1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/mpls.h> 12 #include <net/xdp.h> 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 #include "ice.h" 16 #include "ice_trace.h" 17 #include "ice_dcb_lib.h" 18 #include "ice_xsk.h" 19 #include "ice_eswitch.h" 20 21 #define ICE_RX_HDR_SIZE 256 22 23 #define FDIR_DESC_RXDID 0x40 24 #define ICE_FDIR_CLEAN_DELAY 10 25 26 /** 27 * ice_prgm_fdir_fltr - Program a Flow Director filter 28 * @vsi: VSI to send dummy packet 29 * @fdir_desc: flow director descriptor 30 * @raw_packet: allocated buffer for flow director 31 */ 32 int 33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 34 u8 *raw_packet) 35 { 36 struct ice_tx_buf *tx_buf, *first; 37 struct ice_fltr_desc *f_desc; 38 struct ice_tx_desc *tx_desc; 39 struct ice_tx_ring *tx_ring; 40 struct device *dev; 41 dma_addr_t dma; 42 u32 td_cmd; 43 u16 i; 44 45 /* VSI and Tx ring */ 46 if (!vsi) 47 return -ENOENT; 48 tx_ring = vsi->tx_rings[0]; 49 if (!tx_ring || !tx_ring->desc) 50 return -ENOENT; 51 dev = tx_ring->dev; 52 53 /* we are using two descriptors to add/del a filter and we can wait */ 54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 55 if (!i) 56 return -EAGAIN; 57 msleep_interruptible(1); 58 } 59 60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 61 DMA_TO_DEVICE); 62 63 if (dma_mapping_error(dev, dma)) 64 return -EINVAL; 65 66 /* grab the next descriptor */ 67 i = tx_ring->next_to_use; 68 first = &tx_ring->tx_buf[i]; 69 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 70 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 71 72 i++; 73 i = (i < tx_ring->count) ? i : 0; 74 tx_desc = ICE_TX_DESC(tx_ring, i); 75 tx_buf = &tx_ring->tx_buf[i]; 76 77 i++; 78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 79 80 memset(tx_buf, 0, sizeof(*tx_buf)); 81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 82 dma_unmap_addr_set(tx_buf, dma, dma); 83 84 tx_desc->buf_addr = cpu_to_le64(dma); 85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 86 ICE_TX_DESC_CMD_RE; 87 88 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 89 tx_buf->raw_buf = raw_packet; 90 91 tx_desc->cmd_type_offset_bsz = 92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 93 94 /* Force memory write to complete before letting h/w know 95 * there are new descriptors to fetch. 96 */ 97 wmb(); 98 99 /* mark the data descriptor to be watched */ 100 first->next_to_watch = tx_desc; 101 102 writel(tx_ring->next_to_use, tx_ring->tail); 103 104 return 0; 105 } 106 107 /** 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer 109 * @ring: the ring that owns the buffer 110 * @tx_buf: the buffer to free 111 */ 112 static void 113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 114 { 115 if (tx_buf->skb) { 116 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 117 devm_kfree(ring->dev, tx_buf->raw_buf); 118 else if (ice_ring_is_xdp(ring)) 119 page_frag_free(tx_buf->raw_buf); 120 else 121 dev_kfree_skb_any(tx_buf->skb); 122 if (dma_unmap_len(tx_buf, len)) 123 dma_unmap_single(ring->dev, 124 dma_unmap_addr(tx_buf, dma), 125 dma_unmap_len(tx_buf, len), 126 DMA_TO_DEVICE); 127 } else if (dma_unmap_len(tx_buf, len)) { 128 dma_unmap_page(ring->dev, 129 dma_unmap_addr(tx_buf, dma), 130 dma_unmap_len(tx_buf, len), 131 DMA_TO_DEVICE); 132 } 133 134 tx_buf->next_to_watch = NULL; 135 tx_buf->skb = NULL; 136 dma_unmap_len_set(tx_buf, len, 0); 137 /* tx_buf must be completely set up in the transmit path */ 138 } 139 140 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 141 { 142 return netdev_get_tx_queue(ring->netdev, ring->q_index); 143 } 144 145 /** 146 * ice_clean_tx_ring - Free any empty Tx buffers 147 * @tx_ring: ring to be cleaned 148 */ 149 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 150 { 151 u32 size; 152 u16 i; 153 154 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 155 ice_xsk_clean_xdp_ring(tx_ring); 156 goto tx_skip_free; 157 } 158 159 /* ring already cleared, nothing to do */ 160 if (!tx_ring->tx_buf) 161 return; 162 163 /* Free all the Tx ring sk_buffs */ 164 for (i = 0; i < tx_ring->count; i++) 165 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 166 167 tx_skip_free: 168 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 169 170 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 171 PAGE_SIZE); 172 /* Zero out the descriptor ring */ 173 memset(tx_ring->desc, 0, size); 174 175 tx_ring->next_to_use = 0; 176 tx_ring->next_to_clean = 0; 177 tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1; 178 tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1; 179 180 if (!tx_ring->netdev) 181 return; 182 183 /* cleanup Tx queue statistics */ 184 netdev_tx_reset_queue(txring_txq(tx_ring)); 185 } 186 187 /** 188 * ice_free_tx_ring - Free Tx resources per queue 189 * @tx_ring: Tx descriptor ring for a specific queue 190 * 191 * Free all transmit software resources 192 */ 193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 194 { 195 u32 size; 196 197 ice_clean_tx_ring(tx_ring); 198 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 199 tx_ring->tx_buf = NULL; 200 201 if (tx_ring->desc) { 202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 203 PAGE_SIZE); 204 dmam_free_coherent(tx_ring->dev, size, 205 tx_ring->desc, tx_ring->dma); 206 tx_ring->desc = NULL; 207 } 208 } 209 210 /** 211 * ice_clean_tx_irq - Reclaim resources after transmit completes 212 * @tx_ring: Tx ring to clean 213 * @napi_budget: Used to determine if we are in netpoll 214 * 215 * Returns true if there's any budget left (e.g. the clean is finished) 216 */ 217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 218 { 219 unsigned int total_bytes = 0, total_pkts = 0; 220 unsigned int budget = ICE_DFLT_IRQ_WORK; 221 struct ice_vsi *vsi = tx_ring->vsi; 222 s16 i = tx_ring->next_to_clean; 223 struct ice_tx_desc *tx_desc; 224 struct ice_tx_buf *tx_buf; 225 226 /* get the bql data ready */ 227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 228 229 tx_buf = &tx_ring->tx_buf[i]; 230 tx_desc = ICE_TX_DESC(tx_ring, i); 231 i -= tx_ring->count; 232 233 prefetch(&vsi->state); 234 235 do { 236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 237 238 /* if next_to_watch is not set then there is no work pending */ 239 if (!eop_desc) 240 break; 241 242 /* follow the guidelines of other drivers */ 243 prefetchw(&tx_buf->skb->users); 244 245 smp_rmb(); /* prevent any other reads prior to eop_desc */ 246 247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 248 /* if the descriptor isn't done, no work yet to do */ 249 if (!(eop_desc->cmd_type_offset_bsz & 250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 251 break; 252 253 /* clear next_to_watch to prevent false hangs */ 254 tx_buf->next_to_watch = NULL; 255 256 /* update the statistics for this packet */ 257 total_bytes += tx_buf->bytecount; 258 total_pkts += tx_buf->gso_segs; 259 260 /* free the skb */ 261 napi_consume_skb(tx_buf->skb, napi_budget); 262 263 /* unmap skb header data */ 264 dma_unmap_single(tx_ring->dev, 265 dma_unmap_addr(tx_buf, dma), 266 dma_unmap_len(tx_buf, len), 267 DMA_TO_DEVICE); 268 269 /* clear tx_buf data */ 270 tx_buf->skb = NULL; 271 dma_unmap_len_set(tx_buf, len, 0); 272 273 /* unmap remaining buffers */ 274 while (tx_desc != eop_desc) { 275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 276 tx_buf++; 277 tx_desc++; 278 i++; 279 if (unlikely(!i)) { 280 i -= tx_ring->count; 281 tx_buf = tx_ring->tx_buf; 282 tx_desc = ICE_TX_DESC(tx_ring, 0); 283 } 284 285 /* unmap any remaining paged data */ 286 if (dma_unmap_len(tx_buf, len)) { 287 dma_unmap_page(tx_ring->dev, 288 dma_unmap_addr(tx_buf, dma), 289 dma_unmap_len(tx_buf, len), 290 DMA_TO_DEVICE); 291 dma_unmap_len_set(tx_buf, len, 0); 292 } 293 } 294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 295 296 /* move us one more past the eop_desc for start of next pkt */ 297 tx_buf++; 298 tx_desc++; 299 i++; 300 if (unlikely(!i)) { 301 i -= tx_ring->count; 302 tx_buf = tx_ring->tx_buf; 303 tx_desc = ICE_TX_DESC(tx_ring, 0); 304 } 305 306 prefetch(tx_desc); 307 308 /* update budget accounting */ 309 budget--; 310 } while (likely(budget)); 311 312 i += tx_ring->count; 313 tx_ring->next_to_clean = i; 314 315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 317 318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 321 /* Make sure that anybody stopping the queue after this 322 * sees the new next_to_clean. 323 */ 324 smp_mb(); 325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 326 !test_bit(ICE_VSI_DOWN, vsi->state)) { 327 netif_tx_wake_queue(txring_txq(tx_ring)); 328 ++tx_ring->tx_stats.restart_q; 329 } 330 } 331 332 return !!budget; 333 } 334 335 /** 336 * ice_setup_tx_ring - Allocate the Tx descriptors 337 * @tx_ring: the Tx ring to set up 338 * 339 * Return 0 on success, negative on error 340 */ 341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 342 { 343 struct device *dev = tx_ring->dev; 344 u32 size; 345 346 if (!dev) 347 return -ENOMEM; 348 349 /* warn if we are about to overwrite the pointer */ 350 WARN_ON(tx_ring->tx_buf); 351 tx_ring->tx_buf = 352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 353 GFP_KERNEL); 354 if (!tx_ring->tx_buf) 355 return -ENOMEM; 356 357 /* round up to nearest page */ 358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 359 PAGE_SIZE); 360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 361 GFP_KERNEL); 362 if (!tx_ring->desc) { 363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 364 size); 365 goto err; 366 } 367 368 tx_ring->next_to_use = 0; 369 tx_ring->next_to_clean = 0; 370 tx_ring->tx_stats.prev_pkt = -1; 371 return 0; 372 373 err: 374 devm_kfree(dev, tx_ring->tx_buf); 375 tx_ring->tx_buf = NULL; 376 return -ENOMEM; 377 } 378 379 /** 380 * ice_clean_rx_ring - Free Rx buffers 381 * @rx_ring: ring to be cleaned 382 */ 383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 384 { 385 struct device *dev = rx_ring->dev; 386 u32 size; 387 u16 i; 388 389 /* ring already cleared, nothing to do */ 390 if (!rx_ring->rx_buf) 391 return; 392 393 if (rx_ring->skb) { 394 dev_kfree_skb(rx_ring->skb); 395 rx_ring->skb = NULL; 396 } 397 398 if (rx_ring->xsk_pool) { 399 ice_xsk_clean_rx_ring(rx_ring); 400 goto rx_skip_free; 401 } 402 403 /* Free all the Rx ring sk_buffs */ 404 for (i = 0; i < rx_ring->count; i++) { 405 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 406 407 if (!rx_buf->page) 408 continue; 409 410 /* Invalidate cache lines that may have been written to by 411 * device so that we avoid corrupting memory. 