1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/xdp.h> 10 #include "ice_txrx_lib.h" 11 #include "ice_lib.h" 12 #include "ice.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_xsk.h" 15 16 #define ICE_RX_HDR_SIZE 256 17 18 #define FDIR_DESC_RXDID 0x40 19 #define ICE_FDIR_CLEAN_DELAY 10 20 21 /** 22 * ice_prgm_fdir_fltr - Program a Flow Director filter 23 * @vsi: VSI to send dummy packet 24 * @fdir_desc: flow director descriptor 25 * @raw_packet: allocated buffer for flow director 26 */ 27 int 28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 29 u8 *raw_packet) 30 { 31 struct ice_tx_buf *tx_buf, *first; 32 struct ice_fltr_desc *f_desc; 33 struct ice_tx_desc *tx_desc; 34 struct ice_ring *tx_ring; 35 struct device *dev; 36 dma_addr_t dma; 37 u32 td_cmd; 38 u16 i; 39 40 /* VSI and Tx ring */ 41 if (!vsi) 42 return -ENOENT; 43 tx_ring = vsi->tx_rings[0]; 44 if (!tx_ring || !tx_ring->desc) 45 return -ENOENT; 46 dev = tx_ring->dev; 47 48 /* we are using two descriptors to add/del a filter and we can wait */ 49 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 50 if (!i) 51 return -EAGAIN; 52 msleep_interruptible(1); 53 } 54 55 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 56 DMA_TO_DEVICE); 57 58 if (dma_mapping_error(dev, dma)) 59 return -EINVAL; 60 61 /* grab the next descriptor */ 62 i = tx_ring->next_to_use; 63 first = &tx_ring->tx_buf[i]; 64 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 65 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 66 67 i++; 68 i = (i < tx_ring->count) ? i : 0; 69 tx_desc = ICE_TX_DESC(tx_ring, i); 70 tx_buf = &tx_ring->tx_buf[i]; 71 72 i++; 73 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 74 75 memset(tx_buf, 0, sizeof(*tx_buf)); 76 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 77 dma_unmap_addr_set(tx_buf, dma, dma); 78 79 tx_desc->buf_addr = cpu_to_le64(dma); 80 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 81 ICE_TX_DESC_CMD_RE; 82 83 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 84 tx_buf->raw_buf = raw_packet; 85 86 tx_desc->cmd_type_offset_bsz = 87 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 88 89 /* Force memory write to complete before letting h/w know 90 * there are new descriptors to fetch. 91 */ 92 wmb(); 93 94 /* mark the data descriptor to be watched */ 95 first->next_to_watch = tx_desc; 96 97 writel(tx_ring->next_to_use, tx_ring->tail); 98 99 return 0; 100 } 101 102 /** 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer 104 * @ring: the ring that owns the buffer 105 * @tx_buf: the buffer to free 106 */ 107 static void 108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 109 { 110 if (tx_buf->skb) { 111 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 112 devm_kfree(ring->dev, tx_buf->raw_buf); 113 else if (ice_ring_is_xdp(ring)) 114 page_frag_free(tx_buf->raw_buf); 115 else 116 dev_kfree_skb_any(tx_buf->skb); 117 if (dma_unmap_len(tx_buf, len)) 118 dma_unmap_single(ring->dev, 119 dma_unmap_addr(tx_buf, dma), 120 dma_unmap_len(tx_buf, len), 121 DMA_TO_DEVICE); 122 } else if (dma_unmap_len(tx_buf, len)) { 123 dma_unmap_page(ring->dev, 124 dma_unmap_addr(tx_buf, dma), 125 dma_unmap_len(tx_buf, len), 126 DMA_TO_DEVICE); 127 } 128 129 tx_buf->next_to_watch = NULL; 130 tx_buf->skb = NULL; 131 dma_unmap_len_set(tx_buf, len, 0); 132 /* tx_buf must be completely set up in the transmit path */ 133 } 134 135 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 136 { 137 return netdev_get_tx_queue(ring->netdev, ring->q_index); 138 } 139 140 /** 141 * ice_clean_tx_ring - Free any empty Tx buffers 142 * @tx_ring: ring to be cleaned 143 */ 144 void ice_clean_tx_ring(struct ice_ring *tx_ring) 145 { 146 u16 i; 147 148 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 149 ice_xsk_clean_xdp_ring(tx_ring); 150 goto tx_skip_free; 151 } 152 153 /* ring already cleared, nothing to do */ 154 if (!tx_ring->tx_buf) 155 return; 156 157 /* Free all the Tx ring sk_buffs */ 158 for (i = 0; i < tx_ring->count; i++) 159 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 160 161 tx_skip_free: 162 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 163 164 /* Zero out the descriptor ring */ 165 memset(tx_ring->desc, 0, tx_ring->size); 166 167 tx_ring->next_to_use = 0; 168 tx_ring->next_to_clean = 0; 169 170 if (!tx_ring->netdev) 171 return; 172 173 /* cleanup Tx queue statistics */ 174 netdev_tx_reset_queue(txring_txq(tx_ring)); 175 } 176 177 /** 178 * ice_free_tx_ring - Free Tx resources per queue 179 * @tx_ring: Tx descriptor ring for a specific queue 180 * 181 * Free all transmit software resources 182 */ 183 void ice_free_tx_ring(struct ice_ring *tx_ring) 184 { 185 ice_clean_tx_ring(tx_ring); 186 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 187 tx_ring->tx_buf = NULL; 188 189 if (tx_ring->desc) { 190 dmam_free_coherent(tx_ring->dev, tx_ring->size, 191 tx_ring->desc, tx_ring->dma); 192 tx_ring->desc = NULL; 193 } 194 } 195 196 /** 197 * ice_clean_tx_irq - Reclaim resources after transmit completes 198 * @tx_ring: Tx ring to clean 199 * @napi_budget: Used to determine if we are in netpoll 200 * 201 * Returns true if there's any budget left (e.g. the clean is finished) 202 */ 203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) 204 { 205 unsigned int total_bytes = 0, total_pkts = 0; 206 unsigned int budget = ICE_DFLT_IRQ_WORK; 207 struct ice_vsi *vsi = tx_ring->vsi; 208 s16 i = tx_ring->next_to_clean; 209 struct ice_tx_desc *tx_desc; 210 struct ice_tx_buf *tx_buf; 211 212 tx_buf = &tx_ring->tx_buf[i]; 213 tx_desc = ICE_TX_DESC(tx_ring, i); 214 i -= tx_ring->count; 215 216 prefetch(&vsi->state); 217 218 do { 219 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 220 221 /* if next_to_watch is not set then there is no work pending */ 222 if (!eop_desc) 223 break; 224 225 smp_rmb(); /* prevent any other reads prior to eop_desc */ 226 227 /* if the descriptor isn't done, no work yet to do */ 228 if (!(eop_desc->cmd_type_offset_bsz & 229 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 230 break; 231 232 /* clear next_to_watch to prevent false hangs */ 233 tx_buf->next_to_watch = NULL; 234 235 /* update the statistics for this packet */ 236 total_bytes += tx_buf->bytecount; 237 total_pkts += tx_buf->gso_segs; 238 239 if (ice_ring_is_xdp(tx_ring)) 240 page_frag_free(tx_buf->raw_buf); 241 else 242 /* free the skb */ 243 napi_consume_skb(tx_buf->skb, napi_budget); 244 245 /* unmap skb header data */ 246 dma_unmap_single(tx_ring->dev, 247 dma_unmap_addr(tx_buf, dma), 248 dma_unmap_len(tx_buf, len), 249 DMA_TO_DEVICE); 250 251 /* clear tx_buf data */ 252 tx_buf->skb = NULL; 253 dma_unmap_len_set(tx_buf, len, 0); 254 255 /* unmap remaining buffers */ 256 while (tx_desc != eop_desc) { 257 tx_buf++; 258 tx_desc++; 259 i++; 260 if (unlikely(!i)) { 261 i -= tx_ring->count; 262 tx_buf = tx_ring->tx_buf; 263 tx_desc = ICE_TX_DESC(tx_ring, 0); 264 } 265 266 /* unmap any remaining paged data */ 267 if (dma_unmap_len(tx_buf, len)) { 268 dma_unmap_page(tx_ring->dev, 269 dma_unmap_addr(tx_buf, dma), 270 dma_unmap_len(tx_buf, len), 271 DMA_TO_DEVICE); 272 dma_unmap_len_set(tx_buf, len, 0); 273 } 274 } 275 276 /* move us one more past the eop_desc for start of next pkt */ 277 tx_buf++; 278 tx_desc++; 279 i++; 280 if (unlikely(!i)) { 281 i -= tx_ring->count; 282 tx_buf = tx_ring->tx_buf; 283 tx_desc = ICE_TX_DESC(tx_ring, 0); 284 } 285 286 prefetch(tx_desc); 287 288 /* update budget accounting */ 289 budget--; 290 } while (likely(budget)); 291 292 i += tx_ring->count; 293 tx_ring->next_to_clean = i; 294 295 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 296 297 if (ice_ring_is_xdp(tx_ring)) 298 return !!budget; 299 300 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 301 total_bytes); 302 303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 304 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 305 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 306 /* Make sure that anybody stopping the queue after this 307 * sees the new next_to_clean. 