1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include "ice.h"
9 #include "ice_dcb_lib.h"
10 
11 #define ICE_RX_HDR_SIZE		256
12 
13 /**
14  * ice_unmap_and_free_tx_buf - Release a Tx buffer
15  * @ring: the ring that owns the buffer
16  * @tx_buf: the buffer to free
17  */
18 static void
19 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
20 {
21 	if (tx_buf->skb) {
22 		dev_kfree_skb_any(tx_buf->skb);
23 		if (dma_unmap_len(tx_buf, len))
24 			dma_unmap_single(ring->dev,
25 					 dma_unmap_addr(tx_buf, dma),
26 					 dma_unmap_len(tx_buf, len),
27 					 DMA_TO_DEVICE);
28 	} else if (dma_unmap_len(tx_buf, len)) {
29 		dma_unmap_page(ring->dev,
30 			       dma_unmap_addr(tx_buf, dma),
31 			       dma_unmap_len(tx_buf, len),
32 			       DMA_TO_DEVICE);
33 	}
34 
35 	tx_buf->next_to_watch = NULL;
36 	tx_buf->skb = NULL;
37 	dma_unmap_len_set(tx_buf, len, 0);
38 	/* tx_buf must be completely set up in the transmit path */
39 }
40 
41 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
42 {
43 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
44 }
45 
46 /**
47  * ice_clean_tx_ring - Free any empty Tx buffers
48  * @tx_ring: ring to be cleaned
49  */
50 void ice_clean_tx_ring(struct ice_ring *tx_ring)
51 {
52 	u16 i;
53 
54 	/* ring already cleared, nothing to do */
55 	if (!tx_ring->tx_buf)
56 		return;
57 
58 	/* Free all the Tx ring sk_buffs */
59 	for (i = 0; i < tx_ring->count; i++)
60 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
61 
62 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
63 
64 	/* Zero out the descriptor ring */
65 	memset(tx_ring->desc, 0, tx_ring->size);
66 
67 	tx_ring->next_to_use = 0;
68 	tx_ring->next_to_clean = 0;
69 
70 	if (!tx_ring->netdev)
71 		return;
72 
73 	/* cleanup Tx queue statistics */
74 	netdev_tx_reset_queue(txring_txq(tx_ring));
75 }
76 
77 /**
78  * ice_free_tx_ring - Free Tx resources per queue
79  * @tx_ring: Tx descriptor ring for a specific queue
80  *
81  * Free all transmit software resources
82  */
83 void ice_free_tx_ring(struct ice_ring *tx_ring)
84 {
85 	ice_clean_tx_ring(tx_ring);
86 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
87 	tx_ring->tx_buf = NULL;
88 
89 	if (tx_ring->desc) {
90 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
91 				   tx_ring->desc, tx_ring->dma);
92 		tx_ring->desc = NULL;
93 	}
94 }
95 
96 /**
97  * ice_clean_tx_irq - Reclaim resources after transmit completes
98  * @vsi: the VSI we care about
99  * @tx_ring: Tx ring to clean
100  * @napi_budget: Used to determine if we are in netpoll
101  *
102  * Returns true if there's any budget left (e.g. the clean is finished)
103  */
104 static bool
105 ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, int napi_budget)
106 {
107 	unsigned int total_bytes = 0, total_pkts = 0;
108 	unsigned int budget = vsi->work_lmt;
109 	s16 i = tx_ring->next_to_clean;
110 	struct ice_tx_desc *tx_desc;
111 	struct ice_tx_buf *tx_buf;
112 
113 	tx_buf = &tx_ring->tx_buf[i];
114 	tx_desc = ICE_TX_DESC(tx_ring, i);
115 	i -= tx_ring->count;
116 
117 	do {
118 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
119 
120 		/* if next_to_watch is not set then there is no work pending */
121 		if (!eop_desc)
122 			break;
123 
124 		smp_rmb();	/* prevent any other reads prior to eop_desc */
125 
126 		/* if the descriptor isn't done, no work yet to do */
127 		if (!(eop_desc->cmd_type_offset_bsz &
128 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
129 			break;
130 
131 		/* clear next_to_watch to prevent false hangs */
132 		tx_buf->next_to_watch = NULL;
133 
134 		/* update the statistics for this packet */
135 		total_bytes += tx_buf->bytecount;
136 		total_pkts += tx_buf->gso_segs;
137 
138 		/* free the skb */
139 		napi_consume_skb(tx_buf->skb, napi_budget);
140 
141 		/* unmap skb header data */
142 		dma_unmap_single(tx_ring->dev,
143 				 dma_unmap_addr(tx_buf, dma),
144 				 dma_unmap_len(tx_buf, len),
145 				 DMA_TO_DEVICE);
146 
147 		/* clear tx_buf data */
148 		tx_buf->skb = NULL;
149 		dma_unmap_len_set(tx_buf, len, 0);
150 
151 		/* unmap remaining buffers */
152 		while (tx_desc != eop_desc) {
153 			tx_buf++;
154 			tx_desc++;
155 			i++;
156 			if (unlikely(!i)) {
157 				i -= tx_ring->count;
158 				tx_buf = tx_ring->tx_buf;
159 				tx_desc = ICE_TX_DESC(tx_ring, 0);
160 			}
161 
162 			/* unmap any remaining paged data */
163 			if (dma_unmap_len(tx_buf, len)) {
164 				dma_unmap_page(tx_ring->dev,
165 					       dma_unmap_addr(tx_buf, dma),
166 					       dma_unmap_len(tx_buf, len),
167 					       DMA_TO_DEVICE);
168 				dma_unmap_len_set(tx_buf, len, 0);
169 			}
170 		}
171 
172 		/* move us one more past the eop_desc for start of next pkt */
173 		tx_buf++;
174 		tx_desc++;
175 		i++;
176 		if (unlikely(!i)) {
177 			i -= tx_ring->count;
178 			tx_buf = tx_ring->tx_buf;
179 			tx_desc = ICE_TX_DESC(tx_ring, 0);
180 		}
181 
182 		prefetch(tx_desc);
183 
184 		/* update budget accounting */
185 		budget--;
186 	} while (likely(budget));
187 
188 	i += tx_ring->count;
189 	tx_ring->next_to_clean = i;
190 	u64_stats_update_begin(&tx_ring->syncp);
191 	tx_ring->stats.bytes += total_bytes;
192 	tx_ring->stats.pkts += total_pkts;
193 	u64_stats_update_end(&tx_ring->syncp);
194 	tx_ring->q_vector->tx.total_bytes += total_bytes;
195 	tx_ring->q_vector->tx.total_pkts += total_pkts;
196 
197 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
198 				  total_bytes);
199 
200 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
201 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
202 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
203 		/* Make sure that anybody stopping the queue after this
204 		 * sees the new next_to_clean.
205 		 */
206 		smp_mb();
207 		if (__netif_subqueue_stopped(tx_ring->netdev,
208 					     tx_ring->q_index) &&
209 		   !test_bit(__ICE_DOWN, vsi->state)) {
210 			netif_wake_subqueue(tx_ring->netdev,
211 					    tx_ring->q_index);
212 			++tx_ring->tx_stats.restart_q;
213 		}
214 	}
215 
216 	return !!budget;
217 }
218 
219 /**
220  * ice_setup_tx_ring - Allocate the Tx descriptors
221  * @tx_ring: the Tx ring to set up
222  *
223  * Return 0 on success, negative on error
224  */
225 int ice_setup_tx_ring(struct ice_ring *tx_ring)
226 {
227 	struct device *dev = tx_ring->dev;
228 
229 	if (!dev)
230 		return -ENOMEM;
231 
232 	/* warn if we are about to overwrite the pointer */
233 	WARN_ON(tx_ring->tx_buf);
234 	tx_ring->tx_buf =
235 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
236 			     GFP_KERNEL);
237 	if (!tx_ring->tx_buf)
238 		return -ENOMEM;
239 
240 	/* round up to nearest page */
241 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
242 			      PAGE_SIZE);
243 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
244 					    GFP_KERNEL);
245 	if (!tx_ring->desc) {
246 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
247 			tx_ring->size);
248 		goto err;
249 	}
250 
251 	tx_ring->next_to_use = 0;
252 	tx_ring->next_to_clean = 0;
253 	tx_ring->tx_stats.prev_pkt = -1;
254 	return 0;
255 
256 err:
257 	devm_kfree(dev, tx_ring->tx_buf);
258 	tx_ring->tx_buf = NULL;
259 	return -ENOMEM;
260 }
261 
262 /**
263  * ice_clean_rx_ring - Free Rx buffers
264  * @rx_ring: ring to be cleaned
265  */
266 void ice_clean_rx_ring(struct ice_ring *rx_ring)
267 {
268 	struct device *dev = rx_ring->dev;
269 	u16 i;
270 
271 	/* ring already cleared, nothing to do */
272 	if (!rx_ring->rx_buf)
273 		return;
274 
275 	/* Free all the Rx ring sk_buffs */
276 	for (i = 0; i < rx_ring->count; i++) {
277 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
278 
279 		if (rx_buf->skb) {
280 			dev_kfree_skb(rx_buf->skb);
281 			rx_buf->skb = NULL;
282 		}
283 		if (!rx_buf->page)
284 			continue;
285 
286 		/* Invalidate cache lines that may have been written to by
287 		 * device so that we avoid corrupting memory.
