1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/xdp.h> 10 #include "ice_txrx_lib.h" 11 #include "ice_lib.h" 12 #include "ice.h" 13 #include "ice_trace.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_xsk.h" 16 17 #define ICE_RX_HDR_SIZE 256 18 19 #define FDIR_DESC_RXDID 0x40 20 #define ICE_FDIR_CLEAN_DELAY 10 21 22 /** 23 * ice_prgm_fdir_fltr - Program a Flow Director filter 24 * @vsi: VSI to send dummy packet 25 * @fdir_desc: flow director descriptor 26 * @raw_packet: allocated buffer for flow director 27 */ 28 int 29 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 30 u8 *raw_packet) 31 { 32 struct ice_tx_buf *tx_buf, *first; 33 struct ice_fltr_desc *f_desc; 34 struct ice_tx_desc *tx_desc; 35 struct ice_ring *tx_ring; 36 struct device *dev; 37 dma_addr_t dma; 38 u32 td_cmd; 39 u16 i; 40 41 /* VSI and Tx ring */ 42 if (!vsi) 43 return -ENOENT; 44 tx_ring = vsi->tx_rings[0]; 45 if (!tx_ring || !tx_ring->desc) 46 return -ENOENT; 47 dev = tx_ring->dev; 48 49 /* we are using two descriptors to add/del a filter and we can wait */ 50 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 51 if (!i) 52 return -EAGAIN; 53 msleep_interruptible(1); 54 } 55 56 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 57 DMA_TO_DEVICE); 58 59 if (dma_mapping_error(dev, dma)) 60 return -EINVAL; 61 62 /* grab the next descriptor */ 63 i = tx_ring->next_to_use; 64 first = &tx_ring->tx_buf[i]; 65 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 66 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 67 68 i++; 69 i = (i < tx_ring->count) ? i : 0; 70 tx_desc = ICE_TX_DESC(tx_ring, i); 71 tx_buf = &tx_ring->tx_buf[i]; 72 73 i++; 74 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 75 76 memset(tx_buf, 0, sizeof(*tx_buf)); 77 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 78 dma_unmap_addr_set(tx_buf, dma, dma); 79 80 tx_desc->buf_addr = cpu_to_le64(dma); 81 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 82 ICE_TX_DESC_CMD_RE; 83 84 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 85 tx_buf->raw_buf = raw_packet; 86 87 tx_desc->cmd_type_offset_bsz = 88 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 89 90 /* Force memory write to complete before letting h/w know 91 * there are new descriptors to fetch. 92 */ 93 wmb(); 94 95 /* mark the data descriptor to be watched */ 96 first->next_to_watch = tx_desc; 97 98 writel(tx_ring->next_to_use, tx_ring->tail); 99 100 return 0; 101 } 102 103 /** 104 * ice_unmap_and_free_tx_buf - Release a Tx buffer 105 * @ring: the ring that owns the buffer 106 * @tx_buf: the buffer to free 107 */ 108 static void 109 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 110 { 111 if (tx_buf->skb) { 112 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 113 devm_kfree(ring->dev, tx_buf->raw_buf); 114 else if (ice_ring_is_xdp(ring)) 115 page_frag_free(tx_buf->raw_buf); 116 else 117 dev_kfree_skb_any(tx_buf->skb); 118 if (dma_unmap_len(tx_buf, len)) 119 dma_unmap_single(ring->dev, 120 dma_unmap_addr(tx_buf, dma), 121 dma_unmap_len(tx_buf, len), 122 DMA_TO_DEVICE); 123 } else if (dma_unmap_len(tx_buf, len)) { 124 dma_unmap_page(ring->dev, 125 dma_unmap_addr(tx_buf, dma), 126 dma_unmap_len(tx_buf, len), 127 DMA_TO_DEVICE); 128 } 129 130 tx_buf->next_to_watch = NULL; 131 tx_buf->skb = NULL; 132 dma_unmap_len_set(tx_buf, len, 0); 133 /* tx_buf must be completely set up in the transmit path */ 134 } 135 136 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 137 { 138 return netdev_get_tx_queue(ring->netdev, ring->q_index); 139 } 140 141 /** 142 * ice_clean_tx_ring - Free any empty Tx buffers 143 * @tx_ring: ring to be cleaned 144 */ 145 void ice_clean_tx_ring(struct ice_ring *tx_ring) 146 { 147 u16 i; 148 149 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 150 ice_xsk_clean_xdp_ring(tx_ring); 151 goto tx_skip_free; 152 } 153 154 /* ring already cleared, nothing to do */ 155 if (!tx_ring->tx_buf) 156 return; 157 158 /* Free all the Tx ring sk_buffs */ 159 for (i = 0; i < tx_ring->count; i++) 160 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 161 162 tx_skip_free: 163 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 164 165 /* Zero out the descriptor ring */ 166 memset(tx_ring->desc, 0, tx_ring->size); 167 168 tx_ring->next_to_use = 0; 169 tx_ring->next_to_clean = 0; 170 171 if (!tx_ring->netdev) 172 return; 173 174 /* cleanup Tx queue statistics */ 175 netdev_tx_reset_queue(txring_txq(tx_ring)); 176 } 177 178 /** 179 * ice_free_tx_ring - Free Tx resources per queue 180 * @tx_ring: Tx descriptor ring for a specific queue 181 * 182 * Free all transmit software resources 183 */ 184 void ice_free_tx_ring(struct ice_ring *tx_ring) 185 { 186 ice_clean_tx_ring(tx_ring); 187 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 188 tx_ring->tx_buf = NULL; 189 190 if (tx_ring->desc) { 191 dmam_free_coherent(tx_ring->dev, tx_ring->size, 192 tx_ring->desc, tx_ring->dma); 193 tx_ring->desc = NULL; 194 } 195 } 196 197 /** 198 * ice_clean_tx_irq - Reclaim resources after transmit completes 199 * @tx_ring: Tx ring to clean 200 * @napi_budget: Used to determine if we are in netpoll 201 * 202 * Returns true if there's any budget left (e.g. the clean is finished) 203 */ 204 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) 205 { 206 unsigned int total_bytes = 0, total_pkts = 0; 207 unsigned int budget = ICE_DFLT_IRQ_WORK; 208 struct ice_vsi *vsi = tx_ring->vsi; 209 s16 i = tx_ring->next_to_clean; 210 struct ice_tx_desc *tx_desc; 211 struct ice_tx_buf *tx_buf; 212 213 tx_buf = &tx_ring->tx_buf[i]; 214 tx_desc = ICE_TX_DESC(tx_ring, i); 215 i -= tx_ring->count; 216 217 prefetch(&vsi->state); 218 219 do { 220 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 221 222 /* if next_to_watch is not set then there is no work pending */ 223 if (!eop_desc) 224 break; 225 226 smp_rmb(); /* prevent any other reads prior to eop_desc */ 227 228 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 229 /* if the descriptor isn't done, no work yet to do */ 230 if (!(eop_desc->cmd_type_offset_bsz & 231 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 232 break; 233 234 /* clear next_to_watch to prevent false hangs */ 235 tx_buf->next_to_watch = NULL; 236 237 /* update the statistics for this packet */ 238 total_bytes += tx_buf->bytecount; 239 total_pkts += tx_buf->gso_segs; 240 241 if (ice_ring_is_xdp(tx_ring)) 242 page_frag_free(tx_buf->raw_buf); 243 else 244 /* free the skb */ 245 napi_consume_skb(tx_buf->skb, napi_budget); 246 247 /* unmap skb header data */ 248 dma_unmap_single(tx_ring->dev, 249 dma_unmap_addr(tx_buf, dma), 250 dma_unmap_len(tx_buf, len), 251 DMA_TO_DEVICE); 252 253 /* clear tx_buf data */ 254 tx_buf->skb = NULL; 255 dma_unmap_len_set(tx_buf, len, 0); 256 257 /* unmap remaining buffers */ 258 while (tx_desc != eop_desc) { 259 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 260 tx_buf++; 261 tx_desc++; 262 i++; 263 if (unlikely(!i)) { 264 i -= tx_ring->count; 265 tx_buf = tx_ring->tx_buf; 266 tx_desc = ICE_TX_DESC(tx_ring, 0); 267 } 268 269 /* unmap any remaining paged data */ 270 if (dma_unmap_len(tx_buf, len)) { 271 dma_unmap_page(tx_ring->dev, 272 dma_unmap_addr(tx_buf, dma), 273 dma_unmap_len(tx_buf, len), 274 DMA_TO_DEVICE); 275 dma_unmap_len_set(tx_buf, len, 0); 276 } 277 } 278 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 279 280 /* move us one more past the eop_desc for start of next pkt */ 281 tx_buf++; 282 tx_desc++; 283 i++; 284 if (unlikely(!i)) { 285 i -= tx_ring->count; 286 tx_buf = tx_ring->tx_buf; 287 tx_desc = ICE_TX_DESC(tx_ring, 0); 288 } 289 290 prefetch(tx_desc); 291 292 /* update budget accounting */ 293 budget--; 294 } while (likely(budget)); 295 296 i += tx_ring->count; 297 tx_ring->next_to_clean = i; 298 299 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 300 301 if (ice_ring_is_xdp(tx_ring)) 302 return !!budget; 303 304 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 305 total_bytes); 306 307 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 308 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 309 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 310 /* Make sure that anybody stopping the queue after this 311 * sees the new next_to_clean. 