1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/mpls.h> 12 #include <net/xdp.h> 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 #include "ice.h" 16 #include "ice_trace.h" 17 #include "ice_dcb_lib.h" 18 #include "ice_xsk.h" 19 #include "ice_eswitch.h" 20 21 #define ICE_RX_HDR_SIZE 256 22 23 #define FDIR_DESC_RXDID 0x40 24 #define ICE_FDIR_CLEAN_DELAY 10 25 26 /** 27 * ice_prgm_fdir_fltr - Program a Flow Director filter 28 * @vsi: VSI to send dummy packet 29 * @fdir_desc: flow director descriptor 30 * @raw_packet: allocated buffer for flow director 31 */ 32 int 33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 34 u8 *raw_packet) 35 { 36 struct ice_tx_buf *tx_buf, *first; 37 struct ice_fltr_desc *f_desc; 38 struct ice_tx_desc *tx_desc; 39 struct ice_tx_ring *tx_ring; 40 struct device *dev; 41 dma_addr_t dma; 42 u32 td_cmd; 43 u16 i; 44 45 /* VSI and Tx ring */ 46 if (!vsi) 47 return -ENOENT; 48 tx_ring = vsi->tx_rings[0]; 49 if (!tx_ring || !tx_ring->desc) 50 return -ENOENT; 51 dev = tx_ring->dev; 52 53 /* we are using two descriptors to add/del a filter and we can wait */ 54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 55 if (!i) 56 return -EAGAIN; 57 msleep_interruptible(1); 58 } 59 60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 61 DMA_TO_DEVICE); 62 63 if (dma_mapping_error(dev, dma)) 64 return -EINVAL; 65 66 /* grab the next descriptor */ 67 i = tx_ring->next_to_use; 68 first = &tx_ring->tx_buf[i]; 69 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 70 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 71 72 i++; 73 i = (i < tx_ring->count) ? i : 0; 74 tx_desc = ICE_TX_DESC(tx_ring, i); 75 tx_buf = &tx_ring->tx_buf[i]; 76 77 i++; 78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 79 80 memset(tx_buf, 0, sizeof(*tx_buf)); 81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 82 dma_unmap_addr_set(tx_buf, dma, dma); 83 84 tx_desc->buf_addr = cpu_to_le64(dma); 85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 86 ICE_TX_DESC_CMD_RE; 87 88 tx_buf->type = ICE_TX_BUF_DUMMY; 89 tx_buf->raw_buf = raw_packet; 90 91 tx_desc->cmd_type_offset_bsz = 92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 93 94 /* Force memory write to complete before letting h/w know 95 * there are new descriptors to fetch. 96 */ 97 wmb(); 98 99 /* mark the data descriptor to be watched */ 100 first->next_to_watch = tx_desc; 101 102 writel(tx_ring->next_to_use, tx_ring->tail); 103 104 return 0; 105 } 106 107 /** 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer 109 * @ring: the ring that owns the buffer 110 * @tx_buf: the buffer to free 111 */ 112 static void 113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 114 { 115 if (dma_unmap_len(tx_buf, len)) 116 dma_unmap_page(ring->dev, 117 dma_unmap_addr(tx_buf, dma), 118 dma_unmap_len(tx_buf, len), 119 DMA_TO_DEVICE); 120 121 switch (tx_buf->type) { 122 case ICE_TX_BUF_DUMMY: 123 devm_kfree(ring->dev, tx_buf->raw_buf); 124 break; 125 case ICE_TX_BUF_SKB: 126 dev_kfree_skb_any(tx_buf->skb); 127 break; 128 case ICE_TX_BUF_XDP_TX: 129 page_frag_free(tx_buf->raw_buf); 130 break; 131 case ICE_TX_BUF_XDP_XMIT: 132 xdp_return_frame(tx_buf->xdpf); 133 break; 134 } 135 136 tx_buf->next_to_watch = NULL; 137 tx_buf->type = ICE_TX_BUF_EMPTY; 138 dma_unmap_len_set(tx_buf, len, 0); 139 /* tx_buf must be completely set up in the transmit path */ 140 } 141 142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 143 { 144 return netdev_get_tx_queue(ring->netdev, ring->q_index); 145 } 146 147 /** 148 * ice_clean_tx_ring - Free any empty Tx buffers 149 * @tx_ring: ring to be cleaned 150 */ 151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 152 { 153 u32 size; 154 u16 i; 155 156 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 157 ice_xsk_clean_xdp_ring(tx_ring); 158 goto tx_skip_free; 159 } 160 161 /* ring already cleared, nothing to do */ 162 if (!tx_ring->tx_buf) 163 return; 164 165 /* Free all the Tx ring sk_buffs */ 166 for (i = 0; i < tx_ring->count; i++) 167 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 168 169 tx_skip_free: 170 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 171 172 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 173 PAGE_SIZE); 174 /* Zero out the descriptor ring */ 175 memset(tx_ring->desc, 0, size); 176 177 tx_ring->next_to_use = 0; 178 tx_ring->next_to_clean = 0; 179 180 if (!tx_ring->netdev) 181 return; 182 183 /* cleanup Tx queue statistics */ 184 netdev_tx_reset_queue(txring_txq(tx_ring)); 185 } 186 187 /** 188 * ice_free_tx_ring - Free Tx resources per queue 189 * @tx_ring: Tx descriptor ring for a specific queue 190 * 191 * Free all transmit software resources 192 */ 193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 194 { 195 u32 size; 196 197 ice_clean_tx_ring(tx_ring); 198 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 199 tx_ring->tx_buf = NULL; 200 201 if (tx_ring->desc) { 202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 203 PAGE_SIZE); 204 dmam_free_coherent(tx_ring->dev, size, 205 tx_ring->desc, tx_ring->dma); 206 tx_ring->desc = NULL; 207 } 208 } 209 210 /** 211 * ice_clean_tx_irq - Reclaim resources after transmit completes 212 * @tx_ring: Tx ring to clean 213 * @napi_budget: Used to determine if we are in netpoll 214 * 215 * Returns true if there's any budget left (e.g. the clean is finished) 216 */ 217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 218 { 219 unsigned int total_bytes = 0, total_pkts = 0; 220 unsigned int budget = ICE_DFLT_IRQ_WORK; 221 struct ice_vsi *vsi = tx_ring->vsi; 222 s16 i = tx_ring->next_to_clean; 223 struct ice_tx_desc *tx_desc; 224 struct ice_tx_buf *tx_buf; 225 226 /* get the bql data ready */ 227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 228 229 tx_buf = &tx_ring->tx_buf[i]; 230 tx_desc = ICE_TX_DESC(tx_ring, i); 231 i -= tx_ring->count; 232 233 prefetch(&vsi->state); 234 235 do { 236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 237 238 /* if next_to_watch is not set then there is no work pending */ 239 if (!eop_desc) 240 break; 241 242 /* follow the guidelines of other drivers */ 243 prefetchw(&tx_buf->skb->users); 244 245 smp_rmb(); /* prevent any other reads prior to eop_desc */ 246 247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 248 /* if the descriptor isn't done, no work yet to do */ 249 if (!(eop_desc->cmd_type_offset_bsz & 250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 251 break; 252 253 /* clear next_to_watch to prevent false hangs */ 254 tx_buf->next_to_watch = NULL; 255 256 /* update the statistics for this packet */ 257 total_bytes += tx_buf->bytecount; 258 total_pkts += tx_buf->gso_segs; 259 260 /* free the skb */ 261 napi_consume_skb(tx_buf->skb, napi_budget); 262 263 /* unmap skb header data */ 264 dma_unmap_single(tx_ring->dev, 265 dma_unmap_addr(tx_buf, dma), 266 dma_unmap_len(tx_buf, len), 267 DMA_TO_DEVICE); 268 269 /* clear tx_buf data */ 270 tx_buf->type = ICE_TX_BUF_EMPTY; 271 dma_unmap_len_set(tx_buf, len, 0); 272 273 /* unmap remaining buffers */ 274 while (tx_desc != eop_desc) { 275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 276 tx_buf++; 277 tx_desc++; 278 i++; 279 if (unlikely(!i)) { 280 i -= tx_ring->count; 281 tx_buf = tx_ring->tx_buf; 282 tx_desc = ICE_TX_DESC(tx_ring, 0); 283 } 284 285 /* unmap any remaining paged data */ 286 if (dma_unmap_len(tx_buf, len)) { 287 dma_unmap_page(tx_ring->dev, 288 dma_unmap_addr(tx_buf, dma), 289 dma_unmap_len(tx_buf, len), 290 DMA_TO_DEVICE); 291 dma_unmap_len_set(tx_buf, len, 0); 292 } 293 } 294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 295 296 /* move us one more past the eop_desc for start of next pkt */ 297 tx_buf++; 298 tx_desc++; 299 i++; 300 if (unlikely(!i)) { 301 i -= tx_ring->count; 302 tx_buf = tx_ring->tx_buf; 303 tx_desc = ICE_TX_DESC(tx_ring, 0); 304 } 305 306 prefetch(tx_desc); 307 308 /* update budget accounting */ 309 budget--; 310 } while (likely(budget)); 311 312 i += tx_ring->count; 313 tx_ring->next_to_clean = i; 314 315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 317 318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 321 /* Make sure that anybody stopping the queue after this 322 * sees the new next_to_clean. 323 */ 324 smp_mb(); 325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 326 !test_bit(ICE_VSI_DOWN, vsi->state)) { 327 netif_tx_wake_queue(txring_txq(tx_ring)); 328 ++tx_ring->ring_stats->tx_stats.restart_q; 329 } 330 } 331 332 return !!budget; 333 } 334 335 /** 336 * ice_setup_tx_ring - Allocate the Tx descriptors 337 * @tx_ring: the Tx ring to set up 338 * 339 * Return 0 on success, negative on error 340 */ 341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 342 { 343 struct device *dev = tx_ring->dev; 344 u32 size; 345 346 if (!dev) 347 return -ENOMEM; 348 349 /* warn if we are about to overwrite the pointer */ 350 WARN_ON(tx_ring->tx_buf); 351 tx_ring->tx_buf = 352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 353 GFP_KERNEL); 354 if (!tx_ring->tx_buf) 355 return -ENOMEM; 356 357 /* round up to nearest page */ 358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 359 PAGE_SIZE); 360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 361 GFP_KERNEL); 362 if (!tx_ring->desc) { 363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 364 size); 365 goto err; 366 } 367 368 tx_ring->next_to_use = 0; 369 tx_ring->next_to_clean = 0; 370 tx_ring->ring_stats->tx_stats.prev_pkt = -1; 371 return 0; 372 373 err: 374 devm_kfree(dev, tx_ring->tx_buf); 375 tx_ring->tx_buf = NULL; 376 return -ENOMEM; 377 } 378 379 /** 380 * ice_clean_rx_ring - Free Rx buffers 381 * @rx_ring: ring to be cleaned 382 */ 383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 384 { 385 struct xdp_buff *xdp = &rx_ring->xdp; 386 struct device *dev = rx_ring->dev; 387 u32 size; 388 u16 i; 389 390 /* ring already cleared, nothing to do */ 391 if (!rx_ring->rx_buf) 392 return; 393 394 if (rx_ring->xsk_pool) { 395 ice_xsk_clean_rx_ring(rx_ring); 396 goto rx_skip_free; 397 } 398 399 if (xdp->data) { 400 xdp_return_buff(xdp); 401 xdp->data = NULL; 402 } 403 404 /* Free all the Rx ring sk_buffs */ 405 for (i = 0; i < rx_ring->count; i++) { 406 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 407 408 if (!rx_buf->page) 409 continue; 410 411 /* Invalidate cache lines that may have been written to by 412 * device so that we avoid corrupting memory. 