1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20 
21 #define ICE_RX_HDR_SIZE		256
22 
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25 
26 /**
27  * ice_prgm_fdir_fltr - Program a Flow Director filter
28  * @vsi: VSI to send dummy packet
29  * @fdir_desc: flow director descriptor
30  * @raw_packet: allocated buffer for flow director
31  */
32 int
33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 		   u8 *raw_packet)
35 {
36 	struct ice_tx_buf *tx_buf, *first;
37 	struct ice_fltr_desc *f_desc;
38 	struct ice_tx_desc *tx_desc;
39 	struct ice_tx_ring *tx_ring;
40 	struct device *dev;
41 	dma_addr_t dma;
42 	u32 td_cmd;
43 	u16 i;
44 
45 	/* VSI and Tx ring */
46 	if (!vsi)
47 		return -ENOENT;
48 	tx_ring = vsi->tx_rings[0];
49 	if (!tx_ring || !tx_ring->desc)
50 		return -ENOENT;
51 	dev = tx_ring->dev;
52 
53 	/* we are using two descriptors to add/del a filter and we can wait */
54 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 		if (!i)
56 			return -EAGAIN;
57 		msleep_interruptible(1);
58 	}
59 
60 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 			     DMA_TO_DEVICE);
62 
63 	if (dma_mapping_error(dev, dma))
64 		return -EINVAL;
65 
66 	/* grab the next descriptor */
67 	i = tx_ring->next_to_use;
68 	first = &tx_ring->tx_buf[i];
69 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71 
72 	i++;
73 	i = (i < tx_ring->count) ? i : 0;
74 	tx_desc = ICE_TX_DESC(tx_ring, i);
75 	tx_buf = &tx_ring->tx_buf[i];
76 
77 	i++;
78 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79 
80 	memset(tx_buf, 0, sizeof(*tx_buf));
81 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 	dma_unmap_addr_set(tx_buf, dma, dma);
83 
84 	tx_desc->buf_addr = cpu_to_le64(dma);
85 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 		 ICE_TX_DESC_CMD_RE;
87 
88 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
89 	tx_buf->raw_buf = raw_packet;
90 
91 	tx_desc->cmd_type_offset_bsz =
92 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93 
94 	/* Force memory write to complete before letting h/w know
95 	 * there are new descriptors to fetch.
96 	 */
97 	wmb();
98 
99 	/* mark the data descriptor to be watched */
100 	first->next_to_watch = tx_desc;
101 
102 	writel(tx_ring->next_to_use, tx_ring->tail);
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_unmap_and_free_tx_buf - Release a Tx buffer
109  * @ring: the ring that owns the buffer
110  * @tx_buf: the buffer to free
111  */
112 static void
113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 	if (tx_buf->skb) {
116 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
117 			devm_kfree(ring->dev, tx_buf->raw_buf);
118 		else if (ice_ring_is_xdp(ring))
119 			page_frag_free(tx_buf->raw_buf);
120 		else
121 			dev_kfree_skb_any(tx_buf->skb);
122 		if (dma_unmap_len(tx_buf, len))
123 			dma_unmap_single(ring->dev,
124 					 dma_unmap_addr(tx_buf, dma),
125 					 dma_unmap_len(tx_buf, len),
126 					 DMA_TO_DEVICE);
127 	} else if (dma_unmap_len(tx_buf, len)) {
128 		dma_unmap_page(ring->dev,
129 			       dma_unmap_addr(tx_buf, dma),
130 			       dma_unmap_len(tx_buf, len),
131 			       DMA_TO_DEVICE);
132 	}
133 
134 	tx_buf->next_to_watch = NULL;
135 	tx_buf->skb = NULL;
136 	dma_unmap_len_set(tx_buf, len, 0);
137 	/* tx_buf must be completely set up in the transmit path */
138 }
139 
140 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
141 {
142 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
143 }
144 
145 /**
146  * ice_clean_tx_ring - Free any empty Tx buffers
147  * @tx_ring: ring to be cleaned
148  */
149 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
150 {
151 	u32 size;
152 	u16 i;
153 
154 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
155 		ice_xsk_clean_xdp_ring(tx_ring);
156 		goto tx_skip_free;
157 	}
158 
159 	/* ring already cleared, nothing to do */
160 	if (!tx_ring->tx_buf)
161 		return;
162 
163 	/* Free all the Tx ring sk_buffs */
164 	for (i = 0; i < tx_ring->count; i++)
165 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
166 
167 tx_skip_free:
168 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
169 
170 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
171 		     PAGE_SIZE);
172 	/* Zero out the descriptor ring */
173 	memset(tx_ring->desc, 0, size);
174 
175 	tx_ring->next_to_use = 0;
176 	tx_ring->next_to_clean = 0;
177 	tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1;
178 	tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1;
179 
180 	if (!tx_ring->netdev)
181 		return;
182 
183 	/* cleanup Tx queue statistics */
184 	netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186 
187 /**
188  * ice_free_tx_ring - Free Tx resources per queue
189  * @tx_ring: Tx descriptor ring for a specific queue
190  *
191  * Free all transmit software resources
192  */
193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 	u32 size;
196 
197 	ice_clean_tx_ring(tx_ring);
198 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 	tx_ring->tx_buf = NULL;
200 
201 	if (tx_ring->desc) {
202 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 			     PAGE_SIZE);
204 		dmam_free_coherent(tx_ring->dev, size,
205 				   tx_ring->desc, tx_ring->dma);
206 		tx_ring->desc = NULL;
207 	}
208 }
209 
210 /**
211  * ice_clean_tx_irq - Reclaim resources after transmit completes
212  * @tx_ring: Tx ring to clean
213  * @napi_budget: Used to determine if we are in netpoll
214  *
215  * Returns true if there's any budget left (e.g. the clean is finished)
216  */
217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 	unsigned int total_bytes = 0, total_pkts = 0;
220 	unsigned int budget = ICE_DFLT_IRQ_WORK;
221 	struct ice_vsi *vsi = tx_ring->vsi;
222 	s16 i = tx_ring->next_to_clean;
223 	struct ice_tx_desc *tx_desc;
224 	struct ice_tx_buf *tx_buf;
225 
226 	/* get the bql data ready */
227 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228 
229 	tx_buf = &tx_ring->tx_buf[i];
230 	tx_desc = ICE_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	prefetch(&vsi->state);
234 
235 	do {
236 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237 
238 		/* if next_to_watch is not set then there is no work pending */
239 		if (!eop_desc)
240 			break;
241 
242 		/* follow the guidelines of other drivers */
243 		prefetchw(&tx_buf->skb->users);
244 
245 		smp_rmb();	/* prevent any other reads prior to eop_desc */
246 
247 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 		/* if the descriptor isn't done, no work yet to do */
249 		if (!(eop_desc->cmd_type_offset_bsz &
250 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 			break;
252 
253 		/* clear next_to_watch to prevent false hangs */
254 		tx_buf->next_to_watch = NULL;
255 
256 		/* update the statistics for this packet */
257 		total_bytes += tx_buf->bytecount;
258 		total_pkts += tx_buf->gso_segs;
259 
260 		/* free the skb */
261 		napi_consume_skb(tx_buf->skb, napi_budget);
262 
263 		/* unmap skb header data */
264 		dma_unmap_single(tx_ring->dev,
265 				 dma_unmap_addr(tx_buf, dma),
266 				 dma_unmap_len(tx_buf, len),
267 				 DMA_TO_DEVICE);
268 
269 		/* clear tx_buf data */
270 		tx_buf->skb = NULL;
271 		dma_unmap_len_set(tx_buf, len, 0);
272 
273 		/* unmap remaining buffers */
274 		while (tx_desc != eop_desc) {
275 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 			tx_buf++;
277 			tx_desc++;
278 			i++;
279 			if (unlikely(!i)) {
280 				i -= tx_ring->count;
281 				tx_buf = tx_ring->tx_buf;
282 				tx_desc = ICE_TX_DESC(tx_ring, 0);
283 			}
284 
285 			/* unmap any remaining paged data */
286 			if (dma_unmap_len(tx_buf, len)) {
287 				dma_unmap_page(tx_ring->dev,
288 					       dma_unmap_addr(tx_buf, dma),
289 					       dma_unmap_len(tx_buf, len),
290 					       DMA_TO_DEVICE);
291 				dma_unmap_len_set(tx_buf, len, 0);
292 			}
293 		}
294 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295 
296 		/* move us one more past the eop_desc for start of next pkt */
297 		tx_buf++;
298 		tx_desc++;
299 		i++;
300 		if (unlikely(!i)) {
301 			i -= tx_ring->count;
302 			tx_buf = tx_ring->tx_buf;
303 			tx_desc = ICE_TX_DESC(tx_ring, 0);
304 		}
305 
306 		prefetch(tx_desc);
307 
308 		/* update budget accounting */
309 		budget--;
310 	} while (likely(budget));
311 
312 	i += tx_ring->count;
313 	tx_ring->next_to_clean = i;
314 
315 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317 
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 		/* Make sure that anybody stopping the queue after this
322 		 * sees the new next_to_clean.
