean_tx_ring(tx_ring);
198 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 	tx_ring->tx_buf = NULL;
200 
201 	if (tx_ring->desc) {
202 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 			     PAGE_SIZE);
204 		dmam_free_coherent(tx_ring->dev, size,
205 				   tx_ring->desc, tx_ring->dma);
206 		tx_ring->desc = NULL;
207 	}
208 }
209 
210 /**
211  * ice_clean_tx_irq - Reclaim resources after transmit completes
212  * @tx_ring: Tx ring to clean
213  * @napi_budget: Used to determine if we are in netpoll
214  *
215  * Returns true if there's any budget left (e.g. the clean is finished)
216  */
217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 	unsigned int total_bytes = 0, total_pkts = 0;
220 	unsigned int budget = ICE_DFLT_IRQ_WORK;
221 	struct ice_vsi *vsi = tx_ring->vsi;
222 	s16 i = tx_ring->next_to_clean;
223 	struct ice_tx_desc *tx_desc;
224 	struct ice_tx_buf *tx_buf;
225 
226 	/* get the bql data ready */
227 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228 
229 	tx_buf = &tx_ring->tx_buf[i];
230 	tx_desc = ICE_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	prefetch(&vsi->state);
234 
235 	do {
236 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237 
238 		/* if next_to_watch is not set then there is no work pending */
239 		if (!eop_desc)
240 			break;
241 
242 		/* follow the guidelines of other drivers */
243 		prefetchw(&tx_buf->skb->users);
244 
245 		smp_rmb();	/* prevent any other reads prior to eop_desc */
246 
247 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 		/* if the descriptor isn't done, no work yet to do */
249 		if (!(eop_desc->cmd_type_offset_bsz &
250 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 			break;
252 
253 		/* clear next_to_watch to prevent false hangs */
254 		tx_buf->next_to_watch = NULL;
255 
256 		/* update the statistics for this packet */
257 		total_bytes += tx_buf->bytecount;
258 		total_pkts += tx_buf->gso_segs;
259 
260 		/* free the skb */
261 		napi_consume_skb(tx_buf->skb, napi_budget);
262 
263 		/* unmap skb header data */
264 		dma_unmap_single(tx_ring->dev,
265 				 dma_unmap_addr(tx_buf, dma),
266 				 dma_unmap_len(tx_buf, len),
267 				 DMA_TO_DEVICE);
268 
269 		/* clear tx_buf data */
270 		tx_buf->type = ICE_TX_BUF_EMPTY;
271 		dma_unmap_len_set(tx_buf, len, 0);
272 
273 		/* unmap remaining buffers */
274 		while (tx_desc != eop_desc) {
275 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 			tx_buf++;
277 			tx_desc++;
278 			i++;
279 			if (unlikely(!i)) {
280 				i -= tx_ring->count;
281 				tx_buf = tx_ring->tx_buf;
282 				tx_desc = ICE_TX_DESC(tx_ring, 0);
283 			}
284 
285 			/* unmap any remaining paged data */
286 			if (dma_unmap_len(tx_buf, len)) {
287 				dma_unmap_page(tx_ring->dev,
288 					       dma_unmap_addr(tx_buf, dma),
289 					       dma_unmap_len(tx_buf, len),
290 					       DMA_TO_DEVICE);
291 				dma_unmap_len_set(tx_buf, len, 0);
292 			}
293 		}
294 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295 
296 		/* move us one more past the eop_desc for start of next pkt */
297 		tx_buf++;
298 		tx_desc++;
299 		i++;
300 		if (unlikely(!i)) {
301 			i -= tx_ring->count;
302 			tx_buf = tx_ring->tx_buf;
303 			tx_desc = ICE_TX_DESC(tx_ring, 0);
304 		}
305 
306 		prefetch(tx_desc);
307 
308 		/* update budget accounting */
309 		budget--;
310 	} while (likely(budget));
311 
312 	i += tx_ring->count;
313 	tx_ring->next_to_clean = i;
314 
315 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317 
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 		/* Make sure that anybody stopping the queue after this
322 		 * sees the new next_to_clean.
323 		 */
324 		smp_mb();
325 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 			netif_tx_wake_queue(txring_txq(tx_ring));
328 			++tx_ring->ring_stats->tx_stats.restart_q;
329 		}
330 	}
331 
332 	return !!budget;
333 }
334 
335 /**
336  * ice_setup_tx_ring - Allocate the Tx descriptors
337  * @tx_ring: the Tx ring to set up
338  *
339  * Return 0 on success, negative on error
340  */
341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 	struct device *dev = tx_ring->dev;
344 	u32 size;
345 
346 	if (!dev)
347 		return -ENOMEM;
348 
349 	/* warn if we are about to overwrite the pointer */
350 	WARN_ON(tx_ring->tx_buf);
351 	tx_ring->tx_buf =
352 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 			     GFP_KERNEL);
354 	if (!tx_ring->tx_buf)
355 		return -ENOMEM;
356 
357 	/* round up to nearest page */
358 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 		     PAGE_SIZE);
360 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 					    GFP_KERNEL);
362 	if (!tx_ring->desc) {
363 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 			size);
365 		goto err;
366 	}
367 
368 	tx_ring->next_to_use = 0;
369 	tx_ring->next_to_clean = 0;
370 	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
371 	return 0;
372 
373 err:
374 	devm_kfree(dev, tx_ring->tx_buf);
375 	tx_ring->tx_buf = NULL;
376 	return -ENOMEM;
377 }
378 
379 /**
380  * ice_clean_rx_ring - Free Rx buffers
381  * @rx_ring: ring to be cleaned
382  */
383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 	struct xdp_buff *xdp = &rx_ring->xdp;
386 	struct device *dev = rx_ring->dev;
387 	u32 size;
388 	u16 i;
389 
390 	/* ring already cleared, nothing to do */
391 	if (!rx_ring->rx_buf)
392 		return;
393 
394 	if (rx_ring->xsk_pool) {
395 		ice_xsk_clean_rx_ring(rx_ring);
396 		goto rx_skip_free;
397 	}
398 
399 	if (xdp->data) {
400 		xdp_return_buff(xdp);
401 		xdp->data = NULL;
402 	}
403 
404 	/* Free all the Rx ring sk_buffs */
405 	for (i = 0; i < rx_ring->count; i++) {
406 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
407 
408 		if (!rx_buf->page)
409 			continue;
410 
411 		/* Invalidate cache lines that may have been written to by
412 		 * device so that we avoid corrupting memory.