288 		 */
289 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
290 					      rx_buf->page_offset,
291 					      ICE_RXBUF_2048, DMA_FROM_DEVICE);
292 
293 		/* free resources associated with mapping */
294 		dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE,
295 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
296 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
297 
298 		rx_buf->page = NULL;
299 		rx_buf->page_offset = 0;
300 	}
301 
302 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
303 
304 	/* Zero out the descriptor ring */
305 	memset(rx_ring->desc, 0, rx_ring->size);
306 
307 	rx_ring->next_to_alloc = 0;
308 	rx_ring->next_to_clean = 0;
309 	rx_ring->next_to_use = 0;
310 }
311 
312 /**
313  * ice_free_rx_ring - Free Rx resources
314  * @rx_ring: ring to clean the resources from
315  *
316  * Free all receive software resources
317  */
318 void ice_free_rx_ring(struct ice_ring *rx_ring)
319 {
320 	ice_clean_rx_ring(rx_ring);
321 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
322 	rx_ring->rx_buf = NULL;
323 
324 	if (rx_ring->desc) {
325 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
326 				   rx_ring->desc, rx_ring->dma);
327 		rx_ring->desc = NULL;
328 	}
329 }
330 
331 /**
332  * ice_setup_rx_ring - Allocate the Rx descriptors
333  * @rx_ring: the Rx ring to set up
334  *
335  * Return 0 on success, negative on error
336  */
337 int ice_setup_rx_ring(struct ice_ring *rx_ring)
338 {
339 	struct device *dev = rx_ring->dev;
340 
341 	if (!dev)
342 		return -ENOMEM;
343 
344 	/* warn if we are about to overwrite the pointer */
345 	WARN_ON(rx_ring->rx_buf);
346 	rx_ring->rx_buf =
347 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
348 			     GFP_KERNEL);
349 	if (!rx_ring->rx_buf)
350 		return -ENOMEM;
351 
352 	/* round up to nearest page */
353 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
354 			      PAGE_SIZE);
355 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
356 					    GFP_KERNEL);
357 	if (!rx_ring->desc) {
358 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
359 			rx_ring->size);
360 		goto err;
361 	}
362 
363 	rx_ring->next_to_use = 0;
364 	rx_ring->next_to_clean = 0;
365 	return 0;
366 
367 err:
368 	devm_kfree(dev, rx_ring->rx_buf);
369 	rx_ring->rx_buf = NULL;
370 	return -ENOMEM;
371 }
372 
373 /**
374  * ice_release_rx_desc - Store the new tail and head values
375  * @rx_ring: ring to bump
376  * @val: new head index
377  */
378 static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
379 {
380 	rx_ring->next_to_use = val;
381 
382 	/* update next to alloc since we have filled the ring */
383 	rx_ring->next_to_alloc = val;
384 
385 	/* Force memory writes to complete before letting h/w
386 	 * know there are new descriptors to fetch. (Only
387 	 * applicable for weak-ordered memory model archs,
388 	 * such as IA-64).
389 	 */
390 	wmb();
391 	writel(val, rx_ring->tail);
392 }
393 
394 /**
395  * ice_alloc_mapped_page - recycle or make a new page
396  * @rx_ring: ring to use
397  * @bi: rx_buf struct to modify
398  *
399  * Returns true if the page was successfully allocated or
400  * reused.
401  */
402 static bool
403 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
404 {
405 	struct page *page = bi->page;
406 	dma_addr_t dma;
407 
408 	/* since we are recycling buffers we should seldom need to alloc */
409 	if (likely(page)) {
410 		rx_ring->rx_stats.page_reuse_count++;
411 		return true;
412 	}
413 
414 	/* alloc new page for storage */
415 	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
416 	if (unlikely(!page)) {
417 		rx_ring->rx_stats.alloc_page_failed++;
418 		return false;
419 	}
420 
421 	/* map page for use */
422 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
423 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
424 
425 	/* if mapping failed free memory back to system since
426 	 * there isn't much point in holding memory we can't use
427 	 */
428 	if (dma_mapping_error(rx_ring->dev, dma)) {
429 		__free_pages(page, 0);
430 		rx_ring->rx_stats.alloc_page_failed++;
431 		return false;
432 	}
433 
434 	bi->dma = dma;
435 	bi->page = page;
436 	bi->page_offset = 0;
437 	page_ref_add(page, USHRT_MAX - 1);
438 	bi->pagecnt_bias = USHRT_MAX;
439 
440 	return true;
441 }
442 
443 /**
444  * ice_alloc_rx_bufs - Replace used receive buffers
445  * @rx_ring: ring to place buffers on
446  * @cleaned_count: number of buffers to replace
447  *
448  * Returns false if all allocations were successful, true if any fail
449  */
450 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
451 {
452 	union ice_32b_rx_flex_desc *rx_desc;
453 	u16 ntu = rx_ring->next_to_use;
454 	struct ice_rx_buf *bi;
455 
456 	/* do nothing if no valid netdev defined */
457 	if (!rx_ring->netdev || !cleaned_count)
458 		return false;
459 
460 	/* get the Rx descriptor and buffer based on next_to_use */
461 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
462 	bi = &rx_ring->rx_buf[ntu];
463 
464 	do {
465 		if (!ice_alloc_mapped_page(rx_ring, bi))
466 			goto no_bufs;
467 
468 		/* sync the buffer for use by the device */
469 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
470 						 bi->page_offset,
471 						 ICE_RXBUF_2048,
472 						 DMA_FROM_DEVICE);
473 
474 		/* Refresh the desc even if buffer_addrs didn't change
475 		 * because each write-back erases this info.
476 		 */
477 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
478 
479 		rx_desc++;
480 		bi++;
481 		ntu++;
482 		if (unlikely(ntu == rx_ring->count)) {
483 			rx_desc = ICE_RX_DESC(rx_ring, 0);
484 			bi = rx_ring->rx_buf;
485 			ntu = 0;
486 		}
487 
488 		/* clear the status bits for the next_to_use descriptor */
489 		rx_desc->wb.status_error0 = 0;
490 
491 		cleaned_count--;
492 	} while (cleaned_count);
493 
494 	if (rx_ring->next_to_use != ntu)
495 		ice_release_rx_desc(rx_ring, ntu);
496 
497 	return false;
498 
499 no_bufs:
500 	if (rx_ring->next_to_use != ntu)
501 		ice_release_rx_desc(rx_ring, ntu);
502 
503 	/* make sure to come back via polling to try again after
504 	 * allocation failure
505 	 */
506 	return true;
507 }
508 
509 /**
510  * ice_page_is_reserved - check if reuse is possible
511  * @page: page struct to check
512  */
513 static bool ice_page_is_reserved(struct page *page)
514 {
515 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
516 }
517 
518 /**
519  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
520  * @rx_buf: Rx buffer to adjust
521  * @size: Size of adjustment
522  *
523  * Update the offset within page so that Rx buf will be ready to be reused.
