1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 #define FDIR_DESC_RXDID 0x40
19 #define ICE_FDIR_CLEAN_DELAY 10
20 
21 /**
22  * ice_prgm_fdir_fltr - Program a Flow Director filter
23  * @vsi: VSI to send dummy packet
24  * @fdir_desc: flow director descriptor
25  * @raw_packet: allocated buffer for flow director
26  */
27 int
28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
29 		   u8 *raw_packet)
30 {
31 	struct ice_tx_buf *tx_buf, *first;
32 	struct ice_fltr_desc *f_desc;
33 	struct ice_tx_desc *tx_desc;
34 	struct ice_ring *tx_ring;
35 	struct device *dev;
36 	dma_addr_t dma;
37 	u32 td_cmd;
38 	u16 i;
39 
40 	/* VSI and Tx ring */
41 	if (!vsi)
42 		return -ENOENT;
43 	tx_ring = vsi->tx_rings[0];
44 	if (!tx_ring || !tx_ring->desc)
45 		return -ENOENT;
46 	dev = tx_ring->dev;
47 
48 	/* we are using two descriptors to add/del a filter and we can wait */
49 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
50 		if (!i)
51 			return -EAGAIN;
52 		msleep_interruptible(1);
53 	}
54 
55 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
56 			     DMA_TO_DEVICE);
57 
58 	if (dma_mapping_error(dev, dma))
59 		return -EINVAL;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	first = &tx_ring->tx_buf[i];
64 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
65 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
66 
67 	i++;
68 	i = (i < tx_ring->count) ? i : 0;
69 	tx_desc = ICE_TX_DESC(tx_ring, i);
70 	tx_buf = &tx_ring->tx_buf[i];
71 
72 	i++;
73 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
74 
75 	memset(tx_buf, 0, sizeof(*tx_buf));
76 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
77 	dma_unmap_addr_set(tx_buf, dma, dma);
78 
79 	tx_desc->buf_addr = cpu_to_le64(dma);
80 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
81 		 ICE_TX_DESC_CMD_RE;
82 
83 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
84 	tx_buf->raw_buf = raw_packet;
85 
86 	tx_desc->cmd_type_offset_bsz =
87 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
88 
89 	/* Force memory write to complete before letting h/w know
90 	 * there are new descriptors to fetch.
91 	 */
92 	wmb();
93 
94 	/* mark the data descriptor to be watched */
95 	first->next_to_watch = tx_desc;
96 
97 	writel(tx_ring->next_to_use, tx_ring->tail);
98 
99 	return 0;
100 }
101 
102 /**
103  * ice_unmap_and_free_tx_buf - Release a Tx buffer
104  * @ring: the ring that owns the buffer
105  * @tx_buf: the buffer to free
106  */
107 static void
108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
109 {
110 	if (tx_buf->skb) {
111 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
112 			devm_kfree(ring->dev, tx_buf->raw_buf);
113 		else if (ice_ring_is_xdp(ring))
114 			page_frag_free(tx_buf->raw_buf);
115 		else
116 			dev_kfree_skb_any(tx_buf->skb);
117 		if (dma_unmap_len(tx_buf, len))
118 			dma_unmap_single(ring->dev,
119 					 dma_unmap_addr(tx_buf, dma),
120 					 dma_unmap_len(tx_buf, len),
121 					 DMA_TO_DEVICE);
122 	} else if (dma_unmap_len(tx_buf, len)) {
123 		dma_unmap_page(ring->dev,
124 			       dma_unmap_addr(tx_buf, dma),
125 			       dma_unmap_len(tx_buf, len),
126 			       DMA_TO_DEVICE);
127 	}
128 
129 	tx_buf->next_to_watch = NULL;
130 	tx_buf->skb = NULL;
131 	dma_unmap_len_set(tx_buf, len, 0);
132 	/* tx_buf must be completely set up in the transmit path */
133 }
134 
135 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
136 {
137 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
138 }
139 
140 /**
141  * ice_clean_tx_ring - Free any empty Tx buffers
142  * @tx_ring: ring to be cleaned
143  */
144 void ice_clean_tx_ring(struct ice_ring *tx_ring)
145 {
146 	u16 i;
147 
148 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
149 		ice_xsk_clean_xdp_ring(tx_ring);
150 		goto tx_skip_free;
151 	}
152 
153 	/* ring already cleared, nothing to do */
154 	if (!tx_ring->tx_buf)
155 		return;
156 
157 	/* Free all the Tx ring sk_buffs */
158 	for (i = 0; i < tx_ring->count; i++)
159 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
160 
161 tx_skip_free:
162 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
163 
164 	/* Zero out the descriptor ring */
165 	memset(tx_ring->desc, 0, tx_ring->size);
166 
167 	tx_ring->next_to_use = 0;
168 	tx_ring->next_to_clean = 0;
169 
170 	if (!tx_ring->netdev)
171 		return;
172 
173 	/* cleanup Tx queue statistics */
174 	netdev_tx_reset_queue(txring_txq(tx_ring));
175 }
176 
177 /**
178  * ice_free_tx_ring - Free Tx resources per queue
179  * @tx_ring: Tx descriptor ring for a specific queue
180  *
181  * Free all transmit software resources
182  */
183 void ice_free_tx_ring(struct ice_ring *tx_ring)
184 {
185 	ice_clean_tx_ring(tx_ring);
186 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
187 	tx_ring->tx_buf = NULL;
188 
189 	if (tx_ring->desc) {
190 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
191 				   tx_ring->desc, tx_ring->dma);
192 		tx_ring->desc = NULL;
193 	}
194 }
195 
196 /**
197  * ice_clean_tx_irq - Reclaim resources after transmit completes
198  * @tx_ring: Tx ring to clean
199  * @napi_budget: Used to determine if we are in netpoll
200  *
201  * Returns true if there's any budget left (e.g. the clean is finished)
202  */
203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
204 {
205 	unsigned int total_bytes = 0, total_pkts = 0;
206 	unsigned int budget = ICE_DFLT_IRQ_WORK;
207 	struct ice_vsi *vsi = tx_ring->vsi;
208 	s16 i = tx_ring->next_to_clean;
209 	struct ice_tx_desc *tx_desc;
210 	struct ice_tx_buf *tx_buf;
211 
212 	tx_buf = &tx_ring->tx_buf[i];
213 	tx_desc = ICE_TX_DESC(tx_ring, i);
214 	i -= tx_ring->count;
215 
216 	prefetch(&vsi->state);
217 
218 	do {
219 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
220 
221 		/* if next_to_watch is not set then there is no work pending */
222 		if (!eop_desc)
223 			break;
224 
225 		smp_rmb();	/* prevent any other reads prior to eop_desc */
226 
227 		/* if the descriptor isn't done, no work yet to do */
228 		if (!(eop_desc->cmd_type_offset_bsz &
229 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
230 			break;
231 
232 		/* clear next_to_watch to prevent false hangs */
233 		tx_buf->next_to_watch = NULL;
234 
235 		/* update the statistics for this packet */
236 		total_bytes += tx_buf->bytecount;
237 		total_pkts += tx_buf->gso_segs;
238 
239 		if (ice_ring_is_xdp(tx_ring))
240 			page_frag_free(tx_buf->raw_buf);
241 		else
242 			/* free the skb */
243 			napi_consume_skb(tx_buf->skb, napi_budget);
244 
245 		/* unmap skb header data */
246 		dma_unmap_single(tx_ring->dev,
247 				 dma_unmap_addr(tx_buf, dma),
248 				 dma_unmap_len(tx_buf, len),
249 				 DMA_TO_DEVICE);
250 
251 		/* clear tx_buf data */
252 		tx_buf->skb = NULL;
253 		dma_unmap_len_set(tx_buf, len, 0);
254 
255 		/* unmap remaining buffers */
256 		while (tx_desc != eop_desc) {
257 			tx_buf++;
258 			tx_desc++;
259 			i++;
260 			if (unlikely(!i)) {
261 				i -= tx_ring->count;
262 				tx_buf = tx_ring->tx_buf;
263 				tx_desc = ICE_TX_DESC(tx_ring, 0);
264 			}
265 
266 			/* unmap any remaining paged data */
267 			if (dma_unmap_len(tx_buf, len)) {
268 				dma_unmap_page(tx_ring->dev,
269 					       dma_unmap_addr(tx_buf, dma),
270 					       dma_unmap_len(tx_buf, len),
271 					       DMA_TO_DEVICE);
272 				dma_unmap_len_set(tx_buf, len, 0);
273 			}
274 		}
275 
276 		/* move us one more past the eop_desc for start of next pkt */
277 		tx_buf++;
278 		tx_desc++;
279 		i++;
280 		if (unlikely(!i)) {
281 			i -= tx_ring->count;
282 			tx_buf = tx_ring->tx_buf;
283 			tx_desc = ICE_TX_DESC(tx_ring, 0);
284 		}
285 
286 		prefetch(tx_desc);
287 
288 		/* update budget accounting */
289 		budget--;
290 	} while (likely(budget));
291 
292 	i += tx_ring->count;
293 	tx_ring->next_to_clean = i;
294 
295 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
296 
297 	if (ice_ring_is_xdp(tx_ring))
298 		return !!budget;
299 
300 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
301 				  total_bytes);
302 
303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
304 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
305 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
306 		/* Make sure that anybody stopping the queue after this
307 		 * sees the new next_to_clean.