413 		 */
414 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
415 					      rx_buf->page_offset,
416 					      rx_ring->rx_buf_len,
417 					      DMA_FROM_DEVICE);
418 
419 		/* free resources associated with mapping */
420 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
421 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
422 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
423 
424 		rx_buf->page = NULL;
425 		rx_buf->page_offset = 0;
426 	}
427 
428 rx_skip_free:
429 	if (rx_ring->xsk_pool)
430 		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
431 	else
432 		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
433 
434 	/* Zero out the descriptor ring */
435 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
436 		     PAGE_SIZE);
437 	memset(rx_ring->desc, 0, size);
438 
439 	rx_ring->next_to_alloc = 0;
440 	rx_ring->next_to_clean = 0;
441 	rx_ring->first_desc = 0;
442 	rx_ring->next_to_use = 0;
443 }
444 
445 /**
446  * ice_free_rx_ring - Free Rx resources
447  * @rx_ring: ring to clean the resources from
448  *
449  * Free all receive software resources
450  */
451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
452 {
453 	u32 size;
454 
455 	ice_clean_rx_ring(rx_ring);
456 	if (rx_ring->vsi->type == ICE_VSI_PF)
457 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
458 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
459 	WRITE_ONCE(rx_ring->xdp_prog, NULL);
460 	if (rx_ring->xsk_pool) {
461 		kfree(rx_ring->xdp_buf);
462 		rx_ring->xdp_buf = NULL;
463 	} else {
464 		kfree(rx_ring->rx_buf);
465 		rx_ring->rx_buf = NULL;
466 	}
467 
468 	if (rx_ring->desc) {
469 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
470 			     PAGE_SIZE);
471 		dmam_free_coherent(rx_ring->dev, size,
472 				   rx_ring->desc, rx_ring->dma);
473 		rx_ring->desc = NULL;
474 	}
475 }
476 
477 /**
478  * ice_setup_rx_ring - Allocate the Rx descriptors
479  * @rx_ring: the Rx ring to set up
480  *
481  * Return 0 on success, negative on error
482  */
483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
484 {
485 	struct device *dev = rx_ring->dev;
486 	u32 size;
487 
488 	if (!dev)
489 		return -ENOMEM;
490 
491 	/* warn if we are about to overwrite the pointer */
492 	WARN_ON(rx_ring->rx_buf);
493 	rx_ring->rx_buf =
494 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
495 	if (!rx_ring->rx_buf)
496 		return -ENOMEM;
497 
498 	/* round up to nearest page */
499 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
500 		     PAGE_SIZE);
501 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
502 					    GFP_KERNEL);
503 	if (!rx_ring->desc) {
504 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
505 			size);
506 		goto err;
507 	}
508 
509 	rx_ring->next_to_use = 0;
510 	rx_ring->next_to_clean = 0;
511 	rx_ring->first_desc = 0;
512 
513 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
514 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
515 
516 	return 0;
517 
518 err:
519 	kfree(rx_ring->rx_buf);
520 	rx_ring->rx_buf = NULL;
521 	return -ENOMEM;
522 }
523 
524 /**
525  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
526  * @rx_ring: Rx ring
527  * @xdp: xdp_buff used as input to the XDP program
528  * @xdp_prog: XDP program to run
529  * @xdp_ring: ring to be used for XDP_TX action
530  * @rx_buf: Rx buffer to store the XDP action
531  *
532  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
533  */
534 static void
535 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
536 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
537 	    struct ice_rx_buf *rx_buf)
538 {
539 	unsigned int ret = ICE_XDP_PASS;
540 	u32 act;
541 
542 	if (!xdp_prog)
543 		goto exit;
544 
545 	act = bpf_prog_run_xdp(xdp_prog, xdp);
546 	switch (act) {
547 	case XDP_PASS:
548 		break;
549 	case XDP_TX:
550 		if (static_branch_unlikely(&ice_xdp_locking_key))
551 			spin_lock(&xdp_ring->tx_lock);
552 		ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
553 		if (static_branch_unlikely(&ice_xdp_locking_key))
554 			spin_unlock(&xdp_ring->tx_lock);
555 		if (ret == ICE_XDP_CONSUMED)
556 			goto out_failure;
557 		break;
558 	case XDP_REDIRECT:
559 		if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
560 			goto out_failure;
561 		ret = ICE_XDP_REDIR;
562 		break;
563 	default:
564 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
565 		fallthrough;
566 	case XDP_ABORTED:
567 out_failure:
568 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
569 		fallthrough;
570 	case XDP_DROP:
571 		ret = ICE_XDP_CONSUMED;
572 	}
573 exit:
574 	ice_set_rx_bufs_act(xdp, rx_ring, ret);
575 }
576 
577 /**
578  * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
579  * @xdpf: XDP frame that will be converted to XDP buff
580  * @xdp_ring: XDP ring for transmission
581  */
582 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
583 			     struct ice_tx_ring *xdp_ring)
584 {
585 	struct xdp_buff xdp;
586 
587 	xdp.data_hard_start = (void *)xdpf;
588 	xdp.data = xdpf->data;
589 	xdp.data_end = xdp.data + xdpf->len;
590 	xdp.frame_sz = xdpf->frame_sz;
591 	xdp.flags = xdpf->flags;
592 
593 	return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
594 }
595 
596 /**
597  * ice_xdp_xmit - submit packets to XDP ring for transmission
598  * @dev: netdev
599  * @n: number of XDP frames to be transmitted
600  * @frames: XDP frames to be transmitted
601  * @flags: transmit flags
602  *
603  * Returns number of frames successfully sent. Failed frames
604  * will be free'ed by XDP core.
605  * For error cases, a negative errno code is returned and no-frames
606  * are transmitted (caller must handle freeing frames).
607  */
608 int
609 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
610 	     u32 flags)
611 {
612 	struct ice_netdev_priv *np = netdev_priv(dev);
613 	unsigned int queue_index = smp_processor_id();
614 	struct ice_vsi *vsi = np->vsi;
615 	struct ice_tx_ring *xdp_ring;
616 	struct ice_tx_buf *tx_buf;
617 	int nxmit = 0, i;
618 
619 	if (test_bit(ICE_VSI_DOWN, vsi->state))
620 		return -ENETDOWN;
621 
622 	if (!ice_is_xdp_ena_vsi(vsi))
623 		return -ENXIO;
624 
625 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
626 		return -EINVAL;
627 
628 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
629 		queue_index %= vsi->num_xdp_txq;
630 		xdp_ring = vsi->xdp_rings[queue_index];
631 		spin_lock(&xdp_ring->tx_lock);
632 	} else {
633 		/* Generally, should not happen */
634 		if (unlikely(queue_index >= vsi->num_xdp_txq))
635 			return -ENXIO;
636 		xdp_ring = vsi->xdp_rings[queue_index];
637 	}
638 
639 	tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
640 	for (i = 0; i < n; i++) {
641 		const struct xdp_frame *xdpf = frames[i];
642 		int err;
643 
644 		err = ice_xmit_xdp_ring(xdpf, xdp_ring);
645 		if (err != ICE_XDP_TX)
646 			break;
647 		nxmit++;
648 	}
649 
650 	tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
651 	if (unlikely(flags & XDP_XMIT_FLUSH))
652 		ice_xdp_ring_update_tail(xdp_ring);
653 
654 	if (static_branch_unlikely(&ice_xdp_locking_key))
655 		spin_unlock(&xdp_ring->tx_lock);
656 
657 	return nxmit;
658 }
659 
660 /**
661  * ice_alloc_mapped_page - recycle or make a new page
662  * @rx_ring: ring to use
663  * @bi: rx_buf struct to modify
664  *
665  * Returns true if the page was successfully allocated or
666  * reused.
667  */
668 static bool
669 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
670 {
671 	struct page *page = bi->page;
672 	dma_addr_t dma;
673 
674 	/* since we are recycling buffers we should seldom need to alloc */
675 	if (likely(page))
676 		return true;
677 
678 	/* alloc new page for storage */
679 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
680 	if (unlikely(!page)) {
681 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
682 		return false;
683 	}
684 
685 	/* map page for use */
686 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
687 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
688 
689 	/* if mapping failed free memory back to system since
690 	 * there isn't much point in holding memory we can't use
691 	 */
692 	if (dma_mapping_error(rx_ring->dev, dma)) {
693 		__free_pages(page, ice_rx_pg_order(rx_ring));
694 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
695 		return false;
696 	}
697 
698 	bi->dma = dma;
699 	bi->page = page;
700 	bi->page_offset = rx_ring->rx_offset;
701 	page_ref_add(page, USHRT_MAX - 1);
702 	bi->pagecnt_bias = USHRT_MAX;
703 
704 	return true;
705 }
706 
707 /**
708  * ice_alloc_rx_bufs - Replace used receive buffers
709  * @rx_ring: ring to place buffers on
710  * @cleaned_count: number of buffers to replace
711  *
712  * Returns false if all allocations were successful, true if any fail. Returning
713  * true signals to the caller that we didn't replace cleaned_count buffers and
714  * there is more work to do.
715  *
716  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
717  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
718  * multiple tail writes per call.
719  */
720 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
721 {
722 	union ice_32b_rx_flex_desc *rx_desc;
723 	u16 ntu = rx_ring->next_to_use;
724 	struct ice_rx_buf *bi;
725 
726 	/* do nothing if no valid netdev defined */
727 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
728 	    !cleaned_count)
729 		return false;
730 
731 	/* get the Rx descriptor and buffer based on next_to_use */
732 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
733 	bi = &rx_ring->rx_buf[ntu];
734 
735 	do {
736 		/* if we fail here, we have work remaining */
737 		if (!ice_alloc_mapped_page(rx_ring, bi))
738 			break;
739 
740 		/* sync the buffer for use by the device */
741 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
742 						 bi->page_offset,
743 						 rx_ring->rx_buf_len,
744 						 DMA_FROM_DEVICE);
745 
746 		/* Refresh the desc even if buffer_addrs didn't change
747 		 * because each write-back erases this info.
748 		 */
749 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
750 
751 		rx_desc++;
752 		bi++;
753 		ntu++;
754 		if (unlikely(ntu == rx_ring->count)) {
755 			rx_desc = ICE_RX_DESC(rx_ring, 0);
756 			bi = rx_ring->rx_buf;
757 			ntu = 0;
758 		}
759 
760 		/* clear the status bits for the next_to_use descriptor */
761 		rx_desc->wb.status_error0 = 0;
762 
763 		cleaned_count--;
764 	} while (cleaned_count);
765 
766 	if (rx_ring->next_to_use != ntu)
767 		ice_release_rx_desc(rx_ring, ntu);
768 
769 	return !!cleaned_count;
770 }
771 
772 /**
773  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
774  * @rx_buf: Rx buffer to adjust
775  * @size: Size of adjustment
776  *
777  * Update the offset within page so that Rx buf will be ready to be reused.
778  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
779  * so the second half of page assigned to Rx buffer will be used, otherwise
780  * the offset is moved by "size" bytes
781  */
782 static void
783 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
784 {
785 #if (PAGE_SIZE < 8192)
786 	/* flip page offset to other buffer */
787 	rx_buf->page_offset ^= size;
788 #else
789 	/* move offset up to the next cache line */
790 	rx_buf->page_offset += size;
791 #endif
792 }
793 
794 /**
795  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
796  * @rx_buf: buffer containing the page
797  *
798  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
799  * which will assign the current buffer to the buffer that next_to_alloc is
800  * pointing to; otherwise, the DMA mapping needs to be destroyed and
801  * page freed
802  */
803 static bool
804 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
805 {
806 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
807 	struct page *page = rx_buf->page;
808 
809 	/* avoid re-using remote and pfmemalloc pages */
810 	if (!dev_page_is_reusable(page))
811 		return false;
812 
813 	/* if we are only owner of page we can reuse it */
814 	if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
815 		return false;
816 #if (PAGE_SIZE >= 8192)
817 #define ICE_LAST_OFFSET \
818 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072)
819 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
820 		return false;
821 #endif /* PAGE_SIZE >= 8192) */
822 
823 	/* If we have drained the page fragment pool we need to update
824 	 * the pagecnt_bias and page count so that we fully restock the
825 	 * number of references the driver holds.