524  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
525  * so the second half of page assigned to Rx buffer will be used, otherwise
526  * the offset is moved by the @size bytes
527  */
528 static void
529 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
530 {
531 #if (PAGE_SIZE < 8192)
532 	/* flip page offset to other buffer */
533 	rx_buf->page_offset ^= size;
534 #else
535 	/* move offset up to the next cache line */
536 	rx_buf->page_offset += size;
537 #endif
538 }
539 
540 /**
541  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
542  * @rx_buf: buffer containing the page
543  *
544  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
545  * which will assign the current buffer to the buffer that next_to_alloc is
546  * pointing to; otherwise, the DMA mapping needs to be destroyed and
547  * page freed
548  */
549 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
550 {
551 #if (PAGE_SIZE >= 8192)
552 	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
553 #endif
554 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
555 	struct page *page = rx_buf->page;
556 
557 	/* avoid re-using remote pages */
558 	if (unlikely(ice_page_is_reserved(page)))
559 		return false;
560 
561 #if (PAGE_SIZE < 8192)
562 	/* if we are only owner of page we can reuse it */
563 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
564 		return false;
565 #else
566 	if (rx_buf->page_offset > last_offset)
567 		return false;
568 #endif /* PAGE_SIZE < 8192) */
569 
570 	/* If we have drained the page fragment pool we need to update
571 	 * the pagecnt_bias and page count so that we fully restock the
572 	 * number of references the driver holds.
573 	 */
574 	if (unlikely(pagecnt_bias == 1)) {
575 		page_ref_add(page, USHRT_MAX - 1);
576 		rx_buf->pagecnt_bias = USHRT_MAX;
577 	}
578 
579 	return true;
580 }
581 
582 /**
583  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
584  * @rx_buf: buffer containing page to add
585  * @skb: sk_buff to place the data into
586  * @size: packet length from rx_desc
587  *
588  * This function will add the data contained in rx_buf->page to the skb.
589  * It will just attach the page as a frag to the skb.
590  * The function will then update the page offset.
591  */
592 static void
593 ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb,
594 		unsigned int size)
595 {
596 #if (PAGE_SIZE >= 8192)
597 	unsigned int truesize = SKB_DATA_ALIGN(size);
598 #else
599 	unsigned int truesize = ICE_RXBUF_2048;
600 #endif
601 
602 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
603 			rx_buf->page_offset, size, truesize);
604 
605 	/* page is being used so we must update the page offset */
606 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
607 }
608 
609 /**
610  * ice_reuse_rx_page - page flip buffer and store it back on the ring
611  * @rx_ring: Rx descriptor ring to store buffers on
612  * @old_buf: donor buffer to have page reused
613  *
614  * Synchronizes page for reuse by the adapter
615  */
616 static void
617 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
618 {
619 	u16 nta = rx_ring->next_to_alloc;
620 	struct ice_rx_buf *new_buf;
621 
622 	new_buf = &rx_ring->rx_buf[nta];
623 
624 	/* update, and store next to alloc */
625 	nta++;
626 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
627 
628 	/* Transfer page from old buffer to new buffer.
629 	 * Move each member individually to avoid possible store
630 	 * forwarding stalls and unnecessary copy of skb.
631 	 */
632 	new_buf->dma = old_buf->dma;
633 	new_buf->page = old_buf->page;
634 	new_buf->page_offset = old_buf->page_offset;
635 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
636 }
637 
638 /**
639  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
640  * @rx_ring: Rx descriptor ring to transact packets on
641  * @skb: skb to be used
642  * @size: size of buffer to add to skb
643  *
644  * This function will pull an Rx buffer from the ring and synchronize it
645  * for use by the CPU.
646  */
647 static struct ice_rx_buf *
648 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
649 	       const unsigned int size)
650 {
651 	struct ice_rx_buf *rx_buf;
652 
653 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
654 	prefetchw(rx_buf->page);
655 	*skb = rx_buf->skb;
656 
657 	/* we are reusing so sync this buffer for CPU use */
658 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
659 				      rx_buf->page_offset, size,
660 				      DMA_FROM_DEVICE);
661 
662 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
663 	rx_buf->pagecnt_bias--;
664 
665 	return rx_buf;
666 }
667 
668 /**
669  * ice_construct_skb - Allocate skb and populate it
670  * @rx_ring: Rx descriptor ring to transact packets on
671  * @rx_buf: Rx buffer to pull data from
672  * @size: the length of the packet
673  *
674  * This function allocates an skb. It then populates it with the page
675  * data from the current receive descriptor, taking care to set up the
676  * skb correctly.
677  */
678 static struct sk_buff *
679 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
680 		  unsigned int size)
681 {
682 	void *va = page_address(rx_buf->page) + rx_buf->page_offset;
683 	unsigned int headlen;
684 	struct sk_buff *skb;
685 
686 	/* prefetch first cache line of first page */
687 	prefetch(va);
688 #if L1_CACHE_BYTES < 128
689 	prefetch((u8 *)va + L1_CACHE_BYTES);
690 #endif /* L1_CACHE_BYTES */
691 
692 	/* allocate a skb to store the frags */
693 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
694 			       GFP_ATOMIC | __GFP_NOWARN);
695 	if (unlikely(!skb))
696 		return NULL;
697 
698 	skb_record_rx_queue(skb, rx_ring->q_index);
699 	/* Determine available headroom for copy */
700 	headlen = size;
701 	if (headlen > ICE_RX_HDR_SIZE)
702 		headlen = eth_get_headlen(skb->dev, va, ICE_RX_HDR_SIZE);
703 
704 	/* align pull length to size of long to optimize memcpy performance */
705 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
706 
707 	/* if we exhaust the linear part then add what is left as a frag */
708 	size -= headlen;
709 	if (size) {
710 #if (PAGE_SIZE >= 8192)
711 		unsigned int truesize = SKB_DATA_ALIGN(size);
712 #else
713 		unsigned int truesize = ICE_RXBUF_2048;
714 #endif
715 		skb_add_rx_frag(skb, 0, rx_buf->page,
716 				rx_buf->page_offset + headlen, size, truesize);
717 		/* buffer is used by skb, update page_offset */
718 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
719 	} else {
720 		/* buffer is unused, reset bias back to rx_buf; data was copied
721 		 * onto skb's linear part so there's no need for adjusting
722 		 * page offset and we can reuse this buffer as-is
723 		 */
724 		rx_buf->pagecnt_bias++;
725 	}
726 
727 	return skb;
728 }
729 
730 /**
731  * ice_put_rx_buf - Clean up used buffer and either recycle or free
732  * @rx_ring: Rx descriptor ring to transact packets on
733  * @rx_buf: Rx buffer to pull data from
734  *
735  * This function will  clean up the contents of the rx_buf. It will
736  * either recycle the buffer or unmap it and free the associated resources.
737  */
738 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
739 {
740 		/* hand second half of page back to the ring */
741 	if (ice_can_reuse_rx_page(rx_buf)) {
742 		ice_reuse_rx_page(rx_ring, rx_buf);
743 		rx_ring->rx_stats.page_reuse_count++;
744 	} else {
745 		/* we are not reusing the buffer so unmap it */
746 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
747 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
748 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
749 	}
750 
751 	/* clear contents of buffer_info */
752 	rx_buf->page = NULL;
753 	rx_buf->skb = NULL;
754 }
755 
756 /**
757  * ice_cleanup_headers - Correct empty headers
758  * @skb: pointer to current skb being fixed
759  *
760  * Also address the case where we are pulling data in on pages only
761  * and as such no data is present in the skb header.
762  *
763  * In addition if skb is not at least 60 bytes we need to pad it so that
764  * it is large enough to qualify as a valid Ethernet frame.
765  *
766  * Returns true if an error was encountered and skb was freed.
767  */
768 static bool ice_cleanup_headers(struct sk_buff *skb)
769 {
770 	/* if eth_skb_pad returns an error the skb was freed */
771 	if (eth_skb_pad(skb))
772 		return true;
773 
774 	return false;
775 }
776 
777 /**
778  * ice_test_staterr - tests bits in Rx descriptor status and error fields
779  * @rx_desc: pointer to receive descriptor (in le64 format)
780  * @stat_err_bits: value to mask
781  *
782  * This function does some fast chicanery in order to return the
783  * value of the mask which is really only used for boolean tests.
784  * The status_error_len doesn't need to be shifted because it begins
785  * at offset zero.
786  */
787 static bool
788 ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits)
789 {
790 	return !!(rx_desc->wb.status_error0 &
791 		  cpu_to_le16(stat_err_bits));
792 }
793 
794 /**
795  * ice_is_non_eop - process handling of non-EOP buffers
796  * @rx_ring: Rx ring being processed
797  * @rx_desc: Rx descriptor for current buffer
798  * @skb: Current socket buffer containing buffer in progress
799  *
800  * This function updates next to clean. If the buffer is an EOP buffer
801  * this function exits returning false, otherwise it will place the
802  * sk_buff in the next buffer to be chained and return true indicating
803  * that this is in fact a non-EOP buffer.
