xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include "ice.h"
9 #include "ice_dcb_lib.h"
10 
11 #define ICE_RX_HDR_SIZE		256
12 
13 /**
14  * ice_unmap_and_free_tx_buf - Release a Tx buffer
15  * @ring: the ring that owns the buffer
16  * @tx_buf: the buffer to free
17  */
18 static void
19 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
20 {
21 	if (tx_buf->skb) {
22 		dev_kfree_skb_any(tx_buf->skb);
23 		if (dma_unmap_len(tx_buf, len))
24 			dma_unmap_single(ring->dev,
25 					 dma_unmap_addr(tx_buf, dma),
26 					 dma_unmap_len(tx_buf, len),
27 					 DMA_TO_DEVICE);
28 	} else if (dma_unmap_len(tx_buf, len)) {
29 		dma_unmap_page(ring->dev,
30 			       dma_unmap_addr(tx_buf, dma),
31 			       dma_unmap_len(tx_buf, len),
32 			       DMA_TO_DEVICE);
33 	}
34 
35 	tx_buf->next_to_watch = NULL;
36 	tx_buf->skb = NULL;
37 	dma_unmap_len_set(tx_buf, len, 0);
38 	/* tx_buf must be completely set up in the transmit path */
39 }
40 
41 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
42 {
43 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
44 }
45 
46 /**
47  * ice_clean_tx_ring - Free any empty Tx buffers
48  * @tx_ring: ring to be cleaned
49  */
50 void ice_clean_tx_ring(struct ice_ring *tx_ring)
51 {
52 	u16 i;
53 
54 	/* ring already cleared, nothing to do */
55 	if (!tx_ring->tx_buf)
56 		return;
57 
58 	/* Free all the Tx ring sk_buffs */
59 	for (i = 0; i < tx_ring->count; i++)
60 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
61 
62 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
63 
64 	/* Zero out the descriptor ring */
65 	memset(tx_ring->desc, 0, tx_ring->size);
66 
67 	tx_ring->next_to_use = 0;
68 	tx_ring->next_to_clean = 0;
69 
70 	if (!tx_ring->netdev)
71 		return;
72 
73 	/* cleanup Tx queue statistics */
74 	netdev_tx_reset_queue(txring_txq(tx_ring));
75 }
76 
77 /**
78  * ice_free_tx_ring - Free Tx resources per queue
79  * @tx_ring: Tx descriptor ring for a specific queue
80  *
81  * Free all transmit software resources
82  */
83 void ice_free_tx_ring(struct ice_ring *tx_ring)
84 {
85 	ice_clean_tx_ring(tx_ring);
86 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
87 	tx_ring->tx_buf = NULL;
88 
89 	if (tx_ring->desc) {
90 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
91 				   tx_ring->desc, tx_ring->dma);
92 		tx_ring->desc = NULL;
93 	}
94 }
95 
96 /**
97  * ice_clean_tx_irq - Reclaim resources after transmit completes
98  * @vsi: the VSI we care about
99  * @tx_ring: Tx ring to clean
100  * @napi_budget: Used to determine if we are in netpoll
101  *
102  * Returns true if there's any budget left (e.g. the clean is finished)
103  */
104 static bool
105 ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, int napi_budget)
106 {
107 	unsigned int total_bytes = 0, total_pkts = 0;
108 	unsigned int budget = vsi->work_lmt;
109 	s16 i = tx_ring->next_to_clean;
110 	struct ice_tx_desc *tx_desc;
111 	struct ice_tx_buf *tx_buf;
112 
113 	tx_buf = &tx_ring->tx_buf[i];
114 	tx_desc = ICE_TX_DESC(tx_ring, i);
115 	i -= tx_ring->count;
116 
117 	do {
118 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
119 
120 		/* if next_to_watch is not set then there is no work pending */
121 		if (!eop_desc)
122 			break;
123 
124 		smp_rmb();	/* prevent any other reads prior to eop_desc */
125 
126 		/* if the descriptor isn't done, no work yet to do */
127 		if (!(eop_desc->cmd_type_offset_bsz &
128 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
129 			break;
130 
131 		/* clear next_to_watch to prevent false hangs */
132 		tx_buf->next_to_watch = NULL;
133 
134 		/* update the statistics for this packet */
135 		total_bytes += tx_buf->bytecount;
136 		total_pkts += tx_buf->gso_segs;
137 
138 		/* free the skb */
139 		napi_consume_skb(tx_buf->skb, napi_budget);
140 
141 		/* unmap skb header data */
142 		dma_unmap_single(tx_ring->dev,
143 				 dma_unmap_addr(tx_buf, dma),
144 				 dma_unmap_len(tx_buf, len),
145 				 DMA_TO_DEVICE);
146 
147 		/* clear tx_buf data */
148 		tx_buf->skb = NULL;
149 		dma_unmap_len_set(tx_buf, len, 0);
150 
151 		/* unmap remaining buffers */
152 		while (tx_desc != eop_desc) {
153 			tx_buf++;
154 			tx_desc++;
155 			i++;
156 			if (unlikely(!i)) {
157 				i -= tx_ring->count;
158 				tx_buf = tx_ring->tx_buf;
159 				tx_desc = ICE_TX_DESC(tx_ring, 0);
160 			}
161 
162 			/* unmap any remaining paged data */
163 			if (dma_unmap_len(tx_buf, len)) {
164 				dma_unmap_page(tx_ring->dev,
165 					       dma_unmap_addr(tx_buf, dma),
166 					       dma_unmap_len(tx_buf, len),
167 					       DMA_TO_DEVICE);
168 				dma_unmap_len_set(tx_buf, len, 0);
169 			}
170 		}
171 
172 		/* move us one more past the eop_desc for start of next pkt */
173 		tx_buf++;
174 		tx_desc++;
175 		i++;
176 		if (unlikely(!i)) {
177 			i -= tx_ring->count;
178 			tx_buf = tx_ring->tx_buf;
179 			tx_desc = ICE_TX_DESC(tx_ring, 0);
180 		}
181 
182 		prefetch(tx_desc);
183 
184 		/* update budget accounting */
185 		budget--;
186 	} while (likely(budget));
187 
188 	i += tx_ring->count;
189 	tx_ring->next_to_clean = i;
190 	u64_stats_update_begin(&tx_ring->syncp);
191 	tx_ring->stats.bytes += total_bytes;
192 	tx_ring->stats.pkts += total_pkts;
193 	u64_stats_update_end(&tx_ring->syncp);
194 	tx_ring->q_vector->tx.total_bytes += total_bytes;
195 	tx_ring->q_vector->tx.total_pkts += total_pkts;
196 
197 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
198 				  total_bytes);
199 
200 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
201 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
202 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
203 		/* Make sure that anybody stopping the queue after this
204 		 * sees the new next_to_clean.
205 		 */
206 		smp_mb();
207 		if (__netif_subqueue_stopped(tx_ring->netdev,
208 					     tx_ring->q_index) &&
209 		   !test_bit(__ICE_DOWN, vsi->state)) {
210 			netif_wake_subqueue(tx_ring->netdev,
211 					    tx_ring->q_index);
212 			++tx_ring->tx_stats.restart_q;
213 		}
214 	}
215 
216 	return !!budget;
217 }
218 
219 /**
220  * ice_setup_tx_ring - Allocate the Tx descriptors
221  * @tx_ring: the Tx ring to set up
222  *
223  * Return 0 on success, negative on error
224  */
225 int ice_setup_tx_ring(struct ice_ring *tx_ring)
226 {
227 	struct device *dev = tx_ring->dev;
228 
229 	if (!dev)
230 		return -ENOMEM;
231 
232 	/* warn if we are about to overwrite the pointer */
233 	WARN_ON(tx_ring->tx_buf);
234 	tx_ring->tx_buf =
235 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
236 			     GFP_KERNEL);
237 	if (!tx_ring->tx_buf)
238 		return -ENOMEM;
239 
240 	/* round up to nearest page */
241 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
242 			      PAGE_SIZE);
243 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
244 					    GFP_KERNEL);
245 	if (!tx_ring->desc) {
246 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
247 			tx_ring->size);
248 		goto err;
249 	}
250 
251 	tx_ring->next_to_use = 0;
252 	tx_ring->next_to_clean = 0;
253 	tx_ring->tx_stats.prev_pkt = -1;
254 	return 0;
255 
256 err:
257 	devm_kfree(dev, tx_ring->tx_buf);
258 	tx_ring->tx_buf = NULL;
259 	return -ENOMEM;
260 }
261 
262 /**
263  * ice_clean_rx_ring - Free Rx buffers
264  * @rx_ring: ring to be cleaned
265  */
266 void ice_clean_rx_ring(struct ice_ring *rx_ring)
267 {
268 	struct device *dev = rx_ring->dev;
269 	u16 i;
270 
271 	/* ring already cleared, nothing to do */
272 	if (!rx_ring->rx_buf)
273 		return;
274 
275 	/* Free all the Rx ring sk_buffs */
276 	for (i = 0; i < rx_ring->count; i++) {
277 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
278 
279 		if (rx_buf->skb) {
280 			dev_kfree_skb(rx_buf->skb);
281 			rx_buf->skb = NULL;
282 		}
283 		if (!rx_buf->page)
284 			continue;
285 
286 		/* Invalidate cache lines that may have been written to by
287 		 * device so that we avoid corrupting memory.