312 */ 313 smp_mb(); 314 if (__netif_subqueue_stopped(tx_ring->netdev, 315 tx_ring->q_index) && 316 !test_bit(ICE_VSI_DOWN, vsi->state)) { 317 netif_wake_subqueue(tx_ring->netdev, 318 tx_ring->q_index); 319 ++tx_ring->tx_stats.restart_q; 320 } 321 } 322 323 return !!budget; 324 } 325 326 /** 327 * ice_setup_tx_ring - Allocate the Tx descriptors 328 * @tx_ring: the Tx ring to set up 329 * 330 * Return 0 on success, negative on error 331 */ 332 int ice_setup_tx_ring(struct ice_ring *tx_ring) 333 { 334 struct device *dev = tx_ring->dev; 335 336 if (!dev) 337 return -ENOMEM; 338 339 /* warn if we are about to overwrite the pointer */ 340 WARN_ON(tx_ring->tx_buf); 341 tx_ring->tx_buf = 342 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 343 GFP_KERNEL); 344 if (!tx_ring->tx_buf) 345 return -ENOMEM; 346 347 /* round up to nearest page */ 348 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 349 PAGE_SIZE); 350 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 351 GFP_KERNEL); 352 if (!tx_ring->desc) { 353 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 354 tx_ring->size); 355 goto err; 356 } 357 358 tx_ring->next_to_use = 0; 359 tx_ring->next_to_clean = 0; 360 tx_ring->tx_stats.prev_pkt = -1; 361 return 0; 362 363 err: 364 devm_kfree(dev, tx_ring->tx_buf); 365 tx_ring->tx_buf = NULL; 366 return -ENOMEM; 367 } 368 369 /** 370 * ice_clean_rx_ring - Free Rx buffers 371 * @rx_ring: ring to be cleaned 372 */ 373 void ice_clean_rx_ring(struct ice_ring *rx_ring) 374 { 375 struct device *dev = rx_ring->dev; 376 u16 i; 377 378 /* ring already cleared, nothing to do */ 379 if (!rx_ring->rx_buf) 380 return; 381 382 if (rx_ring->skb) { 383 dev_kfree_skb(rx_ring->skb); 384 rx_ring->skb = NULL; 385 } 386 387 if (rx_ring->xsk_pool) { 388 ice_xsk_clean_rx_ring(rx_ring); 389 goto rx_skip_free; 390 } 391 392 /* Free all the Rx ring sk_buffs */ 393 for (i = 0; i < rx_ring->count; i++) { 394 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 395 396 if (!rx_buf->page) 397 continue; 398 399 /* Invalidate cache lines that may have been written to by 400 * device so that we avoid corrupting memory. 401 */ 402 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 403 rx_buf->page_offset, 404 rx_ring->rx_buf_len, 405 DMA_FROM_DEVICE); 406 407 /* free resources associated with mapping */ 408 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 409 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 410 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 411 412 rx_buf->page = NULL; 413 rx_buf->page_offset = 0; 414 } 415 416 rx_skip_free: 417 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 418 419 /* Zero out the descriptor ring */ 420 memset(rx_ring->desc, 0, rx_ring->size); 421 422 rx_ring->next_to_alloc = 0; 423 rx_ring->next_to_clean = 0; 424 rx_ring->next_to_use = 0; 425 } 426 427 /** 428 * ice_free_rx_ring - Free Rx resources 429 * @rx_ring: ring to clean the resources from 430 * 431 * Free all receive software resources 432 */ 433 void ice_free_rx_ring(struct ice_ring *rx_ring) 434 { 435 ice_clean_rx_ring(rx_ring); 436 if (rx_ring->vsi->type == ICE_VSI_PF) 437 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 438 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 439 rx_ring->xdp_prog = NULL; 440 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 441 rx_ring->rx_buf = NULL; 442 443 if (rx_ring->desc) { 444 dmam_free_coherent(rx_ring->dev, rx_ring->size, 445 rx_ring->desc, rx_ring->dma); 446 rx_ring->desc = NULL; 447 } 448 } 449 450 /** 451 * ice_setup_rx_ring - Allocate the Rx descriptors 452 * @rx_ring: the Rx ring to set up 453 * 454 * Return 0 on success, negative on error 455 */ 456 int ice_setup_rx_ring(struct ice_ring *rx_ring) 457 { 458 struct device *dev = rx_ring->dev; 459 460 if (!dev) 461 return -ENOMEM; 462 463 /* warn if we are about to overwrite the pointer */ 464 WARN_ON(rx_ring->rx_buf); 465 rx_ring->rx_buf = 466 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 467 GFP_KERNEL); 468 if (!rx_ring->rx_buf) 469 return -ENOMEM; 470 471 /* round up to nearest page */ 472 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 473 PAGE_SIZE); 474 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 475 GFP_KERNEL); 476 if (!rx_ring->desc) { 477 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 478 rx_ring->size); 479 goto err; 480 } 481 482 rx_ring->next_to_use = 0; 483 rx_ring->next_to_clean = 0; 484 485 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 486 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 487 488 if (rx_ring->vsi->type == ICE_VSI_PF && 489 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 490 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 491 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 492 goto err; 493 return 0; 494 495 err: 496 devm_kfree(dev, rx_ring->rx_buf); 497 rx_ring->rx_buf = NULL; 498 return -ENOMEM; 499 } 500 501 static unsigned int 502 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) 503 { 504 unsigned int truesize; 505 506 #if (PAGE_SIZE < 8192) 507 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 508 #else 509 truesize = rx_ring->rx_offset ? 510 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 511 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 512 SKB_DATA_ALIGN(size); 513 #endif 514 return truesize; 515 } 516 517 /** 518 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 519 * @rx_ring: Rx ring 520 * @xdp: xdp_buff used as input to the XDP program 521 * @xdp_prog: XDP program to run 522 * 523 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 524 */ 525 static int 526 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, 527 struct bpf_prog *xdp_prog) 528 { 529 struct ice_ring *xdp_ring; 530 int err, result; 531 u32 act; 532 533 act = bpf_prog_run_xdp(xdp_prog, xdp); 534 switch (act) { 535 case XDP_PASS: 536 return ICE_XDP_PASS; 537 case XDP_TX: 538 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; 539 result = ice_xmit_xdp_buff(xdp, xdp_ring); 540 if (result == ICE_XDP_CONSUMED) 541 goto out_failure; 542 return result; 543 case XDP_REDIRECT: 544 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 545 if (err) 546 goto out_failure; 547 return ICE_XDP_REDIR; 548 default: 549 bpf_warn_invalid_xdp_action(act); 550 fallthrough; 551 case XDP_ABORTED: 552 out_failure: 553 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 554 fallthrough; 555 case XDP_DROP: 556 return ICE_XDP_CONSUMED; 557 } 558 } 559 560 /** 561 * ice_xdp_xmit - submit packets to XDP ring for transmission 562 * @dev: netdev 563 * @n: number of XDP frames to be transmitted 564 * @frames: XDP frames to be transmitted 565 * @flags: transmit flags 566 * 567 * Returns number of frames successfully sent. Failed frames 568 * will be free'ed by XDP core. 569 * For error cases, a negative errno code is returned and no-frames 570 * are transmitted (caller must handle freeing frames). 571 */ 572 int 573 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 574 u32 flags) 575 { 576 struct ice_netdev_priv *np = netdev_priv(dev); 577 unsigned int queue_index = smp_processor_id(); 578 struct ice_vsi *vsi = np->vsi; 579 struct ice_ring *xdp_ring; 580 int nxmit = 0, i; 581 582 if (test_bit(ICE_VSI_DOWN, vsi->state)) 583 return -ENETDOWN; 584 585 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 586 return -ENXIO; 587 588 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 589 return -EINVAL; 590 591 xdp_ring = vsi->xdp_rings[queue_index]; 592 for (i = 0; i < n; i++) { 593 struct xdp_frame *xdpf = frames[i]; 594 int err; 595 596 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 597 if (err != ICE_XDP_TX) 598 break; 599 nxmit++; 600 } 601 602 if (unlikely(flags & XDP_XMIT_FLUSH)) 603 ice_xdp_ring_update_tail(xdp_ring); 604 605 return nxmit; 606 } 607 608 /** 609 * ice_alloc_mapped_page - recycle or make a new page 610 * @rx_ring: ring to use 611 * @bi: rx_buf struct to modify 612 * 613 * Returns true if the page was successfully allocated or 614 * reused. 615 */ 616 static bool 617 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 618 { 619 struct page *page = bi->page; 620 dma_addr_t dma; 621 622 /* since we are recycling buffers we should seldom need to alloc */ 623 if (likely(page)) 624 return true; 625 626 /* alloc new page for storage */ 627 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 628 if (unlikely(!page)) { 629 rx_ring->rx_stats.alloc_page_failed++; 630 return false; 631 } 632 633 /* map page for use */ 634 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 635 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 636 637 /* if mapping failed free memory back to system since 638 * there isn't much point in holding memory we can't use 639 */ 640 if (dma_mapping_error(rx_ring->dev, dma)) { 641 __free_pages(page, ice_rx_pg_order(rx_ring)); 642 rx_ring->rx_stats.alloc_page_failed++; 643 return false; 644 } 645 646 bi->dma = dma; 647 bi->page = page; 648 bi->page_offset = rx_ring->rx_offset; 649 page_ref_add(page, USHRT_MAX - 1); 650 bi->pagecnt_bias = USHRT_MAX; 651 652 return true; 653 } 654 655 /** 656 * ice_alloc_rx_bufs - Replace used receive buffers 657 * @rx_ring: ring to place buffers on 658 * @cleaned_count: number of buffers to replace 659 * 660 * Returns false if all allocations were successful, true if any fail. Returning 661 * true signals to the caller that we didn't replace cleaned_count buffers and 662 * there is more work to do. 663 * 664 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 665 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 666 * multiple tail writes per call. 667 */ 668 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 669 { 670 union ice_32b_rx_flex_desc *rx_desc; 671 u16 ntu = rx_ring->next_to_use; 672 struct ice_rx_buf *bi; 673 674 /* do nothing if no valid netdev defined */ 675 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 676 !cleaned_count) 677 return false; 678 679 /* get the Rx descriptor and buffer based on next_to_use */ 680 rx_desc = ICE_RX_DESC(rx_ring, ntu); 681 bi = &rx_ring->rx_buf[ntu]; 682 683 do { 684 /* if we fail here, we have work remaining */ 685 if (!ice_alloc_mapped_page(rx_ring, bi)) 686 break; 687 688 /* sync the buffer for use by the device */ 689 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 690 bi->page_offset, 691 rx_ring->rx_buf_len, 692 DMA_FROM_DEVICE); 693 694 /* Refresh the desc even if buffer_addrs didn't change 695 * because each write-back erases this info. 696 */ 697 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 698 699 rx_desc++; 700 bi++; 701 ntu++; 702 if (unlikely(ntu == rx_ring->count)) { 703 rx_desc = ICE_RX_DESC(rx_ring, 0); 704 bi = rx_ring->rx_buf; 705 ntu = 0; 706 } 707 708 /* clear the status bits for the next_to_use descriptor */ 709 rx_desc->wb.status_error0 = 0; 710 711 cleaned_count--; 712 } while (cleaned_count); 713 714 if (rx_ring->next_to_use != ntu) 715 ice_release_rx_desc(rx_ring, ntu); 716 717 return !!cleaned_count; 718 } 719 720 /** 721 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 722 * @rx_buf: Rx buffer to adjust 723 * @size: Size of adjustment 724 * 725 * Update the offset within page so that Rx buf will be ready to be reused. 726 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 727 * so the second half of page assigned to Rx buffer will be used, otherwise 728 * the offset is moved by "size" bytes 729 */ 730 static void 731 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 732 { 733 #if (PAGE_SIZE < 8192) 734 /* flip page offset to other buffer */ 735 rx_buf->page_offset ^= size; 736 #else 737 /* move offset up to the next cache line */ 738 rx_buf->page_offset += size; 739 #endif 740 } 741 742 /** 743 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 744 * @rx_buf: buffer containing the page 745 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 746 * 747 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 748 * which will assign the current buffer to the buffer that next_to_alloc is 749 * pointing to; otherwise, the DMA mapping needs to be destroyed and 750 * page freed 751 */ 752 static bool 753 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 754 { 755 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 756 struct page *page = rx_buf->page; 757 758 /* avoid re-using remote and pfmemalloc pages */ 759 if (!dev_page_is_reusable(page)) 760 return false; 761 762 #if (PAGE_SIZE < 8192) 763 /* if we are only owner of page we can reuse it */ 764 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 765 return false; 766 #else 767 #define ICE_LAST_OFFSET \ 768 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 769 if (rx_buf->page_offset > ICE_LAST_OFFSET) 770 return false; 771 #endif /* PAGE_SIZE < 8192) */ 772 773 /* If we have drained the page fragment pool we need to update 774 * the pagecnt_bias and page count so that we fully restock the 775 * number of references the driver holds. 776 */ 777 if (unlikely(pagecnt_bias == 1)) { 778 page_ref_add(page, USHRT_MAX - 1); 779 rx_buf->pagecnt_bias = USHRT_MAX; 780 } 781 782 return true; 783 } 784 785 /** 786 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 787 * @rx_ring: Rx descriptor ring to transact packets on 788 * @rx_buf: buffer containing page to add 789 * @skb: sk_buff to place the data into 790 * @size: packet length from rx_desc 791 * 792 * This function will add the data contained in rx_buf->page to the skb. 793 * It will just attach the page as a frag to the skb. 794 * The function will then update the page offset. 795 */ 796 static void 797 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 798 struct sk_buff *skb, unsigned int size) 799 { 800 #if (PAGE_SIZE >= 8192) 801 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 802 #else 803 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 804 #endif 805 806 if (!size) 807 return; 808 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 809 rx_buf->page_offset, size, truesize); 810 811 /* page is being used so we must update the page offset */ 812 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 813 } 814 815 /** 816 * ice_reuse_rx_page - page flip buffer and store it back on the ring 817 * @rx_ring: Rx descriptor ring to store buffers on 818 * @old_buf: donor buffer to have page reused 819 * 820 * Synchronizes page for reuse by the adapter 821 */ 822 static void 823 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 824 { 825 u16 nta = rx_ring->next_to_alloc; 826 struct ice_rx_buf *new_buf; 827 828 new_buf = &rx_ring->rx_buf[nta]; 829 830 /* update, and store next to alloc */ 831 nta++; 832 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 833 834 /* Transfer page from old buffer to new buffer. 835 * Move each member individually to avoid possible store 836 * forwarding stalls and unnecessary copy of skb. 837 */ 838 new_buf->dma = old_buf->dma; 839 new_buf->page = old_buf->page; 840 new_buf->page_offset = old_buf->page_offset; 841 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 842 } 843 844 /** 845 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 846 * @rx_ring: Rx descriptor ring to transact packets on 847 * @size: size of buffer to add to skb 848 * @rx_buf_pgcnt: rx_buf page refcount 849 * 850 * This function will pull an Rx buffer from the ring and synchronize it 851 * for use by the CPU. 852 */ 853 static struct ice_rx_buf * 854 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size, 855 int *rx_buf_pgcnt) 856 { 857 struct ice_rx_buf *rx_buf; 858 859 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 860 *rx_buf_pgcnt = 861 #if (PAGE_SIZE < 8192) 862 page_count(rx_buf->page); 863 #else 864 0; 865 #endif 866 prefetchw(rx_buf->page); 867 868 if (!size) 869 return rx_buf; 870 /* we are reusing so sync this buffer for CPU use */ 871 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 872 rx_buf->page_offset, size, 873 DMA_FROM_DEVICE); 874 875 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 876 rx_buf->pagecnt_bias--; 877 878 return rx_buf; 879 } 880 881 /** 882 * ice_build_skb - Build skb around an existing buffer 883 * @rx_ring: Rx descriptor ring to transact packets on 884 * @rx_buf: Rx buffer to pull data from 885 * @xdp: xdp_buff pointing to the data 886 * 887 * This function builds an skb around an existing Rx buffer, taking care 888 * to set up the skb correctly and avoid any memcpy overhead. 889 */ 890 static struct sk_buff * 891 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 892 struct xdp_buff *xdp) 893 { 894 u8 metasize = xdp->data - xdp->data_meta; 895 #if (PAGE_SIZE < 8192) 896 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 897 #else 898 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 899 SKB_DATA_ALIGN(xdp->data_end - 900 xdp->data_hard_start); 901 #endif 902 struct sk_buff *skb; 903 904 /* Prefetch first cache line of first page. If xdp->data_meta 905 * is unused, this points exactly as xdp->data, otherwise we 906 * likely have a consumer accessing first few bytes of meta 907 * data, and then actual data. 908 */ 909 net_prefetch(xdp->data_meta); 910 /* build an skb around the page buffer */ 911 skb = build_skb(xdp->data_hard_start, truesize); 912 if (unlikely(!skb)) 913 return NULL; 914 915 /* must to record Rx queue, otherwise OS features such as 916 * symmetric queue won't work 917 */ 918 skb_record_rx_queue(skb, rx_ring->q_index); 919 920 /* update pointers within the skb to store the data */ 921 skb_reserve(skb, xdp->data - xdp->data_hard_start); 922 __skb_put(skb, xdp->data_end - xdp->data); 923 if (metasize) 924 skb_metadata_set(skb, metasize); 925 926 /* buffer is used by skb, update page_offset */ 927 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 928 929 return skb; 930 } 931 932 /** 933 * ice_construct_skb - Allocate skb and populate it 934 * @rx_ring: Rx descriptor ring to transact packets on 935 * @rx_buf: Rx buffer to pull data from 936 * @xdp: xdp_buff pointing to the data 937 * 938 * This function allocates an skb. It then populates it with the page 939 * data from the current receive descriptor, taking care to set up the 940 * skb correctly. 