412 */ 413 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 414 rx_buf->page_offset, 415 rx_ring->rx_buf_len, 416 DMA_FROM_DEVICE); 417 418 /* free resources associated with mapping */ 419 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 420 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 421 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 422 423 rx_buf->page = NULL; 424 rx_buf->page_offset = 0; 425 } 426 427 rx_skip_free: 428 if (rx_ring->xsk_pool) 429 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 430 else 431 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 432 433 /* Zero out the descriptor ring */ 434 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 435 PAGE_SIZE); 436 memset(rx_ring->desc, 0, size); 437 438 rx_ring->next_to_alloc = 0; 439 rx_ring->next_to_clean = 0; 440 rx_ring->next_to_use = 0; 441 } 442 443 /** 444 * ice_free_rx_ring - Free Rx resources 445 * @rx_ring: ring to clean the resources from 446 * 447 * Free all receive software resources 448 */ 449 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 450 { 451 u32 size; 452 453 ice_clean_rx_ring(rx_ring); 454 if (rx_ring->vsi->type == ICE_VSI_PF) 455 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 456 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 457 rx_ring->xdp_prog = NULL; 458 if (rx_ring->xsk_pool) { 459 kfree(rx_ring->xdp_buf); 460 rx_ring->xdp_buf = NULL; 461 } else { 462 kfree(rx_ring->rx_buf); 463 rx_ring->rx_buf = NULL; 464 } 465 466 if (rx_ring->desc) { 467 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 468 PAGE_SIZE); 469 dmam_free_coherent(rx_ring->dev, size, 470 rx_ring->desc, rx_ring->dma); 471 rx_ring->desc = NULL; 472 } 473 } 474 475 /** 476 * ice_setup_rx_ring - Allocate the Rx descriptors 477 * @rx_ring: the Rx ring to set up 478 * 479 * Return 0 on success, negative on error 480 */ 481 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 482 { 483 struct device *dev = rx_ring->dev; 484 u32 size; 485 486 if (!dev) 487 return -ENOMEM; 488 489 /* warn if we are about to overwrite the pointer */ 490 WARN_ON(rx_ring->rx_buf); 491 rx_ring->rx_buf = 492 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 493 if (!rx_ring->rx_buf) 494 return -ENOMEM; 495 496 /* round up to nearest page */ 497 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 498 PAGE_SIZE); 499 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 500 GFP_KERNEL); 501 if (!rx_ring->desc) { 502 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 503 size); 504 goto err; 505 } 506 507 rx_ring->next_to_use = 0; 508 rx_ring->next_to_clean = 0; 509 510 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 511 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 512 513 if (rx_ring->vsi->type == ICE_VSI_PF && 514 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 515 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 516 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 517 goto err; 518 return 0; 519 520 err: 521 kfree(rx_ring->rx_buf); 522 rx_ring->rx_buf = NULL; 523 return -ENOMEM; 524 } 525 526 static unsigned int 527 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) 528 { 529 unsigned int truesize; 530 531 #if (PAGE_SIZE < 8192) 532 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 533 #else 534 truesize = rx_ring->rx_offset ? 535 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 536 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 537 SKB_DATA_ALIGN(size); 538 #endif 539 return truesize; 540 } 541 542 /** 543 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 544 * @rx_ring: Rx ring 545 * @xdp: xdp_buff used as input to the XDP program 546 * @xdp_prog: XDP program to run 547 * @xdp_ring: ring to be used for XDP_TX action 548 * 549 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 550 */ 551 static int 552 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 553 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 554 { 555 int err; 556 u32 act; 557 558 act = bpf_prog_run_xdp(xdp_prog, xdp); 559 switch (act) { 560 case XDP_PASS: 561 return ICE_XDP_PASS; 562 case XDP_TX: 563 if (static_branch_unlikely(&ice_xdp_locking_key)) 564 spin_lock(&xdp_ring->tx_lock); 565 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); 566 if (static_branch_unlikely(&ice_xdp_locking_key)) 567 spin_unlock(&xdp_ring->tx_lock); 568 if (err == ICE_XDP_CONSUMED) 569 goto out_failure; 570 return err; 571 case XDP_REDIRECT: 572 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 573 if (err) 574 goto out_failure; 575 return ICE_XDP_REDIR; 576 default: 577 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 578 fallthrough; 579 case XDP_ABORTED: 580 out_failure: 581 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 582 fallthrough; 583 case XDP_DROP: 584 return ICE_XDP_CONSUMED; 585 } 586 } 587 588 /** 589 * ice_xdp_xmit - submit packets to XDP ring for transmission 590 * @dev: netdev 591 * @n: number of XDP frames to be transmitted 592 * @frames: XDP frames to be transmitted 593 * @flags: transmit flags 594 * 595 * Returns number of frames successfully sent. Failed frames 596 * will be free'ed by XDP core. 597 * For error cases, a negative errno code is returned and no-frames 598 * are transmitted (caller must handle freeing frames). 599 */ 600 int 601 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 602 u32 flags) 603 { 604 struct ice_netdev_priv *np = netdev_priv(dev); 605 unsigned int queue_index = smp_processor_id(); 606 struct ice_vsi *vsi = np->vsi; 607 struct ice_tx_ring *xdp_ring; 608 int nxmit = 0, i; 609 610 if (test_bit(ICE_VSI_DOWN, vsi->state)) 611 return -ENETDOWN; 612 613 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 614 return -ENXIO; 615 616 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 617 return -EINVAL; 618 619 if (static_branch_unlikely(&ice_xdp_locking_key)) { 620 queue_index %= vsi->num_xdp_txq; 621 xdp_ring = vsi->xdp_rings[queue_index]; 622 spin_lock(&xdp_ring->tx_lock); 623 } else { 624 xdp_ring = vsi->xdp_rings[queue_index]; 625 } 626 627 for (i = 0; i < n; i++) { 628 struct xdp_frame *xdpf = frames[i]; 629 int err; 630 631 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 632 if (err != ICE_XDP_TX) 633 break; 634 nxmit++; 635 } 636 637 if (unlikely(flags & XDP_XMIT_FLUSH)) 638 ice_xdp_ring_update_tail(xdp_ring); 639 640 if (static_branch_unlikely(&ice_xdp_locking_key)) 641 spin_unlock(&xdp_ring->tx_lock); 642 643 return nxmit; 644 } 645 646 /** 647 * ice_alloc_mapped_page - recycle or make a new page 648 * @rx_ring: ring to use 649 * @bi: rx_buf struct to modify 650 * 651 * Returns true if the page was successfully allocated or 652 * reused. 653 */ 654 static bool 655 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 656 { 657 struct page *page = bi->page; 658 dma_addr_t dma; 659 660 /* since we are recycling buffers we should seldom need to alloc */ 661 if (likely(page)) 662 return true; 663 664 /* alloc new page for storage */ 665 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 666 if (unlikely(!page)) { 667 rx_ring->rx_stats.alloc_page_failed++; 668 return false; 669 } 670 671 /* map page for use */ 672 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 673 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 674 675 /* if mapping failed free memory back to system since 676 * there isn't much point in holding memory we can't use 677 */ 678 if (dma_mapping_error(rx_ring->dev, dma)) { 679 __free_pages(page, ice_rx_pg_order(rx_ring)); 680 rx_ring->rx_stats.alloc_page_failed++; 681 return false; 682 } 683 684 bi->dma = dma; 685 bi->page = page; 686 bi->page_offset = rx_ring->rx_offset; 687 page_ref_add(page, USHRT_MAX - 1); 688 bi->pagecnt_bias = USHRT_MAX; 689 690 return true; 691 } 692 693 /** 694 * ice_alloc_rx_bufs - Replace used receive buffers 695 * @rx_ring: ring to place buffers on 696 * @cleaned_count: number of buffers to replace 697 * 698 * Returns false if all allocations were successful, true if any fail. Returning 699 * true signals to the caller that we didn't replace cleaned_count buffers and 700 * there is more work to do. 701 * 702 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 703 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 704 * multiple tail writes per call. 705 */ 706 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) 707 { 708 union ice_32b_rx_flex_desc *rx_desc; 709 u16 ntu = rx_ring->next_to_use; 710 struct ice_rx_buf *bi; 711 712 /* do nothing if no valid netdev defined */ 713 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 714 !cleaned_count) 715 return false; 716 717 /* get the Rx descriptor and buffer based on next_to_use */ 718 rx_desc = ICE_RX_DESC(rx_ring, ntu); 719 bi = &rx_ring->rx_buf[ntu]; 720 721 do { 722 /* if we fail here, we have work remaining */ 723 if (!ice_alloc_mapped_page(rx_ring, bi)) 724 break; 725 726 /* sync the buffer for use by the device */ 727 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 728 bi->page_offset, 729 rx_ring->rx_buf_len, 730 DMA_FROM_DEVICE); 731 732 /* Refresh the desc even if buffer_addrs didn't change 733 * because each write-back erases this info. 734 */ 735 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 736 737 rx_desc++; 738 bi++; 739 ntu++; 740 if (unlikely(ntu == rx_ring->count)) { 741 rx_desc = ICE_RX_DESC(rx_ring, 0); 742 bi = rx_ring->rx_buf; 743 ntu = 0; 744 } 745 746 /* clear the status bits for the next_to_use descriptor */ 747 rx_desc->wb.status_error0 = 0; 748 749 cleaned_count--; 750 } while (cleaned_count); 751 752 if (rx_ring->next_to_use != ntu) 753 ice_release_rx_desc(rx_ring, ntu); 754 755 return !!cleaned_count; 756 } 757 758 /** 759 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 760 * @rx_buf: Rx buffer to adjust 761 * @size: Size of adjustment 762 * 763 * Update the offset within page so that Rx buf will be ready to be reused. 