308 		 */
309 		smp_mb();
310 		if (__netif_subqueue_stopped(tx_ring->netdev,
311 					     tx_ring->q_index) &&
312 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
313 			netif_wake_subqueue(tx_ring->netdev,
314 					    tx_ring->q_index);
315 			++tx_ring->tx_stats.restart_q;
316 		}
317 	}
318 
319 	return !!budget;
320 }
321 
322 /**
323  * ice_setup_tx_ring - Allocate the Tx descriptors
324  * @tx_ring: the Tx ring to set up
325  *
326  * Return 0 on success, negative on error
327  */
328 int ice_setup_tx_ring(struct ice_ring *tx_ring)
329 {
330 	struct device *dev = tx_ring->dev;
331 
332 	if (!dev)
333 		return -ENOMEM;
334 
335 	/* warn if we are about to overwrite the pointer */
336 	WARN_ON(tx_ring->tx_buf);
337 	tx_ring->tx_buf =
338 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
339 			     GFP_KERNEL);
340 	if (!tx_ring->tx_buf)
341 		return -ENOMEM;
342 
343 	/* round up to nearest page */
344 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
345 			      PAGE_SIZE);
346 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
347 					    GFP_KERNEL);
348 	if (!tx_ring->desc) {
349 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
350 			tx_ring->size);
351 		goto err;
352 	}
353 
354 	tx_ring->next_to_use = 0;
355 	tx_ring->next_to_clean = 0;
356 	tx_ring->tx_stats.prev_pkt = -1;
357 	return 0;
358 
359 err:
360 	devm_kfree(dev, tx_ring->tx_buf);
361 	tx_ring->tx_buf = NULL;
362 	return -ENOMEM;
363 }
364 
365 /**
366  * ice_clean_rx_ring - Free Rx buffers
367  * @rx_ring: ring to be cleaned
368  */
369 void ice_clean_rx_ring(struct ice_ring *rx_ring)
370 {
371 	struct device *dev = rx_ring->dev;
372 	u16 i;
373 
374 	/* ring already cleared, nothing to do */
375 	if (!rx_ring->rx_buf)
376 		return;
377 
378 	if (rx_ring->skb) {
379 		dev_kfree_skb(rx_ring->skb);
380 		rx_ring->skb = NULL;
381 	}
382 
383 	if (rx_ring->xsk_pool) {
384 		ice_xsk_clean_rx_ring(rx_ring);
385 		goto rx_skip_free;
386 	}
387 
388 	/* Free all the Rx ring sk_buffs */
389 	for (i = 0; i < rx_ring->count; i++) {
390 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
391 
392 		if (!rx_buf->page)
393 			continue;
394 
395 		/* Invalidate cache lines that may have been written to by
396 		 * device so that we avoid corrupting memory.
397 		 */
398 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
399 					      rx_buf->page_offset,
400 					      rx_ring->rx_buf_len,
401 					      DMA_FROM_DEVICE);
402 
403 		/* free resources associated with mapping */
404 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
405 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
406 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
407 
408 		rx_buf->page = NULL;
409 		rx_buf->page_offset = 0;
410 	}
411 
412 rx_skip_free:
413 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
414 
415 	/* Zero out the descriptor ring */
416 	memset(rx_ring->desc, 0, rx_ring->size);
417 
418 	rx_ring->next_to_alloc = 0;
419 	rx_ring->next_to_clean = 0;
420 	rx_ring->next_to_use = 0;
421 }
422 
423 /**
424  * ice_free_rx_ring - Free Rx resources
425  * @rx_ring: ring to clean the resources from
426  *
427  * Free all receive software resources
428  */
429 void ice_free_rx_ring(struct ice_ring *rx_ring)
430 {
431 	ice_clean_rx_ring(rx_ring);
432 	if (rx_ring->vsi->type == ICE_VSI_PF)
433 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
434 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
435 	rx_ring->xdp_prog = NULL;
436 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
437 	rx_ring->rx_buf = NULL;
438 
439 	if (rx_ring->desc) {
440 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
441 				   rx_ring->desc, rx_ring->dma);
442 		rx_ring->desc = NULL;
443 	}
444 }
445 
446 /**
447  * ice_setup_rx_ring - Allocate the Rx descriptors
448  * @rx_ring: the Rx ring to set up
449  *
450  * Return 0 on success, negative on error
451  */
452 int ice_setup_rx_ring(struct ice_ring *rx_ring)
453 {
454 	struct device *dev = rx_ring->dev;
455 
456 	if (!dev)
457 		return -ENOMEM;
458 
459 	/* warn if we are about to overwrite the pointer */
460 	WARN_ON(rx_ring->rx_buf);
461 	rx_ring->rx_buf =
462 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
463 			     GFP_KERNEL);
464 	if (!rx_ring->rx_buf)
465 		return -ENOMEM;
466 
467 	/* round up to nearest page */
468 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
469 			      PAGE_SIZE);
470 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
471 					    GFP_KERNEL);
472 	if (!rx_ring->desc) {
473 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
474 			rx_ring->size);
475 		goto err;
476 	}
477 
478 	rx_ring->next_to_use = 0;
479 	rx_ring->next_to_clean = 0;
480 
481 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
482 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
483 
484 	if (rx_ring->vsi->type == ICE_VSI_PF &&
485 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
486 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
487 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
488 			goto err;
489 	return 0;
490 
491 err:
492 	devm_kfree(dev, rx_ring->rx_buf);
493 	rx_ring->rx_buf = NULL;
494 	return -ENOMEM;
495 }
496 
497 static unsigned int
498 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
499 {
500 	unsigned int truesize;
501 
502 #if (PAGE_SIZE < 8192)
503 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
504 #else
505 	truesize = rx_ring->rx_offset ?
506 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
507 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
508 		SKB_DATA_ALIGN(size);
509 #endif
510 	return truesize;
511 }
512 
513 /**
514  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
515  * @rx_ring: Rx ring
516  * @xdp: xdp_buff used as input to the XDP program
517  * @xdp_prog: XDP program to run
518  *
519  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
520  */
521 static int
522 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
523 	    struct bpf_prog *xdp_prog)
524 {
525 	struct ice_ring *xdp_ring;
526 	int err, result;
527 	u32 act;
528 
529 	act = bpf_prog_run_xdp(xdp_prog, xdp);
530 	switch (act) {
531 	case XDP_PASS:
532 		return ICE_XDP_PASS;
533 	case XDP_TX:
534 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
535 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
536 		if (result == ICE_XDP_CONSUMED)
537 			goto out_failure;
538 		return result;
539 	case XDP_REDIRECT:
540 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
541 		if (err)
542 			goto out_failure;
543 		return ICE_XDP_REDIR;
544 	default:
545 		bpf_warn_invalid_xdp_action(act);
546 		fallthrough;
547 	case XDP_ABORTED:
548 out_failure:
549 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
550 		fallthrough;
551 	case XDP_DROP:
552 		return ICE_XDP_CONSUMED;
553 	}
554 }
555 
556 /**
557  * ice_xdp_xmit - submit packets to XDP ring for transmission
558  * @dev: netdev
559  * @n: number of XDP frames to be transmitted
560  * @frames: XDP frames to be transmitted
561  * @flags: transmit flags
562  *
563  * Returns number of frames successfully sent. Failed frames
564  * will be free'ed by XDP core.
565  * For error cases, a negative errno code is returned and no-frames
566  * are transmitted (caller must handle freeing frames).
567  */
568 int
569 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
570 	     u32 flags)
571 {
572 	struct ice_netdev_priv *np = netdev_priv(dev);
573 	unsigned int queue_index = smp_processor_id();
574 	struct ice_vsi *vsi = np->vsi;
575 	struct ice_ring *xdp_ring;
576 	int nxmit = 0, i;
577 
578 	if (test_bit(ICE_VSI_DOWN, vsi->state))
579 		return -ENETDOWN;
580 
581 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
582 		return -ENXIO;
583 
584 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
585 		return -EINVAL;
586 
587 	xdp_ring = vsi->xdp_rings[queue_index];
588 	for (i = 0; i < n; i++) {
589 		struct xdp_frame *xdpf = frames[i];
590 		int err;
591 
592 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
593 		if (err != ICE_XDP_TX)
594 			break;
595 		nxmit++;
596 	}
597 
598 	if (unlikely(flags & XDP_XMIT_FLUSH))
599 		ice_xdp_ring_update_tail(xdp_ring);
600 
601 	return nxmit;
602 }
603 
604 /**
605  * ice_alloc_mapped_page - recycle or make a new page
606  * @rx_ring: ring to use
607  * @bi: rx_buf struct to modify
608  *
609  * Returns true if the page was successfully allocated or
610  * reused.