308 */ 309 smp_mb(); 310 if (__netif_subqueue_stopped(tx_ring->netdev, 311 tx_ring->q_index) && 312 !test_bit(ICE_VSI_DOWN, vsi->state)) { 313 netif_wake_subqueue(tx_ring->netdev, 314 tx_ring->q_index); 315 ++tx_ring->tx_stats.restart_q; 316 } 317 } 318 319 return !!budget; 320 } 321 322 /** 323 * ice_setup_tx_ring - Allocate the Tx descriptors 324 * @tx_ring: the Tx ring to set up 325 * 326 * Return 0 on success, negative on error 327 */ 328 int ice_setup_tx_ring(struct ice_ring *tx_ring) 329 { 330 struct device *dev = tx_ring->dev; 331 332 if (!dev) 333 return -ENOMEM; 334 335 /* warn if we are about to overwrite the pointer */ 336 WARN_ON(tx_ring->tx_buf); 337 tx_ring->tx_buf = 338 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 339 GFP_KERNEL); 340 if (!tx_ring->tx_buf) 341 return -ENOMEM; 342 343 /* round up to nearest page */ 344 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 345 PAGE_SIZE); 346 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 347 GFP_KERNEL); 348 if (!tx_ring->desc) { 349 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 350 tx_ring->size); 351 goto err; 352 } 353 354 tx_ring->next_to_use = 0; 355 tx_ring->next_to_clean = 0; 356 tx_ring->tx_stats.prev_pkt = -1; 357 return 0; 358 359 err: 360 devm_kfree(dev, tx_ring->tx_buf); 361 tx_ring->tx_buf = NULL; 362 return -ENOMEM; 363 } 364 365 /** 366 * ice_clean_rx_ring - Free Rx buffers 367 * @rx_ring: ring to be cleaned 368 */ 369 void ice_clean_rx_ring(struct ice_ring *rx_ring) 370 { 371 struct device *dev = rx_ring->dev; 372 u16 i; 373 374 /* ring already cleared, nothing to do */ 375 if (!rx_ring->rx_buf) 376 return; 377 378 if (rx_ring->skb) { 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 } 382 383 if (rx_ring->xsk_pool) { 384 ice_xsk_clean_rx_ring(rx_ring); 385 goto rx_skip_free; 386 } 387 388 /* Free all the Rx ring sk_buffs */ 389 for (i = 0; i < rx_ring->count; i++) { 390 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 391 392 if (!rx_buf->page) 393 continue; 394 395 /* Invalidate cache lines that may have been written to by 396 * device so that we avoid corrupting memory. 397 */ 398 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 399 rx_buf->page_offset, 400 rx_ring->rx_buf_len, 401 DMA_FROM_DEVICE); 402 403 /* free resources associated with mapping */ 404 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 405 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 406 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 407 408 rx_buf->page = NULL; 409 rx_buf->page_offset = 0; 410 } 411 412 rx_skip_free: 413 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 414 415 /* Zero out the descriptor ring */ 416 memset(rx_ring->desc, 0, rx_ring->size); 417 418 rx_ring->next_to_alloc = 0; 419 rx_ring->next_to_clean = 0; 420 rx_ring->next_to_use = 0; 421 } 422 423 /** 424 * ice_free_rx_ring - Free Rx resources 425 * @rx_ring: ring to clean the resources from 426 * 427 * Free all receive software resources 428 */ 429 void ice_free_rx_ring(struct ice_ring *rx_ring) 430 { 431 ice_clean_rx_ring(rx_ring); 432 if (rx_ring->vsi->type == ICE_VSI_PF) 433 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 434 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 435 rx_ring->xdp_prog = NULL; 436 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 437 rx_ring->rx_buf = NULL; 438 439 if (rx_ring->desc) { 440 dmam_free_coherent(rx_ring->dev, rx_ring->size, 441 rx_ring->desc, rx_ring->dma); 442 rx_ring->desc = NULL; 443 } 444 } 445 446 /** 447 * ice_setup_rx_ring - Allocate the Rx descriptors 448 * @rx_ring: the Rx ring to set up 449 * 450 * Return 0 on success, negative on error 451 */ 452 int ice_setup_rx_ring(struct ice_ring *rx_ring) 453 { 454 struct device *dev = rx_ring->dev; 455 456 if (!dev) 457 return -ENOMEM; 458 459 /* warn if we are about to overwrite the pointer */ 460 WARN_ON(rx_ring->rx_buf); 461 rx_ring->rx_buf = 462 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 463 GFP_KERNEL); 464 if (!rx_ring->rx_buf) 465 return -ENOMEM; 466 467 /* round up to nearest page */ 468 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 469 PAGE_SIZE); 470 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 471 GFP_KERNEL); 472 if (!rx_ring->desc) { 473 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 474 rx_ring->size); 475 goto err; 476 } 477 478 rx_ring->next_to_use = 0; 479 rx_ring->next_to_clean = 0; 480 481 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 482 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 483 484 if (rx_ring->vsi->type == ICE_VSI_PF && 485 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 486 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 487 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 488 goto err; 489 return 0; 490 491 err: 492 devm_kfree(dev, rx_ring->rx_buf); 493 rx_ring->rx_buf = NULL; 494 return -ENOMEM; 495 } 496 497 static unsigned int 498 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) 499 { 500 unsigned int truesize; 501 502 #if (PAGE_SIZE < 8192) 503 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 504 #else 505 truesize = rx_ring->rx_offset ? 506 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 507 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 508 SKB_DATA_ALIGN(size); 509 #endif 510 return truesize; 511 } 512 513 /** 514 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 515 * @rx_ring: Rx ring 516 * @xdp: xdp_buff used as input to the XDP program 517 * @xdp_prog: XDP program to run 518 * 519 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 520 */ 521 static int 522 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, 523 struct bpf_prog *xdp_prog) 524 { 525 struct ice_ring *xdp_ring; 526 int err, result; 527 u32 act; 528 529 act = bpf_prog_run_xdp(xdp_prog, xdp); 530 switch (act) { 531 case XDP_PASS: 532 return ICE_XDP_PASS; 533 case XDP_TX: 534 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; 535 result = ice_xmit_xdp_buff(xdp, xdp_ring); 536 if (result == ICE_XDP_CONSUMED) 537 goto out_failure; 538 return result; 539 case XDP_REDIRECT: 540 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 541 if (err) 542 goto out_failure; 543 return ICE_XDP_REDIR; 544 default: 545 bpf_warn_invalid_xdp_action(act); 546 fallthrough; 547 case XDP_ABORTED: 548 out_failure: 549 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 550 fallthrough; 551 case XDP_DROP: 552 return ICE_XDP_CONSUMED; 553 } 554 } 555 556 /** 557 * ice_xdp_xmit - submit packets to XDP ring for transmission 558 * @dev: netdev 559 * @n: number of XDP frames to be transmitted 560 * @frames: XDP frames to be transmitted 561 * @flags: transmit flags 562 * 563 * Returns number of frames successfully sent. Failed frames 564 * will be free'ed by XDP core. 565 * For error cases, a negative errno code is returned and no-frames 566 * are transmitted (caller must handle freeing frames). 567 */ 568 int 569 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 570 u32 flags) 571 { 572 struct ice_netdev_priv *np = netdev_priv(dev); 573 unsigned int queue_index = smp_processor_id(); 574 struct ice_vsi *vsi = np->vsi; 575 struct ice_ring *xdp_ring; 576 int nxmit = 0, i; 577 578 if (test_bit(ICE_VSI_DOWN, vsi->state)) 579 return -ENETDOWN; 580 581 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 582 return -ENXIO; 583 584 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 585 return -EINVAL; 586 587 xdp_ring = vsi->xdp_rings[queue_index]; 588 for (i = 0; i < n; i++) { 589 struct xdp_frame *xdpf = frames[i]; 590 int err; 591 592 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 593 if (err != ICE_XDP_TX) 594 break; 595 nxmit++; 596 } 597 598 if (unlikely(flags & XDP_XMIT_FLUSH)) 599 ice_xdp_ring_update_tail(xdp_ring); 600 601 return nxmit; 602 } 603 604 /** 605 * ice_alloc_mapped_page - recycle or make a new page 606 * @rx_ring: ring to use 607 * @bi: rx_buf struct to modify 608 * 609 * Returns true if the page was successfully allocated or 610 * reused. 611 */ 612 static bool 613 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 614 { 615 struct page *page = bi->page; 616 dma_addr_t dma; 617 618 /* since we are recycling buffers we should seldom need to alloc */ 619 if (likely(page)) 620 return true; 621 622 /* alloc new page for storage */ 623 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 624 if (unlikely(!page)) { 625 rx_ring->rx_stats.alloc_page_failed++; 626 return false; 627 } 628 629 /* map page for use */ 630 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 631 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 632 633 /* if mapping failed free memory back to system since 634 * there isn't much point in holding memory we can't use 635 */ 636 if (dma_mapping_error(rx_ring->dev, dma)) { 637 __free_pages(page, ice_rx_pg_order(rx_ring)); 638 rx_ring->rx_stats.alloc_page_failed++; 639 return false; 640 } 641 642 bi->dma = dma; 643 bi->page = page; 644 bi->page_offset = rx_ring->rx_offset; 645 page_ref_add(page, USHRT_MAX - 1); 646 bi->pagecnt_bias = USHRT_MAX; 647 648 return true; 649 } 650 651 /** 652 * ice_alloc_rx_bufs - Replace used receive buffers 653 * @rx_ring: ring to place buffers on 654 * @cleaned_count: number of buffers to replace 655 * 656 * Returns false if all allocations were successful, true if any fail. Returning 657 * true signals to the caller that we didn't replace cleaned_count buffers and 658 * there is more work to do. 659 * 660 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 661 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 662 * multiple tail writes