323 		 */
324 		smp_mb();
325 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 			netif_tx_wake_queue(txring_txq(tx_ring));
328 			++tx_ring->ring_stats->tx_stats.restart_q;
329 		}
330 	}
331 
332 	return !!budget;
333 }
334 
335 /**
336  * ice_setup_tx_ring - Allocate the Tx descriptors
337  * @tx_ring: the Tx ring to set up
338  *
339  * Return 0 on success, negative on error
340  */
341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 	struct device *dev = tx_ring->dev;
344 	u32 size;
345 
346 	if (!dev)
347 		return -ENOMEM;
348 
349 	/* warn if we are about to overwrite the pointer */
350 	WARN_ON(tx_ring->tx_buf);
351 	tx_ring->tx_buf =
352 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 			     GFP_KERNEL);
354 	if (!tx_ring->tx_buf)
355 		return -ENOMEM;
356 
357 	/* round up to nearest page */
358 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 		     PAGE_SIZE);
360 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 					    GFP_KERNEL);
362 	if (!tx_ring->desc) {
363 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 			size);
365 		goto err;
366 	}
367 
368 	tx_ring->next_to_use = 0;
369 	tx_ring->next_to_clean = 0;
370 	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
371 	return 0;
372 
373 err:
374 	devm_kfree(dev, tx_ring->tx_buf);
375 	tx_ring->tx_buf = NULL;
376 	return -ENOMEM;
377 }
378 
379 /**
380  * ice_clean_rx_ring - Free Rx buffers
381  * @rx_ring: ring to be cleaned
382  */
383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 	struct device *dev = rx_ring->dev;
386 	u32 size;
387 	u16 i;
388 
389 	/* ring already cleared, nothing to do */
390 	if (!rx_ring->rx_buf)
391 		return;
392 
393 	if (rx_ring->skb) {
394 		dev_kfree_skb(rx_ring->skb);
395 		rx_ring->skb = NULL;
396 	}
397 
398 	if (rx_ring->xsk_pool) {
399 		ice_xsk_clean_rx_ring(rx_ring);
400 		goto rx_skip_free;
401 	}
402 
403 	/* Free all the Rx ring sk_buffs */
404 	for (i = 0; i < rx_ring->count; i++) {
405 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
406 
407 		if (!rx_buf->page)
408 			continue;
409 
410 		/* Invalidate cache lines that may have been written to by
411 		 * device so that we avoid corrupting memory.
412 		 */
413 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
414 					      rx_buf->page_offset,
415 					      rx_ring->rx_buf_len,
416 					      DMA_FROM_DEVICE);
417 
418 		/* free resources associated with mapping */
419 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
420 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
421 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
422 
423 		rx_buf->page = NULL;
424 		rx_buf->page_offset = 0;
425 	}
426 
427 rx_skip_free:
428 	if (rx_ring->xsk_pool)
429 		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
430 	else
431 		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
432 
433 	/* Zero out the descriptor ring */
434 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
435 		     PAGE_SIZE);
436 	memset(rx_ring->desc, 0, size);
437 
438 	rx_ring->next_to_alloc = 0;
439 	rx_ring->next_to_clean = 0;
440 	rx_ring->next_to_use = 0;
441 }
442 
443 /**
444  * ice_free_rx_ring - Free Rx resources
445  * @rx_ring: ring to clean the resources from
446  *
447  * Free all receive software resources
448  */
449 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
450 {
451 	u32 size;
452 
453 	ice_clean_rx_ring(rx_ring);
454 	if (rx_ring->vsi->type == ICE_VSI_PF)
455 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
456 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
457 	rx_ring->xdp_prog = NULL;
458 	if (rx_ring->xsk_pool) {
459 		kfree(rx_ring->xdp_buf);
460 		rx_ring->xdp_buf = NULL;
461 	} else {
462 		kfree(rx_ring->rx_buf);
463 		rx_ring->rx_buf = NULL;
464 	}
465 
466 	if (rx_ring->desc) {
467 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 			     PAGE_SIZE);
469 		dmam_free_coherent(rx_ring->dev, size,
470 				   rx_ring->desc, rx_ring->dma);
471 		rx_ring->desc = NULL;
472 	}
473 }
474 
475 /**
476  * ice_setup_rx_ring - Allocate the Rx descriptors
477  * @rx_ring: the Rx ring to set up
478  *
479  * Return 0 on success, negative on error
480  */
481 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
482 {
483 	struct device *dev = rx_ring->dev;
484 	u32 size;
485 
486 	if (!dev)
487 		return -ENOMEM;
488 
489 	/* warn if we are about to overwrite the pointer */
490 	WARN_ON(rx_ring->rx_buf);
491 	rx_ring->rx_buf =
492 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
493 	if (!rx_ring->rx_buf)
494 		return -ENOMEM;
495 
496 	/* round up to nearest page */
497 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
498 		     PAGE_SIZE);
499 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
500 					    GFP_KERNEL);
501 	if (!rx_ring->desc) {
502 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
503 			size);
504 		goto err;
505 	}
506 
507 	rx_ring->next_to_use = 0;
508 	rx_ring->next_to_clean = 0;
509 
510 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
511 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
512 
513 	if (rx_ring->vsi->type == ICE_VSI_PF &&
514 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
515 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
516 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
517 			goto err;
518 	return 0;
519 
520 err:
521 	kfree(rx_ring->rx_buf);
522 	rx_ring->rx_buf = NULL;
523 	return -ENOMEM;
524 }
525 
526 /**
527  * ice_rx_frame_truesize
528  * @rx_ring: ptr to Rx ring
529  * @size: size
530  *
531  * calculate the truesize with taking into the account PAGE_SIZE of
532  * underlying arch
533  */
534 static unsigned int
535 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, const unsigned int size)
536 {
537 	unsigned int truesize;
538 
539 #if (PAGE_SIZE < 8192)
540 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
541 #else
542 	truesize = rx_ring->rx_offset ?
543 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
544 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
545 		SKB_DATA_ALIGN(size);
546 #endif
547 	return truesize;
548 }
549 
550 /**
551  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
552  * @rx_ring: Rx ring
553  * @xdp: xdp_buff used as input to the XDP program
554  * @xdp_prog: XDP program to run
555  * @xdp_ring: ring to be used for XDP_TX action
556  *
557  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
558  */
559 static int
560 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
561 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
562 {
563 	int err;
564 	u32 act;
565 
566 	act = bpf_prog_run_xdp(xdp_prog, xdp);
567 	switch (act) {
568 	case XDP_PASS:
569 		return ICE_XDP_PASS;
570 	case XDP_TX:
571 		if (static_branch_unlikely(&ice_xdp_locking_key))
572 			spin_lock(&xdp_ring->tx_lock);
573 		err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
574 		if (static_branch_unlikely(&ice_xdp_locking_key))
575 			spin_unlock(&xdp_ring->tx_lock);
576 		if (err == ICE_XDP_CONSUMED)
577 			goto out_failure;
578 		return err;
579 	case XDP_REDIRECT:
580 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
581 		if (err)
582 			goto out_failure;
583 		return ICE_XDP_REDIR;
584 	default:
585 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
586 		fallthrough;
587 	case XDP_ABORTED:
588 out_failure:
589 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
590 		fallthrough;
591 	case XDP_DROP:
592 		return ICE_XDP_CONSUMED;
593 	}
594 }
595 
596 /**
597  * ice_xdp_xmit - submit packets to XDP ring for transmission
598  * @dev: netdev
599  * @n: number of XDP frames to be transmitted
600  * @frames: XDP frames to be transmitted
601  * @flags: transmit flags
602  *
603  * Returns number of frames successfully sent. Failed frames
604  * will be free'ed by XDP core.
605  * For error cases, a negative errno code is returned and no-frames
606  * are transmitted (caller must handle freeing frames).
607  */
608 int
609 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
610 	     u32 flags)
611 {
612 	struct ice_netdev_priv *np = netdev_priv(dev);
613 	unsigned int queue_index = smp_processor_id();
614 	struct ice_vsi *vsi = np->vsi;
615 	struct ice_tx_ring *xdp_ring;
616 	int nxmit = 0, i;
617 
618 	if (test_bit(ICE_VSI_DOWN, vsi->state))
619 		return -ENETDOWN;
620 
621 	if (!ice_is_xdp_ena_vsi(vsi))
622 		return -ENXIO;
623 
624 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
625 		return -EINVAL;
626 
627 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
628 		queue_index %= vsi->num_xdp_txq;
629 		xdp_ring = vsi->xdp_rings[queue_index];
630 		spin_lock(&xdp_ring->tx_lock);
631 	} else {
632 		/* Generally, should not happen */
633 		if (unlikely(queue_index >= vsi->num_xdp_txq))
634 			return -ENXIO;
635 		xdp_ring = vsi->xdp_rings[queue_index];
636 	}
637 
638 	for (i = 0; i < n; i++) {
639 		struct xdp_frame *xdpf = frames[i];
640 		int err;
641 
642 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
643 		if (err != ICE_XDP_TX)
644 			break;
645 		nxmit++;
646 	}
647 
648 	if (unlikely(flags & XDP_XMIT_FLUSH))
649 		ice_xdp_ring_update_tail(xdp_ring);
650 
651 	if (static_branch_unlikely(&ice_xdp_locking_key))
652 		spin_unlock(&xdp_ring->tx_lock);
653 
654 	return nxmit;
655 }
656 
657 /**
658  * ice_alloc_mapped_page - recycle or make a new page
659  * @rx_ring: ring to use
660  * @bi: rx_buf struct to modify
661  *
662  * Returns true if the page was successfully allocated or
663  * reused.