804  */
805 static bool
806 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
807 	       struct sk_buff *skb)
808 {
809 	u32 ntc = rx_ring->next_to_clean + 1;
810 
811 	/* fetch, update, and store next to clean */
812 	ntc = (ntc < rx_ring->count) ? ntc : 0;
813 	rx_ring->next_to_clean = ntc;
814 
815 	prefetch(ICE_RX_DESC(rx_ring, ntc));
816 
817 	/* if we are the last buffer then there is nothing else to do */
818 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
819 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
820 		return false;
821 
822 	/* place skb in next buffer to be received */
823 	rx_ring->rx_buf[ntc].skb = skb;
824 	rx_ring->rx_stats.non_eop_descs++;
825 
826 	return true;
827 }
828 
829 /**
830  * ice_ptype_to_htype - get a hash type
831  * @ptype: the ptype value from the descriptor
832  *
833  * Returns a hash type to be used by skb_set_hash
834  */
835 static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
836 {
837 	return PKT_HASH_TYPE_NONE;
838 }
839 
840 /**
841  * ice_rx_hash - set the hash value in the skb
842  * @rx_ring: descriptor ring
843  * @rx_desc: specific descriptor
844  * @skb: pointer to current skb
845  * @rx_ptype: the ptype value from the descriptor
846  */
847 static void
848 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
849 	    struct sk_buff *skb, u8 rx_ptype)
850 {
851 	struct ice_32b_rx_flex_desc_nic *nic_mdid;
852 	u32 hash;
853 
854 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
855 		return;
856 
857 	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
858 		return;
859 
860 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
861 	hash = le32_to_cpu(nic_mdid->rss_hash);
862 	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
863 }
864 
865 /**
866  * ice_rx_csum - Indicate in skb if checksum is good
867  * @vsi: the VSI we care about
868  * @skb: skb currently being received and modified
869  * @rx_desc: the receive descriptor
870  * @ptype: the packet type decoded by hardware
871  *
872  * skb->protocol must be set before this function is called
873  */
874 static void
875 ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
876 	    union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
877 {
878 	struct ice_rx_ptype_decoded decoded;
879 	u32 rx_error, rx_status;
880 	bool ipv4, ipv6;
881 
882 	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
883 	rx_error = rx_status;
884 
885 	decoded = ice_decode_rx_desc_ptype(ptype);
886 
887 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
888 	skb->ip_summed = CHECKSUM_NONE;
889 	skb_checksum_none_assert(skb);
890 
891 	/* check if Rx checksum is enabled */
892 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
893 		return;
894 
895 	/* check if HW has decoded the packet and checksum */
896 	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
897 		return;
898 
899 	if (!(decoded.known && decoded.outer_ip))
900 		return;
901 
902 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
903 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
904 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
905 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
906 
907 	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
908 				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
909 		goto checksum_fail;
910 	else if (ipv6 && (rx_status &
911 		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
912 		goto checksum_fail;
913 
914 	/* check for L4 errors and handle packets that were not able to be
915 	 * checksummed due to arrival speed
916 	 */
917 	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
918 		goto checksum_fail;
919 
920 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
921 	switch (decoded.inner_prot) {
922 	case ICE_RX_PTYPE_INNER_PROT_TCP:
923 	case ICE_RX_PTYPE_INNER_PROT_UDP:
924 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
925 		skb->ip_summed = CHECKSUM_UNNECESSARY;
926 	default:
927 		break;
928 	}
929 	return;
930 
931 checksum_fail:
932 	vsi->back->hw_csum_rx_error++;
933 }
934 
935 /**
936  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
937  * @rx_ring: Rx descriptor ring packet is being transacted on
938  * @rx_desc: pointer to the EOP Rx descriptor
939  * @skb: pointer to current skb being populated
940  * @ptype: the packet type decoded by hardware
941  *
942  * This function checks the ring, descriptor, and packet information in
943  * order to populate the hash, checksum, VLAN, protocol, and
944  * other fields within the skb.
945  */
946 static void
947 ice_process_skb_fields(struct ice_ring *rx_ring,
948 		       union ice_32b_rx_flex_desc *rx_desc,
949 		       struct sk_buff *skb, u8 ptype)
950 {
951 	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
952 
953 	/* modifies the skb - consumes the enet header */
954 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
955 
956 	ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
957 }
958 
959 /**
960  * ice_receive_skb - Send a completed packet up the stack
961  * @rx_ring: Rx ring in play
962  * @skb: packet to send up
963  * @vlan_tag: VLAN tag for packet
964  *
965  * This function sends the completed packet (via. skb) up the stack using
966  * gro receive functions (with/without VLAN tag)
967  */
968 static void
969 ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
970 {
971 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
972 	    (vlan_tag & VLAN_VID_MASK))
973 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
974 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
975 }
976 
977 /**
978  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
979  * @rx_ring: Rx descriptor ring to transact packets on
980  * @budget: Total limit on number of packets to process
981  *
982  * This function provides a "bounce buffer" approach to Rx interrupt
983  * processing. The advantage to this is that on systems that have
984  * expensive overhead for IOMMU access this provides a means of avoiding
985  * it by maintaining the mapping of the page to the system.
986  *
987  * Returns amount of work completed
988  */
989 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
990 {
991 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
992 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
993 	bool failure = false;
994 
995 	/* start the loop to process Rx packets bounded by 'budget' */
996 	while (likely(total_rx_pkts < (unsigned int)budget)) {
997 		union ice_32b_rx_flex_desc *rx_desc;
998 		struct ice_rx_buf *rx_buf;
999 		struct sk_buff *skb;
1000 		unsigned int size;
1001 		u16 stat_err_bits;
1002 		u16 vlan_tag = 0;
1003 		u8 rx_ptype;
1004 
1005 		/* return some buffers to hardware, one at a time is too slow */
1006 		if (cleaned_count >= ICE_RX_BUF_WRITE) {
1007 			failure = failure ||
1008 				  ice_alloc_rx_bufs(rx_ring, cleaned_count);
1009 			cleaned_count = 0;
1010 		}
1011 
1012 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1013 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1014 
1015 		/* status_error_len will always be zero for unused descriptors
1016 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1017 		 * which is always zero because packet split isn't used, if the
1018 		 * hardware wrote DD then it will be non-zero
1019 		 */
1020 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1021 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1022 			break;
1023 
1024 		/* This memory barrier is needed to keep us from reading
1025 		 * any other fields out of the rx_desc until we know the
1026 		 * DD bit is set.
1027 		 */
1028 		dma_rmb();
1029 
1030 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1031 			ICE_RX_FLX_DESC_PKT_LEN_M;
1032 
1033 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1034 		/* allocate (if needed) and populate skb */
1035 		if (skb)
1036 			ice_add_rx_frag(rx_buf, skb, size);
1037 		else
1038 			skb = ice_construct_skb(rx_ring, rx_buf, size);
1039 
1040 		/* exit if we failed to retrieve a buffer */
1041 		if (!skb) {
1042 			rx_ring->rx_stats.alloc_buf_failed++;
1043 			rx_buf->pagecnt_bias++;
1044 			break;
1045 		}
1046 
1047 		ice_put_rx_buf(rx_ring, rx_buf);
1048 		cleaned_count++;
1049 
1050 		/* skip if it is NOP desc */
1051 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1052 			continue;
1053 
1054 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1055 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1056 			dev_kfree_skb_any(skb);
1057 			continue;
1058 		}
1059 
1060 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1061 			ICE_RX_FLEX_DESC_PTYPE_M;
1062 
1063 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1064 		if (ice_test_staterr(rx_desc, stat_err_bits))
1065 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1066 
1067 		/* correct empty headers and pad skb if needed (to make valid
1068 		 * ethernet frame
1069 		 */
1070 		if (ice_cleanup_headers(skb)) {
1071 			skb = NULL;
1072 			continue;
1073 		}
1074 
1075 		/* probably a little skewed due to removing CRC */
1076 		total_rx_bytes += skb->len;
1077 
1078 		/* populate checksum, VLAN, and protocol */
1079 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1080 
1081 		/* send completed skb up the stack */
1082 		ice_receive_skb(rx_ring, skb, vlan_tag);
1083 
1084 		/* update budget accounting */
1085 		total_rx_pkts++;
1086 	}
1087 
1088 	/* update queue and vector specific stats */
1089 	u64_stats_update_begin(&rx_ring->syncp);
1090 	rx_ring->stats.pkts += total_rx_pkts;
1091 	rx_ring->stats.bytes += total_rx_bytes;
1092 	u64_stats_update_end(&rx_ring->syncp);
1093 	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1094 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1095 
1096 	/* guarantee a trip back through this routine if there was a failure */
1097 	return failure ? budget : (int)total_rx_pkts;
1098 }
1099 
1100 /**
1101  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1102  * @port_info: port_info structure containing the current link speed
1103  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1104  * @itr: ITR value to update
1105  *
1106  * Calculate how big of an increment should be applied to the ITR value passed
1107  * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1108  * link speed.