413 */ 414 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 415 rx_buf->page_offset, 416 rx_ring->rx_buf_len, 417 DMA_FROM_DEVICE); 418 419 /* free resources associated with mapping */ 420 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 421 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 422 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 423 424 rx_buf->page = NULL; 425 rx_buf->page_offset = 0; 426 } 427 428 rx_skip_free: 429 if (rx_ring->xsk_pool) 430 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 431 else 432 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 433 434 /* Zero out the descriptor ring */ 435 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 436 PAGE_SIZE); 437 memset(rx_ring->desc, 0, size); 438 439 rx_ring->next_to_alloc = 0; 440 rx_ring->next_to_clean = 0; 441 rx_ring->first_desc = 0; 442 rx_ring->next_to_use = 0; 443 } 444 445 /** 446 * ice_free_rx_ring - Free Rx resources 447 * @rx_ring: ring to clean the resources from 448 * 449 * Free all receive software resources 450 */ 451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 452 { 453 u32 size; 454 455 ice_clean_rx_ring(rx_ring); 456 if (rx_ring->vsi->type == ICE_VSI_PF) 457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 459 WRITE_ONCE(rx_ring->xdp_prog, NULL); 460 if (rx_ring->xsk_pool) { 461 kfree(rx_ring->xdp_buf); 462 rx_ring->xdp_buf = NULL; 463 } else { 464 kfree(rx_ring->rx_buf); 465 rx_ring->rx_buf = NULL; 466 } 467 468 if (rx_ring->desc) { 469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 470 PAGE_SIZE); 471 dmam_free_coherent(rx_ring->dev, size, 472 rx_ring->desc, rx_ring->dma); 473 rx_ring->desc = NULL; 474 } 475 } 476 477 /** 478 * ice_setup_rx_ring - Allocate the Rx descriptors 479 * @rx_ring: the Rx ring to set up 480 * 481 * Return 0 on success, negative on error 482 */ 483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 484 { 485 struct device *dev = rx_ring->dev; 486 u32 size; 487 488 if (!dev) 489 return -ENOMEM; 490 491 /* warn if we are about to overwrite the pointer */ 492 WARN_ON(rx_ring->rx_buf); 493 rx_ring->rx_buf = 494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 495 if (!rx_ring->rx_buf) 496 return -ENOMEM; 497 498 /* round up to nearest page */ 499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 500 PAGE_SIZE); 501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 502 GFP_KERNEL); 503 if (!rx_ring->desc) { 504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 505 size); 506 goto err; 507 } 508 509 rx_ring->next_to_use = 0; 510 rx_ring->next_to_clean = 0; 511 rx_ring->first_desc = 0; 512 513 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 514 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 515 516 return 0; 517 518 err: 519 kfree(rx_ring->rx_buf); 520 rx_ring->rx_buf = NULL; 521 return -ENOMEM; 522 } 523 524 /** 525 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 526 * @rx_ring: Rx ring 527 * @xdp: xdp_buff used as input to the XDP program 528 * @xdp_prog: XDP program to run 529 * @xdp_ring: ring to be used for XDP_TX action 530 * @rx_buf: Rx buffer to store the XDP action 531 * 532 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 533 */ 534 static void 535 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 536 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 537 struct ice_rx_buf *rx_buf) 538 { 539 unsigned int ret = ICE_XDP_PASS; 540 u32 act; 541 542 if (!xdp_prog) 543 goto exit; 544 545 act = bpf_prog_run_xdp(xdp_prog, xdp); 546 switch (act) { 547 case XDP_PASS: 548 break; 549 case XDP_TX: 550 if (static_branch_unlikely(&ice_xdp_locking_key)) 551 spin_lock(&xdp_ring->tx_lock); 552 ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false); 553 if (static_branch_unlikely(&ice_xdp_locking_key)) 554 spin_unlock(&xdp_ring->tx_lock); 555 if (ret == ICE_XDP_CONSUMED) 556 goto out_failure; 557 break; 558 case XDP_REDIRECT: 559 if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog)) 560 goto out_failure; 561 ret = ICE_XDP_REDIR; 562 break; 563 default: 564 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 565 fallthrough; 566 case XDP_ABORTED: 567 out_failure: 568 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 569 fallthrough; 570 case XDP_DROP: 571 ret = ICE_XDP_CONSUMED; 572 } 573 exit: 574 ice_set_rx_bufs_act(xdp, rx_ring, ret); 575 } 576 577 /** 578 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission 579 * @xdpf: XDP frame that will be converted to XDP buff 580 * @xdp_ring: XDP ring for transmission 581 */ 582 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf, 583 struct ice_tx_ring *xdp_ring) 584 { 585 struct xdp_buff xdp; 586 587 xdp.data_hard_start = (void *)xdpf; 588 xdp.data = xdpf->data; 589 xdp.data_end = xdp.data + xdpf->len; 590 xdp.frame_sz = xdpf->frame_sz; 591 xdp.flags = xdpf->flags; 592 593 return __ice_xmit_xdp_ring(&xdp, xdp_ring, true); 594 } 595 596 /** 597 * ice_xdp_xmit - submit packets to XDP ring for transmission 598 * @dev: netdev 599 * @n: number of XDP frames to be transmitted 600 * @frames: XDP frames to be transmitted 601 * @flags: transmit flags 602 * 603 * Returns number of frames successfully sent. Failed frames 604 * will be free'ed by XDP core. 605 * For error cases, a negative errno code is returned and no-frames 606 * are transmitted (caller must handle freeing frames). 607 */ 608 int 609 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 610 u32 flags) 611 { 612 struct ice_netdev_priv *np = netdev_priv(dev); 613 unsigned int queue_index = smp_processor_id(); 614 struct ice_vsi *vsi = np->vsi; 615 struct ice_tx_ring *xdp_ring; 616 struct ice_tx_buf *tx_buf; 617 int nxmit = 0, i; 618 619 if (test_bit(ICE_VSI_DOWN, vsi->state)) 620 return -ENETDOWN; 621 622 if (!ice_is_xdp_ena_vsi(vsi)) 623 return -ENXIO; 624 625 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 626 return -EINVAL; 627 628 if (static_branch_unlikely(&ice_xdp_locking_key)) { 629 queue_index %= vsi->num_xdp_txq; 630 xdp_ring = vsi->xdp_rings[queue_index]; 631 spin_lock(&xdp_ring->tx_lock); 632 } else { 633 /* Generally, should not happen */ 634 if (unlikely(queue_index >= vsi->num_xdp_txq)) 635 return -ENXIO; 636 xdp_ring = vsi->xdp_rings[queue_index]; 637 } 638 639 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 640 for (i = 0; i < n; i++) { 641 const struct xdp_frame *xdpf = frames[i]; 642 int err; 643 644 err = ice_xmit_xdp_ring(xdpf, xdp_ring); 645 if (err != ICE_XDP_TX) 646 break; 647 nxmit++; 648 } 649 650 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 651 if (unlikely(flags & XDP_XMIT_FLUSH)) 652 ice_xdp_ring_update_tail(xdp_ring); 653 654 if (static_branch_unlikely(&ice_xdp_locking_key)) 655 spin_unlock(&xdp_ring->tx_lock); 656 657 return nxmit; 658 } 659 660 /** 661 * ice_alloc_mapped_page - recycle or make a new page 662 * @rx_ring: ring to use 663 * @bi: rx_buf struct to modify 664 * 665 * Returns true if the page was successfully allocated or 666 * reused. 667 */ 668 static bool 669 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 670 { 671 struct page *page = bi->page; 672 dma_addr_t dma; 673 674 /* since we are recycling buffers we should seldom need to alloc */ 675 if (likely(page)) 676 return true; 677 678 /* alloc new page for storage */ 679 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 680 if (unlikely(!page)) { 681 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 682 return false; 683 } 684 685 /* map page for use */ 686 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 687 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 688 689 /* if mapping failed free memory back to system since 690 * there isn't much point in holding memory we can't use 691 */ 692 if (dma_mapping_error(rx_ring->dev, dma)) { 693 __free_pages(page, ice_rx_pg_order(rx_ring)); 694 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 695 return false; 696 } 697 698 bi->dma = dma; 699 bi->page = page; 700 bi->page_offset = rx_ring->rx_offset; 701 page_ref_add(page, USHRT_MAX - 1); 702 bi->pagecnt_bias = USHRT_MAX; 703 704 return true; 705 } 706 707 /** 708 * ice_alloc_rx_bufs - Replace used receive buffers 709 * @rx_ring: ring to place buffers on 710 * @cleaned_count: number of buffers to replace 711 * 712 * Returns false if all allocations were successful, true if any fail. Returning 713 * true signals to the caller that we didn't replace cleaned_count buffers and 714 * there is more work to do. 715 * 716 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 717 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 718 * multiple tail writes per call. 719 */ 720 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count) 721 { 722 union ice_32b_rx_flex_desc *rx_desc; 723 u16 ntu = rx_ring->next_to_use; 724 struct ice_rx_buf *bi; 725 726 /* do nothing if no valid netdev defined */ 727 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 728 !cleaned_count) 729 return false; 730 731 /* get the Rx descriptor and buffer based on next_to_use */ 732 rx_desc = ICE_RX_DESC(rx_ring, ntu); 733 bi = &rx_ring->rx_buf[ntu]; 734 735 do { 736 /* if we fail here, we have work remaining */ 737 if (!ice_alloc_mapped_page(rx_ring, bi)) 738 break; 739 740 /* sync the buffer for use by the device */ 741 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 742 bi->page_offset, 743 rx_ring->rx_buf_len, 744 DMA_FROM_DEVICE); 745 746 /* Refresh the desc even if buffer_addrs didn't change 747 * because each write-back erases this info. 748 */ 749 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 750 751 rx_desc++; 752 bi++; 753 ntu++; 754 if (unlikely(ntu == rx_ring->count)) { 755 rx_desc = ICE_RX_DESC(rx_ring, 0); 756 bi = rx_ring->rx_buf; 757 ntu = 0; 758 } 759 760 /* clear the status bits for the next_to_use descriptor */ 761 rx_desc->wb.status_error0 = 0; 762 763 cleaned_count--; 764 } while (cleaned_count); 765 766 if (rx_ring->next_to_use != ntu) 767 ice_release_rx_desc(rx_ring, ntu); 768 769 return !!cleaned_count; 770 } 771 772 /** 773 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 774 * @rx_buf: Rx buffer to adjust 775 * @size: Size of adjustment 776 * 777 * Update the offset within page so that Rx buf will be ready to be reused. 