664  */
665 static bool
666 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
667 {
668 	struct page *page = bi->page;
669 	dma_addr_t dma;
670 
671 	/* since we are recycling buffers we should seldom need to alloc */
672 	if (likely(page))
673 		return true;
674 
675 	/* alloc new page for storage */
676 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
677 	if (unlikely(!page)) {
678 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
679 		return false;
680 	}
681 
682 	/* map page for use */
683 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
684 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
685 
686 	/* if mapping failed free memory back to system since
687 	 * there isn't much point in holding memory we can't use
688 	 */
689 	if (dma_mapping_error(rx_ring->dev, dma)) {
690 		__free_pages(page, ice_rx_pg_order(rx_ring));
691 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
692 		return false;
693 	}
694 
695 	bi->dma = dma;
696 	bi->page = page;
697 	bi->page_offset = rx_ring->rx_offset;
698 	page_ref_add(page, USHRT_MAX - 1);
699 	bi->pagecnt_bias = USHRT_MAX;
700 
701 	return true;
702 }
703 
704 /**
705  * ice_alloc_rx_bufs - Replace used receive buffers
706  * @rx_ring: ring to place buffers on
707  * @cleaned_count: number of buffers to replace
708  *
709  * Returns false if all allocations were successful, true if any fail. Returning
710  * true signals to the caller that we didn't replace cleaned_count buffers and
711  * there is more work to do.
712  *
713  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
714  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
715  * multiple tail writes per call.
716  */
717 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
718 {
719 	union ice_32b_rx_flex_desc *rx_desc;
720 	u16 ntu = rx_ring->next_to_use;
721 	struct ice_rx_buf *bi;
722 
723 	/* do nothing if no valid netdev defined */
724 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
725 	    !cleaned_count)
726 		return false;
727 
728 	/* get the Rx descriptor and buffer based on next_to_use */
729 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
730 	bi = &rx_ring->rx_buf[ntu];
731 
732 	do {
733 		/* if we fail here, we have work remaining */
734 		if (!ice_alloc_mapped_page(rx_ring, bi))
735 			break;
736 
737 		/* sync the buffer for use by the device */
738 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
739 						 bi->page_offset,
740 						 rx_ring->rx_buf_len,
741 						 DMA_FROM_DEVICE);
742 
743 		/* Refresh the desc even if buffer_addrs didn't change
744 		 * because each write-back erases this info.
745 		 */
746 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
747 
748 		rx_desc++;
749 		bi++;
750 		ntu++;
751 		if (unlikely(ntu == rx_ring->count)) {
752 			rx_desc = ICE_RX_DESC(rx_ring, 0);
753 			bi = rx_ring->rx_buf;
754 			ntu = 0;
755 		}
756 
757 		/* clear the status bits for the next_to_use descriptor */
758 		rx_desc->wb.status_error0 = 0;
759 
760 		cleaned_count--;
761 	} while (cleaned_count);
762 
763 	if (rx_ring->next_to_use != ntu)
764 		ice_release_rx_desc(rx_ring, ntu);
765 
766 	return !!cleaned_count;
767 }
768 
769 /**
770  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
771  * @rx_buf: Rx buffer to adjust
772  * @size: Size of adjustment
773  *
774  * Update the offset within page so that Rx buf will be ready to be reused.
775  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
776  * so the second half of page assigned to Rx buffer will be used, otherwise
777  * the offset is moved by "size" bytes
778  */
779 static void
780 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
781 {
782 #if (PAGE_SIZE < 8192)
783 	/* flip page offset to other buffer */
784 	rx_buf->page_offset ^= size;
785 #else
786 	/* move offset up to the next cache line */
787 	rx_buf->page_offset += size;
788 #endif
789 }
790 
791 /**
792  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
793  * @rx_buf: buffer containing the page
794  * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
795  *
796  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
797  * which will assign the current buffer to the buffer that next_to_alloc is
798  * pointing to; otherwise, the DMA mapping needs to be destroyed and
799  * page freed
800  */
801 static bool
802 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
803 {
804 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
805 	struct page *page = rx_buf->page;
806 
807 	/* avoid re-using remote and pfmemalloc pages */
808 	if (!dev_page_is_reusable(page))
809 		return false;
810 
811 #if (PAGE_SIZE < 8192)
812 	/* if we are only owner of page we can reuse it */
813 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
814 		return false;
815 #else
816 #define ICE_LAST_OFFSET \
817 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
818 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
819 		return false;
820 #endif /* PAGE_SIZE < 8192) */
821 
822 	/* If we have drained the page fragment pool we need to update
823 	 * the pagecnt_bias and page count so that we fully restock the
824 	 * number of references the driver holds.
825 	 */
826 	if (unlikely(pagecnt_bias == 1)) {
827 		page_ref_add(page, USHRT_MAX - 1);
828 		rx_buf->pagecnt_bias = USHRT_MAX;
829 	}
830 
831 	return true;
832 }
833 
834 /**
835  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
836  * @rx_ring: Rx descriptor ring to transact packets on
837  * @rx_buf: buffer containing page to add
838  * @skb: sk_buff to place the data into
839  * @size: packet length from rx_desc
840  *
841  * This function will add the data contained in rx_buf->page to the skb.
842  * It will just attach the page as a frag to the skb.
843  * The function will then update the page offset.
844  */
845 static void
846 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
847 		struct sk_buff *skb, unsigned int size)
848 {
849 #if (PAGE_SIZE >= 8192)
850 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
851 #else
852 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
853 #endif
854 
855 	if (!size)
856 		return;
857 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
858 			rx_buf->page_offset, size, truesize);
859 
860 	/* page is being used so we must update the page offset */
861 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
862 }
863 
864 /**
865  * ice_reuse_rx_page - page flip buffer and store it back on the ring
866  * @rx_ring: Rx descriptor ring to store buffers on
867  * @old_buf: donor buffer to have page reused
868  *
869  * Synchronizes page for reuse by the adapter
870  */
871 static void
872 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
873 {
874 	u16 nta = rx_ring->next_to_alloc;
875 	struct ice_rx_buf *new_buf;
876 
877 	new_buf = &rx_ring->rx_buf[nta];
878 
879 	/* update, and store next to alloc */
880 	nta++;
881 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
882 
883 	/* Transfer page from old buffer to new buffer.
884 	 * Move each member individually to avoid possible store
885 	 * forwarding stalls and unnecessary copy of skb.
886 	 */
887 	new_buf->dma = old_buf->dma;
888 	new_buf->page = old_buf->page;
889 	new_buf->page_offset = old_buf->page_offset;
890 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
891 }
892 
893 /**
894  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
895  * @rx_ring: Rx descriptor ring to transact packets on
896  * @size: size of buffer to add to skb
897  * @rx_buf_pgcnt: rx_buf page refcount
898  *
899  * This function will pull an Rx buffer from the ring and synchronize it
900  * for use by the CPU.
901  */
902 static struct ice_rx_buf *
903 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
904 	       int *rx_buf_pgcnt)
905 {
906 	struct ice_rx_buf *rx_buf;
907 
908 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
909 	*rx_buf_pgcnt =
910 #if (PAGE_SIZE < 8192)
911 		page_count(rx_buf->page);
912 #else
913 		0;
914 #endif
915 	prefetchw(rx_buf->page);
916 
917 	if (!size)
918 		return rx_buf;
919 	/* we are reusing so sync this buffer for CPU use */
920 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
921 				      rx_buf->page_offset, size,
922 				      DMA_FROM_DEVICE);
923 
924 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
925 	rx_buf->pagecnt_bias--;
926 
927 	return rx_buf;
928 }
929 
930 /**
931  * ice_build_skb - Build skb around an existing buffer
932  * @rx_ring: Rx descriptor ring to transact packets on
933  * @rx_buf: Rx buffer to pull data from
934  * @xdp: xdp_buff pointing to the data
935  *
936  * This function builds an skb around an existing Rx buffer, taking care
937  * to set up the skb correctly and avoid any memcpy overhead.
938  */
939 static struct sk_buff *
940 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
941 	      struct xdp_buff *xdp)
942 {
943 	u8 metasize = xdp->data - xdp->data_meta;
944 #if (PAGE_SIZE < 8192)
945 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
946 #else
947 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
948 				SKB_DATA_ALIGN(xdp->data_end -
949 					       xdp->data_hard_start);
950 #endif
951 	struct sk_buff *skb;
952 
953 	/* Prefetch first cache line of first page. If xdp->data_meta
954 	 * is unused, this points exactly as xdp->data, otherwise we
955 	 * likely have a consumer accessing first few bytes of meta
956 	 * data, and then actual data.
957 	 */
958 	net_prefetch(xdp->data_meta);
959 	/* build an skb around the page buffer */
960 	skb = napi_build_skb(xdp->data_hard_start, truesize);
961 	if (unlikely(!skb))
962 		return NULL;
963 
964 	/* must to record Rx queue, otherwise OS features such as
965 	 * symmetric queue won't work
966 	 */
967 	skb_record_rx_queue(skb, rx_ring->q_index);
968 
969 	/* update pointers within the skb to store the data */
970 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
971 	__skb_put(skb, xdp->data_end - xdp->data);
972 	if (metasize)
973 		skb_metadata_set(skb, metasize);
974 
975 	/* buffer is used by skb, update page_offset */
976 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
977 
978 	return skb;
979 }
980 
981 /**
982  * ice_construct_skb - Allocate skb and populate it
983  * @rx_ring: Rx descriptor ring to transact packets on
984  * @rx_buf: Rx buffer to pull data from
985  * @xdp: xdp_buff pointing to the data
986  *
987  * This function allocates an skb. It then populates it with the page
988  * data from the current receive descriptor, taking care to set up the
989  * skb correctly.