1109  *
1110  * The following is a calculation derived from:
1111  *  wmem_default / (size + overhead) = desired_pkts_per_int
1112  *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1113  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1114  *
1115  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1116  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1117  * formula down to:
1118  *
1119  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1120  * ITR = -------------------------------------------- * --------------
1121  *			     rate			pkt_size + 640
1122  */
1123 static unsigned int
1124 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1125 				 unsigned int avg_pkt_size,
1126 				 unsigned int itr)
1127 {
1128 	switch (port_info->phy.link_info.link_speed) {
1129 	case ICE_AQ_LINK_SPEED_100GB:
1130 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1131 				    avg_pkt_size + 640);
1132 		break;
1133 	case ICE_AQ_LINK_SPEED_50GB:
1134 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1135 				    avg_pkt_size + 640);
1136 		break;
1137 	case ICE_AQ_LINK_SPEED_40GB:
1138 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1139 				    avg_pkt_size + 640);
1140 		break;
1141 	case ICE_AQ_LINK_SPEED_25GB:
1142 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1143 				    avg_pkt_size + 640);
1144 		break;
1145 	case ICE_AQ_LINK_SPEED_20GB:
1146 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1147 				    avg_pkt_size + 640);
1148 		break;
1149 	case ICE_AQ_LINK_SPEED_10GB:
1150 		/* fall through */
1151 	default:
1152 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1153 				    avg_pkt_size + 640);
1154 		break;
1155 	}
1156 
1157 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1158 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1159 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1160 	}
1161 
1162 	return itr;
1163 }
1164 
1165 /**
1166  * ice_update_itr - update the adaptive ITR value based on statistics
1167  * @q_vector: structure containing interrupt and ring information
1168  * @rc: structure containing ring performance data
1169  *
1170  * Stores a new ITR value based on packets and byte
1171  * counts during the last interrupt.  The advantage of per interrupt
1172  * computation is faster updates and more accurate ITR for the current
1173  * traffic pattern.  Constants in this function were computed
1174  * based on theoretical maximum wire speed and thresholds were set based
1175  * on testing data as well as attempting to minimize response time
1176  * while increasing bulk throughput.
1177  */
1178 static void
1179 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1180 {
1181 	unsigned long next_update = jiffies;
1182 	unsigned int packets, bytes, itr;
1183 	bool container_is_rx;
1184 
1185 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1186 		return;
1187 
1188 	/* If itr_countdown is set it means we programmed an ITR within
1189 	 * the last 4 interrupt cycles. This has a side effect of us
1190 	 * potentially firing an early interrupt. In order to work around
1191 	 * this we need to throw out any data received for a few
1192 	 * interrupts following the update.
1193 	 */
1194 	if (q_vector->itr_countdown) {
1195 		itr = rc->target_itr;
1196 		goto clear_counts;
1197 	}
1198 
1199 	container_is_rx = (&q_vector->rx == rc);
1200 	/* For Rx we want to push the delay up and default to low latency.
1201 	 * for Tx we want to pull the delay down and default to high latency.
1202 	 */
1203 	itr = container_is_rx ?
1204 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1205 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1206 
1207 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1208 	 * that either packets are coming in so slow there hasn't been
1209 	 * any work, or that there is so much work that NAPI is dealing
1210 	 * with interrupt moderation and we don't need to do anything.
1211 	 */
1212 	if (time_after(next_update, rc->next_update))
1213 		goto clear_counts;
1214 
1215 	packets = rc->total_pkts;
1216 	bytes = rc->total_bytes;
1217 
1218 	if (container_is_rx) {
1219 		/* If Rx there are 1 to 4 packets and bytes are less than
1220 		 * 9000 assume insufficient data to use bulk rate limiting
1221 		 * approach unless Tx is already in bulk rate limiting. We
1222 		 * are likely latency driven.
1223 		 */
1224 		if (packets && packets < 4 && bytes < 9000 &&
1225 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1226 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1227 			goto adjust_by_size_and_speed;
1228 		}
1229 	} else if (packets < 4) {
1230 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1231 		 * bulk mode and we are receiving 4 or fewer packets just
1232 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1233 		 * that the Rx can relax.
1234 		 */
1235 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1236 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1237 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1238 			goto clear_counts;
1239 	} else if (packets > 32) {
1240 		/* If we have processed over 32 packets in a single interrupt
1241 		 * for Tx assume we need to switch over to "bulk" mode.
1242 		 */
1243 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1244 	}
1245 
1246 	/* We have no packets to actually measure against. This means
1247 	 * either one of the other queues on this vector is active or
1248 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1249 	 *
1250 	 * Between 4 and 56 we can assume that our current interrupt delay
1251 	 * is only slightly too low. As such we should increase it by a small
1252 	 * fixed amount.
1253 	 */
1254 	if (packets < 56) {
1255 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1256 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1257 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1258 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1259 		}
1260 		goto clear_counts;
1261 	}
1262 
1263 	if (packets <= 256) {
1264 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1265 		itr &= ICE_ITR_MASK;
1266 
1267 		/* Between 56 and 112 is our "goldilocks" zone where we are
1268 		 * working out "just right". Just report that our current
1269 		 * ITR is good for us.
1270 		 */
1271 		if (packets <= 112)
1272 			goto clear_counts;
1273 
1274 		/* If packet count is 128 or greater we are likely looking
1275 		 * at a slight overrun of the delay we want. Try halving
1276 		 * our delay to see if that will cut the number of packets
1277 		 * in half per interrupt.
1278 		 */
1279 		itr >>= 1;
1280 		itr &= ICE_ITR_MASK;
1281 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1282 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1283 
1284 		goto clear_counts;
1285 	}
1286 
1287 	/* The paths below assume we are dealing with a bulk ITR since
1288 	 * number of packets is greater than 256. We are just going to have
1289 	 * to compute a value and try to bring the count under control,
1290 	 * though for smaller packet sizes there isn't much we can do as
1291 	 * NAPI polling will likely be kicking in sooner rather than later.
1292 	 */
1293 	itr = ICE_ITR_ADAPTIVE_BULK;
1294 
1295 adjust_by_size_and_speed:
1296 
1297 	/* based on checks above packets cannot be 0 so division is safe */
1298 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1299 					       bytes / packets, itr);
1300 
1301 clear_counts:
1302 	/* write back value */
1303 	rc->target_itr = itr;
1304 
1305 	/* next update should occur within next jiffy */
1306 	rc->next_update = next_update + 1;
1307 
1308 	rc->total_bytes = 0;
1309 	rc->total_pkts = 0;
1310 }
1311 
1312 /**
1313  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1314  * @itr_idx: interrupt throttling index
1315  * @itr: interrupt throttling value in usecs
1316  */
1317 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1318 {
1319 	/* The ITR value is reported in microseconds, and the register value is
1320 	 * recorded in 2 microsecond units. For this reason we only need to
1321 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1322 	 * granularity as a shift instead of division. The mask makes sure the
1323 	 * ITR value is never odd so we don't accidentally write into the field
1324 	 * prior to the ITR field.
1325 	 */
1326 	itr &= ICE_ITR_MASK;
1327 
1328 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1329 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1330 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1331 }
1332 
1333 /* The act of updating the ITR will cause it to immediately trigger. In order
1334  * to prevent this from throwing off adaptive update statistics we defer the
1335  * update so that it can only happen so often. So after either Tx or Rx are
1336  * updated we make the adaptive scheme wait until either the ITR completely
1337  * expires via the next_update expiration or we have been through at least
1338  * 3 interrupts.
