1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/xdp.h> 10 #include "ice_txrx_lib.h" 11 #include "ice_lib.h" 12 #include "ice.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_xsk.h" 15 16 #define ICE_RX_HDR_SIZE 256 17 18 #define FDIR_DESC_RXDID 0x40 19 #define ICE_FDIR_CLEAN_DELAY 10 20 21 /** 22 * ice_prgm_fdir_fltr - Program a Flow Director filter 23 * @vsi: VSI to send dummy packet 24 * @fdir_desc: flow director descriptor 25 * @raw_packet: allocated buffer for flow director 26 */ 27 int 28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 29 u8 *raw_packet) 30 { 31 struct ice_tx_buf *tx_buf, *first; 32 struct ice_fltr_desc *f_desc; 33 struct ice_tx_desc *tx_desc; 34 struct ice_ring *tx_ring; 35 struct device *dev; 36 dma_addr_t dma; 37 u32 td_cmd; 38 u16 i; 39 40 /* VSI and Tx ring */ 41 if (!vsi) 42 return -ENOENT; 43 tx_ring = vsi->tx_rings[0]; 44 if (!tx_ring || !tx_ring->desc) 45 return -ENOENT; 46 dev = tx_ring->dev; 47 48 /* we are using two descriptors to add/del a filter and we can wait */ 49 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 50 if (!i) 51 return -EAGAIN; 52 msleep_interruptible(1); 53 } 54 55 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 56 DMA_TO_DEVICE); 57 58 if (dma_mapping_error(dev, dma)) 59 return -EINVAL; 60 61 /* grab the next descriptor */ 62 i = tx_ring->next_to_use; 63 first = &tx_ring->tx_buf[i]; 64 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 65 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 66 67 i++; 68 i = (i < tx_ring->count) ? i : 0; 69 tx_desc = ICE_TX_DESC(tx_ring, i); 70 tx_buf = &tx_ring->tx_buf[i]; 71 72 i++; 73 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 74 75 memset(tx_buf, 0, sizeof(*tx_buf)); 76 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 77 dma_unmap_addr_set(tx_buf, dma, dma); 78 79 tx_desc->buf_addr = cpu_to_le64(dma); 80 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 81 ICE_TX_DESC_CMD_RE; 82 83 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 84 tx_buf->raw_buf = raw_packet; 85 86 tx_desc->cmd_type_offset_bsz = 87 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 88 89 /* Force memory write to complete before letting h/w know 90 * there are new descriptors to fetch. 91 */ 92 wmb(); 93 94 /* mark the data descriptor to be watched */ 95 first->next_to_watch = tx_desc; 96 97 writel(tx_ring->next_to_use, tx_ring->tail); 98 99 return 0; 100 } 101 102 /** 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer 104 * @ring: the ring that owns the buffer 105 * @tx_buf: the buffer to free 106 */ 107 static void 108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 109 { 110 if (tx_buf->skb) { 111 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 112 devm_kfree(ring->dev, tx_buf->raw_buf); 113 else if (ice_ring_is_xdp(ring)) 114 page_frag_free(tx_buf->raw_buf); 115 else 116 dev_kfree_skb_any(tx_buf->skb); 117 if (dma_unmap_len(tx_buf, len)) 118 dma_unmap_single(ring->dev, 119 dma_unmap_addr(tx_buf, dma), 120 dma_unmap_len(tx_buf, len), 121 DMA_TO_DEVICE); 122 } else if (dma_unmap_len(tx_buf, len)) { 123 dma_unmap_page(ring->dev, 124 dma_unmap_addr(tx_buf, dma), 125 dma_unmap_len(tx_buf, len), 126 DMA_TO_DEVICE); 127 } 128 129 tx_buf->next_to_watch = NULL; 130 tx_buf->skb = NULL; 131 dma_unmap_len_set(tx_buf, len, 0); 132 /* tx_buf must be completely set up in the transmit path */ 133 } 134 135 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 136 { 137 return netdev_get_tx_queue(ring->netdev, ring->q_index); 138 } 139 140 /** 141 * ice_clean_tx_ring - Free any empty Tx buffers 142 * @tx_ring: ring to be cleaned 143 */ 144 void ice_clean_tx_ring(struct ice_ring *tx_ring) 145 { 146 u16 i; 147 148 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 149 ice_xsk_clean_xdp_ring(tx_ring); 150 goto tx_skip_free; 151 } 152 153 /* ring already cleared, nothing to do */ 154 if (!tx_ring->tx_buf) 155 return; 156 157 /* Free all the Tx ring sk_buffs */ 158 for (i = 0; i < tx_ring->count; i++) 159 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 160 161 tx_skip_free: 162 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 163 164 /* Zero out the descriptor ring */ 165 memset(tx_ring->desc, 0, tx_ring->size); 166 167 tx_ring->next_to_use = 0; 168 tx_ring->next_to_clean = 0; 169 170 if (!tx_ring->netdev) 171 return; 172 173 /* cleanup Tx queue statistics */ 174 netdev_tx_reset_queue(txring_txq(tx_ring)); 175 } 176 177 /** 178 * ice_free_tx_ring - Free Tx resources per queue 179 * @tx_ring: Tx descriptor ring for a specific queue 180 * 181 * Free all transmit software resources 182 */ 183 void ice_free_tx_ring(struct ice_ring *tx_ring) 184 { 185 ice_clean_tx_ring(tx_ring); 186 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 187 tx_ring->tx_buf = NULL; 188 189 if (tx_ring->desc) { 190 dmam_free_coherent(tx_ring->dev, tx_ring->size, 191 tx_ring->desc, tx_ring->dma); 192 tx_ring->desc = NULL; 193 } 194 } 195 196 /** 197 * ice_clean_tx_irq - Reclaim resources after transmit completes 198 * @tx_ring: Tx ring to clean 199 * @napi_budget: Used to determine if we are in netpoll 200 * 201 * Returns true if there's any budget left (e.g. the clean is finished) 202 */ 203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) 204 { 205 unsigned int total_bytes = 0, total_pkts = 0; 206 unsigned int budget = ICE_DFLT_IRQ_WORK; 207 struct ice_vsi *vsi = tx_ring->vsi; 208 s16 i = tx_ring->next_to_clean; 209 struct ice_tx_desc *tx_desc; 210 struct ice_tx_buf *tx_buf; 211 212 tx_buf = &tx_ring->tx_buf[i]; 213 tx_desc = ICE_TX_DESC(tx_ring, i); 214 i -= tx_ring->count; 215 216 prefetch(&vsi->state); 217 218 do { 219 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 220 221 /* if next_to_watch is not set then there is no work pending */ 222 if (!eop_desc) 223 break; 224 225 smp_rmb(); /* prevent any other reads prior to eop_desc */ 226 227 /* if the descriptor isn't done, no work yet to do */ 228 if (!(eop_desc->cmd_type_offset_bsz & 229 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 230 break; 231 232 /* clear next_to_watch to prevent false hangs */ 233 tx_buf->next_to_watch = NULL; 234 235 /* update the statistics for this packet */ 236 total_bytes += tx_buf->bytecount; 237 total_pkts += tx_buf->gso_segs; 238 239 if (ice_ring_is_xdp(tx_ring)) 240 page_frag_free(tx_buf->raw_buf); 241 else 242 /* free the skb */ 243 napi_consume_skb(tx_buf->skb, napi_budget); 244 245 /* unmap skb header data */ 246 dma_unmap_single(tx_ring->dev, 247 dma_unmap_addr(tx_buf, dma), 248 dma_unmap_len(tx_buf, len), 249 DMA_TO_DEVICE); 250 251 /* clear tx_buf data */ 252 tx_buf->skb = NULL; 253 dma_unmap_len_set(tx_buf, len, 0); 254 255 /* unmap remaining buffers */ 256 while (tx_desc != eop_desc) { 257 tx_buf++; 258 tx_desc++; 259 i++; 260 if (unlikely(!i)) { 261 i -= tx_ring->count; 262 tx_buf = tx_ring->tx_buf; 263 tx_desc = ICE_TX_DESC(tx_ring, 0); 264 } 265 266 /* unmap any remaining paged data */ 267 if (dma_unmap_len(tx_buf, len)) { 268 dma_unmap_page(tx_ring->dev, 269 dma_unmap_addr(tx_buf, dma), 270 dma_unmap_len(tx_buf, len), 271 DMA_TO_DEVICE); 272 dma_unmap_len_set(tx_buf, len, 0); 273 } 274 } 275 276 /* move us one more past the eop_desc for start of next pkt */ 277 tx_buf++; 278 tx_desc++; 279 i++; 280 if (unlikely(!i)) { 281 i -= tx_ring->count; 282 tx_buf = tx_ring->tx_buf; 283 tx_desc = ICE_TX_DESC(tx_ring, 0); 284 } 285 286 prefetch(tx_desc); 287 288 /* update budget accounting */ 289 budget--; 290 } while (likely(budget)); 291 292 i += tx_ring->count; 293 tx_ring->next_to_clean = i; 294 295 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 296 297 if (ice_ring_is_xdp(tx_ring)) 298 return !!budget; 299 300 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 301 total_bytes); 302 303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 304 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 305 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 306 /* Make sure that anybody stopping the queue after this 307 * sees the new next_to_clean. 308 */ 309 smp_mb(); 310 if (__netif_subqueue_stopped(tx_ring->netdev, 311 tx_ring->q_index) && 312 !test_bit(__ICE_DOWN, vsi->state)) { 313 netif_wake_subqueue(tx_ring->netdev, 314 tx_ring->q_index); 315 ++tx_ring->tx_stats.restart_q; 316 } 317 } 318 319 return !!budget; 320 } 321 322 /** 323 * ice_setup_tx_ring - Allocate the Tx descriptors 324 * @tx_ring: the Tx ring to set up 325 * 326 * Return 0 on success, negative on error 327 */ 328 int ice_setup_tx_ring(struct ice_ring *tx_ring) 329 { 330 struct device *dev = tx_ring->dev; 331 332 if (!dev) 333 return -ENOMEM; 334 335 /* warn if we are about to overwrite the pointer */ 336 WARN_ON(tx_ring->tx_buf); 337 tx_ring->tx_buf = 338 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 339 GFP_KERNEL); 340 if (!tx_ring->tx_buf) 341 return -ENOMEM; 342 343 /* round up to nearest page */ 344 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 345 PAGE_SIZE); 346 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 347 GFP_KERNEL); 348 if (!tx_ring->desc) { 349 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 350 tx_ring->size); 351 goto err; 352 } 353 354 tx_ring->next_to_use = 0; 355 tx_ring->next_to_clean = 0; 356 tx_ring->tx_stats.prev_pkt = -1; 357 return 0; 358 359 err: 360 devm_kfree(dev, tx_ring->tx_buf); 361 tx_ring->tx_buf = NULL; 362 return -ENOMEM; 363 } 364 365 /** 366 * ice_clean_rx_ring - Free Rx buffers 367 * @rx_ring: ring to be cleaned 368 */ 369 void ice_clean_rx_ring(struct ice_ring *rx_ring) 370 { 371 struct device *dev = rx_ring->dev; 372 u16 i; 373 374 /* ring already cleared, nothing to do */ 375 if (!rx_ring->rx_buf) 376 return; 377 378 if (rx_ring->xsk_pool) { 379 ice_xsk_clean_rx_ring(rx_ring); 380 goto rx_skip_free; 381 } 382 383 /* Free all the Rx ring sk_buffs */ 384 for (i = 0; i < rx_ring->count; i++) { 385 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 386 387 if (rx_buf->skb) { 388 dev_kfree_skb(rx_buf->skb); 389 rx_buf->skb = NULL; 390 } 391 if (!rx_buf->page) 392 continue; 393 394 /* Invalidate cache lines that may have been written to by 395 * device so that we avoid corrupting memory. 