611  */
612 static bool
613 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
614 {
615 	struct page *page = bi->page;
616 	dma_addr_t dma;
617 
618 	/* since we are recycling buffers we should seldom need to alloc */
619 	if (likely(page))
620 		return true;
621 
622 	/* alloc new page for storage */
623 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
624 	if (unlikely(!page)) {
625 		rx_ring->rx_stats.alloc_page_failed++;
626 		return false;
627 	}
628 
629 	/* map page for use */
630 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
631 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
632 
633 	/* if mapping failed free memory back to system since
634 	 * there isn't much point in holding memory we can't use
635 	 */
636 	if (dma_mapping_error(rx_ring->dev, dma)) {
637 		__free_pages(page, ice_rx_pg_order(rx_ring));
638 		rx_ring->rx_stats.alloc_page_failed++;
639 		return false;
640 	}
641 
642 	bi->dma = dma;
643 	bi->page = page;
644 	bi->page_offset = rx_ring->rx_offset;
645 	page_ref_add(page, USHRT_MAX - 1);
646 	bi->pagecnt_bias = USHRT_MAX;
647 
648 	return true;
649 }
650 
651 /**
652  * ice_alloc_rx_bufs - Replace used receive buffers
653  * @rx_ring: ring to place buffers on
654  * @cleaned_count: number of buffers to replace
655  *
656  * Returns false if all allocations were successful, true if any fail. Returning
657  * true signals to the caller that we didn't replace cleaned_count buffers and
658  * there is more work to do.
659  *
660  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
661  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
662  * multiple tail writes per call.
663  */
664 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
665 {
666 	union ice_32b_rx_flex_desc *rx_desc;
667 	u16 ntu = rx_ring->next_to_use;
668 	struct ice_rx_buf *bi;
669 
670 	/* do nothing if no valid netdev defined */
671 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
672 	    !cleaned_count)
673 		return false;
674 
675 	/* get the Rx descriptor and buffer based on next_to_use */
676 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
677 	bi = &rx_ring->rx_buf[ntu];
678 
679 	do {
680 		/* if we fail here, we have work remaining */
681 		if (!ice_alloc_mapped_page(rx_ring, bi))
682 			break;
683 
684 		/* sync the buffer for use by the device */
685 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
686 						 bi->page_offset,
687 						 rx_ring->rx_buf_len,
688 						 DMA_FROM_DEVICE);
689 
690 		/* Refresh the desc even if buffer_addrs didn't change
691 		 * because each write-back erases this info.
692 		 */
693 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
694 
695 		rx_desc++;
696 		bi++;
697 		ntu++;
698 		if (unlikely(ntu == rx_ring->count)) {
699 			rx_desc = ICE_RX_DESC(rx_ring, 0);
700 			bi = rx_ring->rx_buf;
701 			ntu = 0;
702 		}
703 
704 		/* clear the status bits for the next_to_use descriptor */
705 		rx_desc->wb.status_error0 = 0;
706 
707 		cleaned_count--;
708 	} while (cleaned_count);
709 
710 	if (rx_ring->next_to_use != ntu)
711 		ice_release_rx_desc(rx_ring, ntu);
712 
713 	return !!cleaned_count;
714 }
715 
716 /**
717  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
718  * @rx_buf: Rx buffer to adjust
719  * @size: Size of adjustment
720  *
721  * Update the offset within page so that Rx buf will be ready to be reused.
722  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
723  * so the second half of page assigned to Rx buffer will be used, otherwise
724  * the offset is moved by "size" bytes
725  */
726 static void
727 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
728 {
729 #if (PAGE_SIZE < 8192)
730 	/* flip page offset to other buffer */
731 	rx_buf->page_offset ^= size;
732 #else
733 	/* move offset up to the next cache line */
734 	rx_buf->page_offset += size;
735 #endif
736 }
737 
738 /**
739  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
740  * @rx_buf: buffer containing the page
741  * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
742  *
743  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
744  * which will assign the current buffer to the buffer that next_to_alloc is
745  * pointing to; otherwise, the DMA mapping needs to be destroyed and
746  * page freed
747  */
748 static bool
749 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
750 {
751 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
752 	struct page *page = rx_buf->page;
753 
754 	/* avoid re-using remote and pfmemalloc pages */
755 	if (!dev_page_is_reusable(page))
756 		return false;
757 
758 #if (PAGE_SIZE < 8192)
759 	/* if we are only owner of page we can reuse it */
760 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
761 		return false;
762 #else
763 #define ICE_LAST_OFFSET \
764 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
765 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
766 		return false;
767 #endif /* PAGE_SIZE < 8192) */
768 
769 	/* If we have drained the page fragment pool we need to update
770 	 * the pagecnt_bias and page count so that we fully restock the
771 	 * number of references the driver holds.
772 	 */
773 	if (unlikely(pagecnt_bias == 1)) {
774 		page_ref_add(page, USHRT_MAX - 1);
775 		rx_buf->pagecnt_bias = USHRT_MAX;
776 	}
777 
778 	return true;
779 }
780 
781 /**
782  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
783  * @rx_ring: Rx descriptor ring to transact packets on
784  * @rx_buf: buffer containing page to add
785  * @skb: sk_buff to place the data into
786  * @size: packet length from rx_desc
787  *
788  * This function will add the data contained in rx_buf->page to the skb.
789  * It will just attach the page as a frag to the skb.
790  * The function will then update the page offset.
791  */
792 static void
793 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
794 		struct sk_buff *skb, unsigned int size)
795 {
796 #if (PAGE_SIZE >= 8192)
797 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
798 #else
799 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
800 #endif
801 
802 	if (!size)
803 		return;
804 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
805 			rx_buf->page_offset, size, truesize);
806 
807 	/* page is being used so we must update the page offset */
808 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
809 }
810 
811 /**
812  * ice_reuse_rx_page - page flip buffer and store it back on the ring
813  * @rx_ring: Rx descriptor ring to store buffers on
814  * @old_buf: donor buffer to have page reused
815  *
816  * Synchronizes page for reuse by the adapter
817  */
818 static void
819 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
820 {
821 	u16 nta = rx_ring->next_to_alloc;
822 	struct ice_rx_buf *new_buf;
823 
824 	new_buf = &rx_ring->rx_buf[nta];
825 
826 	/* update, and store next to alloc */
827 	nta++;
828 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
829 
830 	/* Transfer page from old buffer to new buffer.
831 	 * Move each member individually to avoid possible store
832 	 * forwarding stalls and unnecessary copy of skb.
833 	 */
834 	new_buf->dma = old_buf->dma;
835 	new_buf->page = old_buf->page;
836 	new_buf->page_offset = old_buf->page_offset;
837 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
838 }
839 
840 /**
841  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
842  * @rx_ring: Rx descriptor ring to transact packets on
843  * @size: size of buffer to add to skb
844  * @rx_buf_pgcnt: rx_buf page refcount
845  *
846  * This function will pull an Rx buffer from the ring and synchronize it
847  * for use by the CPU.
848  */
849 static struct ice_rx_buf *
850 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size,
851 	       int *rx_buf_pgcnt)
852 {
853 	struct ice_rx_buf *rx_buf;
854 
855 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
856 	*rx_buf_pgcnt =
857 #if (PAGE_SIZE < 8192)
858 		page_count(rx_buf->page);
859 #else
860 		0;
861 #endif
862 	prefetchw(rx_buf->page);
863 
864 	if (!size)
865 		return rx_buf;
866 	/* we are reusing so sync this buffer for CPU use */
867 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
868 				      rx_buf->page_offset, size,
869 				      DMA_FROM_DEVICE);
870 
871 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
872 	rx_buf->pagecnt_bias--;
873 
874 	return rx_buf;
875 }
876 
877 /**
878  * ice_build_skb - Build skb around an existing buffer
879  * @rx_ring: Rx descriptor ring to transact packets on
880  * @rx_buf: Rx buffer to pull data from
881  * @xdp: xdp_buff pointing to the data
882  *
883  * This function builds an skb around an existing Rx buffer, taking care
884  * to set up the skb correctly and avoid any memcpy overhead.
885  */
886 static struct sk_buff *
887 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
888 	      struct xdp_buff *xdp)
889 {
890 	u8 metasize = xdp->data - xdp->data_meta;
891 #if (PAGE_SIZE < 8192)
892 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
893 #else
894 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
895 				SKB_DATA_ALIGN(xdp->data_end -
896 					       xdp->data_hard_start);
897 #endif
898 	struct sk_buff *skb;
899 
900 	/* Prefetch first cache line of first page. If xdp->data_meta
901 	 * is unused, this points exactly as xdp->data, otherwise we
902 	 * likely have a consumer accessing first few bytes of meta
903 	 * data, and then actual data.