288 		 */
289 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
290 					      rx_buf->page_offset,
291 					      ICE_RXBUF_2048, DMA_FROM_DEVICE);
292 
293 		/* free resources associated with mapping */
294 		dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE,
295 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
296 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
297 
298 		rx_buf->page = NULL;
299 		rx_buf->page_offset = 0;
300 	}
301 
302 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
303 
304 	/* Zero out the descriptor ring */
305 	memset(rx_ring->desc, 0, rx_ring->size);
306 
307 	rx_ring->next_to_alloc = 0;
308 	rx_ring->next_to_clean = 0;
309 	rx_ring->next_to_use = 0;
310 }
311 
312 /**
313  * ice_free_rx_ring - Free Rx resources
314  * @rx_ring: ring to clean the resources from
315  *
316  * Free all receive software resources
317  */
318 void ice_free_rx_ring(struct ice_ring *rx_ring)
319 {
320 	ice_clean_rx_ring(rx_ring);
321 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
322 	rx_ring->rx_buf = NULL;
323 
324 	if (rx_ring->desc) {
325 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
326 				   rx_ring->desc, rx_ring->dma);
327 		rx_ring->desc = NULL;
328 	}
329 }
330 
331 /**
332  * ice_setup_rx_ring - Allocate the Rx descriptors
333  * @rx_ring: the Rx ring to set up
334  *
335  * Return 0 on success, negative on error
336  */
337 int ice_setup_rx_ring(struct ice_ring *rx_ring)
338 {
339 	struct device *dev = rx_ring->dev;
340 
341 	if (!dev)
342 		return -ENOMEM;
343 
344 	/* warn if we are about to overwrite the pointer */
345 	WARN_ON(rx_ring->rx_buf);
346 	rx_ring->rx_buf =
347 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
348 			     GFP_KERNEL);
349 	if (!rx_ring->rx_buf)
350 		return -ENOMEM;
351 
352 	/* round up to nearest page */
353 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
354 			      PAGE_SIZE);
355 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
356 					    GFP_KERNEL);
357 	if (!rx_ring->desc) {
358 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
359 			rx_ring->size);
360 		goto err;
361 	}
362 
363 	rx_ring->next_to_use = 0;
364 	rx_ring->next_to_clean = 0;
365 	return 0;
366 
367 err:
368 	devm_kfree(dev, rx_ring->rx_buf);
369 	rx_ring->rx_buf = NULL;
370 	return -ENOMEM;
371 }
372 
373 /**
374  * ice_release_rx_desc - Store the new tail and head values
375  * @rx_ring: ring to bump
376  * @val: new head index
377  */
378 static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
379 {
380 	u16 prev_ntu = rx_ring->next_to_use;
381 
382 	rx_ring->next_to_use = val;
383 
384 	/* update next to alloc since we have filled the ring */
385 	rx_ring->next_to_alloc = val;
386 
387 	/* QRX_TAIL will be updated with any tail value, but hardware ignores
388 	 * the lower 3 bits. This makes it so we only bump tail on meaningful
389 	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
390 	 * the budget depending on the current traffic load.
391 	 */
392 	val &= ~0x7;
393 	if (prev_ntu != val) {
394 		/* Force memory writes to complete before letting h/w
395 		 * know there are new descriptors to fetch. (Only
396 		 * applicable for weak-ordered memory model archs,
397 		 * such as IA-64).
398 		 */
399 		wmb();
400 		writel(val, rx_ring->tail);
401 	}
402 }
403 
404 /**
405  * ice_alloc_mapped_page - recycle or make a new page
406  * @rx_ring: ring to use
407  * @bi: rx_buf struct to modify
408  *
409  * Returns true if the page was successfully allocated or
410  * reused.
411  */
412 static bool
413 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
414 {
415 	struct page *page = bi->page;
416 	dma_addr_t dma;
417 
418 	/* since we are recycling buffers we should seldom need to alloc */
419 	if (likely(page)) {
420 		rx_ring->rx_stats.page_reuse_count++;
421 		return true;
422 	}
423 
424 	/* alloc new page for storage */
425 	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
426 	if (unlikely(!page)) {
427 		rx_ring->rx_stats.alloc_page_failed++;
428 		return false;
429 	}
430 
431 	/* map page for use */
432 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
433 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
434 
435 	/* if mapping failed free memory back to system since
436 	 * there isn't much point in holding memory we can't use
437 	 */
438 	if (dma_mapping_error(rx_ring->dev, dma)) {
439 		__free_pages(page, 0);
440 		rx_ring->rx_stats.alloc_page_failed++;
441 		return false;
442 	}
443 
444 	bi->dma = dma;
445 	bi->page = page;
446 	bi->page_offset = 0;
447 	page_ref_add(page, USHRT_MAX - 1);
448 	bi->pagecnt_bias = USHRT_MAX;
449 
450 	return true;
451 }
452 
453 /**
454  * ice_alloc_rx_bufs - Replace used receive buffers
455  * @rx_ring: ring to place buffers on
456  * @cleaned_count: number of buffers to replace
457  *
458  * Returns false if all allocations were successful, true if any fail. Returning
459  * true signals to the caller that we didn't replace cleaned_count buffers and
460  * there is more work to do.
461  *
462  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
463  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
464  * multiple tail writes per call.
465  */
466 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
467 {
468 	union ice_32b_rx_flex_desc *rx_desc;
469 	u16 ntu = rx_ring->next_to_use;
470 	struct ice_rx_buf *bi;
471 
472 	/* do nothing if no valid netdev defined */
473 	if (!rx_ring->netdev || !cleaned_count)
474 		return false;
475 
476 	/* get the Rx descriptor and buffer based on next_to_use */
477 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
478 	bi = &rx_ring->rx_buf[ntu];
479 
480 	do {
481 		/* if we fail here, we have work remaining */
482 		if (!ice_alloc_mapped_page(rx_ring, bi))
483 			break;
484 
485 		/* sync the buffer for use by the device */
486 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
487 						 bi->page_offset,
488 						 ICE_RXBUF_2048,
489 						 DMA_FROM_DEVICE);
490 
491 		/* Refresh the desc even if buffer_addrs didn't change
492 		 * because each write-back erases this info.
493 		 */
494 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
495 
496 		rx_desc++;
497 		bi++;
498 		ntu++;
499 		if (unlikely(ntu == rx_ring->count)) {
500 			rx_desc = ICE_RX_DESC(rx_ring, 0);
501 			bi = rx_ring->rx_buf;
502 			ntu = 0;
503 		}
504 
505 		/* clear the status bits for the next_to_use descriptor */
506 		rx_desc->wb.status_error0 = 0;
507 
508 		cleaned_count--;
509 	} while (cleaned_count);
510 
511 	if (rx_ring->next_to_use != ntu)
512 		ice_release_rx_desc(rx_ring, ntu);
513 
514 	return !!cleaned_count;
515 }
516 
517 /**
518  * ice_page_is_reserved - check if reuse is possible
519  * @page: page struct to check
520  */
521 static bool ice_page_is_reserved(struct page *page)
522 {
523 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
524 }
525 
526 /**
527  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
528  * @rx_buf: Rx buffer to adjust
529  * @size: Size of adjustment
530  *
531  * Update the offset within page so that Rx buf will be ready to be reused.