396 */ 397 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 398 rx_buf->page_offset, 399 rx_ring->rx_buf_len, 400 DMA_FROM_DEVICE); 401 402 /* free resources associated with mapping */ 403 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 404 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 405 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 406 407 rx_buf->page = NULL; 408 rx_buf->page_offset = 0; 409 } 410 411 rx_skip_free: 412 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 413 414 /* Zero out the descriptor ring */ 415 memset(rx_ring->desc, 0, rx_ring->size); 416 417 rx_ring->next_to_alloc = 0; 418 rx_ring->next_to_clean = 0; 419 rx_ring->next_to_use = 0; 420 } 421 422 /** 423 * ice_free_rx_ring - Free Rx resources 424 * @rx_ring: ring to clean the resources from 425 * 426 * Free all receive software resources 427 */ 428 void ice_free_rx_ring(struct ice_ring *rx_ring) 429 { 430 ice_clean_rx_ring(rx_ring); 431 if (rx_ring->vsi->type == ICE_VSI_PF) 432 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 433 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 434 rx_ring->xdp_prog = NULL; 435 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 436 rx_ring->rx_buf = NULL; 437 438 if (rx_ring->desc) { 439 dmam_free_coherent(rx_ring->dev, rx_ring->size, 440 rx_ring->desc, rx_ring->dma); 441 rx_ring->desc = NULL; 442 } 443 } 444 445 /** 446 * ice_setup_rx_ring - Allocate the Rx descriptors 447 * @rx_ring: the Rx ring to set up 448 * 449 * Return 0 on success, negative on error 450 */ 451 int ice_setup_rx_ring(struct ice_ring *rx_ring) 452 { 453 struct device *dev = rx_ring->dev; 454 455 if (!dev) 456 return -ENOMEM; 457 458 /* warn if we are about to overwrite the pointer */ 459 WARN_ON(rx_ring->rx_buf); 460 rx_ring->rx_buf = 461 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 462 GFP_KERNEL); 463 if (!rx_ring->rx_buf) 464 return -ENOMEM; 465 466 /* round up to nearest page */ 467 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 468 PAGE_SIZE); 469 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 470 GFP_KERNEL); 471 if (!rx_ring->desc) { 472 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 473 rx_ring->size); 474 goto err; 475 } 476 477 rx_ring->next_to_use = 0; 478 rx_ring->next_to_clean = 0; 479 480 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 481 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 482 483 if (rx_ring->vsi->type == ICE_VSI_PF && 484 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 485 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 486 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 487 goto err; 488 return 0; 489 490 err: 491 devm_kfree(dev, rx_ring->rx_buf); 492 rx_ring->rx_buf = NULL; 493 return -ENOMEM; 494 } 495 496 /** 497 * ice_rx_offset - Return expected offset into page to access data 498 * @rx_ring: Ring we are requesting offset of 499 * 500 * Returns the offset value for ring into the data buffer. 501 */ 502 static unsigned int ice_rx_offset(struct ice_ring *rx_ring) 503 { 504 if (ice_ring_uses_build_skb(rx_ring)) 505 return ICE_SKB_PAD; 506 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 507 return XDP_PACKET_HEADROOM; 508 509 return 0; 510 } 511 512 static unsigned int 513 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) 514 { 515 unsigned int truesize; 516 517 #if (PAGE_SIZE < 8192) 518 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 519 #else 520 truesize = ice_rx_offset(rx_ring) ? 521 SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) + 522 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 523 SKB_DATA_ALIGN(size); 524 #endif 525 return truesize; 526 } 527 528 /** 529 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 530 * @rx_ring: Rx ring 531 * @xdp: xdp_buff used as input to the XDP program 532 * @xdp_prog: XDP program to run 533 * 534 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 535 */ 536 static int 537 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, 538 struct bpf_prog *xdp_prog) 539 { 540 int err, result = ICE_XDP_PASS; 541 struct ice_ring *xdp_ring; 542 u32 act; 543 544 act = bpf_prog_run_xdp(xdp_prog, xdp); 545 switch (act) { 546 case XDP_PASS: 547 break; 548 case XDP_TX: 549 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; 550 result = ice_xmit_xdp_buff(xdp, xdp_ring); 551 break; 552 case XDP_REDIRECT: 553 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 554 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; 555 break; 556 default: 557 bpf_warn_invalid_xdp_action(act); 558 fallthrough; 559 case XDP_ABORTED: 560 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 561 fallthrough; 562 case XDP_DROP: 563 result = ICE_XDP_CONSUMED; 564 break; 565 } 566 567 return result; 568 } 569 570 /** 571 * ice_xdp_xmit - submit packets to XDP ring for transmission 572 * @dev: netdev 573 * @n: number of XDP frames to be transmitted 574 * @frames: XDP frames to be transmitted 575 * @flags: transmit flags 576 * 577 * Returns number of frames successfully sent. Frames that fail are 578 * free'ed via XDP return API. 579 * For error cases, a negative errno code is returned and no-frames 580 * are transmitted (caller must handle freeing frames). 581 */ 582 int 583 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 584 u32 flags) 585 { 586 struct ice_netdev_priv *np = netdev_priv(dev); 587 unsigned int queue_index = smp_processor_id(); 588 struct ice_vsi *vsi = np->vsi; 589 struct ice_ring *xdp_ring; 590 int drops = 0, i; 591 592 if (test_bit(__ICE_DOWN, vsi->state)) 593 return -ENETDOWN; 594 595 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 596 return -ENXIO; 597 598 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 599 return -EINVAL; 600 601 xdp_ring = vsi->xdp_rings[queue_index]; 602 for (i = 0; i < n; i++) { 603 struct xdp_frame *xdpf = frames[i]; 604 int err; 605 606 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 607 if (err != ICE_XDP_TX) { 608 xdp_return_frame_rx_napi(xdpf); 609 drops++; 610 } 611 } 612 613 if (unlikely(flags & XDP_XMIT_FLUSH)) 614 ice_xdp_ring_update_tail(xdp_ring); 615 616 return n - drops; 617 } 618 619 /** 620 * ice_alloc_mapped_page - recycle or make a new page 621 * @rx_ring: ring to use 622 * @bi: rx_buf struct to modify 623 * 624 * Returns true if the page was successfully allocated or 625 * reused. 626 */ 627 static bool 628 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 629 { 630 struct page *page = bi->page; 631 dma_addr_t dma; 632 633 /* since we are recycling buffers we should seldom need to alloc */ 634 if (likely(page)) 635 return true; 636 637 /* alloc new page for storage */ 638 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 639 if (unlikely(!page)) { 640 rx_ring->rx_stats.alloc_page_failed++; 641 return false; 642 } 643 644 /* map page for use */ 645 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 646 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 647 648 /* if mapping failed free memory back to system since 649 * there isn't much point in holding memory we can't use 650 */ 651 if (dma_mapping_error(rx_ring->dev, dma)) { 652 __free_pages(page, ice_rx_pg_order(rx_ring)); 653 rx_ring->rx_stats.alloc_page_failed++; 654 return false; 655 } 656 657 bi->dma = dma; 658 bi->page = page; 659 bi->page_offset = ice_rx_offset(rx_ring); 660 page_ref_add(page, USHRT_MAX - 1); 661 bi->pagecnt_bias = USHRT_MAX; 662 663 return true; 664 } 665 666 /** 667 * ice_alloc_rx_bufs - Replace used receive buffers 668 * @rx_ring: ring to place buffers on 669 * @cleaned_count: number of buffers to replace 670 * 671 * Returns false if all allocations were successful, true if any fail. Returning 672 * true signals to the caller that we didn't replace cleaned_count buffers and 673 * there is more work to do. 674 * 675 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 676 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 677 * multiple tail writes per call. 678 */ 679 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 680 { 681 union ice_32b_rx_flex_desc *rx_desc; 682 u16 ntu = rx_ring->next_to_use; 683 struct ice_rx_buf *bi; 684 685 /* do nothing if no valid netdev defined */ 686 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 687 !cleaned_count) 688 return false; 689 690 /* get the Rx descriptor and buffer based on next_to_use */ 691 rx_desc = ICE_RX_DESC(rx_ring, ntu); 692 bi = &rx_ring->rx_buf[ntu]; 693 694 do { 695 /* if we fail here, we have work remaining */ 696 if (!ice_alloc_mapped_page(rx_ring, bi)) 697 break; 698 699 /* sync the buffer for use by the device */ 700 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 701 bi->page_offset, 702 rx_ring->rx_buf_len, 703 DMA_FROM_DEVICE); 704 705 /* Refresh the desc even if buffer_addrs didn't change 706 * because each write-back erases this info. 707 */ 708 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 709 710 rx_desc++; 711 bi++; 712 ntu++; 713 if (unlikely(ntu == rx_ring->count)) { 714 rx_desc = ICE_RX_DESC(rx_ring, 0); 715 bi = rx_ring->rx_buf; 716 ntu = 0; 717 } 718 719 /* clear the status bits for the next_to_use descriptor */ 720 rx_desc->wb.status_error0 = 0; 721 722 cleaned_count--; 723 } while (cleaned_count); 724 725 if (rx_ring->next_to_use != ntu) 726 ice_release_rx_desc(rx_ring, ntu); 727 728 return !!cleaned_count; 729 } 730 731 /** 732 * ice_page_is_reserved - check if reuse is possible 733 * @page: page struct to check 734 */ 735 static bool ice_page_is_reserved(struct page *page) 736 { 737 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 738 } 739 740 /** 741 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 742 * @rx_buf: Rx buffer to adjust 743 * @size: Size of adjustment 744 * 745 * Update the offset within page so that Rx buf will be ready to be reused. 