per call. 663 */ 664 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 665 { 666 union ice_32b_rx_flex_desc *rx_desc; 667 u16 ntu = rx_ring->next_to_use; 668 struct ice_rx_buf *bi; 669 670 /* do nothing if no valid netdev defined */ 671 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 672 !cleaned_count) 673 return false; 674 675 /* get the Rx descriptor and buffer based on next_to_use */ 676 rx_desc = ICE_RX_DESC(rx_ring, ntu); 677 bi = &rx_ring->rx_buf[ntu]; 678 679 do { 680 /* if we fail here, we have work remaining */ 681 if (!ice_alloc_mapped_page(rx_ring, bi)) 682 break; 683 684 /* sync the buffer for use by the device */ 685 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 686 bi->page_offset, 687 rx_ring->rx_buf_len, 688 DMA_FROM_DEVICE); 689 690 /* Refresh the desc even if buffer_addrs didn't change 691 * because each write-back erases this info. 692 */ 693 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 694 695 rx_desc++; 696 bi++; 697 ntu++; 698 if (unlikely(ntu == rx_ring->count)) { 699 rx_desc = ICE_RX_DESC(rx_ring, 0); 700 bi = rx_ring->rx_buf; 701 ntu = 0; 702 } 703 704 /* clear the status bits for the next_to_use descriptor */ 705 rx_desc->wb.status_error0 = 0; 706 707 cleaned_count--; 708 } while (cleaned_count); 709 710 if (rx_ring->next_to_use != ntu) 711 ice_release_rx_desc(rx_ring, ntu); 712 713 return !!cleaned_count; 714 } 715 716 /** 717 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 718 * @rx_buf: Rx buffer to adjust 719 * @size: Size of adjustment 720 * 721 * Update the offset within page so that Rx buf will be ready to be reused. 722 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 723 * so the second half of page assigned to Rx buffer will be used, otherwise 724 * the offset is moved by "size" bytes 725 */ 726 static void 727 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 728 { 729 #if (PAGE_SIZE < 8192) 730 /* flip page offset to other buffer */ 731 rx_buf->page_offset ^= size; 732 #else 733 /* move offset up to the next cache line */ 734 rx_buf->page_offset += size; 735 #endif 736 } 737 738 /** 739 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 740 * @rx_buf: buffer containing the page 741 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 742 * 743 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 744 * which will assign the current buffer to the buffer that next_to_alloc is 745 * pointing to; otherwise, the DMA mapping needs to be destroyed and 746 * page freed 747 */ 748 static bool 749 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 750 { 751 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 752 struct page *page = rx_buf->page; 753 754 /* avoid re-using remote and pfmemalloc pages */ 755 if (!dev_page_is_reusable(page)) 756 return false; 757 758 #if (PAGE_SIZE < 8192) 759 /* if we are only owner of page we can reuse it */ 760 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 761 return false; 762 #else 763 #define ICE_LAST_OFFSET \ 764 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 765 if (rx_buf->page_offset > ICE_LAST_OFFSET) 766 return false; 767 #endif /* PAGE_SIZE < 8192) */ 768 769 /* If we have drained the page fragment pool we need to update 770 * the pagecnt_bias and page count so that we fully restock the 771 * number of references the driver holds. 772 */ 773 if (unlikely(pagecnt_bias == 1)) { 774 page_ref_add(page, USHRT_MAX - 1); 775 rx_buf->pagecnt_bias = USHRT_MAX; 776 } 777 778 return true; 779 } 780 781 /** 782 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 783 * @rx_ring: Rx descriptor ring to transact packets on 784 * @rx_buf: buffer containing page to add 785 * @skb: sk_buff to place the data into 786 * @size: packet length from rx_desc 787 * 788 * This function will add the data contained in rx_buf->page to the skb. 789 * It will just attach the page as a frag to the skb. 790 * The function will then update the page offset. 791 */ 792 static void 793 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 794 struct sk_buff *skb, unsigned int size) 795 { 796 #if (PAGE_SIZE >= 8192) 797 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 798 #else 799 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 800 #endif 801 802 if (!size) 803 return; 804 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 805 rx_buf->page_offset, size, truesize); 806 807 /* page is being used so we must update the page offset */ 808 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 809 } 810 811 /** 812 * ice_reuse_rx_page - page flip buffer and store it back on the ring 813 * @rx_ring: Rx descriptor ring to store buffers on 814 * @old_buf: donor buffer to have page reused 815 * 816 * Synchronizes page for reuse by the adapter 817 */ 818 static void 819 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 820 { 821 u16 nta = rx_ring->next_to_alloc; 822 struct ice_rx_buf *new_buf; 823 824 new_buf = &rx_ring->rx_buf[nta]; 825 826 /* update, and store next to alloc */ 827 nta++; 828 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 829 830 /* Transfer page from old buffer to new buffer. 831 * Move each member individually to avoid possible store 832 * forwarding stalls and unnecessary copy of skb. 833 */ 834 new_buf->dma = old_buf->dma; 835 new_buf->page = old_buf->page; 836 new_buf->page_offset = old_buf->page_offset; 837 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 838 } 839 840 /** 841 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 842 * @rx_ring: Rx descriptor ring to transact packets on 843 * @size: size of buffer to add to skb 844 * @rx_buf_pgcnt: rx_buf page refcount 845 * 846 * This function will pull an Rx buffer from the ring and synchronize it 847 * for use by the CPU. 848 */ 849 static struct ice_rx_buf * 850 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size, 851 int *rx_buf_pgcnt) 852 { 853 struct ice_rx_buf *rx_buf; 854 855 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 856 *rx_buf_pgcnt = 857 #if (PAGE_SIZE < 8192) 858 page_count(rx_buf->page); 859 #else 860 0; 861 #endif 862 prefetchw(rx_buf->page); 863 864 if (!size) 865 return rx_buf; 866 /* we are reusing so sync this buffer for CPU use */ 867 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 868 rx_buf->page_offset, size, 869 DMA_FROM_DEVICE); 870 871 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 872 rx_buf->pagecnt_bias--; 873 874 return rx_buf; 875 } 876 877 /** 878 * ice_build_skb - Build skb around an existing buffer 879 * @rx_ring: Rx descriptor ring to transact packets on 880 * @rx_buf: Rx buffer to pull data from 881 * @xdp: xdp_buff pointing to the data 882 * 883 * This function builds an skb around an existing Rx buffer, taking care 884 * to set up the skb correctly and avoid any memcpy overhead. 885 */ 886 static struct sk_buff * 887 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 888 struct xdp_buff *xdp) 889 { 890 u8 metasize = xdp->data - xdp->data_meta; 891 #if (PAGE_SIZE < 8192) 892 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 893 #else 894 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 895 SKB_DATA_ALIGN(xdp->data_end - 896 xdp->data_hard_start); 897 #endif 898 struct sk_buff *skb; 899 900 /* Prefetch first cache line of first page. If xdp->data_meta 901 * is unused, this points exactly as xdp->data, otherwise we 902 * likely have a consumer accessing first few bytes of meta 903 * data, and then actual data. 904 */ 905 net_prefetch(xdp->data_meta); 906 /* build an skb around the page buffer */ 907 skb = build_skb(xdp->data_hard_start, truesize); 908 if (unlikely(!skb)) 909 return NULL; 910 911 /* must to record Rx queue, otherwise OS features such as 912 * symmetric queue won't work 913 */ 914 skb_record_rx_queue(skb, rx_ring->q_index); 915 916 /* update pointers within the skb to store the data */ 917 skb_reserve(skb, xdp->data - xdp->data_hard_start); 918 __skb_put(skb, xdp->data_end - xdp->data); 919 if (metasize) 920 skb_metadata_set(skb, metasize); 921 922 /* buffer is used by skb, update page_offset */ 923 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 924 925 return skb; 926 } 927 928 /** 929 * ice_construct_skb - Allocate skb and populate it 930 * @rx_ring: Rx descriptor ring to transact packets on 931 * @rx_buf: Rx buffer to pull data from 932 * @xdp: xdp_buff pointing to the data 933 * 934 * This function allocates an skb. It then populates it with the page 935 * data from the current receive descriptor, taking care to set up the 936 * skb correctly. 