764 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 765 * so the second half of page assigned to Rx buffer will be used, otherwise 766 * the offset is moved by "size" bytes 767 */ 768 static void 769 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 770 { 771 #if (PAGE_SIZE < 8192) 772 /* flip page offset to other buffer */ 773 rx_buf->page_offset ^= size; 774 #else 775 /* move offset up to the next cache line */ 776 rx_buf->page_offset += size; 777 #endif 778 } 779 780 /** 781 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 782 * @rx_buf: buffer containing the page 783 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 784 * 785 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 786 * which will assign the current buffer to the buffer that next_to_alloc is 787 * pointing to; otherwise, the DMA mapping needs to be destroyed and 788 * page freed 789 */ 790 static bool 791 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 792 { 793 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 794 struct page *page = rx_buf->page; 795 796 /* avoid re-using remote and pfmemalloc pages */ 797 if (!dev_page_is_reusable(page)) 798 return false; 799 800 #if (PAGE_SIZE < 8192) 801 /* if we are only owner of page we can reuse it */ 802 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 803 return false; 804 #else 805 #define ICE_LAST_OFFSET \ 806 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 807 if (rx_buf->page_offset > ICE_LAST_OFFSET) 808 return false; 809 #endif /* PAGE_SIZE < 8192) */ 810 811 /* If we have drained the page fragment pool we need to update 812 * the pagecnt_bias and page count so that we fully restock the 813 * number of references the driver holds. 814 */ 815 if (unlikely(pagecnt_bias == 1)) { 816 page_ref_add(page, USHRT_MAX - 1); 817 rx_buf->pagecnt_bias = USHRT_MAX; 818 } 819 820 return true; 821 } 822 823 /** 824 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 825 * @rx_ring: Rx descriptor ring to transact packets on 826 * @rx_buf: buffer containing page to add 827 * @skb: sk_buff to place the data into 828 * @size: packet length from rx_desc 829 * 830 * This function will add the data contained in rx_buf->page to the skb. 831 * It will just attach the page as a frag to the skb. 832 * The function will then update the page offset. 833 */ 834 static void 835 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 836 struct sk_buff *skb, unsigned int size) 837 { 838 #if (PAGE_SIZE >= 8192) 839 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 840 #else 841 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 842 #endif 843 844 if (!size) 845 return; 846 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 847 rx_buf->page_offset, size, truesize); 848 849 /* page is being used so we must update the page offset */ 850 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 851 } 852 853 /** 854 * ice_reuse_rx_page - page flip buffer and store it back on the ring 855 * @rx_ring: Rx descriptor ring to store buffers on 856 * @old_buf: donor buffer to have page reused 857 * 858 * Synchronizes page for reuse by the adapter 859 */ 860 static void 861 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 862 { 863 u16 nta = rx_ring->next_to_alloc; 864 struct ice_rx_buf *new_buf; 865 866 new_buf = &rx_ring->rx_buf[nta]; 867 868 /* update, and store next to alloc */ 869 nta++; 870 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 871 872 /* Transfer page from old buffer to new buffer. 873 * Move each member individually to avoid possible store 874 * forwarding stalls and unnecessary copy of skb. 875 */ 876 new_buf->dma = old_buf->dma; 877 new_buf->page = old_buf->page; 878 new_buf->page_offset = old_buf->page_offset; 879 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 880 } 881 882 /** 883 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 884 * @rx_ring: Rx descriptor ring to transact packets on 885 * @size: size of buffer to add to skb 886 * @rx_buf_pgcnt: rx_buf page refcount 887 * 888 * This function will pull an Rx buffer from the ring and synchronize it 889 * for use by the CPU. 890 */ 891 static struct ice_rx_buf * 892 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 893 int *rx_buf_pgcnt) 894 { 895 struct ice_rx_buf *rx_buf; 896 897 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 898 *rx_buf_pgcnt = 899 #if (PAGE_SIZE < 8192) 900 page_count(rx_buf->page); 901 #else 902 0; 903 #endif 904 prefetchw(rx_buf->page); 905 906 if (!size) 907 return rx_buf; 908 /* we are reusing so sync this buffer for CPU use */ 909 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 910 rx_buf->page_offset, size, 911 DMA_FROM_DEVICE); 912 913 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 914 rx_buf->pagecnt_bias--; 915 916 return rx_buf; 917 } 918 919 /** 920 * ice_build_skb - Build skb around an existing buffer 921 * @rx_ring: Rx descriptor ring to transact packets on 922 * @rx_buf: Rx buffer to pull data from 923 * @xdp: xdp_buff pointing to the data 924 * 925 * This function builds an skb around an existing Rx buffer, taking care 926 * to set up the skb correctly and avoid any memcpy overhead. 927 */ 928 static struct sk_buff * 929 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 930 struct xdp_buff *xdp) 931 { 932 u8 metasize = xdp->data - xdp->data_meta; 933 #if (PAGE_SIZE < 8192) 934 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 935 #else 936 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 937 SKB_DATA_ALIGN(xdp->data_end - 938 xdp->data_hard_start); 939 #endif 940 struct sk_buff *skb; 941 942 /* Prefetch first cache line of first page. If xdp->data_meta 943 * is unused, this points exactly as xdp->data, otherwise we 944 * likely have a consumer accessing first few bytes of meta 945 * data, and then actual data. 946 */ 947 net_prefetch(xdp->data_meta); 948 /* build an skb around the page buffer */ 949 skb = napi_build_skb(xdp->data_hard_start, truesize); 950 if (unlikely(!skb)) 951 return NULL; 952 953 /* must to record Rx queue, otherwise OS features such as 954 * symmetric queue won't work 955 */ 956 skb_record_rx_queue(skb, rx_ring->q_index); 957 958 /* update pointers within the skb to store the data */ 959 skb_reserve(skb, xdp->data - xdp->data_hard_start); 960 __skb_put(skb, xdp->data_end - xdp->data); 961 if (metasize) 962 skb_metadata_set(skb, metasize); 963 964 /* buffer is used by skb, update page_offset */ 965 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 966 967 return skb; 968 } 969 970 /** 971 * ice_construct_skb - Allocate skb and populate it 972 * @rx_ring: Rx descriptor ring to transact packets on 973 * @rx_buf: Rx buffer to pull data from 974 * @xdp: xdp_buff pointing to the data 975 * 976 * This function allocates an skb. It then populates it with the page 977 * data from the current receive descriptor, taking care to set up the 978 * skb correctly. 979 */ 980 static struct sk_buff * 981 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 982 struct xdp_buff *xdp) 983 { 984 unsigned int metasize = xdp->data - xdp->data_meta; 985 unsigned int size = xdp->data_end - xdp->data; 986 unsigned int headlen; 987 struct sk_buff *skb; 988 989 /* prefetch first cache line of first page */ 990 net_prefetch(xdp->data_meta); 991 992 /* allocate a skb to store the frags */ 993 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 994 ICE_RX_HDR_SIZE + metasize, 995 GFP_ATOMIC | __GFP_NOWARN); 996 if (unlikely(!skb)) 997 return NULL; 998 999 skb_record_rx_queue(skb, rx_ring->q_index); 1000 /* Determine available headroom for copy */ 1001 headlen = size; 1002 if (headlen > ICE_RX_HDR_SIZE) 1003 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1004 1005 /* align pull length to size of long to optimize memcpy performance */ 1006 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1007 ALIGN(headlen + metasize, sizeof(long))); 1008 1009 if (metasize) { 1010 skb_metadata_set(skb, metasize); 1011 __skb_pull(skb, metasize); 1012 } 1013 1014 /* if we exhaust the linear part then add what is left as a frag */ 1015 size -= headlen; 1016 if (size) { 1017 #if (PAGE_SIZE >= 8192) 1018 unsigned int truesize = SKB_DATA_ALIGN(size); 1019 #else 1020 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 1021 #endif 1022 skb_add_rx_frag(skb, 0, rx_buf->page, 1023 rx_buf->page_offset + headlen, size, truesize); 1024 /* buffer is used by skb, update page_offset */ 1025 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1026 } else { 1027 /* buffer is unused, reset bias back to rx_buf; data was copied 1028 * onto skb's linear part so there's no need for adjusting 1029 * page offset and we can reuse this buffer as-is 1030 */ 1031 rx_buf->pagecnt_bias++; 1032 } 1033 1034 return skb; 1035 } 1036 1037 /** 1038 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1039 * @rx_ring: Rx descriptor ring to transact packets on 1040 * @rx_buf: Rx buffer to pull data from 1041 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1042 * 1043 * This function will update next_to_clean and then clean up the contents 1044 * of the rx_buf. It will either recycle the buffer or unmap it and free 1045 * the associated resources. 