xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 #define FDIR_DESC_RXDID 0x40
19 #define ICE_FDIR_CLEAN_DELAY 10
20 
21 /**
22  * ice_prgm_fdir_fltr - Program a Flow Director filter
23  * @vsi: VSI to send dummy packet
24  * @fdir_desc: flow director descriptor
25  * @raw_packet: allocated buffer for flow director
26  */
27 int
28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
29 		   u8 *raw_packet)
30 {
31 	struct ice_tx_buf *tx_buf, *first;
32 	struct ice_fltr_desc *f_desc;
33 	struct ice_tx_desc *tx_desc;
34 	struct ice_ring *tx_ring;
35 	struct device *dev;
36 	dma_addr_t dma;
37 	u32 td_cmd;
38 	u16 i;
39 
40 	/* VSI and Tx ring */
41 	if (!vsi)
42 		return -ENOENT;
43 	tx_ring = vsi->tx_rings[0];
44 	if (!tx_ring || !tx_ring->desc)
45 		return -ENOENT;
46 	dev = tx_ring->dev;
47 
48 	/* we are using two descriptors to add/del a filter and we can wait */
49 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
50 		if (!i)
51 			return -EAGAIN;
52 		msleep_interruptible(1);
53 	}
54 
55 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
56 			     DMA_TO_DEVICE);
57 
58 	if (dma_mapping_error(dev, dma))
59 		return -EINVAL;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	first = &tx_ring->tx_buf[i];
64 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
65 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
66 
67 	i++;
68 	i = (i < tx_ring->count) ? i : 0;
69 	tx_desc = ICE_TX_DESC(tx_ring, i);
70 	tx_buf = &tx_ring->tx_buf[i];
71 
72 	i++;
73 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
74 
75 	memset(tx_buf, 0, sizeof(*tx_buf));
76 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
77 	dma_unmap_addr_set(tx_buf, dma, dma);
78 
79 	tx_desc->buf_addr = cpu_to_le64(dma);
80 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
81 		 ICE_TX_DESC_CMD_RE;
82 
83 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
84 	tx_buf->raw_buf = raw_packet;
85 
86 	tx_desc->cmd_type_offset_bsz =
87 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
88 
89 	/* Force memory write to complete before letting h/w know
90 	 * there are new descriptors to fetch.
91 	 */
92 	wmb();
93 
94 	/* mark the data descriptor to be watched */
95 	first->next_to_watch = tx_desc;
96 
97 	writel(tx_ring->next_to_use, tx_ring->tail);
98 
99 	return 0;
100 }
101 
102 /**
103  * ice_unmap_and_free_tx_buf - Release a Tx buffer
104  * @ring: the ring that owns the buffer
105  * @tx_buf: the buffer to free
106  */
107 static void
108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
109 {
110 	if (tx_buf->skb) {
111 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
112 			devm_kfree(ring->dev, tx_buf->raw_buf);
113 		else if (ice_ring_is_xdp(ring))
114 			page_frag_free(tx_buf->raw_buf);
115 		else
116 			dev_kfree_skb_any(tx_buf->skb);
117 		if (dma_unmap_len(tx_buf, len))
118 			dma_unmap_single(ring->dev,
119 					 dma_unmap_addr(tx_buf, dma),
120 					 dma_unmap_len(tx_buf, len),
121 					 DMA_TO_DEVICE);
122 	} else if (dma_unmap_len(tx_buf, len)) {
123 		dma_unmap_page(ring->dev,
124 			       dma_unmap_addr(tx_buf, dma),
125 			       dma_unmap_len(tx_buf, len),
126 			       DMA_TO_DEVICE);
127 	}
128 
129 	tx_buf->next_to_watch = NULL;
130 	tx_buf->skb = NULL;
131 	dma_unmap_len_set(tx_buf, len, 0);
132 	/* tx_buf must be completely set up in the transmit path */
133 }
134 
135 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
136 {
137 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
138 }
139 
140 /**
141  * ice_clean_tx_ring - Free any empty Tx buffers
142  * @tx_ring: ring to be cleaned
143  */
144 void ice_clean_tx_ring(struct ice_ring *tx_ring)
145 {
146 	u16 i;
147 
148 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
149 		ice_xsk_clean_xdp_ring(tx_ring);
150 		goto tx_skip_free;
151 	}
152 
153 	/* ring already cleared, nothing to do */
154 	if (!tx_ring->tx_buf)
155 		return;
156 
157 	/* Free all the Tx ring sk_buffs */
158 	for (i = 0; i < tx_ring->count; i++)
159 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
160 
161 tx_skip_free:
162 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
163 
164 	/* Zero out the descriptor ring */
165 	memset(tx_ring->desc, 0, tx_ring->size);
166 
167 	tx_ring->next_to_use = 0;
168 	tx_ring->next_to_clean = 0;
169 
170 	if (!tx_ring->netdev)
171 		return;
172 
173 	/* cleanup Tx queue statistics */
174 	netdev_tx_reset_queue(txring_txq(tx_ring));
175 }
176 
177 /**
178  * ice_free_tx_ring - Free Tx resources per queue
179  * @tx_ring: Tx descriptor ring for a specific queue
180  *
181  * Free all transmit software resources
182  */
183 void ice_free_tx_ring(struct ice_ring *tx_ring)
184 {
185 	ice_clean_tx_ring(tx_ring);
186 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
187 	tx_ring->tx_buf = NULL;
188 
189 	if (tx_ring->desc) {
190 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
191 				   tx_ring->desc, tx_ring->dma);
192 		tx_ring->desc = NULL;
193 	}
194 }
195 
196 /**
197  * ice_clean_tx_irq - Reclaim resources after transmit completes
198  * @tx_ring: Tx ring to clean
199  * @napi_budget: Used to determine if we are in netpoll
200  *
201  * Returns true if there's any budget left (e.g. the clean is finished)
202  */
203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
204 {
205 	unsigned int total_bytes = 0, total_pkts = 0;
206 	unsigned int budget = ICE_DFLT_IRQ_WORK;
207 	struct ice_vsi *vsi = tx_ring->vsi;
208 	s16 i = tx_ring->next_to_clean;
209 	struct ice_tx_desc *tx_desc;
210 	struct ice_tx_buf *tx_buf;
211 
212 	tx_buf = &tx_ring->tx_buf[i];
213 	tx_desc = ICE_TX_DESC(tx_ring, i);
214 	i -= tx_ring->count;
215 
216 	prefetch(&vsi->state);
217 
218 	do {
219 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
220 
221 		/* if next_to_watch is not set then there is no work pending */
222 		if (!eop_desc)
223 			break;
224 
225 		smp_rmb();	/* prevent any other reads prior to eop_desc */
226 
227 		/* if the descriptor isn't done, no work yet to do */
228 		if (!(eop_desc->cmd_type_offset_bsz &
229 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
230 			break;
231 
232 		/* clear next_to_watch to prevent false hangs */
233 		tx_buf->next_to_watch = NULL;
234 
235 		/* update the statistics for this packet */
236 		total_bytes += tx_buf->bytecount;
237 		total_pkts += tx_buf->gso_segs;
238 
239 		if (ice_ring_is_xdp(tx_ring))
240 			page_frag_free(tx_buf->raw_buf);
241 		else
242 			/* free the skb */
243 			napi_consume_skb(tx_buf->skb, napi_budget);
244 
245 		/* unmap skb header data */
246 		dma_unmap_single(tx_ring->dev,
247 				 dma_unmap_addr(tx_buf, dma),
248 				 dma_unmap_len(tx_buf, len),
249 				 DMA_TO_DEVICE);
250 
251 		/* clear tx_buf data */
252 		tx_buf->skb = NULL;
253 		dma_unmap_len_set(tx_buf, len, 0);
254 
255 		/* unmap remaining buffers */
256 		while (tx_desc != eop_desc) {
257 			tx_buf++;
258 			tx_desc++;
259 			i++;
260 			if (unlikely(!i)) {
261 				i -= tx_ring->count;
262 				tx_buf = tx_ring->tx_buf;
263 				tx_desc = ICE_TX_DESC(tx_ring, 0);
264 			}
265 
266 			/* unmap any remaining paged data */
267 			if (dma_unmap_len(tx_buf, len)) {
268 				dma_unmap_page(tx_ring->dev,
269 					       dma_unmap_addr(tx_buf, dma),
270 					       dma_unmap_len(tx_buf, len),
271 					       DMA_TO_DEVICE);
272 				dma_unmap_len_set(tx_buf, len, 0);
273 			}
274 		}
275 
276 		/* move us one more past the eop_desc for start of next pkt */
277 		tx_buf++;
278 		tx_desc++;
279 		i++;
280 		if (unlikely(!i)) {
281 			i -= tx_ring->count;
282 			tx_buf = tx_ring->tx_buf;
283 			tx_desc = ICE_TX_DESC(tx_ring, 0);
284 		}
285 
286 		prefetch(tx_desc);
287 
288 		/* update budget accounting */
289 		budget--;
290 	} while (likely(budget));
291 
292 	i += tx_ring->count;
293 	tx_ring->next_to_clean = i;
294 
295 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
296 
297 	if (ice_ring_is_xdp(tx_ring))
298 		return !!budget;
299 
300 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
301 				  total_bytes);
302 
303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
304 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
305 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
306 		/* Make sure that anybody stopping the queue after this
307 		 * sees the new next_to_clean.