937 */ 938 static struct sk_buff * 939 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 940 struct xdp_buff *xdp) 941 { 942 unsigned int size = xdp->data_end - xdp->data; 943 unsigned int headlen; 944 struct sk_buff *skb; 945 946 /* prefetch first cache line of first page */ 947 net_prefetch(xdp->data); 948 949 /* allocate a skb to store the frags */ 950 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 951 GFP_ATOMIC | __GFP_NOWARN); 952 if (unlikely(!skb)) 953 return NULL; 954 955 skb_record_rx_queue(skb, rx_ring->q_index); 956 /* Determine available headroom for copy */ 957 headlen = size; 958 if (headlen > ICE_RX_HDR_SIZE) 959 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 960 961 /* align pull length to size of long to optimize memcpy performance */ 962 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 963 sizeof(long))); 964 965 /* if we exhaust the linear part then add what is left as a frag */ 966 size -= headlen; 967 if (size) { 968 #if (PAGE_SIZE >= 8192) 969 unsigned int truesize = SKB_DATA_ALIGN(size); 970 #else 971 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 972 #endif 973 skb_add_rx_frag(skb, 0, rx_buf->page, 974 rx_buf->page_offset + headlen, size, truesize); 975 /* buffer is used by skb, update page_offset */ 976 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 977 } else { 978 /* buffer is unused, reset bias back to rx_buf; data was copied 979 * onto skb's linear part so there's no need for adjusting 980 * page offset and we can reuse this buffer as-is 981 */ 982 rx_buf->pagecnt_bias++; 983 } 984 985 return skb; 986 } 987 988 /** 989 * ice_put_rx_buf - Clean up used buffer and either recycle or free 990 * @rx_ring: Rx descriptor ring to transact packets on 991 * @rx_buf: Rx buffer to pull data from 992 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 993 * 994 * This function will update next_to_clean and then clean up the contents 995 * of the rx_buf. It will either recycle the buffer or unmap it and free 996 * the associated resources. 997 */ 998 static void 999 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 1000 int rx_buf_pgcnt) 1001 { 1002 u16 ntc = rx_ring->next_to_clean + 1; 1003 1004 /* fetch, update, and store next to clean */ 1005 ntc = (ntc < rx_ring->count) ? ntc : 0; 1006 rx_ring->next_to_clean = ntc; 1007 1008 if (!rx_buf) 1009 return; 1010 1011 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1012 /* hand second half of page back to the ring */ 1013 ice_reuse_rx_page(rx_ring, rx_buf); 1014 } else { 1015 /* we are not reusing the buffer so unmap it */ 1016 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1017 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1018 ICE_RX_DMA_ATTR); 1019 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1020 } 1021 1022 /* clear contents of buffer_info */ 1023 rx_buf->page = NULL; 1024 } 1025 1026 /** 1027 * ice_is_non_eop - process handling of non-EOP buffers 1028 * @rx_ring: Rx ring being processed 1029 * @rx_desc: Rx descriptor for current buffer 1030 * 1031 * If the buffer is an EOP buffer, this function exits returning false, 1032 * otherwise return true indicating that this is in fact a non-EOP buffer. 1033 */ 1034 static bool 1035 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1036 { 1037 /* if we are the last buffer then there is nothing else to do */ 1038 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1039 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1040 return false; 1041 1042 rx_ring->rx_stats.non_eop_descs++; 1043 1044 return true; 1045 } 1046 1047 /** 1048 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1049 * @rx_ring: Rx descriptor ring to transact packets on 1050 * @budget: Total limit on number of packets to process 1051 * 1052 * This function provides a "bounce buffer" approach to Rx interrupt 1053 * processing. The advantage to this is that on systems that have 1054 * expensive overhead for IOMMU access this provides a means of avoiding 1055 * it by maintaining the mapping of the page to the system. 1056 * 1057 * Returns amount of work completed 1058 */ 1059 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1060 { 1061 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1062 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1063 unsigned int offset = rx_ring->rx_offset; 1064 unsigned int xdp_res, xdp_xmit = 0; 1065 struct sk_buff *skb = rx_ring->skb; 1066 struct bpf_prog *xdp_prog = NULL; 1067 struct xdp_buff xdp; 1068 bool failure; 1069 1070 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1071 #if (PAGE_SIZE < 8192) 1072 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1073 #endif 1074 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1075 1076 /* start the loop to process Rx packets bounded by 'budget' */ 1077 while (likely(total_rx_pkts < (unsigned int)budget)) { 1078 union ice_32b_rx_flex_desc *rx_desc; 1079 struct ice_rx_buf *rx_buf; 1080 unsigned char *hard_start; 1081 unsigned int size; 1082 u16 stat_err_bits; 1083 int rx_buf_pgcnt; 1084 u16 vlan_tag = 0; 1085 u8 rx_ptype; 1086 1087 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1088 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1089 1090 /* status_error_len will always be zero for unused descriptors 1091 * because it's cleared in cleanup, and overlaps with hdr_addr 1092 * which is always zero because packet split isn't used, if the 1093 * hardware wrote DD then it will be non-zero 1094 */ 1095 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1096 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1097 break; 1098 1099 /* This memory barrier is needed to keep us from reading 1100 * any other fields out of the rx_desc until we know the 1101 * DD bit is set. 1102 */ 1103 dma_rmb(); 1104 1105 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1106 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1107 1108 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1109 ctrl_vsi->vf_id != ICE_INVAL_VFID) 1110 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1111 ice_put_rx_buf(rx_ring, NULL, 0); 1112 cleaned_count++; 1113 continue; 1114 } 1115 1116 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1117 ICE_RX_FLX_DESC_PKT_LEN_M; 1118 1119 /* retrieve a buffer from the ring */ 1120 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1121 1122 if (!size) { 1123 xdp.data = NULL; 1124 xdp.data_end = NULL; 1125 xdp.data_hard_start = NULL; 1126 xdp.data_meta = NULL; 1127 goto construct_skb; 1128 } 1129 1130 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1131 offset; 1132 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1133 #if (PAGE_SIZE > 4096) 1134 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1135 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1136 #endif 1137 1138 rcu_read_lock(); 1139 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1140 if (!xdp_prog) { 1141 rcu_read_unlock(); 1142 goto construct_skb; 1143 } 1144 1145 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); 1146 rcu_read_unlock(); 1147 if (!xdp_res) 1148 goto construct_skb; 1149 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1150 xdp_xmit |= xdp_res; 1151 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1152 } else { 1153 rx_buf->pagecnt_bias++; 1154 } 1155 total_rx_bytes += size; 1156 total_rx_pkts++; 1157 1158 cleaned_count++; 1159 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1160 continue; 1161 construct_skb: 1162 if (skb) { 1163 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1164 } else if (likely(xdp.data)) { 1165 if (ice_ring_uses_build_skb(rx_ring)) 1166 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1167 else 1168 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1169 } 1170 /* exit if we failed to retrieve a buffer */ 1171 if (!skb) { 1172 rx_ring->rx_stats.alloc_buf_failed++; 1173 if (rx_buf) 1174 rx_buf->pagecnt_bias++; 1175 break; 1176 } 1177 1178 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1179 cleaned_count++; 1180 1181 /* skip if it is NOP desc */ 1182 if (ice_is_non_eop(rx_ring, rx_desc)) 1183 continue; 1184 1185 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1186 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1187 dev_kfree_skb_any(skb); 1188 continue; 1189 } 1190 1191 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1192 if (ice_test_staterr(rx_desc, stat_err_bits)) 1193 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1194 1195 /* pad the skb if needed, to make a valid ethernet frame */ 1196 if (eth_skb_pad(skb)) { 1197 skb = NULL; 1198 continue; 1199 } 1200 1201 /* probably a little skewed due to removing CRC */ 1202 total_rx_bytes += skb->len; 1203 1204 /* populate checksum, VLAN, and protocol */ 1205 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1206 ICE_RX_FLEX_DESC_PTYPE_M; 1207 1208 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1209 1210 /* send completed skb up the stack */ 1211 ice_receive_skb(rx_ring, skb, vlan_tag); 1212 skb = NULL; 1213 1214 /* update budget accounting */ 1215 total_rx_pkts++; 1216 } 1217 1218 /* return up to cleaned_count buffers to hardware */ 1219 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1220 1221 if (xdp_prog) 1222 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 1223 rx_ring->skb = skb; 1224 1225 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1226 1227 /* guarantee a trip back through this routine if there was a failure */ 1228 return failure ? budget : (int)total_rx_pkts; 1229 } 1230 1231 /** 1232 * ice_net_dim - Update net DIM algorithm 1233 * @q_vector: the vector associated with the interrupt 1234 * 1235 * Create a DIM sample and notify net_dim() so that it can possibly decide 1236 * a new ITR value based on incoming packets, bytes, and interrupts. 