1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/xdp.h> 10 #include "ice_txrx_lib.h" 11 #include "ice_lib.h" 12 #include "ice.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_xsk.h" 15 16 #define ICE_RX_HDR_SIZE 256 17 18 #define FDIR_DESC_RXDID 0x40 19 #define ICE_FDIR_CLEAN_DELAY 10 20 21 /** 22 * ice_prgm_fdir_fltr - Program a Flow Director filter 23 * @vsi: VSI to send dummy packet 24 * @fdir_desc: flow director descriptor 25 * @raw_packet: allocated buffer for flow director 26 */ 27 int 28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 29 u8 *raw_packet) 30 { 31 struct ice_tx_buf *tx_buf, *first; 32 struct ice_fltr_desc *f_desc; 33 struct ice_tx_desc *tx_desc; 34 struct ice_ring *tx_ring; 35 struct device *dev; 36 dma_addr_t dma; 37 u32 td_cmd; 38 u16 i; 39 40 /* VSI and Tx ring */ 41 if (!vsi) 42 return -ENOENT; 43 tx_ring = vsi->tx_rings[0]; 44 if (!tx_ring || !tx_ring->desc) 45 return -ENOENT; 46 dev = tx_ring->dev; 47 48 /* we are using two descriptors to add/del a filter and we can wait */ 49 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 50 if (!i) 51 return -EAGAIN; 52 msleep_interruptible(1); 53 } 54 55 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 56 DMA_TO_DEVICE); 57 58 if (dma_mapping_error(dev, dma)) 59 return -EINVAL; 60 61 /* grab the next descriptor */ 62 i = tx_ring->next_to_use; 63 first = &tx_ring->tx_buf[i]; 64 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 65 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 66 67 i++; 68 i = (i < tx_ring->count) ? i : 0; 69 tx_desc = ICE_TX_DESC(tx_ring, i); 70 tx_buf = &tx_ring->tx_buf[i]; 71 72 i++; 73 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 74 75 memset(tx_buf, 0, sizeof(*tx_buf)); 76 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 77 dma_unmap_addr_set(tx_buf, dma, dma); 78 79 tx_desc->buf_addr = cpu_to_le64(dma); 80 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 81 ICE_TX_DESC_CMD_RE; 82 83 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 84 tx_buf->raw_buf = raw_packet; 85 86 tx_desc->cmd_type_offset_bsz = 87 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 88 89 /* Force memory write to complete before letting h/w know 90 * there are new descriptors to fetch. 91 */ 92 wmb(); 93 94 /* mark the data descriptor to be watched */ 95 first->next_to_watch = tx_desc; 96 97 writel(tx_ring->next_to_use, tx_ring->tail); 98 99 return 0; 100 } 101 102 /** 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer 104 * @ring: the ring that owns the buffer 105 * @tx_buf: the buffer to free 106 */ 107 static void 108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 109 { 110 if (tx_buf->skb) { 111 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 112 devm_kfree(ring->dev, tx_buf->raw_buf); 113 else if (ice_ring_is_xdp(ring)) 114 page_frag_free(tx_buf->raw_buf); 115 else 116 dev_kfree_skb_any(tx_buf->skb); 117 if (dma_unmap_len(tx_buf, len)) 118 dma_unmap_single(ring->dev, 119 dma_unmap_addr(tx_buf, dma), 120 dma_unmap_len(tx_buf, len), 121 DMA_TO_DEVICE); 122 } else if (dma_unmap_len(tx_buf, len)) { 123 dma_unmap_page(ring->dev, 124 dma_unmap_addr(tx_buf, dma), 125 dma_unmap_len(tx_buf, len), 126 DMA_TO_DEVICE); 127 } 128 129 tx_buf->next_to_watch = NULL; 130 tx_buf->skb = NULL; 131 dma_unmap_len_set(tx_buf, len, 0); 132 /* tx_buf must be completely set up in the transmit path */ 133 } 134 135 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 136 { 137 return netdev_get_tx_queue(ring->netdev, ring->q_index); 138 } 139 140 /** 141 * ice_clean_tx_ring - Free any empty Tx buffers 142 * @tx_ring: ring to be cleaned 143 */ 144 void ice_clean_tx_ring(struct ice_ring *tx_ring) 145 { 146 u16 i; 147 148 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) { 149 ice_xsk_clean_xdp_ring(tx_ring); 150 goto tx_skip_free; 151 } 152 153 /* ring already cleared, nothing to do */ 154 if (!tx_ring->tx_buf) 155 return; 156 157 /* Free all the Tx ring sk_buffs */ 158 for (i = 0; i < tx_ring->count; i++) 159 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 160 161 tx_skip_free: 162 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 163 164 /* Zero out the descriptor ring */ 165 memset(tx_ring->desc, 0, tx_ring->size); 166 167 tx_ring->next_to_use = 0; 168 tx_ring->next_to_clean = 0; 169 170 if (!tx_ring->netdev) 171 return; 172 173 /* cleanup Tx queue statistics */ 174 netdev_tx_reset_queue(txring_txq(tx_ring)); 175 } 176 177 /** 178 * ice_free_tx_ring - Free Tx resources per queue 179 * @tx_ring: Tx descriptor ring for a specific queue 180 * 181 * Free all transmit software resources 182 */ 183 void ice_free_tx_ring(struct ice_ring *tx_ring) 184 { 185 ice_clean_tx_ring(tx_ring); 186 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 187 tx_ring->tx_buf = NULL; 188 189 if (tx_ring->desc) { 190 dmam_free_coherent(tx_ring->dev, tx_ring->size, 191 tx_ring->desc, tx_ring->dma); 192 tx_ring->desc = NULL; 193 } 194 } 195 196 /** 197 * ice_clean_tx_irq - Reclaim resources after transmit completes 198 * @tx_ring: Tx ring to clean 199 * @napi_budget: Used to determine if we are in netpoll 200 * 201 * Returns true if there's any budget left (e.g. the clean is finished) 202 */ 203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) 204 { 205 unsigned int total_bytes = 0, total_pkts = 0; 206 unsigned int budget = ICE_DFLT_IRQ_WORK; 207 struct ice_vsi *vsi = tx_ring->vsi; 208 s16 i = tx_ring->next_to_clean; 209 struct ice_tx_desc *tx_desc; 210 struct ice_tx_buf *tx_buf; 211 212 tx_buf = &tx_ring->tx_buf[i]; 213 tx_desc = ICE_TX_DESC(tx_ring, i); 214 i -= tx_ring->count; 215 216 prefetch(&vsi->state); 217 218 do { 219 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 220 221 /* if next_to_watch is not set then there is no work pending */ 222 if (!eop_desc) 223 break; 224 225 smp_rmb(); /* prevent any other reads prior to eop_desc */ 226 227 /* if the descriptor isn't done, no work yet to do */ 228 if (!(eop_desc->cmd_type_offset_bsz & 229 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 230 break; 231 232 /* clear next_to_watch to prevent false hangs */ 233 tx_buf->next_to_watch = NULL; 234 235 /* update the statistics for this packet */ 236 total_bytes += tx_buf->bytecount; 237 total_pkts += tx_buf->gso_segs; 238 239 if (ice_ring_is_xdp(tx_ring)) 240 page_frag_free(tx_buf->raw_buf); 241 else 242 /* free the skb */ 243 napi_consume_skb(tx_buf->skb, napi_budget); 244 245 /* unmap skb header data */ 246 dma_unmap_single(tx_ring->dev, 247 dma_unmap_addr(tx_buf, dma), 248 dma_unmap_len(tx_buf, len), 249 DMA_TO_DEVICE); 250 251 /* clear tx_buf data */ 252 tx_buf->skb = NULL; 253 dma_unmap_len_set(tx_buf, len, 0); 254 255 /* unmap remaining buffers */ 256 while (tx_desc != eop_desc) { 257 tx_buf++; 258 tx_desc++; 259 i++; 260 if (unlikely(!i)) { 261 i -= tx_ring->count; 262 tx_buf = tx_ring->tx_buf; 263 tx_desc = ICE_TX_DESC(tx_ring, 0); 264 } 265 266 /* unmap any remaining paged data */ 267 if (dma_unmap_len(tx_buf, len)) { 268 dma_unmap_page(tx_ring->dev, 269 dma_unmap_addr(tx_buf, dma), 270 dma_unmap_len(tx_buf, len), 271 DMA_TO_DEVICE); 272 dma_unmap_len_set(tx_buf, len, 0); 273 } 274 } 275 276 /* move us one more past the eop_desc for start of next pkt */ 277 tx_buf++; 278 tx_desc++; 279 i++; 280 if (unlikely(!i)) { 281 i -= tx_ring->count; 282 tx_buf = tx_ring->tx_buf; 283 tx_desc = ICE_TX_DESC(tx_ring, 0); 284 } 285 286 prefetch(tx_desc); 287 288 /* update budget accounting */ 289 budget--; 290 } while (likely(budget)); 291 292 i += tx_ring->count; 293 tx_ring->next_to_clean = i; 294 295 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 296 297 if (ice_ring_is_xdp(tx_ring)) 298 return !!budget; 299 300 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 301 total_bytes); 302 303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 304 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 305 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 306 /* Make sure that anybody stopping the queue after this 307 * sees the new next_to_clean. 