308 		 */
309 		smp_mb();
310 		if (__netif_subqueue_stopped(tx_ring->netdev,
311 					     tx_ring->q_index) &&
312 		    !test_bit(__ICE_DOWN, vsi->state)) {
313 			netif_wake_subqueue(tx_ring->netdev,
314 					    tx_ring->q_index);
315 			++tx_ring->tx_stats.restart_q;
316 		}
317 	}
318 
319 	return !!budget;
320 }
321 
322 /**
323  * ice_setup_tx_ring - Allocate the Tx descriptors
324  * @tx_ring: the Tx ring to set up
325  *
326  * Return 0 on success, negative on error
327  */
328 int ice_setup_tx_ring(struct ice_ring *tx_ring)
329 {
330 	struct device *dev = tx_ring->dev;
331 
332 	if (!dev)
333 		return -ENOMEM;
334 
335 	/* warn if we are about to overwrite the pointer */
336 	WARN_ON(tx_ring->tx_buf);
337 	tx_ring->tx_buf =
338 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
339 			     GFP_KERNEL);
340 	if (!tx_ring->tx_buf)
341 		return -ENOMEM;
342 
343 	/* round up to nearest page */
344 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
345 			      PAGE_SIZE);
346 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
347 					    GFP_KERNEL);
348 	if (!tx_ring->desc) {
349 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
350 			tx_ring->size);
351 		goto err;
352 	}
353 
354 	tx_ring->next_to_use = 0;
355 	tx_ring->next_to_clean = 0;
356 	tx_ring->tx_stats.prev_pkt = -1;
357 	return 0;
358 
359 err:
360 	devm_kfree(dev, tx_ring->tx_buf);
361 	tx_ring->tx_buf = NULL;
362 	return -ENOMEM;
363 }
364 
365 /**
366  * ice_clean_rx_ring - Free Rx buffers
367  * @rx_ring: ring to be cleaned
368  */
369 void ice_clean_rx_ring(struct ice_ring *rx_ring)
370 {
371 	struct device *dev = rx_ring->dev;
372 	u16 i;
373 
374 	/* ring already cleared, nothing to do */
375 	if (!rx_ring->rx_buf)
376 		return;
377 
378 	if (rx_ring->xsk_umem) {
379 		ice_xsk_clean_rx_ring(rx_ring);
380 		goto rx_skip_free;
381 	}
382 
383 	/* Free all the Rx ring sk_buffs */
384 	for (i = 0; i < rx_ring->count; i++) {
385 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
386 
387 		if (rx_buf->skb) {
388 			dev_kfree_skb(rx_buf->skb);
389 			rx_buf->skb = NULL;
390 		}
391 		if (!rx_buf->page)
392 			continue;
393 
394 		/* Invalidate cache lines that may have been written to by
395 		 * device so that we avoid corrupting memory.
396 		 */
397 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
398 					      rx_buf->page_offset,
399 					      rx_ring->rx_buf_len,
400 					      DMA_FROM_DEVICE);
401 
402 		/* free resources associated with mapping */
403 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
404 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
405 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
406 
407 		rx_buf->page = NULL;
408 		rx_buf->page_offset = 0;
409 	}
410 
411 rx_skip_free:
412 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
413 
414 	/* Zero out the descriptor ring */
415 	memset(rx_ring->desc, 0, rx_ring->size);
416 
417 	rx_ring->next_to_alloc = 0;
418 	rx_ring->next_to_clean = 0;
419 	rx_ring->next_to_use = 0;
420 }
421 
422 /**
423  * ice_free_rx_ring - Free Rx resources
424  * @rx_ring: ring to clean the resources from
425  *
426  * Free all receive software resources
427  */
428 void ice_free_rx_ring(struct ice_ring *rx_ring)
429 {
430 	ice_clean_rx_ring(rx_ring);
431 	if (rx_ring->vsi->type == ICE_VSI_PF)
432 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
433 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
434 	rx_ring->xdp_prog = NULL;
435 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
436 	rx_ring->rx_buf = NULL;
437 
438 	if (rx_ring->desc) {
439 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
440 				   rx_ring->desc, rx_ring->dma);
441 		rx_ring->desc = NULL;
442 	}
443 }
444 
445 /**
446  * ice_setup_rx_ring - Allocate the Rx descriptors
447  * @rx_ring: the Rx ring to set up
448  *
449  * Return 0 on success, negative on error
450  */
451 int ice_setup_rx_ring(struct ice_ring *rx_ring)
452 {
453 	struct device *dev = rx_ring->dev;
454 
455 	if (!dev)
456 		return -ENOMEM;
457 
458 	/* warn if we are about to overwrite the pointer */
459 	WARN_ON(rx_ring->rx_buf);
460 	rx_ring->rx_buf =
461 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
462 			     GFP_KERNEL);
463 	if (!rx_ring->rx_buf)
464 		return -ENOMEM;
465 
466 	/* round up to nearest page */
467 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 			      PAGE_SIZE);
469 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
470 					    GFP_KERNEL);
471 	if (!rx_ring->desc) {
472 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
473 			rx_ring->size);
474 		goto err;
475 	}
476 
477 	rx_ring->next_to_use = 0;
478 	rx_ring->next_to_clean = 0;
479 
480 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
481 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
482 
483 	if (rx_ring->vsi->type == ICE_VSI_PF &&
484 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
485 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
486 				     rx_ring->q_index))
487 			goto err;
488 	return 0;
489 
490 err:
491 	devm_kfree(dev, rx_ring->rx_buf);
492 	rx_ring->rx_buf = NULL;
493 	return -ENOMEM;
494 }
495 
496 /**
497  * ice_rx_offset - Return expected offset into page to access data
498  * @rx_ring: Ring we are requesting offset of
499  *
500  * Returns the offset value for ring into the data buffer.
501  */
502 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
503 {
504 	if (ice_ring_uses_build_skb(rx_ring))
505 		return ICE_SKB_PAD;
506 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
507 		return XDP_PACKET_HEADROOM;
508 
509 	return 0;
510 }
511 
512 static unsigned int
513 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
514 {
515 	unsigned int truesize;
516 
517 #if (PAGE_SIZE < 8192)
518 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
519 #else
520 	truesize = ice_rx_offset(rx_ring) ?
521 		SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
522 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
523 		SKB_DATA_ALIGN(size);
524 #endif
525 	return truesize;
526 }
527 
528 /**
529  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
530  * @rx_ring: Rx ring
531  * @xdp: xdp_buff used as input to the XDP program
532  * @xdp_prog: XDP program to run
533  *
534  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
535  */
536 static int
537 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
538 	    struct bpf_prog *xdp_prog)
539 {
540 	int err, result = ICE_XDP_PASS;
541 	struct ice_ring *xdp_ring;
542 	u32 act;
543 
544 	act = bpf_prog_run_xdp(xdp_prog, xdp);
545 	switch (act) {
546 	case XDP_PASS:
547 		break;
548 	case XDP_TX:
549 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
550 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
551 		break;
552 	case XDP_REDIRECT:
553 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
554 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
555 		break;
556 	default:
557 		bpf_warn_invalid_xdp_action(act);
558 		fallthrough;
559 	case XDP_ABORTED:
560 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
561 		fallthrough;
562 	case XDP_DROP:
563 		result = ICE_XDP_CONSUMED;
564 		break;
565 	}
566 
567 	return result;
568 }
569 
570 /**
571  * ice_xdp_xmit - submit packets to XDP ring for transmission
572  * @dev: netdev
573  * @n: number of XDP frames to be transmitted
574  * @frames: XDP frames to be transmitted
575  * @flags: transmit flags
576  *
577  * Returns number of frames successfully sent. Frames that fail are
578  * free'ed via XDP return API.
579  * For error cases, a negative errno code is returned and no-frames
580  * are transmitted (caller must handle freeing frames).
581  */
582 int
583 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
584 	     u32 flags)
585 {
586 	struct ice_netdev_priv *np = netdev_priv(dev);
587 	unsigned int queue_index = smp_processor_id();
588 	struct ice_vsi *vsi = np->vsi;
589 	struct ice_ring *xdp_ring;
590 	int drops = 0, i;
591 
592 	if (test_bit(__ICE_DOWN, vsi->state))
593 		return -ENETDOWN;
594 
595 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
596 		return -ENXIO;
597 
598 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
599 		return -EINVAL;
600 
601 	xdp_ring = vsi->xdp_rings[queue_index];
602 	for (i = 0; i < n; i++) {
603 		struct xdp_frame *xdpf = frames[i];
604 		int err;
605 
606 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
607 		if (err != ICE_XDP_TX) {
608 			xdp_return_frame_rx_napi(xdpf);
609 			drops++;
610 		}
611 	}
612 
613 	if (unlikely(flags & XDP_XMIT_FLUSH))
614 		ice_xdp_ring_update_tail(xdp_ring);
615 
616 	return n - drops;
617 }
618 
619 /**
620  * ice_alloc_mapped_page - recycle or make a new page
621  * @rx_ring: ring to use
622  * @bi: rx_buf struct to modify
623  *
624  * Returns true if the page was successfully allocated or
625  * reused.
626  */
627 static bool
628 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
629 {
630 	struct page *page = bi->page;
631 	dma_addr_t dma;
632 
633 	/* since we are recycling buffers we should seldom need to alloc */
634 	if (likely(page))
635 		return true;
636 
637 	/* alloc new page for storage */
638 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
639 	if (unlikely(!page)) {
640 		rx_ring->rx_stats.alloc_page_failed++;
641 		return false;
642 	}
643 
644 	/* map page for use */
645 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
646 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
647 
648 	/* if mapping failed free memory back to system since
649 	 * there isn't much point in holding memory we can't use
650 	 */
651 	if (dma_mapping_error(rx_ring->dev, dma)) {
652 		__free_pages(page, ice_rx_pg_order(rx_ring));
653 		rx_ring->rx_stats.alloc_page_failed++;
654 		return false;
655 	}
656 
657 	bi->dma = dma;
658 	bi->page = page;
659 	bi->page_offset = ice_rx_offset(rx_ring);
660 	page_ref_add(page, USHRT_MAX - 1);
661 	bi->pagecnt_bias = USHRT_MAX;
662 
663 	return true;
664 }
665 
666 /**
667  * ice_alloc_rx_bufs - Replace used receive buffers
668  * @rx_ring: ring to place buffers on
669  * @cleaned_count: number of buffers to replace
670  *
671  * Returns false if all allocations were successful, true if any fail. Returning
672  * true signals to the caller that we didn't replace cleaned_count buffers and
673  * there is more work to do.