1046 */ 1047 static void 1048 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 1049 int rx_buf_pgcnt) 1050 { 1051 u16 ntc = rx_ring->next_to_clean + 1; 1052 1053 /* fetch, update, and store next to clean */ 1054 ntc = (ntc < rx_ring->count) ? ntc : 0; 1055 rx_ring->next_to_clean = ntc; 1056 1057 if (!rx_buf) 1058 return; 1059 1060 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1061 /* hand second half of page back to the ring */ 1062 ice_reuse_rx_page(rx_ring, rx_buf); 1063 } else { 1064 /* we are not reusing the buffer so unmap it */ 1065 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1066 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1067 ICE_RX_DMA_ATTR); 1068 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1069 } 1070 1071 /* clear contents of buffer_info */ 1072 rx_buf->page = NULL; 1073 } 1074 1075 /** 1076 * ice_is_non_eop - process handling of non-EOP buffers 1077 * @rx_ring: Rx ring being processed 1078 * @rx_desc: Rx descriptor for current buffer 1079 * 1080 * If the buffer is an EOP buffer, this function exits returning false, 1081 * otherwise return true indicating that this is in fact a non-EOP buffer. 1082 */ 1083 static bool 1084 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1085 { 1086 /* if we are the last buffer then there is nothing else to do */ 1087 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1088 if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF))) 1089 return false; 1090 1091 rx_ring->rx_stats.non_eop_descs++; 1092 1093 return true; 1094 } 1095 1096 /** 1097 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1098 * @rx_ring: Rx descriptor ring to transact packets on 1099 * @budget: Total limit on number of packets to process 1100 * 1101 * This function provides a "bounce buffer" approach to Rx interrupt 1102 * processing. The advantage to this is that on systems that have 1103 * expensive overhead for IOMMU access this provides a means of avoiding 1104 * it by maintaining the mapping of the page to the system. 1105 * 1106 * Returns amount of work completed 1107 */ 1108 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1109 { 1110 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1111 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1112 unsigned int offset = rx_ring->rx_offset; 1113 struct ice_tx_ring *xdp_ring = NULL; 1114 unsigned int xdp_res, xdp_xmit = 0; 1115 struct sk_buff *skb = rx_ring->skb; 1116 struct bpf_prog *xdp_prog = NULL; 1117 struct xdp_buff xdp; 1118 bool failure; 1119 1120 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1121 #if (PAGE_SIZE < 8192) 1122 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1123 #endif 1124 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1125 1126 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1127 if (xdp_prog) 1128 xdp_ring = rx_ring->xdp_ring; 1129 1130 /* start the loop to process Rx packets bounded by 'budget' */ 1131 while (likely(total_rx_pkts < (unsigned int)budget)) { 1132 union ice_32b_rx_flex_desc *rx_desc; 1133 struct ice_rx_buf *rx_buf; 1134 unsigned char *hard_start; 1135 unsigned int size; 1136 u16 stat_err_bits; 1137 int rx_buf_pgcnt; 1138 u16 vlan_tag = 0; 1139 u16 rx_ptype; 1140 1141 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1142 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1143 1144 /* status_error_len will always be zero for unused descriptors 1145 * because it's cleared in cleanup, and overlaps with hdr_addr 1146 * which is always zero because packet split isn't used, if the 1147 * hardware wrote DD then it will be non-zero 1148 */ 1149 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1150 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1151 break; 1152 1153 /* This memory barrier is needed to keep us from reading 1154 * any other fields out of the rx_desc until we know the 1155 * DD bit is set. 1156 */ 1157 dma_rmb(); 1158 1159 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1160 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1161 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1162 1163 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1164 ctrl_vsi->vf) 1165 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1166 ice_put_rx_buf(rx_ring, NULL, 0); 1167 cleaned_count++; 1168 continue; 1169 } 1170 1171 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1172 ICE_RX_FLX_DESC_PKT_LEN_M; 1173 1174 /* retrieve a buffer from the ring */ 1175 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1176 1177 if (!size) { 1178 xdp.data = NULL; 1179 xdp.data_end = NULL; 1180 xdp.data_hard_start = NULL; 1181 xdp.data_meta = NULL; 1182 goto construct_skb; 1183 } 1184 1185 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1186 offset; 1187 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1188 #if (PAGE_SIZE > 4096) 1189 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1190 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1191 #endif 1192 1193 if (!xdp_prog) 1194 goto construct_skb; 1195 1196 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); 1197 if (!xdp_res) 1198 goto construct_skb; 1199 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1200 xdp_xmit |= xdp_res; 1201 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1202 } else { 1203 rx_buf->pagecnt_bias++; 1204 } 1205 total_rx_bytes += size; 1206 total_rx_pkts++; 1207 1208 cleaned_count++; 1209 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1210 continue; 1211 construct_skb: 1212 if (skb) { 1213 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1214 } else if (likely(xdp.data)) { 1215 if (ice_ring_uses_build_skb(rx_ring)) 1216 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1217 else 1218 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1219 } 1220 /* exit if we failed to retrieve a buffer */ 1221 if (!skb) { 1222 rx_ring->rx_stats.alloc_buf_failed++; 1223 if (rx_buf) 1224 rx_buf->pagecnt_bias++; 1225 break; 1226 } 1227 1228 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1229 cleaned_count++; 1230 1231 /* skip if it is NOP desc */ 1232 if (ice_is_non_eop(rx_ring, rx_desc)) 1233 continue; 1234 1235 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1236 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1237 stat_err_bits))) { 1238 dev_kfree_skb_any(skb); 1239 continue; 1240 } 1241 1242 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 1243 1244 /* pad the skb if needed, to make a valid ethernet frame */ 1245 if (eth_skb_pad(skb)) { 1246 skb = NULL; 1247 continue; 1248 } 1249 1250 /* probably a little skewed due to removing CRC */ 1251 total_rx_bytes += skb->len; 1252 1253 /* populate checksum, VLAN, and protocol */ 1254 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1255 ICE_RX_FLEX_DESC_PTYPE_M; 1256 1257 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1258 1259 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1260 /* send completed skb up the stack */ 1261 ice_receive_skb(rx_ring, skb, vlan_tag); 1262 skb = NULL; 1263 1264 /* update budget accounting */ 1265 total_rx_pkts++; 1266 } 1267 1268 /* return up to cleaned_count buffers to hardware */ 1269 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1270 1271 if (xdp_prog) 1272 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 1273 rx_ring->skb = skb; 1274 1275 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1276 1277 /* guarantee a trip back through this routine if there was a failure */ 1278 return failure ? budget : (int)total_rx_pkts; 1279 } 1280 1281 static void __ice_update_sample(struct ice_q_vector *q_vector, 1282 struct ice_ring_container *rc, 1283 struct dim_sample *sample, 1284 bool is_tx) 1285 { 1286 u64 packets = 0, bytes = 0; 1287 1288 if (is_tx) { 1289 struct ice_tx_ring *tx_ring; 1290 1291 ice_for_each_tx_ring(tx_ring, *rc) { 1292 packets += tx_ring->stats.pkts; 1293 bytes += tx_ring->stats.bytes; 1294 } 1295 } else { 1296 struct ice_rx_ring *rx_ring; 1297 1298 ice_for_each_rx_ring(rx_ring, *rc) { 1299 packets += rx_ring->stats.pkts; 1300 bytes += rx_ring->stats.bytes; 1301 } 1302 } 1303 1304 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1305 sample->comp_ctr = 0; 1306 1307 /* if dim settings get stale, like when not updated for 1 1308 * second or longer, force it to start again. This addresses the 1309 * frequent case of an idle queue being switched to by the 1310 * scheduler. The 1,000 here means 1,000 milliseconds. 1311 */ 1312 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1313 rc->dim.state = DIM_START_MEASURE; 1314 } 1315 1316 /** 1317 * ice_net_dim - Update net DIM algorithm 1318 * @q_vector: the vector associated with the interrupt 1319 * 1320 * Create a DIM sample and notify net_dim() so that it can possibly decide 1321 * a new ITR value based on incoming packets, bytes, and interrupts. 