941 */ 942 static struct sk_buff * 943 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 944 struct xdp_buff *xdp) 945 { 946 unsigned int size = xdp->data_end - xdp->data; 947 unsigned int headlen; 948 struct sk_buff *skb; 949 950 /* prefetch first cache line of first page */ 951 net_prefetch(xdp->data); 952 953 /* allocate a skb to store the frags */ 954 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 955 GFP_ATOMIC | __GFP_NOWARN); 956 if (unlikely(!skb)) 957 return NULL; 958 959 skb_record_rx_queue(skb, rx_ring->q_index); 960 /* Determine available headroom for copy */ 961 headlen = size; 962 if (headlen > ICE_RX_HDR_SIZE) 963 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 964 965 /* align pull length to size of long to optimize memcpy performance */ 966 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 967 sizeof(long))); 968 969 /* if we exhaust the linear part then add what is left as a frag */ 970 size -= headlen; 971 if (size) { 972 #if (PAGE_SIZE >= 8192) 973 unsigned int truesize = SKB_DATA_ALIGN(size); 974 #else 975 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 976 #endif 977 skb_add_rx_frag(skb, 0, rx_buf->page, 978 rx_buf->page_offset + headlen, size, truesize); 979 /* buffer is used by skb, update page_offset */ 980 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 981 } else { 982 /* buffer is unused, reset bias back to rx_buf; data was copied 983 * onto skb's linear part so there's no need for adjusting 984 * page offset and we can reuse this buffer as-is 985 */ 986 rx_buf->pagecnt_bias++; 987 } 988 989 return skb; 990 } 991 992 /** 993 * ice_put_rx_buf - Clean up used buffer and either recycle or free 994 * @rx_ring: Rx descriptor ring to transact packets on 995 * @rx_buf: Rx buffer to pull data from 996 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 997 * 998 * This function will update next_to_clean and then clean up the contents 999 * of the rx_buf. It will either recycle the buffer or unmap it and free 1000 * the associated resources. 1001 */ 1002 static void 1003 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 1004 int rx_buf_pgcnt) 1005 { 1006 u16 ntc = rx_ring->next_to_clean + 1; 1007 1008 /* fetch, update, and store next to clean */ 1009 ntc = (ntc < rx_ring->count) ? ntc : 0; 1010 rx_ring->next_to_clean = ntc; 1011 1012 if (!rx_buf) 1013 return; 1014 1015 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1016 /* hand second half of page back to the ring */ 1017 ice_reuse_rx_page(rx_ring, rx_buf); 1018 } else { 1019 /* we are not reusing the buffer so unmap it */ 1020 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1021 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1022 ICE_RX_DMA_ATTR); 1023 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1024 } 1025 1026 /* clear contents of buffer_info */ 1027 rx_buf->page = NULL; 1028 } 1029 1030 /** 1031 * ice_is_non_eop - process handling of non-EOP buffers 1032 * @rx_ring: Rx ring being processed 1033 * @rx_desc: Rx descriptor for current buffer 1034 * 1035 * If the buffer is an EOP buffer, this function exits returning false, 1036 * otherwise return true indicating that this is in fact a non-EOP buffer. 1037 */ 1038 static bool 1039 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1040 { 1041 /* if we are the last buffer then there is nothing else to do */ 1042 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1043 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1044 return false; 1045 1046 rx_ring->rx_stats.non_eop_descs++; 1047 1048 return true; 1049 } 1050 1051 /** 1052 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1053 * @rx_ring: Rx descriptor ring to transact packets on 1054 * @budget: Total limit on number of packets to process 1055 * 1056 * This function provides a "bounce buffer" approach to Rx interrupt 1057 * processing. The advantage to this is that on systems that have 1058 * expensive overhead for IOMMU access this provides a means of avoiding 1059 * it by maintaining the mapping of the page to the system. 1060 * 1061 * Returns amount of work completed 1062 */ 1063 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1064 { 1065 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1066 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1067 unsigned int offset = rx_ring->rx_offset; 1068 unsigned int xdp_res, xdp_xmit = 0; 1069 struct sk_buff *skb = rx_ring->skb; 1070 struct bpf_prog *xdp_prog = NULL; 1071 struct xdp_buff xdp; 1072 bool failure; 1073 1074 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1075 #if (PAGE_SIZE < 8192) 1076 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1077 #endif 1078 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1079 1080 /* start the loop to process Rx packets bounded by 'budget' */ 1081 while (likely(total_rx_pkts < (unsigned int)budget)) { 1082 union ice_32b_rx_flex_desc *rx_desc; 1083 struct ice_rx_buf *rx_buf; 1084 unsigned char *hard_start; 1085 unsigned int size; 1086 u16 stat_err_bits; 1087 int rx_buf_pgcnt; 1088 u16 vlan_tag = 0; 1089 u16 rx_ptype; 1090 1091 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1092 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1093 1094 /* status_error_len will always be zero for unused descriptors 1095 * because it's cleared in cleanup, and overlaps with hdr_addr 1096 * which is always zero because packet split isn't used, if the 1097 * hardware wrote DD then it will be non-zero 1098 */ 1099 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1100 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1101 break; 1102 1103 /* This memory barrier is needed to keep us from reading 1104 * any other fields out of the rx_desc until we know the 1105 * DD bit is set. 1106 */ 1107 dma_rmb(); 1108 1109 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1110 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1111 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1112 1113 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1114 ctrl_vsi->vf_id != ICE_INVAL_VFID) 1115 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1116 ice_put_rx_buf(rx_ring, NULL, 0); 1117 cleaned_count++; 1118 continue; 1119 } 1120 1121 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1122 ICE_RX_FLX_DESC_PKT_LEN_M; 1123 1124 /* retrieve a buffer from the ring */ 1125 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1126 1127 if (!size) { 1128 xdp.data = NULL; 1129 xdp.data_end = NULL; 1130 xdp.data_hard_start = NULL; 1131 xdp.data_meta = NULL; 1132 goto construct_skb; 1133 } 1134 1135 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1136 offset; 1137 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1138 #if (PAGE_SIZE > 4096) 1139 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1140 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1141 #endif 1142 1143 rcu_read_lock(); 1144 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1145 if (!xdp_prog) { 1146 rcu_read_unlock(); 1147 goto construct_skb; 1148 } 1149 1150 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); 1151 rcu_read_unlock(); 1152 if (!xdp_res) 1153 goto construct_skb; 1154 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1155 xdp_xmit |= xdp_res; 1156 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1157 } else { 1158 rx_buf->pagecnt_bias++; 1159 } 1160 total_rx_bytes += size; 1161 total_rx_pkts++; 1162 1163 cleaned_count++; 1164 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1165 continue; 1166 construct_skb: 1167 if (skb) { 1168 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1169 } else if (likely(xdp.data)) { 1170 if (ice_ring_uses_build_skb(rx_ring)) 1171 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1172 else 1173 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1174 } 1175 /* exit if we failed to retrieve a buffer */ 1176 if (!skb) { 1177 rx_ring->rx_stats.alloc_buf_failed++; 1178 if (rx_buf) 1179 rx_buf->pagecnt_bias++; 1180 break; 1181 } 1182 1183 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1184 cleaned_count++; 1185 1186 /* skip if it is NOP desc */ 1187 if (ice_is_non_eop(rx_ring, rx_desc)) 1188 continue; 1189 1190 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1191 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1192 dev_kfree_skb_any(skb); 1193 continue; 1194 } 1195 1196 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1197 if (ice_test_staterr(rx_desc, stat_err_bits)) 1198 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1199 1200 /* pad the skb if needed, to make a valid ethernet frame */ 1201 if (eth_skb_pad(skb)) { 1202 skb = NULL; 1203 continue; 1204 } 1205 1206 /* probably a little skewed due to removing CRC */ 1207 total_rx_bytes += skb->len; 1208 1209 /* populate checksum, VLAN, and protocol */ 1210 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1211 ICE_RX_FLEX_DESC_PTYPE_M; 1212 1213 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1214 1215 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1216 /* send completed skb up the stack */ 1217 ice_receive_skb(rx_ring, skb, vlan_tag); 1218 skb = NULL; 1219 1220 /* update budget accounting */ 1221 total_rx_pkts++; 1222 } 1223 1224 /* return up to cleaned_count buffers to hardware */ 1225 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1226 1227 if (xdp_prog) 1228 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 1229 rx_ring->skb = skb; 1230 1231 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1232 1233 /* guarantee a trip back through this routine if there was a failure */ 1234 return failure ? budget : (int)total_rx_pkts; 1235 } 1236 1237 /** 1238 * ice_net_dim - Update net DIM algorithm 1239 * @q_vector: the vector associated with the interrupt 1240 * 1241 * Create a DIM sample and notify net_dim() so that it can possibly decide 1242 * a new ITR value based on incoming packets, bytes, and interrupts. 