826 	 */
827 	if (unlikely(pagecnt_bias == 1)) {
828 		page_ref_add(page, USHRT_MAX - 1);
829 		rx_buf->pagecnt_bias = USHRT_MAX;
830 	}
831 
832 	return true;
833 }
834 
835 /**
836  * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
837  * @rx_ring: Rx descriptor ring to transact packets on
838  * @xdp: xdp buff to place the data into
839  * @rx_buf: buffer containing page to add
840  * @size: packet length from rx_desc
841  *
842  * This function will add the data contained in rx_buf->page to the xdp buf.
843  * It will just attach the page as a frag.
844  */
845 static int
846 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
847 		 struct ice_rx_buf *rx_buf, const unsigned int size)
848 {
849 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
850 
851 	if (!size)
852 		return 0;
853 
854 	if (!xdp_buff_has_frags(xdp)) {
855 		sinfo->nr_frags = 0;
856 		sinfo->xdp_frags_size = 0;
857 		xdp_buff_set_frags_flag(xdp);
858 	}
859 
860 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
861 		ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED);
862 		return -ENOMEM;
863 	}
864 
865 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
866 				   rx_buf->page_offset, size);
867 	sinfo->xdp_frags_size += size;
868 	/* remember frag count before XDP prog execution; bpf_xdp_adjust_tail()
869 	 * can pop off frags but driver has to handle it on its own
870 	 */
871 	rx_ring->nr_frags = sinfo->nr_frags;
872 
873 	if (page_is_pfmemalloc(rx_buf->page))
874 		xdp_buff_set_frag_pfmemalloc(xdp);
875 
876 	return 0;
877 }
878 
879 /**
880  * ice_reuse_rx_page - page flip buffer and store it back on the ring
881  * @rx_ring: Rx descriptor ring to store buffers on
882  * @old_buf: donor buffer to have page reused
883  *
884  * Synchronizes page for reuse by the adapter
885  */
886 static void
887 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
888 {
889 	u16 nta = rx_ring->next_to_alloc;
890 	struct ice_rx_buf *new_buf;
891 
892 	new_buf = &rx_ring->rx_buf[nta];
893 
894 	/* update, and store next to alloc */
895 	nta++;
896 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
897 
898 	/* Transfer page from old buffer to new buffer.
899 	 * Move each member individually to avoid possible store
900 	 * forwarding stalls and unnecessary copy of skb.
901 	 */
902 	new_buf->dma = old_buf->dma;
903 	new_buf->page = old_buf->page;
904 	new_buf->page_offset = old_buf->page_offset;
905 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
906 }
907 
908 /**
909  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
910  * @rx_ring: Rx descriptor ring to transact packets on
911  * @size: size of buffer to add to skb
912  * @ntc: index of next to clean element
913  *
914  * This function will pull an Rx buffer from the ring and synchronize it
915  * for use by the CPU.
916  */
917 static struct ice_rx_buf *
918 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
919 	       const unsigned int ntc)
920 {
921 	struct ice_rx_buf *rx_buf;
922 
923 	rx_buf = &rx_ring->rx_buf[ntc];
924 	rx_buf->pgcnt = page_count(rx_buf->page);
925 	prefetchw(rx_buf->page);
926 
927 	if (!size)
928 		return rx_buf;
929 	/* we are reusing so sync this buffer for CPU use */
930 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
931 				      rx_buf->page_offset, size,
932 				      DMA_FROM_DEVICE);
933 
934 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
935 	rx_buf->pagecnt_bias--;
936 
937 	return rx_buf;
938 }
939 
940 /**
941  * ice_build_skb - Build skb around an existing buffer
942  * @rx_ring: Rx descriptor ring to transact packets on
943  * @xdp: xdp_buff pointing to the data
944  *
945  * This function builds an skb around an existing XDP buffer, taking care
946  * to set up the skb correctly and avoid any memcpy overhead. Driver has
947  * already combined frags (if any) to skb_shared_info.
948  */
949 static struct sk_buff *
950 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
951 {
952 	u8 metasize = xdp->data - xdp->data_meta;
953 	struct skb_shared_info *sinfo = NULL;
954 	unsigned int nr_frags;
955 	struct sk_buff *skb;
956 
957 	if (unlikely(xdp_buff_has_frags(xdp))) {
958 		sinfo = xdp_get_shared_info_from_buff(xdp);
959 		nr_frags = sinfo->nr_frags;
960 	}
961 
962 	/* Prefetch first cache line of first page. If xdp->data_meta
963 	 * is unused, this points exactly as xdp->data, otherwise we
964 	 * likely have a consumer accessing first few bytes of meta
965 	 * data, and then actual data.
966 	 */
967 	net_prefetch(xdp->data_meta);
968 	/* build an skb around the page buffer */
969 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
970 	if (unlikely(!skb))
971 		return NULL;
972 
973 	/* must to record Rx queue, otherwise OS features such as
974 	 * symmetric queue won't work
975 	 */
976 	skb_record_rx_queue(skb, rx_ring->q_index);
977 
978 	/* update pointers within the skb to store the data */
979 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
980 	__skb_put(skb, xdp->data_end - xdp->data);
981 	if (metasize)
982 		skb_metadata_set(skb, metasize);
983 
984 	if (unlikely(xdp_buff_has_frags(xdp)))
985 		xdp_update_skb_shared_info(skb, nr_frags,
986 					   sinfo->xdp_frags_size,
987 					   nr_frags * xdp->frame_sz,
988 					   xdp_buff_is_frag_pfmemalloc(xdp));
989 
990 	return skb;
991 }
992 
993 /**
994  * ice_construct_skb - Allocate skb and populate it
995  * @rx_ring: Rx descriptor ring to transact packets on
996  * @xdp: xdp_buff pointing to the data
997  *
998  * This function allocates an skb. It then populates it with the page
999  * data from the current receive descriptor, taking care to set up the
1000  * skb correctly.
1001  */
1002 static struct sk_buff *
1003 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
1004 {
1005 	unsigned int size = xdp->data_end - xdp->data;
1006 	struct skb_shared_info *sinfo = NULL;
1007 	struct ice_rx_buf *rx_buf;
1008 	unsigned int nr_frags = 0;
1009 	unsigned int headlen;
1010 	struct sk_buff *skb;
1011 
1012 	/* prefetch first cache line of first page */
1013 	net_prefetch(xdp->data);
1014 
1015 	if (unlikely(xdp_buff_has_frags(xdp))) {
1016 		sinfo = xdp_get_shared_info_from_buff(xdp);
1017 		nr_frags = sinfo->nr_frags;
1018 	}
1019 
1020 	/* allocate a skb to store the frags */
1021 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
1022 			       GFP_ATOMIC | __GFP_NOWARN);
1023 	if (unlikely(!skb))
1024 		return NULL;
1025 
1026 	rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
1027 	skb_record_rx_queue(skb, rx_ring->q_index);
1028 	/* Determine available headroom for copy */
1029 	headlen = size;
1030 	if (headlen > ICE_RX_HDR_SIZE)
1031 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1032 
1033 	/* align pull length to size of long to optimize memcpy performance */
1034 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1035 							 sizeof(long)));
1036 
1037 	/* if we exhaust the linear part then add what is left as a frag */
1038 	size -= headlen;
1039 	if (size) {
1040 		/* besides adding here a partial frag, we are going to add
1041 		 * frags from xdp_buff, make sure there is enough space for
1042 		 * them
1043 		 */
1044 		if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
1045 			dev_kfree_skb(skb);
1046 			return NULL;
1047 		}
1048 		skb_add_rx_frag(skb, 0, rx_buf->page,
1049 				rx_buf->page_offset + headlen, size,
1050 				xdp->frame_sz);
1051 	} else {
1052 		/* buffer is unused, change the act that should be taken later
1053 		 * on; data was copied onto skb's linear part so there's no
1054 		 * need for adjusting page offset and we can reuse this buffer
1055 		 * as-is
1056 		 */
1057 		rx_buf->act = ICE_SKB_CONSUMED;
1058 	}
1059 
1060 	if (unlikely(xdp_buff_has_frags(xdp))) {
1061 		struct skb_shared_info *skinfo = skb_shinfo(skb);
1062 
1063 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
1064 		       sizeof(skb_frag_t) * nr_frags);
1065 
1066 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
1067 					   sinfo->xdp_frags_size,
1068 					   nr_frags * xdp->frame_sz,
1069 					   xdp_buff_is_frag_pfmemalloc(xdp));
1070 	}
1071 
1072 	return skb;
1073 }
1074 
1075 /**
1076  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1077  * @rx_ring: Rx descriptor ring to transact packets on
1078  * @rx_buf: Rx buffer to pull data from
1079  *
1080  * This function will clean up the contents of the rx_buf. It will either
1081  * recycle the buffer or unmap it and free the associated resources.