308 */ 309 smp_mb(); 310 if (__netif_subqueue_stopped(tx_ring->netdev, 311 tx_ring->q_index) && 312 !test_bit(__ICE_DOWN, vsi->state)) { 313 netif_wake_subqueue(tx_ring->netdev, 314 tx_ring->q_index); 315 ++tx_ring->tx_stats.restart_q; 316 } 317 } 318 319 return !!budget; 320 } 321 322 /** 323 * ice_setup_tx_ring - Allocate the Tx descriptors 324 * @tx_ring: the Tx ring to set up 325 * 326 * Return 0 on success, negative on error 327 */ 328 int ice_setup_tx_ring(struct ice_ring *tx_ring) 329 { 330 struct device *dev = tx_ring->dev; 331 332 if (!dev) 333 return -ENOMEM; 334 335 /* warn if we are about to overwrite the pointer */ 336 WARN_ON(tx_ring->tx_buf); 337 tx_ring->tx_buf = 338 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 339 GFP_KERNEL); 340 if (!tx_ring->tx_buf) 341 return -ENOMEM; 342 343 /* round up to nearest page */ 344 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 345 PAGE_SIZE); 346 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 347 GFP_KERNEL); 348 if (!tx_ring->desc) { 349 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 350 tx_ring->size); 351 goto err; 352 } 353 354 tx_ring->next_to_use = 0; 355 tx_ring->next_to_clean = 0; 356 tx_ring->tx_stats.prev_pkt = -1; 357 return 0; 358 359 err: 360 devm_kfree(dev, tx_ring->tx_buf); 361 tx_ring->tx_buf = NULL; 362 return -ENOMEM; 363 } 364 365 /** 366 * ice_clean_rx_ring - Free Rx buffers 367 * @rx_ring: ring to be cleaned 368 */ 369 void ice_clean_rx_ring(struct ice_ring *rx_ring) 370 { 371 struct device *dev = rx_ring->dev; 372 u16 i; 373 374 /* ring already cleared, nothing to do */ 375 if (!rx_ring->rx_buf) 376 return; 377 378 if (rx_ring->xsk_umem) { 379 ice_xsk_clean_rx_ring(rx_ring); 380 goto rx_skip_free; 381 } 382 383 /* Free all the Rx ring sk_buffs */ 384 for (i = 0; i < rx_ring->count; i++) { 385 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 386 387 if (rx_buf->skb) { 388 dev_kfree_skb(rx_buf->skb); 389 rx_buf->skb = NULL; 390 } 391 if (!rx_buf->page) 392 continue; 393 394 /* Invalidate cache lines that may have been written to by 395 * device so that we avoid corrupting memory. 396 */ 397 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 398 rx_buf->page_offset, 399 rx_ring->rx_buf_len, 400 DMA_FROM_DEVICE); 401 402 /* free resources associated with mapping */ 403 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 404 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 405 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 406 407 rx_buf->page = NULL; 408 rx_buf->page_offset = 0; 409 } 410 411 rx_skip_free: 412 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 413 414 /* Zero out the descriptor ring */ 415 memset(rx_ring->desc, 0, rx_ring->size); 416 417 rx_ring->next_to_alloc = 0; 418 rx_ring->next_to_clean = 0; 419 rx_ring->next_to_use = 0; 420 } 421 422 /** 423 * ice_free_rx_ring - Free Rx resources 424 * @rx_ring: ring to clean the resources from 425 * 426 * Free all receive software resources 427 */ 428 void ice_free_rx_ring(struct ice_ring *rx_ring) 429 { 430 ice_clean_rx_ring(rx_ring); 431 if (rx_ring->vsi->type == ICE_VSI_PF) 432 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 433 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 434 rx_ring->xdp_prog = NULL; 435 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 436 rx_ring->rx_buf = NULL; 437 438 if (rx_ring->desc) { 439 dmam_free_coherent(rx_ring->dev, rx_ring->size, 440 rx_ring->desc, rx_ring->dma); 441 rx_ring->desc = NULL; 442 } 443 } 444 445 /** 446 * ice_setup_rx_ring - Allocate the Rx descriptors 447 * @rx_ring: the Rx ring to set up 448 * 449 * Return 0 on success, negative on error 450 */ 451 int ice_setup_rx_ring(struct ice_ring *rx_ring) 452 { 453 struct device *dev = rx_ring->dev; 454 455 if (!dev) 456 return -ENOMEM; 457 458 /* warn if we are about to overwrite the pointer */ 459 WARN_ON(rx_ring->rx_buf); 460 rx_ring->rx_buf = 461 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 462 GFP_KERNEL); 463 if (!rx_ring->rx_buf) 464 return -ENOMEM; 465 466 /* round up to nearest page */ 467 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 468 PAGE_SIZE); 469 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 470 GFP_KERNEL); 471 if (!rx_ring->desc) { 472 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 473 rx_ring->size); 474 goto err; 475 } 476 477 rx_ring->next_to_use = 0; 478 rx_ring->next_to_clean = 0; 479 480 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 481 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 482 483 if (rx_ring->vsi->type == ICE_VSI_PF && 484 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 485 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 486 rx_ring->q_index)) 487 goto err; 488 return 0; 489 490 err: 491 devm_kfree(dev, rx_ring->rx_buf); 492 rx_ring->rx_buf = NULL; 493 return -ENOMEM; 494 } 495 496 /** 497 * ice_rx_offset - Return expected offset into page to access data 498 * @rx_ring: Ring we are requesting offset of 499 * 500 * Returns the offset value for ring into the data buffer. 501 */ 502 static unsigned int ice_rx_offset(struct ice_ring *rx_ring) 503 { 504 if (ice_ring_uses_build_skb(rx_ring)) 505 return ICE_SKB_PAD; 506 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 507 return XDP_PACKET_HEADROOM; 508 509 return 0; 510 } 511 512 static unsigned int 513 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) 514 { 515 unsigned int truesize; 516 517 #if (PAGE_SIZE < 8192) 518 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 519 #else 520 truesize = ice_rx_offset(rx_ring) ? 521 SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) + 522 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 523 SKB_DATA_ALIGN(size); 524 #endif 525 return truesize; 526 } 527 528 /** 529 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 530 * @rx_ring: Rx ring 531 * @xdp: xdp_buff used as input to the XDP program 532 * @xdp_prog: XDP program to run 533 * 534 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 535 */ 536 static int 537 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, 538 struct bpf_prog *xdp_prog) 539 { 540 int err, result = ICE_XDP_PASS; 541 struct ice_ring *xdp_ring; 542 u32 act; 543 544 act = bpf_prog_run_xdp(xdp_prog, xdp); 545 switch (act) { 546 case XDP_PASS: 547 break; 548 case XDP_TX: 549 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; 550 result = ice_xmit_xdp_buff(xdp, xdp_ring); 551 break; 552 case XDP_REDIRECT: 553 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 554 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; 555 break; 556 default: 557 bpf_warn_invalid_xdp_action(act); 558 fallthrough; 559 case XDP_ABORTED: 560 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 561 fallthrough; 562 case XDP_DROP: 563 result = ICE_XDP_CONSUMED; 564 break; 565 } 566 567 return result; 568 } 569 570 /** 571 * ice_xdp_xmit - submit packets to XDP ring for transmission 572 * @dev: netdev 573 * @n: number of XDP frames to be transmitted 574 * @frames: XDP frames to be transmitted 575 * @flags: transmit flags 576 * 577 * Returns number of frames successfully sent. Frames that fail are 578 * free'ed via XDP return API. 579 * For error cases, a negative errno code is returned and no-frames 580 * are transmitted (caller must handle freeing frames). 581 */ 582 int 583 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 584 u32 flags) 585 { 586 struct ice_netdev_priv *np = netdev_priv(dev); 587 unsigned int queue_index = smp_processor_id(); 588 struct ice_vsi *vsi = np->vsi; 589 struct ice_ring *xdp_ring; 590 int drops = 0, i; 591 592 if (test_bit(__ICE_DOWN, vsi->state)) 593 return -ENETDOWN; 594 595 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 596 return -ENXIO; 597 598 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 599 return -EINVAL; 600 601 xdp_ring = vsi->xdp_rings[queue_index]; 602 for (i = 0; i < n; i++) { 603 struct xdp_frame *xdpf = frames[i]; 604 int err; 605 606 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 607 if (err != ICE_XDP_TX) { 608 xdp_return_frame_rx_napi(xdpf); 609 drops++; 610 } 611 } 612 613 if (unlikely(flags & XDP_XMIT_FLUSH)) 614 ice_xdp_ring_update_tail(xdp_ring); 615 616 return n - drops; 617 } 618 619 /** 620 * ice_alloc_mapped_page - recycle or make a new page 621 * @rx_ring: ring to use 622 * @bi: rx_buf struct to modify 623 * 624 * Returns true if the page was successfully allocated or 625 * reused. 