1237 * 1238 * This function is a no-op if the ring is not configured to dynamic ITR. 1239 */ 1240 static void ice_net_dim(struct ice_q_vector *q_vector) 1241 { 1242 struct ice_ring_container *tx = &q_vector->tx; 1243 struct ice_ring_container *rx = &q_vector->rx; 1244 1245 if (ITR_IS_DYNAMIC(tx)) { 1246 struct dim_sample dim_sample = {}; 1247 u64 packets = 0, bytes = 0; 1248 struct ice_ring *ring; 1249 1250 ice_for_each_ring(ring, q_vector->tx) { 1251 packets += ring->stats.pkts; 1252 bytes += ring->stats.bytes; 1253 } 1254 1255 dim_update_sample(q_vector->total_events, packets, bytes, 1256 &dim_sample); 1257 1258 net_dim(&tx->dim, dim_sample); 1259 } 1260 1261 if (ITR_IS_DYNAMIC(rx)) { 1262 struct dim_sample dim_sample = {}; 1263 u64 packets = 0, bytes = 0; 1264 struct ice_ring *ring; 1265 1266 ice_for_each_ring(ring, q_vector->rx) { 1267 packets += ring->stats.pkts; 1268 bytes += ring->stats.bytes; 1269 } 1270 1271 dim_update_sample(q_vector->total_events, packets, bytes, 1272 &dim_sample); 1273 1274 net_dim(&rx->dim, dim_sample); 1275 } 1276 } 1277 1278 /** 1279 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1280 * @itr_idx: interrupt throttling index 1281 * @itr: interrupt throttling value in usecs 1282 */ 1283 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1284 { 1285 /* The ITR value is reported in microseconds, and the register value is 1286 * recorded in 2 microsecond units. For this reason we only need to 1287 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1288 * granularity as a shift instead of division. The mask makes sure the 1289 * ITR value is never odd so we don't accidentally write into the field 1290 * prior to the ITR field. 1291 */ 1292 itr &= ICE_ITR_MASK; 1293 1294 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1295 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1296 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1297 } 1298 1299 /** 1300 * ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt 1301 * @q_vector: the vector associated with the interrupt to enable 1302 * 1303 * Update the net_dim() algorithm and re-enable the interrupt associated with 1304 * this vector. 1305 * 1306 * If the VSI is down, the interrupt will not be re-enabled. 1307 */ 1308 static void ice_update_ena_itr(struct ice_q_vector *q_vector) 1309 { 1310 struct ice_vsi *vsi = q_vector->vsi; 1311 bool wb_en = q_vector->wb_on_itr; 1312 u32 itr_val; 1313 1314 if (test_bit(ICE_DOWN, vsi->state)) 1315 return; 1316 1317 /* When exiting WB_ON_ITR, let ITR resume its normal 1318 * interrupts-enabled path. 1319 */ 1320 if (wb_en) 1321 q_vector->wb_on_itr = false; 1322 1323 /* This will do nothing if dynamic updates are not enabled. */ 1324 ice_net_dim(q_vector); 1325 1326 /* net_dim() updates ITR out-of-band using a work item */ 1327 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1328 /* trigger an immediate software interrupt when exiting 1329 * busy poll, to make sure to catch any pending cleanups 1330 * that might have been missed due to interrupt state 1331 * transition. 1332 */ 1333 if (wb_en) { 1334 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1335 GLINT_DYN_CTL_SW_ITR_INDX_M | 1336 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1337 } 1338 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1339 } 1340 1341 /** 1342 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1343 * @q_vector: q_vector to set WB_ON_ITR on 1344 * 1345 * We need to tell hardware to write-back completed descriptors even when 1346 * interrupts are disabled. Descriptors will be written back on cache line 1347 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1348 * descriptors may not be written back if they don't fill a cache line until 1349 * the next interrupt. 1350 * 1351 * This sets the write-back frequency to whatever was set previously for the 1352 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1353 * aren't meddling with the INTENA_M bit. 1354 */ 1355 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1356 { 1357 struct ice_vsi *vsi = q_vector->vsi; 1358 1359 /* already in wb_on_itr mode no need to change it */ 1360 if (q_vector->wb_on_itr) 1361 return; 1362 1363 /* use previously set ITR values for all of the ITR indices by 1364 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1365 * be static in non-adaptive mode (user configured) 1366 */ 1367 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1368 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1369 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1370 GLINT_DYN_CTL_WB_ON_ITR_M); 1371 1372 q_vector->wb_on_itr = true; 1373 } 1374 1375 /** 1376 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1377 * @napi: napi struct with our devices info in it 1378 * @budget: amount of work driver is allowed to do this pass, in packets 1379 * 1380 * This function will clean all queues associated with a q_vector. 1381 * 1382 * Returns the amount of work done 1383 */ 1384 int ice_napi_poll(struct napi_struct *napi, int budget) 1385 { 1386 struct ice_q_vector *q_vector = 1387 container_of(napi, struct ice_q_vector, napi); 1388 bool clean_complete = true; 1389 struct ice_ring *ring; 1390 int budget_per_ring; 1391 int work_done = 0; 1392 1393 /* Since the actual Tx work is minimal, we can give the Tx a larger 1394 * budget and be more aggressive about cleaning up the Tx descriptors. 1395 */ 1396 ice_for_each_ring(ring, q_vector->tx) { 1397 bool wd = ring->xsk_pool ? 1398 ice_clean_tx_irq_zc(ring, budget) : 1399 ice_clean_tx_irq(ring, budget); 1400 1401 if (!wd) 1402 clean_complete = false; 1403 } 1404 1405 /* Handle case where we are called by netpoll with a budget of 0 */ 1406 if (unlikely(budget <= 0)) 1407 return budget; 1408 1409 /* normally we have 1 Rx ring per q_vector */ 1410 if (unlikely(q_vector->num_ring_rx > 1)) 1411 /* We attempt to distribute budget to each Rx queue fairly, but 1412 * don't allow the budget to go below 1 because that would exit 1413 * polling early. 1414 */ 1415 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1416 else 1417 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1418 budget_per_ring = budget; 1419 1420 ice_for_each_ring(ring, q_vector->rx) { 1421 int cleaned; 1422 1423 /* A dedicated path for zero-copy allows making a single 1424 * comparison in the irq context instead of many inside the 1425 * ice_clean_rx_irq function and makes the codebase cleaner. 1426 */ 1427 cleaned = ring->xsk_pool ? 1428 ice_clean_rx_irq_zc(ring, budget_per_ring) : 1429 ice_clean_rx_irq(ring, budget_per_ring); 1430 work_done += cleaned; 1431 /* if we clean as many as budgeted, we must not be done */ 1432 if (cleaned >= budget_per_ring) 1433 clean_complete = false; 1434 } 1435 1436 /* If work not completed, return budget and polling will return */ 1437 if (!clean_complete) { 1438 /* Set the writeback on ITR so partial completions of 1439 * cache-lines will still continue even if we're polling. 1440 */ 1441 ice_set_wb_on_itr(q_vector); 1442 return budget; 1443 } 1444 1445 /* Exit the polling mode, but don't re-enable interrupts if stack might 1446 * poll us due to busy-polling 1447 */ 1448 if (likely(napi_complete_done(napi, work_done))) 1449 ice_update_ena_itr(q_vector); 1450 else 1451 ice_set_wb_on_itr(q_vector); 1452 1453 return min_t(int, work_done, budget - 1); 1454 } 1455 1456 /** 1457 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1458 * @tx_ring: the ring to be checked 1459 * @size: the size buffer we want to assure is available 1460 * 1461 * Returns -EBUSY if a stop is needed, else 0 1462 */ 1463 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1464 { 1465 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1466 /* Memory barrier before checking head and tail */ 1467 smp_mb(); 1468 1469 /* Check again in a case another CPU has just made room available. */ 1470 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1471 return -EBUSY; 1472 1473 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1474 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1475 ++tx_ring->tx_stats.restart_q; 1476 return 0; 1477 } 1478 1479 /** 1480 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1481 * @tx_ring: the ring to be checked 1482 * @size: the size buffer we want to assure is available 1483 * 1484 * Returns 0 if stop is not needed 1485 */ 1486 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1487 { 1488 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1489 return 0; 1490 1491 return __ice_maybe_stop_tx(tx_ring, size); 1492 } 1493 1494 /** 1495 * ice_tx_map - Build the Tx descriptor 1496 * @tx_ring: ring to send buffer on 1497 * @first: first buffer info buffer to use 1498 * @off: pointer to struct that holds offload parameters 1499 * 1500 * This function loops over the skb data pointed to by *first 1501 * and gets a physical address for each memory location and programs 1502 * it and the length into the transmit descriptor. 