746 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 747 * so the second half of page assigned to Rx buffer will be used, otherwise 748 * the offset is moved by "size" bytes 749 */ 750 static void 751 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 752 { 753 #if (PAGE_SIZE < 8192) 754 /* flip page offset to other buffer */ 755 rx_buf->page_offset ^= size; 756 #else 757 /* move offset up to the next cache line */ 758 rx_buf->page_offset += size; 759 #endif 760 } 761 762 /** 763 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 764 * @rx_buf: buffer containing the page 765 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 766 * 767 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 768 * which will assign the current buffer to the buffer that next_to_alloc is 769 * pointing to; otherwise, the DMA mapping needs to be destroyed and 770 * page freed 771 */ 772 static bool 773 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 774 { 775 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 776 struct page *page = rx_buf->page; 777 778 /* avoid re-using remote pages */ 779 if (unlikely(ice_page_is_reserved(page))) 780 return false; 781 782 #if (PAGE_SIZE < 8192) 783 /* if we are only owner of page we can reuse it */ 784 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 785 return false; 786 #else 787 #define ICE_LAST_OFFSET \ 788 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 789 if (rx_buf->page_offset > ICE_LAST_OFFSET) 790 return false; 791 #endif /* PAGE_SIZE < 8192) */ 792 793 /* If we have drained the page fragment pool we need to update 794 * the pagecnt_bias and page count so that we fully restock the 795 * number of references the driver holds. 796 */ 797 if (unlikely(pagecnt_bias == 1)) { 798 page_ref_add(page, USHRT_MAX - 1); 799 rx_buf->pagecnt_bias = USHRT_MAX; 800 } 801 802 return true; 803 } 804 805 /** 806 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 807 * @rx_ring: Rx descriptor ring to transact packets on 808 * @rx_buf: buffer containing page to add 809 * @skb: sk_buff to place the data into 810 * @size: packet length from rx_desc 811 * 812 * This function will add the data contained in rx_buf->page to the skb. 813 * It will just attach the page as a frag to the skb. 814 * The function will then update the page offset. 815 */ 816 static void 817 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 818 struct sk_buff *skb, unsigned int size) 819 { 820 #if (PAGE_SIZE >= 8192) 821 unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring)); 822 #else 823 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 824 #endif 825 826 if (!size) 827 return; 828 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 829 rx_buf->page_offset, size, truesize); 830 831 /* page is being used so we must update the page offset */ 832 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 833 } 834 835 /** 836 * ice_reuse_rx_page - page flip buffer and store it back on the ring 837 * @rx_ring: Rx descriptor ring to store buffers on 838 * @old_buf: donor buffer to have page reused 839 * 840 * Synchronizes page for reuse by the adapter 841 */ 842 static void 843 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 844 { 845 u16 nta = rx_ring->next_to_alloc; 846 struct ice_rx_buf *new_buf; 847 848 new_buf = &rx_ring->rx_buf[nta]; 849 850 /* update, and store next to alloc */ 851 nta++; 852 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 853 854 /* Transfer page from old buffer to new buffer. 855 * Move each member individually to avoid possible store 856 * forwarding stalls and unnecessary copy of skb. 857 */ 858 new_buf->dma = old_buf->dma; 859 new_buf->page = old_buf->page; 860 new_buf->page_offset = old_buf->page_offset; 861 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 862 } 863 864 /** 865 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 866 * @rx_ring: Rx descriptor ring to transact packets on 867 * @skb: skb to be used 868 * @size: size of buffer to add to skb 869 * @rx_buf_pgcnt: rx_buf page refcount 870 * 871 * This function will pull an Rx buffer from the ring and synchronize it 872 * for use by the CPU. 873 */ 874 static struct ice_rx_buf * 875 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, 876 const unsigned int size, int *rx_buf_pgcnt) 877 { 878 struct ice_rx_buf *rx_buf; 879 880 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 881 *rx_buf_pgcnt = 882 #if (PAGE_SIZE < 8192) 883 page_count(rx_buf->page); 884 #else 885 0; 886 #endif 887 prefetchw(rx_buf->page); 888 *skb = rx_buf->skb; 889 890 if (!size) 891 return rx_buf; 892 /* we are reusing so sync this buffer for CPU use */ 893 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 894 rx_buf->page_offset, size, 895 DMA_FROM_DEVICE); 896 897 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 898 rx_buf->pagecnt_bias--; 899 900 return rx_buf; 901 } 902 903 /** 904 * ice_build_skb - Build skb around an existing buffer 905 * @rx_ring: Rx descriptor ring to transact packets on 906 * @rx_buf: Rx buffer to pull data from 907 * @xdp: xdp_buff pointing to the data 908 * 909 * This function builds an skb around an existing Rx buffer, taking care 910 * to set up the skb correctly and avoid any memcpy overhead. 911 */ 912 static struct sk_buff * 913 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 914 struct xdp_buff *xdp) 915 { 916 u8 metasize = xdp->data - xdp->data_meta; 917 #if (PAGE_SIZE < 8192) 918 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 919 #else 920 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 921 SKB_DATA_ALIGN(xdp->data_end - 922 xdp->data_hard_start); 923 #endif 924 struct sk_buff *skb; 925 926 /* Prefetch first cache line of first page. If xdp->data_meta 927 * is unused, this points exactly as xdp->data, otherwise we 928 * likely have a consumer accessing first few bytes of meta 929 * data, and then actual data. 930 */ 931 net_prefetch(xdp->data_meta); 932 /* build an skb around the page buffer */ 933 skb = build_skb(xdp->data_hard_start, truesize); 934 if (unlikely(!skb)) 935 return NULL; 936 937 /* must to record Rx queue, otherwise OS features such as 938 * symmetric queue won't work 939 */ 940 skb_record_rx_queue(skb, rx_ring->q_index); 941 942 /* update pointers within the skb to store the data */ 943 skb_reserve(skb, xdp->data - xdp->data_hard_start); 944 __skb_put(skb, xdp->data_end - xdp->data); 945 if (metasize) 946 skb_metadata_set(skb, metasize); 947 948 /* buffer is used by skb, update page_offset */ 949 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 950 951 return skb; 952 } 953 954 /** 955 * ice_construct_skb - Allocate skb and populate it 956 * @rx_ring: Rx descriptor ring to transact packets on 957 * @rx_buf: Rx buffer to pull data from 958 * @xdp: xdp_buff pointing to the data 959 * 960 * This function allocates an skb. It then populates it with the page 961 * data from the current receive descriptor, taking care to set up the 962 * skb correctly. 963 */ 964 static struct sk_buff * 965 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 966 struct xdp_buff *xdp) 967 { 968 unsigned int size = xdp->data_end - xdp->data; 969 unsigned int headlen; 970 struct sk_buff *skb; 971 972 /* prefetch first cache line of first page */ 973 net_prefetch(xdp->data); 974 975 /* allocate a skb to store the frags */ 976 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 977 GFP_ATOMIC | __GFP_NOWARN); 978 if (unlikely(!skb)) 979 return NULL; 980 981 skb_record_rx_queue(skb, rx_ring->q_index); 982 /* Determine available headroom for copy */ 983 headlen = size; 984 if (headlen > ICE_RX_HDR_SIZE) 985 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 986 987 /* align pull length to size of long to optimize memcpy performance */ 988 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 989 sizeof(long))); 990 991 /* if we exhaust the linear part then add what is left as a frag */ 992 size -= headlen; 993 if (size) { 994 #if (PAGE_SIZE >= 8192) 995 unsigned int truesize = SKB_DATA_ALIGN(size); 996 #else 997 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 998 #endif 999 skb_add_rx_frag(skb, 0, rx_buf->page, 1000 rx_buf->page_offset + headlen, size, truesize); 1001 /* buffer is used by skb, update page_offset */ 1002 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1003 } else { 1004 /* buffer is unused, reset bias back to rx_buf; data was copied 1005 * onto skb's linear part so there's no need for adjusting 1006 * page offset and we can reuse this buffer as-is 1007 */ 1008 rx_buf->pagecnt_bias++; 1009 } 1010 1011 return skb; 1012 } 1013 1014 /** 1015 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1016 * @rx_ring: Rx descriptor ring to transact packets on 1017 * @rx_buf: Rx buffer to pull data from 1018 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1019 * 1020 * This function will update next_to_clean and then clean up the contents 1021 * of the rx_buf. It will either recycle the buffer or unmap it and free 1022 * the associated resources. 1023 */ 1024 static void 1025 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 1026 int rx_buf_pgcnt) 1027 { 1028 u16 ntc = rx_ring->next_to_clean + 1; 1029 1030 /* fetch, update, and store next to clean */ 1031 ntc = (ntc < rx_ring->count) ? ntc : 0; 1032 rx_ring->next_to_clean = ntc; 1033 1034 if (!rx_buf) 1035 return; 1036 1037 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1038 /* hand second half of page back to the ring */ 1039 ice_reuse_rx_page(rx_ring, rx_buf); 1040 } else { 1041 /* we are not reusing the buffer so unmap it */ 1042 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1043 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1044 ICE_RX_DMA_ATTR); 1045 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1046 } 1047 1048 /* clear contents of buffer_info */ 1049 rx_buf->page = NULL; 1050 rx_buf->skb = NULL; 1051 } 1052 1053 /** 1054 * ice_is_non_eop - process handling of non-EOP buffers 1055 * @rx_ring: Rx ring being processed 1056 * @rx_desc: Rx descriptor for current buffer 1057 * @skb: Current socket buffer containing buffer in progress 1058 * 1059 * If the buffer is an EOP buffer, this function exits returning false, 1060 * otherwise return true indicating that this is in fact a non-EOP buffer. 