674  *
675  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
676  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
677  * multiple tail writes per call.
678  */
679 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
680 {
681 	union ice_32b_rx_flex_desc *rx_desc;
682 	u16 ntu = rx_ring->next_to_use;
683 	struct ice_rx_buf *bi;
684 
685 	/* do nothing if no valid netdev defined */
686 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
687 	    !cleaned_count)
688 		return false;
689 
690 	/* get the Rx descriptor and buffer based on next_to_use */
691 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
692 	bi = &rx_ring->rx_buf[ntu];
693 
694 	do {
695 		/* if we fail here, we have work remaining */
696 		if (!ice_alloc_mapped_page(rx_ring, bi))
697 			break;
698 
699 		/* sync the buffer for use by the device */
700 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
701 						 bi->page_offset,
702 						 rx_ring->rx_buf_len,
703 						 DMA_FROM_DEVICE);
704 
705 		/* Refresh the desc even if buffer_addrs didn't change
706 		 * because each write-back erases this info.
707 		 */
708 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
709 
710 		rx_desc++;
711 		bi++;
712 		ntu++;
713 		if (unlikely(ntu == rx_ring->count)) {
714 			rx_desc = ICE_RX_DESC(rx_ring, 0);
715 			bi = rx_ring->rx_buf;
716 			ntu = 0;
717 		}
718 
719 		/* clear the status bits for the next_to_use descriptor */
720 		rx_desc->wb.status_error0 = 0;
721 
722 		cleaned_count--;
723 	} while (cleaned_count);
724 
725 	if (rx_ring->next_to_use != ntu)
726 		ice_release_rx_desc(rx_ring, ntu);
727 
728 	return !!cleaned_count;
729 }
730 
731 /**
732  * ice_page_is_reserved - check if reuse is possible
733  * @page: page struct to check
734  */
735 static bool ice_page_is_reserved(struct page *page)
736 {
737 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
738 }
739 
740 /**
741  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
742  * @rx_buf: Rx buffer to adjust
743  * @size: Size of adjustment
744  *
745  * Update the offset within page so that Rx buf will be ready to be reused.
746  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
747  * so the second half of page assigned to Rx buffer will be used, otherwise
748  * the offset is moved by "size" bytes
749  */
750 static void
751 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
752 {
753 #if (PAGE_SIZE < 8192)
754 	/* flip page offset to other buffer */
755 	rx_buf->page_offset ^= size;
756 #else
757 	/* move offset up to the next cache line */
758 	rx_buf->page_offset += size;
759 #endif
760 }
761 
762 /**
763  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
764  * @rx_buf: buffer containing the page
765  *
766  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
767  * which will assign the current buffer to the buffer that next_to_alloc is
768  * pointing to; otherwise, the DMA mapping needs to be destroyed and
769  * page freed
770  */
771 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
772 {
773 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
774 	struct page *page = rx_buf->page;
775 
776 	/* avoid re-using remote pages */
777 	if (unlikely(ice_page_is_reserved(page)))
778 		return false;
779 
780 #if (PAGE_SIZE < 8192)
781 	/* if we are only owner of page we can reuse it */
782 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
783 		return false;
784 #else
785 #define ICE_LAST_OFFSET \
786 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
787 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
788 		return false;
789 #endif /* PAGE_SIZE < 8192) */
790 
791 	/* If we have drained the page fragment pool we need to update
792 	 * the pagecnt_bias and page count so that we fully restock the
793 	 * number of references the driver holds.
794 	 */
795 	if (unlikely(pagecnt_bias == 1)) {
796 		page_ref_add(page, USHRT_MAX - 1);
797 		rx_buf->pagecnt_bias = USHRT_MAX;
798 	}
799 
800 	return true;
801 }
802 
803 /**
804  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
805  * @rx_ring: Rx descriptor ring to transact packets on
806  * @rx_buf: buffer containing page to add
807  * @skb: sk_buff to place the data into
808  * @size: packet length from rx_desc
809  *
810  * This function will add the data contained in rx_buf->page to the skb.
811  * It will just attach the page as a frag to the skb.
812  * The function will then update the page offset.
813  */
814 static void
815 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
816 		struct sk_buff *skb, unsigned int size)
817 {
818 #if (PAGE_SIZE >= 8192)
819 	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
820 #else
821 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
822 #endif
823 
824 	if (!size)
825 		return;
826 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
827 			rx_buf->page_offset, size, truesize);
828 
829 	/* page is being used so we must update the page offset */
830 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
831 }
832 
833 /**
834  * ice_reuse_rx_page - page flip buffer and store it back on the ring
835  * @rx_ring: Rx descriptor ring to store buffers on
836  * @old_buf: donor buffer to have page reused
837  *
838  * Synchronizes page for reuse by the adapter
839  */
840 static void
841 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
842 {
843 	u16 nta = rx_ring->next_to_alloc;
844 	struct ice_rx_buf *new_buf;
845 
846 	new_buf = &rx_ring->rx_buf[nta];
847 
848 	/* update, and store next to alloc */
849 	nta++;
850 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
851 
852 	/* Transfer page from old buffer to new buffer.
853 	 * Move each member individually to avoid possible store
854 	 * forwarding stalls and unnecessary copy of skb.
855 	 */
856 	new_buf->dma = old_buf->dma;
857 	new_buf->page = old_buf->page;
858 	new_buf->page_offset = old_buf->page_offset;
859 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
860 }
861 
862 /**
863  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
864  * @rx_ring: Rx descriptor ring to transact packets on
865  * @skb: skb to be used
866  * @size: size of buffer to add to skb
867  *
868  * This function will pull an Rx buffer from the ring and synchronize it
869  * for use by the CPU.
870  */
871 static struct ice_rx_buf *
872 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
873 	       const unsigned int size)
874 {
875 	struct ice_rx_buf *rx_buf;
876 
877 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
878 	prefetchw(rx_buf->page);
879 	*skb = rx_buf->skb;
880 
881 	if (!size)
882 		return rx_buf;
883 	/* we are reusing so sync this buffer for CPU use */
884 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
885 				      rx_buf->page_offset, size,
886 				      DMA_FROM_DEVICE);
887 
888 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
889 	rx_buf->pagecnt_bias--;
890 
891 	return rx_buf;
892 }
893 
894 /**
895  * ice_build_skb - Build skb around an existing buffer
896  * @rx_ring: Rx descriptor ring to transact packets on
897  * @rx_buf: Rx buffer to pull data from
898  * @xdp: xdp_buff pointing to the data
899  *
900  * This function builds an skb around an existing Rx buffer, taking care
901  * to set up the skb correctly and avoid any memcpy overhead.
902  */
903 static struct sk_buff *
904 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
905 	      struct xdp_buff *xdp)
906 {
907 	u8 metasize = xdp->data - xdp->data_meta;
908 #if (PAGE_SIZE < 8192)
909 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
910 #else
911 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
912 				SKB_DATA_ALIGN(xdp->data_end -
913 					       xdp->data_hard_start);
914 #endif
915 	struct sk_buff *skb;
916 
917 	/* Prefetch first cache line of first page. If xdp->data_meta
918 	 * is unused, this points exactly as xdp->data, otherwise we
919 	 * likely have a consumer accessing first few bytes of meta
920 	 * data, and then actual data.
921 	 */
922 	prefetch(xdp->data_meta);
923 #if L1_CACHE_BYTES < 128
924 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
925 #endif
926 	/* build an skb around the page buffer */
927 	skb = build_skb(xdp->data_hard_start, truesize);
928 	if (unlikely(!skb))
929 		return NULL;
930 
931 	/* must to record Rx queue, otherwise OS features such as
932 	 * symmetric queue won't work
933 	 */
934 	skb_record_rx_queue(skb, rx_ring->q_index);
935 
936 	/* update pointers within the skb to store the data */
937 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
938 	__skb_put(skb, xdp->data_end - xdp->data);
939 	if (metasize)
940 		skb_metadata_set(skb, metasize);
941 
942 	/* buffer is used by skb, update page_offset */
943 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
944 
945 	return skb;
946 }
947 
948 /**
949  * ice_construct_skb - Allocate skb and populate it
950  * @rx_ring: Rx descriptor ring to transact packets on
951  * @rx_buf: Rx buffer to pull data from
952  * @xdp: xdp_buff pointing to the data
953  *
954  * This function allocates an skb. It then populates it with the page
955  * data from the current receive descriptor, taking care to set up the
956  * skb correctly.
