1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include "ice.h" 9 #include "ice_dcb_lib.h" 10 11 #define ICE_RX_HDR_SIZE 256 12 13 /** 14 * ice_unmap_and_free_tx_buf - Release a Tx buffer 15 * @ring: the ring that owns the buffer 16 * @tx_buf: the buffer to free 17 */ 18 static void 19 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 20 { 21 if (tx_buf->skb) { 22 dev_kfree_skb_any(tx_buf->skb); 23 if (dma_unmap_len(tx_buf, len)) 24 dma_unmap_single(ring->dev, 25 dma_unmap_addr(tx_buf, dma), 26 dma_unmap_len(tx_buf, len), 27 DMA_TO_DEVICE); 28 } else if (dma_unmap_len(tx_buf, len)) { 29 dma_unmap_page(ring->dev, 30 dma_unmap_addr(tx_buf, dma), 31 dma_unmap_len(tx_buf, len), 32 DMA_TO_DEVICE); 33 } 34 35 tx_buf->next_to_watch = NULL; 36 tx_buf->skb = NULL; 37 dma_unmap_len_set(tx_buf, len, 0); 38 /* tx_buf must be completely set up in the transmit path */ 39 } 40 41 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 42 { 43 return netdev_get_tx_queue(ring->netdev, ring->q_index); 44 } 45 46 /** 47 * ice_clean_tx_ring - Free any empty Tx buffers 48 * @tx_ring: ring to be cleaned 49 */ 50 void ice_clean_tx_ring(struct ice_ring *tx_ring) 51 { 52 u16 i; 53 54 /* ring already cleared, nothing to do */ 55 if (!tx_ring->tx_buf) 56 return; 57 58 /* Free all the Tx ring sk_buffs */ 59 for (i = 0; i < tx_ring->count; i++) 60 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 61 62 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 63 64 /* Zero out the descriptor ring */ 65 memset(tx_ring->desc, 0, tx_ring->size); 66 67 tx_ring->next_to_use = 0; 68 tx_ring->next_to_clean = 0; 69 70 if (!tx_ring->netdev) 71 return; 72 73 /* cleanup Tx queue statistics */ 74 netdev_tx_reset_queue(txring_txq(tx_ring)); 75 } 76 77 /** 78 * ice_free_tx_ring - Free Tx resources per queue 79 * @tx_ring: Tx descriptor ring for a specific queue 80 * 81 * Free all transmit software resources 82 */ 83 void ice_free_tx_ring(struct ice_ring *tx_ring) 84 { 85 ice_clean_tx_ring(tx_ring); 86 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 87 tx_ring->tx_buf = NULL; 88 89 if (tx_ring->desc) { 90 dmam_free_coherent(tx_ring->dev, tx_ring->size, 91 tx_ring->desc, tx_ring->dma); 92 tx_ring->desc = NULL; 93 } 94 } 95 96 /** 97 * ice_clean_tx_irq - Reclaim resources after transmit completes 98 * @vsi: the VSI we care about 99 * @tx_ring: Tx ring to clean 100 * @napi_budget: Used to determine if we are in netpoll 101 * 102 * Returns true if there's any budget left (e.g. the clean is finished) 103 */ 104 static bool 105 ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, int napi_budget) 106 { 107 unsigned int total_bytes = 0, total_pkts = 0; 108 unsigned int budget = vsi->work_lmt; 109 s16 i = tx_ring->next_to_clean; 110 struct ice_tx_desc *tx_desc; 111 struct ice_tx_buf *tx_buf; 112 113 tx_buf = &tx_ring->tx_buf[i]; 114 tx_desc = ICE_TX_DESC(tx_ring, i); 115 i -= tx_ring->count; 116 117 do { 118 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 119 120 /* if next_to_watch is not set then there is no work pending */ 121 if (!eop_desc) 122 break; 123 124 smp_rmb(); /* prevent any other reads prior to eop_desc */ 125 126 /* if the descriptor isn't done, no work yet to do */ 127 if (!(eop_desc->cmd_type_offset_bsz & 128 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 129 break; 130 131 /* clear next_to_watch to prevent false hangs */ 132 tx_buf->next_to_watch = NULL; 133 134 /* update the statistics for this packet */ 135 total_bytes += tx_buf->bytecount; 136 total_pkts += tx_buf->gso_segs; 137 138 /* free the skb */ 139 napi_consume_skb(tx_buf->skb, napi_budget); 140 141 /* unmap skb header data */ 142 dma_unmap_single(tx_ring->dev, 143 dma_unmap_addr(tx_buf, dma), 144 dma_unmap_len(tx_buf, len), 145 DMA_TO_DEVICE); 146 147 /* clear tx_buf data */ 148 tx_buf->skb = NULL; 149 dma_unmap_len_set(tx_buf, len, 0); 150 151 /* unmap remaining buffers */ 152 while (tx_desc != eop_desc) { 153 tx_buf++; 154 tx_desc++; 155 i++; 156 if (unlikely(!i)) { 157 i -= tx_ring->count; 158 tx_buf = tx_ring->tx_buf; 159 tx_desc = ICE_TX_DESC(tx_ring, 0); 160 } 161 162 /* unmap any remaining paged data */ 163 if (dma_unmap_len(tx_buf, len)) { 164 dma_unmap_page(tx_ring->dev, 165 dma_unmap_addr(tx_buf, dma), 166 dma_unmap_len(tx_buf, len), 167 DMA_TO_DEVICE); 168 dma_unmap_len_set(tx_buf, len, 0); 169 } 170 } 171 172 /* move us one more past the eop_desc for start of next pkt */ 173 tx_buf++; 174 tx_desc++; 175 i++; 176 if (unlikely(!i)) { 177 i -= tx_ring->count; 178 tx_buf = tx_ring->tx_buf; 179 tx_desc = ICE_TX_DESC(tx_ring, 0); 180 } 181 182 prefetch(tx_desc); 183 184 /* update budget accounting */ 185 budget--; 186 } while (likely(budget)); 187 188 i += tx_ring->count; 189 tx_ring->next_to_clean = i; 190 u64_stats_update_begin(&tx_ring->syncp); 191 tx_ring->stats.bytes += total_bytes; 192 tx_ring->stats.pkts += total_pkts; 193 u64_stats_update_end(&tx_ring->syncp); 194 tx_ring->q_vector->tx.total_bytes += total_bytes; 195 tx_ring->q_vector->tx.total_pkts += total_pkts; 196 197 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 198 total_bytes); 199 200 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 201 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 202 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 203 /* Make sure that anybody stopping the queue after this 204 * sees the new next_to_clean. 205 */ 206 smp_mb(); 207 if (__netif_subqueue_stopped(tx_ring->netdev, 208 tx_ring->q_index) && 209 !test_bit(__ICE_DOWN, vsi->state)) { 210 netif_wake_subqueue(tx_ring->netdev, 211 tx_ring->q_index); 212 ++tx_ring->tx_stats.restart_q; 213 } 214 } 215 216 return !!budget; 217 } 218 219 /** 220 * ice_setup_tx_ring - Allocate the Tx descriptors 221 * @tx_ring: the Tx ring to set up 222 * 223 * Return 0 on success, negative on error 224 */ 225 int ice_setup_tx_ring(struct ice_ring *tx_ring) 226 { 227 struct device *dev = tx_ring->dev; 228 229 if (!dev) 230 return -ENOMEM; 231 232 /* warn if we are about to overwrite the pointer */ 233 WARN_ON(tx_ring->tx_buf); 234 tx_ring->tx_buf = 235 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 236 GFP_KERNEL); 237 if (!tx_ring->tx_buf) 238 return -ENOMEM; 239 240 /* round up to nearest page */ 241 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 242 PAGE_SIZE); 243 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 244 GFP_KERNEL); 245 if (!tx_ring->desc) { 246 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 247 tx_ring->size); 248 goto err; 249 } 250 251 tx_ring->next_to_use = 0; 252 tx_ring->next_to_clean = 0; 253 tx_ring->tx_stats.prev_pkt = -1; 254 return 0; 255 256 err: 257 devm_kfree(dev, tx_ring->tx_buf); 258 tx_ring->tx_buf = NULL; 259 return -ENOMEM; 260 } 261 262 /** 263 * ice_clean_rx_ring - Free Rx buffers 264 * @rx_ring: ring to be cleaned 265 */ 266 void ice_clean_rx_ring(struct ice_ring *rx_ring) 267 { 268 struct device *dev = rx_ring->dev; 269 u16 i; 270 271 /* ring already cleared, nothing to do */ 272 if (!rx_ring->rx_buf) 273 return; 274 275 /* Free all the Rx ring sk_buffs */ 276 for (i = 0; i < rx_ring->count; i++) { 277 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 278 279 if (rx_buf->skb) { 280 dev_kfree_skb(rx_buf->skb); 281 rx_buf->skb = NULL; 282 } 283 if (!rx_buf->page) 284 continue; 285 286 /* Invalidate cache lines that may have been written to by 287 * device so that we avoid corrupting memory. 288 */ 289 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 290 rx_buf->page_offset, 291 ICE_RXBUF_2048, DMA_FROM_DEVICE); 292 293 /* free resources associated with mapping */ 294 dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE, 295 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 296 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 297 298 rx_buf->page = NULL; 299 rx_buf->page_offset = 0; 300 } 301 302 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 303 304 /* Zero out the descriptor ring */ 305 memset(rx_ring->desc, 0, rx_ring->size); 306 307 rx_ring->next_to_alloc = 0; 308 rx_ring->next_to_clean = 0; 309 rx_ring->next_to_use = 0; 310 } 311 312 /** 313 * ice_free_rx_ring - Free Rx resources 314 * @rx_ring: ring to clean the resources from 315 * 316 * Free all receive software resources 317 */ 318 void ice_free_rx_ring(struct ice_ring *rx_ring) 319 { 320 ice_clean_rx_ring(rx_ring); 321 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 322 rx_ring->rx_buf = NULL; 323 324 if (rx_ring->desc) { 325 dmam_free_coherent(rx_ring->dev, rx_ring->size, 326 rx_ring->desc, rx_ring->dma); 327 rx_ring->desc = NULL; 328 } 329 } 330 331 /** 332 * ice_setup_rx_ring - Allocate the Rx descriptors 333 * @rx_ring: the Rx ring to set up 334 * 335 * Return 0 on success, negative on error 