778 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 779 * so the second half of page assigned to Rx buffer will be used, otherwise 780 * the offset is moved by "size" bytes 781 */ 782 static void 783 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 784 { 785 #if (PAGE_SIZE < 8192) 786 /* flip page offset to other buffer */ 787 rx_buf->page_offset ^= size; 788 #else 789 /* move offset up to the next cache line */ 790 rx_buf->page_offset += size; 791 #endif 792 } 793 794 /** 795 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 796 * @rx_buf: buffer containing the page 797 * 798 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 799 * which will assign the current buffer to the buffer that next_to_alloc is 800 * pointing to; otherwise, the DMA mapping needs to be destroyed and 801 * page freed 802 */ 803 static bool 804 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 805 { 806 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 807 struct page *page = rx_buf->page; 808 809 /* avoid re-using remote and pfmemalloc pages */ 810 if (!dev_page_is_reusable(page)) 811 return false; 812 813 /* if we are only owner of page we can reuse it */ 814 if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1)) 815 return false; 816 #if (PAGE_SIZE >= 8192) 817 #define ICE_LAST_OFFSET \ 818 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072) 819 if (rx_buf->page_offset > ICE_LAST_OFFSET) 820 return false; 821 #endif /* PAGE_SIZE >= 8192) */ 822 823 /* If we have drained the page fragment pool we need to update 824 * the pagecnt_bias and page count so that we fully restock the 825 * number of references the driver holds. 826 */ 827 if (unlikely(pagecnt_bias == 1)) { 828 page_ref_add(page, USHRT_MAX - 1); 829 rx_buf->pagecnt_bias = USHRT_MAX; 830 } 831 832 return true; 833 } 834 835 /** 836 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag 837 * @rx_ring: Rx descriptor ring to transact packets on 838 * @xdp: xdp buff to place the data into 839 * @rx_buf: buffer containing page to add 840 * @size: packet length from rx_desc 841 * 842 * This function will add the data contained in rx_buf->page to the xdp buf. 843 * It will just attach the page as a frag. 844 */ 845 static int 846 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 847 struct ice_rx_buf *rx_buf, const unsigned int size) 848 { 849 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 850 851 if (!size) 852 return 0; 853 854 if (!xdp_buff_has_frags(xdp)) { 855 sinfo->nr_frags = 0; 856 sinfo->xdp_frags_size = 0; 857 xdp_buff_set_frags_flag(xdp); 858 } 859 860 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 861 ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED); 862 return -ENOMEM; 863 } 864 865 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page, 866 rx_buf->page_offset, size); 867 sinfo->xdp_frags_size += size; 868 /* remember frag count before XDP prog execution; bpf_xdp_adjust_tail() 869 * can pop off frags but driver has to handle it on its own 870 */ 871 rx_ring->nr_frags = sinfo->nr_frags; 872 873 if (page_is_pfmemalloc(rx_buf->page)) 874 xdp_buff_set_frag_pfmemalloc(xdp); 875 876 return 0; 877 } 878 879 /** 880 * ice_reuse_rx_page - page flip buffer and store it back on the ring 881 * @rx_ring: Rx descriptor ring to store buffers on 882 * @old_buf: donor buffer to have page reused 883 * 884 * Synchronizes page for reuse by the adapter 885 */ 886 static void 887 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 888 { 889 u16 nta = rx_ring->next_to_alloc; 890 struct ice_rx_buf *new_buf; 891 892 new_buf = &rx_ring->rx_buf[nta]; 893 894 /* update, and store next to alloc */ 895 nta++; 896 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 897 898 /* Transfer page from old buffer to new buffer. 899 * Move each member individually to avoid possible store 900 * forwarding stalls and unnecessary copy of skb. 901 */ 902 new_buf->dma = old_buf->dma; 903 new_buf->page = old_buf->page; 904 new_buf->page_offset = old_buf->page_offset; 905 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 906 } 907 908 /** 909 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 910 * @rx_ring: Rx descriptor ring to transact packets on 911 * @size: size of buffer to add to skb 912 * @ntc: index of next to clean element 913 * 914 * This function will pull an Rx buffer from the ring and synchronize it 915 * for use by the CPU. 916 */ 917 static struct ice_rx_buf * 918 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 919 const unsigned int ntc) 920 { 921 struct ice_rx_buf *rx_buf; 922 923 rx_buf = &rx_ring->rx_buf[ntc]; 924 rx_buf->pgcnt = page_count(rx_buf->page); 925 prefetchw(rx_buf->page); 926 927 if (!size) 928 return rx_buf; 929 /* we are reusing so sync this buffer for CPU use */ 930 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 931 rx_buf->page_offset, size, 932 DMA_FROM_DEVICE); 933 934 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 935 rx_buf->pagecnt_bias--; 936 937 return rx_buf; 938 } 939 940 /** 941 * ice_build_skb - Build skb around an existing buffer 942 * @rx_ring: Rx descriptor ring to transact packets on 943 * @xdp: xdp_buff pointing to the data 944 * 945 * This function builds an skb around an existing XDP buffer, taking care 946 * to set up the skb correctly and avoid any memcpy overhead. Driver has 947 * already combined frags (if any) to skb_shared_info. 948 */ 949 static struct sk_buff * 950 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 951 { 952 u8 metasize = xdp->data - xdp->data_meta; 953 struct skb_shared_info *sinfo = NULL; 954 unsigned int nr_frags; 955 struct sk_buff *skb; 956 957 if (unlikely(xdp_buff_has_frags(xdp))) { 958 sinfo = xdp_get_shared_info_from_buff(xdp); 959 nr_frags = sinfo->nr_frags; 960 } 961 962 /* Prefetch first cache line of first page. If xdp->data_meta 963 * is unused, this points exactly as xdp->data, otherwise we 964 * likely have a consumer accessing first few bytes of meta 965 * data, and then actual data. 966 */ 967 net_prefetch(xdp->data_meta); 968 /* build an skb around the page buffer */ 969 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 970 if (unlikely(!skb)) 971 return NULL; 972 973 /* must to record Rx queue, otherwise OS features such as 974 * symmetric queue won't work 975 */ 976 skb_record_rx_queue(skb, rx_ring->q_index); 977 978 /* update pointers within the skb to store the data */ 979 skb_reserve(skb, xdp->data - xdp->data_hard_start); 980 __skb_put(skb, xdp->data_end - xdp->data); 981 if (metasize) 982 skb_metadata_set(skb, metasize); 983 984 if (unlikely(xdp_buff_has_frags(xdp))) 985 xdp_update_skb_shared_info(skb, nr_frags, 986 sinfo->xdp_frags_size, 987 nr_frags * xdp->frame_sz, 988 xdp_buff_is_frag_pfmemalloc(xdp)); 989 990 return skb; 991 } 992 993 /** 994 * ice_construct_skb - Allocate skb and populate it 995 * @rx_ring: Rx descriptor ring to transact packets on 996 * @xdp: xdp_buff pointing to the data 997 * 998 * This function allocates an skb. It then populates it with the page 999 * data from the current receive descriptor, taking care to set up the 1000 * skb correctly. 