1322 * 1323 * This function is a no-op if the ring is not configured to dynamic ITR. 1324 */ 1325 static void ice_net_dim(struct ice_q_vector *q_vector) 1326 { 1327 struct ice_ring_container *tx = &q_vector->tx; 1328 struct ice_ring_container *rx = &q_vector->rx; 1329 1330 if (ITR_IS_DYNAMIC(tx)) { 1331 struct dim_sample dim_sample; 1332 1333 __ice_update_sample(q_vector, tx, &dim_sample, true); 1334 net_dim(&tx->dim, dim_sample); 1335 } 1336 1337 if (ITR_IS_DYNAMIC(rx)) { 1338 struct dim_sample dim_sample; 1339 1340 __ice_update_sample(q_vector, rx, &dim_sample, false); 1341 net_dim(&rx->dim, dim_sample); 1342 } 1343 } 1344 1345 /** 1346 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1347 * @itr_idx: interrupt throttling index 1348 * @itr: interrupt throttling value in usecs 1349 */ 1350 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1351 { 1352 /* The ITR value is reported in microseconds, and the register value is 1353 * recorded in 2 microsecond units. For this reason we only need to 1354 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1355 * granularity as a shift instead of division. The mask makes sure the 1356 * ITR value is never odd so we don't accidentally write into the field 1357 * prior to the ITR field. 1358 */ 1359 itr &= ICE_ITR_MASK; 1360 1361 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1362 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1363 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1364 } 1365 1366 /** 1367 * ice_enable_interrupt - re-enable MSI-X interrupt 1368 * @q_vector: the vector associated with the interrupt to enable 1369 * 1370 * If the VSI is down, the interrupt will not be re-enabled. Also, 1371 * when enabling the interrupt always reset the wb_on_itr to false 1372 * and trigger a software interrupt to clean out internal state. 1373 */ 1374 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1375 { 1376 struct ice_vsi *vsi = q_vector->vsi; 1377 bool wb_en = q_vector->wb_on_itr; 1378 u32 itr_val; 1379 1380 if (test_bit(ICE_DOWN, vsi->state)) 1381 return; 1382 1383 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1384 * make sure to catch any pending cleanups that might have been missed 1385 * due to interrupt state transition. If busy poll or poll isn't 1386 * enabled, then don't update ITR, and just enable the interrupt. 1387 */ 1388 if (!wb_en) { 1389 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1390 } else { 1391 q_vector->wb_on_itr = false; 1392 1393 /* do two things here with a single write. Set up the third ITR 1394 * index to be used for software interrupt moderation, and then 1395 * trigger a software interrupt with a rate limit of 20K on 1396 * software interrupts, this will help avoid high interrupt 1397 * loads due to frequently polling and exiting polling. 1398 */ 1399 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1400 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1401 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1402 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1403 } 1404 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1405 } 1406 1407 /** 1408 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1409 * @q_vector: q_vector to set WB_ON_ITR on 1410 * 1411 * We need to tell hardware to write-back completed descriptors even when 1412 * interrupts are disabled. Descriptors will be written back on cache line 1413 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1414 * descriptors may not be written back if they don't fill a cache line until 1415 * the next interrupt. 1416 * 1417 * This sets the write-back frequency to whatever was set previously for the 1418 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1419 * aren't meddling with the INTENA_M bit. 1420 */ 1421 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1422 { 1423 struct ice_vsi *vsi = q_vector->vsi; 1424 1425 /* already in wb_on_itr mode no need to change it */ 1426 if (q_vector->wb_on_itr) 1427 return; 1428 1429 /* use previously set ITR values for all of the ITR indices by 1430 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1431 * be static in non-adaptive mode (user configured) 1432 */ 1433 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1434 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1435 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1436 GLINT_DYN_CTL_WB_ON_ITR_M); 1437 1438 q_vector->wb_on_itr = true; 1439 } 1440 1441 /** 1442 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1443 * @napi: napi struct with our devices info in it 1444 * @budget: amount of work driver is allowed to do this pass, in packets 1445 * 1446 * This function will clean all queues associated with a q_vector. 1447 * 1448 * Returns the amount of work done 1449 */ 1450 int ice_napi_poll(struct napi_struct *napi, int budget) 1451 { 1452 struct ice_q_vector *q_vector = 1453 container_of(napi, struct ice_q_vector, napi); 1454 struct ice_tx_ring *tx_ring; 1455 struct ice_rx_ring *rx_ring; 1456 bool clean_complete = true; 1457 int budget_per_ring; 1458 int work_done = 0; 1459 1460 /* Since the actual Tx work is minimal, we can give the Tx a larger 1461 * budget and be more aggressive about cleaning up the Tx descriptors. 1462 */ 1463 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1464 bool wd; 1465 1466 if (tx_ring->xsk_pool) 1467 wd = ice_xmit_zc(tx_ring, ICE_DESC_UNUSED(tx_ring), budget); 1468 else if (ice_ring_is_xdp(tx_ring)) 1469 wd = true; 1470 else 1471 wd = ice_clean_tx_irq(tx_ring, budget); 1472 1473 if (!wd) 1474 clean_complete = false; 1475 } 1476 1477 /* Handle case where we are called by netpoll with a budget of 0 */ 1478 if (unlikely(budget <= 0)) 1479 return budget; 1480 1481 /* normally we have 1 Rx ring per q_vector */ 1482 if (unlikely(q_vector->num_ring_rx > 1)) 1483 /* We attempt to distribute budget to each Rx queue fairly, but 1484 * don't allow the budget to go below 1 because that would exit 1485 * polling early. 1486 */ 1487 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1488 else 1489 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1490 budget_per_ring = budget; 1491 1492 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1493 int cleaned; 1494 1495 /* A dedicated path for zero-copy allows making a single 1496 * comparison in the irq context instead of many inside the 1497 * ice_clean_rx_irq function and makes the codebase cleaner. 1498 */ 1499 cleaned = rx_ring->xsk_pool ? 1500 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1501 ice_clean_rx_irq(rx_ring, budget_per_ring); 1502 work_done += cleaned; 1503 /* if we clean as many as budgeted, we must not be done */ 1504 if (cleaned >= budget_per_ring) 1505 clean_complete = false; 1506 } 1507 1508 /* If work not completed, return budget and polling will return */ 1509 if (!clean_complete) { 1510 /* Set the writeback on ITR so partial completions of 1511 * cache-lines will still continue even if we're polling. 1512 */ 1513 ice_set_wb_on_itr(q_vector); 1514 return budget; 1515 } 1516 1517 /* Exit the polling mode, but don't re-enable interrupts if stack might 1518 * poll us due to busy-polling 1519 */ 1520 if (napi_complete_done(napi, work_done)) { 1521 ice_net_dim(q_vector); 1522 ice_enable_interrupt(q_vector); 1523 } else { 1524 ice_set_wb_on_itr(q_vector); 1525 } 1526 1527 return min_t(int, work_done, budget - 1); 1528 } 1529 1530 /** 1531 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1532 * @tx_ring: the ring to be checked 1533 * @size: the size buffer we want to assure is available 1534 * 1535 * Returns -EBUSY if a stop is needed, else 0 1536 */ 1537 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1538 { 1539 netif_tx_stop_queue(txring_txq(tx_ring)); 1540 /* Memory barrier before checking head and tail */ 1541 smp_mb(); 1542 1543 /* Check again in a case another CPU has just made room available. */ 1544 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1545 return -EBUSY; 1546 1547 /* A reprieve! - use start_queue because it doesn't call schedule */ 1548 netif_tx_start_queue(txring_txq(tx_ring)); 1549 ++tx_ring->tx_stats.restart_q; 1550 return 0; 1551 } 1552 1553 /** 1554 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1555 * @tx_ring: the ring to be checked 1556 * @size: the size buffer we want to assure is available 1557 * 1558 * Returns 0 if stop is not needed 1559 */ 1560 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1561 { 1562 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1563 return 0; 1564 1565 return __ice_maybe_stop_tx(tx_ring, size); 1566 } 1567 1568 /** 1569 * ice_tx_map - Build the Tx descriptor 1570 * @tx_ring: ring to send buffer on 1571 * @first: first buffer info buffer to use 1572 * @off: pointer to struct that holds offload parameters 1573 * 1574 * This function loops over the skb data pointed to by *first 1575 * and gets a physical address for each memory location and programs 1576 * it and the length into the transmit descriptor. 