336 */ 337 int ice_setup_rx_ring(struct ice_ring *rx_ring) 338 { 339 struct device *dev = rx_ring->dev; 340 341 if (!dev) 342 return -ENOMEM; 343 344 /* warn if we are about to overwrite the pointer */ 345 WARN_ON(rx_ring->rx_buf); 346 rx_ring->rx_buf = 347 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 348 GFP_KERNEL); 349 if (!rx_ring->rx_buf) 350 return -ENOMEM; 351 352 /* round up to nearest page */ 353 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 354 PAGE_SIZE); 355 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 356 GFP_KERNEL); 357 if (!rx_ring->desc) { 358 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 359 rx_ring->size); 360 goto err; 361 } 362 363 rx_ring->next_to_use = 0; 364 rx_ring->next_to_clean = 0; 365 return 0; 366 367 err: 368 devm_kfree(dev, rx_ring->rx_buf); 369 rx_ring->rx_buf = NULL; 370 return -ENOMEM; 371 } 372 373 /** 374 * ice_release_rx_desc - Store the new tail and head values 375 * @rx_ring: ring to bump 376 * @val: new head index 377 */ 378 static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val) 379 { 380 u16 prev_ntu = rx_ring->next_to_use; 381 382 rx_ring->next_to_use = val; 383 384 /* update next to alloc since we have filled the ring */ 385 rx_ring->next_to_alloc = val; 386 387 /* QRX_TAIL will be updated with any tail value, but hardware ignores 388 * the lower 3 bits. This makes it so we only bump tail on meaningful 389 * boundaries. Also, this allows us to bump tail on intervals of 8 up to 390 * the budget depending on the current traffic load. 391 */ 392 val &= ~0x7; 393 if (prev_ntu != val) { 394 /* Force memory writes to complete before letting h/w 395 * know there are new descriptors to fetch. (Only 396 * applicable for weak-ordered memory model archs, 397 * such as IA-64). 398 */ 399 wmb(); 400 writel(val, rx_ring->tail); 401 } 402 } 403 404 /** 405 * ice_alloc_mapped_page - recycle or make a new page 406 * @rx_ring: ring to use 407 * @bi: rx_buf struct to modify 408 * 409 * Returns true if the page was successfully allocated or 410 * reused. 411 */ 412 static bool 413 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 414 { 415 struct page *page = bi->page; 416 dma_addr_t dma; 417 418 /* since we are recycling buffers we should seldom need to alloc */ 419 if (likely(page)) { 420 rx_ring->rx_stats.page_reuse_count++; 421 return true; 422 } 423 424 /* alloc new page for storage */ 425 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); 426 if (unlikely(!page)) { 427 rx_ring->rx_stats.alloc_page_failed++; 428 return false; 429 } 430 431 /* map page for use */ 432 dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE, 433 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 434 435 /* if mapping failed free memory back to system since 436 * there isn't much point in holding memory we can't use 437 */ 438 if (dma_mapping_error(rx_ring->dev, dma)) { 439 __free_pages(page, 0); 440 rx_ring->rx_stats.alloc_page_failed++; 441 return false; 442 } 443 444 bi->dma = dma; 445 bi->page = page; 446 bi->page_offset = 0; 447 page_ref_add(page, USHRT_MAX - 1); 448 bi->pagecnt_bias = USHRT_MAX; 449 450 return true; 451 } 452 453 /** 454 * ice_alloc_rx_bufs - Replace used receive buffers 455 * @rx_ring: ring to place buffers on 456 * @cleaned_count: number of buffers to replace 457 * 458 * Returns false if all allocations were successful, true if any fail. Returning 459 * true signals to the caller that we didn't replace cleaned_count buffers and 460 * there is more work to do. 461 * 462 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 463 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 464 * multiple tail writes per call. 465 */ 466 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 467 { 468 union ice_32b_rx_flex_desc *rx_desc; 469 u16 ntu = rx_ring->next_to_use; 470 struct ice_rx_buf *bi; 471 472 /* do nothing if no valid netdev defined */ 473 if (!rx_ring->netdev || !cleaned_count) 474 return false; 475 476 /* get the Rx descriptor and buffer based on next_to_use */ 477 rx_desc = ICE_RX_DESC(rx_ring, ntu); 478 bi = &rx_ring->rx_buf[ntu]; 479 480 do { 481 /* if we fail here, we have work remaining */ 482 if (!ice_alloc_mapped_page(rx_ring, bi)) 483 break; 484 485 /* sync the buffer for use by the device */ 486 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 487 bi->page_offset, 488 ICE_RXBUF_2048, 489 DMA_FROM_DEVICE); 490 491 /* Refresh the desc even if buffer_addrs didn't change 492 * because each write-back erases this info. 493 */ 494 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 495 496 rx_desc++; 497 bi++; 498 ntu++; 499 if (unlikely(ntu == rx_ring->count)) { 500 rx_desc = ICE_RX_DESC(rx_ring, 0); 501 bi = rx_ring->rx_buf; 502 ntu = 0; 503 } 504 505 /* clear the status bits for the next_to_use descriptor */ 506 rx_desc->wb.status_error0 = 0; 507 508 cleaned_count--; 509 } while (cleaned_count); 510 511 if (rx_ring->next_to_use != ntu) 512 ice_release_rx_desc(rx_ring, ntu); 513 514 return !!cleaned_count; 515 } 516 517 /** 518 * ice_page_is_reserved - check if reuse is possible 519 * @page: page struct to check 520 */ 521 static bool ice_page_is_reserved(struct page *page) 522 { 523 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 524 } 525 526 /** 527 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 528 * @rx_buf: Rx buffer to adjust 529 * @size: Size of adjustment 530 * 531 * Update the offset within page so that Rx buf will be ready to be reused. 532 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 533 * so the second half of page assigned to Rx buffer will be used, otherwise 534 * the offset is moved by the @size bytes 535 */ 536 static void 537 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 538 { 539 #if (PAGE_SIZE < 8192) 540 /* flip page offset to other buffer */ 541 rx_buf->page_offset ^= size; 542 #else 543 /* move offset up to the next cache line */ 544 rx_buf->page_offset += size; 545 #endif 546 } 547 548 /** 549 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 550 * @rx_buf: buffer containing the page 551 * 552 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 553 * which will assign the current buffer to the buffer that next_to_alloc is 554 * pointing to; otherwise, the DMA mapping needs to be destroyed and 555 * page freed 556 */ 557 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 558 { 559 #if (PAGE_SIZE >= 8192) 560 unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048; 561 #endif 562 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 563 struct page *page = rx_buf->page; 564 565 /* avoid re-using remote pages */ 566 if (unlikely(ice_page_is_reserved(page))) 567 return false; 568 569 #if (PAGE_SIZE < 8192) 570 /* if we are only owner of page we can reuse it */ 571 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 572 return false; 573 #else 574 if (rx_buf->page_offset > last_offset) 575 return false; 576 #endif /* PAGE_SIZE < 8192) */ 577 578 /* If we have drained the page fragment pool we need to update 579 * the pagecnt_bias and page count so that we fully restock the 580 * number of references the driver holds. 581 */ 582 if (unlikely(pagecnt_bias == 1)) { 583 page_ref_add(page, USHRT_MAX - 1); 584 rx_buf->pagecnt_bias = USHRT_MAX; 585 } 586 587 return true; 588 } 589 590 /** 591 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 592 * @rx_buf: buffer containing page to add 593 * @skb: sk_buff to place the data into 594 * @size: packet length from rx_desc 595 * 596 * This function will add the data contained in rx_buf->page to the skb. 597 * It will just attach the page as a frag to the skb. 598 * The function will then update the page offset. 599 */ 600 static void 601 ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb, 602 unsigned int size) 603 { 604 #if (PAGE_SIZE >= 8192) 605 unsigned int truesize = SKB_DATA_ALIGN(size); 606 #else 607 unsigned int truesize = ICE_RXBUF_2048; 608 #endif 609 610 if (!size) 611 return; 612 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 613 rx_buf->page_offset, size, truesize); 614 615 /* page is being used so we must update the page offset */ 616 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 617 } 618 619 /** 620 * ice_reuse_rx_page - page flip buffer and store it back on the ring 621 * @rx_ring: Rx descriptor ring to store buffers on 622 * @old_buf: donor buffer to have page reused 623 * 624 * Synchronizes page for reuse by the adapter 625 */ 626 static void 627 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 628 { 629 u16 nta = rx_ring->next_to_alloc; 630 struct ice_rx_buf *new_buf; 631 632 new_buf = &rx_ring->rx_buf[nta]; 633 634 /* update, and store next to alloc */ 635 nta++; 636 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 637 638 /* Transfer page from old buffer to new buffer. 