990  */
991 static struct sk_buff *
992 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
993 		  struct xdp_buff *xdp)
994 {
995 	unsigned int size = xdp->data_end - xdp->data;
996 	unsigned int headlen;
997 	struct sk_buff *skb;
998 
999 	/* prefetch first cache line of first page */
1000 	net_prefetch(xdp->data);
1001 
1002 	/* allocate a skb to store the frags */
1003 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
1004 			       GFP_ATOMIC | __GFP_NOWARN);
1005 	if (unlikely(!skb))
1006 		return NULL;
1007 
1008 	skb_record_rx_queue(skb, rx_ring->q_index);
1009 	/* Determine available headroom for copy */
1010 	headlen = size;
1011 	if (headlen > ICE_RX_HDR_SIZE)
1012 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1013 
1014 	/* align pull length to size of long to optimize memcpy performance */
1015 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1016 							 sizeof(long)));
1017 
1018 	/* if we exhaust the linear part then add what is left as a frag */
1019 	size -= headlen;
1020 	if (size) {
1021 #if (PAGE_SIZE >= 8192)
1022 		unsigned int truesize = SKB_DATA_ALIGN(size);
1023 #else
1024 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
1025 #endif
1026 		skb_add_rx_frag(skb, 0, rx_buf->page,
1027 				rx_buf->page_offset + headlen, size, truesize);
1028 		/* buffer is used by skb, update page_offset */
1029 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1030 	} else {
1031 		/* buffer is unused, reset bias back to rx_buf; data was copied
1032 		 * onto skb's linear part so there's no need for adjusting
1033 		 * page offset and we can reuse this buffer as-is
1034 		 */
1035 		rx_buf->pagecnt_bias++;
1036 	}
1037 
1038 	return skb;
1039 }
1040 
1041 /**
1042  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1043  * @rx_ring: Rx descriptor ring to transact packets on
1044  * @rx_buf: Rx buffer to pull data from
1045  * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1046  *
1047  * This function will update next_to_clean and then clean up the contents
1048  * of the rx_buf. It will either recycle the buffer or unmap it and free
1049  * the associated resources.
1050  */
1051 static void
1052 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
1053 	       int rx_buf_pgcnt)
1054 {
1055 	u16 ntc = rx_ring->next_to_clean + 1;
1056 
1057 	/* fetch, update, and store next to clean */
1058 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1059 	rx_ring->next_to_clean = ntc;
1060 
1061 	if (!rx_buf)
1062 		return;
1063 
1064 	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1065 		/* hand second half of page back to the ring */
1066 		ice_reuse_rx_page(rx_ring, rx_buf);
1067 	} else {
1068 		/* we are not reusing the buffer so unmap it */
1069 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1070 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1071 				     ICE_RX_DMA_ATTR);
1072 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1073 	}
1074 
1075 	/* clear contents of buffer_info */
1076 	rx_buf->page = NULL;
1077 }
1078 
1079 /**
1080  * ice_is_non_eop - process handling of non-EOP buffers
1081  * @rx_ring: Rx ring being processed
1082  * @rx_desc: Rx descriptor for current buffer
1083  *
1084  * If the buffer is an EOP buffer, this function exits returning false,
1085  * otherwise return true indicating that this is in fact a non-EOP buffer.
1086  */
1087 static bool
1088 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1089 {
1090 	/* if we are the last buffer then there is nothing else to do */
1091 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1092 	if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF)))
1093 		return false;
1094 
1095 	rx_ring->ring_stats->rx_stats.non_eop_descs++;
1096 
1097 	return true;
1098 }
1099 
1100 /**
1101  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1102  * @rx_ring: Rx descriptor ring to transact packets on
1103  * @budget: Total limit on number of packets to process
1104  *
1105  * This function provides a "bounce buffer" approach to Rx interrupt
1106  * processing. The advantage to this is that on systems that have
1107  * expensive overhead for IOMMU access this provides a means of avoiding
1108  * it by maintaining the mapping of the page to the system.
1109  *
1110  * Returns amount of work completed
1111  */
1112 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1113 {
1114 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1115 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1116 	unsigned int offset = rx_ring->rx_offset;
1117 	struct xdp_buff *xdp = &rx_ring->xdp;
1118 	struct ice_tx_ring *xdp_ring = NULL;
1119 	unsigned int xdp_res, xdp_xmit = 0;
1120 	struct sk_buff *skb = rx_ring->skb;
1121 	struct bpf_prog *xdp_prog = NULL;
1122 	bool failure;
1123 
1124 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1125 #if (PAGE_SIZE < 8192)
1126 	xdp->frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1127 #endif
1128 
1129 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1130 	if (xdp_prog)
1131 		xdp_ring = rx_ring->xdp_ring;
1132 
1133 	/* start the loop to process Rx packets bounded by 'budget' */
1134 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1135 		union ice_32b_rx_flex_desc *rx_desc;
1136 		struct ice_rx_buf *rx_buf;
1137 		unsigned char *hard_start;
1138 		unsigned int size;
1139 		u16 stat_err_bits;
1140 		int rx_buf_pgcnt;
1141 		u16 vlan_tag = 0;
1142 		u16 rx_ptype;
1143 
1144 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1145 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1146 
1147 		/* status_error_len will always be zero for unused descriptors
1148 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1149 		 * which is always zero because packet split isn't used, if the
1150 		 * hardware wrote DD then it will be non-zero
1151 		 */
1152 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1153 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1154 			break;
1155 
1156 		/* This memory barrier is needed to keep us from reading
1157 		 * any other fields out of the rx_desc until we know the
1158 		 * DD bit is set.
1159 		 */
1160 		dma_rmb();
1161 
1162 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1163 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1164 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1165 
1166 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1167 			    ctrl_vsi->vf)
1168 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1169 			ice_put_rx_buf(rx_ring, NULL, 0);
1170 			cleaned_count++;
1171 			continue;
1172 		}
1173 
1174 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1175 			ICE_RX_FLX_DESC_PKT_LEN_M;
1176 
1177 		/* retrieve a buffer from the ring */
1178 		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1179 
1180 		if (!size) {
1181 			xdp->data = NULL;
1182 			xdp->data_end = NULL;
1183 			xdp->data_hard_start = NULL;
1184 			xdp->data_meta = NULL;
1185 			goto construct_skb;
1186 		}
1187 
1188 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1189 			     offset;
1190 		xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1191 #if (PAGE_SIZE > 4096)
1192 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1193 		xdp->frame_sz = ice_rx_frame_truesize(rx_ring, size);
1194 #endif
1195 
1196 		if (!xdp_prog)
1197 			goto construct_skb;
1198 
1199 		xdp_res = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring);
1200 		if (!xdp_res)
1201 			goto construct_skb;
1202 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1203 			xdp_xmit |= xdp_res;
1204 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp->frame_sz);
1205 		} else {
1206 			rx_buf->pagecnt_bias++;
1207 		}
1208 		total_rx_bytes += size;
1209 		total_rx_pkts++;
1210 
1211 		cleaned_count++;
1212 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1213 		continue;
1214 construct_skb:
1215 		if (skb) {
1216 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1217 		} else if (likely(xdp->data)) {
1218 			if (ice_ring_uses_build_skb(rx_ring))
1219 				skb = ice_build_skb(rx_ring, rx_buf, xdp);
1220 			else
1221 				skb = ice_construct_skb(rx_ring, rx_buf, xdp);
1222 		}
1223 		/* exit if we failed to retrieve a buffer */
1224 		if (!skb) {
1225 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
1226 			if (rx_buf)
1227 				rx_buf->pagecnt_bias++;
1228 			break;
1229 		}
1230 
1231 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1232 		cleaned_count++;
1233 
1234 		/* skip if it is NOP desc */
1235 		if (ice_is_non_eop(rx_ring, rx_desc))
1236 			continue;
1237 
1238 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1239 		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1240 					      stat_err_bits))) {
1241 			dev_kfree_skb_any(skb);
1242 			continue;
1243 		}
1244 
1245 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1246 
1247 		/* pad the skb if needed, to make a valid ethernet frame */
1248 		if (eth_skb_pad(skb)) {
1249 			skb = NULL;
1250 			continue;
1251 		}
1252 
1253 		/* probably a little skewed due to removing CRC */
1254 		total_rx_bytes += skb->len;
1255 
1256 		/* populate checksum, VLAN, and protocol */
1257 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1258 			ICE_RX_FLEX_DESC_PTYPE_M;
1259 
1260 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1261 
1262 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1263 		/* send completed skb up the stack */
1264 		ice_receive_skb(rx_ring, skb, vlan_tag);
1265 		skb = NULL;
1266 
1267 		/* update budget accounting */
1268 		total_rx_pkts++;
1269 	}
1270 
1271 	/* return up to cleaned_count buffers to hardware */
1272 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1273 
1274 	if (xdp_prog)
1275 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
1276 	rx_ring->skb = skb;
1277 
1278 	if (rx_ring->ring_stats)
1279 		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1280 					 total_rx_bytes);
1281 
1282 	/* guarantee a trip back through this routine if there was a failure */
1283 	return failure ? budget : (int)total_rx_pkts;
1284 }
1285 
1286 static void __ice_update_sample(struct ice_q_vector *q_vector,
1287 				struct ice_ring_container *rc,
1288 				struct dim_sample *sample,
1289 				bool is_tx)
1290 {
1291 	u64 packets = 0, bytes = 0;
1292 
1293 	if (is_tx) {
1294 		struct ice_tx_ring *tx_ring;
1295 
1296 		ice_for_each_tx_ring(tx_ring, *rc) {
1297 			struct ice_ring_stats *ring_stats;
1298 
1299 			ring_stats = tx_ring->ring_stats;
1300 			if (!ring_stats)
1301 				continue;
1302 			packets += ring_stats->stats.pkts;
1303 			bytes += ring_stats->stats.bytes;
1304 		}
1305 	} else {
1306 		struct ice_rx_ring *rx_ring;
1307 
1308 		ice_for_each_rx_ring(rx_ring, *rc) {
1309 			struct ice_ring_stats *ring_stats;
1310 
1311 			ring_stats = rx_ring->ring_stats;
1312 			if (!ring_stats)
1313 				continue;
1314 			packets += ring_stats->stats.pkts;
1315 			bytes += ring_stats->stats.bytes;
1316 		}
1317 	}
1318 
1319 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1320 	sample->comp_ctr = 0;
1321 
1322 	/* if dim settings get stale, like when not updated for 1
1323 	 * second or longer, force it to start again. This addresses the
1324 	 * frequent case of an idle queue being switched to by the
1325 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1326 	 */
1327 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1328 		rc->dim.state = DIM_START_MEASURE;
1329 }
1330 
1331 /**
1332  * ice_net_dim - Update net DIM algorithm
1333  * @q_vector: the vector associated with the interrupt
1334  *
1335  * Create a DIM sample and notify net_dim() so that it can possibly decide
1336  * a new ITR value based on incoming packets, bytes, and interrupts.