532  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
533  * so the second half of page assigned to Rx buffer will be used, otherwise
534  * the offset is moved by the @size bytes
535  */
536 static void
537 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
538 {
539 #if (PAGE_SIZE < 8192)
540 	/* flip page offset to other buffer */
541 	rx_buf->page_offset ^= size;
542 #else
543 	/* move offset up to the next cache line */
544 	rx_buf->page_offset += size;
545 #endif
546 }
547 
548 /**
549  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
550  * @rx_buf: buffer containing the page
551  *
552  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
553  * which will assign the current buffer to the buffer that next_to_alloc is
554  * pointing to; otherwise, the DMA mapping needs to be destroyed and
555  * page freed
556  */
557 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
558 {
559 #if (PAGE_SIZE >= 8192)
560 	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
561 #endif
562 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
563 	struct page *page = rx_buf->page;
564 
565 	/* avoid re-using remote pages */
566 	if (unlikely(ice_page_is_reserved(page)))
567 		return false;
568 
569 #if (PAGE_SIZE < 8192)
570 	/* if we are only owner of page we can reuse it */
571 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
572 		return false;
573 #else
574 	if (rx_buf->page_offset > last_offset)
575 		return false;
576 #endif /* PAGE_SIZE < 8192) */
577 
578 	/* If we have drained the page fragment pool we need to update
579 	 * the pagecnt_bias and page count so that we fully restock the
580 	 * number of references the driver holds.
581 	 */
582 	if (unlikely(pagecnt_bias == 1)) {
583 		page_ref_add(page, USHRT_MAX - 1);
584 		rx_buf->pagecnt_bias = USHRT_MAX;
585 	}
586 
587 	return true;
588 }
589 
590 /**
591  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
592  * @rx_buf: buffer containing page to add
593  * @skb: sk_buff to place the data into
594  * @size: packet length from rx_desc
595  *
596  * This function will add the data contained in rx_buf->page to the skb.
597  * It will just attach the page as a frag to the skb.
598  * The function will then update the page offset.
599  */
600 static void
601 ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb,
602 		unsigned int size)
603 {
604 #if (PAGE_SIZE >= 8192)
605 	unsigned int truesize = SKB_DATA_ALIGN(size);
606 #else
607 	unsigned int truesize = ICE_RXBUF_2048;
608 #endif
609 
610 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
611 			rx_buf->page_offset, size, truesize);
612 
613 	/* page is being used so we must update the page offset */
614 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
615 }
616 
617 /**
618  * ice_reuse_rx_page - page flip buffer and store it back on the ring
619  * @rx_ring: Rx descriptor ring to store buffers on
620  * @old_buf: donor buffer to have page reused
621  *
622  * Synchronizes page for reuse by the adapter
623  */
624 static void
625 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
626 {
627 	u16 nta = rx_ring->next_to_alloc;
628 	struct ice_rx_buf *new_buf;
629 
630 	new_buf = &rx_ring->rx_buf[nta];
631 
632 	/* update, and store next to alloc */
633 	nta++;
634 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
635 
636 	/* Transfer page from old buffer to new buffer.
637 	 * Move each member individually to avoid possible store
638 	 * forwarding stalls and unnecessary copy of skb.
639 	 */
640 	new_buf->dma = old_buf->dma;
641 	new_buf->page = old_buf->page;
642 	new_buf->page_offset = old_buf->page_offset;
643 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
644 }
645 
646 /**
647  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
648  * @rx_ring: Rx descriptor ring to transact packets on
649  * @skb: skb to be used
650  * @size: size of buffer to add to skb
651  *
652  * This function will pull an Rx buffer from the ring and synchronize it
653  * for use by the CPU.
654  */
655 static struct ice_rx_buf *
656 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
657 	       const unsigned int size)
658 {
659 	struct ice_rx_buf *rx_buf;
660 
661 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
662 	prefetchw(rx_buf->page);
663 	*skb = rx_buf->skb;
664 
665 	/* we are reusing so sync this buffer for CPU use */
666 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
667 				      rx_buf->page_offset, size,
668 				      DMA_FROM_DEVICE);
669 
670 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
671 	rx_buf->pagecnt_bias--;
672 
673 	return rx_buf;
674 }
675 
676 /**
677  * ice_construct_skb - Allocate skb and populate it
678  * @rx_ring: Rx descriptor ring to transact packets on
679  * @rx_buf: Rx buffer to pull data from
680  * @size: the length of the packet
681  *
682  * This function allocates an skb. It then populates it with the page
683  * data from the current receive descriptor, taking care to set up the
684  * skb correctly.
685  */
686 static struct sk_buff *
687 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
688 		  unsigned int size)
689 {
690 	void *va = page_address(rx_buf->page) + rx_buf->page_offset;
691 	unsigned int headlen;
692 	struct sk_buff *skb;
693 
694 	/* prefetch first cache line of first page */
695 	prefetch(va);
696 #if L1_CACHE_BYTES < 128
697 	prefetch((u8 *)va + L1_CACHE_BYTES);
698 #endif /* L1_CACHE_BYTES */
699 
700 	/* allocate a skb to store the frags */
701 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
702 			       GFP_ATOMIC | __GFP_NOWARN);
703 	if (unlikely(!skb))
704 		return NULL;
705 
706 	skb_record_rx_queue(skb, rx_ring->q_index);
707 	/* Determine available headroom for copy */
708 	headlen = size;
709 	if (headlen > ICE_RX_HDR_SIZE)
710 		headlen = eth_get_headlen(skb->dev, va, ICE_RX_HDR_SIZE);
711 
712 	/* align pull length to size of long to optimize memcpy performance */
713 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
714 
715 	/* if we exhaust the linear part then add what is left as a frag */
716 	size -= headlen;
717 	if (size) {
718 #if (PAGE_SIZE >= 8192)
719 		unsigned int truesize = SKB_DATA_ALIGN(size);
720 #else
721 		unsigned int truesize = ICE_RXBUF_2048;
722 #endif
723 		skb_add_rx_frag(skb, 0, rx_buf->page,
724 				rx_buf->page_offset + headlen, size, truesize);
725 		/* buffer is used by skb, update page_offset */
726 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
727 	} else {
728 		/* buffer is unused, reset bias back to rx_buf; data was copied
729 		 * onto skb's linear part so there's no need for adjusting
730 		 * page offset and we can reuse this buffer as-is
731 		 */
732 		rx_buf->pagecnt_bias++;
733 	}
734 
735 	return skb;
736 }
737 
738 /**
739  * ice_put_rx_buf - Clean up used buffer and either recycle or free
740  * @rx_ring: Rx descriptor ring to transact packets on
741  * @rx_buf: Rx buffer to pull data from
742  *
743  * This function will  clean up the contents of the rx_buf. It will
744  * either recycle the buffer or unmap it and free the associated resources.
745  */
746 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
747 {
748 		/* hand second half of page back to the ring */
749 	if (ice_can_reuse_rx_page(rx_buf)) {
750 		ice_reuse_rx_page(rx_ring, rx_buf);
751 		rx_ring->rx_stats.page_reuse_count++;
752 	} else {
753 		/* we are not reusing the buffer so unmap it */
754 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
755 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
756 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
757 	}
758 
759 	/* clear contents of buffer_info */
760 	rx_buf->page = NULL;
761 	rx_buf->skb = NULL;
762 }
763 
764 /**
765  * ice_cleanup_headers - Correct empty headers
766  * @skb: pointer to current skb being fixed
767  *
768  * Also address the case where we are pulling data in on pages only
769  * and as such no data is present in the skb header.
770  *
771  * In addition if skb is not at least 60 bytes we need to pad it so that
772  * it is large enough to qualify as a valid Ethernet frame.
773  *
774  * Returns true if an error was encountered and skb was freed.
775  */
776 static bool ice_cleanup_headers(struct sk_buff *skb)
777 {
778 	/* if eth_skb_pad returns an error the skb was freed */
779 	if (eth_skb_pad(skb))
780 		return true;
781 
782 	return false;
783 }
784 
785 /**
786  * ice_test_staterr - tests bits in Rx descriptor status and error fields
787  * @rx_desc: pointer to receive descriptor (in le64 format)
788  * @stat_err_bits: value to mask
789  *
790  * This function does some fast chicanery in order to return the
791  * value of the mask which is really only used for boolean tests.
792  * The status_error_len doesn't need to be shifted because it begins
793  * at offset zero.