957  */
958 static struct sk_buff *
959 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
960 		  struct xdp_buff *xdp)
961 {
962 	unsigned int size = xdp->data_end - xdp->data;
963 	unsigned int headlen;
964 	struct sk_buff *skb;
965 
966 	/* prefetch first cache line of first page */
967 	prefetch(xdp->data);
968 #if L1_CACHE_BYTES < 128
969 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
970 #endif /* L1_CACHE_BYTES */
971 
972 	/* allocate a skb to store the frags */
973 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
974 			       GFP_ATOMIC | __GFP_NOWARN);
975 	if (unlikely(!skb))
976 		return NULL;
977 
978 	skb_record_rx_queue(skb, rx_ring->q_index);
979 	/* Determine available headroom for copy */
980 	headlen = size;
981 	if (headlen > ICE_RX_HDR_SIZE)
982 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
983 
984 	/* align pull length to size of long to optimize memcpy performance */
985 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
986 							 sizeof(long)));
987 
988 	/* if we exhaust the linear part then add what is left as a frag */
989 	size -= headlen;
990 	if (size) {
991 #if (PAGE_SIZE >= 8192)
992 		unsigned int truesize = SKB_DATA_ALIGN(size);
993 #else
994 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
995 #endif
996 		skb_add_rx_frag(skb, 0, rx_buf->page,
997 				rx_buf->page_offset + headlen, size, truesize);
998 		/* buffer is used by skb, update page_offset */
999 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1000 	} else {
1001 		/* buffer is unused, reset bias back to rx_buf; data was copied
1002 		 * onto skb's linear part so there's no need for adjusting
1003 		 * page offset and we can reuse this buffer as-is
1004 		 */
1005 		rx_buf->pagecnt_bias++;
1006 	}
1007 
1008 	return skb;
1009 }
1010 
1011 /**
1012  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1013  * @rx_ring: Rx descriptor ring to transact packets on
1014  * @rx_buf: Rx buffer to pull data from
1015  *
1016  * This function will update next_to_clean and then clean up the contents
1017  * of the rx_buf. It will either recycle the buffer or unmap it and free
1018  * the associated resources.
1019  */
1020 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
1021 {
1022 	u16 ntc = rx_ring->next_to_clean + 1;
1023 
1024 	/* fetch, update, and store next to clean */
1025 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1026 	rx_ring->next_to_clean = ntc;
1027 
1028 	if (!rx_buf)
1029 		return;
1030 
1031 	if (ice_can_reuse_rx_page(rx_buf)) {
1032 		/* hand second half of page back to the ring */
1033 		ice_reuse_rx_page(rx_ring, rx_buf);
1034 	} else {
1035 		/* we are not reusing the buffer so unmap it */
1036 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1037 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1038 				     ICE_RX_DMA_ATTR);
1039 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1040 	}
1041 
1042 	/* clear contents of buffer_info */
1043 	rx_buf->page = NULL;
1044 	rx_buf->skb = NULL;
1045 }
1046 
1047 /**
1048  * ice_is_non_eop - process handling of non-EOP buffers
1049  * @rx_ring: Rx ring being processed
1050  * @rx_desc: Rx descriptor for current buffer
1051  * @skb: Current socket buffer containing buffer in progress
1052  *
1053  * If the buffer is an EOP buffer, this function exits returning false,
1054  * otherwise return true indicating that this is in fact a non-EOP buffer.
1055  */
1056 static bool
1057 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
1058 	       struct sk_buff *skb)
1059 {
1060 	/* if we are the last buffer then there is nothing else to do */
1061 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1062 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1063 		return false;
1064 
1065 	/* place skb in next buffer to be received */
1066 	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
1067 	rx_ring->rx_stats.non_eop_descs++;
1068 
1069 	return true;
1070 }
1071 
1072 /**
1073  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1074  * @rx_ring: Rx descriptor ring to transact packets on
1075  * @budget: Total limit on number of packets to process
1076  *
1077  * This function provides a "bounce buffer" approach to Rx interrupt
1078  * processing. The advantage to this is that on systems that have
1079  * expensive overhead for IOMMU access this provides a means of avoiding
1080  * it by maintaining the mapping of the page to the system.
1081  *
1082  * Returns amount of work completed
1083  */
1084 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1085 {
1086 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1087 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1088 	unsigned int xdp_res, xdp_xmit = 0;
1089 	struct bpf_prog *xdp_prog = NULL;
1090 	struct xdp_buff xdp;
1091 	bool failure;
1092 
1093 	xdp.rxq = &rx_ring->xdp_rxq;
1094 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1095 #if (PAGE_SIZE < 8192)
1096 	xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1097 #endif
1098 
1099 	/* start the loop to process Rx packets bounded by 'budget' */
1100 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1101 		union ice_32b_rx_flex_desc *rx_desc;
1102 		struct ice_rx_buf *rx_buf;
1103 		struct sk_buff *skb;
1104 		unsigned int size;
1105 		u16 stat_err_bits;
1106 		u16 vlan_tag = 0;
1107 		u8 rx_ptype;
1108 
1109 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1110 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1111 
1112 		/* status_error_len will always be zero for unused descriptors
1113 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1114 		 * which is always zero because packet split isn't used, if the
1115 		 * hardware wrote DD then it will be non-zero
1116 		 */
1117 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1118 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1119 			break;
1120 
1121 		/* This memory barrier is needed to keep us from reading
1122 		 * any other fields out of the rx_desc until we know the
1123 		 * DD bit is set.
1124 		 */
1125 		dma_rmb();
1126 
1127 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1128 			ice_put_rx_buf(rx_ring, NULL);
1129 			cleaned_count++;
1130 			continue;
1131 		}
1132 
1133 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1134 			ICE_RX_FLX_DESC_PKT_LEN_M;
1135 
1136 		/* retrieve a buffer from the ring */
1137 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1138 
1139 		if (!size) {
1140 			xdp.data = NULL;
1141 			xdp.data_end = NULL;
1142 			xdp.data_hard_start = NULL;
1143 			xdp.data_meta = NULL;
1144 			goto construct_skb;
1145 		}
1146 
1147 		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1148 		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1149 		xdp.data_meta = xdp.data;
1150 		xdp.data_end = xdp.data + size;
1151 #if (PAGE_SIZE > 4096)
1152 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1153 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1154 #endif
1155 
1156 		rcu_read_lock();
1157 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1158 		if (!xdp_prog) {
1159 			rcu_read_unlock();
1160 			goto construct_skb;
1161 		}
1162 
1163 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1164 		rcu_read_unlock();
1165 		if (!xdp_res)
1166 			goto construct_skb;
1167 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1168 			xdp_xmit |= xdp_res;
1169 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1170 		} else {
1171 			rx_buf->pagecnt_bias++;
1172 		}
1173 		total_rx_bytes += size;
1174 		total_rx_pkts++;
1175 
1176 		cleaned_count++;
1177 		ice_put_rx_buf(rx_ring, rx_buf);
1178 		continue;
1179 construct_skb:
1180 		if (skb) {
1181 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1182 		} else if (likely(xdp.data)) {
1183 			if (ice_ring_uses_build_skb(rx_ring))
1184 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1185 			else
1186 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1187 		}
1188 		/* exit if we failed to retrieve a buffer */
1189 		if (!skb) {
1190 			rx_ring->rx_stats.alloc_buf_failed++;
1191 			if (rx_buf)
1192 				rx_buf->pagecnt_bias++;
1193 			break;
1194 		}
1195 
1196 		ice_put_rx_buf(rx_ring, rx_buf);
1197 		cleaned_count++;
1198 
1199 		/* skip if it is NOP desc */
1200 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1201 			continue;
1202 
1203 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1204 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1205 			dev_kfree_skb_any(skb);
1206 			continue;
1207 		}
1208 
1209 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1210 		if (ice_test_staterr(rx_desc, stat_err_bits))
1211 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1212 
1213 		/* pad the skb if needed, to make a valid ethernet frame */
1214 		if (eth_skb_pad(skb)) {
1215 			skb = NULL;
1216 			continue;
1217 		}
1218 
1219 		/* probably a little skewed due to removing CRC */
1220 		total_rx_bytes += skb->len;
1221 
1222 		/* populate checksum, VLAN, and protocol */
1223 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1224 			ICE_RX_FLEX_DESC_PTYPE_M;
1225 
1226 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1227 
1228 		/* send completed skb up the stack */
1229 		ice_receive_skb(rx_ring, skb, vlan_tag);
1230 
1231 		/* update budget accounting */
1232 		total_rx_pkts++;
1233 	}
1234 
1235 	/* return up to cleaned_count buffers to hardware */
1236 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1237 
1238 	if (xdp_prog)
1239 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1240 
1241 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1242 
1243 	/* guarantee a trip back through this routine if there was a failure */
1244 	return failure ? budget : (int)total_rx_pkts;
1245 }
1246 
1247 /**
1248  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1249  * @port_info: port_info structure containing the current link speed
1250  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1251  * @itr: ITR value to update
1252  *
1253  * Calculate how big of an increment should be applied to the ITR value passed
1254  * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1255  * link speed.
1256  *
1257  * The following is a calculation derived from:
1258  *  wmem_default / (size + overhead) = desired_pkts_per_int
1259  *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1260  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1261  *
1262  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1263  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1264  * formula down to:
1265  *
1266  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1267  * ITR = -------------------------------------------- * --------------
1268  *			     rate			pkt_size + 640
1269  */
1270 static unsigned int
1271 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1272 				 unsigned int avg_pkt_size,
1273 				 unsigned int itr)
1274 {
1275 	switch (port_info->phy.link_info.link_speed) {
1276 	case ICE_AQ_LINK_SPEED_100GB:
1277 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1278 				    avg_pkt_size + 640);
1279 		break;
1280 	case ICE_AQ_LINK_SPEED_50GB:
1281 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1282 				    avg_pkt_size + 640);
1283 		break;
1284 	case ICE_AQ_LINK_SPEED_40GB:
1285 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1286 				    avg_pkt_size + 640);
1287 		break;
1288 	case ICE_AQ_LINK_SPEED_25GB:
1289 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1290 				    avg_pkt_size + 640);
1291 		break;
1292 	case ICE_AQ_LINK_SPEED_20GB:
1293 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1294 				    avg_pkt_size + 640);
1295 		break;
1296 	case ICE_AQ_LINK_SPEED_10GB:
1297 	default:
1298 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1299 				    avg_pkt_size + 640);
1300 		break;
1301 	}
1302 
1303 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1304 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1305 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1306 	}
1307 
1308 	return itr;
1309 }
1310 
1311 /**
1312  * ice_update_itr - update the adaptive ITR value based on statistics
1313  * @q_vector: structure containing interrupt and ring information
1314  * @rc: structure containing ring performance data
1315  *
1316  * Stores a new ITR value based on packets and byte
1317  * counts during the last interrupt.  The advantage of per interrupt
1318  * computation is faster updates and more accurate ITR for the current
1319  * traffic pattern.  Constants in this function were computed
1320  * based on theoretical maximum wire speed and thresholds were set based
1321  * on testing data as well as attempting to minimize response time
1322  * while increasing bulk throughput.