1243 * 1244 * This function is a no-op if the ring is not configured to dynamic ITR. 1245 */ 1246 static void ice_net_dim(struct ice_q_vector *q_vector) 1247 { 1248 struct ice_ring_container *tx = &q_vector->tx; 1249 struct ice_ring_container *rx = &q_vector->rx; 1250 1251 if (ITR_IS_DYNAMIC(tx)) { 1252 struct dim_sample dim_sample = {}; 1253 u64 packets = 0, bytes = 0; 1254 struct ice_ring *ring; 1255 1256 ice_for_each_ring(ring, q_vector->tx) { 1257 packets += ring->stats.pkts; 1258 bytes += ring->stats.bytes; 1259 } 1260 1261 dim_update_sample(q_vector->total_events, packets, bytes, 1262 &dim_sample); 1263 1264 net_dim(&tx->dim, dim_sample); 1265 } 1266 1267 if (ITR_IS_DYNAMIC(rx)) { 1268 struct dim_sample dim_sample = {}; 1269 u64 packets = 0, bytes = 0; 1270 struct ice_ring *ring; 1271 1272 ice_for_each_ring(ring, q_vector->rx) { 1273 packets += ring->stats.pkts; 1274 bytes += ring->stats.bytes; 1275 } 1276 1277 dim_update_sample(q_vector->total_events, packets, bytes, 1278 &dim_sample); 1279 1280 net_dim(&rx->dim, dim_sample); 1281 } 1282 } 1283 1284 /** 1285 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1286 * @itr_idx: interrupt throttling index 1287 * @itr: interrupt throttling value in usecs 1288 */ 1289 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1290 { 1291 /* The ITR value is reported in microseconds, and the register value is 1292 * recorded in 2 microsecond units. For this reason we only need to 1293 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1294 * granularity as a shift instead of division. The mask makes sure the 1295 * ITR value is never odd so we don't accidentally write into the field 1296 * prior to the ITR field. 1297 */ 1298 itr &= ICE_ITR_MASK; 1299 1300 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1301 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1302 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1303 } 1304 1305 /** 1306 * ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt 1307 * @q_vector: the vector associated with the interrupt to enable 1308 * 1309 * Update the net_dim() algorithm and re-enable the interrupt associated with 1310 * this vector. 1311 * 1312 * If the VSI is down, the interrupt will not be re-enabled. 1313 */ 1314 static void ice_update_ena_itr(struct ice_q_vector *q_vector) 1315 { 1316 struct ice_vsi *vsi = q_vector->vsi; 1317 bool wb_en = q_vector->wb_on_itr; 1318 u32 itr_val; 1319 1320 if (test_bit(ICE_DOWN, vsi->state)) 1321 return; 1322 1323 /* When exiting WB_ON_ITR, let ITR resume its normal 1324 * interrupts-enabled path. 1325 */ 1326 if (wb_en) 1327 q_vector->wb_on_itr = false; 1328 1329 /* This will do nothing if dynamic updates are not enabled. */ 1330 ice_net_dim(q_vector); 1331 1332 /* net_dim() updates ITR out-of-band using a work item */ 1333 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1334 /* trigger an immediate software interrupt when exiting 1335 * busy poll, to make sure to catch any pending cleanups 1336 * that might have been missed due to interrupt state 1337 * transition. 1338 */ 1339 if (wb_en) { 1340 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1341 GLINT_DYN_CTL_SW_ITR_INDX_M | 1342 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1343 } 1344 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1345 } 1346 1347 /** 1348 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1349 * @q_vector: q_vector to set WB_ON_ITR on 1350 * 1351 * We need to tell hardware to write-back completed descriptors even when 1352 * interrupts are disabled. Descriptors will be written back on cache line 1353 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1354 * descriptors may not be written back if they don't fill a cache line until 1355 * the next interrupt. 1356 * 1357 * This sets the write-back frequency to whatever was set previously for the 1358 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1359 * aren't meddling with the INTENA_M bit. 1360 */ 1361 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1362 { 1363 struct ice_vsi *vsi = q_vector->vsi; 1364 1365 /* already in wb_on_itr mode no need to change it */ 1366 if (q_vector->wb_on_itr) 1367 return; 1368 1369 /* use previously set ITR values for all of the ITR indices by 1370 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1371 * be static in non-adaptive mode (user configured) 1372 */ 1373 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1374 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1375 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1376 GLINT_DYN_CTL_WB_ON_ITR_M); 1377 1378 q_vector->wb_on_itr = true; 1379 } 1380 1381 /** 1382 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1383 * @napi: napi struct with our devices info in it 1384 * @budget: amount of work driver is allowed to do this pass, in packets 1385 * 1386 * This function will clean all queues associated with a q_vector. 1387 * 1388 * Returns the amount of work done 1389 */ 1390 int ice_napi_poll(struct napi_struct *napi, int budget) 1391 { 1392 struct ice_q_vector *q_vector = 1393 container_of(napi, struct ice_q_vector, napi); 1394 bool clean_complete = true; 1395 struct ice_ring *ring; 1396 int budget_per_ring; 1397 int work_done = 0; 1398 1399 /* Since the actual Tx work is minimal, we can give the Tx a larger 1400 * budget and be more aggressive about cleaning up the Tx descriptors. 1401 */ 1402 ice_for_each_ring(ring, q_vector->tx) { 1403 bool wd = ring->xsk_pool ? 1404 ice_clean_tx_irq_zc(ring, budget) : 1405 ice_clean_tx_irq(ring, budget); 1406 1407 if (!wd) 1408 clean_complete = false; 1409 } 1410 1411 /* Handle case where we are called by netpoll with a budget of 0 */ 1412 if (unlikely(budget <= 0)) 1413 return budget; 1414 1415 /* normally we have 1 Rx ring per q_vector */ 1416 if (unlikely(q_vector->num_ring_rx > 1)) 1417 /* We attempt to distribute budget to each Rx queue fairly, but 1418 * don't allow the budget to go below 1 because that would exit 1419 * polling early. 1420 */ 1421 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1422 else 1423 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1424 budget_per_ring = budget; 1425 1426 ice_for_each_ring(ring, q_vector->rx) { 1427 int cleaned; 1428 1429 /* A dedicated path for zero-copy allows making a single 1430 * comparison in the irq context instead of many inside the 1431 * ice_clean_rx_irq function and makes the codebase cleaner. 1432 */ 1433 cleaned = ring->xsk_pool ? 1434 ice_clean_rx_irq_zc(ring, budget_per_ring) : 1435 ice_clean_rx_irq(ring, budget_per_ring); 1436 work_done += cleaned; 1437 /* if we clean as many as budgeted, we must not be done */ 1438 if (cleaned >= budget_per_ring) 1439 clean_complete = false; 1440 } 1441 1442 /* If work not completed, return budget and polling will return */ 1443 if (!clean_complete) { 1444 /* Set the writeback on ITR so partial completions of 1445 * cache-lines will still continue even if we're polling. 1446 */ 1447 ice_set_wb_on_itr(q_vector); 1448 return budget; 1449 } 1450 1451 /* Exit the polling mode, but don't re-enable interrupts if stack might 1452 * poll us due to busy-polling 1453 */ 1454 if (likely(napi_complete_done(napi, work_done))) 1455 ice_update_ena_itr(q_vector); 1456 else 1457 ice_set_wb_on_itr(q_vector); 1458 1459 return min_t(int, work_done, budget - 1); 1460 } 1461 1462 /** 1463 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1464 * @tx_ring: the ring to be checked 1465 * @size: the size buffer we want to assure is available 1466 * 1467 * Returns -EBUSY if a stop is needed, else 0 1468 */ 1469 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1470 { 1471 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1472 /* Memory barrier before checking head and tail */ 1473 smp_mb(); 1474 1475 /* Check again in a case another CPU has just made room available. */ 1476 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1477 return -EBUSY; 1478 1479 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1480 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1481 ++tx_ring->tx_stats.restart_q; 1482 return 0; 1483 } 1484 1485 /** 1486 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1487 * @tx_ring: the ring to be checked 1488 * @size: the size buffer we want to assure is available 1489 * 1490 * Returns 0 if stop is not needed 1491 */ 1492 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1493 { 1494 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1495 return 0; 1496 1497 return __ice_maybe_stop_tx(tx_ring, size); 1498 } 1499 1500 /** 1501 * ice_tx_map - Build the Tx descriptor 1502 * @tx_ring: ring to send buffer on 1503 * @first: first buffer info buffer to use 1504 * @off: pointer to struct that holds offload parameters 1505 * 1506 * This function loops over the skb data pointed to by *first 1507 * and gets a physical address for each memory location and programs 1508 * it and the length into the transmit descriptor. 