794  */
795 static bool
796 ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits)
797 {
798 	return !!(rx_desc->wb.status_error0 &
799 		  cpu_to_le16(stat_err_bits));
800 }
801 
802 /**
803  * ice_is_non_eop - process handling of non-EOP buffers
804  * @rx_ring: Rx ring being processed
805  * @rx_desc: Rx descriptor for current buffer
806  * @skb: Current socket buffer containing buffer in progress
807  *
808  * This function updates next to clean. If the buffer is an EOP buffer
809  * this function exits returning false, otherwise it will place the
810  * sk_buff in the next buffer to be chained and return true indicating
811  * that this is in fact a non-EOP buffer.
812  */
813 static bool
814 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
815 	       struct sk_buff *skb)
816 {
817 	u32 ntc = rx_ring->next_to_clean + 1;
818 
819 	/* fetch, update, and store next to clean */
820 	ntc = (ntc < rx_ring->count) ? ntc : 0;
821 	rx_ring->next_to_clean = ntc;
822 
823 	prefetch(ICE_RX_DESC(rx_ring, ntc));
824 
825 	/* if we are the last buffer then there is nothing else to do */
826 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
827 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
828 		return false;
829 
830 	/* place skb in next buffer to be received */
831 	rx_ring->rx_buf[ntc].skb = skb;
832 	rx_ring->rx_stats.non_eop_descs++;
833 
834 	return true;
835 }
836 
837 /**
838  * ice_ptype_to_htype - get a hash type
839  * @ptype: the ptype value from the descriptor
840  *
841  * Returns a hash type to be used by skb_set_hash
842  */
843 static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
844 {
845 	return PKT_HASH_TYPE_NONE;
846 }
847 
848 /**
849  * ice_rx_hash - set the hash value in the skb
850  * @rx_ring: descriptor ring
851  * @rx_desc: specific descriptor
852  * @skb: pointer to current skb
853  * @rx_ptype: the ptype value from the descriptor
854  */
855 static void
856 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
857 	    struct sk_buff *skb, u8 rx_ptype)
858 {
859 	struct ice_32b_rx_flex_desc_nic *nic_mdid;
860 	u32 hash;
861 
862 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
863 		return;
864 
865 	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
866 		return;
867 
868 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
869 	hash = le32_to_cpu(nic_mdid->rss_hash);
870 	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
871 }
872 
873 /**
874  * ice_rx_csum - Indicate in skb if checksum is good
875  * @vsi: the VSI we care about
876  * @skb: skb currently being received and modified
877  * @rx_desc: the receive descriptor
878  * @ptype: the packet type decoded by hardware
879  *
880  * skb->protocol must be set before this function is called
881  */
882 static void
883 ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
884 	    union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
885 {
886 	struct ice_rx_ptype_decoded decoded;
887 	u32 rx_error, rx_status;
888 	bool ipv4, ipv6;
889 
890 	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
891 	rx_error = rx_status;
892 
893 	decoded = ice_decode_rx_desc_ptype(ptype);
894 
895 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
896 	skb->ip_summed = CHECKSUM_NONE;
897 	skb_checksum_none_assert(skb);
898 
899 	/* check if Rx checksum is enabled */
900 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
901 		return;
902 
903 	/* check if HW has decoded the packet and checksum */
904 	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
905 		return;
906 
907 	if (!(decoded.known && decoded.outer_ip))
908 		return;
909 
910 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
911 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
912 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
913 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
914 
915 	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
916 				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
917 		goto checksum_fail;
918 	else if (ipv6 && (rx_status &
919 		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
920 		goto checksum_fail;
921 
922 	/* check for L4 errors and handle packets that were not able to be
923 	 * checksummed due to arrival speed
924 	 */
925 	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
926 		goto checksum_fail;
927 
928 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
929 	switch (decoded.inner_prot) {
930 	case ICE_RX_PTYPE_INNER_PROT_TCP:
931 	case ICE_RX_PTYPE_INNER_PROT_UDP:
932 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
933 		skb->ip_summed = CHECKSUM_UNNECESSARY;
934 	default:
935 		break;
936 	}
937 	return;
938 
939 checksum_fail:
940 	vsi->back->hw_csum_rx_error++;
941 }
942 
943 /**
944  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
945  * @rx_ring: Rx descriptor ring packet is being transacted on
946  * @rx_desc: pointer to the EOP Rx descriptor
947  * @skb: pointer to current skb being populated
948  * @ptype: the packet type decoded by hardware
949  *
950  * This function checks the ring, descriptor, and packet information in
951  * order to populate the hash, checksum, VLAN, protocol, and
952  * other fields within the skb.
953  */
954 static void
955 ice_process_skb_fields(struct ice_ring *rx_ring,
956 		       union ice_32b_rx_flex_desc *rx_desc,
957 		       struct sk_buff *skb, u8 ptype)
958 {
959 	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
960 
961 	/* modifies the skb - consumes the enet header */
962 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
963 
964 	ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
965 }
966 
967 /**
968  * ice_receive_skb - Send a completed packet up the stack
969  * @rx_ring: Rx ring in play
970  * @skb: packet to send up
971  * @vlan_tag: VLAN tag for packet
972  *
973  * This function sends the completed packet (via. skb) up the stack using
974  * gro receive functions (with/without VLAN tag)
975  */
976 static void
977 ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
978 {
979 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
980 	    (vlan_tag & VLAN_VID_MASK))
981 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
982 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
983 }
984 
985 /**
986  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
987  * @rx_ring: Rx descriptor ring to transact packets on
988  * @budget: Total limit on number of packets to process
989  *
990  * This function provides a "bounce buffer" approach to Rx interrupt
991  * processing. The advantage to this is that on systems that have
992  * expensive overhead for IOMMU access this provides a means of avoiding
993  * it by maintaining the mapping of the page to the system.
994  *
995  * Returns amount of work completed
996  */
997 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
998 {
999 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1000 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1001 	bool failure;
1002 
1003 	/* start the loop to process Rx packets bounded by 'budget' */
1004 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1005 		union ice_32b_rx_flex_desc *rx_desc;
1006 		struct ice_rx_buf *rx_buf;
1007 		struct sk_buff *skb;
1008 		unsigned int size;
1009 		u16 stat_err_bits;
1010 		u16 vlan_tag = 0;
1011 		u8 rx_ptype;
1012 
1013 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1014 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1015 
1016 		/* status_error_len will always be zero for unused descriptors
1017 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1018 		 * which is always zero because packet split isn't used, if the
1019 		 * hardware wrote DD then it will be non-zero
1020 		 */
1021 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1022 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1023 			break;
1024 
1025 		/* This memory barrier is needed to keep us from reading
1026 		 * any other fields out of the rx_desc until we know the
1027 		 * DD bit is set.
1028 		 */
1029 		dma_rmb();
1030 
1031 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1032 			ICE_RX_FLX_DESC_PKT_LEN_M;
1033 
1034 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1035 		/* allocate (if needed) and populate skb */
1036 		if (skb)
1037 			ice_add_rx_frag(rx_buf, skb, size);
1038 		else
1039 			skb = ice_construct_skb(rx_ring, rx_buf, size);
1040 
1041 		/* exit if we failed to retrieve a buffer */
1042 		if (!skb) {
1043 			rx_ring->rx_stats.alloc_buf_failed++;
1044 			rx_buf->pagecnt_bias++;
1045 			break;
1046 		}
1047 
1048 		ice_put_rx_buf(rx_ring, rx_buf);
1049 		cleaned_count++;
1050 
1051 		/* skip if it is NOP desc */
1052 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1053 			continue;
1054 
1055 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1056 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1057 			dev_kfree_skb_any(skb);
1058 			continue;
1059 		}
1060 
1061 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1062 			ICE_RX_FLEX_DESC_PTYPE_M;
1063 
1064 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1065 		if (ice_test_staterr(rx_desc, stat_err_bits))
1066 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1067 
1068 		/* correct empty headers and pad skb if needed (to make valid
1069 		 * ethernet frame
1070 		 */
1071 		if (ice_cleanup_headers(skb)) {
1072 			skb = NULL;
1073 			continue;
1074 		}
1075 
1076 		/* probably a little skewed due to removing CRC */
1077 		total_rx_bytes += skb->len;
1078 
1079 		/* populate checksum, VLAN, and protocol */
1080 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1081 
1082 		/* send completed skb up the stack */
1083 		ice_receive_skb(rx_ring, skb, vlan_tag);
1084 
1085 		/* update budget accounting */
1086 		total_rx_pkts++;
1087 	}
1088 
1089 	/* return up to cleaned_count buffers to hardware */
1090 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1091 
1092 	/* update queue and vector specific stats */
1093 	u64_stats_update_begin(&rx_ring->syncp);
1094 	rx_ring->stats.pkts += total_rx_pkts;
1095 	rx_ring->stats.bytes += total_rx_bytes;
1096 	u64_stats_update_end(&rx_ring->syncp);
1097 	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1098 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1099 
1100 	/* guarantee a trip back through this routine if there was a failure */
1101 	return failure ? budget : (int)total_rx_pkts;
1102 }
1103 
1104 /**
1105  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1106  * @port_info: port_info structure containing the current link speed
1107  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1108  * @itr: ITR value to update
1109  *
1110  * Calculate how big of an increment should be applied to the ITR value passed
1111  * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1112  * link speed.