904 	 */
905 	net_prefetch(xdp->data_meta);
906 	/* build an skb around the page buffer */
907 	skb = build_skb(xdp->data_hard_start, truesize);
908 	if (unlikely(!skb))
909 		return NULL;
910 
911 	/* must to record Rx queue, otherwise OS features such as
912 	 * symmetric queue won't work
913 	 */
914 	skb_record_rx_queue(skb, rx_ring->q_index);
915 
916 	/* update pointers within the skb to store the data */
917 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
918 	__skb_put(skb, xdp->data_end - xdp->data);
919 	if (metasize)
920 		skb_metadata_set(skb, metasize);
921 
922 	/* buffer is used by skb, update page_offset */
923 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
924 
925 	return skb;
926 }
927 
928 /**
929  * ice_construct_skb - Allocate skb and populate it
930  * @rx_ring: Rx descriptor ring to transact packets on
931  * @rx_buf: Rx buffer to pull data from
932  * @xdp: xdp_buff pointing to the data
933  *
934  * This function allocates an skb. It then populates it with the page
935  * data from the current receive descriptor, taking care to set up the
936  * skb correctly.
937  */
938 static struct sk_buff *
939 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
940 		  struct xdp_buff *xdp)
941 {
942 	unsigned int size = xdp->data_end - xdp->data;
943 	unsigned int headlen;
944 	struct sk_buff *skb;
945 
946 	/* prefetch first cache line of first page */
947 	net_prefetch(xdp->data);
948 
949 	/* allocate a skb to store the frags */
950 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
951 			       GFP_ATOMIC | __GFP_NOWARN);
952 	if (unlikely(!skb))
953 		return NULL;
954 
955 	skb_record_rx_queue(skb, rx_ring->q_index);
956 	/* Determine available headroom for copy */
957 	headlen = size;
958 	if (headlen > ICE_RX_HDR_SIZE)
959 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
960 
961 	/* align pull length to size of long to optimize memcpy performance */
962 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
963 							 sizeof(long)));
964 
965 	/* if we exhaust the linear part then add what is left as a frag */
966 	size -= headlen;
967 	if (size) {
968 #if (PAGE_SIZE >= 8192)
969 		unsigned int truesize = SKB_DATA_ALIGN(size);
970 #else
971 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
972 #endif
973 		skb_add_rx_frag(skb, 0, rx_buf->page,
974 				rx_buf->page_offset + headlen, size, truesize);
975 		/* buffer is used by skb, update page_offset */
976 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
977 	} else {
978 		/* buffer is unused, reset bias back to rx_buf; data was copied
979 		 * onto skb's linear part so there's no need for adjusting
980 		 * page offset and we can reuse this buffer as-is
981 		 */
982 		rx_buf->pagecnt_bias++;
983 	}
984 
985 	return skb;
986 }
987 
988 /**
989  * ice_put_rx_buf - Clean up used buffer and either recycle or free
990  * @rx_ring: Rx descriptor ring to transact packets on
991  * @rx_buf: Rx buffer to pull data from
992  * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
993  *
994  * This function will update next_to_clean and then clean up the contents
995  * of the rx_buf. It will either recycle the buffer or unmap it and free
996  * the associated resources.
997  */
998 static void
999 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
1000 	       int rx_buf_pgcnt)
1001 {
1002 	u16 ntc = rx_ring->next_to_clean + 1;
1003 
1004 	/* fetch, update, and store next to clean */
1005 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1006 	rx_ring->next_to_clean = ntc;
1007 
1008 	if (!rx_buf)
1009 		return;
1010 
1011 	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1012 		/* hand second half of page back to the ring */
1013 		ice_reuse_rx_page(rx_ring, rx_buf);
1014 	} else {
1015 		/* we are not reusing the buffer so unmap it */
1016 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1017 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1018 				     ICE_RX_DMA_ATTR);
1019 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1020 	}
1021 
1022 	/* clear contents of buffer_info */
1023 	rx_buf->page = NULL;
1024 }
1025 
1026 /**
1027  * ice_is_non_eop - process handling of non-EOP buffers
1028  * @rx_ring: Rx ring being processed
1029  * @rx_desc: Rx descriptor for current buffer
1030  *
1031  * If the buffer is an EOP buffer, this function exits returning false,
1032  * otherwise return true indicating that this is in fact a non-EOP buffer.
1033  */
1034 static bool
1035 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1036 {
1037 	/* if we are the last buffer then there is nothing else to do */
1038 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1039 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1040 		return false;
1041 
1042 	rx_ring->rx_stats.non_eop_descs++;
1043 
1044 	return true;
1045 }
1046 
1047 /**
1048  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1049  * @rx_ring: Rx descriptor ring to transact packets on
1050  * @budget: Total limit on number of packets to process
1051  *
1052  * This function provides a "bounce buffer" approach to Rx interrupt
1053  * processing. The advantage to this is that on systems that have
1054  * expensive overhead for IOMMU access this provides a means of avoiding
1055  * it by maintaining the mapping of the page to the system.
1056  *
1057  * Returns amount of work completed
1058  */
1059 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1060 {
1061 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1062 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1063 	unsigned int offset = rx_ring->rx_offset;
1064 	unsigned int xdp_res, xdp_xmit = 0;
1065 	struct sk_buff *skb = rx_ring->skb;
1066 	struct bpf_prog *xdp_prog = NULL;
1067 	struct xdp_buff xdp;
1068 	bool failure;
1069 
1070 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1071 #if (PAGE_SIZE < 8192)
1072 	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1073 #endif
1074 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1075 
1076 	/* start the loop to process Rx packets bounded by 'budget' */
1077 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1078 		union ice_32b_rx_flex_desc *rx_desc;
1079 		struct ice_rx_buf *rx_buf;
1080 		unsigned char *hard_start;
1081 		unsigned int size;
1082 		u16 stat_err_bits;
1083 		int rx_buf_pgcnt;
1084 		u16 vlan_tag = 0;
1085 		u8 rx_ptype;
1086 
1087 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1088 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1089 
1090 		/* status_error_len will always be zero for unused descriptors
1091 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1092 		 * which is always zero because packet split isn't used, if the
1093 		 * hardware wrote DD then it will be non-zero
1094 		 */
1095 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1096 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1097 			break;
1098 
1099 		/* This memory barrier is needed to keep us from reading
1100 		 * any other fields out of the rx_desc until we know the
1101 		 * DD bit is set.
1102 		 */
1103 		dma_rmb();
1104 
1105 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1106 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1107 
1108 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1109 			    ctrl_vsi->vf_id != ICE_INVAL_VFID)
1110 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1111 			ice_put_rx_buf(rx_ring, NULL, 0);
1112 			cleaned_count++;
1113 			continue;
1114 		}
1115 
1116 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1117 			ICE_RX_FLX_DESC_PKT_LEN_M;
1118 
1119 		/* retrieve a buffer from the ring */
1120 		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1121 
1122 		if (!size) {
1123 			xdp.data = NULL;
1124 			xdp.data_end = NULL;
1125 			xdp.data_hard_start = NULL;
1126 			xdp.data_meta = NULL;
1127 			goto construct_skb;
1128 		}
1129 
1130 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1131 			     offset;
1132 		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1133 #if (PAGE_SIZE > 4096)
1134 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1135 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1136 #endif
1137 
1138 		rcu_read_lock();
1139 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1140 		if (!xdp_prog) {
1141 			rcu_read_unlock();
1142 			goto construct_skb;
1143 		}
1144 
1145 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1146 		rcu_read_unlock();
1147 		if (!xdp_res)
1148 			goto construct_skb;
1149 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1150 			xdp_xmit |= xdp_res;
1151 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1152 		} else {
1153 			rx_buf->pagecnt_bias++;
1154 		}
1155 		total_rx_bytes += size;
1156 		total_rx_pkts++;
1157 
1158 		cleaned_count++;
1159 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1160 		continue;
1161 construct_skb:
1162 		if (skb) {
1163 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1164 		} else if (likely(xdp.data)) {
1165 			if (ice_ring_uses_build_skb(rx_ring))
1166 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1167 			else
1168 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1169 		}
1170 		/* exit if we failed to retrieve a buffer */
1171 		if (!skb) {
1172 			rx_ring->rx_stats.alloc_buf_failed++;
1173 			if (rx_buf)
1174 				rx_buf->pagecnt_bias++;
1175 			break;
1176 		}
1177 
1178 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1179 		cleaned_count++;
1180 
1181 		/* skip if it is NOP desc */
1182 		if (ice_is_non_eop(rx_ring, rx_desc))
1183 			continue;
1184 
1185 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1186 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1187 			dev_kfree_skb_any(skb);
1188 			continue;
1189 		}
1190 
1191 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1192 		if (ice_test_staterr(rx_desc, stat_err_bits))
1193 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1194 
1195 		/* pad the skb if needed, to make a valid ethernet frame */
1196 		if (eth_skb_pad(skb)) {
1197 			skb = NULL;
1198 			continue;
1199 		}
1200 
1201 		/* probably a little skewed due to removing CRC */
1202 		total_rx_bytes += skb->len;
1203 
1204 		/* populate checksum, VLAN, and protocol */
1205 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1206 			ICE_RX_FLEX_DESC_PTYPE_M;
1207 
1208 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1209 
1210 		/* send completed skb up the stack */
1211 		ice_receive_skb(rx_ring, skb, vlan_tag);
1212 		skb = NULL;
1213 
1214 		/* update budget accounting */
1215 		total_rx_pkts++;
1216 	}
1217 
1218 	/* return up to cleaned_count buffers to hardware */
1219 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1220 
1221 	if (xdp_prog)
1222 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1223 	rx_ring->skb = skb;
1224 
1225 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1226 
1227 	/* guarantee a trip back through this routine if there was a failure */
1228 	return failure ? budget : (int)total_rx_pkts;
1229 }
1230 
1231 /**
1232  * ice_net_dim - Update net DIM algorithm
1233  * @q_vector: the vector associated with the interrupt
1234  *
1235  * Create a DIM sample and notify net_dim() so that it can possibly decide
1236  * a new ITR value based on incoming packets, bytes, and interrupts.