1577 */ 1578 static void 1579 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1580 struct ice_tx_offload_params *off) 1581 { 1582 u64 td_offset, td_tag, td_cmd; 1583 u16 i = tx_ring->next_to_use; 1584 unsigned int data_len, size; 1585 struct ice_tx_desc *tx_desc; 1586 struct ice_tx_buf *tx_buf; 1587 struct sk_buff *skb; 1588 skb_frag_t *frag; 1589 dma_addr_t dma; 1590 bool kick; 1591 1592 td_tag = off->td_l2tag1; 1593 td_cmd = off->td_cmd; 1594 td_offset = off->td_offset; 1595 skb = first->skb; 1596 1597 data_len = skb->data_len; 1598 size = skb_headlen(skb); 1599 1600 tx_desc = ICE_TX_DESC(tx_ring, i); 1601 1602 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1603 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1604 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1605 ICE_TX_FLAGS_VLAN_S; 1606 } 1607 1608 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1609 1610 tx_buf = first; 1611 1612 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1613 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1614 1615 if (dma_mapping_error(tx_ring->dev, dma)) 1616 goto dma_error; 1617 1618 /* record length, and DMA address */ 1619 dma_unmap_len_set(tx_buf, len, size); 1620 dma_unmap_addr_set(tx_buf, dma, dma); 1621 1622 /* align size to end of page */ 1623 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1624 tx_desc->buf_addr = cpu_to_le64(dma); 1625 1626 /* account for data chunks larger than the hardware 1627 * can handle 1628 */ 1629 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1630 tx_desc->cmd_type_offset_bsz = 1631 ice_build_ctob(td_cmd, td_offset, max_data, 1632 td_tag); 1633 1634 tx_desc++; 1635 i++; 1636 1637 if (i == tx_ring->count) { 1638 tx_desc = ICE_TX_DESC(tx_ring, 0); 1639 i = 0; 1640 } 1641 1642 dma += max_data; 1643 size -= max_data; 1644 1645 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1646 tx_desc->buf_addr = cpu_to_le64(dma); 1647 } 1648 1649 if (likely(!data_len)) 1650 break; 1651 1652 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1653 size, td_tag); 1654 1655 tx_desc++; 1656 i++; 1657 1658 if (i == tx_ring->count) { 1659 tx_desc = ICE_TX_DESC(tx_ring, 0); 1660 i = 0; 1661 } 1662 1663 size = skb_frag_size(frag); 1664 data_len -= size; 1665 1666 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1667 DMA_TO_DEVICE); 1668 1669 tx_buf = &tx_ring->tx_buf[i]; 1670 } 1671 1672 /* record SW timestamp if HW timestamp is not available */ 1673 skb_tx_timestamp(first->skb); 1674 1675 i++; 1676 if (i == tx_ring->count) 1677 i = 0; 1678 1679 /* write last descriptor with RS and EOP bits */ 1680 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1681 tx_desc->cmd_type_offset_bsz = 1682 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1683 1684 /* Force memory writes to complete before letting h/w know there 1685 * are new descriptors to fetch. 1686 * 1687 * We also use this memory barrier to make certain all of the 1688 * status bits have been updated before next_to_watch is written. 1689 */ 1690 wmb(); 1691 1692 /* set next_to_watch value indicating a packet is present */ 1693 first->next_to_watch = tx_desc; 1694 1695 tx_ring->next_to_use = i; 1696 1697 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1698 1699 /* notify HW of packet */ 1700 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1701 netdev_xmit_more()); 1702 if (kick) 1703 /* notify HW of packet */ 1704 writel(i, tx_ring->tail); 1705 1706 return; 1707 1708 dma_error: 1709 /* clear DMA mappings for failed tx_buf map */ 1710 for (;;) { 1711 tx_buf = &tx_ring->tx_buf[i]; 1712 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1713 if (tx_buf == first) 1714 break; 1715 if (i == 0) 1716 i = tx_ring->count; 1717 i--; 1718 } 1719 1720 tx_ring->next_to_use = i; 1721 } 1722 1723 /** 1724 * ice_tx_csum - Enable Tx checksum offloads 1725 * @first: pointer to the first descriptor 1726 * @off: pointer to struct that holds offload parameters 1727 * 1728 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1729 */ 1730 static 1731 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1732 { 1733 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1734 struct sk_buff *skb = first->skb; 1735 union { 1736 struct iphdr *v4; 1737 struct ipv6hdr *v6; 1738 unsigned char *hdr; 1739 } ip; 1740 union { 1741 struct tcphdr *tcp; 1742 unsigned char *hdr; 1743 } l4; 1744 __be16 frag_off, protocol; 1745 unsigned char *exthdr; 1746 u32 offset, cmd = 0; 1747 u8 l4_proto = 0; 1748 1749 if (skb->ip_summed != CHECKSUM_PARTIAL) 1750 return 0; 1751 1752 protocol = vlan_get_protocol(skb); 1753 1754 if (eth_p_mpls(protocol)) { 1755 ip.hdr = skb_inner_network_header(skb); 1756 l4.hdr = skb_checksum_start(skb); 1757 } else { 1758 ip.hdr = skb_network_header(skb); 1759 l4.hdr = skb_transport_header(skb); 1760 } 1761 1762 /* compute outer L2 header size */ 1763 l2_len = ip.hdr - skb->data; 1764 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1765 1766 /* set the tx_flags to indicate the IP protocol type. this is 1767 * required so that checksum header computation below is accurate. 1768 */ 1769 if (ip.v4->version == 4) 1770 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1771 else if (ip.v6->version == 6) 1772 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1773 1774 if (skb->encapsulation) { 1775 bool gso_ena = false; 1776 u32 tunnel = 0; 1777 1778 /* define outer network header type */ 1779 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1780 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1781 ICE_TX_CTX_EIPT_IPV4 : 1782 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1783 l4_proto = ip.v4->protocol; 1784 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1785 int ret; 1786 1787 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1788 exthdr = ip.hdr + sizeof(*ip.v6); 1789 l4_proto = ip.v6->nexthdr; 1790 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1791 &l4_proto, &frag_off); 1792 if (ret < 0) 1793 return -1; 1794 } 1795 1796 /* define outer transport */ 1797 switch (l4_proto) { 1798 case IPPROTO_UDP: 1799 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1800 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1801 break; 1802 case IPPROTO_GRE: 1803 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1804 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1805 break; 1806 case IPPROTO_IPIP: 1807 case IPPROTO_IPV6: 1808 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1809 l4.hdr = skb_inner_network_header(skb); 1810 break; 1811 default: 1812 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1813 return -1; 1814 1815 skb_checksum_help(skb); 1816 return 0; 1817 } 1818 1819 /* compute outer L3 header size */ 1820 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1821 ICE_TXD_CTX_QW0_EIPLEN_S; 1822 1823 /* switch IP header pointer from outer to inner header */ 1824 ip.hdr = skb_inner_network_header(skb); 1825 1826 /* compute tunnel header size */ 1827 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1828 ICE_TXD_CTX_QW0_NATLEN_S; 1829 1830 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1831 /* indicate if we need to offload outer UDP header */ 1832 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1833 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1834 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1835 1836 /* record tunnel offload values */ 1837 off->cd_tunnel_params |= tunnel; 1838 1839 /* set DTYP=1 to indicate that it's an Tx context descriptor 1840 * in IPsec tunnel mode with Tx offloads in Quad word 1 1841 */ 1842 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1843 1844 /* switch L4 header pointer from outer to inner */ 1845 l4.hdr = skb_inner_transport_header(skb); 1846 l4_proto = 0; 1847 1848 /* reset type as we transition from outer to inner headers */ 1849 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1850 if (ip.v4->version == 4) 1851 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1852 if (ip.v6->version == 6) 1853 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1854 } 1855 1856 /* Enable IP checksum offloads */ 1857 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1858 l4_proto = ip.v4->protocol; 1859 /* the stack computes the IP header already, the only time we 1860 * need the hardware to recompute it is in the case of TSO. 1861 */ 1862 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1863 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1864 else 1865 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1866 1867 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1868 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1869 exthdr = ip.hdr + sizeof(*ip.v6); 1870 l4_proto = ip.v6->nexthdr; 1871 if (l4.hdr != exthdr) 1872 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1873 &frag_off); 1874 } else { 1875 return -1; 1876 } 1877 1878 /* compute inner L3 header size */ 1879 l3_len = l4.hdr - ip.hdr; 1880 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1881 1882 /* Enable L4 checksum offloads */ 1883 switch (l4_proto) { 1884 case IPPROTO_TCP: 1885 /* enable checksum offloads */ 1886 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1887 l4_len = l4.tcp->doff; 1888 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1889 break; 1890 case IPPROTO_UDP: 1891 /* enable UDP checksum offload */ 1892 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1893 l4_len = (sizeof(struct udphdr) >> 2); 1894 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1895 break; 1896 case IPPROTO_SCTP: 1897 /* enable SCTP checksum offload */ 1898 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1899 l4_len = sizeof(struct sctphdr) >> 2; 1900 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1901 break; 1902 1903 default: 1904 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1905 return -1; 1906 skb_checksum_help(skb); 1907 return 0; 1908 } 1909 1910 off->td_cmd |= cmd; 1911 off->td_offset |= offset; 1912 return 1; 1913 } 1914 1915 /** 1916 