1113  *
1114  * The following is a calculation derived from:
1115  *  wmem_default / (size + overhead) = desired_pkts_per_int
1116  *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1117  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1118  *
1119  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1120  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1121  * formula down to:
1122  *
1123  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1124  * ITR = -------------------------------------------- * --------------
1125  *			     rate			pkt_size + 640
1126  */
1127 static unsigned int
1128 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1129 				 unsigned int avg_pkt_size,
1130 				 unsigned int itr)
1131 {
1132 	switch (port_info->phy.link_info.link_speed) {
1133 	case ICE_AQ_LINK_SPEED_100GB:
1134 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1135 				    avg_pkt_size + 640);
1136 		break;
1137 	case ICE_AQ_LINK_SPEED_50GB:
1138 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1139 				    avg_pkt_size + 640);
1140 		break;
1141 	case ICE_AQ_LINK_SPEED_40GB:
1142 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1143 				    avg_pkt_size + 640);
1144 		break;
1145 	case ICE_AQ_LINK_SPEED_25GB:
1146 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1147 				    avg_pkt_size + 640);
1148 		break;
1149 	case ICE_AQ_LINK_SPEED_20GB:
1150 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1151 				    avg_pkt_size + 640);
1152 		break;
1153 	case ICE_AQ_LINK_SPEED_10GB:
1154 		/* fall through */
1155 	default:
1156 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1157 				    avg_pkt_size + 640);
1158 		break;
1159 	}
1160 
1161 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1162 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1163 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1164 	}
1165 
1166 	return itr;
1167 }
1168 
1169 /**
1170  * ice_update_itr - update the adaptive ITR value based on statistics
1171  * @q_vector: structure containing interrupt and ring information
1172  * @rc: structure containing ring performance data
1173  *
1174  * Stores a new ITR value based on packets and byte
1175  * counts during the last interrupt.  The advantage of per interrupt
1176  * computation is faster updates and more accurate ITR for the current
1177  * traffic pattern.  Constants in this function were computed
1178  * based on theoretical maximum wire speed and thresholds were set based
1179  * on testing data as well as attempting to minimize response time
1180  * while increasing bulk throughput.
1181  */
1182 static void
1183 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1184 {
1185 	unsigned long next_update = jiffies;
1186 	unsigned int packets, bytes, itr;
1187 	bool container_is_rx;
1188 
1189 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1190 		return;
1191 
1192 	/* If itr_countdown is set it means we programmed an ITR within
1193 	 * the last 4 interrupt cycles. This has a side effect of us
1194 	 * potentially firing an early interrupt. In order to work around
1195 	 * this we need to throw out any data received for a few
1196 	 * interrupts following the update.
1197 	 */
1198 	if (q_vector->itr_countdown) {
1199 		itr = rc->target_itr;
1200 		goto clear_counts;
1201 	}
1202 
1203 	container_is_rx = (&q_vector->rx == rc);
1204 	/* For Rx we want to push the delay up and default to low latency.
1205 	 * for Tx we want to pull the delay down and default to high latency.
1206 	 */
1207 	itr = container_is_rx ?
1208 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1209 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1210 
1211 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1212 	 * that either packets are coming in so slow there hasn't been
1213 	 * any work, or that there is so much work that NAPI is dealing
1214 	 * with interrupt moderation and we don't need to do anything.
1215 	 */
1216 	if (time_after(next_update, rc->next_update))
1217 		goto clear_counts;
1218 
1219 	packets = rc->total_pkts;
1220 	bytes = rc->total_bytes;
1221 
1222 	if (container_is_rx) {
1223 		/* If Rx there are 1 to 4 packets and bytes are less than
1224 		 * 9000 assume insufficient data to use bulk rate limiting
1225 		 * approach unless Tx is already in bulk rate limiting. We
1226 		 * are likely latency driven.
1227 		 */
1228 		if (packets && packets < 4 && bytes < 9000 &&
1229 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1230 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1231 			goto adjust_by_size_and_speed;
1232 		}
1233 	} else if (packets < 4) {
1234 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1235 		 * bulk mode and we are receiving 4 or fewer packets just
1236 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1237 		 * that the Rx can relax.
1238 		 */
1239 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1240 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1241 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1242 			goto clear_counts;
1243 	} else if (packets > 32) {
1244 		/* If we have processed over 32 packets in a single interrupt
1245 		 * for Tx assume we need to switch over to "bulk" mode.
1246 		 */
1247 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1248 	}
1249 
1250 	/* We have no packets to actually measure against. This means
1251 	 * either one of the other queues on this vector is active or
1252 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1253 	 *
1254 	 * Between 4 and 56 we can assume that our current interrupt delay
1255 	 * is only slightly too low. As such we should increase it by a small
1256 	 * fixed amount.
1257 	 */
1258 	if (packets < 56) {
1259 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1260 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1261 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1262 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1263 		}
1264 		goto clear_counts;
1265 	}
1266 
1267 	if (packets <= 256) {
1268 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1269 		itr &= ICE_ITR_MASK;
1270 
1271 		/* Between 56 and 112 is our "goldilocks" zone where we are
1272 		 * working out "just right". Just report that our current
1273 		 * ITR is good for us.
1274 		 */
1275 		if (packets <= 112)
1276 			goto clear_counts;
1277 
1278 		/* If packet count is 128 or greater we are likely looking
1279 		 * at a slight overrun of the delay we want. Try halving
1280 		 * our delay to see if that will cut the number of packets
1281 		 * in half per interrupt.
1282 		 */
1283 		itr >>= 1;
1284 		itr &= ICE_ITR_MASK;
1285 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1286 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1287 
1288 		goto clear_counts;
1289 	}
1290 
1291 	/* The paths below assume we are dealing with a bulk ITR since
1292 	 * number of packets is greater than 256. We are just going to have
1293 	 * to compute a value and try to bring the count under control,
1294 	 * though for smaller packet sizes there isn't much we can do as
1295 	 * NAPI polling will likely be kicking in sooner rather than later.
1296 	 */
1297 	itr = ICE_ITR_ADAPTIVE_BULK;
1298 
1299 adjust_by_size_and_speed:
1300 
1301 	/* based on checks above packets cannot be 0 so division is safe */
1302 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1303 					       bytes / packets, itr);
1304 
1305 clear_counts:
1306 	/* write back value */
1307 	rc->target_itr = itr;
1308 
1309 	/* next update should occur within next jiffy */
1310 	rc->next_update = next_update + 1;
1311 
1312 	rc->total_bytes = 0;
1313 	rc->total_pkts = 0;
1314 }
1315 
1316 /**
1317  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1318  * @itr_idx: interrupt throttling index
1319  * @itr: interrupt throttling value in usecs
1320  */
1321 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1322 {
1323 	/* The ITR value is reported in microseconds, and the register value is
1324 	 * recorded in 2 microsecond units. For this reason we only need to
1325 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1326 	 * granularity as a shift instead of division. The mask makes sure the
1327 	 * ITR value is never odd so we don't accidentally write into the field
1328 	 * prior to the ITR field.
1329 	 */
1330 	itr &= ICE_ITR_MASK;
1331 
1332 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1333 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1334 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1335 }
1336 
1337 /* The act of updating the ITR will cause it to immediately trigger. In order
1338  * to prevent this from throwing off adaptive update statistics we defer the
1339  * update so that it can only happen so often. So after either Tx or Rx are
1340  * updated we make the adaptive scheme wait until either the ITR completely
1341  * expires via the next_update expiration or we have been through at least
1342  * 3 interrupts.