1503 */ 1504 static void 1505 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1506 struct ice_tx_offload_params *off) 1507 { 1508 u64 td_offset, td_tag, td_cmd; 1509 u16 i = tx_ring->next_to_use; 1510 unsigned int data_len, size; 1511 struct ice_tx_desc *tx_desc; 1512 struct ice_tx_buf *tx_buf; 1513 struct sk_buff *skb; 1514 skb_frag_t *frag; 1515 dma_addr_t dma; 1516 1517 td_tag = off->td_l2tag1; 1518 td_cmd = off->td_cmd; 1519 td_offset = off->td_offset; 1520 skb = first->skb; 1521 1522 data_len = skb->data_len; 1523 size = skb_headlen(skb); 1524 1525 tx_desc = ICE_TX_DESC(tx_ring, i); 1526 1527 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1528 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1529 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1530 ICE_TX_FLAGS_VLAN_S; 1531 } 1532 1533 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1534 1535 tx_buf = first; 1536 1537 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1538 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1539 1540 if (dma_mapping_error(tx_ring->dev, dma)) 1541 goto dma_error; 1542 1543 /* record length, and DMA address */ 1544 dma_unmap_len_set(tx_buf, len, size); 1545 dma_unmap_addr_set(tx_buf, dma, dma); 1546 1547 /* align size to end of page */ 1548 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1549 tx_desc->buf_addr = cpu_to_le64(dma); 1550 1551 /* account for data chunks larger than the hardware 1552 * can handle 1553 */ 1554 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1555 tx_desc->cmd_type_offset_bsz = 1556 ice_build_ctob(td_cmd, td_offset, max_data, 1557 td_tag); 1558 1559 tx_desc++; 1560 i++; 1561 1562 if (i == tx_ring->count) { 1563 tx_desc = ICE_TX_DESC(tx_ring, 0); 1564 i = 0; 1565 } 1566 1567 dma += max_data; 1568 size -= max_data; 1569 1570 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1571 tx_desc->buf_addr = cpu_to_le64(dma); 1572 } 1573 1574 if (likely(!data_len)) 1575 break; 1576 1577 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1578 size, td_tag); 1579 1580 tx_desc++; 1581 i++; 1582 1583 if (i == tx_ring->count) { 1584 tx_desc = ICE_TX_DESC(tx_ring, 0); 1585 i = 0; 1586 } 1587 1588 size = skb_frag_size(frag); 1589 data_len -= size; 1590 1591 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1592 DMA_TO_DEVICE); 1593 1594 tx_buf = &tx_ring->tx_buf[i]; 1595 } 1596 1597 /* record bytecount for BQL */ 1598 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1599 1600 /* record SW timestamp if HW timestamp is not available */ 1601 skb_tx_timestamp(first->skb); 1602 1603 i++; 1604 if (i == tx_ring->count) 1605 i = 0; 1606 1607 /* write last descriptor with RS and EOP bits */ 1608 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1609 tx_desc->cmd_type_offset_bsz = 1610 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1611 1612 /* Force memory writes to complete before letting h/w know there 1613 * are new descriptors to fetch. 1614 * 1615 * We also use this memory barrier to make certain all of the 1616 * status bits have been updated before next_to_watch is written. 1617 */ 1618 wmb(); 1619 1620 /* set next_to_watch value indicating a packet is present */ 1621 first->next_to_watch = tx_desc; 1622 1623 tx_ring->next_to_use = i; 1624 1625 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1626 1627 /* notify HW of packet */ 1628 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1629 writel(i, tx_ring->tail); 1630 1631 return; 1632 1633 dma_error: 1634 /* clear DMA mappings for failed tx_buf map */ 1635 for (;;) { 1636 tx_buf = &tx_ring->tx_buf[i]; 1637 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1638 if (tx_buf == first) 1639 break; 1640 if (i == 0) 1641 i = tx_ring->count; 1642 i--; 1643 } 1644 1645 tx_ring->next_to_use = i; 1646 } 1647 1648 /** 1649 * ice_tx_csum - Enable Tx checksum offloads 1650 * @first: pointer to the first descriptor 1651 * @off: pointer to struct that holds offload parameters 1652 * 1653 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1654 */ 1655 static 1656 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1657 { 1658 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1659 struct sk_buff *skb = first->skb; 1660 union { 1661 struct iphdr *v4; 1662 struct ipv6hdr *v6; 1663 unsigned char *hdr; 1664 } ip; 1665 union { 1666 struct tcphdr *tcp; 1667 unsigned char *hdr; 1668 } l4; 1669 __be16 frag_off, protocol; 1670 unsigned char *exthdr; 1671 u32 offset, cmd = 0; 1672 u8 l4_proto = 0; 1673 1674 if (skb->ip_summed != CHECKSUM_PARTIAL) 1675 return 0; 1676 1677 ip.hdr = skb_network_header(skb); 1678 l4.hdr = skb_transport_header(skb); 1679 1680 /* compute outer L2 header size */ 1681 l2_len = ip.hdr - skb->data; 1682 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1683 1684 protocol = vlan_get_protocol(skb); 1685 1686 if (protocol == htons(ETH_P_IP)) 1687 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1688 else if (protocol == htons(ETH_P_IPV6)) 1689 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1690 1691 if (skb->encapsulation) { 1692 bool gso_ena = false; 1693 u32 tunnel = 0; 1694 1695 /* define outer network header type */ 1696 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1697 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1698 ICE_TX_CTX_EIPT_IPV4 : 1699 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1700 l4_proto = ip.v4->protocol; 1701 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1702 int ret; 1703 1704 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1705 exthdr = ip.hdr + sizeof(*ip.v6); 1706 l4_proto = ip.v6->nexthdr; 1707 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1708 &l4_proto, &frag_off); 1709 if (ret < 0) 1710 return -1; 1711 } 1712 1713 /* define outer transport */ 1714 switch (l4_proto) { 1715 case IPPROTO_UDP: 1716 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1717 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1718 break; 1719 case IPPROTO_GRE: 1720 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1721 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1722 break; 1723 case IPPROTO_IPIP: 1724 case IPPROTO_IPV6: 1725 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1726 l4.hdr = skb_inner_network_header(skb); 1727 break; 1728 default: 1729 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1730 return -1; 1731 1732 skb_checksum_help(skb); 1733 return 0; 1734 } 1735 1736 /* compute outer L3 header size */ 1737 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1738 ICE_TXD_CTX_QW0_EIPLEN_S; 1739 1740 /* switch IP header pointer from outer to inner header */ 1741 ip.hdr = skb_inner_network_header(skb); 1742 1743 /* compute tunnel header size */ 1744 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1745 ICE_TXD_CTX_QW0_NATLEN_S; 1746 1747 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1748 /* indicate if we need to offload outer UDP header */ 1749 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1750 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1751 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1752 1753 /* record tunnel offload values */ 1754 off->cd_tunnel_params |= tunnel; 1755 1756 /* set DTYP=1 to indicate that it's an Tx context descriptor 1757 * in IPsec tunnel mode with Tx offloads in Quad word 1 1758 */ 1759 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1760 1761 /* switch L4 header pointer from outer to inner */ 1762 l4.hdr = skb_inner_transport_header(skb); 1763 l4_proto = 0; 1764 1765 /* reset type as we transition from outer to inner headers */ 1766 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1767 if (ip.v4->version == 4) 1768 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1769 if (ip.v6->version == 6) 1770 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1771 } 1772 1773 /* Enable IP checksum offloads */ 1774 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1775 l4_proto = ip.v4->protocol; 1776 /* the stack computes the IP header already, the only time we 1777 * need the hardware to recompute it is in the case