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1917 * @tx_ring: ring to send buffer on 1918 * @first: pointer to struct ice_tx_buf 1919 * 1920 * Checks the skb and set up correspondingly several generic transmit flags 1921 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1922 */ 1923 static void 1924 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1925 { 1926 struct sk_buff *skb = first->skb; 1927 1928 /* nothing left to do, software offloaded VLAN */ 1929 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1930 return; 1931 1932 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 1933 * feature flags, which the driver only allows either 802.1Q or 802.1ad 1934 * VLAN offloads exclusively so we only care about the VLAN ID here 1935 */ 1936 if (skb_vlan_tag_present(skb)) { 1937 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1938 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 1939 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 1940 else 1941 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1942 } 1943 1944 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1945 } 1946 1947 /** 1948 * ice_tso - computes mss and TSO length to prepare for TSO 1949 * @first: pointer to struct ice_tx_buf 1950 * @off: pointer to struct that holds offload parameters 1951 * 1952 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1953 */ 1954 static 1955 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1956 { 1957 struct sk_buff *skb = first->skb; 1958 union { 1959 struct iphdr *v4; 1960 struct ipv6hdr *v6; 1961 unsigned char *hdr; 1962 } ip; 1963 union { 1964 struct tcphdr *tcp; 1965 struct udphdr *udp; 1966 unsigned char *hdr; 1967 } l4; 1968 u64 cd_mss, cd_tso_len; 1969 __be16 protocol; 1970 u32 paylen; 1971 u8 l4_start; 1972 int err; 1973 1974 if (skb->ip_summed != CHECKSUM_PARTIAL) 1975 return 0; 1976 1977 if (!skb_is_gso(skb)) 1978 return 0; 1979 1980 err = skb_cow_head(skb, 0); 1981 if (err < 0) 1982 return err; 1983 1984 /* cppcheck-suppress unreadVariable */ 1985 protocol = vlan_get_protocol(skb); 1986 1987 if (eth_p_mpls(protocol)) 1988 ip.hdr = skb_inner_network_header(skb); 1989 else 1990 ip.hdr = skb_network_header(skb); 1991 l4.hdr = skb_checksum_start(skb); 1992 1993 /* initialize outer IP header fields */ 1994 if (ip.v4->version == 4) { 1995 ip.v4->tot_len = 0; 1996 ip.v4->check = 0; 1997 } else { 1998 ip.v6->payload_len = 0; 1999 } 2000 2001 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2002 SKB_GSO_GRE_CSUM | 2003 SKB_GSO_IPXIP4 | 2004 SKB_GSO_IPXIP6 | 2005 SKB_GSO_UDP_TUNNEL | 2006 SKB_GSO_UDP_TUNNEL_CSUM)) { 2007 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2008 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2009 l4.udp->len = 0; 2010 2011 /* determine offset of outer transport header */ 2012 l4_start = (u8)(l4.hdr - skb->data); 2013 2014 /* remove payload length from outer checksum */ 2015 paylen = skb->len - l4_start; 2016 csum_replace_by_diff(&l4.udp->check, 2017 (__force __wsum)htonl(paylen)); 2018 } 2019 2020 /* reset pointers to inner headers */ 2021 2022 /* cppcheck-suppress unreadVariable */ 2023 ip.hdr = skb_inner_network_header(skb); 2024 l4.hdr = skb_inner_transport_header(skb); 2025 2026 /* initialize inner IP header fields */ 2027 if (ip.v4->version == 4) { 2028 ip.v4->tot_len = 0; 2029 ip.v4->check = 0; 2030 } else { 2031 ip.v6->payload_len = 0; 2032 } 2033 } 2034 2035 /* determine offset of transport header */ 2036 l4_start = (u8)(l4.hdr - skb->data); 2037 2038 /* remove payload length from checksum */ 2039 paylen = skb->len - l4_start; 2040 2041 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2042 csum_replace_by_diff(&l4.udp->check, 2043 (__force __wsum)htonl(paylen)); 2044 /* compute length of UDP segmentation header */ 2045 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2046 } else { 2047 csum_replace_by_diff(&l4.tcp->check, 2048 (__force __wsum)htonl(paylen)); 2049 /* compute length of TCP segmentation header */ 2050 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2051 } 2052 2053 /* update gso_segs and bytecount */ 2054 first->gso_segs = skb_shinfo(skb)->gso_segs; 2055 first->bytecount += (first->gso_segs - 1) * off->header_len; 2056 2057 cd_tso_len = skb->len - off->header_len; 2058 cd_mss = skb_shinfo(skb)->gso_size; 2059 2060 /* record cdesc_qw1 with TSO parameters */ 2061 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2062 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2063 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2064 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2065 first->tx_flags |= ICE_TX_FLAGS_TSO; 2066 return 1; 2067 } 2068 2069 /** 2070 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2071 * @size: transmit request size in bytes 2072 * 2073 * Due to hardware alignment restrictions (4K alignment), we need to 2074 * assume that we can have no more than 12K of data per descriptor, even 2075 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2076 * Thus, we need to divide by 12K. But division is slow! Instead, 2077 * we decompose the operation into shifts and one relatively cheap 2078 * multiply operation. 2079 * 2080 * To divide by 12K, we first divide by 4K, then divide by 3: 2081 * To divide by 4K, shift right by 12 bits 2082 * To divide by 3, multiply by 85, then divide by 256 2083 * (Divide by 256 is done by shifting right by 8 bits) 2084 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2085 * 3, we'll underestimate near each multiple of 12K. This is actually more 2086 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2087 * segment. For our purposes this is accurate out to 1M which is orders of 2088 * magnitude greater than our largest possible GSO size. 2089 * 2090 * This would then be implemented as: 2091 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2092 * 2093 * Since multiplication and division are commutative, we can reorder 2094 * operations into: 2095 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2096 */ 2097 static unsigned int ice_txd_use_count(unsigned int size) 2098 { 2099 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2100 } 2101 2102 /** 2103 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2104 * @skb: send buffer 2105 * 2106 * Returns number of data descriptors needed for this skb. 2107 */ 2108 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2109 { 2110 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2111 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2112 unsigned int count = 0, size = skb_headlen(skb); 2113 2114 for (;;) { 2115 count += ice_txd_use_count(size); 2116 2117 if (!nr_frags--) 2118 break; 2119 2120 size = skb_frag_size(frag++); 2121 } 2122 2123 return count; 2124 } 2125 2126 /** 2127 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2128 * @skb: send buffer 2129 * 2130 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2131 * and so we need to figure out the cases where we need to linearize the skb. 2132 * 2133 * For TSO we need to count the TSO header and segment payload separately. 2134 * As such we need to check cases where we have 7 fragments or more as we 2135 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2136 * the segment payload in the first descriptor, and another 7 for the 2137 * fragments. 2138 */ 2139 static bool __ice_chk_linearize(struct sk_buff *skb) 2140 { 2141 const skb_frag_t *frag, *stale; 2142 int nr_frags, sum; 2143 2144 /* no need to check if number of frags is less than 7 */ 2145 nr_frags = skb_shinfo(skb)->nr_frags; 2146 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2147 return false; 2148 2149 /* We need to walk through the list and validate that each group 2150 * of 6 fragments totals at least gso_size. 2151 */ 2152 nr_frags -= ICE_MAX_BUF_TXD - 2; 2153 frag = &skb_shinfo(skb)->frags[0]; 2154 2155 /* Initialize size to the negative value of gso_size minus 1. We 2156 * use this as the worst case scenario in which the frag ahead 2157 * of us only provides one byte which is why we are limited to 6 2158 * descriptors for a single transmit as the header and previous 2159 * fragment are already consuming 2 descriptors. 2160 */ 2161 sum = 1 - skb_shinfo(skb)->gso_size; 2162 2163 /* Add size of frags 0 through 4 to create our initial sum */ 2164 sum += skb_frag_size(frag++); 2165 sum += skb_frag_size(frag++); 2166 sum += skb_frag_size(frag++); 2167 sum += skb_frag_size(frag++); 2168 sum += skb_frag_size(frag++); 2169 2170 /* Walk through fragments adding latest fragment, testing it, and 2171 * then removing stale fragments from the sum. 2172 */ 2173 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2174 int stale_size = skb_frag_size(stale); 2175 2176 sum += skb_frag_size(frag++); 2177 2178 /* The stale fragment may present us with a smaller 2179 * descriptor than the actual fragment size. To account 2180 * for that we need to remove all the data on the front and 2181 * figure out what the remainder would be in the last 2182 * descriptor associated with the fragment. 