1323  */
1324 static void
1325 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1326 {
1327 	unsigned long next_update = jiffies;
1328 	unsigned int packets, bytes, itr;
1329 	bool container_is_rx;
1330 
1331 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1332 		return;
1333 
1334 	/* If itr_countdown is set it means we programmed an ITR within
1335 	 * the last 4 interrupt cycles. This has a side effect of us
1336 	 * potentially firing an early interrupt. In order to work around
1337 	 * this we need to throw out any data received for a few
1338 	 * interrupts following the update.
1339 	 */
1340 	if (q_vector->itr_countdown) {
1341 		itr = rc->target_itr;
1342 		goto clear_counts;
1343 	}
1344 
1345 	container_is_rx = (&q_vector->rx == rc);
1346 	/* For Rx we want to push the delay up and default to low latency.
1347 	 * for Tx we want to pull the delay down and default to high latency.
1348 	 */
1349 	itr = container_is_rx ?
1350 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1351 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1352 
1353 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1354 	 * that either packets are coming in so slow there hasn't been
1355 	 * any work, or that there is so much work that NAPI is dealing
1356 	 * with interrupt moderation and we don't need to do anything.
1357 	 */
1358 	if (time_after(next_update, rc->next_update))
1359 		goto clear_counts;
1360 
1361 	prefetch(q_vector->vsi->port_info);
1362 
1363 	packets = rc->total_pkts;
1364 	bytes = rc->total_bytes;
1365 
1366 	if (container_is_rx) {
1367 		/* If Rx there are 1 to 4 packets and bytes are less than
1368 		 * 9000 assume insufficient data to use bulk rate limiting
1369 		 * approach unless Tx is already in bulk rate limiting. We
1370 		 * are likely latency driven.
1371 		 */
1372 		if (packets && packets < 4 && bytes < 9000 &&
1373 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1374 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1375 			goto adjust_by_size_and_speed;
1376 		}
1377 	} else if (packets < 4) {
1378 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1379 		 * bulk mode and we are receiving 4 or fewer packets just
1380 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1381 		 * that the Rx can relax.
1382 		 */
1383 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1384 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1385 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1386 			goto clear_counts;
1387 	} else if (packets > 32) {
1388 		/* If we have processed over 32 packets in a single interrupt
1389 		 * for Tx assume we need to switch over to "bulk" mode.
1390 		 */
1391 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1392 	}
1393 
1394 	/* We have no packets to actually measure against. This means
1395 	 * either one of the other queues on this vector is active or
1396 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1397 	 *
1398 	 * Between 4 and 56 we can assume that our current interrupt delay
1399 	 * is only slightly too low. As such we should increase it by a small
1400 	 * fixed amount.
1401 	 */
1402 	if (packets < 56) {
1403 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1404 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1405 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1406 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1407 		}
1408 		goto clear_counts;
1409 	}
1410 
1411 	if (packets <= 256) {
1412 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1413 		itr &= ICE_ITR_MASK;
1414 
1415 		/* Between 56 and 112 is our "goldilocks" zone where we are
1416 		 * working out "just right". Just report that our current
1417 		 * ITR is good for us.
1418 		 */
1419 		if (packets <= 112)
1420 			goto clear_counts;
1421 
1422 		/* If packet count is 128 or greater we are likely looking
1423 		 * at a slight overrun of the delay we want. Try halving
1424 		 * our delay to see if that will cut the number of packets
1425 		 * in half per interrupt.
1426 		 */
1427 		itr >>= 1;
1428 		itr &= ICE_ITR_MASK;
1429 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1430 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1431 
1432 		goto clear_counts;
1433 	}
1434 
1435 	/* The paths below assume we are dealing with a bulk ITR since
1436 	 * number of packets is greater than 256. We are just going to have
1437 	 * to compute a value and try to bring the count under control,
1438 	 * though for smaller packet sizes there isn't much we can do as
1439 	 * NAPI polling will likely be kicking in sooner rather than later.
1440 	 */
1441 	itr = ICE_ITR_ADAPTIVE_BULK;
1442 
1443 adjust_by_size_and_speed:
1444 
1445 	/* based on checks above packets cannot be 0 so division is safe */
1446 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1447 					       bytes / packets, itr);
1448 
1449 clear_counts:
1450 	/* write back value */
1451 	rc->target_itr = itr;
1452 
1453 	/* next update should occur within next jiffy */
1454 	rc->next_update = next_update + 1;
1455 
1456 	rc->total_bytes = 0;
1457 	rc->total_pkts = 0;
1458 }
1459 
1460 /**
1461  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1462  * @itr_idx: interrupt throttling index
1463  * @itr: interrupt throttling value in usecs
1464  */
1465 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1466 {
1467 	/* The ITR value is reported in microseconds, and the register value is
1468 	 * recorded in 2 microsecond units. For this reason we only need to
1469 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1470 	 * granularity as a shift instead of division. The mask makes sure the
1471 	 * ITR value is never odd so we don't accidentally write into the field
1472 	 * prior to the ITR field.
1473 	 */
1474 	itr &= ICE_ITR_MASK;
1475 
1476 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1477 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1478 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1479 }
1480 
1481 /* The act of updating the ITR will cause it to immediately trigger. In order
1482  * to prevent this from throwing off adaptive update statistics we defer the
1483  * update so that it can only happen so often. So after either Tx or Rx are
1484  * updated we make the adaptive scheme wait until either the ITR completely
1485  * expires via the next_update expiration or we have been through at least
1486  * 3 interrupts.
1487  */
1488 #define ITR_COUNTDOWN_START 3
1489 
1490 /**
1491  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1492  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1493  */
1494 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1495 {
1496 	struct ice_ring_container *tx = &q_vector->tx;
1497 	struct ice_ring_container *rx = &q_vector->rx;
1498 	struct ice_vsi *vsi = q_vector->vsi;
1499 	u32 itr_val;
1500 
1501 	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1502 	 * interrupts to expire right away in case we have more work ready to go
1503 	 * already
1504 	 */
1505 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1506 		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1507 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1508 		/* set target back to last user set value */
1509 		rx->target_itr = rx->itr_setting;
1510 		/* set current to what we just wrote and dynamic if needed */
1511 		rx->current_itr = ICE_WB_ON_ITR_USECS |
1512 			(rx->itr_setting & ICE_ITR_DYNAMIC);
1513 		/* allow normal interrupt flow to start */
1514 		q_vector->itr_countdown = 0;
1515 		return;
1516 	}
1517 
1518 	/* This will do nothing if dynamic updates are not enabled */
1519 	ice_update_itr(q_vector, tx);
1520 	ice_update_itr(q_vector, rx);
1521 
1522 	/* This block of logic allows us to get away with only updating
1523 	 * one ITR value with each interrupt. The idea is to perform a
1524 	 * pseudo-lazy update with the following criteria.
1525 	 *
1526 	 * 1. Rx is given higher priority than Tx if both are in same state
1527 	 * 2. If we must reduce an ITR that is given highest priority.
1528 	 * 3. We then give priority to increasing ITR based on amount.
1529 	 */
1530 	if (rx->target_itr < rx->current_itr) {
1531 		/* Rx ITR needs to be reduced, this is highest priority */
1532 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1533 		rx->current_itr = rx->target_itr;
1534 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1535 	} else if ((tx->target_itr < tx->current_itr) ||
1536 		   ((rx->target_itr - rx->current_itr) <
1537 		    (tx->target_itr - tx->current_itr))) {
1538 		/* Tx ITR needs to be reduced, this is second priority
1539 		 * Tx ITR needs to be increased more than Rx, fourth priority
1540 		 */
1541 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1542 		tx->current_itr = tx->target_itr;
1543 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1544 	} else if (rx->current_itr != rx->target_itr) {
1545 		/* Rx ITR needs to be increased, third priority */
1546 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1547 		rx->current_itr = rx->target_itr;
1548 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1549 	} else {
1550 		/* Still have to re-enable the interrupts */
1551 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1552 		if (q_vector->itr_countdown)
1553 			q_vector->itr_countdown--;
1554 	}
1555 
1556 	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1557 		wr32(&q_vector->vsi->back->hw,
1558 		     GLINT_DYN_CTL(q_vector->reg_idx),
1559 		     itr_val);
1560 }
1561 
1562 /**
1563  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1564  * @q_vector: q_vector to set WB_ON_ITR on
1565  *
1566  * We need to tell hardware to write-back completed descriptors even when
1567  * interrupts are disabled. Descriptors will be written back on cache line
1568  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1569  * descriptors may not be written back if they don't fill a cache line until the
1570  * next interrupt.
1571  *
1572  * This sets the write-back frequency to 2 microseconds as that is the minimum
1573  * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1574  * make sure hardware knows we aren't meddling with the INTENA_M bit.