1082  */
1083 static void
1084 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
1085 {
1086 	if (!rx_buf)
1087 		return;
1088 
1089 	if (ice_can_reuse_rx_page(rx_buf)) {
1090 		/* hand second half of page back to the ring */
1091 		ice_reuse_rx_page(rx_ring, rx_buf);
1092 	} else {
1093 		/* we are not reusing the buffer so unmap it */
1094 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1095 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1096 				     ICE_RX_DMA_ATTR);
1097 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1098 	}
1099 
1100 	/* clear contents of buffer_info */
1101 	rx_buf->page = NULL;
1102 }
1103 
1104 /**
1105  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1106  * @rx_ring: Rx descriptor ring to transact packets on
1107  * @budget: Total limit on number of packets to process
1108  *
1109  * This function provides a "bounce buffer" approach to Rx interrupt
1110  * processing. The advantage to this is that on systems that have
1111  * expensive overhead for IOMMU access this provides a means of avoiding
1112  * it by maintaining the mapping of the page to the system.
1113  *
1114  * Returns amount of work completed
1115  */
1116 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1117 {
1118 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1119 	unsigned int offset = rx_ring->rx_offset;
1120 	struct xdp_buff *xdp = &rx_ring->xdp;
1121 	u32 cached_ntc = rx_ring->first_desc;
1122 	struct ice_tx_ring *xdp_ring = NULL;
1123 	struct bpf_prog *xdp_prog = NULL;
1124 	u32 ntc = rx_ring->next_to_clean;
1125 	u32 cnt = rx_ring->count;
1126 	u32 xdp_xmit = 0;
1127 	u32 cached_ntu;
1128 	bool failure;
1129 	u32 first;
1130 
1131 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1132 	if (xdp_prog) {
1133 		xdp_ring = rx_ring->xdp_ring;
1134 		cached_ntu = xdp_ring->next_to_use;
1135 	}
1136 
1137 	/* start the loop to process Rx packets bounded by 'budget' */
1138 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1139 		union ice_32b_rx_flex_desc *rx_desc;
1140 		struct ice_rx_buf *rx_buf;
1141 		struct sk_buff *skb;
1142 		unsigned int size;
1143 		u16 stat_err_bits;
1144 		u16 vlan_tag = 0;
1145 		u16 rx_ptype;
1146 
1147 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1148 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
1149 
1150 		/* status_error_len will always be zero for unused descriptors
1151 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1152 		 * which is always zero because packet split isn't used, if the
1153 		 * hardware wrote DD then it will be non-zero
1154 		 */
1155 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1156 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1157 			break;
1158 
1159 		/* This memory barrier is needed to keep us from reading
1160 		 * any other fields out of the rx_desc until we know the
1161 		 * DD bit is set.
1162 		 */
1163 		dma_rmb();
1164 
1165 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1166 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1167 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1168 
1169 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1170 			    ctrl_vsi->vf)
1171 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1172 			if (++ntc == cnt)
1173 				ntc = 0;
1174 			rx_ring->first_desc = ntc;
1175 			continue;
1176 		}
1177 
1178 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1179 			ICE_RX_FLX_DESC_PKT_LEN_M;
1180 
1181 		/* retrieve a buffer from the ring */
1182 		rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1183 
1184 		if (!xdp->data) {
1185 			void *hard_start;
1186 
1187 			hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1188 				     offset;
1189 			xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1190 			xdp_buff_clear_frags_flag(xdp);
1191 		} else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
1192 			break;
1193 		}
1194 		if (++ntc == cnt)
1195 			ntc = 0;
1196 
1197 		/* skip if it is NOP desc */
1198 		if (ice_is_non_eop(rx_ring, rx_desc))
1199 			continue;
1200 
1201 		ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf);
1202 		if (rx_buf->act == ICE_XDP_PASS)
1203 			goto construct_skb;
1204 		total_rx_bytes += xdp_get_buff_len(xdp);
1205 		total_rx_pkts++;
1206 
1207 		xdp->data = NULL;
1208 		rx_ring->first_desc = ntc;
1209 		rx_ring->nr_frags = 0;
1210 		continue;
1211 construct_skb:
1212 		if (likely(ice_ring_uses_build_skb(rx_ring)))
1213 			skb = ice_build_skb(rx_ring, xdp);
1214 		else
1215 			skb = ice_construct_skb(rx_ring, xdp);
1216 		/* exit if we failed to retrieve a buffer */
1217 		if (!skb) {
1218 			rx_ring->ring_stats->rx_stats.alloc_page_failed++;
1219 			rx_buf->act = ICE_XDP_CONSUMED;
1220 			if (unlikely(xdp_buff_has_frags(xdp)))
1221 				ice_set_rx_bufs_act(xdp, rx_ring,
1222 						    ICE_XDP_CONSUMED);
1223 			xdp->data = NULL;
1224 			rx_ring->first_desc = ntc;
1225 			rx_ring->nr_frags = 0;
1226 			break;
1227 		}
1228 		xdp->data = NULL;
1229 		rx_ring->first_desc = ntc;
1230 		rx_ring->nr_frags = 0;
1231 
1232 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1233 		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1234 					      stat_err_bits))) {
1235 			dev_kfree_skb_any(skb);
1236 			continue;
1237 		}
1238 
1239 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1240 
1241 		/* pad the skb if needed, to make a valid ethernet frame */
1242 		if (eth_skb_pad(skb))
1243 			continue;
1244 
1245 		/* probably a little skewed due to removing CRC */
1246 		total_rx_bytes += skb->len;
1247 
1248 		/* populate checksum, VLAN, and protocol */
1249 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1250 			ICE_RX_FLEX_DESC_PTYPE_M;
1251 
1252 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1253 
1254 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1255 		/* send completed skb up the stack */
1256 		ice_receive_skb(rx_ring, skb, vlan_tag);
1257 
1258 		/* update budget accounting */
1259 		total_rx_pkts++;
1260 	}
1261 
1262 	first = rx_ring->first_desc;
1263 	while (cached_ntc != first) {
1264 		struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc];
1265 
1266 		if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1267 			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1268 			xdp_xmit |= buf->act;
1269 		} else if (buf->act & ICE_XDP_CONSUMED) {
1270 			buf->pagecnt_bias++;
1271 		} else if (buf->act == ICE_XDP_PASS) {
1272 			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1273 		}
1274 
1275 		ice_put_rx_buf(rx_ring, buf);
1276 		if (++cached_ntc >= cnt)
1277 			cached_ntc = 0;
1278 	}
1279 	rx_ring->next_to_clean = ntc;
1280 	/* return up to cleaned_count buffers to hardware */
1281 	failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
1282 
1283 	if (xdp_xmit)
1284 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
1285 
1286 	if (rx_ring->ring_stats)
1287 		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1288 					 total_rx_bytes);
1289 
1290 	/* guarantee a trip back through this routine if there was a failure */
1291 	return failure ? budget : (int)total_rx_pkts;
1292 }
1293 
1294 static void __ice_update_sample(struct ice_q_vector *q_vector,
1295 				struct ice_ring_container *rc,
1296 				struct dim_sample *sample,
1297 				bool is_tx)
1298 {
1299 	u64 packets = 0, bytes = 0;
1300 
1301 	if (is_tx) {
1302 		struct ice_tx_ring *tx_ring;
1303 
1304 		ice_for_each_tx_ring(tx_ring, *rc) {
1305 			struct ice_ring_stats *ring_stats;
1306 
1307 			ring_stats = tx_ring->ring_stats;
1308 			if (!ring_stats)
1309 				continue;
1310 			packets += ring_stats->stats.pkts;
1311 			bytes += ring_stats->stats.bytes;
1312 		}
1313 	} else {
1314 		struct ice_rx_ring *rx_ring;
1315 
1316 		ice_for_each_rx_ring(rx_ring, *rc) {
1317 			struct ice_ring_stats *ring_stats;
1318 
1319 			ring_stats = rx_ring->ring_stats;
1320 			if (!ring_stats)
1321 				continue;
1322 			packets += ring_stats->stats.pkts;
1323 			bytes += ring_stats->stats.bytes;
1324 		}
1325 	}
1326 
1327 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1328 	sample->comp_ctr = 0;
1329 
1330 	/* if dim settings get stale, like when not updated for 1
1331 	 * second or longer, force it to start again. This addresses the
1332 	 * frequent case of an idle queue being switched to by the
1333 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1334 	 */
1335 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1336 		rc->dim.state = DIM_START_MEASURE;
1337 }
1338 
1339 /**
1340  * ice_net_dim - Update net DIM algorithm
1341  * @q_vector: the vector associated with the interrupt
1342  *
1343  * Create a DIM sample and notify net_dim() so that it can possibly decide
1344  * a new ITR value based on incoming packets, bytes, and interrupts.
1345  *
1346  * This function is a no-op if the ring is not configured to dynamic ITR.