1237  *
1238  * This function is a no-op if the ring is not configured to dynamic ITR.
1239  */
1240 static void ice_net_dim(struct ice_q_vector *q_vector)
1241 {
1242 	struct ice_ring_container *tx = &q_vector->tx;
1243 	struct ice_ring_container *rx = &q_vector->rx;
1244 
1245 	if (ITR_IS_DYNAMIC(tx)) {
1246 		struct dim_sample dim_sample = {};
1247 		u64 packets = 0, bytes = 0;
1248 		struct ice_ring *ring;
1249 
1250 		ice_for_each_ring(ring, q_vector->tx) {
1251 			packets += ring->stats.pkts;
1252 			bytes += ring->stats.bytes;
1253 		}
1254 
1255 		dim_update_sample(q_vector->total_events, packets, bytes,
1256 				  &dim_sample);
1257 
1258 		net_dim(&tx->dim, dim_sample);
1259 	}
1260 
1261 	if (ITR_IS_DYNAMIC(rx)) {
1262 		struct dim_sample dim_sample = {};
1263 		u64 packets = 0, bytes = 0;
1264 		struct ice_ring *ring;
1265 
1266 		ice_for_each_ring(ring, q_vector->rx) {
1267 			packets += ring->stats.pkts;
1268 			bytes += ring->stats.bytes;
1269 		}
1270 
1271 		dim_update_sample(q_vector->total_events, packets, bytes,
1272 				  &dim_sample);
1273 
1274 		net_dim(&rx->dim, dim_sample);
1275 	}
1276 }
1277 
1278 /**
1279  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1280  * @itr_idx: interrupt throttling index
1281  * @itr: interrupt throttling value in usecs
1282  */
1283 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1284 {
1285 	/* The ITR value is reported in microseconds, and the register value is
1286 	 * recorded in 2 microsecond units. For this reason we only need to
1287 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1288 	 * granularity as a shift instead of division. The mask makes sure the
1289 	 * ITR value is never odd so we don't accidentally write into the field
1290 	 * prior to the ITR field.
1291 	 */
1292 	itr &= ICE_ITR_MASK;
1293 
1294 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1295 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1296 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1297 }
1298 
1299 /**
1300  * ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt
1301  * @q_vector: the vector associated with the interrupt to enable
1302  *
1303  * Update the net_dim() algorithm and re-enable the interrupt associated with
1304  * this vector.
1305  *
1306  * If the VSI is down, the interrupt will not be re-enabled.
1307  */
1308 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1309 {
1310 	struct ice_vsi *vsi = q_vector->vsi;
1311 	bool wb_en = q_vector->wb_on_itr;
1312 	u32 itr_val;
1313 
1314 	if (test_bit(ICE_DOWN, vsi->state))
1315 		return;
1316 
1317 	/* When exiting WB_ON_ITR, let ITR resume its normal
1318 	 * interrupts-enabled path.
1319 	 */
1320 	if (wb_en)
1321 		q_vector->wb_on_itr = false;
1322 
1323 	/* This will do nothing if dynamic updates are not enabled. */
1324 	ice_net_dim(q_vector);
1325 
1326 	/* net_dim() updates ITR out-of-band using a work item */
1327 	itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1328 	/* trigger an immediate software interrupt when exiting
1329 	 * busy poll, to make sure to catch any pending cleanups
1330 	 * that might have been missed due to interrupt state
1331 	 * transition.
1332 	 */
1333 	if (wb_en) {
1334 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1335 			   GLINT_DYN_CTL_SW_ITR_INDX_M |
1336 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1337 	}
1338 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1339 }
1340 
1341 /**
1342  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1343  * @q_vector: q_vector to set WB_ON_ITR on
1344  *
1345  * We need to tell hardware to write-back completed descriptors even when
1346  * interrupts are disabled. Descriptors will be written back on cache line
1347  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1348  * descriptors may not be written back if they don't fill a cache line until
1349  * the next interrupt.
1350  *
1351  * This sets the write-back frequency to whatever was set previously for the
1352  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1353  * aren't meddling with the INTENA_M bit.
1354  */
1355 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1356 {
1357 	struct ice_vsi *vsi = q_vector->vsi;
1358 
1359 	/* already in wb_on_itr mode no need to change it */
1360 	if (q_vector->wb_on_itr)
1361 		return;
1362 
1363 	/* use previously set ITR values for all of the ITR indices by
1364 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1365 	 * be static in non-adaptive mode (user configured)
1366 	 */
1367 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1368 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1369 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1370 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1371 
1372 	q_vector->wb_on_itr = true;
1373 }
1374 
1375 /**
1376  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1377  * @napi: napi struct with our devices info in it
1378  * @budget: amount of work driver is allowed to do this pass, in packets
1379  *
1380  * This function will clean all queues associated with a q_vector.
1381  *
1382  * Returns the amount of work done
1383  */
1384 int ice_napi_poll(struct napi_struct *napi, int budget)
1385 {
1386 	struct ice_q_vector *q_vector =
1387 				container_of(napi, struct ice_q_vector, napi);
1388 	bool clean_complete = true;
1389 	struct ice_ring *ring;
1390 	int budget_per_ring;
1391 	int work_done = 0;
1392 
1393 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1394 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1395 	 */
1396 	ice_for_each_ring(ring, q_vector->tx) {
1397 		bool wd = ring->xsk_pool ?
1398 			  ice_clean_tx_irq_zc(ring, budget) :
1399 			  ice_clean_tx_irq(ring, budget);
1400 
1401 		if (!wd)
1402 			clean_complete = false;
1403 	}
1404 
1405 	/* Handle case where we are called by netpoll with a budget of 0 */
1406 	if (unlikely(budget <= 0))
1407 		return budget;
1408 
1409 	/* normally we have 1 Rx ring per q_vector */
1410 	if (unlikely(q_vector->num_ring_rx > 1))
1411 		/* We attempt to distribute budget to each Rx queue fairly, but
1412 		 * don't allow the budget to go below 1 because that would exit
1413 		 * polling early.
1414 		 */
1415 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1416 	else
1417 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1418 		budget_per_ring = budget;
1419 
1420 	ice_for_each_ring(ring, q_vector->rx) {
1421 		int cleaned;
1422 
1423 		/* A dedicated path for zero-copy allows making a single
1424 		 * comparison in the irq context instead of many inside the
1425 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1426 		 */
1427 		cleaned = ring->xsk_pool ?
1428 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1429 			  ice_clean_rx_irq(ring, budget_per_ring);
1430 		work_done += cleaned;
1431 		/* if we clean as many as budgeted, we must not be done */
1432 		if (cleaned >= budget_per_ring)
1433 			clean_complete = false;
1434 	}
1435 
1436 	/* If work not completed, return budget and polling will return */
1437 	if (!clean_complete) {
1438 		/* Set the writeback on ITR so partial completions of
1439 		 * cache-lines will still continue even if we're polling.