1061 */ 1062 static bool 1063 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 1064 struct sk_buff *skb) 1065 { 1066 /* if we are the last buffer then there is nothing else to do */ 1067 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1068 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1069 return false; 1070 1071 /* place skb in next buffer to be received */ 1072 rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb; 1073 rx_ring->rx_stats.non_eop_descs++; 1074 1075 return true; 1076 } 1077 1078 /** 1079 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1080 * @rx_ring: Rx descriptor ring to transact packets on 1081 * @budget: Total limit on number of packets to process 1082 * 1083 * This function provides a "bounce buffer" approach to Rx interrupt 1084 * processing. The advantage to this is that on systems that have 1085 * expensive overhead for IOMMU access this provides a means of avoiding 1086 * it by maintaining the mapping of the page to the system. 1087 * 1088 * Returns amount of work completed 1089 */ 1090 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1091 { 1092 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1093 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1094 unsigned int xdp_res, xdp_xmit = 0; 1095 struct bpf_prog *xdp_prog = NULL; 1096 struct xdp_buff xdp; 1097 bool failure; 1098 1099 xdp.rxq = &rx_ring->xdp_rxq; 1100 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1101 #if (PAGE_SIZE < 8192) 1102 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1103 #endif 1104 1105 /* start the loop to process Rx packets bounded by 'budget' */ 1106 while (likely(total_rx_pkts < (unsigned int)budget)) { 1107 union ice_32b_rx_flex_desc *rx_desc; 1108 struct ice_rx_buf *rx_buf; 1109 struct sk_buff *skb; 1110 unsigned int size; 1111 u16 stat_err_bits; 1112 int rx_buf_pgcnt; 1113 u16 vlan_tag = 0; 1114 u8 rx_ptype; 1115 1116 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1117 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1118 1119 /* status_error_len will always be zero for unused descriptors 1120 * because it's cleared in cleanup, and overlaps with hdr_addr 1121 * which is always zero because packet split isn't used, if the 1122 * hardware wrote DD then it will be non-zero 1123 */ 1124 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1125 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1126 break; 1127 1128 /* This memory barrier is needed to keep us from reading 1129 * any other fields out of the rx_desc until we know the 1130 * DD bit is set. 1131 */ 1132 dma_rmb(); 1133 1134 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1135 ice_put_rx_buf(rx_ring, NULL, 0); 1136 cleaned_count++; 1137 continue; 1138 } 1139 1140 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1141 ICE_RX_FLX_DESC_PKT_LEN_M; 1142 1143 /* retrieve a buffer from the ring */ 1144 rx_buf = ice_get_rx_buf(rx_ring, &skb, size, &rx_buf_pgcnt); 1145 1146 if (!size) { 1147 xdp.data = NULL; 1148 xdp.data_end = NULL; 1149 xdp.data_hard_start = NULL; 1150 xdp.data_meta = NULL; 1151 goto construct_skb; 1152 } 1153 1154 xdp.data = page_address(rx_buf->page) + rx_buf->page_offset; 1155 xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring); 1156 xdp.data_meta = xdp.data; 1157 xdp.data_end = xdp.data + size; 1158 #if (PAGE_SIZE > 4096) 1159 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1160 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1161 #endif 1162 1163 rcu_read_lock(); 1164 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1165 if (!xdp_prog) { 1166 rcu_read_unlock(); 1167 goto construct_skb; 1168 } 1169 1170 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); 1171 rcu_read_unlock(); 1172 if (!xdp_res) 1173 goto construct_skb; 1174 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1175 xdp_xmit |= xdp_res; 1176 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1177 } else { 1178 rx_buf->pagecnt_bias++; 1179 } 1180 total_rx_bytes += size; 1181 total_rx_pkts++; 1182 1183 cleaned_count++; 1184 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1185 continue; 1186 construct_skb: 1187 if (skb) { 1188 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1189 } else if (likely(xdp.data)) { 1190 if (ice_ring_uses_build_skb(rx_ring)) 1191 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1192 else 1193 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1194 } 1195 /* exit if we failed to retrieve a buffer */ 1196 if (!skb) { 1197 rx_ring->rx_stats.alloc_buf_failed++; 1198 if (rx_buf) 1199 rx_buf->pagecnt_bias++; 1200 break; 1201 } 1202 1203 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1204 cleaned_count++; 1205 1206 /* skip if it is NOP desc */ 1207 if (ice_is_non_eop(rx_ring, rx_desc, skb)) 1208 continue; 1209 1210 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1211 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1212 dev_kfree_skb_any(skb); 1213 continue; 1214 } 1215 1216 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1217 if (ice_test_staterr(rx_desc, stat_err_bits)) 1218 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1219 1220 /* pad the skb if needed, to make a valid ethernet frame */ 1221 if (eth_skb_pad(skb)) { 1222 skb = NULL; 1223 continue; 1224 } 1225 1226 /* probably a little skewed due to removing CRC */ 1227 total_rx_bytes += skb->len; 1228 1229 /* populate checksum, VLAN, and protocol */ 1230 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1231 ICE_RX_FLEX_DESC_PTYPE_M; 1232 1233 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1234 1235 /* send completed skb up the stack */ 1236 ice_receive_skb(rx_ring, skb, vlan_tag); 1237 1238 /* update budget accounting */ 1239 total_rx_pkts++; 1240 } 1241 1242 /* return up to cleaned_count buffers to hardware */ 1243 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1244 1245 if (xdp_prog) 1246 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 1247 1248 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1249 1250 /* guarantee a trip back through this routine if there was a failure */ 1251 return failure ? budget : (int)total_rx_pkts; 1252 } 1253 1254 /** 1255 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic 1256 * @port_info: port_info structure containing the current link speed 1257 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine 1258 * @itr: ITR value to update 1259 * 1260 * Calculate how big of an increment should be applied to the ITR value passed 1261 * in based on wmem_default, SKB overhead, ethernet overhead, and the current 1262 * link speed. 1263 * 1264 * The following is a calculation derived from: 1265 * wmem_default / (size + overhead) = desired_pkts_per_int 1266 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1267 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1268 * 1269 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1270 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1271 * formula down to: 1272 * 1273 * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24 1274 * ITR = -------------------------------------------- * -------------- 1275 * rate pkt_size + 640 1276 */ 1277 static unsigned int 1278 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info, 1279 unsigned int avg_pkt_size, 1280 unsigned int itr) 1281 { 1282 switch (port_info->phy.link_info.link_speed) { 1283 case ICE_AQ_LINK_SPEED_100GB: 1284 itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24), 1285 avg_pkt_size + 640); 1286 break; 1287 case ICE_AQ_LINK_SPEED_50GB: 1288 itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24), 1289 avg_pkt_size + 640); 1290 break; 1291 case ICE_AQ_LINK_SPEED_40GB: 1292 itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24), 1293 avg_pkt_size + 640); 1294 break; 1295 case ICE_AQ_LINK_SPEED_25GB: 1296 itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24), 1297 avg_pkt_size + 640); 1298 break; 1299 case ICE_AQ_LINK_SPEED_20GB: 1300 itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24), 1301 avg_pkt_size + 640); 1302 break; 1303 case ICE_AQ_LINK_SPEED_10GB: 1304 default: 1305 itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24), 1306 avg_pkt_size + 640); 1307 break; 1308 } 1309 1310 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1311 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1312 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1313 } 1314 1315 return itr; 1316 } 1317 1318 /** 1319 * ice_update_itr - update the adaptive ITR value based on statistics 1320 * @q_vector: structure containing interrupt and ring information 1321 * @rc: structure containing ring performance data 1322 * 1323 * Stores a new ITR value based on packets and byte 1324 * counts during the last interrupt. The advantage of per interrupt 1325 * computation is faster updates and more accurate ITR for the current 1326 * traffic pattern. Constants in this function were computed 1327 * based on theoretical maximum wire speed and thresholds were set based 1328 * on testing data as well as attempting to minimize response time 1329 * while increasing bulk throughput. 1330 */ 1331 static void 1332 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) 1333 { 1334 unsigned long next_update = jiffies; 1335 unsigned int packets, bytes, itr; 1336 bool container_is_rx; 1337 1338 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) 1339 return; 1340 1341 /* If itr_countdown is set it means we programmed an ITR within 1342 * the last 4 interrupt cycles. This has a side effect of us 1343 * potentially firing an early interrupt. In order to work around 1344 * this we need to throw out any data received for a few 1345 * interrupts following the update. 