1575  */
1576 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1577 {
1578 	struct ice_vsi *vsi = q_vector->vsi;
1579 
1580 	/* already in WB_ON_ITR mode no need to change it */
1581 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1582 		return;
1583 
1584 	if (q_vector->num_ring_rx)
1585 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1586 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1587 						 ICE_RX_ITR));
1588 
1589 	if (q_vector->num_ring_tx)
1590 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1591 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1592 						 ICE_TX_ITR));
1593 
1594 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1595 }
1596 
1597 /**
1598  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1599  * @napi: napi struct with our devices info in it
1600  * @budget: amount of work driver is allowed to do this pass, in packets
1601  *
1602  * This function will clean all queues associated with a q_vector.
1603  *
1604  * Returns the amount of work done
1605  */
1606 int ice_napi_poll(struct napi_struct *napi, int budget)
1607 {
1608 	struct ice_q_vector *q_vector =
1609 				container_of(napi, struct ice_q_vector, napi);
1610 	bool clean_complete = true;
1611 	struct ice_ring *ring;
1612 	int budget_per_ring;
1613 	int work_done = 0;
1614 
1615 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1616 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1617 	 */
1618 	ice_for_each_ring(ring, q_vector->tx) {
1619 		bool wd = ring->xsk_umem ?
1620 			  ice_clean_tx_irq_zc(ring, budget) :
1621 			  ice_clean_tx_irq(ring, budget);
1622 
1623 		if (!wd)
1624 			clean_complete = false;
1625 	}
1626 
1627 	/* Handle case where we are called by netpoll with a budget of 0 */
1628 	if (unlikely(budget <= 0))
1629 		return budget;
1630 
1631 	/* normally we have 1 Rx ring per q_vector */
1632 	if (unlikely(q_vector->num_ring_rx > 1))
1633 		/* We attempt to distribute budget to each Rx queue fairly, but
1634 		 * don't allow the budget to go below 1 because that would exit
1635 		 * polling early.
1636 		 */
1637 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1638 	else
1639 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1640 		budget_per_ring = budget;
1641 
1642 	ice_for_each_ring(ring, q_vector->rx) {
1643 		int cleaned;
1644 
1645 		/* A dedicated path for zero-copy allows making a single
1646 		 * comparison in the irq context instead of many inside the
1647 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1648 		 */
1649 		cleaned = ring->xsk_umem ?
1650 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1651 			  ice_clean_rx_irq(ring, budget_per_ring);
1652 		work_done += cleaned;
1653 		/* if we clean as many as budgeted, we must not be done */
1654 		if (cleaned >= budget_per_ring)
1655 			clean_complete = false;
1656 	}
1657 
1658 	/* If work not completed, return budget and polling will return */
1659 	if (!clean_complete)
1660 		return budget;
1661 
1662 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1663 	 * poll us due to busy-polling
1664 	 */
1665 	if (likely(napi_complete_done(napi, work_done)))
1666 		ice_update_ena_itr(q_vector);
1667 	else
1668 		ice_set_wb_on_itr(q_vector);
1669 
1670 	return min_t(int, work_done, budget - 1);
1671 }
1672 
1673 /**
1674  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1675  * @tx_ring: the ring to be checked
1676  * @size: the size buffer we want to assure is available
1677  *
1678  * Returns -EBUSY if a stop is needed, else 0
1679  */
1680 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1681 {
1682 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1683 	/* Memory barrier before checking head and tail */
1684 	smp_mb();
1685 
1686 	/* Check again in a case another CPU has just made room available. */
1687 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1688 		return -EBUSY;
1689 
1690 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1691 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1692 	++tx_ring->tx_stats.restart_q;
1693 	return 0;
1694 }
1695 
1696 /**
1697  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1698  * @tx_ring: the ring to be checked
1699  * @size:    the size buffer we want to assure is available
1700  *
1701  * Returns 0 if stop is not needed
1702  */
1703 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1704 {
1705 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1706 		return 0;
1707 
1708 	return __ice_maybe_stop_tx(tx_ring, size);
1709 }
1710 
1711 /**
1712  * ice_tx_map - Build the Tx descriptor
1713  * @tx_ring: ring to send buffer on
1714  * @first: first buffer info buffer to use
1715  * @off: pointer to struct that holds offload parameters
1716  *
1717  * This function loops over the skb data pointed to by *first
1718  * and gets a physical address for each memory location and programs
1719  * it and the length into the transmit descriptor.
1720  */
1721 static void
1722 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1723 	   struct ice_tx_offload_params *off)
1724 {
1725 	u64 td_offset, td_tag, td_cmd;
1726 	u16 i = tx_ring->next_to_use;
1727 	unsigned int data_len, size;
1728 	struct ice_tx_desc *tx_desc;
1729 	struct ice_tx_buf *tx_buf;
1730 	struct sk_buff *skb;
1731 	skb_frag_t *frag;
1732 	dma_addr_t dma;
1733 
1734 	td_tag = off->td_l2tag1;
1735 	td_cmd = off->td_cmd;
1736 	td_offset = off->td_offset;
1737 	skb = first->skb;
1738 
1739 	data_len = skb->data_len;
1740 	size = skb_headlen(skb);
1741 
1742 	tx_desc = ICE_TX_DESC(tx_ring, i);
1743 
1744 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1745 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1746 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1747 			  ICE_TX_FLAGS_VLAN_S;
1748 	}
1749 
1750 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1751 
1752 	tx_buf = first;
1753 
1754 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1755 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1756 
1757 		if (dma_mapping_error(tx_ring->dev, dma))
1758 			goto dma_error;
1759 
1760 		/* record length, and DMA address */
1761 		dma_unmap_len_set(tx_buf, len, size);
1762 		dma_unmap_addr_set(tx_buf, dma, dma);
1763 
1764 		/* align size to end of page */
1765 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1766 		tx_desc->buf_addr = cpu_to_le64(dma);
1767 
1768 		/* account for data chunks larger than the hardware
1769 		 * can handle
1770 		 */
1771 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1772 			tx_desc->cmd_type_offset_bsz =
1773 				ice_build_ctob(td_cmd, td_offset, max_data,
1774 					       td_tag);
1775 
1776 			tx_desc++;
1777 			i++;
1778 
1779 			if (i == tx_ring->count) {
1780 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1781 				i = 0;
1782 			}
1783 
1784 			dma += max_data;
1785 			size -= max_data;
1786 
1787 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1788 			tx_desc->buf_addr = cpu_to_le64(dma);
1789 		}
1790 
1791 		if (likely(!data_len))
1792 			break;
1793 
1794 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1795 							      size, td_tag);
1796 
1797 		tx_desc++;
1798 		i++;
1799 
1800 		if (i == tx_ring->count) {
1801 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1802 			i = 0;
1803 		}
1804 
1805 		size = skb_frag_size(frag);
1806 		data_len -= size;
1807 
1808 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1809 				       DMA_TO_DEVICE);
1810 
1811 		tx_buf = &tx_ring->tx_buf[i];
1812 	}
1813 
1814 	/* record bytecount for BQL */
1815 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1816 
1817 	/* record SW timestamp if HW timestamp is not available */
1818 	skb_tx_timestamp(first->skb);
1819 
1820 	i++;
1821 	if (i == tx_ring->count)
1822 		i = 0;
1823 
1824 	/* write last descriptor with RS and EOP bits */
1825 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1826 	tx_desc->cmd_type_offset_bsz =
1827 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1828 
1829 	/* Force memory writes to complete before letting h/w know there
1830 	 * are new descriptors to fetch.
1831 	 *
1832 	 * We also use this memory barrier to make certain all of the
1833 	 * status bits have been updated before next_to_watch is written.
1834 	 */
1835 	wmb();
1836 
1837 	/* set next_to_watch value indicating a packet is present */
1838 	first->next_to_watch = tx_desc;
1839 
1840 	tx_ring->next_to_use = i;
1841 
1842 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1843 
1844 	/* notify HW of packet */
1845 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1846 		writel(i, tx_ring->tail);
1847 
1848 	return;
1849 
1850 dma_error:
1851 	/* clear DMA mappings for failed tx_buf map */
1852 	for (;;) {
1853 		tx_buf = &tx_ring->tx_buf[i];
1854 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1855 		if (tx_buf == first)
1856 			break;
1857 		if (i == 0)
1858 			i = tx_ring->count;
1859 		i--;
1860 	}
1861 
1862 	tx_ring->next_to_use = i;
1863 }
1864 
1865 /**
1866  * ice_tx_csum - Enable Tx checksum offloads
1867  * @first: pointer to the first descriptor
1868  * @off: pointer to struct that holds offload parameters
1869  *
1870  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1871  */
1872 static
1873 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1874 {
1875 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1876 	struct sk_buff *skb = first->skb;
1877 	union {
1878 		struct iphdr *v4;
1879 		struct ipv6hdr *v6;
1880 		unsigned char *hdr;
1881 	} ip;
1882 	union {
1883 		struct tcphdr *tcp;
1884 		unsigned char *hdr;
1885 	} l4;
1886 	__be16 frag_off, protocol;
1887 	unsigned char *exthdr;
1888 	u32 offset, cmd = 0;
1889 	u8 l4_proto = 0;
1890 
1891 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1892 		return 0;
1893 
1894 	ip.hdr = skb_network_header(skb);
1895 	l4.hdr = skb_transport_header(skb);
1896 
1897 	/* compute outer L2 header size */
1898 	l2_len = ip.hdr - skb->data;
1899 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1900 
1901 	protocol = vlan_get_protocol(skb);
1902 
1903 	if (protocol == htons(ETH_P_IP))
1904 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1905 	else if (protocol == htons(ETH_P_IPV6))
1906 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1907 
1908 	if (skb->encapsulation) {
1909 		bool gso_ena = false;
1910 		u32 tunnel = 0;
1911 
1912 		/* define outer network header type */
1913 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1914 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1915 				  ICE_TX_CTX_EIPT_IPV4 :
1916 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1917 			l4_proto = ip.v4->protocol;
1918 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1919 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1920 			exthdr = ip.hdr + sizeof(*ip.v6);
1921 			l4_proto = ip.v6->nexthdr;
1922 			if (l4.hdr != exthdr)
1923 				ipv6_skip_exthdr(skb, exthdr - skb->data,
1924 						 &l4_proto, &frag_off);
1925 		}
1926 
1927 		/* define outer transport */
1928 		switch (l4_proto) {
1929 		case IPPROTO_UDP:
1930 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1931 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1932 			break;
1933 		case IPPROTO_GRE:
1934 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1935 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1936 			break;
1937 		case IPPROTO_IPIP:
1938 		case IPPROTO_IPV6:
1939 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1940 			l4.hdr = skb_inner_network_header(skb);
1941 			break;
1942 		default:
1943 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1944 				return -1;
1945 
1946 			skb_checksum_help(skb);
1947 			return 0;
1948 		}
1949 
1950 		/* compute outer L3 header size */
1951 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1952 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1953 
1954 		/* switch IP header pointer from outer to inner header */
1955 		ip.hdr = skb_inner_network_header(skb);
1956 
1957 		/* compute tunnel header size */
1958 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1959 			   ICE_TXD_CTX_QW0_NATLEN_S;
1960 
1961 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1962 		/* indicate if we need to offload outer UDP header */
1963 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1964 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1965 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1966 
1967 		/* record tunnel offload values */
1968 		off->cd_tunnel_params |= tunnel;
1969 
1970 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1971 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1972 		 */
1973 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1974 
1975 		/* switch L4 header pointer from outer to inner */
1976 		l4.hdr = skb_inner_transport_header(skb);
1977 		l4_proto = 0;
1978 
1979 		/* reset type as we transition from outer to inner headers */
1980 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1981 		if (ip.v4->version == 4)
1982 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1983 		if (ip.v6->version == 6)
1984 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1985 	}
1986 
1987 	/* Enable IP checksum offloads */
1988 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1989 		l4_proto = ip.v4->protocol;
1990 		/* the stack computes the IP header already, the only time we
1991 		 * need the hardware to recompute it is in the case of TSO.