1337  *
1338  * This function is a no-op if the ring is not configured to dynamic ITR.
1339  */
1340 static void ice_net_dim(struct ice_q_vector *q_vector)
1341 {
1342 	struct ice_ring_container *tx = &q_vector->tx;
1343 	struct ice_ring_container *rx = &q_vector->rx;
1344 
1345 	if (ITR_IS_DYNAMIC(tx)) {
1346 		struct dim_sample dim_sample;
1347 
1348 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1349 		net_dim(&tx->dim, dim_sample);
1350 	}
1351 
1352 	if (ITR_IS_DYNAMIC(rx)) {
1353 		struct dim_sample dim_sample;
1354 
1355 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1356 		net_dim(&rx->dim, dim_sample);
1357 	}
1358 }
1359 
1360 /**
1361  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1362  * @itr_idx: interrupt throttling index
1363  * @itr: interrupt throttling value in usecs
1364  */
1365 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1366 {
1367 	/* The ITR value is reported in microseconds, and the register value is
1368 	 * recorded in 2 microsecond units. For this reason we only need to
1369 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1370 	 * granularity as a shift instead of division. The mask makes sure the
1371 	 * ITR value is never odd so we don't accidentally write into the field
1372 	 * prior to the ITR field.
1373 	 */
1374 	itr &= ICE_ITR_MASK;
1375 
1376 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1377 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1378 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1379 }
1380 
1381 /**
1382  * ice_enable_interrupt - re-enable MSI-X interrupt
1383  * @q_vector: the vector associated with the interrupt to enable
1384  *
1385  * If the VSI is down, the interrupt will not be re-enabled. Also,
1386  * when enabling the interrupt always reset the wb_on_itr to false
1387  * and trigger a software interrupt to clean out internal state.
1388  */
1389 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1390 {
1391 	struct ice_vsi *vsi = q_vector->vsi;
1392 	bool wb_en = q_vector->wb_on_itr;
1393 	u32 itr_val;
1394 
1395 	if (test_bit(ICE_DOWN, vsi->state))
1396 		return;
1397 
1398 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1399 	 * make sure to catch any pending cleanups that might have been missed
1400 	 * due to interrupt state transition. If busy poll or poll isn't
1401 	 * enabled, then don't update ITR, and just enable the interrupt.
1402 	 */
1403 	if (!wb_en) {
1404 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1405 	} else {
1406 		q_vector->wb_on_itr = false;
1407 
1408 		/* do two things here with a single write. Set up the third ITR
1409 		 * index to be used for software interrupt moderation, and then
1410 		 * trigger a software interrupt with a rate limit of 20K on
1411 		 * software interrupts, this will help avoid high interrupt
1412 		 * loads due to frequently polling and exiting polling.
1413 		 */
1414 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1415 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1416 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1417 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1418 	}
1419 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1420 }
1421 
1422 /**
1423  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1424  * @q_vector: q_vector to set WB_ON_ITR on
1425  *
1426  * We need to tell hardware to write-back completed descriptors even when
1427  * interrupts are disabled. Descriptors will be written back on cache line
1428  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1429  * descriptors may not be written back if they don't fill a cache line until
1430  * the next interrupt.
1431  *
1432  * This sets the write-back frequency to whatever was set previously for the
1433  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1434  * aren't meddling with the INTENA_M bit.
1435  */
1436 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1437 {
1438 	struct ice_vsi *vsi = q_vector->vsi;
1439 
1440 	/* already in wb_on_itr mode no need to change it */
1441 	if (q_vector->wb_on_itr)
1442 		return;
1443 
1444 	/* use previously set ITR values for all of the ITR indices by
1445 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1446 	 * be static in non-adaptive mode (user configured)
1447 	 */
1448 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1449 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1450 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1451 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1452 
1453 	q_vector->wb_on_itr = true;
1454 }
1455 
1456 /**
1457  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1458  * @napi: napi struct with our devices info in it
1459  * @budget: amount of work driver is allowed to do this pass, in packets
1460  *
1461  * This function will clean all queues associated with a q_vector.
1462  *
1463  * Returns the amount of work done
1464  */
1465 int ice_napi_poll(struct napi_struct *napi, int budget)
1466 {
1467 	struct ice_q_vector *q_vector =
1468 				container_of(napi, struct ice_q_vector, napi);
1469 	struct ice_tx_ring *tx_ring;
1470 	struct ice_rx_ring *rx_ring;
1471 	bool clean_complete = true;
1472 	int budget_per_ring;
1473 	int work_done = 0;
1474 
1475 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1476 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1477 	 */
1478 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1479 		bool wd;
1480 
1481 		if (tx_ring->xsk_pool)
1482 			wd = ice_xmit_zc(tx_ring);
1483 		else if (ice_ring_is_xdp(tx_ring))
1484 			wd = true;
1485 		else
1486 			wd = ice_clean_tx_irq(tx_ring, budget);
1487 
1488 		if (!wd)
1489 			clean_complete = false;
1490 	}
1491 
1492 	/* Handle case where we are called by netpoll with a budget of 0 */
1493 	if (unlikely(budget <= 0))
1494 		return budget;
1495 
1496 	/* normally we have 1 Rx ring per q_vector */
1497 	if (unlikely(q_vector->num_ring_rx > 1))
1498 		/* We attempt to distribute budget to each Rx queue fairly, but
1499 		 * don't allow the budget to go below 1 because that would exit
1500 		 * polling early.
1501 		 */
1502 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1503 	else
1504 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1505 		budget_per_ring = budget;
1506 
1507 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1508 		int cleaned;
1509 
1510 		/* A dedicated path for zero-copy allows making a single
1511 		 * comparison in the irq context instead of many inside the
1512 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1513 		 */
1514 		cleaned = rx_ring->xsk_pool ?
1515 			  ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1516 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1517 		work_done += cleaned;
1518 		/* if we clean as many as budgeted, we must not be done */
1519 		if (cleaned >= budget_per_ring)
1520 			clean_complete = false;
1521 	}
1522 
1523 	/* If work not completed, return budget and polling will return */
1524 	if (!clean_complete) {
1525 		/* Set the writeback on ITR so partial completions of
1526 		 * cache-lines will still continue even if we're polling.
1527 		 */
1528 		ice_set_wb_on_itr(q_vector);
1529 		return budget;
1530 	}
1531 
1532 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1533 	 * poll us due to busy-polling
1534 	 */
1535 	if (napi_complete_done(napi, work_done)) {
1536 		ice_net_dim(q_vector);
1537 		ice_enable_interrupt(q_vector);
1538 	} else {
1539 		ice_set_wb_on_itr(q_vector);
1540 	}
1541 
1542 	return min_t(int, work_done, budget - 1);
1543 }
1544 
1545 /**
1546  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1547  * @tx_ring: the ring to be checked
1548  * @size: the size buffer we want to assure is available
1549  *
1550  * Returns -EBUSY if a stop is needed, else 0
1551  */
1552 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1553 {
1554 	netif_tx_stop_queue(txring_txq(tx_ring));
1555 	/* Memory barrier before checking head and tail */
1556 	smp_mb();
1557 
1558 	/* Check again in a case another CPU has just made room available. */
1559 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1560 		return -EBUSY;
1561 
1562 	/* A reprieve! - use start_queue because it doesn't call schedule */
1563 	netif_tx_start_queue(txring_txq(tx_ring));
1564 	++tx_ring->ring_stats->tx_stats.restart_q;
1565 	return 0;
1566 }
1567 
1568 /**
1569  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1570  * @tx_ring: the ring to be checked
1571  * @size:    the size buffer we want to assure is available
1572  *
1573  * Returns 0 if stop is not needed
1574  */
1575 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1576 {
1577 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1578 		return 0;
1579 
1580 	return __ice_maybe_stop_tx(tx_ring, size);
1581 }
1582 
1583 /**
1584  * ice_tx_map - Build the Tx descriptor
1585  * @tx_ring: ring to send buffer on
1586  * @first: first buffer info buffer to use
1587  * @off: pointer to struct that holds offload parameters
1588  *
1589  * This function loops over the skb data pointed to by *first
1590  * and gets a physical address for each memory location and programs
1591  * it and the length into the transmit descriptor.