1346 */ 1347 if (q_vector->itr_countdown) { 1348 itr = rc->target_itr; 1349 goto clear_counts; 1350 } 1351 1352 container_is_rx = (&q_vector->rx == rc); 1353 /* For Rx we want to push the delay up and default to low latency. 1354 * for Tx we want to pull the delay down and default to high latency. 1355 */ 1356 itr = container_is_rx ? 1357 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : 1358 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; 1359 1360 /* If we didn't update within up to 1 - 2 jiffies we can assume 1361 * that either packets are coming in so slow there hasn't been 1362 * any work, or that there is so much work that NAPI is dealing 1363 * with interrupt moderation and we don't need to do anything. 1364 */ 1365 if (time_after(next_update, rc->next_update)) 1366 goto clear_counts; 1367 1368 prefetch(q_vector->vsi->port_info); 1369 1370 packets = rc->total_pkts; 1371 bytes = rc->total_bytes; 1372 1373 if (container_is_rx) { 1374 /* If Rx there are 1 to 4 packets and bytes are less than 1375 * 9000 assume insufficient data to use bulk rate limiting 1376 * approach unless Tx is already in bulk rate limiting. We 1377 * are likely latency driven. 1378 */ 1379 if (packets && packets < 4 && bytes < 9000 && 1380 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { 1381 itr = ICE_ITR_ADAPTIVE_LATENCY; 1382 goto adjust_by_size_and_speed; 1383 } 1384 } else if (packets < 4) { 1385 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1386 * bulk mode and we are receiving 4 or fewer packets just 1387 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1388 * that the Rx can relax. 1389 */ 1390 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && 1391 (q_vector->rx.target_itr & ICE_ITR_MASK) == 1392 ICE_ITR_ADAPTIVE_MAX_USECS) 1393 goto clear_counts; 1394 } else if (packets > 32) { 1395 /* If we have processed over 32 packets in a single interrupt 1396 * for Tx assume we need to switch over to "bulk" mode. 1397 */ 1398 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; 1399 } 1400 1401 /* We have no packets to actually measure against. This means 1402 * either one of the other queues on this vector is active or 1403 * we are a Tx queue doing TSO with too high of an interrupt rate. 1404 * 1405 * Between 4 and 56 we can assume that our current interrupt delay 1406 * is only slightly too low. As such we should increase it by a small 1407 * fixed amount. 1408 */ 1409 if (packets < 56) { 1410 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; 1411 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1412 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1413 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1414 } 1415 goto clear_counts; 1416 } 1417 1418 if (packets <= 256) { 1419 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1420 itr &= ICE_ITR_MASK; 1421 1422 /* Between 56 and 112 is our "goldilocks" zone where we are 1423 * working out "just right". Just report that our current 1424 * ITR is good for us. 1425 */ 1426 if (packets <= 112) 1427 goto clear_counts; 1428 1429 /* If packet count is 128 or greater we are likely looking 1430 * at a slight overrun of the delay we want. Try halving 1431 * our delay to see if that will cut the number of packets 1432 * in half per interrupt. 1433 */ 1434 itr >>= 1; 1435 itr &= ICE_ITR_MASK; 1436 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) 1437 itr = ICE_ITR_ADAPTIVE_MIN_USECS; 1438 1439 goto clear_counts; 1440 } 1441 1442 /* The paths below assume we are dealing with a bulk ITR since 1443 * number of packets is greater than 256. We are just going to have 1444 * to compute a value and try to bring the count under control, 1445 * though for smaller packet sizes there isn't much we can do as 1446 * NAPI polling will likely be kicking in sooner rather than later. 1447 */ 1448 itr = ICE_ITR_ADAPTIVE_BULK; 1449 1450 adjust_by_size_and_speed: 1451 1452 /* based on checks above packets cannot be 0 so division is safe */ 1453 itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info, 1454 bytes / packets, itr); 1455 1456 clear_counts: 1457 /* write back value */ 1458 rc->target_itr = itr; 1459 1460 /* next update should occur within next jiffy */ 1461 rc->next_update = next_update + 1; 1462 1463 rc->total_bytes = 0; 1464 rc->total_pkts = 0; 1465 } 1466 1467 /** 1468 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1469 * @itr_idx: interrupt throttling index 1470 * @itr: interrupt throttling value in usecs 1471 */ 1472 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1473 { 1474 /* The ITR value is reported in microseconds, and the register value is 1475 * recorded in 2 microsecond units. For this reason we only need to 1476 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1477 * granularity as a shift instead of division. The mask makes sure the 1478 * ITR value is never odd so we don't accidentally write into the field 1479 * prior to the ITR field. 1480 */ 1481 itr &= ICE_ITR_MASK; 1482 1483 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1484 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1485 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1486 } 1487 1488 /* The act of updating the ITR will cause it to immediately trigger. In order 1489 * to prevent this from throwing off adaptive update statistics we defer the 1490 * update so that it can only happen so often. So after either Tx or Rx are 1491 * updated we make the adaptive scheme wait until either the ITR completely 1492 * expires via the next_update expiration or we have been through at least 1493 * 3 interrupts. 1494 */ 1495 #define ITR_COUNTDOWN_START 3 1496 1497 /** 1498 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt 1499 * @q_vector: q_vector for which ITR is being updated and interrupt enabled 1500 */ 1501 static void ice_update_ena_itr(struct ice_q_vector *q_vector) 1502 { 1503 struct ice_ring_container *tx = &q_vector->tx; 1504 struct ice_ring_container *rx = &q_vector->rx; 1505 struct ice_vsi *vsi = q_vector->vsi; 1506 u32 itr_val; 1507 1508 /* when exiting WB_ON_ITR lets set a low ITR value and trigger 1509 * interrupts to expire right away in case we have more work ready to go 1510 * already 1511 */ 1512 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) { 1513 itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS); 1514 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1515 /* set target back to last user set value */ 1516 rx->target_itr = rx->itr_setting; 1517 /* set current to what we just wrote and dynamic if needed */ 1518 rx->current_itr = ICE_WB_ON_ITR_USECS | 1519 (rx->itr_setting & ICE_ITR_DYNAMIC); 1520 /* allow normal interrupt flow to start */ 1521 q_vector->itr_countdown = 0; 1522 return; 1523 } 1524 1525 /* This will do nothing if dynamic updates are not enabled */ 1526 ice_update_itr(q_vector, tx); 1527 ice_update_itr(q_vector, rx); 1528 1529 /* This block of logic allows us to get away with only updating 1530 * one ITR value with each interrupt. The idea is to perform a 1531 * pseudo-lazy update with the following criteria. 1532 * 1533 * 1. Rx is given higher priority than Tx if both are in same state 1534 * 2. If we must reduce an ITR that is given highest priority. 1535 * 3. We then give priority to increasing ITR based on amount. 1536 */ 1537 if (rx->target_itr < rx->current_itr) { 1538 /* Rx ITR needs to be reduced, this is highest priority */ 1539 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1540 rx->current_itr = rx->target_itr; 1541 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1542 } else if ((tx->target_itr < tx->current_itr) || 1543 ((rx->target_itr - rx->current_itr) < 1544 (tx->target_itr - tx->current_itr))) { 1545 /* Tx ITR needs to be reduced, this is second priority 1546 * Tx ITR needs to be increased more than Rx, fourth priority 1547 */ 1548 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); 1549 tx->current_itr = tx->target_itr; 1550 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1551 } else if (rx->current_itr != rx->target_itr) { 1552 /* Rx ITR needs to be increased, third priority */ 1553 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1554 rx->current_itr = rx->target_itr; 1555 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1556 } else { 1557 /* Still have to re-enable the interrupts */ 1558 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1559 if (q_vector->itr_countdown) 1560 q_vector->itr_countdown--; 1561 } 1562 1563 if (!test_bit(__ICE_DOWN, q_vector->vsi->state)) 1564 wr32(&q_vector->vsi->back->hw, 1565 GLINT_DYN_CTL(q_vector->reg_idx), 1566 itr_val); 1567 } 1568 1569 /** 1570 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1571 * @q_vector: q_vector to set WB_ON_ITR on 1572 * 1573 * We need to tell hardware to write-back completed descriptors even when 1574 * interrupts are disabled. Descriptors will be written back on cache line 1575 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1576 * descriptors may not be written back if they don't fill a cache line until the 1577 * next interrupt. 1578 * 1579 * This sets the write-back frequency to 2 microseconds as that is the minimum 1580 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to 1581 * make sure hardware knows we aren't meddling with the INTENA_M bit. 1582 */ 1583 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1584 { 1585 struct ice_vsi *vsi = q_vector->vsi; 1586 1587 /* already in WB_ON_ITR mode no need to change it */ 1588 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) 1589 return; 1590 1591 if (q_vector->num_ring_rx) 1592 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1593 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1594 ICE_RX_ITR)); 1595 1596 if (q_vector->num_ring_tx) 1597 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1598 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1599 ICE_TX_ITR)); 1600 1601 q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE; 1602 } 1603 1604 /** 1605 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1606 * @napi: napi struct with our devices info in it 1607 * @budget: amount of work driver is allowed to do this pass, in packets 1608 * 1609 * This function will clean all queues associated with a q_vector. 