1992 		 */
1993 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1994 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1995 		else
1996 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1997 
1998 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1999 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2000 		exthdr = ip.hdr + sizeof(*ip.v6);
2001 		l4_proto = ip.v6->nexthdr;
2002 		if (l4.hdr != exthdr)
2003 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
2004 					 &frag_off);
2005 	} else {
2006 		return -1;
2007 	}
2008 
2009 	/* compute inner L3 header size */
2010 	l3_len = l4.hdr - ip.hdr;
2011 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
2012 
2013 	/* Enable L4 checksum offloads */
2014 	switch (l4_proto) {
2015 	case IPPROTO_TCP:
2016 		/* enable checksum offloads */
2017 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2018 		l4_len = l4.tcp->doff;
2019 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2020 		break;
2021 	case IPPROTO_UDP:
2022 		/* enable UDP checksum offload */
2023 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2024 		l4_len = (sizeof(struct udphdr) >> 2);
2025 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2026 		break;
2027 	case IPPROTO_SCTP:
2028 		/* enable SCTP checksum offload */
2029 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2030 		l4_len = sizeof(struct sctphdr) >> 2;
2031 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2032 		break;
2033 
2034 	default:
2035 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
2036 			return -1;
2037 		skb_checksum_help(skb);
2038 		return 0;
2039 	}
2040 
2041 	off->td_cmd |= cmd;
2042 	off->td_offset |= offset;
2043 	return 1;
2044 }
2045 
2046 /**
2047  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2048  * @tx_ring: ring to send buffer on
2049  * @first: pointer to struct ice_tx_buf
2050  *
2051  * Checks the skb and set up correspondingly several generic transmit flags
2052  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2053  */
2054 static void
2055 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2056 {
2057 	struct sk_buff *skb = first->skb;
2058 
2059 	/* nothing left to do, software offloaded VLAN */
2060 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2061 		return;
2062 
2063 	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
2064 	 * insertion for 802.1AD is not supported
2065 	 */
2066 	if (skb_vlan_tag_present(skb)) {
2067 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2068 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2069 	}
2070 
2071 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2072 }
2073 
2074 /**
2075  * ice_tso - computes mss and TSO length to prepare for TSO
2076  * @first: pointer to struct ice_tx_buf
2077  * @off: pointer to struct that holds offload parameters
2078  *
2079  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2080  */
2081 static
2082 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2083 {
2084 	struct sk_buff *skb = first->skb;
2085 	union {
2086 		struct iphdr *v4;
2087 		struct ipv6hdr *v6;
2088 		unsigned char *hdr;
2089 	} ip;
2090 	union {
2091 		struct tcphdr *tcp;
2092 		struct udphdr *udp;
2093 		unsigned char *hdr;
2094 	} l4;
2095 	u64 cd_mss, cd_tso_len;
2096 	u32 paylen;
2097 	u8 l4_start;
2098 	int err;
2099 
2100 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2101 		return 0;
2102 
2103 	if (!skb_is_gso(skb))
2104 		return 0;
2105 
2106 	err = skb_cow_head(skb, 0);
2107 	if (err < 0)
2108 		return err;
2109 
2110 	/* cppcheck-suppress unreadVariable */
2111 	ip.hdr = skb_network_header(skb);
2112 	l4.hdr = skb_transport_header(skb);
2113 
2114 	/* initialize outer IP header fields */
2115 	if (ip.v4->version == 4) {
2116 		ip.v4->tot_len = 0;
2117 		ip.v4->check = 0;
2118 	} else {
2119 		ip.v6->payload_len = 0;
2120 	}
2121 
2122 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2123 					 SKB_GSO_GRE_CSUM |
2124 					 SKB_GSO_IPXIP4 |
2125 					 SKB_GSO_IPXIP6 |
2126 					 SKB_GSO_UDP_TUNNEL |
2127 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2128 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2129 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2130 			l4.udp->len = 0;
2131 
2132 			/* determine offset of outer transport header */
2133 			l4_start = (u8)(l4.hdr - skb->data);
2134 
2135 			/* remove payload length from outer checksum */
2136 			paylen = skb->len - l4_start;
2137 			csum_replace_by_diff(&l4.udp->check,
2138 					     (__force __wsum)htonl(paylen));
2139 		}
2140 
2141 		/* reset pointers to inner headers */
2142 
2143 		/* cppcheck-suppress unreadVariable */
2144 		ip.hdr = skb_inner_network_header(skb);
2145 		l4.hdr = skb_inner_transport_header(skb);
2146 
2147 		/* initialize inner IP header fields */
2148 		if (ip.v4->version == 4) {
2149 			ip.v4->tot_len = 0;
2150 			ip.v4->check = 0;
2151 		} else {
2152 			ip.v6->payload_len = 0;
2153 		}
2154 	}
2155 
2156 	/* determine offset of transport header */
2157 	l4_start = (u8)(l4.hdr - skb->data);
2158 
2159 	/* remove payload length from checksum */
2160 	paylen = skb->len - l4_start;
2161 
2162 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2163 		csum_replace_by_diff(&l4.udp->check,
2164 				     (__force __wsum)htonl(paylen));
2165 		/* compute length of UDP segmentation header */
2166 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2167 	} else {
2168 		csum_replace_by_diff(&l4.tcp->check,
2169 				     (__force __wsum)htonl(paylen));
2170 		/* compute length of TCP segmentation header */
2171 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2172 	}
2173 
2174 	/* update gso_segs and bytecount */
2175 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2176 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2177 
2178 	cd_tso_len = skb->len - off->header_len;
2179 	cd_mss = skb_shinfo(skb)->gso_size;
2180 
2181 	/* record cdesc_qw1 with TSO parameters */
2182 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2183 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2184 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2185 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2186 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2187 	return 1;
2188 }
2189 
2190 /**
2191  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2192  * @size: transmit request size in bytes
2193  *
2194  * Due to hardware alignment restrictions (4K alignment), we need to
2195  * assume that we can have no more than 12K of data per descriptor, even
2196  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2197  * Thus, we need to divide by 12K. But division is slow! Instead,
2198  * we decompose the operation into shifts and one relatively cheap
2199  * multiply operation.
2200  *
2201  * To divide by 12K, we first divide by 4K, then divide by 3:
2202  *     To divide by 4K, shift right by 12 bits
2203  *     To divide by 3, multiply by 85, then divide by 256
2204  *     (Divide by 256 is done by shifting right by 8 bits)
2205  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2206  * 3, we'll underestimate near each multiple of 12K. This is actually more
2207  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2208  * segment. For our purposes this is accurate out to 1M which is orders of
2209  * magnitude greater than our largest possible GSO size.
2210  *
2211  * This would then be implemented as:
2212  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2213  *
2214  * Since multiplication and division are commutative, we can reorder
2215  * operations into:
2216  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2217  */
2218 static unsigned int ice_txd_use_count(unsigned int size)
2219 {
2220 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2221 }
2222 
2223 /**
2224  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2225  * @skb: send buffer
2226  *
2227  * Returns number of data descriptors needed for this skb.
2228  */
2229 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2230 {
2231 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2232 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2233 	unsigned int count = 0, size = skb_headlen(skb);
2234 
2235 	for (;;) {
2236 		count += ice_txd_use_count(size);
2237 
2238 		if (!nr_frags--)
2239 			break;
2240 
2241 		size = skb_frag_size(frag++);
2242 	}
2243 
2244 	return count;
2245 }
2246 
2247 /**
2248  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2249  * @skb: send buffer
2250  *
2251  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2252  * and so we need to figure out the cases where we need to linearize the skb.
2253  *
2254  * For TSO we need to count the TSO header and segment payload separately.