of TSO. 1778 */ 1779 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1780 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1781 else 1782 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1783 1784 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1785 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1786 exthdr = ip.hdr + sizeof(*ip.v6); 1787 l4_proto = ip.v6->nexthdr; 1788 if (l4.hdr != exthdr) 1789 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1790 &frag_off); 1791 } else { 1792 return -1; 1793 } 1794 1795 /* compute inner L3 header size */ 1796 l3_len = l4.hdr - ip.hdr; 1797 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1798 1799 /* Enable L4 checksum offloads */ 1800 switch (l4_proto) { 1801 case IPPROTO_TCP: 1802 /* enable checksum offloads */ 1803 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1804 l4_len = l4.tcp->doff; 1805 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1806 break; 1807 case IPPROTO_UDP: 1808 /* enable UDP checksum offload */ 1809 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1810 l4_len = (sizeof(struct udphdr) >> 2); 1811 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1812 break; 1813 case IPPROTO_SCTP: 1814 /* enable SCTP checksum offload */ 1815 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1816 l4_len = sizeof(struct sctphdr) >> 2; 1817 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1818 break; 1819 1820 default: 1821 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1822 return -1; 1823 skb_checksum_help(skb); 1824 return 0; 1825 } 1826 1827 off->td_cmd |= cmd; 1828 off->td_offset |= offset; 1829 return 1; 1830 } 1831 1832 /** 1833 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1834 * @tx_ring: ring to send buffer on 1835 * @first: pointer to struct ice_tx_buf 1836 * 1837 * Checks the skb and set up correspondingly several generic transmit flags 1838 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1839 */ 1840 static void 1841 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 1842 { 1843 struct sk_buff *skb = first->skb; 1844 1845 /* nothing left to do, software offloaded VLAN */ 1846 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1847 return; 1848 1849 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 1850 * insertion for 802.1AD is not supported 1851 */ 1852 if (skb_vlan_tag_present(skb)) { 1853 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1854 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1855 } 1856 1857 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1858 } 1859 1860 /** 1861 * ice_tso - computes mss and TSO length to prepare for TSO 1862 * @first: pointer to struct ice_tx_buf 1863 * @off: pointer to struct that holds offload parameters 1864 * 1865 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1866 */ 1867 static 1868 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1869 { 1870 struct sk_buff *skb = first->skb; 1871 union { 1872 struct iphdr *v4; 1873 struct ipv6hdr *v6; 1874 unsigned char *hdr; 1875 } ip; 1876 union { 1877 struct tcphdr *tcp; 1878 struct udphdr *udp; 1879 unsigned char *hdr; 1880 } l4; 1881 u64 cd_mss, cd_tso_len; 1882 u32 paylen; 1883 u8 l4_start; 1884 int err; 1885 1886 if (skb->ip_summed != CHECKSUM_PARTIAL) 1887 return 0; 1888 1889 if (!skb_is_gso(skb)) 1890 return 0; 1891 1892 err = skb_cow_head(skb, 0); 1893 if (err < 0) 1894 return err; 1895 1896 /* cppcheck-suppress unreadVariable */ 1897 ip.hdr = skb_network_header(skb); 1898 l4.hdr = skb_transport_header(skb); 1899 1900 /* initialize outer IP header fields */ 1901 if (ip.v4->version == 4) { 1902 ip.v4->tot_len = 0; 1903 ip.v4->check = 0; 1904 } else { 1905 ip.v6->payload_len = 0; 1906 } 1907 1908 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1909 SKB_GSO_GRE_CSUM | 1910 SKB_GSO_IPXIP4 | 1911 SKB_GSO_IPXIP6 | 1912 SKB_GSO_UDP_TUNNEL | 1913 SKB_GSO_UDP_TUNNEL_CSUM)) { 1914 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1915 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1916 l4.udp->len = 0; 1917 1918 /* determine offset of outer transport header */ 1919 l4_start = (u8)(l4.hdr - skb->data); 1920 1921 /* remove payload length from outer checksum */ 1922 paylen = skb->len - l4_start; 1923 csum_replace_by_diff(&l4.udp->check, 1924 (__force __wsum)htonl(paylen)); 1925 } 1926 1927 /* reset pointers to inner headers */ 1928 1929 /* cppcheck-suppress unreadVariable */ 1930 ip.hdr = skb_inner_network_header(skb); 1931 l4.hdr = skb_inner_transport_header(skb); 1932 1933 /* initialize inner IP header fields */ 1934 if (ip.v4->version == 4) { 1935 ip.v4->tot_len = 0; 1936 ip.v4->check = 0; 1937 } else { 1938 ip.v6->payload_len = 0; 1939 } 1940 } 1941 1942 /* determine offset of transport header */ 1943 l4_start = (u8)(l4.hdr - skb->data); 1944 1945 /* remove payload length from checksum */ 1946 paylen = skb->len - l4_start; 1947 1948 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1949 csum_replace_by_diff(&l4.udp->check, 1950 (__force __wsum)htonl(paylen)); 1951 /* compute length of UDP segmentation header */ 1952 off->header_len = (u8)sizeof(l4.udp) + l4_start; 1953 } else { 1954 csum_replace_by_diff(&l4.tcp->check, 1955 (__force __wsum)htonl(paylen)); 1956 /* compute length of TCP segmentation header */ 1957 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 1958 } 1959 1960 /* update gso_segs and bytecount */ 1961 first->gso_segs = skb_shinfo(skb)->gso_segs; 1962 first->bytecount += (first->gso_segs - 1) * off->header_len; 1963 1964 cd_tso_len = skb->len - off->header_len; 1965 cd_mss = skb_shinfo(skb)->gso_size; 1966 1967 /* record cdesc_qw1 with TSO parameters */ 1968 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 1969 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 1970 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 1971 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 1972 first->tx_flags |= ICE_TX_FLAGS_TSO; 1973 return 1; 1974 } 1975 1976 /** 1977 * ice_txd_use_count - estimate the number of descriptors needed for Tx 1978 * @size: transmit request size in bytes 1979 * 1980 * Due to hardware alignment restrictions (4K alignment), we need to 1981 * assume that we can have no more than 12K of data per descriptor, even 1982 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 1983 * Thus, we need to divide by 12K. But division is slow! Instead, 1984 * we decompose the operation into shifts and one relatively cheap 1985 * multiply operation. 1986 * 1987 * To divide by 12K, we first divide by 4K, then divide by 3: 1988 * To divide by 4K, shift right by 12 bits 1989 * To divide by 3, multiply by 85, then divide by 256 1990 * (Divide by 256 is done by shifting right by 8 bits) 1991 * Finally, we add one to round up. Because 256 isn't an exact multiple of 1992 * 3, we'll underestimate near each multiple of 12K. This is actually more 1993 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 1994 * segment. For our purposes this is accurate out to 1M which is orders of 1995 * magnitude greater than our largest possible GSO size. 1996 * 1997 * This would then be implemented as: 1998 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 1999 * 2000 * Since multiplication and division are commutative, we can reorder 2001 * operations into: 2002 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2003 */ 2004 static unsigned int ice_txd_use_count(unsigned int size) 2005 { 2006 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2007 } 2008 2009 /** 2010 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2011 * @skb: send buffer 2012 * 2013 * Returns number of data descriptors needed for this skb. 2014 */ 2015 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2016 { 2017 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2018 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2019 unsigned int count = 0, size = skb_headlen(skb); 2020 2021 for (;;) { 2022 count += ice_txd_use_count(size); 2023 2024 if (!nr_frags--) 2025 break; 2026 2027 size = skb_frag_size(frag++); 2028 } 2029 2030 return count; 2031 } 2032 2033 /** 2034 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2035 * @skb: send buffer 2036 * 2037 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2038 * and so we need to figure out the cases where we need to linearize the skb. 2039 * 2040 * For TSO we need to count the TSO header and segment payload separately. 2041 * As such we need to check cases where we have 7 fragments or more as we 2042 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2043 * the segment payload in the first descriptor, and another 7 for the 2044 * fragments. 