1509 */ 1510 static void 1511 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1512 struct ice_tx_offload_params *off) 1513 { 1514 u64 td_offset, td_tag, td_cmd; 1515 u16 i = tx_ring->next_to_use; 1516 unsigned int data_len, size; 1517 struct ice_tx_desc *tx_desc; 1518 struct ice_tx_buf *tx_buf; 1519 struct sk_buff *skb; 1520 skb_frag_t *frag; 1521 dma_addr_t dma; 1522 1523 td_tag = off->td_l2tag1; 1524 td_cmd = off->td_cmd; 1525 td_offset = off->td_offset; 1526 skb = first->skb; 1527 1528 data_len = skb->data_len; 1529 size = skb_headlen(skb); 1530 1531 tx_desc = ICE_TX_DESC(tx_ring, i); 1532 1533 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1534 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1535 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1536 ICE_TX_FLAGS_VLAN_S; 1537 } 1538 1539 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1540 1541 tx_buf = first; 1542 1543 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1544 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1545 1546 if (dma_mapping_error(tx_ring->dev, dma)) 1547 goto dma_error; 1548 1549 /* record length, and DMA address */ 1550 dma_unmap_len_set(tx_buf, len, size); 1551 dma_unmap_addr_set(tx_buf, dma, dma); 1552 1553 /* align size to end of page */ 1554 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1555 tx_desc->buf_addr = cpu_to_le64(dma); 1556 1557 /* account for data chunks larger than the hardware 1558 * can handle 1559 */ 1560 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1561 tx_desc->cmd_type_offset_bsz = 1562 ice_build_ctob(td_cmd, td_offset, max_data, 1563 td_tag); 1564 1565 tx_desc++; 1566 i++; 1567 1568 if (i == tx_ring->count) { 1569 tx_desc = ICE_TX_DESC(tx_ring, 0); 1570 i = 0; 1571 } 1572 1573 dma += max_data; 1574 size -= max_data; 1575 1576 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1577 tx_desc->buf_addr = cpu_to_le64(dma); 1578 } 1579 1580 if (likely(!data_len)) 1581 break; 1582 1583 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1584 size, td_tag); 1585 1586 tx_desc++; 1587 i++; 1588 1589 if (i == tx_ring->count) { 1590 tx_desc = ICE_TX_DESC(tx_ring, 0); 1591 i = 0; 1592 } 1593 1594 size = skb_frag_size(frag); 1595 data_len -= size; 1596 1597 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1598 DMA_TO_DEVICE); 1599 1600 tx_buf = &tx_ring->tx_buf[i]; 1601 } 1602 1603 /* record bytecount for BQL */ 1604 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1605 1606 /* record SW timestamp if HW timestamp is not available */ 1607 skb_tx_timestamp(first->skb); 1608 1609 i++; 1610 if (i == tx_ring->count) 1611 i = 0; 1612 1613 /* write last descriptor with RS and EOP bits */ 1614 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1615 tx_desc->cmd_type_offset_bsz = 1616 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1617 1618 /* Force memory writes to complete before letting h/w know there 1619 * are new descriptors to fetch. 1620 * 1621 * We also use this memory barrier to make certain all of the 1622 * status bits have been updated before next_to_watch is written. 1623 */ 1624 wmb(); 1625 1626 /* set next_to_watch value indicating a packet is present */ 1627 first->next_to_watch = tx_desc; 1628 1629 tx_ring->next_to_use = i; 1630 1631 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1632 1633 /* notify HW of packet */ 1634 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1635 writel(i, tx_ring->tail); 1636 1637 return; 1638 1639 dma_error: 1640 /* clear DMA mappings for failed tx_buf map */ 1641 for (;;) { 1642 tx_buf = &tx_ring->tx_buf[i]; 1643 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1644 if (tx_buf == first) 1645 break; 1646 if (i == 0) 1647 i = tx_ring->count; 1648 i--; 1649 } 1650 1651 tx_ring->next_to_use = i; 1652 } 1653 1654 /** 1655 * ice_tx_csum - Enable Tx checksum offloads 1656 * @first: pointer to the first descriptor 1657 * @off: pointer to struct that holds offload parameters 1658 * 1659 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1660 */ 1661 static 1662 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1663 { 1664 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1665 struct sk_buff *skb = first->skb; 1666 union { 1667 struct iphdr *v4; 1668 struct ipv6hdr *v6; 1669 unsigned char *hdr; 1670 } ip; 1671 union { 1672 struct tcphdr *tcp; 1673 unsigned char *hdr; 1674 } l4; 1675 __be16 frag_off, protocol; 1676 unsigned char *exthdr; 1677 u32 offset, cmd = 0; 1678 u8 l4_proto = 0; 1679 1680 if (skb->ip_summed != CHECKSUM_PARTIAL) 1681 return 0; 1682 1683 ip.hdr = skb_network_header(skb); 1684 l4.hdr = skb_transport_header(skb); 1685 1686 /* compute outer L2 header size */ 1687 l2_len = ip.hdr - skb->data; 1688 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1689 1690 protocol = vlan_get_protocol(skb); 1691 1692 if (protocol == htons(ETH_P_IP)) 1693 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1694 else if (protocol == htons(ETH_P_IPV6)) 1695 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1696 1697 if (skb->encapsulation) { 1698 bool gso_ena = false; 1699 u32 tunnel = 0; 1700 1701 /* define outer network header type */ 1702 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1703 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1704 ICE_TX_CTX_EIPT_IPV4 : 1705 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1706 l4_proto = ip.v4->protocol; 1707 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1708 int ret; 1709 1710 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1711 exthdr = ip.hdr + sizeof(*ip.v6); 1712 l4_proto = ip.v6->nexthdr; 1713 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1714 &l4_proto, &frag_off); 1715 if (ret < 0) 1716 return -1; 1717 } 1718 1719 /* define outer transport */ 1720 switch (l4_proto) { 1721 case IPPROTO_UDP: 1722 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1723 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1724 break; 1725 case IPPROTO_GRE: 1726 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1727 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1728 break; 1729 case IPPROTO_IPIP: 1730 case IPPROTO_IPV6: 1731 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1732 l4.hdr = skb_inner_network_header(skb); 1733 break; 1734 default: 1735 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1736 return -1; 1737 1738 skb_checksum_help(skb); 1739 return 0; 1740 } 1741 1742 /* compute outer L3 header size */ 1743 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1744 ICE_TXD_CTX_QW0_EIPLEN_S; 1745 1746 /* switch IP header pointer from outer to inner header */ 1747 ip.hdr = skb_inner_network_header(skb); 1748 1749 /* compute tunnel header size */ 1750 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1751 ICE_TXD_CTX_QW0_NATLEN_S; 1752 1753 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1754 /* indicate if we need to offload outer UDP header */ 1755 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1756 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1757 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1758 1759 /* record tunnel offload values */ 1760 off->cd_tunnel_params |= tunnel; 1761 1762 /* set DTYP=1 to indicate that it's an Tx context descriptor 1763 * in IPsec tunnel mode with Tx offloads in Quad word 1 1764 */ 1765 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1766 1767 /* switch L4 header pointer from outer to inner */ 1768 l4.hdr = skb_inner_transport_header(skb); 1769 l4_proto = 0; 1770 1771 /* reset type as we transition from outer to inner headers */ 1772 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1773 if (ip.v4->version == 4) 1774 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1775 if (ip.v6->version == 6) 1776 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1777 } 1778 1779 /* Enable IP checksum offloads */ 1780 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1781 l4_proto = ip.v4->protocol; 1782 /* the stack computes the IP header already, the only time we 1783 * need the hardware to recompute it is in the case of TSO. 1784 */ 1785 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1786 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1787 else 1788 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1789 1790 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1791 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1792 exthdr = ip.hdr + sizeof(*ip.v6); 1793 l4_proto = ip.v6->nexthdr; 1794 if (l4.hdr != exthdr) 1795 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1796 &frag_off); 1797 } else { 1798 return -1; 1799 } 1800 1801 /* compute inner L3 header size */ 1802 l3_len = l4.hdr - ip.hdr; 1803 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1804 1805 /* Enable L4 checksum offloads */ 1806 switch (l4_proto) { 1807 case IPPROTO_TCP: 1808 /* enable checksum offloads */ 1809 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1810 l4_len = l4.tcp->doff; 