1592  */
1593 static void
1594 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1595 	   struct ice_tx_offload_params *off)
1596 {
1597 	u64 td_offset, td_tag, td_cmd;
1598 	u16 i = tx_ring->next_to_use;
1599 	unsigned int data_len, size;
1600 	struct ice_tx_desc *tx_desc;
1601 	struct ice_tx_buf *tx_buf;
1602 	struct sk_buff *skb;
1603 	skb_frag_t *frag;
1604 	dma_addr_t dma;
1605 	bool kick;
1606 
1607 	td_tag = off->td_l2tag1;
1608 	td_cmd = off->td_cmd;
1609 	td_offset = off->td_offset;
1610 	skb = first->skb;
1611 
1612 	data_len = skb->data_len;
1613 	size = skb_headlen(skb);
1614 
1615 	tx_desc = ICE_TX_DESC(tx_ring, i);
1616 
1617 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1618 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1619 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1620 			  ICE_TX_FLAGS_VLAN_S;
1621 	}
1622 
1623 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1624 
1625 	tx_buf = first;
1626 
1627 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1628 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1629 
1630 		if (dma_mapping_error(tx_ring->dev, dma))
1631 			goto dma_error;
1632 
1633 		/* record length, and DMA address */
1634 		dma_unmap_len_set(tx_buf, len, size);
1635 		dma_unmap_addr_set(tx_buf, dma, dma);
1636 
1637 		/* align size to end of page */
1638 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1639 		tx_desc->buf_addr = cpu_to_le64(dma);
1640 
1641 		/* account for data chunks larger than the hardware
1642 		 * can handle
1643 		 */
1644 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1645 			tx_desc->cmd_type_offset_bsz =
1646 				ice_build_ctob(td_cmd, td_offset, max_data,
1647 					       td_tag);
1648 
1649 			tx_desc++;
1650 			i++;
1651 
1652 			if (i == tx_ring->count) {
1653 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1654 				i = 0;
1655 			}
1656 
1657 			dma += max_data;
1658 			size -= max_data;
1659 
1660 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1661 			tx_desc->buf_addr = cpu_to_le64(dma);
1662 		}
1663 
1664 		if (likely(!data_len))
1665 			break;
1666 
1667 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1668 							      size, td_tag);
1669 
1670 		tx_desc++;
1671 		i++;
1672 
1673 		if (i == tx_ring->count) {
1674 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1675 			i = 0;
1676 		}
1677 
1678 		size = skb_frag_size(frag);
1679 		data_len -= size;
1680 
1681 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1682 				       DMA_TO_DEVICE);
1683 
1684 		tx_buf = &tx_ring->tx_buf[i];
1685 	}
1686 
1687 	/* record SW timestamp if HW timestamp is not available */
1688 	skb_tx_timestamp(first->skb);
1689 
1690 	i++;
1691 	if (i == tx_ring->count)
1692 		i = 0;
1693 
1694 	/* write last descriptor with RS and EOP bits */
1695 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1696 	tx_desc->cmd_type_offset_bsz =
1697 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1698 
1699 	/* Force memory writes to complete before letting h/w know there
1700 	 * are new descriptors to fetch.
1701 	 *
1702 	 * We also use this memory barrier to make certain all of the
1703 	 * status bits have been updated before next_to_watch is written.
1704 	 */
1705 	wmb();
1706 
1707 	/* set next_to_watch value indicating a packet is present */
1708 	first->next_to_watch = tx_desc;
1709 
1710 	tx_ring->next_to_use = i;
1711 
1712 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1713 
1714 	/* notify HW of packet */
1715 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1716 				      netdev_xmit_more());
1717 	if (kick)
1718 		/* notify HW of packet */
1719 		writel(i, tx_ring->tail);
1720 
1721 	return;
1722 
1723 dma_error:
1724 	/* clear DMA mappings for failed tx_buf map */
1725 	for (;;) {
1726 		tx_buf = &tx_ring->tx_buf[i];
1727 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1728 		if (tx_buf == first)
1729 			break;
1730 		if (i == 0)
1731 			i = tx_ring->count;
1732 		i--;
1733 	}
1734 
1735 	tx_ring->next_to_use = i;
1736 }
1737 
1738 /**
1739  * ice_tx_csum - Enable Tx checksum offloads
1740  * @first: pointer to the first descriptor
1741  * @off: pointer to struct that holds offload parameters
1742  *
1743  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1744  */
1745 static
1746 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1747 {
1748 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1749 	struct sk_buff *skb = first->skb;
1750 	union {
1751 		struct iphdr *v4;
1752 		struct ipv6hdr *v6;
1753 		unsigned char *hdr;
1754 	} ip;
1755 	union {
1756 		struct tcphdr *tcp;
1757 		unsigned char *hdr;
1758 	} l4;
1759 	__be16 frag_off, protocol;
1760 	unsigned char *exthdr;
1761 	u32 offset, cmd = 0;
1762 	u8 l4_proto = 0;
1763 
1764 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1765 		return 0;
1766 
1767 	protocol = vlan_get_protocol(skb);
1768 
1769 	if (eth_p_mpls(protocol)) {
1770 		ip.hdr = skb_inner_network_header(skb);
1771 		l4.hdr = skb_checksum_start(skb);
1772 	} else {
1773 		ip.hdr = skb_network_header(skb);
1774 		l4.hdr = skb_transport_header(skb);
1775 	}
1776 
1777 	/* compute outer L2 header size */
1778 	l2_len = ip.hdr - skb->data;
1779 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1780 
1781 	/* set the tx_flags to indicate the IP protocol type. this is
1782 	 * required so that checksum header computation below is accurate.
1783 	 */
1784 	if (ip.v4->version == 4)
1785 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1786 	else if (ip.v6->version == 6)
1787 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1788 
1789 	if (skb->encapsulation) {
1790 		bool gso_ena = false;
1791 		u32 tunnel = 0;
1792 
1793 		/* define outer network header type */
1794 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1795 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1796 				  ICE_TX_CTX_EIPT_IPV4 :
1797 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1798 			l4_proto = ip.v4->protocol;
1799 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1800 			int ret;
1801 
1802 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1803 			exthdr = ip.hdr + sizeof(*ip.v6);
1804 			l4_proto = ip.v6->nexthdr;
1805 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1806 					       &l4_proto, &frag_off);
1807 			if (ret < 0)
1808 				return -1;
1809 		}
1810 
1811 		/* define outer transport */
1812 		switch (l4_proto) {
1813 		case IPPROTO_UDP:
1814 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1815 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1816 			break;
1817 		case IPPROTO_GRE:
1818 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1819 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1820 			break;
1821 		case IPPROTO_IPIP:
1822 		case IPPROTO_IPV6:
1823 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1824 			l4.hdr = skb_inner_network_header(skb);
1825 			break;
1826 		default:
1827 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1828 				return -1;
1829 
1830 			skb_checksum_help(skb);
1831 			return 0;
1832 		}
1833 
1834 		/* compute outer L3 header size */
1835 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1836 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1837 
1838 		/* switch IP header pointer from outer to inner header */
1839 		ip.hdr = skb_inner_network_header(skb);
1840 
1841 		/* compute tunnel header size */
1842 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1843 			   ICE_TXD_CTX_QW0_NATLEN_S;
1844 
1845 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1846 		/* indicate if we need to offload outer UDP header */
1847 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1848 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1849 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1850 
1851 		/* record tunnel offload values */
1852 		off->cd_tunnel_params |= tunnel;
1853 
1854 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1855 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1856 		 */
1857 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1858 
1859 		/* switch L4 header pointer from outer to inner */
1860 		l4.hdr = skb_inner_transport_header(skb);
1861 		l4_proto = 0;
1862 
1863 		/* reset type as we transition from outer to inner headers */
1864 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1865 		if (ip.v4->version == 4)
1866 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1867 		if (ip.v6->version == 6)
1868 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1869 	}
1870 
1871 	/* Enable IP checksum offloads */
1872 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1873 		l4_proto = ip.v4->protocol;
1874 		/* the stack computes the IP header already, the only time we
1875 		 * need the hardware to recompute it is in the case of TSO.