2183 */ 2184 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2185 int align_pad = -(skb_frag_off(stale)) & 2186 (ICE_MAX_READ_REQ_SIZE - 1); 2187 2188 sum -= align_pad; 2189 stale_size -= align_pad; 2190 2191 do { 2192 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2193 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2194 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2195 } 2196 2197 /* if sum is negative we failed to make sufficient progress */ 2198 if (sum < 0) 2199 return true; 2200 2201 if (!nr_frags--) 2202 break; 2203 2204 sum -= stale_size; 2205 } 2206 2207 return false; 2208 } 2209 2210 /** 2211 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2212 * @skb: send buffer 2213 * @count: number of buffers used 2214 * 2215 * Note: Our HW can't scatter-gather more than 8 fragments to build 2216 * a packet on the wire and so we need to figure out the cases where we 2217 * need to linearize the skb. 2218 */ 2219 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2220 { 2221 /* Both TSO and single send will work if count is less than 8 */ 2222 if (likely(count < ICE_MAX_BUF_TXD)) 2223 return false; 2224 2225 if (skb_is_gso(skb)) 2226 return __ice_chk_linearize(skb); 2227 2228 /* we can support up to 8 data buffers for a single send */ 2229 return count != ICE_MAX_BUF_TXD; 2230 } 2231 2232 /** 2233 * ice_tstamp - set up context descriptor for hardware timestamp 2234 * @tx_ring: pointer to the Tx ring to send buffer on 2235 * @skb: pointer to the SKB we're sending 2236 * @first: Tx buffer 2237 * @off: Tx offload parameters 2238 */ 2239 static void 2240 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2241 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2242 { 2243 s8 idx; 2244 2245 /* only timestamp the outbound packet if the user has requested it */ 2246 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2247 return; 2248 2249 if (!tx_ring->ptp_tx) 2250 return; 2251 2252 /* Tx timestamps cannot be sampled when doing TSO */ 2253 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2254 return; 2255 2256 /* Grab an open timestamp slot */ 2257 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2258 if (idx < 0) 2259 return; 2260 2261 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2262 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2263 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2264 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2265 } 2266 2267 /** 2268 * ice_xmit_frame_ring - Sends buffer on Tx ring 2269 * @skb: send buffer 2270 * @tx_ring: ring to send buffer on 2271 * 2272 * Returns NETDEV_TX_OK if sent, else an error code 2273 */ 2274 static netdev_tx_t 2275 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2276 { 2277 struct ice_tx_offload_params offload = { 0 }; 2278 struct ice_vsi *vsi = tx_ring->vsi; 2279 struct ice_tx_buf *first; 2280 struct ethhdr *eth; 2281 unsigned int count; 2282 int tso, csum; 2283 2284 ice_trace(xmit_frame_ring, tx_ring, skb); 2285 2286 count = ice_xmit_desc_count(skb); 2287 if (ice_chk_linearize(skb, count)) { 2288 if (__skb_linearize(skb)) 2289 goto out_drop; 2290 count = ice_txd_use_count(skb->len); 2291 tx_ring->tx_stats.tx_linearize++; 2292 } 2293 2294 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2295 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2296 * + 4 desc gap to avoid the cache line where head is, 2297 * + 1 desc for context descriptor, 2298 * otherwise try next time 2299 */ 2300 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2301 ICE_DESCS_FOR_CTX_DESC)) { 2302 tx_ring->tx_stats.tx_busy++; 2303 return NETDEV_TX_BUSY; 2304 } 2305 2306 /* prefetch for bql data which is infrequently used */ 2307 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2308 2309 offload.tx_ring = tx_ring; 2310 2311 /* record the location of the first descriptor for this packet */ 2312 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2313 first->skb = skb; 2314 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2315 first->gso_segs = 1; 2316 first->tx_flags = 0; 2317 2318 /* prepare the VLAN tagging flags for Tx */ 2319 ice_tx_prepare_vlan_flags(tx_ring, first); 2320 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2321 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2322 (ICE_TX_CTX_DESC_IL2TAG2 << 2323 ICE_TXD_CTX_QW1_CMD_S)); 2324 offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 2325 ICE_TX_FLAGS_VLAN_S; 2326 } 2327 2328 /* set up TSO offload */ 2329 tso = ice_tso(first, &offload); 2330 if (tso < 0) 2331 goto out_drop; 2332 2333 /* always set up Tx checksum offload */ 2334 csum = ice_tx_csum(first, &offload); 2335 if (csum < 0) 2336 goto out_drop; 2337 2338 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2339 eth = (struct ethhdr *)skb_mac_header(skb); 2340 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2341 eth->h_proto == htons(ETH_P_LLDP)) && 2342 vsi->type == ICE_VSI_PF && 2343 vsi->port_info->qos_cfg.is_sw_lldp)) 2344 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2345 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2346 ICE_TXD_CTX_QW1_CMD_S); 2347 2348 ice_tstamp(tx_ring, skb, first, &offload); 2349 if (ice_is_switchdev_running(vsi->back)) 2350 ice_eswitch_set_target_vsi(skb, &offload); 2351 2352 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2353 struct ice_tx_ctx_desc *cdesc; 2354 u16 i = tx_ring->next_to_use; 2355 2356 /* grab the next descriptor */ 2357 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2358 i++; 2359 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2360 2361 /* setup context descriptor */ 2362 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2363 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2364 cdesc->rsvd = cpu_to_le16(0); 2365 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2366 } 2367 2368 ice_tx_map(tx_ring, first, &offload); 2369 return NETDEV_TX_OK; 2370 2371 out_drop: 2372 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2373 dev_kfree_skb_any(skb); 2374 return NETDEV_TX_OK; 2375 } 2376 2377 /** 2378 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2379 * @skb: send buffer 2380 * @netdev: network interface device structure 2381 * 2382 * Returns NETDEV_TX_OK if sent, else an error code 2383 */ 2384 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2385 { 2386 struct ice_netdev_priv *np = netdev_priv(netdev); 2387 struct ice_vsi *vsi = np->vsi; 2388 struct ice_tx_ring *tx_ring; 2389 2390 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2391 2392 /* hardware can't handle really short frames, hardware padding works 2393 * beyond this point 2394 */ 2395 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2396 return NETDEV_TX_OK; 2397 2398 return ice_xmit_frame_ring(skb, tx_ring); 2399 } 2400 2401 /** 2402 * ice_get_dscp_up - return the UP/TC value for a SKB 2403 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2404 * @skb: SKB to query for info to determine UP/TC 2405 * 2406 * This function is to only be called when the PF is in L3 DSCP PFC mode 2407 */ 2408 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2409 { 2410 u8 dscp = 0; 2411 2412 if (skb->protocol == htons(ETH_P_IP)) 2413 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2414 else if (skb->protocol == htons(ETH_P_IPV6)) 2415 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2416 2417 return dcbcfg->dscp_map[dscp]; 2418 } 2419 2420 u16 2421 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2422 struct net_device *sb_dev) 2423 { 2424 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2425 struct ice_dcbx_cfg *dcbcfg; 2426 2427 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2428 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2429 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2430 2431 return netdev_pick_tx(netdev, skb, sb_dev); 2432 } 2433 2434 /** 2435 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2436 * @tx_ring: tx_ring to clean 2437 */ 2438 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2439 { 2440 struct ice_vsi *vsi = tx_ring->vsi; 2441 s16 i = tx_ring->next_to_clean; 2442 int budget = ICE_DFLT_IRQ_WORK; 2443 struct ice_tx_desc *tx_desc; 2444 struct ice_tx_buf *tx_buf; 2445 2446 tx_buf = &tx_ring->tx_buf[i]; 2447 tx_desc = ICE_TX_DESC(tx_ring, i); 2448 i -= tx_ring->count; 2449 2450 do { 2451 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2452 2453 /* if next_to_watch is not set then there is no pending work */ 2454 if (!eop_desc) 2455 break; 2456 2457 /* prevent any other reads prior to eop_desc */ 2458 smp_rmb(); 2459 2460 /* if the descriptor isn't done, no work to do */ 2461 if (!(eop_desc->cmd_type_offset_bsz & 2462 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2463 break; 2464 2465 /* clear next_to_watch to prevent false hangs */ 2466 tx_buf->next_to_watch = NULL; 2467 tx_desc->buf_addr = 0; 2468 tx_desc->cmd_type_offset_bsz = 0; 2469 2470 /* move past filter desc */ 2471 tx_buf++; 2472 tx_desc++; 2473 i++; 2474 if (unlikely(!i)) { 2475 i -= tx_ring->count; 2476 tx_buf = tx_ring->tx_buf; 2477 tx_desc = ICE_TX_DESC(tx_ring, 0); 2478 } 2479 2480 /* unmap the data header */ 2481 if (dma_unmap_len(tx_buf, len)) 2482 dma_unmap_single(tx_ring->dev, 2483 dma_unmap_addr(tx_buf, dma), 2484 dma_unmap_len(tx_buf, len), 2485 DMA_TO_DEVICE); 2486 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2487 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2488 2489 /* clear next_to_watch to prevent false hangs */ 2490 tx_buf->raw_buf = NULL; 2491 tx_buf->tx_flags = 0; 2492 tx_buf->next_to_watch = NULL; 2493 dma_unmap_len_set(tx_buf, len, 0); 2494 tx_desc->buf_addr = 0; 2495 tx_desc->cmd_type_offset_bsz = 0; 2496 2497 /* move past eop_desc for start of next FD desc */ 2498 tx_buf++; 2499 tx_desc++; 2500 i++; 2501 if (unlikely(!i)) { 2502 i -= tx_ring->count; 2503 tx_buf = tx_ring->tx_buf; 2504 tx_desc = ICE_TX_DESC(tx_ring, 0); 2505 } 2506 2507 budget--; 2508 } while (likely(budget)); 2509 2510 i += tx_ring->count; 2511 tx_ring->next_to_clean = i; 2512 2513 /* re-enable interrupt if needed */ 2514 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2515 } 2516