1001 */ 1002 static struct sk_buff * 1003 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 1004 { 1005 unsigned int size = xdp->data_end - xdp->data; 1006 struct skb_shared_info *sinfo = NULL; 1007 struct ice_rx_buf *rx_buf; 1008 unsigned int nr_frags = 0; 1009 unsigned int headlen; 1010 struct sk_buff *skb; 1011 1012 /* prefetch first cache line of first page */ 1013 net_prefetch(xdp->data); 1014 1015 if (unlikely(xdp_buff_has_frags(xdp))) { 1016 sinfo = xdp_get_shared_info_from_buff(xdp); 1017 nr_frags = sinfo->nr_frags; 1018 } 1019 1020 /* allocate a skb to store the frags */ 1021 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 1022 GFP_ATOMIC | __GFP_NOWARN); 1023 if (unlikely(!skb)) 1024 return NULL; 1025 1026 rx_buf = &rx_ring->rx_buf[rx_ring->first_desc]; 1027 skb_record_rx_queue(skb, rx_ring->q_index); 1028 /* Determine available headroom for copy */ 1029 headlen = size; 1030 if (headlen > ICE_RX_HDR_SIZE) 1031 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1032 1033 /* align pull length to size of long to optimize memcpy performance */ 1034 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 1035 sizeof(long))); 1036 1037 /* if we exhaust the linear part then add what is left as a frag */ 1038 size -= headlen; 1039 if (size) { 1040 /* besides adding here a partial frag, we are going to add 1041 * frags from xdp_buff, make sure there is enough space for 1042 * them 1043 */ 1044 if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) { 1045 dev_kfree_skb(skb); 1046 return NULL; 1047 } 1048 skb_add_rx_frag(skb, 0, rx_buf->page, 1049 rx_buf->page_offset + headlen, size, 1050 xdp->frame_sz); 1051 } else { 1052 /* buffer is unused, change the act that should be taken later 1053 * on; data was copied onto skb's linear part so there's no 1054 * need for adjusting page offset and we can reuse this buffer 1055 * as-is 1056 */ 1057 rx_buf->act = ICE_SKB_CONSUMED; 1058 } 1059 1060 if (unlikely(xdp_buff_has_frags(xdp))) { 1061 struct skb_shared_info *skinfo = skb_shinfo(skb); 1062 1063 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 1064 sizeof(skb_frag_t) * nr_frags); 1065 1066 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, 1067 sinfo->xdp_frags_size, 1068 nr_frags * xdp->frame_sz, 1069 xdp_buff_is_frag_pfmemalloc(xdp)); 1070 } 1071 1072 return skb; 1073 } 1074 1075 /** 1076 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1077 * @rx_ring: Rx descriptor ring to transact packets on 1078 * @rx_buf: Rx buffer to pull data from 1079 * 1080 * This function will clean up the contents of the rx_buf. It will either 1081 * recycle the buffer or unmap it and free the associated resources. 1082 */ 1083 static void 1084 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf) 1085 { 1086 if (!rx_buf) 1087 return; 1088 1089 if (ice_can_reuse_rx_page(rx_buf)) { 1090 /* hand second half of page back to the ring */ 1091 ice_reuse_rx_page(rx_ring, rx_buf); 1092 } else { 1093 /* we are not reusing the buffer so unmap it */ 1094 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1095 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1096 ICE_RX_DMA_ATTR); 1097 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1098 } 1099 1100 /* clear contents of buffer_info */ 1101 rx_buf->page = NULL; 1102 } 1103 1104 /** 1105 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1106 * @rx_ring: Rx descriptor ring to transact packets on 1107 * @budget: Total limit on number of packets to process 1108 * 1109 * This function provides a "bounce buffer" approach to Rx interrupt 1110 * processing. The advantage to this is that on systems that have 1111 * expensive overhead for IOMMU access this provides a means of avoiding 1112 * it by maintaining the mapping of the page to the system. 1113 * 1114 * Returns amount of work completed 1115 */ 1116 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1117 { 1118 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1119 unsigned int offset = rx_ring->rx_offset; 1120 struct xdp_buff *xdp = &rx_ring->xdp; 1121 u32 cached_ntc = rx_ring->first_desc; 1122 struct ice_tx_ring *xdp_ring = NULL; 1123 struct bpf_prog *xdp_prog = NULL; 1124 u32 ntc = rx_ring->next_to_clean; 1125 u32 cnt = rx_ring->count; 1126 u32 xdp_xmit = 0; 1127 u32 cached_ntu; 1128 bool failure; 1129 u32 first; 1130 1131 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1132 if (xdp_prog) { 1133 xdp_ring = rx_ring->xdp_ring; 1134 cached_ntu = xdp_ring->next_to_use; 1135 } 1136 1137 /* start the loop to process Rx packets bounded by 'budget' */ 1138 while (likely(total_rx_pkts < (unsigned int)budget)) { 1139 union ice_32b_rx_flex_desc *rx_desc; 1140 struct ice_rx_buf *rx_buf; 1141 struct sk_buff *skb; 1142 unsigned int size; 1143 u16 stat_err_bits; 1144 u16 vlan_tag = 0; 1145 u16 rx_ptype; 1146 1147 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1148 rx_desc = ICE_RX_DESC(rx_ring, ntc); 1149 1150 /* status_error_len will always be zero for unused descriptors 1151 * because it's cleared in cleanup, and overlaps with hdr_addr 1152 * which is always zero because packet split isn't used, if the 1153 * hardware wrote DD then it will be non-zero 1154 */ 1155 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1156 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1157 break; 1158 1159 /* This memory barrier is needed to keep us from reading 1160 * any other fields out of the rx_desc until we know the 1161 * DD bit is set. 1162 */ 1163 dma_rmb(); 1164 1165 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1166 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1167 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1168 1169 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1170 ctrl_vsi->vf) 1171 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1172 if (++ntc == cnt) 1173 ntc = 0; 1174 rx_ring->first_desc = ntc; 1175 continue; 1176 } 1177 1178 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1179 ICE_RX_FLX_DESC_PKT_LEN_M; 1180 1181 /* retrieve a buffer from the ring */ 1182 rx_buf = ice_get_rx_buf(rx_ring, size, ntc); 1183 1184 if (!xdp->data) { 1185 void *hard_start; 1186 1187 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1188 offset; 1189 xdp_prepare_buff(xdp, hard_start, offset, size, !!offset); 1190 xdp_buff_clear_frags_flag(xdp); 1191 } else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) { 1192 break; 1193 } 1194 if (++ntc == cnt) 1195 ntc = 0; 1196 1197 /* skip if it is NOP desc */ 1198 if (ice_is_non_eop(rx_ring, rx_desc)) 1199 continue; 1200 1201 ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf); 1202 if (rx_buf->act == ICE_XDP_PASS) 1203 goto construct_skb; 1204 total_rx_bytes += xdp_get_buff_len(xdp); 1205 total_rx_pkts++; 1206 1207 xdp->data = NULL; 1208 rx_ring->first_desc = ntc; 1209 rx_ring->nr_frags = 0; 1210 continue; 1211 construct_skb: 1212 if (likely(ice_ring_uses_build_skb(rx_ring))) 1213 skb = ice_build_skb(rx_ring, xdp); 1214 else 1215 skb = ice_construct_skb(rx_ring, xdp); 1216 /* exit if we failed to retrieve a buffer */ 1217 if (!skb) { 1218 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 1219 rx_buf->act = ICE_XDP_CONSUMED; 1220 if (unlikely(xdp_buff_has_frags(xdp))) 1221 ice_set_rx_bufs_act(xdp, rx_ring, 1222 ICE_XDP_CONSUMED); 1223 xdp->data = NULL; 1224 rx_ring->first_desc = ntc; 1225 rx_ring->nr_frags = 0; 1226 break; 1227 } 1228 xdp->data = NULL; 1229 rx_ring->first_desc = ntc; 1230 rx_ring->nr_frags = 0; 1231 1232 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1233 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1234 stat_err_bits))) { 1235 dev_kfree_skb_any(skb); 1236 continue; 1237 } 1238 1239 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 1240 1241 /* pad the skb if needed, to make a valid ethernet frame */ 1242 if (eth_skb_pad(skb)) 1243 continue; 1244 1245 /* probably a little skewed due to removing CRC */ 1246 total_rx_bytes += skb->len; 1247 1248 /* populate checksum, VLAN, and protocol */ 1249 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1250 ICE_RX_FLEX_DESC_PTYPE_M; 1251 1252 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1253 1254 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1255 /* send completed skb up the stack */ 1256 ice_receive_skb(rx_ring, skb, vlan_tag); 1257 1258 /* update budget accounting */ 1259 total_rx_pkts++; 1260 } 1261 1262 first = rx_ring->first_desc; 1263 while (cached_ntc != first) { 1264 struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc]; 1265 1266 if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1267 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1268 xdp_xmit |= buf->act; 1269 } else if (buf->act & ICE_XDP_CONSUMED) { 1270 buf->pagecnt_bias++; 1271 } else if (buf->act == ICE_XDP_PASS) { 1272 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1273 } 1274 1275 ice_put_rx_buf(rx_ring, buf); 1276 if (++cached_ntc >= cnt) 1277 cached_ntc = 0; 1278 } 1279 rx_ring->next_to_clean = ntc; 1280 /* return up to cleaned_count buffers to hardware */ 1281 failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring)); 1282 1283 if (xdp_xmit) 1284 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu); 1285 1286 if (rx_ring->ring_stats) 1287 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, 1288 total_rx_bytes); 1289 1290 /* guarantee a trip back through this routine if there was a failure */ 1291 return failure ? budget : (int)total_rx_pkts; 1292 } 1293 1294 static void __ice_update_sample(struct ice_q_vector *q_vector, 1295 struct ice_ring_container *rc, 1296 struct dim_sample *sample, 1297 bool is_tx) 1298 { 1299 u64 packets = 0, bytes = 0; 1300 1301 if (is_tx) { 1302 struct ice_tx_ring *tx_ring; 1303 1304 ice_for_each_tx_ring(tx_ring, *rc) { 1305 struct ice_ring_stats *ring_stats; 1306 1307 ring_stats = tx_ring->ring_stats; 1308 if (!ring_stats) 1309 continue; 1310 packets += ring_stats->stats.pkts; 1311 bytes += ring_stats->stats.bytes; 1312 } 1313 } else { 1314 struct ice_rx_ring *rx_ring; 1315 1316 ice_for_each_rx_ring(rx_ring, *rc) { 1317 struct ice_ring_stats *ring_stats; 1318 1319 ring_stats = rx_ring->ring_stats; 1320 if (!ring_stats) 1321 continue; 1322 packets += ring_stats->stats.pkts; 1323 bytes += ring_stats->stats.bytes; 1324 } 1325 } 1326 1327 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1328 sample->comp_ctr = 0; 1329 1330 /* if dim settings get stale, like when not updated for 1 1331 * second or longer, force it to start again. This addresses the 1332 * frequent case of an idle queue being switched to by the 1333 * scheduler. The 1,000 here means 1,000 milliseconds. 