1811 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1812 break; 1813 case IPPROTO_UDP: 1814 /* enable UDP checksum offload */ 1815 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1816 l4_len = (sizeof(struct udphdr) >> 2); 1817 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1818 break; 1819 case IPPROTO_SCTP: 1820 /* enable SCTP checksum offload */ 1821 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1822 l4_len = sizeof(struct sctphdr) >> 2; 1823 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1824 break; 1825 1826 default: 1827 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1828 return -1; 1829 skb_checksum_help(skb); 1830 return 0; 1831 } 1832 1833 off->td_cmd |= cmd; 1834 off->td_offset |= offset; 1835 return 1; 1836 } 1837 1838 /** 1839 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1840 * @tx_ring: ring to send buffer on 1841 * @first: pointer to struct ice_tx_buf 1842 * 1843 * Checks the skb and set up correspondingly several generic transmit flags 1844 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1845 */ 1846 static void 1847 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 1848 { 1849 struct sk_buff *skb = first->skb; 1850 1851 /* nothing left to do, software offloaded VLAN */ 1852 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1853 return; 1854 1855 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 1856 * insertion for 802.1AD is not supported 1857 */ 1858 if (skb_vlan_tag_present(skb)) { 1859 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1860 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1861 } 1862 1863 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1864 } 1865 1866 /** 1867 * ice_tso - computes mss and TSO length to prepare for TSO 1868 * @first: pointer to struct ice_tx_buf 1869 * @off: pointer to struct that holds offload parameters 1870 * 1871 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1872 */ 1873 static 1874 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1875 { 1876 struct sk_buff *skb = first->skb; 1877 union { 1878 struct iphdr *v4; 1879 struct ipv6hdr *v6; 1880 unsigned char *hdr; 1881 } ip; 1882 union { 1883 struct tcphdr *tcp; 1884 struct udphdr *udp; 1885 unsigned char *hdr; 1886 } l4; 1887 u64 cd_mss, cd_tso_len; 1888 u32 paylen; 1889 u8 l4_start; 1890 int err; 1891 1892 if (skb->ip_summed != CHECKSUM_PARTIAL) 1893 return 0; 1894 1895 if (!skb_is_gso(skb)) 1896 return 0; 1897 1898 err = skb_cow_head(skb, 0); 1899 if (err < 0) 1900 return err; 1901 1902 /* cppcheck-suppress unreadVariable */ 1903 ip.hdr = skb_network_header(skb); 1904 l4.hdr = skb_transport_header(skb); 1905 1906 /* initialize outer IP header fields */ 1907 if (ip.v4->version == 4) { 1908 ip.v4->tot_len = 0; 1909 ip.v4->check = 0; 1910 } else { 1911 ip.v6->payload_len = 0; 1912 } 1913 1914 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1915 SKB_GSO_GRE_CSUM | 1916 SKB_GSO_IPXIP4 | 1917 SKB_GSO_IPXIP6 | 1918 SKB_GSO_UDP_TUNNEL | 1919 SKB_GSO_UDP_TUNNEL_CSUM)) { 1920 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1921 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1922 l4.udp->len = 0; 1923 1924 /* determine offset of outer transport header */ 1925 l4_start = (u8)(l4.hdr - skb->data); 1926 1927 /* remove payload length from outer checksum */ 1928 paylen = skb->len - l4_start; 1929 csum_replace_by_diff(&l4.udp->check, 1930 (__force __wsum)htonl(paylen)); 1931 } 1932 1933 /* reset pointers to inner headers */ 1934 1935 /* cppcheck-suppress unreadVariable */ 1936 ip.hdr = skb_inner_network_header(skb); 1937 l4.hdr = skb_inner_transport_header(skb); 1938 1939 /* initialize inner IP header fields */ 1940 if (ip.v4->version == 4) { 1941 ip.v4->tot_len = 0; 1942 ip.v4->check = 0; 1943 } else { 1944 ip.v6->payload_len = 0; 1945 } 1946 } 1947 1948 /* determine offset of transport header */ 1949 l4_start = (u8)(l4.hdr - skb->data); 1950 1951 /* remove payload length from checksum */ 1952 paylen = skb->len - l4_start; 1953 1954 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1955 csum_replace_by_diff(&l4.udp->check, 1956 (__force __wsum)htonl(paylen)); 1957 /* compute length of UDP segmentation header */ 1958 off->header_len = (u8)sizeof(l4.udp) + l4_start; 1959 } else { 1960 csum_replace_by_diff(&l4.tcp->check, 1961 (__force __wsum)htonl(paylen)); 1962 /* compute length of TCP segmentation header */ 1963 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 1964 } 1965 1966 /* update gso_segs and bytecount */ 1967 first->gso_segs = skb_shinfo(skb)->gso_segs; 1968 first->bytecount += (first->gso_segs - 1) * off->header_len; 1969 1970 cd_tso_len = skb->len - off->header_len; 1971 cd_mss = skb_shinfo(skb)->gso_size; 1972 1973 /* record cdesc_qw1 with TSO parameters */ 1974 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 1975 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 1976 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 1977 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 1978 first->tx_flags |= ICE_TX_FLAGS_TSO; 1979 return 1; 1980 } 1981 1982 /** 1983 * ice_txd_use_count - estimate the number of descriptors needed for Tx 1984 * @size: transmit request size in bytes 1985 * 1986 * Due to hardware alignment restrictions (4K alignment), we need to 1987 * assume that we can have no more than 12K of data per descriptor, even 1988 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 1989 * Thus, we need to divide by 12K. But division is slow! Instead, 1990 * we decompose the operation into shifts and one relatively cheap 1991 * multiply operation. 1992 * 1993 * To divide by 12K, we first divide by 4K, then divide by 3: 1994 * To divide by 4K, shift right by 12 bits 1995 * To divide by 3, multiply by 85, then divide by 256 1996 * (Divide by 256 is done by shifting right by 8 bits) 1997 * Finally, we add one to round up. Because 256 isn't an exact multiple of 1998 * 3, we'll underestimate near each multiple of 12K. This is actually more 1999 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2000 * segment. For our purposes this is accurate out to 1M which is orders of 2001 * magnitude greater than our largest possible GSO size. 2002 * 2003 * This would then be implemented as: 2004 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2005 * 2006 * Since multiplication and division are commutative, we can reorder 2007 * operations into: 2008 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2009 */ 2010 static unsigned int ice_txd_use_count(unsigned int size) 2011 { 2012 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2013 } 2014 2015 /** 2016 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2017 * @skb: send buffer 2018 * 2019 * Returns number of data descriptors needed for this skb. 2020 */ 2021 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2022 { 2023 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2024 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2025 unsigned int count = 0, size = skb_headlen(skb); 2026 2027 for (;;) { 2028 count += ice_txd_use_count(size); 2029 2030 if (!nr_frags--) 2031 break; 2032 2033 size = skb_frag_size(frag++); 2034 } 2035 2036 return count; 2037 } 2038 2039 /** 2040 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2041 * @skb: send buffer 2042 * 2043 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2044 * and so we need to figure out the cases where we need to linearize the skb. 2045 * 2046 * For TSO we need to count the TSO header and segment payload separately. 2047 * As such we need to check cases where we have 7 fragments or more as we 2048 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2049 * the segment payload in the first descriptor, and another 7 for the 2050 * fragments. 2051 */ 2052 static bool __ice_chk_linearize(struct sk_buff *skb) 2053 { 2054 const skb_frag_t *frag, *stale; 2055 int nr_frags, sum; 2056 2057 /* no need to check if number of frags is less than 7 */ 2058 nr_frags = skb_shinfo(skb)->nr_frags; 2059 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2060 return false; 2061 2062 /* We need to walk through the list and validate that each group 2063 * of 6 fragments totals at least gso_size. 2064 */ 2065 nr_frags -= ICE_MAX_BUF_TXD - 2; 2066 frag = &skb_shinfo(skb)->frags[0]; 2067 2068 /* Initialize size to the negative value of gso_size minus 1. We 2069 * use this as the worst case scenario in which the frag ahead 2070 * of us only provides one byte which is why we are limited to 6 2071 * descriptors for a single transmit as the header and previous 2072 * fragment are already consuming 2 descriptors. 