1876 		 */
1877 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1878 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1879 		else
1880 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1881 
1882 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1883 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1884 		exthdr = ip.hdr + sizeof(*ip.v6);
1885 		l4_proto = ip.v6->nexthdr;
1886 		if (l4.hdr != exthdr)
1887 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1888 					 &frag_off);
1889 	} else {
1890 		return -1;
1891 	}
1892 
1893 	/* compute inner L3 header size */
1894 	l3_len = l4.hdr - ip.hdr;
1895 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1896 
1897 	/* Enable L4 checksum offloads */
1898 	switch (l4_proto) {
1899 	case IPPROTO_TCP:
1900 		/* enable checksum offloads */
1901 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1902 		l4_len = l4.tcp->doff;
1903 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1904 		break;
1905 	case IPPROTO_UDP:
1906 		/* enable UDP checksum offload */
1907 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1908 		l4_len = (sizeof(struct udphdr) >> 2);
1909 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1910 		break;
1911 	case IPPROTO_SCTP:
1912 		/* enable SCTP checksum offload */
1913 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1914 		l4_len = sizeof(struct sctphdr) >> 2;
1915 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1916 		break;
1917 
1918 	default:
1919 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1920 			return -1;
1921 		skb_checksum_help(skb);
1922 		return 0;
1923 	}
1924 
1925 	off->td_cmd |= cmd;
1926 	off->td_offset |= offset;
1927 	return 1;
1928 }
1929 
1930 /**
1931  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1932  * @tx_ring: ring to send buffer on
1933  * @first: pointer to struct ice_tx_buf
1934  *
1935  * Checks the skb and set up correspondingly several generic transmit flags
1936  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1937  */
1938 static void
1939 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1940 {
1941 	struct sk_buff *skb = first->skb;
1942 
1943 	/* nothing left to do, software offloaded VLAN */
1944 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1945 		return;
1946 
1947 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1948 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1949 	 * VLAN offloads exclusively so we only care about the VLAN ID here
1950 	 */
1951 	if (skb_vlan_tag_present(skb)) {
1952 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1953 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
1954 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1955 		else
1956 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1957 	}
1958 
1959 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1960 }
1961 
1962 /**
1963  * ice_tso - computes mss and TSO length to prepare for TSO
1964  * @first: pointer to struct ice_tx_buf
1965  * @off: pointer to struct that holds offload parameters
1966  *
1967  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1968  */
1969 static
1970 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1971 {
1972 	struct sk_buff *skb = first->skb;
1973 	union {
1974 		struct iphdr *v4;
1975 		struct ipv6hdr *v6;
1976 		unsigned char *hdr;
1977 	} ip;
1978 	union {
1979 		struct tcphdr *tcp;
1980 		struct udphdr *udp;
1981 		unsigned char *hdr;
1982 	} l4;
1983 	u64 cd_mss, cd_tso_len;
1984 	__be16 protocol;
1985 	u32 paylen;
1986 	u8 l4_start;
1987 	int err;
1988 
1989 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1990 		return 0;
1991 
1992 	if (!skb_is_gso(skb))
1993 		return 0;
1994 
1995 	err = skb_cow_head(skb, 0);
1996 	if (err < 0)
1997 		return err;
1998 
1999 	protocol = vlan_get_protocol(skb);
2000 
2001 	if (eth_p_mpls(protocol))
2002 		ip.hdr = skb_inner_network_header(skb);
2003 	else
2004 		ip.hdr = skb_network_header(skb);
2005 	l4.hdr = skb_checksum_start(skb);
2006 
2007 	/* initialize outer IP header fields */
2008 	if (ip.v4->version == 4) {
2009 		ip.v4->tot_len = 0;
2010 		ip.v4->check = 0;
2011 	} else {
2012 		ip.v6->payload_len = 0;
2013 	}
2014 
2015 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2016 					 SKB_GSO_GRE_CSUM |
2017 					 SKB_GSO_IPXIP4 |
2018 					 SKB_GSO_IPXIP6 |
2019 					 SKB_GSO_UDP_TUNNEL |
2020 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2021 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2022 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2023 			l4.udp->len = 0;
2024 
2025 			/* determine offset of outer transport header */
2026 			l4_start = (u8)(l4.hdr - skb->data);
2027 
2028 			/* remove payload length from outer checksum */
2029 			paylen = skb->len - l4_start;
2030 			csum_replace_by_diff(&l4.udp->check,
2031 					     (__force __wsum)htonl(paylen));
2032 		}
2033 
2034 		/* reset pointers to inner headers */
2035 		ip.hdr = skb_inner_network_header(skb);
2036 		l4.hdr = skb_inner_transport_header(skb);
2037 
2038 		/* initialize inner IP header fields */
2039 		if (ip.v4->version == 4) {
2040 			ip.v4->tot_len = 0;
2041 			ip.v4->check = 0;
2042 		} else {
2043 			ip.v6->payload_len = 0;
2044 		}
2045 	}
2046 
2047 	/* determine offset of transport header */
2048 	l4_start = (u8)(l4.hdr - skb->data);
2049 
2050 	/* remove payload length from checksum */
2051 	paylen = skb->len - l4_start;
2052 
2053 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2054 		csum_replace_by_diff(&l4.udp->check,
2055 				     (__force __wsum)htonl(paylen));
2056 		/* compute length of UDP segmentation header */
2057 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2058 	} else {
2059 		csum_replace_by_diff(&l4.tcp->check,
2060 				     (__force __wsum)htonl(paylen));
2061 		/* compute length of TCP segmentation header */
2062 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2063 	}
2064 
2065 	/* update gso_segs and bytecount */
2066 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2067 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2068 
2069 	cd_tso_len = skb->len - off->header_len;
2070 	cd_mss = skb_shinfo(skb)->gso_size;
2071 
2072 	/* record cdesc_qw1 with TSO parameters */
2073 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2074 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2075 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2076 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2077 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2078 	return 1;
2079 }
2080 
2081 /**
2082  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2083  * @size: transmit request size in bytes
2084  *
2085  * Due to hardware alignment restrictions (4K alignment), we need to
2086  * assume that we can have no more than 12K of data per descriptor, even
2087  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2088  * Thus, we need to divide by 12K. But division is slow! Instead,
2089  * we decompose the operation into shifts and one relatively cheap
2090  * multiply operation.
2091  *
2092  * To divide by 12K, we first divide by 4K, then divide by 3:
2093  *     To divide by 4K, shift right by 12 bits
2094  *     To divide by 3, multiply by 85, then divide by 256
2095  *     (Divide by 256 is done by shifting right by 8 bits)
2096  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2097  * 3, we'll underestimate near each multiple of 12K. This is actually more
2098  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2099  * segment. For our purposes this is accurate out to 1M which is orders of
2100  * magnitude greater than our largest possible GSO size.
2101  *
2102  * This would then be implemented as:
2103  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2104  *
2105  * Since multiplication and division are commutative, we can reorder
2106  * operations into:
2107  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2108  */
2109 static unsigned int ice_txd_use_count(unsigned int size)
2110 {
2111 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2112 }
2113 
2114 /**
2115  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2116  * @skb: send buffer
2117  *
2118  * Returns number of data descriptors needed for this skb.
2119  */
2120 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2121 {
2122 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2123 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2124 	unsigned int count = 0, size = skb_headlen(skb);
2125 
2126 	for (;;) {
2127 		count += ice_txd_use_count(size);
2128 
2129 		if (!nr_frags--)
2130 			break;
2131 
2132 		size = skb_frag_size(frag++);
2133 	}
2134 
2135 	return count;
2136 }
2137 
2138 /**
2139  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2140  * @skb: send buffer
2141  *
2142  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2143  * and so we need to figure out the cases where we need to linearize the skb.
2144  *
2145  * For TSO we need to count the TSO header and segment payload separately.
2146  * As such we need to check cases where we have 7 fragments or more as we
2147  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2148  * the segment payload in the first descriptor, and another 7 for the
2149  * fragments.
2150  */
2151 static bool __ice_chk_linearize(struct sk_buff *skb)
2152 {
2153 	const skb_frag_t *frag, *stale;
2154 	int nr_frags, sum;
2155 
2156 	/* no need to check if number of frags is less than 7 */
2157 	nr_frags = skb_shinfo(skb)->nr_frags;
2158 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2159 		return false;
2160 
2161 	/* We need to walk through the list and validate that each group
2162 	 * of 6 fragments totals at least gso_size.
2163 	 */
2164 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2165 	frag = &skb_shinfo(skb)->frags[0];
2166 
2167 	/* Initialize size to the negative value of gso_size minus 1. We
2168 	 * use this as the worst case scenario in which the frag ahead
2169 	 * of us only provides one byte which is why we are limited to 6
2170 	 * descriptors for a single transmit as the header and previous
2171 	 * fragment are already consuming 2 descriptors.
2172 	 */
2173 	sum = 1 - skb_shinfo(skb)->gso_size;
2174 
2175 	/* Add size of frags 0 through 4 to create our initial sum */
2176 	sum += skb_frag_size(frag++);
2177 	sum += skb_frag_size(frag++);
2178 	sum += skb_frag_size(frag++);
2179 	sum += skb_frag_size(frag++);
2180 	sum += skb_frag_size(frag++);
2181 
2182 	/* Walk through fragments adding latest fragment, testing it, and
2183 	 * then removing stale fragments from the sum.
2184 	 */
2185 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2186 		int stale_size = skb_frag_size(stale);
2187 
2188 		sum += skb_frag_size(frag++);
2189 
2190 		/* The stale fragment may present us with a smaller
2191 		 * descriptor than the actual fragment size. To account
2192 		 * for that we need to remove all the data on the front and
2193 		 * figure out what the remainder would be in the last
2194 		 * descriptor associated with the fragment.
2195 		 */
2196 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2197 			int align_pad = -(skb_frag_off(stale)) &
2198 					(ICE_MAX_READ_REQ_SIZE - 1);
2199 
2200 			sum -= align_pad;
2201 			stale_size -= align_pad;
2202 
2203 			do {
2204 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2205 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2206 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2207 		}
2208 
2209 		/* if sum is negative we failed to make sufficient progress */
2210 		if (sum < 0)
2211 			return true;
2212 
2213 		if (!nr_frags--)
2214 			break;
2215 
2216 		sum -= stale_size;
2217 	}
2218 
2219 	return false;
2220 }
2221 
2222 /**
2223  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2224  * @skb:      send buffer
2225  * @count:    number of buffers used
2226  *
2227  * Note: Our HW can't scatter-gather more than 8 fragments to build
2228  * a packet on the wire and so we need to figure out the cases where we
2229  * need to linearize the skb.