626 */ 627 static bool 628 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 629 { 630 struct page *page = bi->page; 631 dma_addr_t dma; 632 633 /* since we are recycling buffers we should seldom need to alloc */ 634 if (likely(page)) 635 return true; 636 637 /* alloc new page for storage */ 638 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 639 if (unlikely(!page)) { 640 rx_ring->rx_stats.alloc_page_failed++; 641 return false; 642 } 643 644 /* map page for use */ 645 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 646 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 647 648 /* if mapping failed free memory back to system since 649 * there isn't much point in holding memory we can't use 650 */ 651 if (dma_mapping_error(rx_ring->dev, dma)) { 652 __free_pages(page, ice_rx_pg_order(rx_ring)); 653 rx_ring->rx_stats.alloc_page_failed++; 654 return false; 655 } 656 657 bi->dma = dma; 658 bi->page = page; 659 bi->page_offset = ice_rx_offset(rx_ring); 660 page_ref_add(page, USHRT_MAX - 1); 661 bi->pagecnt_bias = USHRT_MAX; 662 663 return true; 664 } 665 666 /** 667 * ice_alloc_rx_bufs - Replace used receive buffers 668 * @rx_ring: ring to place buffers on 669 * @cleaned_count: number of buffers to replace 670 * 671 * Returns false if all allocations were successful, true if any fail. Returning 672 * true signals to the caller that we didn't replace cleaned_count buffers and 673 * there is more work to do. 674 * 675 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 676 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 677 * multiple tail writes per call. 678 */ 679 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 680 { 681 union ice_32b_rx_flex_desc *rx_desc; 682 u16 ntu = rx_ring->next_to_use; 683 struct ice_rx_buf *bi; 684 685 /* do nothing if no valid netdev defined */ 686 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 687 !cleaned_count) 688 return false; 689 690 /* get the Rx descriptor and buffer based on next_to_use */ 691 rx_desc = ICE_RX_DESC(rx_ring, ntu); 692 bi = &rx_ring->rx_buf[ntu]; 693 694 do { 695 /* if we fail here, we have work remaining */ 696 if (!ice_alloc_mapped_page(rx_ring, bi)) 697 break; 698 699 /* sync the buffer for use by the device */ 700 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 701 bi->page_offset, 702 rx_ring->rx_buf_len, 703 DMA_FROM_DEVICE); 704 705 /* Refresh the desc even if buffer_addrs didn't change 706 * because each write-back erases this info. 707 */ 708 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 709 710 rx_desc++; 711 bi++; 712 ntu++; 713 if (unlikely(ntu == rx_ring->count)) { 714 rx_desc = ICE_RX_DESC(rx_ring, 0); 715 bi = rx_ring->rx_buf; 716 ntu = 0; 717 } 718 719 /* clear the status bits for the next_to_use descriptor */ 720 rx_desc->wb.status_error0 = 0; 721 722 cleaned_count--; 723 } while (cleaned_count); 724 725 if (rx_ring->next_to_use != ntu) 726 ice_release_rx_desc(rx_ring, ntu); 727 728 return !!cleaned_count; 729 } 730 731 /** 732 * ice_page_is_reserved - check if reuse is possible 733 * @page: page struct to check 734 */ 735 static bool ice_page_is_reserved(struct page *page) 736 { 737 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 738 } 739 740 /** 741 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 742 * @rx_buf: Rx buffer to adjust 743 * @size: Size of adjustment 744 * 745 * Update the offset within page so that Rx buf will be ready to be reused. 746 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 747 * so the second half of page assigned to Rx buffer will be used, otherwise 748 * the offset is moved by "size" bytes 749 */ 750 static void 751 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 752 { 753 #if (PAGE_SIZE < 8192) 754 /* flip page offset to other buffer */ 755 rx_buf->page_offset ^= size; 756 #else 757 /* move offset up to the next cache line */ 758 rx_buf->page_offset += size; 759 #endif 760 } 761 762 /** 763 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 764 * @rx_buf: buffer containing the page 765 * 766 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 767 * which will assign the current buffer to the buffer that next_to_alloc is 768 * pointing to; otherwise, the DMA mapping needs to be destroyed and 769 * page freed 770 */ 771 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 772 { 773 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 774 struct page *page = rx_buf->page; 775 776 /* avoid re-using remote pages */ 777 if (unlikely(ice_page_is_reserved(page))) 778 return false; 779 780 #if (PAGE_SIZE < 8192) 781 /* if we are only owner of page we can reuse it */ 782 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 783 return false; 784 #else 785 #define ICE_LAST_OFFSET \ 786 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 787 if (rx_buf->page_offset > ICE_LAST_OFFSET) 788 return false; 789 #endif /* PAGE_SIZE < 8192) */ 790 791 /* If we have drained the page fragment pool we need to update 792 * the pagecnt_bias and page count so that we fully restock the 793 * number of references the driver holds. 794 */ 795 if (unlikely(pagecnt_bias == 1)) { 796 page_ref_add(page, USHRT_MAX - 1); 797 rx_buf->pagecnt_bias = USHRT_MAX; 798 } 799 800 return true; 801 } 802 803 /** 804 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 805 * @rx_ring: Rx descriptor ring to transact packets on 806 * @rx_buf: buffer containing page to add 807 * @skb: sk_buff to place the data into 808 * @size: packet length from rx_desc 809 * 810 * This function will add the data contained in rx_buf->page to the skb. 811 * It will just attach the page as a frag to the skb. 812 * The function will then update the page offset. 813 */ 814 static void 815 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 816 struct sk_buff *skb, unsigned int size) 817 { 818 #if (PAGE_SIZE >= 8192) 819 unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring)); 820 #else 821 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 822 #endif 823 824 if (!size) 825 return; 826 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 827 rx_buf->page_offset, size, truesize); 828 829 /* page is being used so we must update the page offset */ 830 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 831 } 832 833 /** 834 * ice_reuse_rx_page - page flip buffer and store it back on the ring 835 * @rx_ring: Rx descriptor ring to store buffers on 836 * @old_buf: donor buffer to have page reused 837 * 838 * Synchronizes page for reuse by the adapter 839 */ 840 static void 841 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 842 { 843 u16 nta = rx_ring->next_to_alloc; 844 struct ice_rx_buf *new_buf; 845 846 new_buf = &rx_ring->rx_buf[nta]; 847 848 /* update, and store next to alloc */ 849 nta++; 850 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 851 852 /* Transfer page from old buffer to new buffer. 853 * Move each member individually to avoid possible store 854 * forwarding stalls and unnecessary copy of skb. 855 */ 856 new_buf->dma = old_buf->dma; 857 new_buf->page = old_buf->page; 858 new_buf->page_offset = old_buf->page_offset; 859 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 860 } 861 862 /** 863 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 864 * @rx_ring: Rx descriptor ring to transact packets on 865 * @skb: skb to be used 866 * @size: size of buffer to add to skb 867 * 868 * This function will pull an Rx buffer from the ring and synchronize it 869 * for use by the CPU. 870 */ 871 static struct ice_rx_buf * 872 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, 873 const unsigned int size) 874 { 875 struct ice_rx_buf *rx_buf; 876 877 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 878 prefetchw(rx_buf->page); 879 *skb = rx_buf->skb; 880 881 if (!size) 882 return rx_buf; 883 /* we are reusing so sync this buffer for CPU use */ 884 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 885 rx_buf->page_offset, size, 886 DMA_FROM_DEVICE); 887 888 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 889 rx_buf->pagecnt_bias--; 890 891 return rx_buf; 892 } 893 894 /** 895 * ice_build_skb - Build skb around an existing buffer 896 * @rx_ring: Rx descriptor ring to transact packets on 897 * @rx_buf: Rx buffer to pull data from 898 * @xdp: xdp_buff pointing to the data 899 * 900 * This function builds an skb around an existing Rx buffer, taking care 901 * to set up the skb correctly and avoid any memcpy overhead. 