1347  */
1348 static void ice_net_dim(struct ice_q_vector *q_vector)
1349 {
1350 	struct ice_ring_container *tx = &q_vector->tx;
1351 	struct ice_ring_container *rx = &q_vector->rx;
1352 
1353 	if (ITR_IS_DYNAMIC(tx)) {
1354 		struct dim_sample dim_sample;
1355 
1356 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1357 		net_dim(&tx->dim, dim_sample);
1358 	}
1359 
1360 	if (ITR_IS_DYNAMIC(rx)) {
1361 		struct dim_sample dim_sample;
1362 
1363 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1364 		net_dim(&rx->dim, dim_sample);
1365 	}
1366 }
1367 
1368 /**
1369  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1370  * @itr_idx: interrupt throttling index
1371  * @itr: interrupt throttling value in usecs
1372  */
1373 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1374 {
1375 	/* The ITR value is reported in microseconds, and the register value is
1376 	 * recorded in 2 microsecond units. For this reason we only need to
1377 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1378 	 * granularity as a shift instead of division. The mask makes sure the
1379 	 * ITR value is never odd so we don't accidentally write into the field
1380 	 * prior to the ITR field.
1381 	 */
1382 	itr &= ICE_ITR_MASK;
1383 
1384 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1385 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1386 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1387 }
1388 
1389 /**
1390  * ice_enable_interrupt - re-enable MSI-X interrupt
1391  * @q_vector: the vector associated with the interrupt to enable
1392  *
1393  * If the VSI is down, the interrupt will not be re-enabled. Also,
1394  * when enabling the interrupt always reset the wb_on_itr to false
1395  * and trigger a software interrupt to clean out internal state.
1396  */
1397 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1398 {
1399 	struct ice_vsi *vsi = q_vector->vsi;
1400 	bool wb_en = q_vector->wb_on_itr;
1401 	u32 itr_val;
1402 
1403 	if (test_bit(ICE_DOWN, vsi->state))
1404 		return;
1405 
1406 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1407 	 * make sure to catch any pending cleanups that might have been missed
1408 	 * due to interrupt state transition. If busy poll or poll isn't
1409 	 * enabled, then don't update ITR, and just enable the interrupt.
1410 	 */
1411 	if (!wb_en) {
1412 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1413 	} else {
1414 		q_vector->wb_on_itr = false;
1415 
1416 		/* do two things here with a single write. Set up the third ITR
1417 		 * index to be used for software interrupt moderation, and then
1418 		 * trigger a software interrupt with a rate limit of 20K on
1419 		 * software interrupts, this will help avoid high interrupt
1420 		 * loads due to frequently polling and exiting polling.
1421 		 */
1422 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1423 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1424 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1425 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1426 	}
1427 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1428 }
1429 
1430 /**
1431  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1432  * @q_vector: q_vector to set WB_ON_ITR on
1433  *
1434  * We need to tell hardware to write-back completed descriptors even when
1435  * interrupts are disabled. Descriptors will be written back on cache line
1436  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1437  * descriptors may not be written back if they don't fill a cache line until
1438  * the next interrupt.
1439  *
1440  * This sets the write-back frequency to whatever was set previously for the
1441  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1442  * aren't meddling with the INTENA_M bit.
1443  */
1444 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1445 {
1446 	struct ice_vsi *vsi = q_vector->vsi;
1447 
1448 	/* already in wb_on_itr mode no need to change it */
1449 	if (q_vector->wb_on_itr)
1450 		return;
1451 
1452 	/* use previously set ITR values for all of the ITR indices by
1453 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1454 	 * be static in non-adaptive mode (user configured)
1455 	 */
1456 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1457 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1458 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1459 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1460 
1461 	q_vector->wb_on_itr = true;
1462 }
1463 
1464 /**
1465  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1466  * @napi: napi struct with our devices info in it
1467  * @budget: amount of work driver is allowed to do this pass, in packets
1468  *
1469  * This function will clean all queues associated with a q_vector.
1470  *
1471  * Returns the amount of work done
1472  */
1473 int ice_napi_poll(struct napi_struct *napi, int budget)
1474 {
1475 	struct ice_q_vector *q_vector =
1476 				container_of(napi, struct ice_q_vector, napi);
1477 	struct ice_tx_ring *tx_ring;
1478 	struct ice_rx_ring *rx_ring;
1479 	bool clean_complete = true;
1480 	int budget_per_ring;
1481 	int work_done = 0;
1482 
1483 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1484 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1485 	 */
1486 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1487 		bool wd;
1488 
1489 		if (tx_ring->xsk_pool)
1490 			wd = ice_xmit_zc(tx_ring);
1491 		else if (ice_ring_is_xdp(tx_ring))
1492 			wd = true;
1493 		else
1494 			wd = ice_clean_tx_irq(tx_ring, budget);
1495 
1496 		if (!wd)
1497 			clean_complete = false;
1498 	}
1499 
1500 	/* Handle case where we are called by netpoll with a budget of 0 */
1501 	if (unlikely(budget <= 0))
1502 		return budget;
1503 
1504 	/* normally we have 1 Rx ring per q_vector */
1505 	if (unlikely(q_vector->num_ring_rx > 1))
1506 		/* We attempt to distribute budget to each Rx queue fairly, but
1507 		 * don't allow the budget to go below 1 because that would exit
1508 		 * polling early.
1509 		 */
1510 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1511 	else
1512 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1513 		budget_per_ring = budget;
1514 
1515 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1516 		int cleaned;
1517 
1518 		/* A dedicated path for zero-copy allows making a single
1519 		 * comparison in the irq context instead of many inside the
1520 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1521 		 */
1522 		cleaned = rx_ring->xsk_pool ?
1523 			  ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1524 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1525 		work_done += cleaned;
1526 		/* if we clean as many as budgeted, we must not be done */
1527 		if (cleaned >= budget_per_ring)
1528 			clean_complete = false;
1529 	}
1530 
1531 	/* If work not completed, return budget and polling will return */
1532 	if (!clean_complete) {
1533 		/* Set the writeback on ITR so partial completions of
1534 		 * cache-lines will still continue even if we're polling.
1535 		 */
1536 		ice_set_wb_on_itr(q_vector);
1537 		return budget;
1538 	}
1539 
1540 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1541 	 * poll us due to busy-polling
1542 	 */
1543 	if (napi_complete_done(napi, work_done)) {
1544 		ice_net_dim(q_vector);
1545 		ice_enable_interrupt(q_vector);
1546 	} else {
1547 		ice_set_wb_on_itr(q_vector);
1548 	}
1549 
1550 	return min_t(int, work_done, budget - 1);
1551 }
1552 
1553 /**
1554  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1555  * @tx_ring: the ring to be checked
1556  * @size: the size buffer we want to assure is available
1557  *
1558  * Returns -EBUSY if a stop is needed, else 0
1559  */
1560 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1561 {
1562 	netif_tx_stop_queue(txring_txq(tx_ring));
1563 	/* Memory barrier before checking head and tail */
1564 	smp_mb();
1565 
1566 	/* Check again in a case another CPU has just made room available. */
1567 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1568 		return -EBUSY;
1569 
1570 	/* A reprieve! - use start_queue because it doesn't call schedule */
1571 	netif_tx_start_queue(txring_txq(tx_ring));
1572 	++tx_ring->ring_stats->tx_stats.restart_q;
1573 	return 0;
1574 }
1575 
1576 /**
1577  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1578  * @tx_ring: the ring to be checked
1579  * @size:    the size buffer we want to assure is available
1580  *
1581  * Returns 0 if stop is not needed
1582  */
1583 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1584 {
1585 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1586 		return 0;
1587 
1588 	return __ice_maybe_stop_tx(tx_ring, size);
1589 }
1590 
1591 /**
1592  * ice_tx_map - Build the Tx descriptor
1593  * @tx_ring: ring to send buffer on
1594  * @first: first buffer info buffer to use
1595  * @off: pointer to struct that holds offload parameters
1596  *
1597  * This function loops over the skb data pointed to by *first
1598  * and gets a physical address for each memory location and programs
1599  * it and the length into the transmit descriptor.