1440 		 */
1441 		ice_set_wb_on_itr(q_vector);
1442 		return budget;
1443 	}
1444 
1445 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1446 	 * poll us due to busy-polling
1447 	 */
1448 	if (likely(napi_complete_done(napi, work_done)))
1449 		ice_update_ena_itr(q_vector);
1450 	else
1451 		ice_set_wb_on_itr(q_vector);
1452 
1453 	return min_t(int, work_done, budget - 1);
1454 }
1455 
1456 /**
1457  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1458  * @tx_ring: the ring to be checked
1459  * @size: the size buffer we want to assure is available
1460  *
1461  * Returns -EBUSY if a stop is needed, else 0
1462  */
1463 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1464 {
1465 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1466 	/* Memory barrier before checking head and tail */
1467 	smp_mb();
1468 
1469 	/* Check again in a case another CPU has just made room available. */
1470 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1471 		return -EBUSY;
1472 
1473 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1474 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1475 	++tx_ring->tx_stats.restart_q;
1476 	return 0;
1477 }
1478 
1479 /**
1480  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1481  * @tx_ring: the ring to be checked
1482  * @size:    the size buffer we want to assure is available
1483  *
1484  * Returns 0 if stop is not needed
1485  */
1486 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1487 {
1488 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1489 		return 0;
1490 
1491 	return __ice_maybe_stop_tx(tx_ring, size);
1492 }
1493 
1494 /**
1495  * ice_tx_map - Build the Tx descriptor
1496  * @tx_ring: ring to send buffer on
1497  * @first: first buffer info buffer to use
1498  * @off: pointer to struct that holds offload parameters
1499  *
1500  * This function loops over the skb data pointed to by *first
1501  * and gets a physical address for each memory location and programs
1502  * it and the length into the transmit descriptor.
1503  */
1504 static void
1505 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1506 	   struct ice_tx_offload_params *off)
1507 {
1508 	u64 td_offset, td_tag, td_cmd;
1509 	u16 i = tx_ring->next_to_use;
1510 	unsigned int data_len, size;
1511 	struct ice_tx_desc *tx_desc;
1512 	struct ice_tx_buf *tx_buf;
1513 	struct sk_buff *skb;
1514 	skb_frag_t *frag;
1515 	dma_addr_t dma;
1516 
1517 	td_tag = off->td_l2tag1;
1518 	td_cmd = off->td_cmd;
1519 	td_offset = off->td_offset;
1520 	skb = first->skb;
1521 
1522 	data_len = skb->data_len;
1523 	size = skb_headlen(skb);
1524 
1525 	tx_desc = ICE_TX_DESC(tx_ring, i);
1526 
1527 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1528 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1529 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1530 			  ICE_TX_FLAGS_VLAN_S;
1531 	}
1532 
1533 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1534 
1535 	tx_buf = first;
1536 
1537 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1538 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1539 
1540 		if (dma_mapping_error(tx_ring->dev, dma))
1541 			goto dma_error;
1542 
1543 		/* record length, and DMA address */
1544 		dma_unmap_len_set(tx_buf, len, size);
1545 		dma_unmap_addr_set(tx_buf, dma, dma);
1546 
1547 		/* align size to end of page */
1548 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1549 		tx_desc->buf_addr = cpu_to_le64(dma);
1550 
1551 		/* account for data chunks larger than the hardware
1552 		 * can handle
1553 		 */
1554 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1555 			tx_desc->cmd_type_offset_bsz =
1556 				ice_build_ctob(td_cmd, td_offset, max_data,
1557 					       td_tag);
1558 
1559 			tx_desc++;
1560 			i++;
1561 
1562 			if (i == tx_ring->count) {
1563 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1564 				i = 0;
1565 			}
1566 
1567 			dma += max_data;
1568 			size -= max_data;
1569 
1570 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1571 			tx_desc->buf_addr = cpu_to_le64(dma);
1572 		}
1573 
1574 		if (likely(!data_len))
1575 			break;
1576 
1577 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1578 							      size, td_tag);
1579 
1580 		tx_desc++;
1581 		i++;
1582 
1583 		if (i == tx_ring->count) {
1584 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1585 			i = 0;
1586 		}
1587 
1588 		size = skb_frag_size(frag);
1589 		data_len -= size;
1590 
1591 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1592 				       DMA_TO_DEVICE);
1593 
1594 		tx_buf = &tx_ring->tx_buf[i];
1595 	}
1596 
1597 	/* record bytecount for BQL */
1598 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1599 
1600 	/* record SW timestamp if HW timestamp is not available */
1601 	skb_tx_timestamp(first->skb);
1602 
1603 	i++;
1604 	if (i == tx_ring->count)
1605 		i = 0;
1606 
1607 	/* write last descriptor with RS and EOP bits */
1608 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1609 	tx_desc->cmd_type_offset_bsz =
1610 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1611 
1612 	/* Force memory writes to complete before letting h/w know there
1613 	 * are new descriptors to fetch.
1614 	 *
1615 	 * We also use this memory barrier to make certain all of the
1616 	 * status bits have been updated before next_to_watch is written.
1617 	 */
1618 	wmb();
1619 
1620 	/* set next_to_watch value indicating a packet is present */
1621 	first->next_to_watch = tx_desc;
1622 
1623 	tx_ring->next_to_use = i;
1624 
1625 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1626 
1627 	/* notify HW of packet */
1628 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1629 		writel(i, tx_ring->tail);
1630 
1631 	return;
1632 
1633 dma_error:
1634 	/* clear DMA mappings for failed tx_buf map */
1635 	for (;;) {
1636 		tx_buf = &tx_ring->tx_buf[i];
1637 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1638 		if (tx_buf == first)
1639 			break;
1640 		if (i == 0)
1641 			i = tx_ring->count;
1642 		i--;
1643 	}
1644 
1645 	tx_ring->next_to_use = i;
1646 }
1647 
1648 /**
1649  * ice_tx_csum - Enable Tx checksum offloads
1650  * @first: pointer to the first descriptor
1651  * @off: pointer to struct that holds offload parameters
1652  *
1653  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1654  */
1655 static
1656 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1657 {
1658 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1659 	struct sk_buff *skb = first->skb;
1660 	union {
1661 		struct iphdr *v4;
1662 		struct ipv6hdr *v6;
1663 		unsigned char *hdr;
1664 	} ip;
1665 	union {
1666 		struct tcphdr *tcp;
1667 		unsigned char *hdr;
1668 	} l4;
1669 	__be16 frag_off, protocol;
1670 	unsigned char *exthdr;
1671 	u32 offset, cmd = 0;
1672 	u8 l4_proto = 0;
1673 
1674 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1675 		return 0;
1676 
1677 	ip.hdr = skb_network_header(skb);
1678 	l4.hdr = skb_transport_header(skb);
1679 
1680 	/* compute outer L2 header size */
1681 	l2_len = ip.hdr - skb->data;
1682 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1683 
1684 	protocol = vlan_get_protocol(skb);
1685 
1686 	if (protocol == htons(ETH_P_IP))
1687 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1688 	else if (protocol == htons(ETH_P_IPV6))
1689 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1690 
1691 	if (skb->encapsulation) {
1692 		bool gso_ena = false;
1693 		u32 tunnel = 0;
1694 
1695 		/* define outer network header type */
1696 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1697 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1698 				  ICE_TX_CTX_EIPT_IPV4 :
1699 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1700 			l4_proto = ip.v4->protocol;
1701 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1702 			int ret;
1703 
1704 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1705 			exthdr = ip.hdr + sizeof(*ip.v6);
1706 			l4_proto = ip.v6->nexthdr;
1707 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1708 					       &l4_proto, &frag_off);
1709 			if (ret < 0)
1710 				return -1;
1711 		}
1712 
1713 		/* define outer transport */
1714 		switch (l4_proto) {
1715 		case IPPROTO_UDP:
1716 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1717 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1718 			break;
1719 		case IPPROTO_GRE:
1720 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1721 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1722 			break;
1723 		case IPPROTO_IPIP:
1724 		case IPPROTO_IPV6:
1725 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1726 			l4.hdr = skb_inner_network_header(skb);
1727 			break;
1728 		default:
1729 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1730 				return -1;
1731 
1732 			skb_checksum_help(skb);
1733 			return 0;
1734 		}
1735 
1736 		/* compute outer L3 header size */
1737 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1738 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1739 
1740 		/* switch IP header pointer from outer to inner header */
1741 		ip.hdr = skb_inner_network_header(skb);
1742 
1743 		/* compute tunnel header size */
1744 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1745 			   ICE_TXD_CTX_QW0_NATLEN_S;
1746 
1747 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1748 		/* indicate if we need to offload outer UDP header */
1749 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1750 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1751 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1752 
1753 		/* record tunnel offload values */
1754 		off->cd_tunnel_params |= tunnel;
1755 
1756 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1757 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1758 		 */
1759 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1760 
1761 		/* switch L4 header pointer from outer to inner */
1762 		l4.hdr = skb_inner_transport_header(skb);
1763 		l4_proto = 0;
1764 
1765 		/* reset type as we transition from outer to inner headers */
1766 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1767 		if (ip.v4->version == 4)
1768 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1769 		if (ip.v6->version == 6)
1770 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1771 	}
1772 
1773 	/* Enable IP checksum offloads */
1774 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1775 		l4_proto = ip.v4->protocol;
1776 		/* the stack computes the IP header already, the only time we
1777 		 * need the hardware to recompute it is in the case of TSO.