902 */ 903 static struct sk_buff * 904 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 905 struct xdp_buff *xdp) 906 { 907 u8 metasize = xdp->data - xdp->data_meta; 908 #if (PAGE_SIZE < 8192) 909 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 910 #else 911 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 912 SKB_DATA_ALIGN(xdp->data_end - 913 xdp->data_hard_start); 914 #endif 915 struct sk_buff *skb; 916 917 /* Prefetch first cache line of first page. If xdp->data_meta 918 * is unused, this points exactly as xdp->data, otherwise we 919 * likely have a consumer accessing first few bytes of meta 920 * data, and then actual data. 921 */ 922 prefetch(xdp->data_meta); 923 #if L1_CACHE_BYTES < 128 924 prefetch((void *)(xdp->data + L1_CACHE_BYTES)); 925 #endif 926 /* build an skb around the page buffer */ 927 skb = build_skb(xdp->data_hard_start, truesize); 928 if (unlikely(!skb)) 929 return NULL; 930 931 /* must to record Rx queue, otherwise OS features such as 932 * symmetric queue won't work 933 */ 934 skb_record_rx_queue(skb, rx_ring->q_index); 935 936 /* update pointers within the skb to store the data */ 937 skb_reserve(skb, xdp->data - xdp->data_hard_start); 938 __skb_put(skb, xdp->data_end - xdp->data); 939 if (metasize) 940 skb_metadata_set(skb, metasize); 941 942 /* buffer is used by skb, update page_offset */ 943 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 944 945 return skb; 946 } 947 948 /** 949 * ice_construct_skb - Allocate skb and populate it 950 * @rx_ring: Rx descriptor ring to transact packets on 951 * @rx_buf: Rx buffer to pull data from 952 * @xdp: xdp_buff pointing to the data 953 * 954 * This function allocates an skb. It then populates it with the page 955 * data from the current receive descriptor, taking care to set up the 956 * skb correctly. 957 */ 958 static struct sk_buff * 959 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 960 struct xdp_buff *xdp) 961 { 962 unsigned int size = xdp->data_end - xdp->data; 963 unsigned int headlen; 964 struct sk_buff *skb; 965 966 /* prefetch first cache line of first page */ 967 prefetch(xdp->data); 968 #if L1_CACHE_BYTES < 128 969 prefetch((void *)(xdp->data + L1_CACHE_BYTES)); 970 #endif /* L1_CACHE_BYTES */ 971 972 /* allocate a skb to store the frags */ 973 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 974 GFP_ATOMIC | __GFP_NOWARN); 975 if (unlikely(!skb)) 976 return NULL; 977 978 skb_record_rx_queue(skb, rx_ring->q_index); 979 /* Determine available headroom for copy */ 980 headlen = size; 981 if (headlen > ICE_RX_HDR_SIZE) 982 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 983 984 /* align pull length to size of long to optimize memcpy performance */ 985 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 986 sizeof(long))); 987 988 /* if we exhaust the linear part then add what is left as a frag */ 989 size -= headlen; 990 if (size) { 991 #if (PAGE_SIZE >= 8192) 992 unsigned int truesize = SKB_DATA_ALIGN(size); 993 #else 994 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 995 #endif 996 skb_add_rx_frag(skb, 0, rx_buf->page, 997 rx_buf->page_offset + headlen, size, truesize); 998 /* buffer is used by skb, update page_offset */ 999 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1000 } else { 1001 /* buffer is unused, reset bias back to rx_buf; data was copied 1002 * onto skb's linear part so there's no need for adjusting 1003 * page offset and we can reuse this buffer as-is 1004 */ 1005 rx_buf->pagecnt_bias++; 1006 } 1007 1008 return skb; 1009 } 1010 1011 /** 1012 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1013 * @rx_ring: Rx descriptor ring to transact packets on 1014 * @rx_buf: Rx buffer to pull data from 1015 * 1016 * This function will update next_to_clean and then clean up the contents 1017 * of the rx_buf. It will either recycle the buffer or unmap it and free 1018 * the associated resources. 1019 */ 1020 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) 1021 { 1022 u16 ntc = rx_ring->next_to_clean + 1; 1023 1024 /* fetch, update, and store next to clean */ 1025 ntc = (ntc < rx_ring->count) ? ntc : 0; 1026 rx_ring->next_to_clean = ntc; 1027 1028 if (!rx_buf) 1029 return; 1030 1031 if (ice_can_reuse_rx_page(rx_buf)) { 1032 /* hand second half of page back to the ring */ 1033 ice_reuse_rx_page(rx_ring, rx_buf); 1034 } else { 1035 /* we are not reusing the buffer so unmap it */ 1036 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1037 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1038 ICE_RX_DMA_ATTR); 1039 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1040 } 1041 1042 /* clear contents of buffer_info */ 1043 rx_buf->page = NULL; 1044 rx_buf->skb = NULL; 1045 } 1046 1047 /** 1048 * ice_is_non_eop - process handling of non-EOP buffers 1049 * @rx_ring: Rx ring being processed 1050 * @rx_desc: Rx descriptor for current buffer 1051 * @skb: Current socket buffer containing buffer in progress 1052 * 1053 * If the buffer is an EOP buffer, this function exits returning false, 1054 * otherwise return true indicating that this is in fact a non-EOP buffer. 1055 */ 1056 static bool 1057 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 1058 struct sk_buff *skb) 1059 { 1060 /* if we are the last buffer then there is nothing else to do */ 1061 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1062 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1063 return false; 1064 1065 /* place skb in next buffer to be received */ 1066 rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb; 1067 rx_ring->rx_stats.non_eop_descs++; 1068 1069 return true; 1070 } 1071 1072 /** 1073 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1074 * @rx_ring: Rx descriptor ring to transact packets on 1075 * @budget: Total limit on number of packets to process 1076 * 1077 * This function provides a "bounce buffer" approach to Rx interrupt 1078 * processing. The advantage to this is that on systems that have 1079 * expensive overhead for IOMMU access this provides a means of avoiding 1080 * it by maintaining the mapping of the page to the system. 1081 * 1082 * Returns amount of work completed 1083 */ 1084 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1085 { 1086 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1087 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1088 unsigned int xdp_res, xdp_xmit = 0; 1089 struct bpf_prog *xdp_prog = NULL; 1090 struct xdp_buff xdp; 1091 bool failure; 1092 1093 xdp.rxq = &rx_ring->xdp_rxq; 1094 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1095 #if (PAGE_SIZE < 8192) 1096 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1097 #endif 1098 1099 /* start the loop to process Rx packets bounded by 'budget' */ 1100 while (likely(total_rx_pkts < (unsigned int)budget)) { 1101 union ice_32b_rx_flex_desc *rx_desc; 1102 struct ice_rx_buf *rx_buf; 1103 struct sk_buff *skb; 1104 unsigned int size; 1105 u16 stat_err_bits; 1106 u16 vlan_tag = 0; 1107 u8 rx_ptype; 1108 1109 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1110 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1111 1112 /* status_error_len will always be zero for unused descriptors 1113 * because it's cleared in cleanup, and overlaps with hdr_addr 1114 * which is always zero because packet split isn't used, if the 1115 * hardware wrote DD then it will be non-zero 1116 */ 1117 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1118 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1119 break; 1120 1121 /* This memory barrier is needed to keep us from reading 1122 * any other fields out of the rx_desc until we know the 1123 * DD bit is set. 1124 */ 1125 dma_rmb(); 1126 1127 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1128 ice_put_rx_buf(rx_ring, NULL); 1129 cleaned_count++; 1130 continue; 1131 } 1132 1133 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1134 ICE_RX_FLX_DESC_PKT_LEN_M; 1135 1136 /* retrieve a buffer from the ring */ 1137 rx_buf = ice_get_rx_buf(rx_ring, &skb, size); 1138 1139 if (!size) { 1140 xdp.data = NULL; 1141 xdp.data_end = NULL; 1142 xdp.data_hard_start = NULL; 1143 xdp.data_meta = NULL; 1144 goto construct_skb; 1145 } 1146 1147 xdp.data = page_address(rx_buf->page) + rx_buf->page_offset; 1148 xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring); 1149 xdp.data_meta = xdp.data; 1150 xdp.data_end = xdp.data + size; 1151 #if (PAGE_SIZE > 4096) 1152 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1153 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1154 #endif 1155 1156 rcu_read_lock(); 1157 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1158 if (!xdp_prog) { 1159 rcu_read_unlock(); 1160 goto construct_skb; 1161 } 1162 1163 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); 1164 rcu_read_unlock(); 1165 if (!xdp_res) 1166 goto construct_skb; 1167 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1168 xdp_xmit |= xdp_res; 1169 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1170 } else { 1171 rx_buf->pagecnt_bias++; 1172 } 1173 total_rx_bytes += size; 1174 total_rx_pkts++; 1175 1176 cleaned_count++; 1177 ice_put_rx_buf(rx_ring, rx_buf); 1178 continue; 1179 construct_skb: 1180 if (skb) { 1181 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1182 } else if (likely(xdp.data)) { 1183 if (ice_ring_uses_build_skb(rx_ring)) 1184 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1185 else 1186 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1187 } 1188 /* exit if we failed to retrieve a buffer */ 1189 if (!skb) { 1190 rx_ring->rx_stats.alloc_buf_failed++; 1191 if (rx_buf) 1192 rx_buf->pagecnt_bias++; 1193 break; 1194 } 1195 1196 ice_put_rx_buf(rx_ring, rx_buf); 1197 cleaned_count++; 1198 1199 /* skip if it is NOP desc */ 1200 if (ice_is_non_eop(rx_ring, rx_desc, skb)) 1201 continue; 1202 1203 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1204 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1205 dev_kfree_skb_any(skb); 1206 continue; 1207 } 1208 1209 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1210 if (ice_test_staterr(rx_desc, stat_err_bits)) 1211 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1212 1213 /* pad the skb if needed, to make a valid ethernet frame */ 1214 if (eth_skb_pad(skb)) { 1215 skb = NULL; 1216 continue; 1217 } 1218 1219 /* probably a little skewed due to removing CRC */ 1220 total_rx_bytes += skb->len; 1221 1222 /* populate checksum, VLAN, and protocol */ 1223 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1224 ICE_RX_FLEX_DESC_PTYPE_M; 1225 1226 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1227 1228 /* send completed skb up the stack */ 1229 ice_receive_skb(rx_ring, skb, vlan_tag); 1230 1231 /* update budget accounting */ 1232 total_rx_pkts++; 1233 } 1234 1235 /* return up to cleaned_count buffers to hardware */ 1236 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1237 1238 if (xdp_prog) 1239 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 1240 1241 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1242 1243 /* guarantee a trip back through this routine if there was a failure */ 1244 return failure ? budget : (int)total_rx_pkts; 1245 } 1246 1247 /** 1248 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic 1249 * @port_info: port_info structure containing the current link speed 1250 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine 1251 * @itr: ITR value to update 1252 * 1253 * Calculate how big of an increment should be applied to the ITR value passed 1254 * in based on wmem_default, SKB overhead, ethernet overhead, and the current 1255 * link speed. 1256 * 1257 * The following is a calculation derived from: 1258 * wmem_default / (size + overhead) = desired_pkts_per_int 1259 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1260 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1261 * 1262 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1263 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1264 * formula down to: 1265 * 1266 * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24 1267 * ITR = -------------------------------------------- * -------------- 1268 * rate pkt_size + 640 1269 */ 1270 static unsigned int 1271 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info, 1272 unsigned int avg_pkt_size, 1273 unsigned int itr) 1274 { 1275 switch (port_info->phy.link_info.link_speed) { 1276 case ICE_AQ_LINK_SPEED_100GB: 1277 itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24), 1278 avg_pkt_size + 640); 1279 break; 1280 case ICE_AQ_LINK_SPEED_50GB: 1281 itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24), 1282 avg_pkt_size + 640); 1283 break; 1284 case ICE_AQ_LINK_SPEED_40GB: 1285 itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24), 1286 avg_pkt_size + 640); 1287 break; 1288 case ICE_AQ_LINK_SPEED_25GB: 1289 itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24), 1290 avg_pkt_size + 640); 1291 break; 1292 case ICE_AQ_LINK_SPEED_20GB: 1293 itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24), 1294 avg_pkt_size + 640); 1295 break; 1296 case ICE_AQ_LINK_SPEED_10GB: 1297 default: 1298 itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24), 1299 avg_pkt_size + 640); 1300 break; 1301 } 1302 1303 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1304 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1305 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1306 } 1307 1308 return itr; 1309 } 1310 1311 /** 1312 * ice_update_itr - update the adaptive ITR value based on statistics 1313 * @q_vector: structure containing interrupt and ring information 1314 * @rc: structure containing ring performance data 1315 * 1316 * Stores a new ITR value based on packets and byte 1317 * counts during the last interrupt. The advantage of per interrupt 1318 * computation is faster updates and more accurate ITR for the current 1319 * traffic pattern. Constants in this function were computed 1320 * based on theoretical maximum wire speed and thresholds were set based 1321 * on testing data as well as attempting to minimize response time 1322 * while increasing bulk throughput. 1323 */ 1324 static void 1325 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) 1326 { 1327 unsigned long next_update = jiffies; 1328 unsigned int packets, bytes, itr; 1329 bool container_is_rx; 1330 1331 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) 1332 return; 1333 1334 /* If itr_countdown is set it means we programmed an ITR within 1335 * the last 4 interrupt cycles. This has a side effect of us 1336 * potentially firing an early interrupt. In order to work around 1337 * this we need to throw out any data received for a few 1338 * interrupts following the update. 1339 */ 1340 if (q_vector->itr_countdown) { 1341 itr = rc->target_itr; 1342 goto clear_counts; 1343 } 1344 1345 container_is_rx = (&q_vector->rx == rc); 1346 /* For Rx we want to push the delay up and default to low latency. 1347 * for Tx we want to pull the delay down and default to high latency. 1348 */ 1349 itr = container_is_rx ? 1350 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : 1351 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; 1352 1353 /* If we didn't update within up to 1 - 2 jiffies we can assume 1354 * that either packets are coming in so slow there hasn't been 1355 * any work, or that there is so much work that NAPI is dealing 1356 * with interrupt moderation and we don't need to do anything. 1357 */ 1358 if (time_after(next_update, rc->next_update)) 1359 goto clear_counts; 1360 1361 prefetch(q_vector->vsi->port_info); 1362 1363 packets = rc->total_pkts; 1364 bytes = rc->total_bytes; 1365 1366 if (container_is_rx) { 1367 /* If Rx there are 1 to 4 packets and bytes are less than 1368 * 9000 assume insufficient data to use bulk rate limiting 1369 * approach unless Tx is already in bulk rate limiting. We 1370 * are likely latency driven. 1371 */ 1372 if (packets && packets < 4 && bytes < 9000 && 1373 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { 1374 itr = ICE_ITR_ADAPTIVE_LATENCY; 1375 goto adjust_by_size_and_speed; 1376 } 1377 } else if (packets < 4) { 1378 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1379 * bulk mode and we are receiving 4 or fewer packets just 1380 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1381 * that the Rx can relax. 1382 */ 1383 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && 1384 (q_vector->rx.target_itr & ICE_ITR_MASK) == 1385 ICE_ITR_ADAPTIVE_MAX_USECS) 1386 goto clear_counts; 1387 } else if (packets > 32) { 1388 /* If we have processed over 32 packets in a single interrupt 1389 * for Tx assume we need to switch over to "bulk" mode. 1390 */ 1391 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; 1392 } 1393 1394 /* We have no packets to actually measure against. This means 1395 * either one of the other queues on this vector is active or 1396 * we are a Tx queue doing TSO with too high of an interrupt rate. 1397 * 1398 * Between 4 and 56 we can assume that our current interrupt delay 1399 * is only slightly too low. As such we should increase it by a small 1400 * fixed amount. 