2073 */ 2074 sum = 1 - skb_shinfo(skb)->gso_size; 2075 2076 /* Add size of frags 0 through 4 to create our initial sum */ 2077 sum += skb_frag_size(frag++); 2078 sum += skb_frag_size(frag++); 2079 sum += skb_frag_size(frag++); 2080 sum += skb_frag_size(frag++); 2081 sum += skb_frag_size(frag++); 2082 2083 /* Walk through fragments adding latest fragment, testing it, and 2084 * then removing stale fragments from the sum. 2085 */ 2086 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2087 int stale_size = skb_frag_size(stale); 2088 2089 sum += skb_frag_size(frag++); 2090 2091 /* The stale fragment may present us with a smaller 2092 * descriptor than the actual fragment size. To account 2093 * for that we need to remove all the data on the front and 2094 * figure out what the remainder would be in the last 2095 * descriptor associated with the fragment. 2096 */ 2097 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2098 int align_pad = -(skb_frag_off(stale)) & 2099 (ICE_MAX_READ_REQ_SIZE - 1); 2100 2101 sum -= align_pad; 2102 stale_size -= align_pad; 2103 2104 do { 2105 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2106 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2107 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2108 } 2109 2110 /* if sum is negative we failed to make sufficient progress */ 2111 if (sum < 0) 2112 return true; 2113 2114 if (!nr_frags--) 2115 break; 2116 2117 sum -= stale_size; 2118 } 2119 2120 return false; 2121 } 2122 2123 /** 2124 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2125 * @skb: send buffer 2126 * @count: number of buffers used 2127 * 2128 * Note: Our HW can't scatter-gather more than 8 fragments to build 2129 * a packet on the wire and so we need to figure out the cases where we 2130 * need to linearize the skb. 2131 */ 2132 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2133 { 2134 /* Both TSO and single send will work if count is less than 8 */ 2135 if (likely(count < ICE_MAX_BUF_TXD)) 2136 return false; 2137 2138 if (skb_is_gso(skb)) 2139 return __ice_chk_linearize(skb); 2140 2141 /* we can support up to 8 data buffers for a single send */ 2142 return count != ICE_MAX_BUF_TXD; 2143 } 2144 2145 /** 2146 * ice_tstamp - set up context descriptor for hardware timestamp 2147 * @tx_ring: pointer to the Tx ring to send buffer on 2148 * @skb: pointer to the SKB we're sending 2149 * @first: Tx buffer 2150 * @off: Tx offload parameters 2151 */ 2152 static void 2153 ice_tstamp(struct ice_ring *tx_ring, struct sk_buff *skb, 2154 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2155 { 2156 s8 idx; 2157 2158 /* only timestamp the outbound packet if the user has requested it */ 2159 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2160 return; 2161 2162 if (!tx_ring->ptp_tx) 2163 return; 2164 2165 /* Tx timestamps cannot be sampled when doing TSO */ 2166 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2167 return; 2168 2169 /* Grab an open timestamp slot */ 2170 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2171 if (idx < 0) 2172 return; 2173 2174 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2175 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2176 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2177 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2178 } 2179 2180 /** 2181 * ice_xmit_frame_ring - Sends buffer on Tx ring 2182 * @skb: send buffer 2183 * @tx_ring: ring to send buffer on 2184 * 2185 * Returns NETDEV_TX_OK if sent, else an error code 2186 */ 2187 static netdev_tx_t 2188 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2189 { 2190 struct ice_tx_offload_params offload = { 0 }; 2191 struct ice_vsi *vsi = tx_ring->vsi; 2192 struct ice_tx_buf *first; 2193 struct ethhdr *eth; 2194 unsigned int count; 2195 int tso, csum; 2196 2197 ice_trace(xmit_frame_ring, tx_ring, skb); 2198 2199 count = ice_xmit_desc_count(skb); 2200 if (ice_chk_linearize(skb, count)) { 2201 if (__skb_linearize(skb)) 2202 goto out_drop; 2203 count = ice_txd_use_count(skb->len); 2204 tx_ring->tx_stats.tx_linearize++; 2205 } 2206 2207 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2208 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2209 * + 4 desc gap to avoid the cache line where head is, 2210 * + 1 desc for context descriptor, 2211 * otherwise try next time 2212 */ 2213 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2214 ICE_DESCS_FOR_CTX_DESC)) { 2215 tx_ring->tx_stats.tx_busy++; 2216 return NETDEV_TX_BUSY; 2217 } 2218 2219 offload.tx_ring = tx_ring; 2220 2221 /* record the location of the first descriptor for this packet */ 2222 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2223 first->skb = skb; 2224 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2225 first->gso_segs = 1; 2226 first->tx_flags = 0; 2227 2228 /* prepare the VLAN tagging flags for Tx */ 2229 ice_tx_prepare_vlan_flags(tx_ring, first); 2230 2231 /* set up TSO offload */ 2232 tso = ice_tso(first, &offload); 2233 if (tso < 0) 2234 goto out_drop; 2235 2236 /* always set up Tx checksum offload */ 2237 csum = ice_tx_csum(first, &offload); 2238 if (csum < 0) 2239 goto out_drop; 2240 2241 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2242 eth = (struct ethhdr *)skb_mac_header(skb); 2243 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2244 eth->h_proto == htons(ETH_P_LLDP)) && 2245 vsi->type == ICE_VSI_PF && 2246 vsi->port_info->qos_cfg.is_sw_lldp)) 2247 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2248 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2249 ICE_TXD_CTX_QW1_CMD_S); 2250 2251 ice_tstamp(tx_ring, skb, first, &offload); 2252 2253 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2254 struct ice_tx_ctx_desc *cdesc; 2255 u16 i = tx_ring->next_to_use; 2256 2257 /* grab the next descriptor */ 2258 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2259 i++; 2260 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2261 2262 /* setup context descriptor */ 2263 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2264 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2265 cdesc->rsvd = cpu_to_le16(0); 2266 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2267 } 2268 2269 ice_tx_map(tx_ring, first, &offload); 2270 return NETDEV_TX_OK; 2271 2272 out_drop: 2273 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2274 dev_kfree_skb_any(skb); 2275 return NETDEV_TX_OK; 2276 } 2277 2278 /** 2279 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2280 * @skb: send buffer 2281 * @netdev: network interface device structure 2282 * 2283 * Returns NETDEV_TX_OK if sent, else an error code 2284 */ 2285 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2286 { 2287 struct ice_netdev_priv *np = netdev_priv(netdev); 2288 struct ice_vsi *vsi = np->vsi; 2289 struct ice_ring *tx_ring; 2290 2291 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2292 2293 /* hardware can't handle really short frames, hardware padding works 2294 * beyond this point 2295 */ 2296 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2297 return NETDEV_TX_OK; 2298 2299 return ice_xmit_frame_ring(skb, tx_ring); 2300 } 2301 2302 /** 2303 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2304 * @tx_ring: tx_ring to clean 2305 */ 2306 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) 2307 { 2308 struct ice_vsi *vsi = tx_ring->vsi; 2309 s16 i = tx_ring->next_to_clean; 2310 int budget = ICE_DFLT_IRQ_WORK; 2311 struct ice_tx_desc *tx_desc; 2312 struct ice_tx_buf *tx_buf; 2313 2314 tx_buf = &tx_ring->tx_buf[i]; 2315 tx_desc = ICE_TX_DESC(tx_ring, i); 2316 i -= tx_ring->count; 2317 2318 do { 2319 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2320 2321 /* if next_to_watch is not set then there is no pending work */ 2322 if (!eop_desc) 2323 break; 2324 2325 /* prevent any other reads prior to eop_desc */ 2326 smp_rmb(); 2327 2328 /* if the descriptor isn't done, no work to do */ 2329 if (!(eop_desc->cmd_type_offset_bsz & 2330 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2331 break; 2332 2333 /* clear next_to_watch to prevent false hangs */ 2334 tx_buf->next_to_watch = NULL; 2335 tx_desc->buf_addr = 0; 2336 tx_desc->cmd_type_offset_bsz = 0; 2337 2338 /* move past filter desc */ 2339 tx_buf++; 2340 tx_desc++; 2341 i++; 2342 if (unlikely(!i)) { 2343 i -= tx_ring->count; 2344 tx_buf = tx_ring->tx_buf; 2345 tx_desc = ICE_TX_DESC(tx_ring, 0); 2346 } 2347 2348 /* unmap the data header */ 2349 if (dma_unmap_len(tx_buf, len)) 2350 dma_unmap_single(tx_ring->dev, 2351 dma_unmap_addr(tx_buf, dma), 2352 dma_unmap_len(tx_buf, len), 2353 DMA_TO_DEVICE); 2354 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2355 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2356 2357 /* clear next_to_watch to prevent false hangs */ 2358 tx_buf->raw_buf = NULL; 2359 tx_buf->tx_flags = 0; 2360 tx_buf->next_to_watch = NULL; 2361 dma_unmap_len_set(tx_buf, len, 0); 2362 tx_desc->buf_addr = 0; 2363 tx_desc->cmd_type_offset_bsz = 0; 2364 2365 /* move past eop_desc for start of next FD desc */ 2366 tx_buf++; 2367 tx_desc++; 2368 i++; 2369 if (unlikely(!i)) { 2370 i -= tx_ring->count; 2371 tx_buf = tx_ring->tx_buf; 2372 tx_desc = ICE_TX_DESC(tx_ring, 0); 2373 } 2374 2375 budget--; 2376 } while (likely(budget)); 2377 2378 i += tx_ring->count; 2379 tx_ring->next_to_clean = i; 2380 2381 /* re-enable interrupt if needed */ 2382 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2383 } 2384