639 * Move each member individually to avoid possible store 640 * forwarding stalls and unnecessary copy of skb. 641 */ 642 new_buf->dma = old_buf->dma; 643 new_buf->page = old_buf->page; 644 new_buf->page_offset = old_buf->page_offset; 645 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 646 } 647 648 /** 649 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 650 * @rx_ring: Rx descriptor ring to transact packets on 651 * @skb: skb to be used 652 * @size: size of buffer to add to skb 653 * 654 * This function will pull an Rx buffer from the ring and synchronize it 655 * for use by the CPU. 656 */ 657 static struct ice_rx_buf * 658 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, 659 const unsigned int size) 660 { 661 struct ice_rx_buf *rx_buf; 662 663 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 664 prefetchw(rx_buf->page); 665 *skb = rx_buf->skb; 666 667 if (!size) 668 return rx_buf; 669 /* we are reusing so sync this buffer for CPU use */ 670 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 671 rx_buf->page_offset, size, 672 DMA_FROM_DEVICE); 673 674 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 675 rx_buf->pagecnt_bias--; 676 677 return rx_buf; 678 } 679 680 /** 681 * ice_construct_skb - Allocate skb and populate it 682 * @rx_ring: Rx descriptor ring to transact packets on 683 * @rx_buf: Rx buffer to pull data from 684 * @size: the length of the packet 685 * 686 * This function allocates an skb. It then populates it with the page 687 * data from the current receive descriptor, taking care to set up the 688 * skb correctly. 689 */ 690 static struct sk_buff * 691 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 692 unsigned int size) 693 { 694 void *va = page_address(rx_buf->page) + rx_buf->page_offset; 695 unsigned int headlen; 696 struct sk_buff *skb; 697 698 /* prefetch first cache line of first page */ 699 prefetch(va); 700 #if L1_CACHE_BYTES < 128 701 prefetch((u8 *)va + L1_CACHE_BYTES); 702 #endif /* L1_CACHE_BYTES */ 703 704 /* allocate a skb to store the frags */ 705 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 706 GFP_ATOMIC | __GFP_NOWARN); 707 if (unlikely(!skb)) 708 return NULL; 709 710 skb_record_rx_queue(skb, rx_ring->q_index); 711 /* Determine available headroom for copy */ 712 headlen = size; 713 if (headlen > ICE_RX_HDR_SIZE) 714 headlen = eth_get_headlen(skb->dev, va, ICE_RX_HDR_SIZE); 715 716 /* align pull length to size of long to optimize memcpy performance */ 717 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 718 719 /* if we exhaust the linear part then add what is left as a frag */ 720 size -= headlen; 721 if (size) { 722 #if (PAGE_SIZE >= 8192) 723 unsigned int truesize = SKB_DATA_ALIGN(size); 724 #else 725 unsigned int truesize = ICE_RXBUF_2048; 726 #endif 727 skb_add_rx_frag(skb, 0, rx_buf->page, 728 rx_buf->page_offset + headlen, size, truesize); 729 /* buffer is used by skb, update page_offset */ 730 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 731 } else { 732 /* buffer is unused, reset bias back to rx_buf; data was copied 733 * onto skb's linear part so there's no need for adjusting 734 * page offset and we can reuse this buffer as-is 735 */ 736 rx_buf->pagecnt_bias++; 737 } 738 739 return skb; 740 } 741 742 /** 743 * ice_put_rx_buf - Clean up used buffer and either recycle or free 744 * @rx_ring: Rx descriptor ring to transact packets on 745 * @rx_buf: Rx buffer to pull data from 746 * 747 * This function will clean up the contents of the rx_buf. It will 748 * either recycle the buffer or unmap it and free the associated resources. 749 */ 750 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) 751 { 752 if (!rx_buf) 753 return; 754 755 if (ice_can_reuse_rx_page(rx_buf)) { 756 /* hand second half of page back to the ring */ 757 ice_reuse_rx_page(rx_ring, rx_buf); 758 rx_ring->rx_stats.page_reuse_count++; 759 } else { 760 /* we are not reusing the buffer so unmap it */ 761 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE, 762 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 763 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 764 } 765 766 /* clear contents of buffer_info */ 767 rx_buf->page = NULL; 768 rx_buf->skb = NULL; 769 } 770 771 /** 772 * ice_cleanup_headers - Correct empty headers 773 * @skb: pointer to current skb being fixed 774 * 775 * Also address the case where we are pulling data in on pages only 776 * and as such no data is present in the skb header. 777 * 778 * In addition if skb is not at least 60 bytes we need to pad it so that 779 * it is large enough to qualify as a valid Ethernet frame. 780 * 781 * Returns true if an error was encountered and skb was freed. 782 */ 783 static bool ice_cleanup_headers(struct sk_buff *skb) 784 { 785 /* if eth_skb_pad returns an error the skb was freed */ 786 if (eth_skb_pad(skb)) 787 return true; 788 789 return false; 790 } 791 792 /** 793 * ice_test_staterr - tests bits in Rx descriptor status and error fields 794 * @rx_desc: pointer to receive descriptor (in le64 format) 795 * @stat_err_bits: value to mask 796 * 797 * This function does some fast chicanery in order to return the 798 * value of the mask which is really only used for boolean tests. 799 * The status_error_len doesn't need to be shifted because it begins 800 * at offset zero. 801 */ 802 static bool 803 ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits) 804 { 805 return !!(rx_desc->wb.status_error0 & 806 cpu_to_le16(stat_err_bits)); 807 } 808 809 /** 810 * ice_is_non_eop - process handling of non-EOP buffers 811 * @rx_ring: Rx ring being processed 812 * @rx_desc: Rx descriptor for current buffer 813 * @skb: Current socket buffer containing buffer in progress 814 * 815 * This function updates next to clean. If the buffer is an EOP buffer 816 * this function exits returning false, otherwise it will place the 817 * sk_buff in the next buffer to be chained and return true indicating 818 * that this is in fact a non-EOP buffer. 819 */ 820 static bool 821 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 822 struct sk_buff *skb) 823 { 824 u32 ntc = rx_ring->next_to_clean + 1; 825 826 /* fetch, update, and store next to clean */ 827 ntc = (ntc < rx_ring->count) ? ntc : 0; 828 rx_ring->next_to_clean = ntc; 829 830 prefetch(ICE_RX_DESC(rx_ring, ntc)); 831 832 /* if we are the last buffer then there is nothing else to do */ 833 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 834 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 835 return false; 836 837 /* place skb in next buffer to be received */ 838 rx_ring->rx_buf[ntc].skb = skb; 839 rx_ring->rx_stats.non_eop_descs++; 840 841 return true; 842 } 843 844 /** 845 * ice_ptype_to_htype - get a hash type 846 * @ptype: the ptype value from the descriptor 847 * 848 * Returns a hash type to be used by skb_set_hash 849 */ 850 static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype) 851 { 852 return PKT_HASH_TYPE_NONE; 853 } 854 855 /** 856 * ice_rx_hash - set the hash value in the skb 857 * @rx_ring: descriptor ring 858 * @rx_desc: specific descriptor 859 * @skb: pointer to current skb 860 * @rx_ptype: the ptype value from the descriptor 861 */ 862 static void 863 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 864 struct sk_buff *skb, u8 rx_ptype) 865 { 866 struct ice_32b_rx_flex_desc_nic *nic_mdid; 867 u32 hash; 868 869 if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) 870 return; 871 872 if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) 873 return; 874 875 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 876 hash = le32_to_cpu(nic_mdid->rss_hash); 877 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); 878 } 879 880 /** 881 * ice_rx_csum - Indicate in skb if checksum is good 882 * @vsi: the VSI we care about 883 * @skb: skb currently being received and modified 884 * @rx_desc: the receive descriptor 885 * @ptype: the packet type decoded by hardware 886 * 887 * skb->protocol must be set before this function is called 888 */ 889 static void 890 ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb, 891 union ice_32b_rx_flex_desc *rx_desc, u8 ptype) 892 { 893 struct ice_rx_ptype_decoded decoded; 894 u32 rx_error, rx_status; 895 bool ipv4, ipv6; 896 897 rx_status = le16_to_cpu(rx_desc->wb.status_error0); 898 rx_error = rx_status; 899 900 decoded = ice_decode_rx_desc_ptype(ptype); 901 902 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 903 skb->ip_summed = CHECKSUM_NONE; 904 skb_checksum_none_assert(skb); 905 906 /* check if Rx checksum is enabled */ 907 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 908 return; 909 910 /* check if HW has decoded the packet and checksum */ 911 if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 912 return; 913 914 if (!