1343  */
1344 #define ITR_COUNTDOWN_START 3
1345 
1346 /**
1347  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1348  * @vsi: the VSI associated with the q_vector
1349  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1350  */
1351 static void
1352 ice_update_ena_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
1353 {
1354 	struct ice_ring_container *tx = &q_vector->tx;
1355 	struct ice_ring_container *rx = &q_vector->rx;
1356 	u32 itr_val;
1357 
1358 	/* This will do nothing if dynamic updates are not enabled */
1359 	ice_update_itr(q_vector, tx);
1360 	ice_update_itr(q_vector, rx);
1361 
1362 	/* This block of logic allows us to get away with only updating
1363 	 * one ITR value with each interrupt. The idea is to perform a
1364 	 * pseudo-lazy update with the following criteria.
1365 	 *
1366 	 * 1. Rx is given higher priority than Tx if both are in same state
1367 	 * 2. If we must reduce an ITR that is given highest priority.
1368 	 * 3. We then give priority to increasing ITR based on amount.
1369 	 */
1370 	if (rx->target_itr < rx->current_itr) {
1371 		/* Rx ITR needs to be reduced, this is highest priority */
1372 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1373 		rx->current_itr = rx->target_itr;
1374 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1375 	} else if ((tx->target_itr < tx->current_itr) ||
1376 		   ((rx->target_itr - rx->current_itr) <
1377 		    (tx->target_itr - tx->current_itr))) {
1378 		/* Tx ITR needs to be reduced, this is second priority
1379 		 * Tx ITR needs to be increased more than Rx, fourth priority
1380 		 */
1381 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1382 		tx->current_itr = tx->target_itr;
1383 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1384 	} else if (rx->current_itr != rx->target_itr) {
1385 		/* Rx ITR needs to be increased, third priority */
1386 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1387 		rx->current_itr = rx->target_itr;
1388 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1389 	} else {
1390 		/* Still have to re-enable the interrupts */
1391 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1392 		if (q_vector->itr_countdown)
1393 			q_vector->itr_countdown--;
1394 	}
1395 
1396 	if (!test_bit(__ICE_DOWN, vsi->state))
1397 		wr32(&vsi->back->hw,
1398 		     GLINT_DYN_CTL(q_vector->reg_idx),
1399 		     itr_val);
1400 }
1401 
1402 /**
1403  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1404  * @napi: napi struct with our devices info in it
1405  * @budget: amount of work driver is allowed to do this pass, in packets
1406  *
1407  * This function will clean all queues associated with a q_vector.
1408  *
1409  * Returns the amount of work done
1410  */
1411 int ice_napi_poll(struct napi_struct *napi, int budget)
1412 {
1413 	struct ice_q_vector *q_vector =
1414 				container_of(napi, struct ice_q_vector, napi);
1415 	struct ice_vsi *vsi = q_vector->vsi;
1416 	bool clean_complete = true;
1417 	int budget_per_ring = 0;
1418 	struct ice_ring *ring;
1419 	int work_done = 0;
1420 
1421 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1422 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1423 	 */
1424 	ice_for_each_ring(ring, q_vector->tx)
1425 		if (!ice_clean_tx_irq(vsi, ring, budget))
1426 			clean_complete = false;
1427 
1428 	/* Handle case where we are called by netpoll with a budget of 0 */
1429 	if (budget <= 0)
1430 		return budget;
1431 
1432 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1433 	 * allow the budget to go below 1 because that would exit polling early.
1434 	 */
1435 	if (q_vector->num_ring_rx)
1436 		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1437 
1438 	ice_for_each_ring(ring, q_vector->rx) {
1439 		int cleaned;
1440 
1441 		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
1442 		work_done += cleaned;
1443 		/* if we clean as many as budgeted, we must not be done */
1444 		if (cleaned >= budget_per_ring)
1445 			clean_complete = false;
1446 	}
1447 
1448 	/* If work not completed, return budget and polling will return */
1449 	if (!clean_complete)
1450 		return budget;
1451 
1452 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1453 	 * poll us due to busy-polling
1454 	 */
1455 	if (likely(napi_complete_done(napi, work_done)))
1456 		ice_update_ena_itr(vsi, q_vector);
1457 
1458 	return min_t(int, work_done, budget - 1);
1459 }
1460 
1461 /* helper function for building cmd/type/offset */
1462 static __le64
1463 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1464 {
1465 	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1466 			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
1467 			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
1468 			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1469 			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
1470 }
1471 
1472 /**
1473  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1474  * @tx_ring: the ring to be checked
1475  * @size: the size buffer we want to assure is available
1476  *
1477  * Returns -EBUSY if a stop is needed, else 0
1478  */
1479 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1480 {
1481 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1482 	/* Memory barrier before checking head and tail */
1483 	smp_mb();
1484 
1485 	/* Check again in a case another CPU has just made room available. */
1486 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1487 		return -EBUSY;
1488 
1489 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1490 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1491 	++tx_ring->tx_stats.restart_q;
1492 	return 0;
1493 }
1494 
1495 /**
1496  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1497  * @tx_ring: the ring to be checked
1498  * @size:    the size buffer we want to assure is available
1499  *
1500  * Returns 0 if stop is not needed
1501  */
1502 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1503 {
1504 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1505 		return 0;
1506 
1507 	return __ice_maybe_stop_tx(tx_ring, size);
1508 }
1509 
1510 /**
1511  * ice_tx_map - Build the Tx descriptor
1512  * @tx_ring: ring to send buffer on
1513  * @first: first buffer info buffer to use
1514  * @off: pointer to struct that holds offload parameters
1515  *
1516  * This function loops over the skb data pointed to by *first
1517  * and gets a physical address for each memory location and programs
1518  * it and the length into the transmit descriptor.
1519  */
1520 static void
1521 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1522 	   struct ice_tx_offload_params *off)
1523 {
1524 	u64 td_offset, td_tag, td_cmd;
1525 	u16 i = tx_ring->next_to_use;
1526 	skb_frag_t *frag;
1527 	unsigned int data_len, size;
1528 	struct ice_tx_desc *tx_desc;
1529 	struct ice_tx_buf *tx_buf;
1530 	struct sk_buff *skb;
1531 	dma_addr_t dma;
1532 
1533 	td_tag = off->td_l2tag1;
1534 	td_cmd = off->td_cmd;
1535 	td_offset = off->td_offset;
1536 	skb = first->skb;
1537 
1538 	data_len = skb->data_len;
1539 	size = skb_headlen(skb);
1540 
1541 	tx_desc = ICE_TX_DESC(tx_ring, i);
1542 
1543 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1544 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1545 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1546 			  ICE_TX_FLAGS_VLAN_S;
1547 	}
1548 
1549 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1550 
1551 	tx_buf = first;
1552 
1553 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1554 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1555 
1556 		if (dma_mapping_error(tx_ring->dev, dma))
1557 			goto dma_error;
1558 
1559 		/* record length, and DMA address */
1560 		dma_unmap_len_set(tx_buf, len, size);
1561 		dma_unmap_addr_set(tx_buf, dma, dma);
1562 
1563 		/* align size to end of page */
1564 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1565 		tx_desc->buf_addr = cpu_to_le64(dma);
1566 
1567 		/* account for data chunks larger than the hardware
1568 		 * can handle
1569 		 */
1570 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1571 			tx_desc->cmd_type_offset_bsz =
1572 				build_ctob(td_cmd, td_offset, max_data, td_tag);
1573 
1574 			tx_desc++;
1575 			i++;
1576 
1577 			if (i == tx_ring->count) {
1578 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1579 				i = 0;
1580 			}
1581 
1582 			dma += max_data;
1583 			size -= max_data;
1584 
1585 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1586 			tx_desc->buf_addr = cpu_to_le64(dma);
1587 		}
1588 
1589 		if (likely(!data_len))
1590 			break;
1591 
1592 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1593 							  size, td_tag);
1594 
1595 		tx_desc++;
1596 		i++;
1597 
1598 		if (i == tx_ring->count) {
1599 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1600 			i = 0;
1601 		}
1602 
1603 		size = skb_frag_size(frag);
1604 		data_len -= size;
1605 
1606 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1607 				       DMA_TO_DEVICE);
1608 
1609 		tx_buf = &tx_ring->tx_buf[i];
1610 	}
1611 
1612 	/* record bytecount for BQL */
1613 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1614 
1615 	/* record SW timestamp if HW timestamp is not available */
1616 	skb_tx_timestamp(first->skb);
1617 
1618 	i++;
1619 	if (i == tx_ring->count)
1620 		i = 0;
1621 
1622 	/* write last descriptor with RS and EOP bits */
1623 	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1624 	tx_desc->cmd_type_offset_bsz =
1625 			build_ctob(td_cmd, td_offset, size, td_tag);
1626 
1627 	/* Force memory writes to complete before letting h/w know there
1628 	 * are new descriptors to fetch.