1778 		 */
1779 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1780 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1781 		else
1782 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1783 
1784 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1785 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1786 		exthdr = ip.hdr + sizeof(*ip.v6);
1787 		l4_proto = ip.v6->nexthdr;
1788 		if (l4.hdr != exthdr)
1789 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1790 					 &frag_off);
1791 	} else {
1792 		return -1;
1793 	}
1794 
1795 	/* compute inner L3 header size */
1796 	l3_len = l4.hdr - ip.hdr;
1797 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1798 
1799 	/* Enable L4 checksum offloads */
1800 	switch (l4_proto) {
1801 	case IPPROTO_TCP:
1802 		/* enable checksum offloads */
1803 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1804 		l4_len = l4.tcp->doff;
1805 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1806 		break;
1807 	case IPPROTO_UDP:
1808 		/* enable UDP checksum offload */
1809 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1810 		l4_len = (sizeof(struct udphdr) >> 2);
1811 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1812 		break;
1813 	case IPPROTO_SCTP:
1814 		/* enable SCTP checksum offload */
1815 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1816 		l4_len = sizeof(struct sctphdr) >> 2;
1817 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1818 		break;
1819 
1820 	default:
1821 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1822 			return -1;
1823 		skb_checksum_help(skb);
1824 		return 0;
1825 	}
1826 
1827 	off->td_cmd |= cmd;
1828 	off->td_offset |= offset;
1829 	return 1;
1830 }
1831 
1832 /**
1833  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1834  * @tx_ring: ring to send buffer on
1835  * @first: pointer to struct ice_tx_buf
1836  *
1837  * Checks the skb and set up correspondingly several generic transmit flags
1838  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1839  */
1840 static void
1841 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1842 {
1843 	struct sk_buff *skb = first->skb;
1844 
1845 	/* nothing left to do, software offloaded VLAN */
1846 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1847 		return;
1848 
1849 	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
1850 	 * insertion for 802.1AD is not supported
1851 	 */
1852 	if (skb_vlan_tag_present(skb)) {
1853 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1854 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1855 	}
1856 
1857 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1858 }
1859 
1860 /**
1861  * ice_tso - computes mss and TSO length to prepare for TSO
1862  * @first: pointer to struct ice_tx_buf
1863  * @off: pointer to struct that holds offload parameters
1864  *
1865  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1866  */
1867 static
1868 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1869 {
1870 	struct sk_buff *skb = first->skb;
1871 	union {
1872 		struct iphdr *v4;
1873 		struct ipv6hdr *v6;
1874 		unsigned char *hdr;
1875 	} ip;
1876 	union {
1877 		struct tcphdr *tcp;
1878 		struct udphdr *udp;
1879 		unsigned char *hdr;
1880 	} l4;
1881 	u64 cd_mss, cd_tso_len;
1882 	u32 paylen;
1883 	u8 l4_start;
1884 	int err;
1885 
1886 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1887 		return 0;
1888 
1889 	if (!skb_is_gso(skb))
1890 		return 0;
1891 
1892 	err = skb_cow_head(skb, 0);
1893 	if (err < 0)
1894 		return err;
1895 
1896 	/* cppcheck-suppress unreadVariable */
1897 	ip.hdr = skb_network_header(skb);
1898 	l4.hdr = skb_transport_header(skb);
1899 
1900 	/* initialize outer IP header fields */
1901 	if (ip.v4->version == 4) {
1902 		ip.v4->tot_len = 0;
1903 		ip.v4->check = 0;
1904 	} else {
1905 		ip.v6->payload_len = 0;
1906 	}
1907 
1908 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1909 					 SKB_GSO_GRE_CSUM |
1910 					 SKB_GSO_IPXIP4 |
1911 					 SKB_GSO_IPXIP6 |
1912 					 SKB_GSO_UDP_TUNNEL |
1913 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1914 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1915 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1916 			l4.udp->len = 0;
1917 
1918 			/* determine offset of outer transport header */
1919 			l4_start = (u8)(l4.hdr - skb->data);
1920 
1921 			/* remove payload length from outer checksum */
1922 			paylen = skb->len - l4_start;
1923 			csum_replace_by_diff(&l4.udp->check,
1924 					     (__force __wsum)htonl(paylen));
1925 		}
1926 
1927 		/* reset pointers to inner headers */
1928 
1929 		/* cppcheck-suppress unreadVariable */
1930 		ip.hdr = skb_inner_network_header(skb);
1931 		l4.hdr = skb_inner_transport_header(skb);
1932 
1933 		/* initialize inner IP header fields */
1934 		if (ip.v4->version == 4) {
1935 			ip.v4->tot_len = 0;
1936 			ip.v4->check = 0;
1937 		} else {
1938 			ip.v6->payload_len = 0;
1939 		}
1940 	}
1941 
1942 	/* determine offset of transport header */
1943 	l4_start = (u8)(l4.hdr - skb->data);
1944 
1945 	/* remove payload length from checksum */
1946 	paylen = skb->len - l4_start;
1947 
1948 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1949 		csum_replace_by_diff(&l4.udp->check,
1950 				     (__force __wsum)htonl(paylen));
1951 		/* compute length of UDP segmentation header */
1952 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
1953 	} else {
1954 		csum_replace_by_diff(&l4.tcp->check,
1955 				     (__force __wsum)htonl(paylen));
1956 		/* compute length of TCP segmentation header */
1957 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
1958 	}
1959 
1960 	/* update gso_segs and bytecount */
1961 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1962 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1963 
1964 	cd_tso_len = skb->len - off->header_len;
1965 	cd_mss = skb_shinfo(skb)->gso_size;
1966 
1967 	/* record cdesc_qw1 with TSO parameters */
1968 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1969 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1970 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1971 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1972 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1973 	return 1;
1974 }
1975 
1976 /**
1977  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1978  * @size: transmit request size in bytes
1979  *
1980  * Due to hardware alignment restrictions (4K alignment), we need to
1981  * assume that we can have no more than 12K of data per descriptor, even
1982  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1983  * Thus, we need to divide by 12K. But division is slow! Instead,
1984  * we decompose the operation into shifts and one relatively cheap
1985  * multiply operation.
1986  *
1987  * To divide by 12K, we first divide by 4K, then divide by 3:
1988  *     To divide by 4K, shift right by 12 bits
1989  *     To divide by 3, multiply by 85, then divide by 256
1990  *     (Divide by 256 is done by shifting right by 8 bits)
1991  * Finally, we add one to round up. Because 256 isn't an exact multiple of
1992  * 3, we'll underestimate near each multiple of 12K. This is actually more
1993  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1994  * segment. For our purposes this is accurate out to 1M which is orders of
1995  * magnitude greater than our largest possible GSO size.
1996  *
1997  * This would then be implemented as:
1998  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1999  *
2000  * Since multiplication and division are commutative, we can reorder
2001  * operations into:
2002  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2003  */
2004 static unsigned int ice_txd_use_count(unsigned int size)
2005 {
2006 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2007 }
2008 
2009 /**
2010  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2011  * @skb: send buffer
2012  *
2013  * Returns number of data descriptors needed for this skb.
2014  */
2015 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2016 {
2017 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2018 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2019 	unsigned int count = 0, size = skb_headlen(skb);
2020 
2021 	for (;;) {
2022 		count += ice_txd_use_count(size);
2023 
2024 		if (!nr_frags--)
2025 			break;
2026 
2027 		size = skb_frag_size(frag++);
2028 	}
2029 
2030 	return count;
2031 }
2032 
2033 /**
2034  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2035  * @skb: send buffer
2036  *
2037  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2038  * and so we need to figure out the cases where we need to linearize the skb.
2039  *
2040  * For TSO we need to count the TSO header and segment payload separately.
2041  * As such we need to check cases where we have 7 fragments or more as we
2042  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2043  * the segment payload in the first descriptor, and another 7 for the
2044  * fragments.
2045  */
2046 static bool __ice_chk_linearize(struct sk_buff *skb)
2047 {
2048 	const skb_frag_t *frag, *stale;
2049 	int nr_frags, sum;
2050 
2051 	/* no need to check if number of frags is less than 7 */
2052 	nr_frags = skb_shinfo(skb)->nr_frags;
2053 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2054 		return false;
2055 
2056 	/* We need to walk through the list and validate that each group
2057 	 * of 6 fragments totals at least gso_size.
2058 	 */
2059 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2060 	frag = &skb_shinfo(skb)->frags[0];
2061 
2062 	/* Initialize size to the negative value of gso_size minus 1. We
2063 	 * use this as the worst case scenario in which the frag ahead
2064 	 * of us only provides one byte which is why we are limited to 6
2065 	 * descriptors for a single transmit as the header and previous
2066 	 * fragment are already consuming 2 descriptors.