1610 * 1611 * Returns the amount of work done 1612 */ 1613 int ice_napi_poll(struct napi_struct *napi, int budget) 1614 { 1615 struct ice_q_vector *q_vector = 1616 container_of(napi, struct ice_q_vector, napi); 1617 bool clean_complete = true; 1618 struct ice_ring *ring; 1619 int budget_per_ring; 1620 int work_done = 0; 1621 1622 /* Since the actual Tx work is minimal, we can give the Tx a larger 1623 * budget and be more aggressive about cleaning up the Tx descriptors. 1624 */ 1625 ice_for_each_ring(ring, q_vector->tx) { 1626 bool wd = ring->xsk_pool ? 1627 ice_clean_tx_irq_zc(ring, budget) : 1628 ice_clean_tx_irq(ring, budget); 1629 1630 if (!wd) 1631 clean_complete = false; 1632 } 1633 1634 /* Handle case where we are called by netpoll with a budget of 0 */ 1635 if (unlikely(budget <= 0)) 1636 return budget; 1637 1638 /* normally we have 1 Rx ring per q_vector */ 1639 if (unlikely(q_vector->num_ring_rx > 1)) 1640 /* We attempt to distribute budget to each Rx queue fairly, but 1641 * don't allow the budget to go below 1 because that would exit 1642 * polling early. 1643 */ 1644 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1645 else 1646 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1647 budget_per_ring = budget; 1648 1649 ice_for_each_ring(ring, q_vector->rx) { 1650 int cleaned; 1651 1652 /* A dedicated path for zero-copy allows making a single 1653 * comparison in the irq context instead of many inside the 1654 * ice_clean_rx_irq function and makes the codebase cleaner. 1655 */ 1656 cleaned = ring->xsk_pool ? 1657 ice_clean_rx_irq_zc(ring, budget_per_ring) : 1658 ice_clean_rx_irq(ring, budget_per_ring); 1659 work_done += cleaned; 1660 /* if we clean as many as budgeted, we must not be done */ 1661 if (cleaned >= budget_per_ring) 1662 clean_complete = false; 1663 } 1664 1665 /* If work not completed, return budget and polling will return */ 1666 if (!clean_complete) 1667 return budget; 1668 1669 /* Exit the polling mode, but don't re-enable interrupts if stack might 1670 * poll us due to busy-polling 1671 */ 1672 if (likely(napi_complete_done(napi, work_done))) 1673 ice_update_ena_itr(q_vector); 1674 else 1675 ice_set_wb_on_itr(q_vector); 1676 1677 return min_t(int, work_done, budget - 1); 1678 } 1679 1680 /** 1681 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1682 * @tx_ring: the ring to be checked 1683 * @size: the size buffer we want to assure is available 1684 * 1685 * Returns -EBUSY if a stop is needed, else 0 1686 */ 1687 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1688 { 1689 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1690 /* Memory barrier before checking head and tail */ 1691 smp_mb(); 1692 1693 /* Check again in a case another CPU has just made room available. */ 1694 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1695 return -EBUSY; 1696 1697 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1698 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1699 ++tx_ring->tx_stats.restart_q; 1700 return 0; 1701 } 1702 1703 /** 1704 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1705 * @tx_ring: the ring to be checked 1706 * @size: the size buffer we want to assure is available 1707 * 1708 * Returns 0 if stop is not needed 1709 */ 1710 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1711 { 1712 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1713 return 0; 1714 1715 return __ice_maybe_stop_tx(tx_ring, size); 1716 } 1717 1718 /** 1719 * ice_tx_map - Build the Tx descriptor 1720 * @tx_ring: ring to send buffer on 1721 * @first: first buffer info buffer to use 1722 * @off: pointer to struct that holds offload parameters 1723 * 1724 * This function loops over the skb data pointed to by *first 1725 * and gets a physical address for each memory location and programs 1726 * it and the length into the transmit descriptor. 1727 */ 1728 static void 1729 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1730 struct ice_tx_offload_params *off) 1731 { 1732 u64 td_offset, td_tag, td_cmd; 1733 u16 i = tx_ring->next_to_use; 1734 unsigned int data_len, size; 1735 struct ice_tx_desc *tx_desc; 1736 struct ice_tx_buf *tx_buf; 1737 struct sk_buff *skb; 1738 skb_frag_t *frag; 1739 dma_addr_t dma; 1740 1741 td_tag = off->td_l2tag1; 1742 td_cmd = off->td_cmd; 1743 td_offset = off->td_offset; 1744 skb = first->skb; 1745 1746 data_len = skb->data_len; 1747 size = skb_headlen(skb); 1748 1749 tx_desc = ICE_TX_DESC(tx_ring, i); 1750 1751 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1752 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1753 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1754 ICE_TX_FLAGS_VLAN_S; 1755 } 1756 1757 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1758 1759 tx_buf = first; 1760 1761 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1762 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1763 1764 if (dma_mapping_error(tx_ring->dev, dma)) 1765 goto dma_error; 1766 1767 /* record length, and DMA address */ 1768 dma_unmap_len_set(tx_buf, len, size); 1769 dma_unmap_addr_set(tx_buf, dma, dma); 1770 1771 /* align size to end of page */ 1772 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1773 tx_desc->buf_addr = cpu_to_le64(dma); 1774 1775 /* account for data chunks larger than the hardware 1776 * can handle 1777 */ 1778 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1779 tx_desc->cmd_type_offset_bsz = 1780 ice_build_ctob(td_cmd, td_offset, max_data, 1781 td_tag); 1782 1783 tx_desc++; 1784 i++; 1785 1786 if (i == tx_ring->count) { 1787 tx_desc = ICE_TX_DESC(tx_ring, 0); 1788 i = 0; 1789 } 1790 1791 dma += max_data; 1792 size -= max_data; 1793 1794 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1795 tx_desc->buf_addr = cpu_to_le64(dma); 1796 } 1797 1798 if (likely(!data_len)) 1799 break; 1800 1801 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1802 size, td_tag); 1803 1804 tx_desc++; 1805 i++; 1806 1807 if (i == tx_ring->count) { 1808 tx_desc = ICE_TX_DESC(tx_ring, 0); 1809 i = 0; 1810 } 1811 1812 size = skb_frag_size(frag); 1813 data_len -= size; 1814 1815 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1816 DMA_TO_DEVICE); 1817 1818 tx_buf = &tx_ring->tx_buf[i]; 1819 } 1820 1821 /* record bytecount for BQL */ 1822 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1823 1824 /* record SW timestamp if HW timestamp is not available */ 1825 skb_tx_timestamp(first->skb); 1826 1827 i++; 1828 if (i == tx_ring->count) 1829 i = 0; 1830 1831 /* write last descriptor with RS and EOP bits */ 1832 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1833 tx_desc->cmd_type_offset_bsz = 1834 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1835 1836 /* Force memory writes to complete before letting h/w know there 1837 * are new descriptors to fetch. 1838 * 1839 * We also use this memory barrier to make certain all of the 1840 * status bits have been updated before next_to_watch is written. 1841 */ 1842 wmb(); 1843 1844 /* set next_to_watch value indicating a packet is present */ 1845 first->next_to_watch = tx_desc; 1846 1847 tx_ring->next_to_use = i; 1848 1849 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1850 1851 /* notify HW of packet */ 1852 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1853 writel(i, tx_ring->tail); 1854 1855 return; 1856 1857 dma_error: 1858 /* clear DMA mappings for failed tx_buf map */ 1859 for (;;) { 1860 tx_buf = &tx_ring->tx_buf[i]; 1861 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1862 if (tx_buf == first) 1863 break; 1864 if (i == 0) 1865 i = tx_ring->count; 1866 i--; 1867 } 1868 1869 tx_ring->next_to_use = i; 1870 } 1871 1872 /** 1873 * ice_tx_csum - Enable Tx checksum offloads 1874 * @first: pointer to the first descriptor 1875 * @off: pointer to struct that holds offload parameters 1876 * 1877 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1878 */ 1879 static 1880 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1881 { 1882 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1883 struct sk_buff *skb = first->skb; 1884 union { 1885 struct iphdr *v4; 1886 struct ipv6hdr *v6; 1887 unsigned char *hdr; 1888 } ip; 1889 union { 1890 struct tcphdr *tcp; 1891 unsigned char *hdr; 1892 } l4; 1893 __be16 frag_off, protocol; 1894 unsigned char *exthdr; 1895 u32 offset, cmd = 0; 1896 u8 l4_proto = 0; 1897 1898 if (skb->ip_summed != CHECKSUM_PARTIAL) 1899 return 0; 1900 1901 ip.hdr = skb_network_header(skb); 1902 l4.hdr = skb_transport_header(skb); 1903 1904 /* compute outer L2 header size */ 1905 l2_len = ip.hdr - skb->data; 1906 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1907 1908 protocol = vlan_get_protocol(skb); 1909 1910 if (protocol == htons(ETH_P_IP)) 1911 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1912 else if (protocol == htons(ETH_P_IPV6)) 1913 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1914 1915 if (skb->encapsulation) { 1916 bool gso_ena = false; 1917 u32 tunnel = 0; 1918 1919 /* define outer network header type */ 1920 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1921 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1922 ICE_TX_CTX_EIPT_IPV4 : 1923 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1924 l4_proto = ip.v4->protocol; 1925 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1926 int ret; 1927 1928 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1929 exthdr = ip.hdr + sizeof(*ip.v6); 1930 l4_proto = ip.v6->nexthdr; 1931 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1932 &l4_proto, &frag_off); 1933 if (ret < 0) 1934 return -1; 1935 } 1936 1937 /* define outer transport */ 1938 switch (l4_proto) { 1939 case IPPROTO_UDP: 1940 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1941 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1942 break; 1943 case IPPROTO_GRE: 1944 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1945 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1946 break; 1947 case IPPROTO_IPIP: 1948 case IPPROTO_IPV6: 1949 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1950 l4.hdr = skb_inner_network_header(skb); 1951 break; 1952 default: 1953 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1954 return -1; 1955 1956 skb_checksum_help(skb); 1957 return 0; 1958 } 1959 1960 /* compute outer L3 header size */ 1961 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1962 ICE_TXD_CTX_QW0_EIPLEN_S; 1963 1964 /* switch IP header pointer from outer to inner header */ 1965 ip.hdr = skb_inner_network_header(skb); 1966 1967 /* compute tunnel header size */ 1968 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1969 ICE_TXD_CTX_QW0_NATLEN_S; 1970 1971 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1972 /* indicate if we need to offload outer UDP header */ 1973 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1974 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1975 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1976 1977 /* record tunnel offload values */ 1978 off->cd_tunnel_params |= tunnel; 1979 1980 /* set DTYP=1 to indicate that it's an Tx context descriptor 1981 * in IPsec tunnel mode with Tx offloads in Quad word 1 1982 */ 1983 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1984 1985 /* switch L4 header pointer from outer to inner */ 1986 l4.hdr = skb_inner_transport_header(skb); 1987 l4_proto = 0; 1988 1989 /* reset type as we transition from outer to inner headers */ 1990 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1991 if (ip.v4->version == 4) 1992 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1993 if (ip.v6->version == 6) 1994 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1995 } 1996 1997 /* Enable IP checksum offloads */ 1998 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1999 l4_proto = ip.v4->protocol; 2000 /* the stack computes the IP header already, the only time we 2001 * need the hardware to recompute it is in the case of TSO. 2002 */ 2003 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2004 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 2005 else 2006 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 2007 2008 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 2009 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 2010 exthdr = ip.hdr + sizeof(*ip.v6); 2011 l4_proto = ip.v6->nexthdr; 2012 if (l4.hdr != exthdr) 2013 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 2014 &frag_off); 2015 } else { 2016 return -1; 2017 } 2018 2019 /* compute inner L3 header size */ 2020 l3_len = l4.hdr - ip.hdr; 2021 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 2022 2023 /* Enable L4 checksum offloads */ 2024 switch (l4_proto) { 2025 case IPPROTO_TCP: 2026 /* enable checksum offloads */ 2027 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 2028 l4_len = l4.tcp->doff; 2029 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2030 break; 2031 case IPPROTO_UDP: 2032 /* enable UDP checksum offload */ 2033 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 2034 l4_len = (sizeof(struct udphdr) >> 2); 2035 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2036 break; 2037 case IPPROTO_SCTP: 2038 /* enable SCTP checksum offload */ 2039 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 2040 l4_len = sizeof(struct sctphdr) >> 2; 2041 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2042 break; 2043 2044 default: 2045 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2046 return -1; 2047 skb_checksum_help(skb); 2048 return 0; 2049 } 2050 2051 off->td_cmd |= cmd; 2052 off->td_offset |= offset; 2053 return 1; 2054 } 2055 2056 /** 2057 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 2058 * @tx_ring: ring to send buffer on 2059 * @first: pointer to struct ice_tx_buf 2060 * 2061 * Checks the skb and set up correspondingly several generic transmit flags 2062 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2063 */ 2064 static void 2065 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 2066 { 2067 struct sk_buff *skb = first->skb; 2068 2069 /* nothing left to do, software offloaded VLAN */ 2070 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 2071 return; 2072 2073 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 2074 * insertion for 802.1AD is not supported 2075 */ 2076 if (skb_vlan_tag_present(skb)) { 2077 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 2078 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2079 } 2080 2081 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2082 } 2083 2084 /** 2085 * ice_tso - computes mss and TSO length to prepare for TSO 2086 * @first: pointer to struct ice_tx_buf 2087 * @off: pointer to struct that holds offload parameters 2088 * 2089 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2090 */ 2091 static 2092 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2093 { 2094 struct sk_buff *skb = first->skb; 2095 union { 2096 struct iphdr *v4; 2097 struct ipv6hdr *v6; 2098 unsigned char *hdr; 2099 } ip; 2100 union { 2101 struct tcphdr *tcp; 2102 struct udphdr *udp; 2103 unsigned char *hdr; 2104 } l4; 2105 u64 cd_mss, cd_tso_len; 2106 u32 paylen; 2107 u8 l4_start; 2108 int err; 2109 2110 if (skb->ip_summed != CHECKSUM_PARTIAL) 2111 return 0; 2112 2113 if (!skb_is_gso(skb)) 2114 return 0; 2115 2116 err = skb_cow_head(skb, 0); 2117 if (err < 0) 2118 return err; 2119 2120 /* cppcheck-suppress unreadVariable */ 2121 ip.hdr = skb_network_header(skb); 2122 l4.hdr = skb_transport_header(skb); 2123 2124 /* initialize outer IP header fields */ 2125 if (ip.v4->version == 4) { 2126 ip.v4->tot_len = 0; 2127 ip.v4->check = 0; 2128 } else { 2129 ip.v6->payload_len = 0; 2130 } 2131 2132 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2133 SKB_GSO_GRE_CSUM | 2134 SKB_GSO_IPXIP4 | 2135 SKB_GSO_IPXIP6 | 2136 SKB_GSO_UDP_TUNNEL | 2137 SKB_GSO_UDP_TUNNEL_CSUM)) { 2138 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2139 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2140 l4.udp->len = 0; 2141 2142 /* determine offset of outer transport header */ 2143 l4_start = (u8)(l4.hdr - skb->data); 2144 2145 /* remove payload length from outer checksum */ 2146 paylen = skb->len - l4_start; 2147 csum_replace_by_diff(&l4.udp->check, 2148 (__force __wsum)htonl(paylen)); 2149 } 2150 2151 /* reset pointers to inner headers */ 2152 2153 /* cppcheck-suppress unreadVariable */ 2154 ip.hdr = skb_inner_network_header(skb); 2155 l4.hdr = skb_inner_transport_header(skb); 2156 2157 /* initialize inner IP header fields */ 2158 if (ip.v4->version == 4) { 2159 ip.v4->tot_len = 0; 2160 ip.v4->check = 0; 2161 } else { 2162 ip.v6->payload_len = 0; 2163 } 2164 } 2165 2166 /* determine offset of transport header */ 2167 l4_start = (u8)(l4.hdr - skb->data); 2168 2169 /* remove payload length from checksum */ 2170 paylen = skb->len - l4_start; 2171 2172 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2173 csum_replace_by_diff(&l4.udp->check, 2174 (__force __wsum)htonl(paylen)); 2175 /* compute length of UDP segmentation header */ 2176 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2177 } else { 2178 csum_replace_by_diff(&l4.tcp->check, 2179 (__force __wsum)htonl(paylen)); 2180 /* compute length of TCP segmentation header */ 2181 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2182 } 2183 2184 /* update gso_segs and bytecount */ 2185 first->gso_segs = skb_shinfo(skb)->gso_segs; 2186 first->bytecount += (first->gso_segs - 1) * off->header_len; 2187 2188 cd_tso_len = skb->len - off->header_len; 2189 cd_mss = skb_shinfo(skb)->gso_size; 2190 2191 /* record cdesc_qw1 with TSO parameters */ 2192 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2193 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2194 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2195 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2196 first->tx_flags |= ICE_TX_FLAGS_TSO; 2197 return 1; 2198 } 2199 2200 /** 2201 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2202 * @size: transmit request size in bytes 2203 * 2204 * Due to hardware alignment restrictions (4K alignment), we need to 2205 * assume that we can have no more than 12K of data per descriptor, even 2206 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2207 * Thus, we need to divide by 12K. But division is slow! Instead, 2208 * we decompose the operation into shifts and one relatively cheap 2209 * multiply operation. 2210 * 2211 * To divide by 12K, we first divide by 4K, then divide by 3: 2212 * To divide by 4K, shift right by 12 bits 2213 * To divide by 3, multiply by 85, then divide by 256 2214 * (Divide by 256 is done by shifting right by 8 bits) 2215 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2216 * 3, we'll underestimate near each multiple of 12K. This is actually more 2217 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2218 * segment. For our purposes this is accurate out to 1M which is orders of 2219 * magnitude greater than our largest possible GSO size. 2220 * 2221 * This would then be implemented as: 2222 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2223 * 2224 * Since multiplication and division are commutative, we can reorder 2225 * operations into: 2226 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2227 */ 2228 static unsigned int ice_txd_use_count(unsigned int size) 2229 { 2230 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2231 } 2232 2233 /** 2234 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2235 * @skb: send buffer 2236 * 2237 * Returns number of data descriptors needed for this skb. 2238 */ 2239 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2240 { 2241 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2242 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2243 unsigned int count = 0, size = skb_headlen(skb); 2244 2245 for (;;) { 2246 count += ice_txd_use_count(size); 2247 2248 if (!nr_frags--) 2249 break; 2250 2251 size = skb_frag_size(frag++); 2252 } 2253 2254 return count; 2255 } 2256 2257 /** 2258 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2259 * @skb: send buffer 2260 * 2261 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2262 * and so we need to figure out the cases where we need to linearize the skb. 2263 * 2264 * For TSO we need to count the TSO header and segment payload separately. 