1600  */
1601 static void
1602 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1603 	   struct ice_tx_offload_params *off)
1604 {
1605 	u64 td_offset, td_tag, td_cmd;
1606 	u16 i = tx_ring->next_to_use;
1607 	unsigned int data_len, size;
1608 	struct ice_tx_desc *tx_desc;
1609 	struct ice_tx_buf *tx_buf;
1610 	struct sk_buff *skb;
1611 	skb_frag_t *frag;
1612 	dma_addr_t dma;
1613 	bool kick;
1614 
1615 	td_tag = off->td_l2tag1;
1616 	td_cmd = off->td_cmd;
1617 	td_offset = off->td_offset;
1618 	skb = first->skb;
1619 
1620 	data_len = skb->data_len;
1621 	size = skb_headlen(skb);
1622 
1623 	tx_desc = ICE_TX_DESC(tx_ring, i);
1624 
1625 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1626 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1627 		td_tag = first->vid;
1628 	}
1629 
1630 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1631 
1632 	tx_buf = first;
1633 
1634 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1635 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1636 
1637 		if (dma_mapping_error(tx_ring->dev, dma))
1638 			goto dma_error;
1639 
1640 		/* record length, and DMA address */
1641 		dma_unmap_len_set(tx_buf, len, size);
1642 		dma_unmap_addr_set(tx_buf, dma, dma);
1643 
1644 		/* align size to end of page */
1645 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1646 		tx_desc->buf_addr = cpu_to_le64(dma);
1647 
1648 		/* account for data chunks larger than the hardware
1649 		 * can handle
1650 		 */
1651 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1652 			tx_desc->cmd_type_offset_bsz =
1653 				ice_build_ctob(td_cmd, td_offset, max_data,
1654 					       td_tag);
1655 
1656 			tx_desc++;
1657 			i++;
1658 
1659 			if (i == tx_ring->count) {
1660 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1661 				i = 0;
1662 			}
1663 
1664 			dma += max_data;
1665 			size -= max_data;
1666 
1667 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1668 			tx_desc->buf_addr = cpu_to_le64(dma);
1669 		}
1670 
1671 		if (likely(!data_len))
1672 			break;
1673 
1674 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1675 							      size, td_tag);
1676 
1677 		tx_desc++;
1678 		i++;
1679 
1680 		if (i == tx_ring->count) {
1681 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1682 			i = 0;
1683 		}
1684 
1685 		size = skb_frag_size(frag);
1686 		data_len -= size;
1687 
1688 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1689 				       DMA_TO_DEVICE);
1690 
1691 		tx_buf = &tx_ring->tx_buf[i];
1692 		tx_buf->type = ICE_TX_BUF_FRAG;
1693 	}
1694 
1695 	/* record SW timestamp if HW timestamp is not available */
1696 	skb_tx_timestamp(first->skb);
1697 
1698 	i++;
1699 	if (i == tx_ring->count)
1700 		i = 0;
1701 
1702 	/* write last descriptor with RS and EOP bits */
1703 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1704 	tx_desc->cmd_type_offset_bsz =
1705 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1706 
1707 	/* Force memory writes to complete before letting h/w know there
1708 	 * are new descriptors to fetch.
1709 	 *
1710 	 * We also use this memory barrier to make certain all of the
1711 	 * status bits have been updated before next_to_watch is written.
1712 	 */
1713 	wmb();
1714 
1715 	/* set next_to_watch value indicating a packet is present */
1716 	first->next_to_watch = tx_desc;
1717 
1718 	tx_ring->next_to_use = i;
1719 
1720 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1721 
1722 	/* notify HW of packet */
1723 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1724 				      netdev_xmit_more());
1725 	if (kick)
1726 		/* notify HW of packet */
1727 		writel(i, tx_ring->tail);
1728 
1729 	return;
1730 
1731 dma_error:
1732 	/* clear DMA mappings for failed tx_buf map */
1733 	for (;;) {
1734 		tx_buf = &tx_ring->tx_buf[i];
1735 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1736 		if (tx_buf == first)
1737 			break;
1738 		if (i == 0)
1739 			i = tx_ring->count;
1740 		i--;
1741 	}
1742 
1743 	tx_ring->next_to_use = i;
1744 }
1745 
1746 /**
1747  * ice_tx_csum - Enable Tx checksum offloads
1748  * @first: pointer to the first descriptor
1749  * @off: pointer to struct that holds offload parameters
1750  *
1751  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1752  */
1753 static
1754 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1755 {
1756 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1757 	struct sk_buff *skb = first->skb;
1758 	union {
1759 		struct iphdr *v4;
1760 		struct ipv6hdr *v6;
1761 		unsigned char *hdr;
1762 	} ip;
1763 	union {
1764 		struct tcphdr *tcp;
1765 		unsigned char *hdr;
1766 	} l4;
1767 	__be16 frag_off, protocol;
1768 	unsigned char *exthdr;
1769 	u32 offset, cmd = 0;
1770 	u8 l4_proto = 0;
1771 
1772 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1773 		return 0;
1774 
1775 	protocol = vlan_get_protocol(skb);
1776 
1777 	if (eth_p_mpls(protocol)) {
1778 		ip.hdr = skb_inner_network_header(skb);
1779 		l4.hdr = skb_checksum_start(skb);
1780 	} else {
1781 		ip.hdr = skb_network_header(skb);
1782 		l4.hdr = skb_transport_header(skb);
1783 	}
1784 
1785 	/* compute outer L2 header size */
1786 	l2_len = ip.hdr - skb->data;
1787 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1788 
1789 	/* set the tx_flags to indicate the IP protocol type. this is
1790 	 * required so that checksum header computation below is accurate.
1791 	 */
1792 	if (ip.v4->version == 4)
1793 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1794 	else if (ip.v6->version == 6)
1795 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1796 
1797 	if (skb->encapsulation) {
1798 		bool gso_ena = false;
1799 		u32 tunnel = 0;
1800 
1801 		/* define outer network header type */
1802 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1803 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1804 				  ICE_TX_CTX_EIPT_IPV4 :
1805 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1806 			l4_proto = ip.v4->protocol;
1807 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1808 			int ret;
1809 
1810 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1811 			exthdr = ip.hdr + sizeof(*ip.v6);
1812 			l4_proto = ip.v6->nexthdr;
1813 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1814 					       &l4_proto, &frag_off);
1815 			if (ret < 0)
1816 				return -1;
1817 		}
1818 
1819 		/* define outer transport */
1820 		switch (l4_proto) {
1821 		case IPPROTO_UDP:
1822 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1823 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1824 			break;
1825 		case IPPROTO_GRE:
1826 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1827 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1828 			break;
1829 		case IPPROTO_IPIP:
1830 		case IPPROTO_IPV6:
1831 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1832 			l4.hdr = skb_inner_network_header(skb);
1833 			break;
1834 		default:
1835 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1836 				return -1;
1837 
1838 			skb_checksum_help(skb);
1839 			return 0;
1840 		}
1841 
1842 		/* compute outer L3 header size */
1843 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1844 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1845 
1846 		/* switch IP header pointer from outer to inner header */
1847 		ip.hdr = skb_inner_network_header(skb);
1848 
1849 		/* compute tunnel header size */
1850 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1851 			   ICE_TXD_CTX_QW0_NATLEN_S;
1852 
1853 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1854 		/* indicate if we need to offload outer UDP header */
1855 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1856 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1857 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1858 
1859 		/* record tunnel offload values */
1860 		off->cd_tunnel_params |= tunnel;
1861 
1862 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1863 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1864 		 */
1865 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1866 
1867 		/* switch L4 header pointer from outer to inner */
1868 		l4.hdr = skb_inner_transport_header(skb);
1869 		l4_proto = 0;
1870 
1871 		/* reset type as we transition from outer to inner headers */
1872 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1873 		if (ip.v4->version == 4)
1874 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1875 		if (ip.v6->version == 6)
1876 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1877 	}
1878 
1879 	/* Enable IP checksum offloads */
1880 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1881 		l4_proto = ip.v4->protocol;
1882 		/* the stack computes the IP header already, the only time we
1883 		 * need the hardware to recompute it is in the case of TSO.