1334 */ 1335 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1336 rc->dim.state = DIM_START_MEASURE; 1337 } 1338 1339 /** 1340 * ice_net_dim - Update net DIM algorithm 1341 * @q_vector: the vector associated with the interrupt 1342 * 1343 * Create a DIM sample and notify net_dim() so that it can possibly decide 1344 * a new ITR value based on incoming packets, bytes, and interrupts. 1345 * 1346 * This function is a no-op if the ring is not configured to dynamic ITR. 1347 */ 1348 static void ice_net_dim(struct ice_q_vector *q_vector) 1349 { 1350 struct ice_ring_container *tx = &q_vector->tx; 1351 struct ice_ring_container *rx = &q_vector->rx; 1352 1353 if (ITR_IS_DYNAMIC(tx)) { 1354 struct dim_sample dim_sample; 1355 1356 __ice_update_sample(q_vector, tx, &dim_sample, true); 1357 net_dim(&tx->dim, dim_sample); 1358 } 1359 1360 if (ITR_IS_DYNAMIC(rx)) { 1361 struct dim_sample dim_sample; 1362 1363 __ice_update_sample(q_vector, rx, &dim_sample, false); 1364 net_dim(&rx->dim, dim_sample); 1365 } 1366 } 1367 1368 /** 1369 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1370 * @itr_idx: interrupt throttling index 1371 * @itr: interrupt throttling value in usecs 1372 */ 1373 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1374 { 1375 /* The ITR value is reported in microseconds, and the register value is 1376 * recorded in 2 microsecond units. For this reason we only need to 1377 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1378 * granularity as a shift instead of division. The mask makes sure the 1379 * ITR value is never odd so we don't accidentally write into the field 1380 * prior to the ITR field. 1381 */ 1382 itr &= ICE_ITR_MASK; 1383 1384 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1385 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1386 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1387 } 1388 1389 /** 1390 * ice_enable_interrupt - re-enable MSI-X interrupt 1391 * @q_vector: the vector associated with the interrupt to enable 1392 * 1393 * If the VSI is down, the interrupt will not be re-enabled. Also, 1394 * when enabling the interrupt always reset the wb_on_itr to false 1395 * and trigger a software interrupt to clean out internal state. 1396 */ 1397 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1398 { 1399 struct ice_vsi *vsi = q_vector->vsi; 1400 bool wb_en = q_vector->wb_on_itr; 1401 u32 itr_val; 1402 1403 if (test_bit(ICE_DOWN, vsi->state)) 1404 return; 1405 1406 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1407 * make sure to catch any pending cleanups that might have been missed 1408 * due to interrupt state transition. If busy poll or poll isn't 1409 * enabled, then don't update ITR, and just enable the interrupt. 1410 */ 1411 if (!wb_en) { 1412 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1413 } else { 1414 q_vector->wb_on_itr = false; 1415 1416 /* do two things here with a single write. Set up the third ITR 1417 * index to be used for software interrupt moderation, and then 1418 * trigger a software interrupt with a rate limit of 20K on 1419 * software interrupts, this will help avoid high interrupt 1420 * loads due to frequently polling and exiting polling. 1421 */ 1422 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1423 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1424 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1425 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1426 } 1427 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1428 } 1429 1430 /** 1431 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1432 * @q_vector: q_vector to set WB_ON_ITR on 1433 * 1434 * We need to tell hardware to write-back completed descriptors even when 1435 * interrupts are disabled. Descriptors will be written back on cache line 1436 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1437 * descriptors may not be written back if they don't fill a cache line until 1438 * the next interrupt. 1439 * 1440 * This sets the write-back frequency to whatever was set previously for the 1441 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1442 * aren't meddling with the INTENA_M bit. 1443 */ 1444 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1445 { 1446 struct ice_vsi *vsi = q_vector->vsi; 1447 1448 /* already in wb_on_itr mode no need to change it */ 1449 if (q_vector->wb_on_itr) 1450 return; 1451 1452 /* use previously set ITR values for all of the ITR indices by 1453 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1454 * be static in non-adaptive mode (user configured) 1455 */ 1456 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1457 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1458 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1459 GLINT_DYN_CTL_WB_ON_ITR_M); 1460 1461 q_vector->wb_on_itr = true; 1462 } 1463 1464 /** 1465 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1466 * @napi: napi struct with our devices info in it 1467 * @budget: amount of work driver is allowed to do this pass, in packets 1468 * 1469 * This function will clean all queues associated with a q_vector. 1470 * 1471 * Returns the amount of work done 1472 */ 1473 int ice_napi_poll(struct napi_struct *napi, int budget) 1474 { 1475 struct ice_q_vector *q_vector = 1476 container_of(napi, struct ice_q_vector, napi); 1477 struct ice_tx_ring *tx_ring; 1478 struct ice_rx_ring *rx_ring; 1479 bool clean_complete = true; 1480 int budget_per_ring; 1481 int work_done = 0; 1482 1483 /* Since the actual Tx work is minimal, we can give the Tx a larger 1484 * budget and be more aggressive about cleaning up the Tx descriptors. 1485 */ 1486 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1487 bool wd; 1488 1489 if (tx_ring->xsk_pool) 1490 wd = ice_xmit_zc(tx_ring); 1491 else if (ice_ring_is_xdp(tx_ring)) 1492 wd = true; 1493 else 1494 wd = ice_clean_tx_irq(tx_ring, budget); 1495 1496 if (!wd) 1497 clean_complete = false; 1498 } 1499 1500 /* Handle case where we are called by netpoll with a budget of 0 */ 1501 if (unlikely(budget <= 0)) 1502 return budget; 1503 1504 /* normally we have 1 Rx ring per q_vector */ 1505 if (unlikely(q_vector->num_ring_rx > 1)) 1506 /* We attempt to distribute budget to each Rx queue fairly, but 1507 * don't allow the budget to go below 1 because that would exit 1508 * polling early. 1509 */ 1510 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1511 else 1512 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1513 budget_per_ring = budget; 1514 1515 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1516 int cleaned; 1517 1518 /* A dedicated path for zero-copy allows making a single 1519 * comparison in the irq context instead of many inside the 1520 * ice_clean_rx_irq function and makes the codebase cleaner. 1521 */ 1522 cleaned = rx_ring->xsk_pool ? 1523 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1524 ice_clean_rx_irq(rx_ring, budget_per_ring); 1525 work_done += cleaned; 1526 /* if we clean as many as budgeted, we must not be done */ 1527 if (cleaned >= budget_per_ring) 1528 clean_complete = false; 1529 } 1530 1531 /* If work not completed, return budget and polling will return */ 1532 if (!clean_complete) { 1533 /* Set the writeback on ITR so partial completions of 1534 * cache-lines will still continue even if we're polling. 1535 */ 1536 ice_set_wb_on_itr(q_vector); 1537 return budget; 1538 } 1539 1540 /* Exit the polling mode, but don't re-enable interrupts if stack might 1541 * poll us due to busy-polling 1542 */ 1543 if (napi_complete_done(napi, work_done)) { 1544 ice_net_dim(q_vector); 1545 ice_enable_interrupt(q_vector); 1546 } else { 1547 ice_set_wb_on_itr(q_vector); 1548 } 1549 1550 return min_t(int, work_done, budget - 1); 1551 } 1552 1553 /** 1554 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1555 * @tx_ring: the ring to be checked 1556 * @size: the size buffer we want to assure is available 1557 * 1558 * Returns -EBUSY if a stop is needed, else 0 1559 */ 1560 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1561 { 1562 netif_tx_stop_queue(txring_txq(tx_ring)); 1563 /* Memory barrier before checking head and tail */ 1564 smp_mb(); 1565 1566 /* Check again in a case another CPU has just made room available. */ 1567 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1568 return -EBUSY; 1569 1570 /* A reprieve! - use start_queue because it doesn't call schedule */ 1571 netif_tx_start_queue(txring_txq(tx_ring)); 1572 ++tx_ring->ring_stats->tx_stats.restart_q; 1573 return 0; 1574 } 1575 1576 /** 1577 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1578 * @tx_ring: the ring to be checked 1579 * @size: the size buffer we want to assure is available 1580 * 1581 * Returns 0 if stop is not needed 1582 */ 1583 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1584 { 1585 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1586 return 0; 1587 1588 return __ice_maybe_stop_tx(tx_ring, size); 1589 } 1590 1591 /** 1592 * ice_tx_map - Build the Tx descriptor 1593 * @tx_ring: ring to send buffer on 1594 * @first: first buffer info buffer to use 1595 * @off: pointer to struct that holds offload parameters 1596 * 1597 * This function loops over the skb data pointed to by *first 1598 * and gets a physical address for each memory location and programs 1599 * it and the length into the transmit descriptor. 