1629 	 *
1630 	 * We also use this memory barrier to make certain all of the
1631 	 * status bits have been updated before next_to_watch is written.
1632 	 */
1633 	wmb();
1634 
1635 	/* set next_to_watch value indicating a packet is present */
1636 	first->next_to_watch = tx_desc;
1637 
1638 	tx_ring->next_to_use = i;
1639 
1640 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1641 
1642 	/* notify HW of packet */
1643 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1644 		writel(i, tx_ring->tail);
1645 	}
1646 
1647 	return;
1648 
1649 dma_error:
1650 	/* clear DMA mappings for failed tx_buf map */
1651 	for (;;) {
1652 		tx_buf = &tx_ring->tx_buf[i];
1653 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1654 		if (tx_buf == first)
1655 			break;
1656 		if (i == 0)
1657 			i = tx_ring->count;
1658 		i--;
1659 	}
1660 
1661 	tx_ring->next_to_use = i;
1662 }
1663 
1664 /**
1665  * ice_tx_csum - Enable Tx checksum offloads
1666  * @first: pointer to the first descriptor
1667  * @off: pointer to struct that holds offload parameters
1668  *
1669  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1670  */
1671 static
1672 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1673 {
1674 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1675 	struct sk_buff *skb = first->skb;
1676 	union {
1677 		struct iphdr *v4;
1678 		struct ipv6hdr *v6;
1679 		unsigned char *hdr;
1680 	} ip;
1681 	union {
1682 		struct tcphdr *tcp;
1683 		unsigned char *hdr;
1684 	} l4;
1685 	__be16 frag_off, protocol;
1686 	unsigned char *exthdr;
1687 	u32 offset, cmd = 0;
1688 	u8 l4_proto = 0;
1689 
1690 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1691 		return 0;
1692 
1693 	ip.hdr = skb_network_header(skb);
1694 	l4.hdr = skb_transport_header(skb);
1695 
1696 	/* compute outer L2 header size */
1697 	l2_len = ip.hdr - skb->data;
1698 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1699 
1700 	if (skb->encapsulation)
1701 		return -1;
1702 
1703 	/* Enable IP checksum offloads */
1704 	protocol = vlan_get_protocol(skb);
1705 	if (protocol == htons(ETH_P_IP)) {
1706 		l4_proto = ip.v4->protocol;
1707 		/* the stack computes the IP header already, the only time we
1708 		 * need the hardware to recompute it is in the case of TSO.
1709 		 */
1710 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1711 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1712 		else
1713 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1714 
1715 	} else if (protocol == htons(ETH_P_IPV6)) {
1716 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1717 		exthdr = ip.hdr + sizeof(*ip.v6);
1718 		l4_proto = ip.v6->nexthdr;
1719 		if (l4.hdr != exthdr)
1720 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1721 					 &frag_off);
1722 	} else {
1723 		return -1;
1724 	}
1725 
1726 	/* compute inner L3 header size */
1727 	l3_len = l4.hdr - ip.hdr;
1728 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1729 
1730 	/* Enable L4 checksum offloads */
1731 	switch (l4_proto) {
1732 	case IPPROTO_TCP:
1733 		/* enable checksum offloads */
1734 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1735 		l4_len = l4.tcp->doff;
1736 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1737 		break;
1738 	case IPPROTO_UDP:
1739 		/* enable UDP checksum offload */
1740 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1741 		l4_len = (sizeof(struct udphdr) >> 2);
1742 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1743 		break;
1744 	case IPPROTO_SCTP:
1745 		/* enable SCTP checksum offload */
1746 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1747 		l4_len = sizeof(struct sctphdr) >> 2;
1748 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1749 		break;
1750 
1751 	default:
1752 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1753 			return -1;
1754 		skb_checksum_help(skb);
1755 		return 0;
1756 	}
1757 
1758 	off->td_cmd |= cmd;
1759 	off->td_offset |= offset;
1760 	return 1;
1761 }
1762 
1763 /**
1764  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1765  * @tx_ring: ring to send buffer on
1766  * @first: pointer to struct ice_tx_buf
1767  *
1768  * Checks the skb and set up correspondingly several generic transmit flags
1769  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1770  *
1771  * Returns error code indicate the frame should be dropped upon error and the
1772  * otherwise returns 0 to indicate the flags has been set properly.
1773  */
1774 static int
1775 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1776 {
1777 	struct sk_buff *skb = first->skb;
1778 	__be16 protocol = skb->protocol;
1779 
1780 	if (protocol == htons(ETH_P_8021Q) &&
1781 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1782 		/* when HW VLAN acceleration is turned off by the user the
1783 		 * stack sets the protocol to 8021q so that the driver
1784 		 * can take any steps required to support the SW only
1785 		 * VLAN handling. In our case the driver doesn't need
1786 		 * to take any further steps so just set the protocol
1787 		 * to the encapsulated ethertype.
1788 		 */
1789 		skb->protocol = vlan_get_protocol(skb);
1790 		return 0;
1791 	}
1792 
1793 	/* if we have a HW VLAN tag being added, default to the HW one */
1794 	if (skb_vlan_tag_present(skb)) {
1795 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1796 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1797 	} else if (protocol == htons(ETH_P_8021Q)) {
1798 		struct vlan_hdr *vhdr, _vhdr;
1799 
1800 		/* for SW VLAN, check the next protocol and store the tag */
1801 		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1802 							     sizeof(_vhdr),
1803 							     &_vhdr);
1804 		if (!vhdr)
1805 			return -EINVAL;
1806 
1807 		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1808 				   ICE_TX_FLAGS_VLAN_S;
1809 		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1810 	}
1811 
1812 	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1813 }
1814 
1815 /**
1816  * ice_tso - computes mss and TSO length to prepare for TSO
1817  * @first: pointer to struct ice_tx_buf
1818  * @off: pointer to struct that holds offload parameters
1819  *
1820  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1821  */
1822 static
1823 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1824 {
1825 	struct sk_buff *skb = first->skb;
1826 	union {
1827 		struct iphdr *v4;
1828 		struct ipv6hdr *v6;
1829 		unsigned char *hdr;
1830 	} ip;
1831 	union {
1832 		struct tcphdr *tcp;
1833 		unsigned char *hdr;
1834 	} l4;
1835 	u64 cd_mss, cd_tso_len;
1836 	u32 paylen, l4_start;
1837 	int err;
1838 
1839 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1840 		return 0;
1841 
1842 	if (!skb_is_gso(skb))
1843 		return 0;
1844 
1845 	err = skb_cow_head(skb, 0);
1846 	if (err < 0)
1847 		return err;
1848 
1849 	/* cppcheck-suppress unreadVariable */
1850 	ip.hdr = skb_network_header(skb);
1851 	l4.hdr = skb_transport_header(skb);
1852 
1853 	/* initialize outer IP header fields */
1854 	if (ip.v4->version == 4) {
1855 		ip.v4->tot_len = 0;
1856 		ip.v4->check = 0;
1857 	} else {
1858 		ip.v6->payload_len = 0;
1859 	}
1860 
1861 	/* determine offset of transport header */
1862 	l4_start = l4.hdr - skb->data;
1863 
1864 	/* remove payload length from checksum */
1865 	paylen = skb->len - l4_start;
1866 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1867 
1868 	/* compute length of segmentation header */
1869 	off->header_len = (l4.tcp->doff * 4) + l4_start;
1870 
1871 	/* update gso_segs and bytecount */
1872 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1873 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1874 
1875 	cd_tso_len = skb->len - off->header_len;
1876 	cd_mss = skb_shinfo(skb)->gso_size;
1877 
1878 	/* record cdesc_qw1 with TSO parameters */
1879 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1880 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1881 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1882 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1883 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1884 	return 1;
1885 }
1886 
1887 /**
1888  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1889  * @size: transmit request size in bytes
1890  *
1891  * Due to hardware alignment restrictions (4K alignment), we need to
1892  * assume that we can have no more than 12K of data per descriptor, even
1893  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1894  * Thus, we need to divide by 12K. But division is slow! Instead,
1895  * we decompose the operation into shifts and one relatively cheap
1896  * multiply operation.