1884 		 */
1885 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1886 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1887 		else
1888 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1889 
1890 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1891 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1892 		exthdr = ip.hdr + sizeof(*ip.v6);
1893 		l4_proto = ip.v6->nexthdr;
1894 		if (l4.hdr != exthdr)
1895 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1896 					 &frag_off);
1897 	} else {
1898 		return -1;
1899 	}
1900 
1901 	/* compute inner L3 header size */
1902 	l3_len = l4.hdr - ip.hdr;
1903 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1904 
1905 	/* Enable L4 checksum offloads */
1906 	switch (l4_proto) {
1907 	case IPPROTO_TCP:
1908 		/* enable checksum offloads */
1909 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1910 		l4_len = l4.tcp->doff;
1911 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1912 		break;
1913 	case IPPROTO_UDP:
1914 		/* enable UDP checksum offload */
1915 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1916 		l4_len = (sizeof(struct udphdr) >> 2);
1917 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1918 		break;
1919 	case IPPROTO_SCTP:
1920 		/* enable SCTP checksum offload */
1921 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1922 		l4_len = sizeof(struct sctphdr) >> 2;
1923 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1924 		break;
1925 
1926 	default:
1927 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1928 			return -1;
1929 		skb_checksum_help(skb);
1930 		return 0;
1931 	}
1932 
1933 	off->td_cmd |= cmd;
1934 	off->td_offset |= offset;
1935 	return 1;
1936 }
1937 
1938 /**
1939  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1940  * @tx_ring: ring to send buffer on
1941  * @first: pointer to struct ice_tx_buf
1942  *
1943  * Checks the skb and set up correspondingly several generic transmit flags
1944  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1945  */
1946 static void
1947 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1948 {
1949 	struct sk_buff *skb = first->skb;
1950 
1951 	/* nothing left to do, software offloaded VLAN */
1952 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1953 		return;
1954 
1955 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1956 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1957 	 * VLAN offloads exclusively so we only care about the VLAN ID here
1958 	 */
1959 	if (skb_vlan_tag_present(skb)) {
1960 		first->vid = skb_vlan_tag_get(skb);
1961 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
1962 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1963 		else
1964 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1965 	}
1966 
1967 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1968 }
1969 
1970 /**
1971  * ice_tso - computes mss and TSO length to prepare for TSO
1972  * @first: pointer to struct ice_tx_buf
1973  * @off: pointer to struct that holds offload parameters
1974  *
1975  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1976  */
1977 static
1978 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1979 {
1980 	struct sk_buff *skb = first->skb;
1981 	union {
1982 		struct iphdr *v4;
1983 		struct ipv6hdr *v6;
1984 		unsigned char *hdr;
1985 	} ip;
1986 	union {
1987 		struct tcphdr *tcp;
1988 		struct udphdr *udp;
1989 		unsigned char *hdr;
1990 	} l4;
1991 	u64 cd_mss, cd_tso_len;
1992 	__be16 protocol;
1993 	u32 paylen;
1994 	u8 l4_start;
1995 	int err;
1996 
1997 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1998 		return 0;
1999 
2000 	if (!skb_is_gso(skb))
2001 		return 0;
2002 
2003 	err = skb_cow_head(skb, 0);
2004 	if (err < 0)
2005 		return err;
2006 
2007 	protocol = vlan_get_protocol(skb);
2008 
2009 	if (eth_p_mpls(protocol))
2010 		ip.hdr = skb_inner_network_header(skb);
2011 	else
2012 		ip.hdr = skb_network_header(skb);
2013 	l4.hdr = skb_checksum_start(skb);
2014 
2015 	/* initialize outer IP header fields */
2016 	if (ip.v4->version == 4) {
2017 		ip.v4->tot_len = 0;
2018 		ip.v4->check = 0;
2019 	} else {
2020 		ip.v6->payload_len = 0;
2021 	}
2022 
2023 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2024 					 SKB_GSO_GRE_CSUM |
2025 					 SKB_GSO_IPXIP4 |
2026 					 SKB_GSO_IPXIP6 |
2027 					 SKB_GSO_UDP_TUNNEL |
2028 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2029 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2030 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2031 			l4.udp->len = 0;
2032 
2033 			/* determine offset of outer transport header */
2034 			l4_start = (u8)(l4.hdr - skb->data);
2035 
2036 			/* remove payload length from outer checksum */
2037 			paylen = skb->len - l4_start;
2038 			csum_replace_by_diff(&l4.udp->check,
2039 					     (__force __wsum)htonl(paylen));
2040 		}
2041 
2042 		/* reset pointers to inner headers */
2043 		ip.hdr = skb_inner_network_header(skb);
2044 		l4.hdr = skb_inner_transport_header(skb);
2045 
2046 		/* initialize inner IP header fields */
2047 		if (ip.v4->version == 4) {
2048 			ip.v4->tot_len = 0;
2049 			ip.v4->check = 0;
2050 		} else {
2051 			ip.v6->payload_len = 0;
2052 		}
2053 	}
2054 
2055 	/* determine offset of transport header */
2056 	l4_start = (u8)(l4.hdr - skb->data);
2057 
2058 	/* remove payload length from checksum */
2059 	paylen = skb->len - l4_start;
2060 
2061 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2062 		csum_replace_by_diff(&l4.udp->check,
2063 				     (__force __wsum)htonl(paylen));
2064 		/* compute length of UDP segmentation header */
2065 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2066 	} else {
2067 		csum_replace_by_diff(&l4.tcp->check,
2068 				     (__force __wsum)htonl(paylen));
2069 		/* compute length of TCP segmentation header */
2070 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2071 	}
2072 
2073 	/* update gso_segs and bytecount */
2074 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2075 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2076 
2077 	cd_tso_len = skb->len - off->header_len;
2078 	cd_mss = skb_shinfo(skb)->gso_size;
2079 
2080 	/* record cdesc_qw1 with TSO parameters */
2081 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2082 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2083 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2084 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2085 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2086 	return 1;
2087 }
2088 
2089 /**
2090  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2091  * @size: transmit request size in bytes
2092  *
2093  * Due to hardware alignment restrictions (4K alignment), we need to
2094  * assume that we can have no more than 12K of data per descriptor, even
2095  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2096  * Thus, we need to divide by 12K. But division is slow! Instead,
2097  * we decompose the operation into shifts and one relatively cheap
2098  * multiply operation.
2099  *
2100  * To divide by 12K, we first divide by 4K, then divide by 3:
2101  *     To divide by 4K, shift right by 12 bits
2102  *     To divide by 3, multiply by 85, then divide by 256
2103  *     (Divide by 256 is done by shifting right by 8 bits)
2104  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2105  * 3, we'll underestimate near each multiple of 12K. This is actually more
2106  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2107  * segment. For our purposes this is accurate out to 1M which is orders of
2108  * magnitude greater than our largest possible GSO size.
2109  *
2110  * This would then be implemented as:
2111  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2112  *
2113  * Since multiplication and division are commutative, we can reorder
2114  * operations into:
2115  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2116  */
2117 static unsigned int ice_txd_use_count(unsigned int size)
2118 {
2119 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2120 }
2121 
2122 /**
2123  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2124  * @skb: send buffer
2125  *
2126  * Returns number of data descriptors needed for this skb.
2127  */
2128 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2129 {
2130 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2131 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2132 	unsigned int count = 0, size = skb_headlen(skb);
2133 
2134 	for (;;) {
2135 		count += ice_txd_use_count(size);
2136 
2137 		if (!nr_frags--)
2138 			break;
2139 
2140 		size = skb_frag_size(frag++);
2141 	}
2142 
2143 	return count;
2144 }
2145 
2146 /**
2147  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2148  * @skb: send buffer
2149  *
2150  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2151  * and so we need to figure out the cases where we need to linearize the skb.
2152  *
2153  * For TSO we need to count the TSO header and segment payload separately.
2154  * As such we need to check cases where we have 7 fragments or more as we
2155  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2156  * the segment payload in the first descriptor, and another 7 for the
2157  * fragments.
2158  */
2159 static bool __ice_chk_linearize(struct sk_buff *skb)
2160 {
2161 	const skb_frag_t *frag, *stale;
2162 	int nr_frags, sum;
2163 
2164 	/* no need to check if number of frags is less than 7 */
2165 	nr_frags = skb_shinfo(skb)->nr_frags;
2166 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2167 		return false;
2168 
2169 	/* We need to walk through the list and validate that each group
2170 	 * of 6 fragments totals at least gso_size.
2171 	 */
2172 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2173 	frag = &skb_shinfo(skb)->frags[0];
2174 
2175 	/* Initialize size to the negative value of gso_size minus 1. We
2176 	 * use this as the worst case scenario in which the frag ahead
2177 	 * of us only provides one byte which is why we are limited to 6
2178 	 * descriptors for a single transmit as the header and previous
2179 	 * fragment are already consuming 2 descriptors.
2180 	 */
2181 	sum = 1 - skb_shinfo(skb)->gso_size;
2182 
2183 	/* Add size of frags 0 through 4 to create our initial sum */
2184 	sum += skb_frag_size(frag++);
2185 	sum += skb_frag_size(frag++);
2186 	sum += skb_frag_size(frag++);
2187 	sum += skb_frag_size(frag++);
2188 	sum += skb_frag_size(frag++);
2189 
2190 	/* Walk through fragments adding latest fragment, testing it, and
2191 	 * then removing stale fragments from the sum.
2192 	 */
2193 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2194 		int stale_size = skb_frag_size(stale);
2195 
2196 		sum += skb_frag_size(frag++);
2197 
2198 		/* The stale fragment may present us with a smaller
2199 		 * descriptor than the actual fragment size. To account
2200 		 * for that we need to remove all the data on the front and
2201 		 * figure out what the remainder would be in the last
2202 		 * descriptor associated with the fragment.
2203 		 */
2204 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2205 			int align_pad = -(skb_frag_off(stale)) &
2206 					(ICE_MAX_READ_REQ_SIZE - 1);
2207 
2208 			sum -= align_pad;
2209 			stale_size -= align_pad;
2210 
2211 			do {
2212 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2213 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2214 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2215 		}
2216 
2217 		/* if sum is negative we failed to make sufficient progress */
2218 		if (sum < 0)
2219 			return true;
2220 
2221 		if (!nr_frags--)
2222 			break;
2223 
2224 		sum -= stale_size;
2225 	}
2226 
2227 	return false;
2228 }
2229 
2230 /**
2231  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2232  * @skb:      send buffer
2233  * @count:    number of buffers used
2234  *
2235  * Note: Our HW can't scatter-gather more than 8 fragments to build
2236  * a packet on the wire and so we need to figure out the cases where we
2237  * need to linearize the skb.