1339  */
1340 #define ITR_COUNTDOWN_START 3
1341 
1342 /**
1343  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1344  * @vsi: the VSI associated with the q_vector
1345  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1346  */
1347 static void
1348 ice_update_ena_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
1349 {
1350 	struct ice_ring_container *tx = &q_vector->tx;
1351 	struct ice_ring_container *rx = &q_vector->rx;
1352 	u32 itr_val;
1353 
1354 	/* This will do nothing if dynamic updates are not enabled */
1355 	ice_update_itr(q_vector, tx);
1356 	ice_update_itr(q_vector, rx);
1357 
1358 	/* This block of logic allows us to get away with only updating
1359 	 * one ITR value with each interrupt. The idea is to perform a
1360 	 * pseudo-lazy update with the following criteria.
1361 	 *
1362 	 * 1. Rx is given higher priority than Tx if both are in same state
1363 	 * 2. If we must reduce an ITR that is given highest priority.
1364 	 * 3. We then give priority to increasing ITR based on amount.
1365 	 */
1366 	if (rx->target_itr < rx->current_itr) {
1367 		/* Rx ITR needs to be reduced, this is highest priority */
1368 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1369 		rx->current_itr = rx->target_itr;
1370 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1371 	} else if ((tx->target_itr < tx->current_itr) ||
1372 		   ((rx->target_itr - rx->current_itr) <
1373 		    (tx->target_itr - tx->current_itr))) {
1374 		/* Tx ITR needs to be reduced, this is second priority
1375 		 * Tx ITR needs to be increased more than Rx, fourth priority
1376 		 */
1377 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1378 		tx->current_itr = tx->target_itr;
1379 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1380 	} else if (rx->current_itr != rx->target_itr) {
1381 		/* Rx ITR needs to be increased, third priority */
1382 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1383 		rx->current_itr = rx->target_itr;
1384 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1385 	} else {
1386 		/* Still have to re-enable the interrupts */
1387 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1388 		if (q_vector->itr_countdown)
1389 			q_vector->itr_countdown--;
1390 	}
1391 
1392 	if (!test_bit(__ICE_DOWN, vsi->state))
1393 		wr32(&vsi->back->hw,
1394 		     GLINT_DYN_CTL(q_vector->reg_idx),
1395 		     itr_val);
1396 }
1397 
1398 /**
1399  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1400  * @napi: napi struct with our devices info in it
1401  * @budget: amount of work driver is allowed to do this pass, in packets
1402  *
1403  * This function will clean all queues associated with a q_vector.
1404  *
1405  * Returns the amount of work done
1406  */
1407 int ice_napi_poll(struct napi_struct *napi, int budget)
1408 {
1409 	struct ice_q_vector *q_vector =
1410 				container_of(napi, struct ice_q_vector, napi);
1411 	struct ice_vsi *vsi = q_vector->vsi;
1412 	struct ice_pf *pf = vsi->back;
1413 	bool clean_complete = true;
1414 	int budget_per_ring = 0;
1415 	struct ice_ring *ring;
1416 	int work_done = 0;
1417 
1418 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1419 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1420 	 */
1421 	ice_for_each_ring(ring, q_vector->tx)
1422 		if (!ice_clean_tx_irq(vsi, ring, budget))
1423 			clean_complete = false;
1424 
1425 	/* Handle case where we are called by netpoll with a budget of 0 */
1426 	if (budget <= 0)
1427 		return budget;
1428 
1429 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1430 	 * allow the budget to go below 1 because that would exit polling early.
1431 	 */
1432 	if (q_vector->num_ring_rx)
1433 		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1434 
1435 	ice_for_each_ring(ring, q_vector->rx) {
1436 		int cleaned;
1437 
1438 		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
1439 		work_done += cleaned;
1440 		/* if we clean as many as budgeted, we must not be done */
1441 		if (cleaned >= budget_per_ring)
1442 			clean_complete = false;
1443 	}
1444 
1445 	/* If work not completed, return budget and polling will return */
1446 	if (!clean_complete)
1447 		return budget;
1448 
1449 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1450 	 * poll us due to busy-polling
1451 	 */
1452 	if (likely(napi_complete_done(napi, work_done)))
1453 		if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1454 			ice_update_ena_itr(vsi, q_vector);
1455 
1456 	return min_t(int, work_done, budget - 1);
1457 }
1458 
1459 /* helper function for building cmd/type/offset */
1460 static __le64
1461 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1462 {
1463 	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1464 			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
1465 			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
1466 			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1467 			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
1468 }
1469 
1470 /**
1471  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1472  * @tx_ring: the ring to be checked
1473  * @size: the size buffer we want to assure is available
1474  *
1475  * Returns -EBUSY if a stop is needed, else 0
1476  */
1477 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1478 {
1479 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1480 	/* Memory barrier before checking head and tail */
1481 	smp_mb();
1482 
1483 	/* Check again in a case another CPU has just made room available. */
1484 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1485 		return -EBUSY;
1486 
1487 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1488 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1489 	++tx_ring->tx_stats.restart_q;
1490 	return 0;
1491 }
1492 
1493 /**
1494  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1495  * @tx_ring: the ring to be checked
1496  * @size:    the size buffer we want to assure is available
1497  *
1498  * Returns 0 if stop is not needed
1499  */
1500 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1501 {
1502 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1503 		return 0;
1504 
1505 	return __ice_maybe_stop_tx(tx_ring, size);
1506 }
1507 
1508 /**
1509  * ice_tx_map - Build the Tx descriptor
1510  * @tx_ring: ring to send buffer on
1511  * @first: first buffer info buffer to use
1512  * @off: pointer to struct that holds offload parameters
1513  *
1514  * This function loops over the skb data pointed to by *first
1515  * and gets a physical address for each memory location and programs
1516  * it and the length into the transmit descriptor.
1517  */
1518 static void
1519 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1520 	   struct ice_tx_offload_params *off)
1521 {
1522 	u64 td_offset, td_tag, td_cmd;
1523 	u16 i = tx_ring->next_to_use;
1524 	struct skb_frag_struct *frag;
1525 	unsigned int data_len, size;
1526 	struct ice_tx_desc *tx_desc;
1527 	struct ice_tx_buf *tx_buf;
1528 	struct sk_buff *skb;
1529 	dma_addr_t dma;
1530 
1531 	td_tag = off->td_l2tag1;
1532 	td_cmd = off->td_cmd;
1533 	td_offset = off->td_offset;
1534 	skb = first->skb;
1535 
1536 	data_len = skb->data_len;
1537 	size = skb_headlen(skb);
1538 
1539 	tx_desc = ICE_TX_DESC(tx_ring, i);
1540 
1541 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1542 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1543 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1544 			  ICE_TX_FLAGS_VLAN_S;
1545 	}
1546 
1547 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1548 
1549 	tx_buf = first;
1550 
1551 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1552 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1553 
1554 		if (dma_mapping_error(tx_ring->dev, dma))
1555 			goto dma_error;
1556 
1557 		/* record length, and DMA address */
1558 		dma_unmap_len_set(tx_buf, len, size);
1559 		dma_unmap_addr_set(tx_buf, dma, dma);
1560 
1561 		/* align size to end of page */
1562 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1563 		tx_desc->buf_addr = cpu_to_le64(dma);
1564 
1565 		/* account for data chunks larger than the hardware
1566 		 * can handle
1567 		 */
1568 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1569 			tx_desc->cmd_type_offset_bsz =
1570 				build_ctob(td_cmd, td_offset, max_data, td_tag);
1571 
1572 			tx_desc++;
1573 			i++;
1574 
1575 			if (i == tx_ring->count) {
1576 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1577 				i = 0;
1578 			}
1579 
1580 			dma += max_data;
1581 			size -= max_data;
1582 
1583 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1584 			tx_desc->buf_addr = cpu_to_le64(dma);
1585 		}
1586 
1587 		if (likely(!data_len))
1588 			break;
1589 
1590 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1591 							  size, td_tag);
1592 
1593 		tx_desc++;
1594 		i++;
1595 
1596 		if (i == tx_ring->count) {
1597 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1598 			i = 0;
1599 		}
1600 
1601 		size = skb_frag_size(frag);
1602 		data_len -= size;
1603 
1604 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1605 				       DMA_TO_DEVICE);
1606 
1607 		tx_buf = &tx_ring->tx_buf[i];
1608 	}
1609 
1610 	/* record bytecount for BQL */
1611 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1612 
1613 	/* record SW timestamp if HW timestamp is not available */
1614 	skb_tx_timestamp(first->skb);
1615 
1616 	i++;
1617 	if (i == tx_ring->count)
1618 		i = 0;
1619 
1620 	/* write last descriptor with RS and EOP bits */
1621 	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1622 	tx_desc->cmd_type_offset_bsz =
1623 			build_ctob(td_cmd, td_offset, size, td_tag);
1624 
1625 	/* Force memory writes to complete before letting h/w know there
1626 	 * are new descriptors to fetch.