2067 	 */
2068 	sum = 1 - skb_shinfo(skb)->gso_size;
2069 
2070 	/* Add size of frags 0 through 4 to create our initial sum */
2071 	sum += skb_frag_size(frag++);
2072 	sum += skb_frag_size(frag++);
2073 	sum += skb_frag_size(frag++);
2074 	sum += skb_frag_size(frag++);
2075 	sum += skb_frag_size(frag++);
2076 
2077 	/* Walk through fragments adding latest fragment, testing it, and
2078 	 * then removing stale fragments from the sum.
2079 	 */
2080 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2081 		int stale_size = skb_frag_size(stale);
2082 
2083 		sum += skb_frag_size(frag++);
2084 
2085 		/* The stale fragment may present us with a smaller
2086 		 * descriptor than the actual fragment size. To account
2087 		 * for that we need to remove all the data on the front and
2088 		 * figure out what the remainder would be in the last
2089 		 * descriptor associated with the fragment.
2090 		 */
2091 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2092 			int align_pad = -(skb_frag_off(stale)) &
2093 					(ICE_MAX_READ_REQ_SIZE - 1);
2094 
2095 			sum -= align_pad;
2096 			stale_size -= align_pad;
2097 
2098 			do {
2099 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2100 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2101 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2102 		}
2103 
2104 		/* if sum is negative we failed to make sufficient progress */
2105 		if (sum < 0)
2106 			return true;
2107 
2108 		if (!nr_frags--)
2109 			break;
2110 
2111 		sum -= stale_size;
2112 	}
2113 
2114 	return false;
2115 }
2116 
2117 /**
2118  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2119  * @skb:      send buffer
2120  * @count:    number of buffers used
2121  *
2122  * Note: Our HW can't scatter-gather more than 8 fragments to build
2123  * a packet on the wire and so we need to figure out the cases where we
2124  * need to linearize the skb.
2125  */
2126 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2127 {
2128 	/* Both TSO and single send will work if count is less than 8 */
2129 	if (likely(count < ICE_MAX_BUF_TXD))
2130 		return false;
2131 
2132 	if (skb_is_gso(skb))
2133 		return __ice_chk_linearize(skb);
2134 
2135 	/* we can support up to 8 data buffers for a single send */
2136 	return count != ICE_MAX_BUF_TXD;
2137 }
2138 
2139 /**
2140  * ice_xmit_frame_ring - Sends buffer on Tx ring
2141  * @skb: send buffer
2142  * @tx_ring: ring to send buffer on
2143  *
2144  * Returns NETDEV_TX_OK if sent, else an error code
2145  */
2146 static netdev_tx_t
2147 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2148 {
2149 	struct ice_tx_offload_params offload = { 0 };
2150 	struct ice_vsi *vsi = tx_ring->vsi;
2151 	struct ice_tx_buf *first;
2152 	struct ethhdr *eth;
2153 	unsigned int count;
2154 	int tso, csum;
2155 
2156 	count = ice_xmit_desc_count(skb);
2157 	if (ice_chk_linearize(skb, count)) {
2158 		if (__skb_linearize(skb))
2159 			goto out_drop;
2160 		count = ice_txd_use_count(skb->len);
2161 		tx_ring->tx_stats.tx_linearize++;
2162 	}
2163 
2164 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2165 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2166 	 *       + 4 desc gap to avoid the cache line where head is,
2167 	 *       + 1 desc for context descriptor,
2168 	 * otherwise try next time
2169 	 */
2170 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2171 			      ICE_DESCS_FOR_CTX_DESC)) {
2172 		tx_ring->tx_stats.tx_busy++;
2173 		return NETDEV_TX_BUSY;
2174 	}
2175 
2176 	offload.tx_ring = tx_ring;
2177 
2178 	/* record the location of the first descriptor for this packet */
2179 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2180 	first->skb = skb;
2181 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2182 	first->gso_segs = 1;
2183 	first->tx_flags = 0;
2184 
2185 	/* prepare the VLAN tagging flags for Tx */
2186 	ice_tx_prepare_vlan_flags(tx_ring, first);
2187 
2188 	/* set up TSO offload */
2189 	tso = ice_tso(first, &offload);
2190 	if (tso < 0)
2191 		goto out_drop;
2192 
2193 	/* always set up Tx checksum offload */
2194 	csum = ice_tx_csum(first, &offload);
2195 	if (csum < 0)
2196 		goto out_drop;
2197 
2198 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2199 	eth = (struct ethhdr *)skb_mac_header(skb);
2200 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2201 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2202 		     vsi->type == ICE_VSI_PF &&
2203 		     vsi->port_info->qos_cfg.is_sw_lldp))
2204 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2205 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2206 					ICE_TXD_CTX_QW1_CMD_S);
2207 
2208 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2209 		struct ice_tx_ctx_desc *cdesc;
2210 		u16 i = tx_ring->next_to_use;
2211 
2212 		/* grab the next descriptor */
2213 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2214 		i++;
2215 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2216 
2217 		/* setup context descriptor */
2218 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2219 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2220 		cdesc->rsvd = cpu_to_le16(0);
2221 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2222 	}
2223 
2224 	ice_tx_map(tx_ring, first, &offload);
2225 	return NETDEV_TX_OK;
2226 
2227 out_drop:
2228 	dev_kfree_skb_any(skb);
2229 	return NETDEV_TX_OK;
2230 }
2231 
2232 /**
2233  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2234  * @skb: send buffer
2235  * @netdev: network interface device structure
2236  *
2237  * Returns NETDEV_TX_OK if sent, else an error code
2238  */
2239 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2240 {
2241 	struct ice_netdev_priv *np = netdev_priv(netdev);
2242 	struct ice_vsi *vsi = np->vsi;
2243 	struct ice_ring *tx_ring;
2244 
2245 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2246 
2247 	/* hardware can't handle really short frames, hardware padding works
2248 	 * beyond this point
2249 	 */
2250 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2251 		return NETDEV_TX_OK;
2252 
2253 	return ice_xmit_frame_ring(skb, tx_ring);
2254 }
2255 
2256 /**
2257  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2258  * @tx_ring: tx_ring to clean
2259  */
2260 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2261 {
2262 	struct ice_vsi *vsi = tx_ring->vsi;
2263 	s16 i = tx_ring->next_to_clean;
2264 	int budget = ICE_DFLT_IRQ_WORK;
2265 	struct ice_tx_desc *tx_desc;
2266 	struct ice_tx_buf *tx_buf;
2267 
2268 	tx_buf = &tx_ring->tx_buf[i];
2269 	tx_desc = ICE_TX_DESC(tx_ring, i);
2270 	i -= tx_ring->count;
2271 
2272 	do {
2273 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2274 
2275 		/* if next_to_watch is not set then there is no pending work */
2276 		if (!eop_desc)
2277 			break;
2278 
2279 		/* prevent any other reads prior to eop_desc */
2280 		smp_rmb();
2281 
2282 		/* if the descriptor isn't done, no work to do */
2283 		if (!(eop_desc->cmd_type_offset_bsz &
2284 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2285 			break;
2286 
2287 		/* clear next_to_watch to prevent false hangs */
2288 		tx_buf->next_to_watch = NULL;
2289 		tx_desc->buf_addr = 0;
2290 		tx_desc->cmd_type_offset_bsz = 0;
2291 
2292 		/* move past filter desc */
2293 		tx_buf++;
2294 		tx_desc++;
2295 		i++;
2296 		if (unlikely(!i)) {
2297 			i -= tx_ring->count;
2298 			tx_buf = tx_ring->tx_buf;
2299 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2300 		}
2301 
2302 		/* unmap the data header */
2303 		if (dma_unmap_len(tx_buf, len))
2304 			dma_unmap_single(tx_ring->dev,
2305 					 dma_unmap_addr(tx_buf, dma),
2306 					 dma_unmap_len(tx_buf, len),
2307 					 DMA_TO_DEVICE);
2308 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2309 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2310 
2311 		/* clear next_to_watch to prevent false hangs */
2312 		tx_buf->raw_buf = NULL;
2313 		tx_buf->tx_flags = 0;
2314 		tx_buf->next_to_watch = NULL;
2315 		dma_unmap_len_set(tx_buf, len, 0);
2316 		tx_desc->buf_addr = 0;
2317 		tx_desc->cmd_type_offset_bsz = 0;
2318 
2319 		/* move past eop_desc for start of next FD desc */
2320 		tx_buf++;
2321 		tx_desc++;
2322 		i++;
2323 		if (unlikely(!i)) {
2324 			i -= tx_ring->count;
2325 			tx_buf = tx_ring->tx_buf;
2326 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2327 		}
2328 
2329 		budget--;
2330 	} while (likely(budget));
2331 
2332 	i += tx_ring->count;
2333 	tx_ring->next_to_clean = i;
2334 
2335 	/* re-enable interrupt if needed */
2336 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2337 }
2338