1600 */ 1601 static void 1602 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1603 struct ice_tx_offload_params *off) 1604 { 1605 u64 td_offset, td_tag, td_cmd; 1606 u16 i = tx_ring->next_to_use; 1607 unsigned int data_len, size; 1608 struct ice_tx_desc *tx_desc; 1609 struct ice_tx_buf *tx_buf; 1610 struct sk_buff *skb; 1611 skb_frag_t *frag; 1612 dma_addr_t dma; 1613 bool kick; 1614 1615 td_tag = off->td_l2tag1; 1616 td_cmd = off->td_cmd; 1617 td_offset = off->td_offset; 1618 skb = first->skb; 1619 1620 data_len = skb->data_len; 1621 size = skb_headlen(skb); 1622 1623 tx_desc = ICE_TX_DESC(tx_ring, i); 1624 1625 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1626 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1627 td_tag = first->vid; 1628 } 1629 1630 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1631 1632 tx_buf = first; 1633 1634 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1635 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1636 1637 if (dma_mapping_error(tx_ring->dev, dma)) 1638 goto dma_error; 1639 1640 /* record length, and DMA address */ 1641 dma_unmap_len_set(tx_buf, len, size); 1642 dma_unmap_addr_set(tx_buf, dma, dma); 1643 1644 /* align size to end of page */ 1645 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1646 tx_desc->buf_addr = cpu_to_le64(dma); 1647 1648 /* account for data chunks larger than the hardware 1649 * can handle 1650 */ 1651 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1652 tx_desc->cmd_type_offset_bsz = 1653 ice_build_ctob(td_cmd, td_offset, max_data, 1654 td_tag); 1655 1656 tx_desc++; 1657 i++; 1658 1659 if (i == tx_ring->count) { 1660 tx_desc = ICE_TX_DESC(tx_ring, 0); 1661 i = 0; 1662 } 1663 1664 dma += max_data; 1665 size -= max_data; 1666 1667 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1668 tx_desc->buf_addr = cpu_to_le64(dma); 1669 } 1670 1671 if (likely(!data_len)) 1672 break; 1673 1674 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1675 size, td_tag); 1676 1677 tx_desc++; 1678 i++; 1679 1680 if (i == tx_ring->count) { 1681 tx_desc = ICE_TX_DESC(tx_ring, 0); 1682 i = 0; 1683 } 1684 1685 size = skb_frag_size(frag); 1686 data_len -= size; 1687 1688 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1689 DMA_TO_DEVICE); 1690 1691 tx_buf = &tx_ring->tx_buf[i]; 1692 tx_buf->type = ICE_TX_BUF_FRAG; 1693 } 1694 1695 /* record SW timestamp if HW timestamp is not available */ 1696 skb_tx_timestamp(first->skb); 1697 1698 i++; 1699 if (i == tx_ring->count) 1700 i = 0; 1701 1702 /* write last descriptor with RS and EOP bits */ 1703 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1704 tx_desc->cmd_type_offset_bsz = 1705 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1706 1707 /* Force memory writes to complete before letting h/w know there 1708 * are new descriptors to fetch. 1709 * 1710 * We also use this memory barrier to make certain all of the 1711 * status bits have been updated before next_to_watch is written. 1712 */ 1713 wmb(); 1714 1715 /* set next_to_watch value indicating a packet is present */ 1716 first->next_to_watch = tx_desc; 1717 1718 tx_ring->next_to_use = i; 1719 1720 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1721 1722 /* notify HW of packet */ 1723 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1724 netdev_xmit_more()); 1725 if (kick) 1726 /* notify HW of packet */ 1727 writel(i, tx_ring->tail); 1728 1729 return; 1730 1731 dma_error: 1732 /* clear DMA mappings for failed tx_buf map */ 1733 for (;;) { 1734 tx_buf = &tx_ring->tx_buf[i]; 1735 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1736 if (tx_buf == first) 1737 break; 1738 if (i == 0) 1739 i = tx_ring->count; 1740 i--; 1741 } 1742 1743 tx_ring->next_to_use = i; 1744 } 1745 1746 /** 1747 * ice_tx_csum - Enable Tx checksum offloads 1748 * @first: pointer to the first descriptor 1749 * @off: pointer to struct that holds offload parameters 1750 * 1751 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1752 */ 1753 static 1754 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1755 { 1756 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1757 struct sk_buff *skb = first->skb; 1758 union { 1759 struct iphdr *v4; 1760 struct ipv6hdr *v6; 1761 unsigned char *hdr; 1762 } ip; 1763 union { 1764 struct tcphdr *tcp; 1765 unsigned char *hdr; 1766 } l4; 1767 __be16 frag_off, protocol; 1768 unsigned char *exthdr; 1769 u32 offset, cmd = 0; 1770 u8 l4_proto = 0; 1771 1772 if (skb->ip_summed != CHECKSUM_PARTIAL) 1773 return 0; 1774 1775 protocol = vlan_get_protocol(skb); 1776 1777 if (eth_p_mpls(protocol)) { 1778 ip.hdr = skb_inner_network_header(skb); 1779 l4.hdr = skb_checksum_start(skb); 1780 } else { 1781 ip.hdr = skb_network_header(skb); 1782 l4.hdr = skb_transport_header(skb); 1783 } 1784 1785 /* compute outer L2 header size */ 1786 l2_len = ip.hdr - skb->data; 1787 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1788 1789 /* set the tx_flags to indicate the IP protocol type. this is 1790 * required so that checksum header computation below is accurate. 1791 */ 1792 if (ip.v4->version == 4) 1793 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1794 else if (ip.v6->version == 6) 1795 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1796 1797 if (skb->encapsulation) { 1798 bool gso_ena = false; 1799 u32 tunnel = 0; 1800 1801 /* define outer network header type */ 1802 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1803 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1804 ICE_TX_CTX_EIPT_IPV4 : 1805 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1806 l4_proto = ip.v4->protocol; 1807 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1808 int ret; 1809 1810 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1811 exthdr = ip.hdr + sizeof(*ip.v6); 1812 l4_proto = ip.v6->nexthdr; 1813 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1814 &l4_proto, &frag_off); 1815 if (ret < 0) 1816 return -1; 1817 } 1818 1819 /* define outer transport */ 1820 switch (l4_proto) { 1821 case IPPROTO_UDP: 1822 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1823 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1824 break; 1825 case IPPROTO_GRE: 1826 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1827 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1828 break; 1829 case IPPROTO_IPIP: 1830 case IPPROTO_IPV6: 1831 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1832 l4.hdr = skb_inner_network_header(skb); 1833 break; 1834 default: 1835 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1836 return -1; 1837 1838 skb_checksum_help(skb); 1839 return 0; 1840 } 1841 1842 /* compute outer L3 header size */ 1843 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1844 ICE_TXD_CTX_QW0_EIPLEN_S; 1845 1846 /* switch IP header pointer from outer to inner header */ 1847 ip.hdr = skb_inner_network_header(skb); 1848 1849 /* compute tunnel header size */ 1850 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1851 ICE_TXD_CTX_QW0_NATLEN_S; 1852 1853 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1854 /* indicate if we need to offload outer UDP header */ 1855 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1856 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1857 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1858 1859 /* record tunnel offload values */ 1860 off->cd_tunnel_params |= tunnel; 1861 1862 /* set DTYP=1 to indicate that it's an Tx context descriptor 1863 * in IPsec tunnel mode with Tx offloads in Quad word 1 1864 */ 1865 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1866 1867 /* switch L4 header pointer from outer to inner */ 1868 l4.hdr = skb_inner_transport_header(skb); 1869 l4_proto = 0; 1870 1871 /* reset type as we transition from outer to inner headers */ 1872 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1873 if (ip.v4->version == 4) 1874 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1875 if (ip.v6->version == 6) 1876 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1877 } 1878 1879 /* Enable IP checksum offloads */ 1880 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1881 l4_proto = ip.v4->protocol; 1882 /* the stack computes the IP header already, the only time we 1883 * need the hardware to recompute it is in the case of TSO. 1884 */ 1885 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1886 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1887 else 1888 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1889 1890 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1891 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1892 exthdr = ip.hdr + sizeof(*ip.v6); 1893 l4_proto = ip.v6->nexthdr; 1894 if (l4.hdr != exthdr) 1895 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1896 &frag_off); 1897 } else { 1898 return -1; 1899 } 1900 1901 /* compute inner L3 header size */ 1902 l3_len = l4.hdr - ip.hdr; 1903 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1904 1905 /* Enable L4 checksum offloads */ 1906 switch (l4_proto) { 1907 case IPPROTO_TCP: 1908 /* enable checksum offloads */ 1909 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1910 l4_len = l4.tcp->doff; 1911 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1912 break; 1913 case IPPROTO_UDP: 1914 /* enable UDP checksum offload */ 1915 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1916 l4_len = (sizeof(struct udphdr) >> 2); 1917 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1918 break; 1919 case IPPROTO_SCTP: 1920 /* enable SCTP checksum offload */ 1921 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1922 l4_len = sizeof(struct sctphdr) >> 2; 1923 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1924 break; 1925 1926 default: 1927 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1928 return -1; 1929 skb_checksum_help(skb); 1930 return 0; 1931 } 1932 1933 off->td_cmd |= cmd; 1934 off->td_offset |= offset; 1935 return 1; 1936 } 1937 