1627 	 *
1628 	 * We also use this memory barrier to make certain all of the
1629 	 * status bits have been updated before next_to_watch is written.
1630 	 */
1631 	wmb();
1632 
1633 	/* set next_to_watch value indicating a packet is present */
1634 	first->next_to_watch = tx_desc;
1635 
1636 	tx_ring->next_to_use = i;
1637 
1638 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1639 
1640 	/* notify HW of packet */
1641 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1642 		writel(i, tx_ring->tail);
1643 	}
1644 
1645 	return;
1646 
1647 dma_error:
1648 	/* clear DMA mappings for failed tx_buf map */
1649 	for (;;) {
1650 		tx_buf = &tx_ring->tx_buf[i];
1651 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1652 		if (tx_buf == first)
1653 			break;
1654 		if (i == 0)
1655 			i = tx_ring->count;
1656 		i--;
1657 	}
1658 
1659 	tx_ring->next_to_use = i;
1660 }
1661 
1662 /**
1663  * ice_tx_csum - Enable Tx checksum offloads
1664  * @first: pointer to the first descriptor
1665  * @off: pointer to struct that holds offload parameters
1666  *
1667  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1668  */
1669 static
1670 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1671 {
1672 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1673 	struct sk_buff *skb = first->skb;
1674 	union {
1675 		struct iphdr *v4;
1676 		struct ipv6hdr *v6;
1677 		unsigned char *hdr;
1678 	} ip;
1679 	union {
1680 		struct tcphdr *tcp;
1681 		unsigned char *hdr;
1682 	} l4;
1683 	__be16 frag_off, protocol;
1684 	unsigned char *exthdr;
1685 	u32 offset, cmd = 0;
1686 	u8 l4_proto = 0;
1687 
1688 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1689 		return 0;
1690 
1691 	ip.hdr = skb_network_header(skb);
1692 	l4.hdr = skb_transport_header(skb);
1693 
1694 	/* compute outer L2 header size */
1695 	l2_len = ip.hdr - skb->data;
1696 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1697 
1698 	if (skb->encapsulation)
1699 		return -1;
1700 
1701 	/* Enable IP checksum offloads */
1702 	protocol = vlan_get_protocol(skb);
1703 	if (protocol == htons(ETH_P_IP)) {
1704 		l4_proto = ip.v4->protocol;
1705 		/* the stack computes the IP header already, the only time we
1706 		 * need the hardware to recompute it is in the case of TSO.
1707 		 */
1708 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1709 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1710 		else
1711 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1712 
1713 	} else if (protocol == htons(ETH_P_IPV6)) {
1714 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1715 		exthdr = ip.hdr + sizeof(*ip.v6);
1716 		l4_proto = ip.v6->nexthdr;
1717 		if (l4.hdr != exthdr)
1718 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1719 					 &frag_off);
1720 	} else {
1721 		return -1;
1722 	}
1723 
1724 	/* compute inner L3 header size */
1725 	l3_len = l4.hdr - ip.hdr;
1726 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1727 
1728 	/* Enable L4 checksum offloads */
1729 	switch (l4_proto) {
1730 	case IPPROTO_TCP:
1731 		/* enable checksum offloads */
1732 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1733 		l4_len = l4.tcp->doff;
1734 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1735 		break;
1736 	case IPPROTO_UDP:
1737 		/* enable UDP checksum offload */
1738 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1739 		l4_len = (sizeof(struct udphdr) >> 2);
1740 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1741 		break;
1742 	case IPPROTO_SCTP:
1743 		/* enable SCTP checksum offload */
1744 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1745 		l4_len = sizeof(struct sctphdr) >> 2;
1746 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1747 		break;
1748 
1749 	default:
1750 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1751 			return -1;
1752 		skb_checksum_help(skb);
1753 		return 0;
1754 	}
1755 
1756 	off->td_cmd |= cmd;
1757 	off->td_offset |= offset;
1758 	return 1;
1759 }
1760 
1761 /**
1762  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1763  * @tx_ring: ring to send buffer on
1764  * @first: pointer to struct ice_tx_buf
1765  *
1766  * Checks the skb and set up correspondingly several generic transmit flags
1767  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1768  *
1769  * Returns error code indicate the frame should be dropped upon error and the
1770  * otherwise returns 0 to indicate the flags has been set properly.
1771  */
1772 static int
1773 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1774 {
1775 	struct sk_buff *skb = first->skb;
1776 	__be16 protocol = skb->protocol;
1777 
1778 	if (protocol == htons(ETH_P_8021Q) &&
1779 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1780 		/* when HW VLAN acceleration is turned off by the user the
1781 		 * stack sets the protocol to 8021q so that the driver
1782 		 * can take any steps required to support the SW only
1783 		 * VLAN handling. In our case the driver doesn't need
1784 		 * to take any further steps so just set the protocol
1785 		 * to the encapsulated ethertype.
1786 		 */
1787 		skb->protocol = vlan_get_protocol(skb);
1788 		return 0;
1789 	}
1790 
1791 	/* if we have a HW VLAN tag being added, default to the HW one */
1792 	if (skb_vlan_tag_present(skb)) {
1793 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1794 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1795 	} else if (protocol == htons(ETH_P_8021Q)) {
1796 		struct vlan_hdr *vhdr, _vhdr;
1797 
1798 		/* for SW VLAN, check the next protocol and store the tag */
1799 		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1800 							     sizeof(_vhdr),
1801 							     &_vhdr);
1802 		if (!vhdr)
1803 			return -EINVAL;
1804 
1805 		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1806 				   ICE_TX_FLAGS_VLAN_S;
1807 		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1808 	}
1809 
1810 	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1811 }
1812 
1813 /**
1814  * ice_tso - computes mss and TSO length to prepare for TSO
1815  * @first: pointer to struct ice_tx_buf
1816  * @off: pointer to struct that holds offload parameters
1817  *
1818  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1819  */
1820 static
1821 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1822 {
1823 	struct sk_buff *skb = first->skb;
1824 	union {
1825 		struct iphdr *v4;
1826 		struct ipv6hdr *v6;
1827 		unsigned char *hdr;
1828 	} ip;
1829 	union {
1830 		struct tcphdr *tcp;
1831 		unsigned char *hdr;
1832 	} l4;
1833 	u64 cd_mss, cd_tso_len;
1834 	u32 paylen, l4_start;
1835 	int err;
1836 
1837 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1838 		return 0;
1839 
1840 	if (!skb_is_gso(skb))
1841 		return 0;
1842 
1843 	err = skb_cow_head(skb, 0);
1844 	if (err < 0)
1845 		return err;
1846 
1847 	/* cppcheck-suppress unreadVariable */
1848 	ip.hdr = skb_network_header(skb);
1849 	l4.hdr = skb_transport_header(skb);
1850 
1851 	/* initialize outer IP header fields */
1852 	if (ip.v4->version == 4) {
1853 		ip.v4->tot_len = 0;
1854 		ip.v4->check = 0;
1855 	} else {
1856 		ip.v6->payload_len = 0;
1857 	}
1858 
1859 	/* determine offset of transport header */
1860 	l4_start = l4.hdr - skb->data;
1861 
1862 	/* remove payload length from checksum */
1863 	paylen = skb->len - l4_start;
1864 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1865 
1866 	/* compute length of segmentation header */
1867 	off->header_len = (l4.tcp->doff * 4) + l4_start;
1868 
1869 	/* update gso_segs and bytecount */
1870 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1871 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1872 
1873 	cd_tso_len = skb->len - off->header_len;
1874 	cd_mss = skb_shinfo(skb)->gso_size;
1875 
1876 	/* record cdesc_qw1 with TSO parameters */
1877 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1878 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1879 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1880 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1881 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1882 	return 1;
1883 }
1884 
1885 /**
1886  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1887  * @size: transmit request size in bytes
1888  *
1889  * Due to hardware alignment restrictions (4K alignment), we need to
1890  * assume that we can have no more than 12K of data per descriptor, even
1891  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1892  * Thus, we need to divide by 12K. But division is slow! Instead,
1893  * we decompose the operation into shifts and one relatively cheap
1894  * multiply operation.