1401 */ 1402 if (packets < 56) { 1403 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; 1404 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1405 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1406 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1407 } 1408 goto clear_counts; 1409 } 1410 1411 if (packets <= 256) { 1412 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1413 itr &= ICE_ITR_MASK; 1414 1415 /* Between 56 and 112 is our "goldilocks" zone where we are 1416 * working out "just right". Just report that our current 1417 * ITR is good for us. 1418 */ 1419 if (packets <= 112) 1420 goto clear_counts; 1421 1422 /* If packet count is 128 or greater we are likely looking 1423 * at a slight overrun of the delay we want. Try halving 1424 * our delay to see if that will cut the number of packets 1425 * in half per interrupt. 1426 */ 1427 itr >>= 1; 1428 itr &= ICE_ITR_MASK; 1429 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) 1430 itr = ICE_ITR_ADAPTIVE_MIN_USECS; 1431 1432 goto clear_counts; 1433 } 1434 1435 /* The paths below assume we are dealing with a bulk ITR since 1436 * number of packets is greater than 256. We are just going to have 1437 * to compute a value and try to bring the count under control, 1438 * though for smaller packet sizes there isn't much we can do as 1439 * NAPI polling will likely be kicking in sooner rather than later. 1440 */ 1441 itr = ICE_ITR_ADAPTIVE_BULK; 1442 1443 adjust_by_size_and_speed: 1444 1445 /* based on checks above packets cannot be 0 so division is safe */ 1446 itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info, 1447 bytes / packets, itr); 1448 1449 clear_counts: 1450 /* write back value */ 1451 rc->target_itr = itr; 1452 1453 /* next update should occur within next jiffy */ 1454 rc->next_update = next_update + 1; 1455 1456 rc->total_bytes = 0; 1457 rc->total_pkts = 0; 1458 } 1459 1460 /** 1461 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1462 * @itr_idx: interrupt throttling index 1463 * @itr: interrupt throttling value in usecs 1464 */ 1465 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1466 { 1467 /* The ITR value is reported in microseconds, and the register value is 1468 * recorded in 2 microsecond units. For this reason we only need to 1469 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1470 * granularity as a shift instead of division. The mask makes sure the 1471 * ITR value is never odd so we don't accidentally write into the field 1472 * prior to the ITR field. 1473 */ 1474 itr &= ICE_ITR_MASK; 1475 1476 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1477 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1478 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1479 } 1480 1481 /* The act of updating the ITR will cause it to immediately trigger. In order 1482 * to prevent this from throwing off adaptive update statistics we defer the 1483 * update so that it can only happen so often. So after either Tx or Rx are 1484 * updated we make the adaptive scheme wait until either the ITR completely 1485 * expires via the next_update expiration or we have been through at least 1486 * 3 interrupts. 1487 */ 1488 #define ITR_COUNTDOWN_START 3 1489 1490 /** 1491 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt 1492 * @q_vector: q_vector for which ITR is being updated and interrupt enabled 1493 */ 1494 static void ice_update_ena_itr(struct ice_q_vector *q_vector) 1495 { 1496 struct ice_ring_container *tx = &q_vector->tx; 1497 struct ice_ring_container *rx = &q_vector->rx; 1498 struct ice_vsi *vsi = q_vector->vsi; 1499 u32 itr_val; 1500 1501 /* when exiting WB_ON_ITR lets set a low ITR value and trigger 1502 * interrupts to expire right away in case we have more work ready to go 1503 * already 1504 */ 1505 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) { 1506 itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS); 1507 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1508 /* set target back to last user set value */ 1509 rx->target_itr = rx->itr_setting; 1510 /* set current to what we just wrote and dynamic if needed */ 1511 rx->current_itr = ICE_WB_ON_ITR_USECS | 1512 (rx->itr_setting & ICE_ITR_DYNAMIC); 1513 /* allow normal interrupt flow to start */ 1514 q_vector->itr_countdown = 0; 1515 return; 1516 } 1517 1518 /* This will do nothing if dynamic updates are not enabled */ 1519 ice_update_itr(q_vector, tx); 1520 ice_update_itr(q_vector, rx); 1521 1522 /* This block of logic allows us to get away with only updating 1523 * one ITR value with each interrupt. The idea is to perform a 1524 * pseudo-lazy update with the following criteria. 1525 * 1526 * 1. Rx is given higher priority than Tx if both are in same state 1527 * 2. If we must reduce an ITR that is given highest priority. 1528 * 3. We then give priority to increasing ITR based on amount. 1529 */ 1530 if (rx->target_itr < rx->current_itr) { 1531 /* Rx ITR needs to be reduced, this is highest priority */ 1532 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1533 rx->current_itr = rx->target_itr; 1534 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1535 } else if ((tx->target_itr < tx->current_itr) || 1536 ((rx->target_itr - rx->current_itr) < 1537 (tx->target_itr - tx->current_itr))) { 1538 /* Tx ITR needs to be reduced, this is second priority 1539 * Tx ITR needs to be increased more than Rx, fourth priority 1540 */ 1541 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); 1542 tx->current_itr = tx->target_itr; 1543 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1544 } else if (rx->current_itr != rx->target_itr) { 1545 /* Rx ITR needs to be increased, third priority */ 1546 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1547 rx->current_itr = rx->target_itr; 1548 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1549 } else { 1550 /* Still have to re-enable the interrupts */ 1551 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1552 if (q_vector->itr_countdown) 1553 q_vector->itr_countdown--; 1554 } 1555 1556 if (!test_bit(__ICE_DOWN, q_vector->vsi->state)) 1557 wr32(&q_vector->vsi->back->hw, 1558 GLINT_DYN_CTL(q_vector->reg_idx), 1559 itr_val); 1560 } 1561 1562 /** 1563 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1564 * @q_vector: q_vector to set WB_ON_ITR on 1565 * 1566 * We need to tell hardware to write-back completed descriptors even when 1567 * interrupts are disabled. Descriptors will be written back on cache line 1568 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1569 * descriptors may not be written back if they don't fill a cache line until the 1570 * next interrupt. 1571 * 1572 * This sets the write-back frequency to 2 microseconds as that is the minimum 1573 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to 1574 * make sure hardware knows we aren't meddling with the INTENA_M bit. 1575 */ 1576 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1577 { 1578 struct ice_vsi *vsi = q_vector->vsi; 1579 1580 /* already in WB_ON_ITR mode no need to change it */ 1581 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) 1582 return; 1583 1584 if (q_vector->num_ring_rx) 1585 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1586 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1587 ICE_RX_ITR)); 1588 1589 if (q_vector->num_ring_tx) 1590 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1591 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1592 ICE_TX_ITR)); 1593 1594 q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE; 1595 } 1596 1597 /** 1598 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1599 * @napi: napi struct with our devices info in it 1600 * @budget: amount of work driver is allowed to do this pass, in packets 1601 * 1602 * This function will clean all queues associated with a q_vector. 1603 * 1604 * Returns the amount of work done 1605 */ 1606 int ice_napi_poll(struct napi_struct *napi, int budget) 1607 { 1608 struct ice_q_vector *q_vector = 1609 container_of(napi, struct ice_q_vector, napi); 1610 bool clean_complete = true; 1611 struct ice_ring *ring; 1612 int budget_per_ring; 1613 int work_done = 0; 1614 1615 /* Since the actual Tx work is minimal, we can give the Tx a larger 1616 * budget and be more aggressive about cleaning up the Tx descriptors. 1617 */ 1618 ice_for_each_ring(ring, q_vector->tx) { 1619 bool wd = ring->xsk_umem ? 1620 ice_clean_tx_irq_zc(ring, budget) : 1621 ice_clean_tx_irq(ring, budget); 1622 1623 if (!wd) 1624 clean_complete = false; 1625 } 1626 1627 /* Handle case where we are called by netpoll with a budget of 0 */ 1628 if (unlikely(budget <= 0)) 1629 return budget; 1630 1631 /* normally we have 1 Rx ring per q_vector */ 1632 if (unlikely(q_vector->num_ring_rx > 1)) 1633 /* We attempt to distribute budget to each Rx queue fairly, but 1634 * don't allow the budget to go below 1 because that would exit 1635 * polling early. 