1897  *
1898  * To divide by 12K, we first divide by 4K, then divide by 3:
1899  *     To divide by 4K, shift right by 12 bits
1900  *     To divide by 3, multiply by 85, then divide by 256
1901  *     (Divide by 256 is done by shifting right by 8 bits)
1902  * Finally, we add one to round up. Because 256 isn't an exact multiple of
1903  * 3, we'll underestimate near each multiple of 12K. This is actually more
1904  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1905  * segment. For our purposes this is accurate out to 1M which is orders of
1906  * magnitude greater than our largest possible GSO size.
1907  *
1908  * This would then be implemented as:
1909  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1910  *
1911  * Since multiplication and division are commutative, we can reorder
1912  * operations into:
1913  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1914  */
1915 static unsigned int ice_txd_use_count(unsigned int size)
1916 {
1917 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1918 }
1919 
1920 /**
1921  * ice_xmit_desc_count - calculate number of Tx descriptors needed
1922  * @skb: send buffer
1923  *
1924  * Returns number of data descriptors needed for this skb.
1925  */
1926 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1927 {
1928 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
1929 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1930 	unsigned int count = 0, size = skb_headlen(skb);
1931 
1932 	for (;;) {
1933 		count += ice_txd_use_count(size);
1934 
1935 		if (!nr_frags--)
1936 			break;
1937 
1938 		size = skb_frag_size(frag++);
1939 	}
1940 
1941 	return count;
1942 }
1943 
1944 /**
1945  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
1946  * @skb: send buffer
1947  *
1948  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
1949  * and so we need to figure out the cases where we need to linearize the skb.
1950  *
1951  * For TSO we need to count the TSO header and segment payload separately.
1952  * As such we need to check cases where we have 7 fragments or more as we
1953  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1954  * the segment payload in the first descriptor, and another 7 for the
1955  * fragments.
1956  */
1957 static bool __ice_chk_linearize(struct sk_buff *skb)
1958 {
1959 	const skb_frag_t *frag, *stale;
1960 	int nr_frags, sum;
1961 
1962 	/* no need to check if number of frags is less than 7 */
1963 	nr_frags = skb_shinfo(skb)->nr_frags;
1964 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
1965 		return false;
1966 
1967 	/* We need to walk through the list and validate that each group
1968 	 * of 6 fragments totals at least gso_size.
1969 	 */
1970 	nr_frags -= ICE_MAX_BUF_TXD - 2;
1971 	frag = &skb_shinfo(skb)->frags[0];
1972 
1973 	/* Initialize size to the negative value of gso_size minus 1. We
1974 	 * use this as the worst case scenerio in which the frag ahead
1975 	 * of us only provides one byte which is why we are limited to 6
1976 	 * descriptors for a single transmit as the header and previous
1977 	 * fragment are already consuming 2 descriptors.
1978 	 */
1979 	sum = 1 - skb_shinfo(skb)->gso_size;
1980 
1981 	/* Add size of frags 0 through 4 to create our initial sum */
1982 	sum += skb_frag_size(frag++);
1983 	sum += skb_frag_size(frag++);
1984 	sum += skb_frag_size(frag++);
1985 	sum += skb_frag_size(frag++);
1986 	sum += skb_frag_size(frag++);
1987 
1988 	/* Walk through fragments adding latest fragment, testing it, and
1989 	 * then removing stale fragments from the sum.
1990 	 */
1991 	stale = &skb_shinfo(skb)->frags[0];
1992 	for (;;) {
1993 		sum += skb_frag_size(frag++);
1994 
1995 		/* if sum is negative we failed to make sufficient progress */
1996 		if (sum < 0)
1997 			return true;
1998 
1999 		if (!nr_frags--)
2000 			break;
2001 
2002 		sum -= skb_frag_size(stale++);
2003 	}
2004 
2005 	return false;
2006 }
2007 
2008 /**
2009  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2010  * @skb:      send buffer
2011  * @count:    number of buffers used
2012  *
2013  * Note: Our HW can't scatter-gather more than 8 fragments to build
2014  * a packet on the wire and so we need to figure out the cases where we
2015  * need to linearize the skb.
2016  */
2017 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2018 {
2019 	/* Both TSO and single send will work if count is less than 8 */
2020 	if (likely(count < ICE_MAX_BUF_TXD))
2021 		return false;
2022 
2023 	if (skb_is_gso(skb))
2024 		return __ice_chk_linearize(skb);
2025 
2026 	/* we can support up to 8 data buffers for a single send */
2027 	return count != ICE_MAX_BUF_TXD;
2028 }
2029 
2030 /**
2031  * ice_xmit_frame_ring - Sends buffer on Tx ring
2032  * @skb: send buffer
2033  * @tx_ring: ring to send buffer on
2034  *
2035  * Returns NETDEV_TX_OK if sent, else an error code
2036  */
2037 static netdev_tx_t
2038 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2039 {
2040 	struct ice_tx_offload_params offload = { 0 };
2041 	struct ice_tx_buf *first;
2042 	unsigned int count;
2043 	int tso, csum;
2044 
2045 	count = ice_xmit_desc_count(skb);
2046 	if (ice_chk_linearize(skb, count)) {
2047 		if (__skb_linearize(skb))
2048 			goto out_drop;
2049 		count = ice_txd_use_count(skb->len);
2050 		tx_ring->tx_stats.tx_linearize++;
2051 	}
2052 
2053 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2054 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2055 	 *       + 4 desc gap to avoid the cache line where head is,
2056 	 *       + 1 desc for context descriptor,
2057 	 * otherwise try next time
2058 	 */
2059 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2060 			      ICE_DESCS_FOR_CTX_DESC)) {
2061 		tx_ring->tx_stats.tx_busy++;
2062 		return NETDEV_TX_BUSY;
2063 	}
2064 
2065 	offload.tx_ring = tx_ring;
2066 
2067 	/* record the location of the first descriptor for this packet */
2068 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2069 	first->skb = skb;
2070 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2071 	first->gso_segs = 1;
2072 	first->tx_flags = 0;
2073 
2074 	/* prepare the VLAN tagging flags for Tx */
2075 	if (ice_tx_prepare_vlan_flags(tx_ring, first))
2076 		goto out_drop;
2077 
2078 	/* set up TSO offload */
2079 	tso = ice_tso(first, &offload);
2080 	if (tso < 0)
2081 		goto out_drop;
2082 
2083 	/* always set up Tx checksum offload */
2084 	csum = ice_tx_csum(first, &offload);
2085 	if (csum < 0)
2086 		goto out_drop;
2087 
2088 	if (tso || offload.cd_tunnel_params) {
2089 		struct ice_tx_ctx_desc *cdesc;
2090 		int i = tx_ring->next_to_use;
2091 
2092 		/* grab the next descriptor */
2093 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2094 		i++;
2095 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2096 
2097 		/* setup context descriptor */
2098 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2099 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2100 		cdesc->rsvd = cpu_to_le16(0);
2101 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2102 	}
2103 
2104 	ice_tx_map(tx_ring, first, &offload);
2105 	return NETDEV_TX_OK;
2106 
2107 out_drop:
2108 	dev_kfree_skb_any(skb);
2109 	return NETDEV_TX_OK;
2110 }
2111 
2112 /**
2113  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2114  * @skb: send buffer
2115  * @netdev: network interface device structure
2116  *
2117  * Returns NETDEV_TX_OK if sent, else an error code
2118  */
2119 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2120 {
2121 	struct ice_netdev_priv *np = netdev_priv(netdev);
2122 	struct ice_vsi *vsi = np->vsi;
2123 	struct ice_ring *tx_ring;
2124 
2125 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2126 
2127 	/* hardware can't handle really short frames, hardware padding works
2128 	 * beyond this point
2129 	 */
2130 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2131 		return NETDEV_TX_OK;
2132 
2133 	return ice_xmit_frame_ring(skb, tx_ring);
2134 }
2135