2238  */
2239 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2240 {
2241 	/* Both TSO and single send will work if count is less than 8 */
2242 	if (likely(count < ICE_MAX_BUF_TXD))
2243 		return false;
2244 
2245 	if (skb_is_gso(skb))
2246 		return __ice_chk_linearize(skb);
2247 
2248 	/* we can support up to 8 data buffers for a single send */
2249 	return count != ICE_MAX_BUF_TXD;
2250 }
2251 
2252 /**
2253  * ice_tstamp - set up context descriptor for hardware timestamp
2254  * @tx_ring: pointer to the Tx ring to send buffer on
2255  * @skb: pointer to the SKB we're sending
2256  * @first: Tx buffer
2257  * @off: Tx offload parameters
2258  */
2259 static void
2260 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2261 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2262 {
2263 	s8 idx;
2264 
2265 	/* only timestamp the outbound packet if the user has requested it */
2266 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2267 		return;
2268 
2269 	if (!tx_ring->ptp_tx)
2270 		return;
2271 
2272 	/* Tx timestamps cannot be sampled when doing TSO */
2273 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2274 		return;
2275 
2276 	/* Grab an open timestamp slot */
2277 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2278 	if (idx < 0) {
2279 		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2280 		return;
2281 	}
2282 
2283 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2284 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2285 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2286 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2287 }
2288 
2289 /**
2290  * ice_xmit_frame_ring - Sends buffer on Tx ring
2291  * @skb: send buffer
2292  * @tx_ring: ring to send buffer on
2293  *
2294  * Returns NETDEV_TX_OK if sent, else an error code
2295  */
2296 static netdev_tx_t
2297 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2298 {
2299 	struct ice_tx_offload_params offload = { 0 };
2300 	struct ice_vsi *vsi = tx_ring->vsi;
2301 	struct ice_tx_buf *first;
2302 	struct ethhdr *eth;
2303 	unsigned int count;
2304 	int tso, csum;
2305 
2306 	ice_trace(xmit_frame_ring, tx_ring, skb);
2307 
2308 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2309 		goto out_drop;
2310 
2311 	count = ice_xmit_desc_count(skb);
2312 	if (ice_chk_linearize(skb, count)) {
2313 		if (__skb_linearize(skb))
2314 			goto out_drop;
2315 		count = ice_txd_use_count(skb->len);
2316 		tx_ring->ring_stats->tx_stats.tx_linearize++;
2317 	}
2318 
2319 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2320 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2321 	 *       + 4 desc gap to avoid the cache line where head is,
2322 	 *       + 1 desc for context descriptor,
2323 	 * otherwise try next time
2324 	 */
2325 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2326 			      ICE_DESCS_FOR_CTX_DESC)) {
2327 		tx_ring->ring_stats->tx_stats.tx_busy++;
2328 		return NETDEV_TX_BUSY;
2329 	}
2330 
2331 	/* prefetch for bql data which is infrequently used */
2332 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2333 
2334 	offload.tx_ring = tx_ring;
2335 
2336 	/* record the location of the first descriptor for this packet */
2337 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2338 	first->skb = skb;
2339 	first->type = ICE_TX_BUF_SKB;
2340 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2341 	first->gso_segs = 1;
2342 	first->tx_flags = 0;
2343 
2344 	/* prepare the VLAN tagging flags for Tx */
2345 	ice_tx_prepare_vlan_flags(tx_ring, first);
2346 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2347 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2348 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2349 					ICE_TXD_CTX_QW1_CMD_S));
2350 		offload.cd_l2tag2 = first->vid;
2351 	}
2352 
2353 	/* set up TSO offload */
2354 	tso = ice_tso(first, &offload);
2355 	if (tso < 0)
2356 		goto out_drop;
2357 
2358 	/* always set up Tx checksum offload */
2359 	csum = ice_tx_csum(first, &offload);
2360 	if (csum < 0)
2361 		goto out_drop;
2362 
2363 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2364 	eth = (struct ethhdr *)skb_mac_header(skb);
2365 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2366 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2367 		     vsi->type == ICE_VSI_PF &&
2368 		     vsi->port_info->qos_cfg.is_sw_lldp))
2369 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2370 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2371 					ICE_TXD_CTX_QW1_CMD_S);
2372 
2373 	ice_tstamp(tx_ring, skb, first, &offload);
2374 	if (ice_is_switchdev_running(vsi->back))
2375 		ice_eswitch_set_target_vsi(skb, &offload);
2376 
2377 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2378 		struct ice_tx_ctx_desc *cdesc;
2379 		u16 i = tx_ring->next_to_use;
2380 
2381 		/* grab the next descriptor */
2382 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2383 		i++;
2384 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2385 
2386 		/* setup context descriptor */
2387 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2388 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2389 		cdesc->rsvd = cpu_to_le16(0);
2390 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2391 	}
2392 
2393 	ice_tx_map(tx_ring, first, &offload);
2394 	return NETDEV_TX_OK;
2395 
2396 out_drop:
2397 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2398 	dev_kfree_skb_any(skb);
2399 	return NETDEV_TX_OK;
2400 }
2401 
2402 /**
2403  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2404  * @skb: send buffer
2405  * @netdev: network interface device structure
2406  *
2407  * Returns NETDEV_TX_OK if sent, else an error code
2408  */
2409 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2410 {
2411 	struct ice_netdev_priv *np = netdev_priv(netdev);
2412 	struct ice_vsi *vsi = np->vsi;
2413 	struct ice_tx_ring *tx_ring;
2414 
2415 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2416 
2417 	/* hardware can't handle really short frames, hardware padding works
2418 	 * beyond this point
2419 	 */
2420 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2421 		return NETDEV_TX_OK;
2422 
2423 	return ice_xmit_frame_ring(skb, tx_ring);
2424 }
2425 
2426 /**
2427  * ice_get_dscp_up - return the UP/TC value for a SKB
2428  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2429  * @skb: SKB to query for info to determine UP/TC
2430  *
2431  * This function is to only be called when the PF is in L3 DSCP PFC mode
2432  */
2433 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2434 {
2435 	u8 dscp = 0;
2436 
2437 	if (skb->protocol == htons(ETH_P_IP))
2438 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2439 	else if (skb->protocol == htons(ETH_P_IPV6))
2440 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2441 
2442 	return dcbcfg->dscp_map[dscp];
2443 }
2444 
2445 u16
2446 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2447 		 struct net_device *sb_dev)
2448 {
2449 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2450 	struct ice_dcbx_cfg *dcbcfg;
2451 
2452 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2453 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2454 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2455 
2456 	return netdev_pick_tx(netdev, skb, sb_dev);
2457 }
2458 
2459 /**
2460  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2461  * @tx_ring: tx_ring to clean
2462  */
2463 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2464 {
2465 	struct ice_vsi *vsi = tx_ring->vsi;
2466 	s16 i = tx_ring->next_to_clean;
2467 	int budget = ICE_DFLT_IRQ_WORK;
2468 	struct ice_tx_desc *tx_desc;
2469 	struct ice_tx_buf *tx_buf;
2470 
2471 	tx_buf = &tx_ring->tx_buf[i];
2472 	tx_desc = ICE_TX_DESC(tx_ring, i);
2473 	i -= tx_ring->count;
2474 
2475 	do {
2476 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2477 
2478 		/* if next_to_watch is not set then there is no pending work */
2479 		if (!eop_desc)
2480 			break;
2481 
2482 		/* prevent any other reads prior to eop_desc */
2483 		smp_rmb();
2484 
2485 		/* if the descriptor isn't done, no work to do */
2486 		if (!(eop_desc->cmd_type_offset_bsz &
2487 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2488 			break;
2489 
2490 		/* clear next_to_watch to prevent false hangs */
2491 		tx_buf->next_to_watch = NULL;
2492 		tx_desc->buf_addr = 0;
2493 		tx_desc->cmd_type_offset_bsz = 0;
2494 
2495 		/* move past filter desc */
2496 		tx_buf++;
2497 		tx_desc++;
2498 		i++;
2499 		if (unlikely(!i)) {
2500 			i -= tx_ring->count;
2501 			tx_buf = tx_ring->tx_buf;
2502 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2503 		}
2504 
2505 		/* unmap the data header */
2506 		if (dma_unmap_len(tx_buf, len))
2507 			dma_unmap_single(tx_ring->dev,
2508 					 dma_unmap_addr(tx_buf, dma),
2509 					 dma_unmap_len(tx_buf, len),
2510 					 DMA_TO_DEVICE);
2511 		if (tx_buf->type == ICE_TX_BUF_DUMMY)
2512 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2513 
2514 		/* clear next_to_watch to prevent false hangs */
2515 		tx_buf->type = ICE_TX_BUF_EMPTY;
2516 		tx_buf->tx_flags = 0;
2517 		tx_buf->next_to_watch = NULL;
2518 		dma_unmap_len_set(tx_buf, len, 0);
2519 		tx_desc->buf_addr = 0;
2520 		tx_desc->cmd_type_offset_bsz = 0;
2521 
2522 		/* move past eop_desc for start of next FD desc */
2523 		tx_buf++;
2524 		tx_desc++;
2525 		i++;
2526 		if (unlikely(!i)) {
2527 			i -= tx_ring->count;
2528 			tx_buf = tx_ring->tx_buf;
2529 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2530 		}
2531 
2532 		budget--;
2533 	} while (likely(budget));
2534 
2535 	i += tx_ring->count;
2536 	tx_ring->next_to_clean = i;
2537 
2538 	/* re-enable interrupt if needed */
2539 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2540 }
2541