1938 /** 1939 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1940 * @tx_ring: ring to send buffer on 1941 * @first: pointer to struct ice_tx_buf 1942 * 1943 * Checks the skb and set up correspondingly several generic transmit flags 1944 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1945 */ 1946 static void 1947 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1948 { 1949 struct sk_buff *skb = first->skb; 1950 1951 /* nothing left to do, software offloaded VLAN */ 1952 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1953 return; 1954 1955 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 1956 * feature flags, which the driver only allows either 802.1Q or 802.1ad 1957 * VLAN offloads exclusively so we only care about the VLAN ID here 1958 */ 1959 if (skb_vlan_tag_present(skb)) { 1960 first->vid = skb_vlan_tag_get(skb); 1961 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 1962 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 1963 else 1964 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1965 } 1966 1967 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1968 } 1969 1970 /** 1971 * ice_tso - computes mss and TSO length to prepare for TSO 1972 * @first: pointer to struct ice_tx_buf 1973 * @off: pointer to struct that holds offload parameters 1974 * 1975 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1976 */ 1977 static 1978 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1979 { 1980 struct sk_buff *skb = first->skb; 1981 union { 1982 struct iphdr *v4; 1983 struct ipv6hdr *v6; 1984 unsigned char *hdr; 1985 } ip; 1986 union { 1987 struct tcphdr *tcp; 1988 struct udphdr *udp; 1989 unsigned char *hdr; 1990 } l4; 1991 u64 cd_mss, cd_tso_len; 1992 __be16 protocol; 1993 u32 paylen; 1994 u8 l4_start; 1995 int err; 1996 1997 if (skb->ip_summed != CHECKSUM_PARTIAL) 1998 return 0; 1999 2000 if (!skb_is_gso(skb)) 2001 return 0; 2002 2003 err = skb_cow_head(skb, 0); 2004 if (err < 0) 2005 return err; 2006 2007 protocol = vlan_get_protocol(skb); 2008 2009 if (eth_p_mpls(protocol)) 2010 ip.hdr = skb_inner_network_header(skb); 2011 else 2012 ip.hdr = skb_network_header(skb); 2013 l4.hdr = skb_checksum_start(skb); 2014 2015 /* initialize outer IP header fields */ 2016 if (ip.v4->version == 4) { 2017 ip.v4->tot_len = 0; 2018 ip.v4->check = 0; 2019 } else { 2020 ip.v6->payload_len = 0; 2021 } 2022 2023 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2024 SKB_GSO_GRE_CSUM | 2025 SKB_GSO_IPXIP4 | 2026 SKB_GSO_IPXIP6 | 2027 SKB_GSO_UDP_TUNNEL | 2028 SKB_GSO_UDP_TUNNEL_CSUM)) { 2029 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2030 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2031 l4.udp->len = 0; 2032 2033 /* determine offset of outer transport header */ 2034 l4_start = (u8)(l4.hdr - skb->data); 2035 2036 /* remove payload length from outer checksum */ 2037 paylen = skb->len - l4_start; 2038 csum_replace_by_diff(&l4.udp->check, 2039 (__force __wsum)htonl(paylen)); 2040 } 2041 2042 /* reset pointers to inner headers */ 2043 ip.hdr = skb_inner_network_header(skb); 2044 l4.hdr = skb_inner_transport_header(skb); 2045 2046 /* initialize inner IP header fields */ 2047 if (ip.v4->version == 4) { 2048 ip.v4->tot_len = 0; 2049 ip.v4->check = 0; 2050 } else { 2051 ip.v6->payload_len = 0; 2052 } 2053 } 2054 2055 /* determine offset of transport header */ 2056 l4_start = (u8)(l4.hdr - skb->data); 2057 2058 /* remove payload length from checksum */ 2059 paylen = skb->len - l4_start; 2060 2061 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2062 csum_replace_by_diff(&l4.udp->check, 2063 (__force __wsum)htonl(paylen)); 2064 /* compute length of UDP segmentation header */ 2065 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2066 } else { 2067 csum_replace_by_diff(&l4.tcp->check, 2068 (__force __wsum)htonl(paylen)); 2069 /* compute length of TCP segmentation header */ 2070 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2071 } 2072 2073 /* update gso_segs and bytecount */ 2074 first->gso_segs = skb_shinfo(skb)->gso_segs; 2075 first->bytecount += (first->gso_segs - 1) * off->header_len; 2076 2077 cd_tso_len = skb->len - off->header_len; 2078 cd_mss = skb_shinfo(skb)->gso_size; 2079 2080 /* record cdesc_qw1 with TSO parameters */ 2081 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2082 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2083 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2084 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2085 first->tx_flags |= ICE_TX_FLAGS_TSO; 2086 return 1; 2087 } 2088 2089 /** 2090 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2091 * @size: transmit request size in bytes 2092 * 2093 * Due to hardware alignment restrictions (4K alignment), we need to 2094 * assume that we can have no more than 12K of data per descriptor, even 2095 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2096 * Thus, we need to divide by 12K. But division is slow! Instead, 2097 * we decompose the operation into shifts and one relatively cheap 2098 * multiply operation. 2099 * 2100 * To divide by 12K, we first divide by 4K, then divide by 3: 2101 * To divide by 4K, shift right by 12 bits 2102 * To divide by 3, multiply by 85, then divide by 256 2103 * (Divide by 256 is done by shifting right by 8 bits) 2104 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2105 * 3, we'll underestimate near each multiple of 12K. This is actually more 2106 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2107 * segment. For our purposes this is accurate out to 1M which is orders of 2108 * magnitude greater than our largest possible GSO size. 2109 * 2110 * This would then be implemented as: 2111 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2112 * 2113 * Since multiplication and division are commutative, we can reorder 2114 * operations into: 2115 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2116 */ 2117 static unsigned int ice_txd_use_count(unsigned int size) 2118 { 2119 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2120 } 2121 2122 /** 2123 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2124 * @skb: send buffer 2125 * 2126 * Returns number of data descriptors needed for this skb. 2127 */ 2128 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2129 { 2130 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2131 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2132 unsigned int count = 0, size = skb_headlen(skb); 2133 2134 for (;;) { 2135 count += ice_txd_use_count(size); 2136 2137 if (!nr_frags--) 2138 break; 2139 2140 size = skb_frag_size(frag++); 2141 } 2142 2143 return count; 2144 } 2145 2146 /** 2147 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2148 * @skb: send buffer 2149 * 2150 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2151 * and so we need to figure out the cases where we need to linearize the skb. 2152 * 2153 * For TSO we need to count the TSO header and segment payload separately. 2154 * As such we need to check cases where we have 7 fragments or more as we 2155 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2156 * the segment payload in the first descriptor, and another 7 for the 2157 * fragments. 2158 */ 2159 static bool __ice_chk_linearize(struct sk_buff *skb) 2160 { 2161 const skb_frag_t *frag, *stale; 2162 int nr_frags, sum; 2163 2164 /* no need to check if number of frags is less than 7 */ 2165 nr_frags = skb_shinfo(skb)->nr_frags; 2166 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2167 return false; 2168 2169 /* We need to walk through the list and validate that each group 2170 * of 6 fragments totals at least gso_size. 2171 */ 2172 nr_frags -= ICE_MAX_BUF_TXD - 2; 2173 frag = &skb_shinfo(skb)->frags[0]; 2174 2175 /* Initialize size to the negative value of gso_size minus 1. We 2176 * use this as the worst case scenario in which the frag ahead 2177 * of us only provides one byte which is why we are limited to 6 2178 * descriptors for a single transmit as the header and previous 2179 * fragment are already consuming 2 descriptors. 2180 */ 2181 sum = 1 - skb_shinfo(skb)->gso_size; 2182 2183 /* Add size of frags 0 through 4 to create our initial sum */ 2184 sum += skb_frag_size(frag++); 2185 sum += skb_frag_size(frag++); 2186 sum += skb_frag_size(frag++); 2187 sum += skb_frag_size(frag++); 2188 sum += skb_frag_size(frag++); 2189 2190 /* Walk through fragments adding latest fragment, testing it, and 2191 * then removing stale fragments from the sum. 2192 */ 2193 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2194 int stale_size = skb_frag_size(stale); 2195 2196 sum += skb_frag_size(frag++); 2197 2198 /* The stale fragment may present us with a smaller 2199 * descriptor than the actual fragment size. To account 2200 * for that we need to remove all the data on the front and 2201 * figure out what the remainder would be in the last 2202 * descriptor associated with the fragment. 