(decoded.known && decoded.outer_ip)) 915 return; 916 917 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 918 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); 919 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 920 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); 921 922 if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | 923 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) 924 goto checksum_fail; 925 else if (ipv6 && (rx_status & 926 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 927 goto checksum_fail; 928 929 /* check for L4 errors and handle packets that were not able to be 930 * checksummed due to arrival speed 931 */ 932 if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 933 goto checksum_fail; 934 935 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 936 switch (decoded.inner_prot) { 937 case ICE_RX_PTYPE_INNER_PROT_TCP: 938 case ICE_RX_PTYPE_INNER_PROT_UDP: 939 case ICE_RX_PTYPE_INNER_PROT_SCTP: 940 skb->ip_summed = CHECKSUM_UNNECESSARY; 941 default: 942 break; 943 } 944 return; 945 946 checksum_fail: 947 vsi->back->hw_csum_rx_error++; 948 } 949 950 /** 951 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 952 * @rx_ring: Rx descriptor ring packet is being transacted on 953 * @rx_desc: pointer to the EOP Rx descriptor 954 * @skb: pointer to current skb being populated 955 * @ptype: the packet type decoded by hardware 956 * 957 * This function checks the ring, descriptor, and packet information in 958 * order to populate the hash, checksum, VLAN, protocol, and 959 * other fields within the skb. 960 */ 961 static void 962 ice_process_skb_fields(struct ice_ring *rx_ring, 963 union ice_32b_rx_flex_desc *rx_desc, 964 struct sk_buff *skb, u8 ptype) 965 { 966 ice_rx_hash(rx_ring, rx_desc, skb, ptype); 967 968 /* modifies the skb - consumes the enet header */ 969 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 970 971 ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype); 972 } 973 974 /** 975 * ice_receive_skb - Send a completed packet up the stack 976 * @rx_ring: Rx ring in play 977 * @skb: packet to send up 978 * @vlan_tag: VLAN tag for packet 979 * 980 * This function sends the completed packet (via. skb) up the stack using 981 * gro receive functions (with/without VLAN tag) 982 */ 983 static void 984 ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) 985 { 986 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 987 (vlan_tag & VLAN_VID_MASK)) 988 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 989 napi_gro_receive(&rx_ring->q_vector->napi, skb); 990 } 991 992 /** 993 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 994 * @rx_ring: Rx descriptor ring to transact packets on 995 * @budget: Total limit on number of packets to process 996 * 997 * This function provides a "bounce buffer" approach to Rx interrupt 998 * processing. The advantage to this is that on systems that have 999 * expensive overhead for IOMMU access this provides a means of avoiding 1000 * it by maintaining the mapping of the page to the system. 1001 * 1002 * Returns amount of work completed 1003 */ 1004 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1005 { 1006 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1007 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1008 bool failure; 1009 1010 /* start the loop to process Rx packets bounded by 'budget' */ 1011 while (likely(total_rx_pkts < (unsigned int)budget)) { 1012 union ice_32b_rx_flex_desc *rx_desc; 1013 struct ice_rx_buf *rx_buf; 1014 struct sk_buff *skb; 1015 unsigned int size; 1016 u16 stat_err_bits; 1017 u16 vlan_tag = 0; 1018 u8 rx_ptype; 1019 1020 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1021 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1022 1023 /* status_error_len will always be zero for unused descriptors 1024 * because it's cleared in cleanup, and overlaps with hdr_addr 1025 * which is always zero because packet split isn't used, if the 1026 * hardware wrote DD then it will be non-zero 1027 */ 1028 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1029 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1030 break; 1031 1032 /* This memory barrier is needed to keep us from reading 1033 * any other fields out of the rx_desc until we know the 1034 * DD bit is set. 1035 */ 1036 dma_rmb(); 1037 1038 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1039 ICE_RX_FLX_DESC_PKT_LEN_M; 1040 1041 /* retrieve a buffer from the ring */ 1042 rx_buf = ice_get_rx_buf(rx_ring, &skb, size); 1043 1044 if (skb) 1045 ice_add_rx_frag(rx_buf, skb, size); 1046 else 1047 skb = ice_construct_skb(rx_ring, rx_buf, size); 1048 1049 /* exit if we failed to retrieve a buffer */ 1050 if (!skb) { 1051 rx_ring->rx_stats.alloc_buf_failed++; 1052 if (rx_buf) 1053 rx_buf->pagecnt_bias++; 1054 break; 1055 } 1056 1057 ice_put_rx_buf(rx_ring, rx_buf); 1058 cleaned_count++; 1059 1060 /* skip if it is NOP desc */ 1061 if (ice_is_non_eop(rx_ring, rx_desc, skb)) 1062 continue; 1063 1064 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1065 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1066 dev_kfree_skb_any(skb); 1067 continue; 1068 } 1069 1070 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1071 ICE_RX_FLEX_DESC_PTYPE_M; 1072 1073 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1074 if (ice_test_staterr(rx_desc, stat_err_bits)) 1075 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1076 1077 /* correct empty headers and pad skb if needed (to make valid 1078 * ethernet frame 1079 */ 1080 if (ice_cleanup_headers(skb)) { 1081 skb = NULL; 1082 continue; 1083 } 1084 1085 /* probably a little skewed due to removing CRC */ 1086 total_rx_bytes += skb->len; 1087 1088 /* populate checksum, VLAN, and protocol */ 1089 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1090 1091 /* send completed skb up the stack */ 1092 ice_receive_skb(rx_ring, skb, vlan_tag); 1093 1094 /* update budget accounting */ 1095 total_rx_pkts++; 1096 } 1097 1098 /* return up to cleaned_count buffers to hardware */ 1099 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1100 1101 /* update queue and vector specific stats */ 1102 u64_stats_update_begin(&rx_ring->syncp); 1103 rx_ring->stats.pkts += total_rx_pkts; 1104 rx_ring->stats.bytes += total_rx_bytes; 1105 u64_stats_update_end(&rx_ring->syncp); 1106 rx_ring->q_vector->rx.total_pkts += total_rx_pkts; 1107 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1108 1109 /* guarantee a trip back through this routine if there was a failure */ 1110 return failure ? budget : (int)total_rx_pkts; 1111 } 1112 1113 /** 1114 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic 1115 * @port_info: port_info structure containing the current link speed 1116 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine 1117 * @itr: ITR value to update 1118 * 1119 * Calculate how big of an increment should be applied to the ITR value passed 1120 * in based on wmem_default, SKB overhead, Ethernet overhead, and the current 1121 * link speed. 1122 * 1123 * The following is a calculation derived from: 1124 * wmem_default / (size + overhead) = desired_pkts_per_int 1125 * rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate 1126 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1127 * 1128 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1129 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1130 * formula down to: 1131 * 1132 * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24 1133 * ITR = -------------------------------------------- * -------------- 1134 * rate pkt_size + 640 1135 */ 1136 static unsigned int 1137 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info, 1138 unsigned int avg_pkt_size, 1139 unsigned int itr) 1140 { 1141 switch (port_info->phy.link_info.link_speed) { 1142 case ICE_AQ_LINK_SPEED_100GB: 1143 itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24), 1144 avg_pkt_size + 640); 1145 break; 1146 case ICE_AQ_LINK_SPEED_50GB: 1147 itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24), 1148 avg_pkt_size + 640); 1149 break; 1150 case ICE_AQ_LINK_SPEED_40GB: 1151 itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24), 1152 avg_pkt_size + 640); 1153 break; 1154 case ICE_AQ_LINK_SPEED_25GB: 1155 itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24), 1156 avg_pkt_size + 640); 1157 break; 1158 case ICE_AQ_LINK_SPEED_20GB: 1159 itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24), 1160 avg_pkt_size + 640); 1161 break; 1162 case ICE_AQ_LINK_SPEED_10GB: 1163 /* fall through */ 1164 default: 1165 itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24), 1166 avg_pkt_size + 640); 1167 break; 1168 } 1169 1170 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1171 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1172 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1173 } 1174 1175 return itr; 1176 } 1177 1178 /** 1179 * ice_update_itr - update the adaptive ITR value based on statistics 1180 * @q_vector: structure containing interrupt and ring information 1181 * @rc: structure containing ring performance data 1182 * 1183 * Stores a new ITR value based on packets and byte 1184 * counts during the last interrupt. The advantage of per interrupt 1185 * computation is faster updates and more accurate ITR for the current 1186 * traffic pattern. Constants in this function were computed 1187 * based on theoretical maximum wire speed and thresholds were set based 1188 * on testing data as well as attempting to minimize response time 1189 * while increasing bulk throughput. 