2265 * As such we need to check cases where we have 7 fragments or more as we 2266 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2267 * the segment payload in the first descriptor, and another 7 for the 2268 * fragments. 2269 */ 2270 static bool __ice_chk_linearize(struct sk_buff *skb) 2271 { 2272 const skb_frag_t *frag, *stale; 2273 int nr_frags, sum; 2274 2275 /* no need to check if number of frags is less than 7 */ 2276 nr_frags = skb_shinfo(skb)->nr_frags; 2277 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2278 return false; 2279 2280 /* We need to walk through the list and validate that each group 2281 * of 6 fragments totals at least gso_size. 2282 */ 2283 nr_frags -= ICE_MAX_BUF_TXD - 2; 2284 frag = &skb_shinfo(skb)->frags[0]; 2285 2286 /* Initialize size to the negative value of gso_size minus 1. We 2287 * use this as the worst case scenario in which the frag ahead 2288 * of us only provides one byte which is why we are limited to 6 2289 * descriptors for a single transmit as the header and previous 2290 * fragment are already consuming 2 descriptors. 2291 */ 2292 sum = 1 - skb_shinfo(skb)->gso_size; 2293 2294 /* Add size of frags 0 through 4 to create our initial sum */ 2295 sum += skb_frag_size(frag++); 2296 sum += skb_frag_size(frag++); 2297 sum += skb_frag_size(frag++); 2298 sum += skb_frag_size(frag++); 2299 sum += skb_frag_size(frag++); 2300 2301 /* Walk through fragments adding latest fragment, testing it, and 2302 * then removing stale fragments from the sum. 2303 */ 2304 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2305 int stale_size = skb_frag_size(stale); 2306 2307 sum += skb_frag_size(frag++); 2308 2309 /* The stale fragment may present us with a smaller 2310 * descriptor than the actual fragment size. To account 2311 * for that we need to remove all the data on the front and 2312 * figure out what the remainder would be in the last 2313 * descriptor associated with the fragment. 2314 */ 2315 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2316 int align_pad = -(skb_frag_off(stale)) & 2317 (ICE_MAX_READ_REQ_SIZE - 1); 2318 2319 sum -= align_pad; 2320 stale_size -= align_pad; 2321 2322 do { 2323 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2324 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2325 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2326 } 2327 2328 /* if sum is negative we failed to make sufficient progress */ 2329 if (sum < 0) 2330 return true; 2331 2332 if (!nr_frags--) 2333 break; 2334 2335 sum -= stale_size; 2336 } 2337 2338 return false; 2339 } 2340 2341 /** 2342 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2343 * @skb: send buffer 2344 * @count: number of buffers used 2345 * 2346 * Note: Our HW can't scatter-gather more than 8 fragments to build 2347 * a packet on the wire and so we need to figure out the cases where we 2348 * need to linearize the skb. 2349 */ 2350 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2351 { 2352 /* Both TSO and single send will work if count is less than 8 */ 2353 if (likely(count < ICE_MAX_BUF_TXD)) 2354 return false; 2355 2356 if (skb_is_gso(skb)) 2357 return __ice_chk_linearize(skb); 2358 2359 /* we can support up to 8 data buffers for a single send */ 2360 return count != ICE_MAX_BUF_TXD; 2361 } 2362 2363 /** 2364 * ice_xmit_frame_ring - Sends buffer on Tx ring 2365 * @skb: send buffer 2366 * @tx_ring: ring to send buffer on 2367 * 2368 * Returns NETDEV_TX_OK if sent, else an error code 2369 */ 2370 static netdev_tx_t 2371 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2372 { 2373 struct ice_tx_offload_params offload = { 0 }; 2374 struct ice_vsi *vsi = tx_ring->vsi; 2375 struct ice_tx_buf *first; 2376 unsigned int count; 2377 int tso, csum; 2378 2379 count = ice_xmit_desc_count(skb); 2380 if (ice_chk_linearize(skb, count)) { 2381 if (__skb_linearize(skb)) 2382 goto out_drop; 2383 count = ice_txd_use_count(skb->len); 2384 tx_ring->tx_stats.tx_linearize++; 2385 } 2386 2387 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2388 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2389 * + 4 desc gap to avoid the cache line where head is, 2390 * + 1 desc for context descriptor, 2391 * otherwise try next time 2392 */ 2393 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2394 ICE_DESCS_FOR_CTX_DESC)) { 2395 tx_ring->tx_stats.tx_busy++; 2396 return NETDEV_TX_BUSY; 2397 } 2398 2399 offload.tx_ring = tx_ring; 2400 2401 /* record the location of the first descriptor for this packet */ 2402 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2403 first->skb = skb; 2404 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2405 first->gso_segs = 1; 2406 first->tx_flags = 0; 2407 2408 /* prepare the VLAN tagging flags for Tx */ 2409 ice_tx_prepare_vlan_flags(tx_ring, first); 2410 2411 /* set up TSO offload */ 2412 tso = ice_tso(first, &offload); 2413 if (tso < 0) 2414 goto out_drop; 2415 2416 /* always set up Tx checksum offload */ 2417 csum = ice_tx_csum(first, &offload); 2418 if (csum < 0) 2419 goto out_drop; 2420 2421 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2422 if (unlikely(skb->priority == TC_PRIO_CONTROL && 2423 vsi->type == ICE_VSI_PF && 2424 vsi->port_info->is_sw_lldp)) 2425 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2426 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2427 ICE_TXD_CTX_QW1_CMD_S); 2428 2429 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2430 struct ice_tx_ctx_desc *cdesc; 2431 u16 i = tx_ring->next_to_use; 2432 2433 /* grab the next descriptor */ 2434 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2435 i++; 2436 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2437 2438 /* setup context descriptor */ 2439 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2440 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2441 cdesc->rsvd = cpu_to_le16(0); 2442 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2443 } 2444 2445 ice_tx_map(tx_ring, first, &offload); 2446 return NETDEV_TX_OK; 2447 2448 out_drop: 2449 dev_kfree_skb_any(skb); 2450 return NETDEV_TX_OK; 2451 } 2452 2453 /** 2454 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2455 * @skb: send buffer 2456 * @netdev: network interface device structure 2457 * 2458 * Returns NETDEV_TX_OK if sent, else an error code 2459 */ 2460 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2461 { 2462 struct ice_netdev_priv *np = netdev_priv(netdev); 2463 struct ice_vsi *vsi = np->vsi; 2464 struct ice_ring *tx_ring; 2465 2466 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2467 2468 /* hardware can't handle really short frames, hardware padding works 2469 * beyond this point 2470 */ 2471 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2472 return NETDEV_TX_OK; 2473 2474 return ice_xmit_frame_ring(skb, tx_ring); 2475 } 2476 2477 /** 2478 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2479 * @tx_ring: tx_ring to clean 2480 */ 2481 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) 2482 { 2483 struct ice_vsi *vsi = tx_ring->vsi; 2484 s16 i = tx_ring->next_to_clean; 2485 int budget = ICE_DFLT_IRQ_WORK; 2486 struct ice_tx_desc *tx_desc; 2487 struct ice_tx_buf *tx_buf; 2488 2489 tx_buf = &tx_ring->tx_buf[i]; 2490 tx_desc = ICE_TX_DESC(tx_ring, i); 2491 i -= tx_ring->count; 2492 2493 do { 2494 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2495 2496 /* if next_to_watch is not set then there is no pending work */ 2497 if (!eop_desc) 2498 break; 2499 2500 /* prevent any other reads prior to eop_desc */ 2501 smp_rmb(); 2502 2503 /* if the descriptor isn't done, no work to do */ 2504 if (!(eop_desc->cmd_type_offset_bsz & 2505 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2506 break; 2507 2508 /* clear next_to_watch to prevent false hangs */ 2509 tx_buf->next_to_watch = NULL; 2510 tx_desc->buf_addr = 0; 2511 tx_desc->cmd_type_offset_bsz = 0; 2512 2513 /* move past filter desc */ 2514 tx_buf++; 2515 tx_desc++; 2516 i++; 2517 if (unlikely(!i)) { 2518 i -= tx_ring->count; 2519 tx_buf = tx_ring->tx_buf; 2520 tx_desc = ICE_TX_DESC(tx_ring, 0); 2521 } 2522 2523 /* unmap the data header */ 2524 if (dma_unmap_len(tx_buf, len)) 2525 dma_unmap_single(tx_ring->dev, 2526 dma_unmap_addr(tx_buf, dma), 2527 dma_unmap_len(tx_buf, len), 2528 DMA_TO_DEVICE); 2529 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2530 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2531 2532 /* clear next_to_watch to prevent false hangs */ 2533 tx_buf->raw_buf = NULL; 2534 tx_buf->tx_flags = 0; 2535 tx_buf->next_to_watch = NULL; 2536 dma_unmap_len_set(tx_buf, len, 0); 2537 tx_desc->buf_addr = 0; 2538 tx_desc->cmd_type_offset_bsz = 0; 2539 2540 /* move past eop_desc for start of next FD desc */ 2541 tx_buf++; 2542 tx_desc++; 2543 i++; 2544 if (unlikely(!i)) { 2545 i -= tx_ring->count; 2546 tx_buf = tx_ring->tx_buf; 2547 tx_desc = ICE_TX_DESC(tx_ring, 0); 2548 } 2549 2550 budget--; 2551 } while (likely(budget)); 2552 2553 i += tx_ring->count; 2554 tx_ring->next_to_clean = i; 2555 2556 /* re-enable interrupt if needed */ 2557 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2558 } 2559