2255  * As such we need to check cases where we have 7 fragments or more as we
2256  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2257  * the segment payload in the first descriptor, and another 7 for the
2258  * fragments.
2259  */
2260 static bool __ice_chk_linearize(struct sk_buff *skb)
2261 {
2262 	const skb_frag_t *frag, *stale;
2263 	int nr_frags, sum;
2264 
2265 	/* no need to check if number of frags is less than 7 */
2266 	nr_frags = skb_shinfo(skb)->nr_frags;
2267 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2268 		return false;
2269 
2270 	/* We need to walk through the list and validate that each group
2271 	 * of 6 fragments totals at least gso_size.
2272 	 */
2273 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2274 	frag = &skb_shinfo(skb)->frags[0];
2275 
2276 	/* Initialize size to the negative value of gso_size minus 1. We
2277 	 * use this as the worst case scenario in which the frag ahead
2278 	 * of us only provides one byte which is why we are limited to 6
2279 	 * descriptors for a single transmit as the header and previous
2280 	 * fragment are already consuming 2 descriptors.
2281 	 */
2282 	sum = 1 - skb_shinfo(skb)->gso_size;
2283 
2284 	/* Add size of frags 0 through 4 to create our initial sum */
2285 	sum += skb_frag_size(frag++);
2286 	sum += skb_frag_size(frag++);
2287 	sum += skb_frag_size(frag++);
2288 	sum += skb_frag_size(frag++);
2289 	sum += skb_frag_size(frag++);
2290 
2291 	/* Walk through fragments adding latest fragment, testing it, and
2292 	 * then removing stale fragments from the sum.
2293 	 */
2294 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2295 		int stale_size = skb_frag_size(stale);
2296 
2297 		sum += skb_frag_size(frag++);
2298 
2299 		/* The stale fragment may present us with a smaller
2300 		 * descriptor than the actual fragment size. To account
2301 		 * for that we need to remove all the data on the front and
2302 		 * figure out what the remainder would be in the last
2303 		 * descriptor associated with the fragment.
2304 		 */
2305 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2306 			int align_pad = -(skb_frag_off(stale)) &
2307 					(ICE_MAX_READ_REQ_SIZE - 1);
2308 
2309 			sum -= align_pad;
2310 			stale_size -= align_pad;
2311 
2312 			do {
2313 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2314 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2315 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2316 		}
2317 
2318 		/* if sum is negative we failed to make sufficient progress */
2319 		if (sum < 0)
2320 			return true;
2321 
2322 		if (!nr_frags--)
2323 			break;
2324 
2325 		sum -= stale_size;
2326 	}
2327 
2328 	return false;
2329 }
2330 
2331 /**
2332  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2333  * @skb:      send buffer
2334  * @count:    number of buffers used
2335  *
2336  * Note: Our HW can't scatter-gather more than 8 fragments to build
2337  * a packet on the wire and so we need to figure out the cases where we
2338  * need to linearize the skb.
2339  */
2340 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2341 {
2342 	/* Both TSO and single send will work if count is less than 8 */
2343 	if (likely(count < ICE_MAX_BUF_TXD))
2344 		return false;
2345 
2346 	if (skb_is_gso(skb))
2347 		return __ice_chk_linearize(skb);
2348 
2349 	/* we can support up to 8 data buffers for a single send */
2350 	return count != ICE_MAX_BUF_TXD;
2351 }
2352 
2353 /**
2354  * ice_xmit_frame_ring - Sends buffer on Tx ring
2355  * @skb: send buffer
2356  * @tx_ring: ring to send buffer on
2357  *
2358  * Returns NETDEV_TX_OK if sent, else an error code
2359  */
2360 static netdev_tx_t
2361 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2362 {
2363 	struct ice_tx_offload_params offload = { 0 };
2364 	struct ice_vsi *vsi = tx_ring->vsi;
2365 	struct ice_tx_buf *first;
2366 	unsigned int count;
2367 	int tso, csum;
2368 
2369 	count = ice_xmit_desc_count(skb);
2370 	if (ice_chk_linearize(skb, count)) {
2371 		if (__skb_linearize(skb))
2372 			goto out_drop;
2373 		count = ice_txd_use_count(skb->len);
2374 		tx_ring->tx_stats.tx_linearize++;
2375 	}
2376 
2377 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2378 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2379 	 *       + 4 desc gap to avoid the cache line where head is,
2380 	 *       + 1 desc for context descriptor,
2381 	 * otherwise try next time
2382 	 */
2383 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2384 			      ICE_DESCS_FOR_CTX_DESC)) {
2385 		tx_ring->tx_stats.tx_busy++;
2386 		return NETDEV_TX_BUSY;
2387 	}
2388 
2389 	offload.tx_ring = tx_ring;
2390 
2391 	/* record the location of the first descriptor for this packet */
2392 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2393 	first->skb = skb;
2394 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2395 	first->gso_segs = 1;
2396 	first->tx_flags = 0;
2397 
2398 	/* prepare the VLAN tagging flags for Tx */
2399 	ice_tx_prepare_vlan_flags(tx_ring, first);
2400 
2401 	/* set up TSO offload */
2402 	tso = ice_tso(first, &offload);
2403 	if (tso < 0)
2404 		goto out_drop;
2405 
2406 	/* always set up Tx checksum offload */
2407 	csum = ice_tx_csum(first, &offload);
2408 	if (csum < 0)
2409 		goto out_drop;
2410 
2411 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2412 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2413 		     vsi->type == ICE_VSI_PF &&
2414 		     vsi->port_info->is_sw_lldp))
2415 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2416 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2417 					ICE_TXD_CTX_QW1_CMD_S);
2418 
2419 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2420 		struct ice_tx_ctx_desc *cdesc;
2421 		u16 i = tx_ring->next_to_use;
2422 
2423 		/* grab the next descriptor */
2424 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2425 		i++;
2426 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2427 
2428 		/* setup context descriptor */
2429 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2430 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2431 		cdesc->rsvd = cpu_to_le16(0);
2432 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2433 	}
2434 
2435 	ice_tx_map(tx_ring, first, &offload);
2436 	return NETDEV_TX_OK;
2437 
2438 out_drop:
2439 	dev_kfree_skb_any(skb);
2440 	return NETDEV_TX_OK;
2441 }
2442 
2443 /**
2444  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2445  * @skb: send buffer
2446  * @netdev: network interface device structure
2447  *
2448  * Returns NETDEV_TX_OK if sent, else an error code
2449  */
2450 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2451 {
2452 	struct ice_netdev_priv *np = netdev_priv(netdev);
2453 	struct ice_vsi *vsi = np->vsi;
2454 	struct ice_ring *tx_ring;
2455 
2456 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2457 
2458 	/* hardware can't handle really short frames, hardware padding works
2459 	 * beyond this point
2460 	 */
2461 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2462 		return NETDEV_TX_OK;
2463 
2464 	return ice_xmit_frame_ring(skb, tx_ring);
2465 }
2466 
2467 /**
2468  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2469  * @tx_ring: tx_ring to clean
2470  */
2471 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2472 {
2473 	struct ice_vsi *vsi = tx_ring->vsi;
2474 	s16 i = tx_ring->next_to_clean;
2475 	int budget = ICE_DFLT_IRQ_WORK;
2476 	struct ice_tx_desc *tx_desc;
2477 	struct ice_tx_buf *tx_buf;
2478 
2479 	tx_buf = &tx_ring->tx_buf[i];
2480 	tx_desc = ICE_TX_DESC(tx_ring, i);
2481 	i -= tx_ring->count;
2482 
2483 	do {
2484 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2485 
2486 		/* if next_to_watch is not set then there is no pending work */
2487 		if (!eop_desc)
2488 			break;
2489 
2490 		/* prevent any other reads prior to eop_desc */
2491 		smp_rmb();
2492 
2493 		/* if the descriptor isn't done, no work to do */
2494 		if (!(eop_desc->cmd_type_offset_bsz &
2495 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2496 			break;
2497 
2498 		/* clear next_to_watch to prevent false hangs */
2499 		tx_buf->next_to_watch = NULL;
2500 		tx_desc->buf_addr = 0;
2501 		tx_desc->cmd_type_offset_bsz = 0;
2502 
2503 		/* move past filter desc */
2504 		tx_buf++;
2505 		tx_desc++;
2506 		i++;
2507 		if (unlikely(!i)) {
2508 			i -= tx_ring->count;
2509 			tx_buf = tx_ring->tx_buf;
2510 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2511 		}
2512 
2513 		/* unmap the data header */
2514 		if (dma_unmap_len(tx_buf, len))
2515 			dma_unmap_single(tx_ring->dev,
2516 					 dma_unmap_addr(tx_buf, dma),
2517 					 dma_unmap_len(tx_buf, len),
2518 					 DMA_TO_DEVICE);
2519 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2520 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2521 
2522 		/* clear next_to_watch to prevent false hangs */
2523 		tx_buf->raw_buf = NULL;
2524 		tx_buf->tx_flags = 0;
2525 		tx_buf->next_to_watch = NULL;
2526 		dma_unmap_len_set(tx_buf, len, 0);
2527 		tx_desc->buf_addr = 0;
2528 		tx_desc->cmd_type_offset_bsz = 0;
2529 
2530 		/* move past eop_desc for start of next FD desc */
2531 		tx_buf++;
2532 		tx_desc++;
2533 		i++;
2534 		if (unlikely(!i)) {
2535 			i -= tx_ring->count;
2536 			tx_buf = tx_ring->tx_buf;
2537 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2538 		}
2539 
2540 		budget--;
2541 	} while (likely(budget));
2542 
2543 	i += tx_ring->count;
2544 	tx_ring->next_to_clean = i;
2545 
2546 	/* re-enable interrupt if needed */
2547 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2548 }
2549