1190 */ 1191 static void 1192 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) 1193 { 1194 unsigned long next_update = jiffies; 1195 unsigned int packets, bytes, itr; 1196 bool container_is_rx; 1197 1198 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) 1199 return; 1200 1201 /* If itr_countdown is set it means we programmed an ITR within 1202 * the last 4 interrupt cycles. This has a side effect of us 1203 * potentially firing an early interrupt. In order to work around 1204 * this we need to throw out any data received for a few 1205 * interrupts following the update. 1206 */ 1207 if (q_vector->itr_countdown) { 1208 itr = rc->target_itr; 1209 goto clear_counts; 1210 } 1211 1212 container_is_rx = (&q_vector->rx == rc); 1213 /* For Rx we want to push the delay up and default to low latency. 1214 * for Tx we want to pull the delay down and default to high latency. 1215 */ 1216 itr = container_is_rx ? 1217 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : 1218 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; 1219 1220 /* If we didn't update within up to 1 - 2 jiffies we can assume 1221 * that either packets are coming in so slow there hasn't been 1222 * any work, or that there is so much work that NAPI is dealing 1223 * with interrupt moderation and we don't need to do anything. 1224 */ 1225 if (time_after(next_update, rc->next_update)) 1226 goto clear_counts; 1227 1228 packets = rc->total_pkts; 1229 bytes = rc->total_bytes; 1230 1231 if (container_is_rx) { 1232 /* If Rx there are 1 to 4 packets and bytes are less than 1233 * 9000 assume insufficient data to use bulk rate limiting 1234 * approach unless Tx is already in bulk rate limiting. We 1235 * are likely latency driven. 1236 */ 1237 if (packets && packets < 4 && bytes < 9000 && 1238 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { 1239 itr = ICE_ITR_ADAPTIVE_LATENCY; 1240 goto adjust_by_size_and_speed; 1241 } 1242 } else if (packets < 4) { 1243 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1244 * bulk mode and we are receiving 4 or fewer packets just 1245 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1246 * that the Rx can relax. 1247 */ 1248 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && 1249 (q_vector->rx.target_itr & ICE_ITR_MASK) == 1250 ICE_ITR_ADAPTIVE_MAX_USECS) 1251 goto clear_counts; 1252 } else if (packets > 32) { 1253 /* If we have processed over 32 packets in a single interrupt 1254 * for Tx assume we need to switch over to "bulk" mode. 1255 */ 1256 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; 1257 } 1258 1259 /* We have no packets to actually measure against. This means 1260 * either one of the other queues on this vector is active or 1261 * we are a Tx queue doing TSO with too high of an interrupt rate. 1262 * 1263 * Between 4 and 56 we can assume that our current interrupt delay 1264 * is only slightly too low. As such we should increase it by a small 1265 * fixed amount. 1266 */ 1267 if (packets < 56) { 1268 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; 1269 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1270 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1271 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1272 } 1273 goto clear_counts; 1274 } 1275 1276 if (packets <= 256) { 1277 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1278 itr &= ICE_ITR_MASK; 1279 1280 /* Between 56 and 112 is our "goldilocks" zone where we are 1281 * working out "just right". Just report that our current 1282 * ITR is good for us. 1283 */ 1284 if (packets <= 112) 1285 goto clear_counts; 1286 1287 /* If packet count is 128 or greater we are likely looking 1288 * at a slight overrun of the delay we want. Try halving 1289 * our delay to see if that will cut the number of packets 1290 * in half per interrupt. 1291 */ 1292 itr >>= 1; 1293 itr &= ICE_ITR_MASK; 1294 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) 1295 itr = ICE_ITR_ADAPTIVE_MIN_USECS; 1296 1297 goto clear_counts; 1298 } 1299 1300 /* The paths below assume we are dealing with a bulk ITR since 1301 * number of packets is greater than 256. We are just going to have 1302 * to compute a value and try to bring the count under control, 1303 * though for smaller packet sizes there isn't much we can do as 1304 * NAPI polling will likely be kicking in sooner rather than later. 1305 */ 1306 itr = ICE_ITR_ADAPTIVE_BULK; 1307 1308 adjust_by_size_and_speed: 1309 1310 /* based on checks above packets cannot be 0 so division is safe */ 1311 itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info, 1312 bytes / packets, itr); 1313 1314 clear_counts: 1315 /* write back value */ 1316 rc->target_itr = itr; 1317 1318 /* next update should occur within next jiffy */ 1319 rc->next_update = next_update + 1; 1320 1321 rc->total_bytes = 0; 1322 rc->total_pkts = 0; 1323 } 1324 1325 /** 1326 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1327 * @itr_idx: interrupt throttling index 1328 * @itr: interrupt throttling value in usecs 1329 */ 1330 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1331 { 1332 /* The ITR value is reported in microseconds, and the register value is 1333 * recorded in 2 microsecond units. For this reason we only need to 1334 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1335 * granularity as a shift instead of division. The mask makes sure the 1336 * ITR value is never odd so we don't accidentally write into the field 1337 * prior to the ITR field. 1338 */ 1339 itr &= ICE_ITR_MASK; 1340 1341 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1342 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1343 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1344 } 1345 1346 /* The act of updating the ITR will cause it to immediately trigger. In order 1347 * to prevent this from throwing off adaptive update statistics we defer the 1348 * update so that it can only happen so often. So after either Tx or Rx are 1349 * updated we make the adaptive scheme wait until either the ITR completely 1350 * expires via the next_update expiration or we have been through at least 1351 * 3 interrupts. 1352 */ 1353 #define ITR_COUNTDOWN_START 3 1354 1355 /** 1356 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt 1357 * @vsi: the VSI associated with the q_vector 1358 * @q_vector: q_vector for which ITR is being updated and interrupt enabled 1359 */ 1360 static void 1361 ice_update_ena_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 1362 { 1363 struct ice_ring_container *tx = &q_vector->tx; 1364 struct ice_ring_container *rx = &q_vector->rx; 1365 u32 itr_val; 1366 1367 /* when exiting WB_ON_ITR lets set a low ITR value and trigger 1368 * interrupts to expire right away in case we have more work ready to go 1369 * already 1370 */ 1371 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) { 1372 itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS); 1373 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1374 /* set target back to last user set value */ 1375 rx->target_itr = rx->itr_setting; 1376 /* set current to what we just wrote and dynamic if needed */ 1377 rx->current_itr = ICE_WB_ON_ITR_USECS | 1378 (rx->itr_setting & ICE_ITR_DYNAMIC); 1379 /* allow normal interrupt flow to start */ 1380 q_vector->itr_countdown = 0; 1381 return; 1382 } 1383 1384 /* This will do nothing if dynamic updates are not enabled */ 1385 ice_update_itr(q_vector, tx); 1386 ice_update_itr(q_vector, rx); 1387 1388 /* This block of logic allows us to get away with only updating 1389 * one ITR value with each interrupt. The idea is to perform a 1390 * pseudo-lazy update with the following criteria. 1391 * 1392 * 1. Rx is given higher priority than Tx if both are in same state 1393 * 2. If we must reduce an ITR that is given highest priority. 