2203 */ 2204 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2205 int align_pad = -(skb_frag_off(stale)) & 2206 (ICE_MAX_READ_REQ_SIZE - 1); 2207 2208 sum -= align_pad; 2209 stale_size -= align_pad; 2210 2211 do { 2212 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2213 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2214 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2215 } 2216 2217 /* if sum is negative we failed to make sufficient progress */ 2218 if (sum < 0) 2219 return true; 2220 2221 if (!nr_frags--) 2222 break; 2223 2224 sum -= stale_size; 2225 } 2226 2227 return false; 2228 } 2229 2230 /** 2231 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2232 * @skb: send buffer 2233 * @count: number of buffers used 2234 * 2235 * Note: Our HW can't scatter-gather more than 8 fragments to build 2236 * a packet on the wire and so we need to figure out the cases where we 2237 * need to linearize the skb. 2238 */ 2239 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2240 { 2241 /* Both TSO and single send will work if count is less than 8 */ 2242 if (likely(count < ICE_MAX_BUF_TXD)) 2243 return false; 2244 2245 if (skb_is_gso(skb)) 2246 return __ice_chk_linearize(skb); 2247 2248 /* we can support up to 8 data buffers for a single send */ 2249 return count != ICE_MAX_BUF_TXD; 2250 } 2251 2252 /** 2253 * ice_tstamp - set up context descriptor for hardware timestamp 2254 * @tx_ring: pointer to the Tx ring to send buffer on 2255 * @skb: pointer to the SKB we're sending 2256 * @first: Tx buffer 2257 * @off: Tx offload parameters 2258 */ 2259 static void 2260 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2261 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2262 { 2263 s8 idx; 2264 2265 /* only timestamp the outbound packet if the user has requested it */ 2266 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2267 return; 2268 2269 if (!tx_ring->ptp_tx) 2270 return; 2271 2272 /* Tx timestamps cannot be sampled when doing TSO */ 2273 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2274 return; 2275 2276 /* Grab an open timestamp slot */ 2277 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2278 if (idx < 0) { 2279 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++; 2280 return; 2281 } 2282 2283 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2284 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2285 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2286 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2287 } 2288 2289 /** 2290 * ice_xmit_frame_ring - Sends buffer on Tx ring 2291 * @skb: send buffer 2292 * @tx_ring: ring to send buffer on 2293 * 2294 * Returns NETDEV_TX_OK if sent, else an error code 2295 */ 2296 static netdev_tx_t 2297 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2298 { 2299 struct ice_tx_offload_params offload = { 0 }; 2300 struct ice_vsi *vsi = tx_ring->vsi; 2301 struct ice_tx_buf *first; 2302 struct ethhdr *eth; 2303 unsigned int count; 2304 int tso, csum; 2305 2306 ice_trace(xmit_frame_ring, tx_ring, skb); 2307 2308 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 2309 goto out_drop; 2310 2311 count = ice_xmit_desc_count(skb); 2312 if (ice_chk_linearize(skb, count)) { 2313 if (__skb_linearize(skb)) 2314 goto out_drop; 2315 count = ice_txd_use_count(skb->len); 2316 tx_ring->ring_stats->tx_stats.tx_linearize++; 2317 } 2318 2319 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2320 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2321 * + 4 desc gap to avoid the cache line where head is, 2322 * + 1 desc for context descriptor, 2323 * otherwise try next time 2324 */ 2325 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2326 ICE_DESCS_FOR_CTX_DESC)) { 2327 tx_ring->ring_stats->tx_stats.tx_busy++; 2328 return NETDEV_TX_BUSY; 2329 } 2330 2331 /* prefetch for bql data which is infrequently used */ 2332 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2333 2334 offload.tx_ring = tx_ring; 2335 2336 /* record the location of the first descriptor for this packet */ 2337 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2338 first->skb = skb; 2339 first->type = ICE_TX_BUF_SKB; 2340 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2341 first->gso_segs = 1; 2342 first->tx_flags = 0; 2343 2344 /* prepare the VLAN tagging flags for Tx */ 2345 ice_tx_prepare_vlan_flags(tx_ring, first); 2346 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2347 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2348 (ICE_TX_CTX_DESC_IL2TAG2 << 2349 ICE_TXD_CTX_QW1_CMD_S)); 2350 offload.cd_l2tag2 = first->vid; 2351 } 2352 2353 /* set up TSO offload */ 2354 tso = ice_tso(first, &offload); 2355 if (tso < 0) 2356 goto out_drop; 2357 2358 /* always set up Tx checksum offload */ 2359 csum = ice_tx_csum(first, &offload); 2360 if (csum < 0) 2361 goto out_drop; 2362 2363 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2364 eth = (struct ethhdr *)skb_mac_header(skb); 2365 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2366 eth->h_proto == htons(ETH_P_LLDP)) && 2367 vsi->type == ICE_VSI_PF && 2368 vsi->port_info->qos_cfg.is_sw_lldp)) 2369 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2370 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2371 ICE_TXD_CTX_QW1_CMD_S); 2372 2373 ice_tstamp(tx_ring, skb, first, &offload); 2374 if (ice_is_switchdev_running(vsi->back)) 2375 ice_eswitch_set_target_vsi(skb, &offload); 2376 2377 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2378 struct ice_tx_ctx_desc *cdesc; 2379 u16 i = tx_ring->next_to_use; 2380 2381 /* grab the next descriptor */ 2382 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2383 i++; 2384 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2385 2386 /* setup context descriptor */ 2387 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2388 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2389 cdesc->rsvd = cpu_to_le16(0); 2390 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2391 } 2392 2393 ice_tx_map(tx_ring, first, &offload); 2394 return NETDEV_TX_OK; 2395 2396 out_drop: 2397 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2398 dev_kfree_skb_any(skb); 2399 return NETDEV_TX_OK; 2400 } 2401 2402 /** 2403 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2404 * @skb: send buffer 2405 * @netdev: network interface device structure 2406 * 2407 * Returns NETDEV_TX_OK if sent, else an error code 2408 */ 2409 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2410 { 2411 struct ice_netdev_priv *np = netdev_priv(netdev); 2412 struct ice_vsi *vsi = np->vsi; 2413 struct ice_tx_ring *tx_ring; 2414 2415 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2416 2417 /* hardware can't handle really short frames, hardware padding works 2418 * beyond this point 2419 */ 2420 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2421 return NETDEV_TX_OK; 2422 2423 return ice_xmit_frame_ring(skb, tx_ring); 2424 } 2425 2426 /** 2427 * ice_get_dscp_up - return the UP/TC value for a SKB 2428 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2429 * @skb: SKB to query for info to determine UP/TC 2430 * 2431 * This function is to only be called when the PF is in L3 DSCP PFC mode 2432 */ 2433 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2434 { 2435 u8 dscp = 0; 2436 2437 if (skb->protocol == htons(ETH_P_IP)) 2438 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2439 else if (skb->protocol == htons(ETH_P_IPV6)) 2440 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2441 2442 return dcbcfg->dscp_map[dscp]; 2443 } 2444 2445 u16 2446 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2447 struct net_device *sb_dev) 2448 { 2449 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2450 struct ice_dcbx_cfg *dcbcfg; 2451 2452 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2453 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2454 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2455 2456 return netdev_pick_tx(netdev, skb, sb_dev); 2457 } 2458 2459 /** 2460 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2461 * @tx_ring: tx_ring to clean 2462 */ 2463 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2464 { 2465 struct ice_vsi *vsi = tx_ring->vsi; 2466 s16 i = tx_ring->next_to_clean; 2467 int budget = ICE_DFLT_IRQ_WORK; 2468 struct ice_tx_desc *tx_desc; 2469 struct ice_tx_buf *tx_buf; 2470 2471 tx_buf = &tx_ring->tx_buf[i]; 2472 tx_desc = ICE_TX_DESC(tx_ring, i); 2473 i -= tx_ring->count; 2474 2475 do { 2476 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2477 2478 /* if next_to_watch is not set then there is no pending work */ 2479 if (!eop_desc) 2480 break; 2481 2482 /* prevent any other reads prior to eop_desc */ 2483 smp_rmb(); 2484 2485 /* if the descriptor isn't done, no work to do */ 2486 if (!(eop_desc->cmd_type_offset_bsz & 2487 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2488 break; 2489 2490 /* clear next_to_watch to prevent false hangs */ 2491 tx_buf->next_to_watch = NULL; 2492 tx_desc->buf_addr = 0; 2493 tx_desc->cmd_type_offset_bsz = 0; 2494 2495 /* move past filter desc */ 2496 tx_buf++; 2497 tx_desc++; 2498 i++; 2499 if (unlikely(!i)) { 2500 i -= tx_ring->count; 2501 tx_buf = tx_ring->tx_buf; 2502 tx_desc = ICE_TX_DESC(tx_ring, 0); 2503 } 2504 2505 /* unmap the data header */ 2506 if (dma_unmap_len(tx_buf, len)) 2507 dma_unmap_single(tx_ring->dev, 2508 dma_unmap_addr(tx_buf, dma), 2509 dma_unmap_len(tx_buf, len), 2510 DMA_TO_DEVICE); 2511 if (tx_buf->type == ICE_TX_BUF_DUMMY) 2512 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2513 2514 /* clear next_to_watch to prevent false hangs */ 2515 tx_buf->type = ICE_TX_BUF_EMPTY; 2516 tx_buf->tx_flags = 0; 2517 tx_buf->next_to_watch = NULL; 2518 dma_unmap_len_set(tx_buf, len, 0); 2519 tx_desc->buf_addr = 0; 2520 tx_desc->cmd_type_offset_bsz = 0; 2521 2522 /* move past eop_desc for start of next FD desc */ 2523 tx_buf++; 2524 tx_desc++; 2525 i++; 2526 if (unlikely(!i)) { 2527 i -= tx_ring->count; 2528 tx_buf = tx_ring->tx_buf; 2529 tx_desc = ICE_TX_DESC(tx_ring, 0); 2530 } 2531 2532 budget--; 2533 } while (likely(budget)); 2534 2535 i += tx_ring->count; 2536 tx_ring->next_to_clean = i; 2537 2538 /* re-enable interrupt if needed */ 2539 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2540 } 2541