2230  */
2231 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2232 {
2233 	/* Both TSO and single send will work if count is less than 8 */
2234 	if (likely(count < ICE_MAX_BUF_TXD))
2235 		return false;
2236 
2237 	if (skb_is_gso(skb))
2238 		return __ice_chk_linearize(skb);
2239 
2240 	/* we can support up to 8 data buffers for a single send */
2241 	return count != ICE_MAX_BUF_TXD;
2242 }
2243 
2244 /**
2245  * ice_tstamp - set up context descriptor for hardware timestamp
2246  * @tx_ring: pointer to the Tx ring to send buffer on
2247  * @skb: pointer to the SKB we're sending
2248  * @first: Tx buffer
2249  * @off: Tx offload parameters
2250  */
2251 static void
2252 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2253 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2254 {
2255 	s8 idx;
2256 
2257 	/* only timestamp the outbound packet if the user has requested it */
2258 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2259 		return;
2260 
2261 	if (!tx_ring->ptp_tx)
2262 		return;
2263 
2264 	/* Tx timestamps cannot be sampled when doing TSO */
2265 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2266 		return;
2267 
2268 	/* Grab an open timestamp slot */
2269 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2270 	if (idx < 0) {
2271 		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2272 		return;
2273 	}
2274 
2275 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2276 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2277 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2278 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2279 }
2280 
2281 /**
2282  * ice_xmit_frame_ring - Sends buffer on Tx ring
2283  * @skb: send buffer
2284  * @tx_ring: ring to send buffer on
2285  *
2286  * Returns NETDEV_TX_OK if sent, else an error code
2287  */
2288 static netdev_tx_t
2289 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2290 {
2291 	struct ice_tx_offload_params offload = { 0 };
2292 	struct ice_vsi *vsi = tx_ring->vsi;
2293 	struct ice_tx_buf *first;
2294 	struct ethhdr *eth;
2295 	unsigned int count;
2296 	int tso, csum;
2297 
2298 	ice_trace(xmit_frame_ring, tx_ring, skb);
2299 
2300 	count = ice_xmit_desc_count(skb);
2301 	if (ice_chk_linearize(skb, count)) {
2302 		if (__skb_linearize(skb))
2303 			goto out_drop;
2304 		count = ice_txd_use_count(skb->len);
2305 		tx_ring->ring_stats->tx_stats.tx_linearize++;
2306 	}
2307 
2308 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2309 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2310 	 *       + 4 desc gap to avoid the cache line where head is,
2311 	 *       + 1 desc for context descriptor,
2312 	 * otherwise try next time
2313 	 */
2314 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2315 			      ICE_DESCS_FOR_CTX_DESC)) {
2316 		tx_ring->ring_stats->tx_stats.tx_busy++;
2317 		return NETDEV_TX_BUSY;
2318 	}
2319 
2320 	/* prefetch for bql data which is infrequently used */
2321 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2322 
2323 	offload.tx_ring = tx_ring;
2324 
2325 	/* record the location of the first descriptor for this packet */
2326 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2327 	first->skb = skb;
2328 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2329 	first->gso_segs = 1;
2330 	first->tx_flags = 0;
2331 
2332 	/* prepare the VLAN tagging flags for Tx */
2333 	ice_tx_prepare_vlan_flags(tx_ring, first);
2334 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2335 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2336 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2337 					ICE_TXD_CTX_QW1_CMD_S));
2338 		offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
2339 			ICE_TX_FLAGS_VLAN_S;
2340 	}
2341 
2342 	/* set up TSO offload */
2343 	tso = ice_tso(first, &offload);
2344 	if (tso < 0)
2345 		goto out_drop;
2346 
2347 	/* always set up Tx checksum offload */
2348 	csum = ice_tx_csum(first, &offload);
2349 	if (csum < 0)
2350 		goto out_drop;
2351 
2352 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2353 	eth = (struct ethhdr *)skb_mac_header(skb);
2354 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2355 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2356 		     vsi->type == ICE_VSI_PF &&
2357 		     vsi->port_info->qos_cfg.is_sw_lldp))
2358 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2359 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2360 					ICE_TXD_CTX_QW1_CMD_S);
2361 
2362 	ice_tstamp(tx_ring, skb, first, &offload);
2363 	if (ice_is_switchdev_running(vsi->back))
2364 		ice_eswitch_set_target_vsi(skb, &offload);
2365 
2366 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2367 		struct ice_tx_ctx_desc *cdesc;
2368 		u16 i = tx_ring->next_to_use;
2369 
2370 		/* grab the next descriptor */
2371 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2372 		i++;
2373 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2374 
2375 		/* setup context descriptor */
2376 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2377 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2378 		cdesc->rsvd = cpu_to_le16(0);
2379 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2380 	}
2381 
2382 	ice_tx_map(tx_ring, first, &offload);
2383 	return NETDEV_TX_OK;
2384 
2385 out_drop:
2386 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2387 	dev_kfree_skb_any(skb);
2388 	return NETDEV_TX_OK;
2389 }
2390 
2391 /**
2392  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2393  * @skb: send buffer
2394  * @netdev: network interface device structure
2395  *
2396  * Returns NETDEV_TX_OK if sent, else an error code
2397  */
2398 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2399 {
2400 	struct ice_netdev_priv *np = netdev_priv(netdev);
2401 	struct ice_vsi *vsi = np->vsi;
2402 	struct ice_tx_ring *tx_ring;
2403 
2404 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2405 
2406 	/* hardware can't handle really short frames, hardware padding works
2407 	 * beyond this point
2408 	 */
2409 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2410 		return NETDEV_TX_OK;
2411 
2412 	return ice_xmit_frame_ring(skb, tx_ring);
2413 }
2414 
2415 /**
2416  * ice_get_dscp_up - return the UP/TC value for a SKB
2417  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2418  * @skb: SKB to query for info to determine UP/TC
2419  *
2420  * This function is to only be called when the PF is in L3 DSCP PFC mode
2421  */
2422 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2423 {
2424 	u8 dscp = 0;
2425 
2426 	if (skb->protocol == htons(ETH_P_IP))
2427 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2428 	else if (skb->protocol == htons(ETH_P_IPV6))
2429 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2430 
2431 	return dcbcfg->dscp_map[dscp];
2432 }
2433 
2434 u16
2435 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2436 		 struct net_device *sb_dev)
2437 {
2438 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2439 	struct ice_dcbx_cfg *dcbcfg;
2440 
2441 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2442 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2443 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2444 
2445 	return netdev_pick_tx(netdev, skb, sb_dev);
2446 }
2447 
2448 /**
2449  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2450  * @tx_ring: tx_ring to clean
2451  */
2452 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2453 {
2454 	struct ice_vsi *vsi = tx_ring->vsi;
2455 	s16 i = tx_ring->next_to_clean;
2456 	int budget = ICE_DFLT_IRQ_WORK;
2457 	struct ice_tx_desc *tx_desc;
2458 	struct ice_tx_buf *tx_buf;
2459 
2460 	tx_buf = &tx_ring->tx_buf[i];
2461 	tx_desc = ICE_TX_DESC(tx_ring, i);
2462 	i -= tx_ring->count;
2463 
2464 	do {
2465 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2466 
2467 		/* if next_to_watch is not set then there is no pending work */
2468 		if (!eop_desc)
2469 			break;
2470 
2471 		/* prevent any other reads prior to eop_desc */
2472 		smp_rmb();
2473 
2474 		/* if the descriptor isn't done, no work to do */
2475 		if (!(eop_desc->cmd_type_offset_bsz &
2476 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2477 			break;
2478 
2479 		/* clear next_to_watch to prevent false hangs */
2480 		tx_buf->next_to_watch = NULL;
2481 		tx_desc->buf_addr = 0;
2482 		tx_desc->cmd_type_offset_bsz = 0;
2483 
2484 		/* move past filter desc */
2485 		tx_buf++;
2486 		tx_desc++;
2487 		i++;
2488 		if (unlikely(!i)) {
2489 			i -= tx_ring->count;
2490 			tx_buf = tx_ring->tx_buf;
2491 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2492 		}
2493 
2494 		/* unmap the data header */
2495 		if (dma_unmap_len(tx_buf, len))
2496 			dma_unmap_single(tx_ring->dev,
2497 					 dma_unmap_addr(tx_buf, dma),
2498 					 dma_unmap_len(tx_buf, len),
2499 					 DMA_TO_DEVICE);
2500 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2501 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2502 
2503 		/* clear next_to_watch to prevent false hangs */
2504 		tx_buf->raw_buf = NULL;
2505 		tx_buf->tx_flags = 0;
2506 		tx_buf->next_to_watch = NULL;
2507 		dma_unmap_len_set(tx_buf, len, 0);
2508 		tx_desc->buf_addr = 0;
2509 		tx_desc->cmd_type_offset_bsz = 0;
2510 
2511 		/* move past eop_desc for start of next FD desc */
2512 		tx_buf++;
2513 		tx_desc++;
2514 		i++;
2515 		if (unlikely(!i)) {
2516 			i -= tx_ring->count;
2517 			tx_buf = tx_ring->tx_buf;
2518 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2519 		}
2520 
2521 		budget--;
2522 	} while (likely(budget));
2523 
2524 	i += tx_ring->count;
2525 	tx_ring->next_to_clean = i;
2526 
2527 	/* re-enable interrupt if needed */
2528 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2529 }
2530