1394 * 3. We then give priority to increasing ITR based on amount. 1395 */ 1396 if (rx->target_itr < rx->current_itr) { 1397 /* Rx ITR needs to be reduced, this is highest priority */ 1398 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1399 rx->current_itr = rx->target_itr; 1400 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1401 } else if ((tx->target_itr < tx->current_itr) || 1402 ((rx->target_itr - rx->current_itr) < 1403 (tx->target_itr - tx->current_itr))) { 1404 /* Tx ITR needs to be reduced, this is second priority 1405 * Tx ITR needs to be increased more than Rx, fourth priority 1406 */ 1407 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); 1408 tx->current_itr = tx->target_itr; 1409 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1410 } else if (rx->current_itr != rx->target_itr) { 1411 /* Rx ITR needs to be increased, third priority */ 1412 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1413 rx->current_itr = rx->target_itr; 1414 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1415 } else { 1416 /* Still have to re-enable the interrupts */ 1417 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1418 if (q_vector->itr_countdown) 1419 q_vector->itr_countdown--; 1420 } 1421 1422 if (!test_bit(__ICE_DOWN, vsi->state)) 1423 wr32(&vsi->back->hw, 1424 GLINT_DYN_CTL(q_vector->reg_idx), 1425 itr_val); 1426 } 1427 1428 /** 1429 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1430 * @vsi: pointer to the VSI structure 1431 * @q_vector: q_vector to set WB_ON_ITR on 1432 * 1433 * We need to tell hardware to write-back completed descriptors even when 1434 * interrupts are disabled. Descriptors will be written back on cache line 1435 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1436 * descriptors may not be written back if they don't fill a cache line until the 1437 * next interrupt. 1438 * 1439 * This sets the write-back frequency to 2 microseconds as that is the minimum 1440 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to 1441 * make sure hardware knows we aren't meddling with the INTENA_M bit. 1442 */ 1443 static void 1444 ice_set_wb_on_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 1445 { 1446 /* already in WB_ON_ITR mode no need to change it */ 1447 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) 1448 return; 1449 1450 if (q_vector->num_ring_rx) 1451 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1452 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1453 ICE_RX_ITR)); 1454 1455 if (q_vector->num_ring_tx) 1456 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1457 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1458 ICE_TX_ITR)); 1459 1460 q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE; 1461 } 1462 1463 /** 1464 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1465 * @napi: napi struct with our devices info in it 1466 * @budget: amount of work driver is allowed to do this pass, in packets 1467 * 1468 * This function will clean all queues associated with a q_vector. 1469 * 1470 * Returns the amount of work done 1471 */ 1472 int ice_napi_poll(struct napi_struct *napi, int budget) 1473 { 1474 struct ice_q_vector *q_vector = 1475 container_of(napi, struct ice_q_vector, napi); 1476 struct ice_vsi *vsi = q_vector->vsi; 1477 bool clean_complete = true; 1478 struct ice_ring *ring; 1479 int budget_per_ring; 1480 int work_done = 0; 1481 1482 /* Since the actual Tx work is minimal, we can give the Tx a larger 1483 * budget and be more aggressive about cleaning up the Tx descriptors. 1484 */ 1485 ice_for_each_ring(ring, q_vector->tx) 1486 if (!ice_clean_tx_irq(vsi, ring, budget)) 1487 clean_complete = false; 1488 1489 /* Handle case where we are called by netpoll with a budget of 0 */ 1490 if (budget <= 0) 1491 return budget; 1492 1493 /* normally we have 1 Rx ring per q_vector */ 1494 if (unlikely(q_vector->num_ring_rx > 1)) 1495 /* We attempt to distribute budget to each Rx queue fairly, but 1496 * don't allow the budget to go below 1 because that would exit 1497 * polling early. 1498 */ 1499 budget_per_ring = max(budget / q_vector->num_ring_rx, 1); 1500 else 1501 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1502 budget_per_ring = budget; 1503 1504 ice_for_each_ring(ring, q_vector->rx) { 1505 int cleaned; 1506 1507 cleaned = ice_clean_rx_irq(ring, budget_per_ring); 1508 work_done += cleaned; 1509 /* if we clean as many as budgeted, we must not be done */ 1510 if (cleaned >= budget_per_ring) 1511 clean_complete = false; 1512 } 1513 1514 /* If work not completed, return budget and polling will return */ 1515 if (!clean_complete) 1516 return budget; 1517 1518 /* Exit the polling mode, but don't re-enable interrupts if stack might 1519 * poll us due to busy-polling 1520 */ 1521 if (likely(napi_complete_done(napi, work_done))) 1522 ice_update_ena_itr(vsi, q_vector); 1523 else 1524 ice_set_wb_on_itr(vsi, q_vector); 1525 1526 return min_t(int, work_done, budget - 1); 1527 } 1528 1529 /* helper function for building cmd/type/offset */ 1530 static __le64 1531 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag) 1532 { 1533 return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | 1534 (td_cmd << ICE_TXD_QW1_CMD_S) | 1535 (td_offset << ICE_TXD_QW1_OFFSET_S) | 1536 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | 1537 (td_tag << ICE_TXD_QW1_L2TAG1_S)); 1538 } 1539 1540 /** 1541 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1542 * @tx_ring: the ring to be checked 1543 * @size: the size buffer we want to assure is available 1544 * 1545 * Returns -EBUSY if a stop is needed, else 0 1546 */ 1547 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1548 { 1549 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1550 /* Memory barrier before checking head and tail */ 1551 smp_mb(); 1552 1553 /* Check again in a case another CPU has just made room available. */ 1554 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1555 return -EBUSY; 1556 1557 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1558 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1559 ++tx_ring->tx_stats.restart_q; 1560 return 0; 1561 } 1562 1563 /** 1564 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1565 * @tx_ring: the ring to be checked 1566 * @size: the size buffer we want to assure is available 1567 * 1568 * Returns 0 if stop is not needed 1569 */ 1570 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1571 { 1572 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1573 return 0; 1574 1575 return __ice_maybe_stop_tx(tx_ring, size); 1576 } 1577 1578 /** 1579 * ice_tx_map - Build the Tx descriptor 1580 * @tx_ring: ring to send buffer on 1581 * @first: first buffer info buffer to use 1582 * @off: pointer to struct that holds offload parameters 1583 * 1584 * This function loops over the skb data pointed to by *first 1585 * and gets a physical address for each memory location and programs 1586 * it and the length into the transmit descriptor. 1587 */ 1588 static void 1589 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1590 struct ice_tx_offload_params *off) 1591 { 1592 u64 td_offset, td_tag, td_cmd; 1593 u16 i = tx_ring->next_to_use; 1594 skb_frag_t *frag; 1595 unsigned int data_len, size; 1596 struct ice_tx_desc *tx_desc; 1597 struct ice_tx_buf *tx_buf; 1598 struct sk_buff *skb; 1599 dma_addr_t dma; 1600 1601 td_tag = off->td_l2tag1; 1602 td_cmd = off->td_cmd; 1603 td_offset = off->td_offset; 1604 skb = first->skb; 1605 1606 data_len = skb->data_len; 1607 size = skb_headlen(skb); 1608 1609 tx_desc = ICE_TX_DESC(tx_ring, i); 1610 1611 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1612 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1613 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1614 ICE_TX_FLAGS_VLAN_S; 1615 } 1616 1617 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1618 1619 tx_buf = first; 1620 1621 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1622 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1623 1624 if (dma_mapping_error(tx_ring->dev, dma)) 1625 goto dma_error; 1626 1627 /* record length, and DMA address */ 1628 dma_unmap_len_set(tx_buf, len, size); 1629 dma_unmap_addr_set(tx_buf, dma, dma); 1630 1631 /* align size to end of page */ 1632 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1633 tx_desc->buf_addr = cpu_to_le64(dma); 1634 1635 /* account for data chunks larger than the hardware 1636 * can handle 1637 */ 1638 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1639 tx_desc->cmd_type_offset_bsz = 1640 build_ctob(td_cmd, td_offset, max_data, td_tag); 1641 1642 tx_desc++; 1643 i++; 1644 1645 if (i == tx_ring->count) { 1646 tx_desc = ICE_TX_DESC(tx_ring, 0); 1647 i = 0; 1648 } 1649 1650 dma += max_data; 1651 size -= max_data; 1652 1653 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1654 tx_desc->buf_addr = cpu_to_le64(dma); 1655 } 1656 1657 if (likely(!data_len)) 1658 break; 1659 1660 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 1661 size, td_tag); 1662 1663 tx_desc++; 1664 i++; 1665 1666 if (i == tx_ring->count) { 1667 tx_desc = ICE_TX_DESC(tx_ring, 0); 1668 i = 0; 1669 } 1670 1671 size = skb_frag_size(frag); 1672 data_len -= size; 1673 1674 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1675 DMA_TO_DEVICE); 1676 1677 tx_buf = &tx_ring->tx_buf[i]; 1678 } 1679 1680 /* record bytecount for BQL */ 1681 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1682 1683 /* record SW timestamp if HW timestamp is not available */ 1684 skb_tx_timestamp(first->skb); 1685 1686 i++; 1687 if (i == tx_ring->count) 1688 i = 0; 1689 1690 /* write last descriptor with RS and EOP bits */ 1691 td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); 1692 tx_desc->cmd_type_offset_bsz = 1693 build_ctob(td_cmd, td_offset, size, td_tag); 1694 1695 /* Force memory writes to complete before letting h/w know there 1696 * are new descriptors to fetch. 