1895  *
1896  * To divide by 12K, we first divide by 4K, then divide by 3:
1897  *     To divide by 4K, shift right by 12 bits
1898  *     To divide by 3, multiply by 85, then divide by 256
1899  *     (Divide by 256 is done by shifting right by 8 bits)
1900  * Finally, we add one to round up. Because 256 isn't an exact multiple of
1901  * 3, we'll underestimate near each multiple of 12K. This is actually more
1902  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1903  * segment. For our purposes this is accurate out to 1M which is orders of
1904  * magnitude greater than our largest possible GSO size.
1905  *
1906  * This would then be implemented as:
1907  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1908  *
1909  * Since multiplication and division are commutative, we can reorder
1910  * operations into:
1911  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1912  */
1913 static unsigned int ice_txd_use_count(unsigned int size)
1914 {
1915 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1916 }
1917 
1918 /**
1919  * ice_xmit_desc_count - calculate number of Tx descriptors needed
1920  * @skb: send buffer
1921  *
1922  * Returns number of data descriptors needed for this skb.
1923  */
1924 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1925 {
1926 	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1927 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1928 	unsigned int count = 0, size = skb_headlen(skb);
1929 
1930 	for (;;) {
1931 		count += ice_txd_use_count(size);
1932 
1933 		if (!nr_frags--)
1934 			break;
1935 
1936 		size = skb_frag_size(frag++);
1937 	}
1938 
1939 	return count;
1940 }
1941 
1942 /**
1943  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
1944  * @skb: send buffer
1945  *
1946  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
1947  * and so we need to figure out the cases where we need to linearize the skb.
1948  *
1949  * For TSO we need to count the TSO header and segment payload separately.
1950  * As such we need to check cases where we have 7 fragments or more as we
1951  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1952  * the segment payload in the first descriptor, and another 7 for the
1953  * fragments.
1954  */
1955 static bool __ice_chk_linearize(struct sk_buff *skb)
1956 {
1957 	const struct skb_frag_struct *frag, *stale;
1958 	int nr_frags, sum;
1959 
1960 	/* no need to check if number of frags is less than 7 */
1961 	nr_frags = skb_shinfo(skb)->nr_frags;
1962 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
1963 		return false;
1964 
1965 	/* We need to walk through the list and validate that each group
1966 	 * of 6 fragments totals at least gso_size.
1967 	 */
1968 	nr_frags -= ICE_MAX_BUF_TXD - 2;
1969 	frag = &skb_shinfo(skb)->frags[0];
1970 
1971 	/* Initialize size to the negative value of gso_size minus 1. We
1972 	 * use this as the worst case scenerio in which the frag ahead
1973 	 * of us only provides one byte which is why we are limited to 6
1974 	 * descriptors for a single transmit as the header and previous
1975 	 * fragment are already consuming 2 descriptors.
1976 	 */
1977 	sum = 1 - skb_shinfo(skb)->gso_size;
1978 
1979 	/* Add size of frags 0 through 4 to create our initial sum */
1980 	sum += skb_frag_size(frag++);
1981 	sum += skb_frag_size(frag++);
1982 	sum += skb_frag_size(frag++);
1983 	sum += skb_frag_size(frag++);
1984 	sum += skb_frag_size(frag++);
1985 
1986 	/* Walk through fragments adding latest fragment, testing it, and
1987 	 * then removing stale fragments from the sum.
1988 	 */
1989 	stale = &skb_shinfo(skb)->frags[0];
1990 	for (;;) {
1991 		sum += skb_frag_size(frag++);
1992 
1993 		/* if sum is negative we failed to make sufficient progress */
1994 		if (sum < 0)
1995 			return true;
1996 
1997 		if (!nr_frags--)
1998 			break;
1999 
2000 		sum -= skb_frag_size(stale++);
2001 	}
2002 
2003 	return false;
2004 }
2005 
2006 /**
2007  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2008  * @skb:      send buffer
2009  * @count:    number of buffers used
2010  *
2011  * Note: Our HW can't scatter-gather more than 8 fragments to build
2012  * a packet on the wire and so we need to figure out the cases where we
2013  * need to linearize the skb.
2014  */
2015 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2016 {
2017 	/* Both TSO and single send will work if count is less than 8 */
2018 	if (likely(count < ICE_MAX_BUF_TXD))
2019 		return false;
2020 
2021 	if (skb_is_gso(skb))
2022 		return __ice_chk_linearize(skb);
2023 
2024 	/* we can support up to 8 data buffers for a single send */
2025 	return count != ICE_MAX_BUF_TXD;
2026 }
2027 
2028 /**
2029  * ice_xmit_frame_ring - Sends buffer on Tx ring
2030  * @skb: send buffer
2031  * @tx_ring: ring to send buffer on
2032  *
2033  * Returns NETDEV_TX_OK if sent, else an error code
2034  */
2035 static netdev_tx_t
2036 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2037 {
2038 	struct ice_tx_offload_params offload = { 0 };
2039 	struct ice_tx_buf *first;
2040 	unsigned int count;
2041 	int tso, csum;
2042 
2043 	count = ice_xmit_desc_count(skb);
2044 	if (ice_chk_linearize(skb, count)) {
2045 		if (__skb_linearize(skb))
2046 			goto out_drop;
2047 		count = ice_txd_use_count(skb->len);
2048 		tx_ring->tx_stats.tx_linearize++;
2049 	}
2050 
2051 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2052 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2053 	 *       + 4 desc gap to avoid the cache line where head is,
2054 	 *       + 1 desc for context descriptor,
2055 	 * otherwise try next time
2056 	 */
2057 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2058 			      ICE_DESCS_FOR_CTX_DESC)) {
2059 		tx_ring->tx_stats.tx_busy++;
2060 		return NETDEV_TX_BUSY;
2061 	}
2062 
2063 	offload.tx_ring = tx_ring;
2064 
2065 	/* record the location of the first descriptor for this packet */
2066 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2067 	first->skb = skb;
2068 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2069 	first->gso_segs = 1;
2070 	first->tx_flags = 0;
2071 
2072 	/* prepare the VLAN tagging flags for Tx */
2073 	if (ice_tx_prepare_vlan_flags(tx_ring, first))
2074 		goto out_drop;
2075 
2076 	/* set up TSO offload */
2077 	tso = ice_tso(first, &offload);
2078 	if (tso < 0)
2079 		goto out_drop;
2080 
2081 	/* always set up Tx checksum offload */
2082 	csum = ice_tx_csum(first, &offload);
2083 	if (csum < 0)
2084 		goto out_drop;
2085 
2086 	if (tso || offload.cd_tunnel_params) {
2087 		struct ice_tx_ctx_desc *cdesc;
2088 		int i = tx_ring->next_to_use;
2089 
2090 		/* grab the next descriptor */
2091 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2092 		i++;
2093 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2094 
2095 		/* setup context descriptor */
2096 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2097 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2098 		cdesc->rsvd = cpu_to_le16(0);
2099 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2100 	}
2101 
2102 	ice_tx_map(tx_ring, first, &offload);
2103 	return NETDEV_TX_OK;
2104 
2105 out_drop:
2106 	dev_kfree_skb_any(skb);
2107 	return NETDEV_TX_OK;
2108 }
2109 
2110 /**
2111  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2112  * @skb: send buffer
2113  * @netdev: network interface device structure
2114  *
2115  * Returns NETDEV_TX_OK if sent, else an error code
2116  */
2117 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2118 {
2119 	struct ice_netdev_priv *np = netdev_priv(netdev);
2120 	struct ice_vsi *vsi = np->vsi;
2121 	struct ice_ring *tx_ring;
2122 
2123 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2124 
2125 	/* hardware can't handle really short frames, hardware padding works
2126 	 * beyond this point
2127 	 */
2128 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2129 		return NETDEV_TX_OK;
2130 
2131 	return ice_xmit_frame_ring(skb, tx_ring);
2132 }
2133