2045 */ 2046 static bool __ice_chk_linearize(struct sk_buff *skb) 2047 { 2048 const skb_frag_t *frag, *stale; 2049 int nr_frags, sum; 2050 2051 /* no need to check if number of frags is less than 7 */ 2052 nr_frags = skb_shinfo(skb)->nr_frags; 2053 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2054 return false; 2055 2056 /* We need to walk through the list and validate that each group 2057 * of 6 fragments totals at least gso_size. 2058 */ 2059 nr_frags -= ICE_MAX_BUF_TXD - 2; 2060 frag = &skb_shinfo(skb)->frags[0]; 2061 2062 /* Initialize size to the negative value of gso_size minus 1. We 2063 * use this as the worst case scenario in which the frag ahead 2064 * of us only provides one byte which is why we are limited to 6 2065 * descriptors for a single transmit as the header and previous 2066 * fragment are already consuming 2 descriptors. 2067 */ 2068 sum = 1 - skb_shinfo(skb)->gso_size; 2069 2070 /* Add size of frags 0 through 4 to create our initial sum */ 2071 sum += skb_frag_size(frag++); 2072 sum += skb_frag_size(frag++); 2073 sum += skb_frag_size(frag++); 2074 sum += skb_frag_size(frag++); 2075 sum += skb_frag_size(frag++); 2076 2077 /* Walk through fragments adding latest fragment, testing it, and 2078 * then removing stale fragments from the sum. 2079 */ 2080 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2081 int stale_size = skb_frag_size(stale); 2082 2083 sum += skb_frag_size(frag++); 2084 2085 /* The stale fragment may present us with a smaller 2086 * descriptor than the actual fragment size. To account 2087 * for that we need to remove all the data on the front and 2088 * figure out what the remainder would be in the last 2089 * descriptor associated with the fragment. 2090 */ 2091 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2092 int align_pad = -(skb_frag_off(stale)) & 2093 (ICE_MAX_READ_REQ_SIZE - 1); 2094 2095 sum -= align_pad; 2096 stale_size -= align_pad; 2097 2098 do { 2099 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2100 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2101 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2102 } 2103 2104 /* if sum is negative we failed to make sufficient progress */ 2105 if (sum < 0) 2106 return true; 2107 2108 if (!nr_frags--) 2109 break; 2110 2111 sum -= stale_size; 2112 } 2113 2114 return false; 2115 } 2116 2117 /** 2118 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2119 * @skb: send buffer 2120 * @count: number of buffers used 2121 * 2122 * Note: Our HW can't scatter-gather more than 8 fragments to build 2123 * a packet on the wire and so we need to figure out the cases where we 2124 * need to linearize the skb. 2125 */ 2126 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2127 { 2128 /* Both TSO and single send will work if count is less than 8 */ 2129 if (likely(count < ICE_MAX_BUF_TXD)) 2130 return false; 2131 2132 if (skb_is_gso(skb)) 2133 return __ice_chk_linearize(skb); 2134 2135 /* we can support up to 8 data buffers for a single send */ 2136 return count != ICE_MAX_BUF_TXD; 2137 } 2138 2139 /** 2140 * ice_xmit_frame_ring - Sends buffer on Tx ring 2141 * @skb: send buffer 2142 * @tx_ring: ring to send buffer on 2143 * 2144 * Returns NETDEV_TX_OK if sent, else an error code 2145 */ 2146 static netdev_tx_t 2147 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2148 { 2149 struct ice_tx_offload_params offload = { 0 }; 2150 struct ice_vsi *vsi = tx_ring->vsi; 2151 struct ice_tx_buf *first; 2152 struct ethhdr *eth; 2153 unsigned int count; 2154 int tso, csum; 2155 2156 count = ice_xmit_desc_count(skb); 2157 if (ice_chk_linearize(skb, count)) { 2158 if (__skb_linearize(skb)) 2159 goto out_drop; 2160 count = ice_txd_use_count(skb->len); 2161 tx_ring->tx_stats.tx_linearize++; 2162 } 2163 2164 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2165 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2166 * + 4 desc gap to avoid the cache line where head is, 2167 * + 1 desc for context descriptor, 2168 * otherwise try next time 2169 */ 2170 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2171 ICE_DESCS_FOR_CTX_DESC)) { 2172 tx_ring->tx_stats.tx_busy++; 2173 return NETDEV_TX_BUSY; 2174 } 2175 2176 offload.tx_ring = tx_ring; 2177 2178 /* record the location of the first descriptor for this packet */ 2179 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2180 first->skb = skb; 2181 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2182 first->gso_segs = 1; 2183 first->tx_flags = 0; 2184 2185 /* prepare the VLAN tagging flags for Tx */ 2186 ice_tx_prepare_vlan_flags(tx_ring, first); 2187 2188 /* set up TSO offload */ 2189 tso = ice_tso(first, &offload); 2190 if (tso < 0) 2191 goto out_drop; 2192 2193 /* always set up Tx checksum offload */ 2194 csum = ice_tx_csum(first, &offload); 2195 if (csum < 0) 2196 goto out_drop; 2197 2198 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2199 eth = (struct ethhdr *)skb_mac_header(skb); 2200 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2201 eth->h_proto == htons(ETH_P_LLDP)) && 2202 vsi->type == ICE_VSI_PF && 2203 vsi->port_info->qos_cfg.is_sw_lldp)) 2204 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2205 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2206 ICE_TXD_CTX_QW1_CMD_S); 2207 2208 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2209 struct ice_tx_ctx_desc *cdesc; 2210 u16 i = tx_ring->next_to_use; 2211 2212 /* grab the next descriptor */ 2213 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2214 i++; 2215 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2216 2217 /* setup context descriptor */ 2218 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2219 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2220 cdesc->rsvd = cpu_to_le16(0); 2221 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2222 } 2223 2224 ice_tx_map(tx_ring, first, &offload); 2225 return NETDEV_TX_OK; 2226 2227 out_drop: 2228 dev_kfree_skb_any(skb); 2229 return NETDEV_TX_OK; 2230 } 2231 2232 /** 2233 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2234 * @skb: send buffer 2235 * @netdev: network interface device structure 2236 * 2237 * Returns NETDEV_TX_OK if sent, else an error code 2238 */ 2239 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2240 { 2241 struct ice_netdev_priv *np = netdev_priv(netdev); 2242 struct ice_vsi *vsi = np->vsi; 2243 struct ice_ring *tx_ring; 2244 2245 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2246 2247 /* hardware can't handle really short frames, hardware padding works 2248 * beyond this point 2249 */ 2250 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2251 return NETDEV_TX_OK; 2252 2253 return ice_xmit_frame_ring(skb, tx_ring); 2254 } 2255 2256 /** 2257 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2258 * @tx_ring: tx_ring to clean 2259 */ 2260 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) 2261 { 2262 struct ice_vsi *vsi = tx_ring->vsi; 2263 s16 i = tx_ring->next_to_clean; 2264 int budget = ICE_DFLT_IRQ_WORK; 2265 struct ice_tx_desc *tx_desc; 2266 struct ice_tx_buf *tx_buf; 2267 2268 tx_buf = &tx_ring->tx_buf[i]; 2269 tx_desc = ICE_TX_DESC(tx_ring, i); 2270 i -= tx_ring->count; 2271 2272 do { 2273 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2274 2275 /* if next_to_watch is not set then there is no pending work */ 2276 if (!eop_desc) 2277 break; 2278 2279 /* prevent any other reads prior to eop_desc */ 2280 smp_rmb(); 2281 2282 /* if the descriptor isn't done, no work to do */ 2283 if (!(eop_desc->cmd_type_offset_bsz & 2284 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2285 break; 2286 2287 /* clear next_to_watch to prevent false hangs */ 2288 tx_buf->next_to_watch = NULL; 2289 tx_desc->buf_addr = 0; 2290 tx_desc->cmd_type_offset_bsz = 0; 2291 2292 /* move past filter desc */ 2293 tx_buf++; 2294 tx_desc++; 2295 i++; 2296 if (unlikely(!i)) { 2297 i -= tx_ring->count; 2298 tx_buf = tx_ring->tx_buf; 2299 tx_desc = ICE_TX_DESC(tx_ring, 0); 2300 } 2301 2302 /* unmap the data header */ 2303 if (dma_unmap_len(tx_buf, len)) 2304 dma_unmap_single(tx_ring->dev, 2305 dma_unmap_addr(tx_buf, dma), 2306 dma_unmap_len(tx_buf, len), 2307 DMA_TO_DEVICE); 2308 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2309 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2310 2311 /* clear next_to_watch to prevent false hangs */ 2312 tx_buf->raw_buf = NULL; 2313 tx_buf->tx_flags = 0; 2314 tx_buf->next_to_watch = NULL; 2315 dma_unmap_len_set(tx_buf, len, 0); 2316 tx_desc->buf_addr = 0; 2317 tx_desc->cmd_type_offset_bsz = 0; 2318 2319 /* move past eop_desc for start of next FD desc */ 2320 tx_buf++; 2321 tx_desc++; 2322 i++; 2323 if (unlikely(!i)) { 2324 i -= tx_ring->count; 2325 tx_buf = tx_ring->tx_buf; 2326 tx_desc = ICE_TX_DESC(tx_ring, 0); 2327 } 2328 2329 budget--; 2330 } while (likely(budget)); 2331 2332 i += tx_ring->count; 2333 tx_ring->next_to_clean = i; 2334 2335 /* re-enable interrupt if needed */ 2336 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2337 } 2338