1697 * 1698 * We also use this memory barrier to make certain all of the 1699 * status bits have been updated before next_to_watch is written. 1700 */ 1701 wmb(); 1702 1703 /* set next_to_watch value indicating a packet is present */ 1704 first->next_to_watch = tx_desc; 1705 1706 tx_ring->next_to_use = i; 1707 1708 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1709 1710 /* notify HW of packet */ 1711 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1712 writel(i, tx_ring->tail); 1713 } 1714 1715 return; 1716 1717 dma_error: 1718 /* clear DMA mappings for failed tx_buf map */ 1719 for (;;) { 1720 tx_buf = &tx_ring->tx_buf[i]; 1721 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1722 if (tx_buf == first) 1723 break; 1724 if (i == 0) 1725 i = tx_ring->count; 1726 i--; 1727 } 1728 1729 tx_ring->next_to_use = i; 1730 } 1731 1732 /** 1733 * ice_tx_csum - Enable Tx checksum offloads 1734 * @first: pointer to the first descriptor 1735 * @off: pointer to struct that holds offload parameters 1736 * 1737 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1738 */ 1739 static 1740 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1741 { 1742 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1743 struct sk_buff *skb = first->skb; 1744 union { 1745 struct iphdr *v4; 1746 struct ipv6hdr *v6; 1747 unsigned char *hdr; 1748 } ip; 1749 union { 1750 struct tcphdr *tcp; 1751 unsigned char *hdr; 1752 } l4; 1753 __be16 frag_off, protocol; 1754 unsigned char *exthdr; 1755 u32 offset, cmd = 0; 1756 u8 l4_proto = 0; 1757 1758 if (skb->ip_summed != CHECKSUM_PARTIAL) 1759 return 0; 1760 1761 ip.hdr = skb_network_header(skb); 1762 l4.hdr = skb_transport_header(skb); 1763 1764 /* compute outer L2 header size */ 1765 l2_len = ip.hdr - skb->data; 1766 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1767 1768 if (skb->encapsulation) 1769 return -1; 1770 1771 /* Enable IP checksum offloads */ 1772 protocol = vlan_get_protocol(skb); 1773 if (protocol == htons(ETH_P_IP)) { 1774 l4_proto = ip.v4->protocol; 1775 /* the stack computes the IP header already, the only time we 1776 * need the hardware to recompute it is in the case of TSO. 1777 */ 1778 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1779 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1780 else 1781 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1782 1783 } else if (protocol == htons(ETH_P_IPV6)) { 1784 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1785 exthdr = ip.hdr + sizeof(*ip.v6); 1786 l4_proto = ip.v6->nexthdr; 1787 if (l4.hdr != exthdr) 1788 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1789 &frag_off); 1790 } else { 1791 return -1; 1792 } 1793 1794 /* compute inner L3 header size */ 1795 l3_len = l4.hdr - ip.hdr; 1796 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1797 1798 /* Enable L4 checksum offloads */ 1799 switch (l4_proto) { 1800 case IPPROTO_TCP: 1801 /* enable checksum offloads */ 1802 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1803 l4_len = l4.tcp->doff; 1804 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1805 break; 1806 case IPPROTO_UDP: 1807 /* enable UDP checksum offload */ 1808 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1809 l4_len = (sizeof(struct udphdr) >> 2); 1810 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1811 break; 1812 case IPPROTO_SCTP: 1813 /* enable SCTP checksum offload */ 1814 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1815 l4_len = sizeof(struct sctphdr) >> 2; 1816 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1817 break; 1818 1819 default: 1820 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1821 return -1; 1822 skb_checksum_help(skb); 1823 return 0; 1824 } 1825 1826 off->td_cmd |= cmd; 1827 off->td_offset |= offset; 1828 return 1; 1829 } 1830 1831 /** 1832 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1833 * @tx_ring: ring to send buffer on 1834 * @first: pointer to struct ice_tx_buf 1835 * 1836 * Checks the skb and set up correspondingly several generic transmit flags 1837 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1838 * 1839 * Returns error code indicate the frame should be dropped upon error and the 1840 * otherwise returns 0 to indicate the flags has been set properly. 1841 */ 1842 static int 1843 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 1844 { 1845 struct sk_buff *skb = first->skb; 1846 __be16 protocol = skb->protocol; 1847 1848 if (protocol == htons(ETH_P_8021Q) && 1849 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1850 /* when HW VLAN acceleration is turned off by the user the 1851 * stack sets the protocol to 8021q so that the driver 1852 * can take any steps required to support the SW only 1853 * VLAN handling. In our case the driver doesn't need 1854 * to take any further steps so just set the protocol 1855 * to the encapsulated ethertype. 1856 */ 1857 skb->protocol = vlan_get_protocol(skb); 1858 return 0; 1859 } 1860 1861 /* if we have a HW VLAN tag being added, default to the HW one */ 1862 if (skb_vlan_tag_present(skb)) { 1863 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1864 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1865 } else if (protocol == htons(ETH_P_8021Q)) { 1866 struct vlan_hdr *vhdr, _vhdr; 1867 1868 /* for SW VLAN, check the next protocol and store the tag */ 1869 vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN, 1870 sizeof(_vhdr), 1871 &_vhdr); 1872 if (!vhdr) 1873 return -EINVAL; 1874 1875 first->tx_flags |= ntohs(vhdr->h_vlan_TCI) << 1876 ICE_TX_FLAGS_VLAN_S; 1877 first->tx_flags |= ICE_TX_FLAGS_SW_VLAN; 1878 } 1879 1880 return ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1881 } 1882 1883 /** 1884 * ice_tso - computes mss and TSO length to prepare for TSO 1885 * @first: pointer to struct ice_tx_buf 1886 * @off: pointer to struct that holds offload parameters 1887 * 1888 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1889 */ 1890 static 1891 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1892 { 1893 struct sk_buff *skb = first->skb; 1894 union { 1895 struct iphdr *v4; 1896 struct ipv6hdr *v6; 1897 unsigned char *hdr; 1898 } ip; 1899 union { 1900 struct tcphdr *tcp; 1901 unsigned char *hdr; 1902 } l4; 1903 u64 cd_mss, cd_tso_len; 1904 u32 paylen, l4_start; 1905 int err; 1906 1907 if (skb->ip_summed != CHECKSUM_PARTIAL) 1908 return 0; 1909 1910 if (!skb_is_gso(skb)) 1911 return 0; 1912 1913 err = skb_cow_head(skb, 0); 1914 if (err < 0) 1915 return err; 1916 1917 /* cppcheck-suppress unreadVariable */ 1918 ip.hdr = skb_network_header(skb); 1919 l4.hdr = skb_transport_header(skb); 1920 1921 /* initialize outer IP header fields */ 1922 if (ip.v4->version == 4) { 1923 ip.v4->tot_len = 0; 1924 ip.v4->check = 0; 1925 } else { 1926 ip.v6->payload_len = 0; 1927 } 1928 1929 /* determine offset of transport header */ 1930 l4_start = l4.hdr - skb->data; 1931 1932 /* remove payload length from checksum */ 1933 paylen = skb->len - l4_start; 1934 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 1935 1936 /* compute length of segmentation header */ 1937 off->header_len = (l4.tcp->doff * 4) + l4_start; 1938 1939 /* update gso_segs and bytecount */ 1940 first->gso_segs = skb_shinfo(skb)->gso_segs; 1941 first->bytecount += (first->gso_segs - 1) * off->header_len; 1942 1943 cd_tso_len = skb->len - off->header_len; 1944 cd_mss = skb_shinfo(skb)->gso_size; 1945 1946 /* record cdesc_qw1 with TSO parameters */ 1947 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 1948 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 1949 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 1950 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 1951 first->tx_flags |= ICE_TX_FLAGS_TSO; 1952 return 1; 1953 } 1954 1955 /** 1956 * ice_txd_use_count - estimate the number of descriptors needed for Tx 1957 * @size: transmit request size in bytes 1958 * 1959 * Due to hardware alignment restrictions (4K alignment), we need to 1960 * assume that we can have no more than 12K of data per descriptor, even 1961 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 1962 * Thus, we need to divide by 12K. But division is slow! Instead, 1963 * we decompose the operation into shifts and one relatively cheap 1964 * multiply operation. 1965 * 1966 * To divide by 12K, we first divide by 4K, then divide by 3: 1967 * To divide by 4K, shift right by 12 bits 1968 * To divide by 3, multiply by 85, then divide by 256 1969 * (Divide by 256 is done by shifting right by 8 bits) 1970 * Finally, we add one to round up. Because 256 isn't an exact multiple of 1971 * 3, we'll underestimate near each multiple of 12K. This is actually more 1972 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 1973 * segment. For our purposes this is accurate out to 1M which is orders of 1974 * magnitude greater than our largest possible GSO size. 1975 * 1976 * This would then be implemented as: 1977 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 1978 * 1979 * Since multiplication and division are commutative, we can reorder 1980 * operations into: 1981 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 1982 */ 1983 static unsigned int ice_txd_use_count(unsigned int size) 1984 { 1985 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 1986 } 1987 1988 /** 1989 * ice_xmit_desc_count - calculate number of Tx descriptors needed 1990 * @skb: send buffer 1991 * 1992 * Returns number of data descriptors needed for this skb. 1993 */ 1994 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 1995 { 1996 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 1997 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 1998 unsigned int count = 0, size = skb_headlen(skb); 1999 2000 for (;;) { 2001 count += ice_txd_use_count(size); 2002 2003 if (!nr_frags--) 2004 break; 2005 2006 size = skb_frag_size(frag++); 2007 } 2008 2009 return count; 2010 } 2011 2012 /** 2013 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2014 * @skb: send buffer 2015 * 2016 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2017 * and so we need to figure out the cases where we need to linearize the skb. 2018 * 2019 * For TSO we need to count the TSO header and segment payload separately. 2020 * As such we need to check cases where we have 7 fragments or more as we 2021 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2022 * the segment payload in the first descriptor, and another 7 for the 2023 * fragments. 2024 */ 2025 static bool __ice_chk_linearize(struct sk_buff *skb) 2026 { 2027 const skb_frag_t *frag, *stale; 2028 int nr_frags, sum; 2029 2030 /* no need to check if number of frags is less than 7 */ 2031 nr_frags = skb_shinfo(skb)->nr_frags; 2032 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2033 return false; 2034 2035 /* We need to walk through the list and validate that each group 2036 * of 6 fragments totals at least gso_size. 2037 */ 2038 nr_frags -= ICE_MAX_BUF_TXD - 2; 2039 frag = &skb_shinfo(skb)->frags[0]; 2040 2041 /* Initialize size to the negative value of gso_size minus 1. We 2042 * use this as the worst case scenerio in which the frag ahead 2043 * of us only provides one byte which is why we are limited to 6 2044 * descriptors for a single transmit as the header and previous 2045 * fragment are already consuming 2 descriptors. 2046 */ 2047 sum = 1 - skb_shinfo(skb)->gso_size; 2048 2049 /* Add size of frags 0 through 4 to create our initial sum */ 2050 sum += skb_frag_size(frag++); 2051 sum += skb_frag_size(frag++); 2052 sum += skb_frag_size(frag++); 2053 sum += skb_frag_size(frag++); 2054 sum += skb_frag_size(frag++); 2055 2056 /* Walk through fragments adding latest fragment, testing it, and 2057 * then removing stale fragments from the sum. 2058 */ 2059 stale = &skb_shinfo(skb)->frags[0]; 2060 for (;;) { 2061 sum += skb_frag_size(frag++); 2062 2063 /* if sum is negative we failed to make sufficient progress */ 2064 if (sum < 0) 2065 return true; 2066 2067 if (!nr_frags--) 2068 break; 2069 2070 sum -= skb_frag_size(stale++); 2071 } 2072 2073 return false; 2074 } 2075 2076 /** 2077 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2078 * @skb: send buffer 2079 * @count: number of buffers used 2080 * 2081 * Note: Our HW can't scatter-gather more than 8 fragments to build 2082 * a packet on the wire and so we need to figure out the cases where we 2083 * need to linearize the skb. 2084 */ 2085 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2086 { 2087 /* Both TSO and single send will work if count is less than 8 */ 2088 if (likely(count < ICE_MAX_BUF_TXD)) 2089 return false; 2090 2091 if (skb_is_gso(skb)) 2092 return __ice_chk_linearize(skb); 2093 2094 /* we can support up to 8 data buffers for a single send */ 2095 return count != ICE_MAX_BUF_TXD; 2096 } 2097 2098 /** 2099 * ice_xmit_frame_ring - Sends buffer on Tx ring 2100 * @skb: send buffer 2101 * @tx_ring: ring to send buffer on 2102 * 2103 * Returns NETDEV_TX_OK if sent, else an error code 2104 */ 2105 static netdev_tx_t 2106 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2107 { 2108 struct ice_tx_offload_params offload = { 0 }; 2109 struct ice_vsi *vsi = tx_ring->vsi; 2110 struct ice_tx_buf *first; 2111 unsigned int count; 2112 int tso, csum; 2113 2114 count = ice_xmit_desc_count(skb); 2115 if (ice_chk_linearize(skb, count)) { 2116 if (__skb_linearize(skb)) 2117 goto out_drop; 2118 count = ice_txd_use_count(skb->len); 2119 tx_ring->tx_stats.tx_linearize++; 2120 } 2121 2122 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2123 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2124 * + 4 desc gap to avoid the cache line where head is, 2125 * + 1 desc for context descriptor, 2126 * otherwise try next time 2127 */ 2128 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2129 ICE_DESCS_FOR_CTX_DESC)) { 2130 tx_ring->tx_stats.tx_busy++; 2131 return NETDEV_TX_BUSY; 2132 } 2133 2134 offload.tx_ring = tx_ring; 2135 2136 /* record the location of the first descriptor for this packet */ 2137 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2138 first->skb = skb; 2139 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2140 first->gso_segs = 1; 2141 first->tx_flags = 0; 2142 2143 /* prepare the VLAN tagging flags for Tx */ 2144 if (ice_tx_prepare_vlan_flags(tx_ring, first)) 2145 goto out_drop; 2146 2147 /* set up TSO offload */ 2148 tso = ice_tso(first, &offload); 2149 if (tso < 0) 2150 goto out_drop; 2151 2152 /* always set up Tx checksum offload */ 2153 csum = ice_tx_csum(first, &offload); 2154 if (csum < 0) 2155 goto out_drop; 2156 2157 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2158 if (unlikely(skb->priority == TC_PRIO_CONTROL && 2159 vsi->type == ICE_VSI_PF && 2160 vsi->port_info->is_sw_lldp)) 2161 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2162 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2163 ICE_TXD_CTX_QW1_CMD_S); 2164 2165 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2166 struct ice_tx_ctx_desc *cdesc; 2167 int i = tx_ring->next_to_use; 2168 2169 /* grab the next descriptor */ 2170 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2171 i++; 2172 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2173 2174 /* setup context descriptor */ 2175 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2176 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2177 cdesc->rsvd = cpu_to_le16(0); 2178 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2179 } 2180 2181 ice_tx_map(tx_ring, first, &offload); 2182 return NETDEV_TX_OK; 2183 2184 out_drop: 2185 dev_kfree_skb_any(skb); 2186 return NETDEV_TX_OK; 2187 } 2188 2189 /** 2190 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2191 * @skb: send buffer 2192 * @netdev: network interface device structure 2193 * 2194 * Returns NETDEV_TX_OK if sent, else an error code 2195 */ 2196 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2197 { 2198 struct ice_netdev_priv *np = netdev_priv(netdev); 2199 struct ice_vsi *vsi = np->vsi; 2200 struct ice_ring *tx_ring; 2201 2202 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2203 2204 /* hardware can't handle really short frames, hardware padding works 2205 * beyond this point 2206 */ 2207 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2208 return NETDEV_TX_OK; 2209 2210 return ice_xmit_frame_ring(skb, tx_ring); 2211 } 2212