1636 */ 1637 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1638 else 1639 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1640 budget_per_ring = budget; 1641 1642 ice_for_each_ring(ring, q_vector->rx) { 1643 int cleaned; 1644 1645 /* A dedicated path for zero-copy allows making a single 1646 * comparison in the irq context instead of many inside the 1647 * ice_clean_rx_irq function and makes the codebase cleaner. 1648 */ 1649 cleaned = ring->xsk_umem ? 1650 ice_clean_rx_irq_zc(ring, budget_per_ring) : 1651 ice_clean_rx_irq(ring, budget_per_ring); 1652 work_done += cleaned; 1653 /* if we clean as many as budgeted, we must not be done */ 1654 if (cleaned >= budget_per_ring) 1655 clean_complete = false; 1656 } 1657 1658 /* If work not completed, return budget and polling will return */ 1659 if (!clean_complete) 1660 return budget; 1661 1662 /* Exit the polling mode, but don't re-enable interrupts if stack might 1663 * poll us due to busy-polling 1664 */ 1665 if (likely(napi_complete_done(napi, work_done))) 1666 ice_update_ena_itr(q_vector); 1667 else 1668 ice_set_wb_on_itr(q_vector); 1669 1670 return min_t(int, work_done, budget - 1); 1671 } 1672 1673 /** 1674 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1675 * @tx_ring: the ring to be checked 1676 * @size: the size buffer we want to assure is available 1677 * 1678 * Returns -EBUSY if a stop is needed, else 0 1679 */ 1680 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1681 { 1682 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1683 /* Memory barrier before checking head and tail */ 1684 smp_mb(); 1685 1686 /* Check again in a case another CPU has just made room available. */ 1687 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1688 return -EBUSY; 1689 1690 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1691 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1692 ++tx_ring->tx_stats.restart_q; 1693 return 0; 1694 } 1695 1696 /** 1697 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1698 * @tx_ring: the ring to be checked 1699 * @size: the size buffer we want to assure is available 1700 * 1701 * Returns 0 if stop is not needed 1702 */ 1703 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1704 { 1705 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1706 return 0; 1707 1708 return __ice_maybe_stop_tx(tx_ring, size); 1709 } 1710 1711 /** 1712 * ice_tx_map - Build the Tx descriptor 1713 * @tx_ring: ring to send buffer on 1714 * @first: first buffer info buffer to use 1715 * @off: pointer to struct that holds offload parameters 1716 * 1717 * This function loops over the skb data pointed to by *first 1718 * and gets a physical address for each memory location and programs 1719 * it and the length into the transmit descriptor. 1720 */ 1721 static void 1722 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1723 struct ice_tx_offload_params *off) 1724 { 1725 u64 td_offset, td_tag, td_cmd; 1726 u16 i = tx_ring->next_to_use; 1727 unsigned int data_len, size; 1728 struct ice_tx_desc *tx_desc; 1729 struct ice_tx_buf *tx_buf; 1730 struct sk_buff *skb; 1731 skb_frag_t *frag; 1732 dma_addr_t dma; 1733 1734 td_tag = off->td_l2tag1; 1735 td_cmd = off->td_cmd; 1736 td_offset = off->td_offset; 1737 skb = first->skb; 1738 1739 data_len = skb->data_len; 1740 size = skb_headlen(skb); 1741 1742 tx_desc = ICE_TX_DESC(tx_ring, i); 1743 1744 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1745 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1746 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1747 ICE_TX_FLAGS_VLAN_S; 1748 } 1749 1750 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1751 1752 tx_buf = first; 1753 1754 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1755 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1756 1757 if (dma_mapping_error(tx_ring->dev, dma)) 1758 goto dma_error; 1759 1760 /* record length, and DMA address */ 1761 dma_unmap_len_set(tx_buf, len, size); 1762 dma_unmap_addr_set(tx_buf, dma, dma); 1763 1764 /* align size to end of page */ 1765 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1766 tx_desc->buf_addr = cpu_to_le64(dma); 1767 1768 /* account for data chunks larger than the hardware 1769 * can handle 1770 */ 1771 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1772 tx_desc->cmd_type_offset_bsz = 1773 ice_build_ctob(td_cmd, td_offset, max_data, 1774 td_tag); 1775 1776 tx_desc++; 1777 i++; 1778 1779 if (i == tx_ring->count) { 1780 tx_desc = ICE_TX_DESC(tx_ring, 0); 1781 i = 0; 1782 } 1783 1784 dma += max_data; 1785 size -= max_data; 1786 1787 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1788 tx_desc->buf_addr = cpu_to_le64(dma); 1789 } 1790 1791 if (likely(!data_len)) 1792 break; 1793 1794 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1795 size, td_tag); 1796 1797 tx_desc++; 1798 i++; 1799 1800 if (i == tx_ring->count) { 1801 tx_desc = ICE_TX_DESC(tx_ring, 0); 1802 i = 0; 1803 } 1804 1805 size = skb_frag_size(frag); 1806 data_len -= size; 1807 1808 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1809 DMA_TO_DEVICE); 1810 1811 tx_buf = &tx_ring->tx_buf[i]; 1812 } 1813 1814 /* record bytecount for BQL */ 1815 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1816 1817 /* record SW timestamp if HW timestamp is not available */ 1818 skb_tx_timestamp(first->skb); 1819 1820 i++; 1821 if (i == tx_ring->count) 1822 i = 0; 1823 1824 /* write last descriptor with RS and EOP bits */ 1825 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1826 tx_desc->cmd_type_offset_bsz = 1827 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1828 1829 /* Force memory writes to complete before letting h/w know there 1830 * are new descriptors to fetch. 1831 * 1832 * We also use this memory barrier to make certain all of the 1833 * status bits have been updated before next_to_watch is written. 1834 */ 1835 wmb(); 1836 1837 /* set next_to_watch value indicating a packet is present */ 1838 first->next_to_watch = tx_desc; 1839 1840 tx_ring->next_to_use = i; 1841 1842 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1843 1844 /* notify HW of packet */ 1845 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1846 writel(i, tx_ring->tail); 1847 1848 return; 1849 1850 dma_error: 1851 /* clear DMA mappings for failed tx_buf map */ 1852 for (;;) { 1853 tx_buf = &tx_ring->tx_buf[i]; 1854 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1855 if (tx_buf == first) 1856 break; 1857 if (i == 0) 1858 i = tx_ring->count; 1859 i--; 1860 } 1861 1862 tx_ring->next_to_use = i; 1863 } 1864 1865 /** 1866 * ice_tx_csum - Enable Tx checksum offloads 1867 * @first: pointer to the first descriptor 1868 * @off: pointer to struct that holds offload parameters 1869 * 1870 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1871 */ 1872 static 1873 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1874 { 1875 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1876 struct sk_buff *skb = first->skb; 1877 union { 1878 struct iphdr *v4; 1879 struct ipv6hdr *v6; 1880 unsigned char *hdr; 1881 } ip; 1882 union { 1883 struct tcphdr *tcp; 1884 unsigned char *hdr; 1885 } l4; 1886 __be16 frag_off, protocol; 1887 unsigned char *exthdr; 1888 u32 offset, cmd = 0; 1889 u8 l4_proto = 0; 1890 1891 if (skb->ip_summed != CHECKSUM_PARTIAL) 1892 return 0; 1893 1894 ip.hdr = skb_network_header(skb); 1895 l4.hdr = skb_transport_header(skb); 1896 1897 /* compute outer L2 header size */ 1898 l2_len = ip.hdr - skb->data; 1899 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1900 1901 protocol = vlan_get_protocol(skb); 1902 1903 if (protocol == htons(ETH_P_IP)) 1904 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1905 else if (protocol == htons(ETH_P_IPV6)) 1906 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1907 1908 if (skb->encapsulation) { 1909 bool gso_ena = false; 1910 u32 tunnel = 0; 1911 1912 /* define outer network header type */ 1913 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1914 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1915 ICE_TX_CTX_EIPT_IPV4 : 1916 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1917 l4_proto = ip.v4->protocol; 1918 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1919 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1920 exthdr = ip.hdr + sizeof(*ip.v6); 1921 l4_proto = ip.v6->nexthdr; 1922 if (l4.hdr != exthdr) 1923 ipv6_skip_exthdr(skb, exthdr - skb->data, 1924 &l4_proto, &frag_off); 1925 } 1926 1927 /* define outer transport */ 1928 switch (l4_proto) { 1929 case IPPROTO_UDP: 1930 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1931 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1932 break; 1933 case IPPROTO_GRE: 1934 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1935 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1936 break; 1937 case IPPROTO_IPIP: 1938 case IPPROTO_IPV6: 1939 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1940 l4.hdr = skb_inner_network_header(skb); 1941 break; 1942 default: 1943 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1944 return -1; 1945 1946 skb_checksum_help(skb); 1947 return 0; 1948 } 1949 1950 /* compute outer L3 header size */ 1951 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1952 ICE_TXD_CTX_QW0_EIPLEN_S; 1953 1954 /* switch IP header pointer from outer to inner header */ 1955 ip.hdr = skb_inner_network_header(skb); 1956 1957 /* compute tunnel header size */ 1958 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1959 ICE_TXD_CTX_QW0_NATLEN_S; 1960 1961 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1962 /* indicate if we need to offload outer UDP header */ 1963 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1964 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1965 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1966 1967 /* record tunnel offload values */ 1968 off->cd_tunnel_params |= tunnel; 1969 1970 /* set DTYP=1 to indicate that it's an Tx context descriptor 1971 * in IPsec tunnel mode with Tx offloads in Quad word 1 1972 */ 1973 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1974 1975 /* switch L4 header pointer from outer to inner */ 1976 l4.hdr = skb_inner_transport_header(skb); 1977 l4_proto = 0; 1978 1979 /* reset type as we transition from outer to inner headers */ 1980 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1981 if (ip.v4->version == 4) 1982 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1983 if (ip.v6->version == 6) 1984 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1985 } 1986 1987 /* Enable IP checksum offloads */ 1988 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1989 l4_proto = ip.v4->protocol; 1990 /* the stack computes the IP header already, the only time we 1991 * need the hardware to recompute it is in the case of TSO. 1992 */ 1993 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1994 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1995 else 1996 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1997 1998 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1999 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 2000 exthdr = ip.hdr + sizeof(*ip.v6); 2001 l4_proto = ip.v6->nexthdr; 2002 if (l4.hdr != exthdr) 2003 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 2004 &frag_off); 2005 } else { 2006 return -1; 2007 } 2008 2009 /* compute inner L3 header size */ 2010 l3_len = l4.hdr - ip.hdr; 2011 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 2012 2013 /* Enable L4 checksum offloads */ 2014 switch (l4_proto) { 2015 case IPPROTO_TCP: 2016 /* enable checksum offloads */ 2017 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 2018 l4_len = l4.tcp->doff; 2019 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2020 break; 2021 case IPPROTO_UDP: 2022 /* enable UDP checksum offload */ 2023 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 2024 l4_len = (sizeof(struct udphdr) >> 2); 2025 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2026 break; 2027 case IPPROTO_SCTP: 2028 /* enable SCTP checksum offload */ 2029 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 2030 l4_len = sizeof(struct sctphdr) >> 2; 2031 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2032 break; 2033 2034 default: 2035 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2036 return -1; 2037 skb_checksum_help(skb); 2038 return 0; 2039 } 2040 2041 off->td_cmd |= cmd; 2042 off->td_offset |= offset; 2043 return 1; 2044 } 2045 2046 /** 2047 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 2048 * @tx_ring: ring to send buffer on 2049 * @first: pointer to struct ice_tx_buf 2050 * 2051 * Checks the skb and set up correspondingly several generic transmit flags 2052 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2053 */ 2054 static void 2055 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 2056 { 2057 struct sk_buff *skb = first->skb; 2058 2059 /* nothing left to do, software offloaded VLAN */ 2060 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 2061 return; 2062 2063 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 2064 * insertion for 802.1AD is not supported 2065 */ 2066 if (skb_vlan_tag_present(skb)) { 2067 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 2068 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2069 } 2070 2071 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2072 } 2073 2074 /** 2075 * ice_tso - computes mss and TSO length to prepare for TSO 2076 * @first: pointer to struct ice_tx_buf 2077 * @off: pointer to struct that holds offload parameters 2078 * 2079 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2080 */ 2081 static 2082 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2083 { 2084 struct sk_buff *skb = first->skb; 2085 union { 2086 struct iphdr *v4; 2087 struct ipv6hdr *v6; 2088 unsigned char *hdr; 2089 } ip; 2090 union { 2091 struct tcphdr *tcp; 2092 struct udphdr *udp; 2093 unsigned char *hdr; 2094 } l4; 2095 u64 cd_mss, cd_tso_len; 2096 u32 paylen; 2097 u8 l4_start; 2098 int err; 2099 2100 if (skb->ip_summed != CHECKSUM_PARTIAL) 2101 return 0; 2102 2103 if (!skb_is_gso(skb)) 2104 return 0; 2105 2106 err = skb_cow_head(skb, 0); 2107 if (err < 0) 2108 return err; 2109 2110 /* cppcheck-suppress unreadVariable */ 2111 ip.hdr = skb_network_header(skb); 2112 l4.hdr = skb_transport_header(skb); 2113 2114 /* initialize outer IP header fields */ 2115 if (ip.v4->version == 4) { 2116 ip.v4->tot_len = 0; 2117 ip.v4->check = 0; 2118 } else { 2119 ip.v6->payload_len = 0; 2120 } 2121 2122 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2123 SKB_GSO_GRE_CSUM | 2124 SKB_GSO_IPXIP4 | 2125 SKB_GSO_IPXIP6 | 2126 SKB_GSO_UDP_TUNNEL | 2127 SKB_GSO_UDP_TUNNEL_CSUM)) { 2128 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2129 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2130 l4.udp->len = 0; 2131 2132 /* determine offset of outer transport header */ 2133 l4_start = (u8)(l4.hdr - skb->data); 2134 2135 /* remove payload length from outer checksum */ 2136 paylen = skb->len - l4_start; 2137 csum_replace_by_diff(&l4.udp->check, 2138 (__force __wsum)htonl(paylen)); 2139 } 2140 2141 /* reset pointers to inner headers */ 2142 2143 /* cppcheck-suppress unreadVariable */ 2144 ip.hdr = skb_inner_network_header(skb); 2145 l4.hdr = skb_inner_transport_header(skb); 2146 2147 /* initialize inner IP header fields */ 2148 if (ip.v4->version == 4) { 2149 ip.v4->tot_len = 0; 2150 ip.v4->check = 0; 2151 } else { 2152 ip.v6->payload_len = 0; 2153 } 2154 } 2155 2156 /* determine offset of transport header */ 2157 l4_start = (u8)(l4.hdr - skb->data); 2158 2159 /* remove payload length from checksum */ 2160 paylen = skb->len - l4_start; 2161 2162 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2163 csum_replace_by_diff(&l4.udp->check, 2164 (__force __wsum)htonl(paylen)); 2165 /* compute length of UDP segmentation header */ 2166 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2167 } else { 2168 csum_replace_by_diff(&l4.tcp->check, 2169 (__force __wsum)htonl(paylen)); 2170 /* compute length of TCP segmentation header */ 2171 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2172 } 2173 2174 /* update gso_segs and bytecount */ 2175 first->gso_segs = skb_shinfo(skb)->gso_segs; 2176 first->bytecount += (first->gso_segs - 1) * off->header_len; 2177 2178 cd_tso_len = skb->len - off->header_len; 2179 cd_mss = skb_shinfo(skb)->gso_size; 2180 2181 /* record cdesc_qw1 with TSO parameters */ 2182 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2183 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2184 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2185 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2186 first->tx_flags |= ICE_TX_FLAGS_TSO; 2187 return 1; 2188 } 2189 2190 /** 2191 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2192 * @size: transmit request size in bytes 2193 * 2194 * Due to hardware alignment restrictions (4K alignment), we need to 2195 * assume that we can have no more than 12K of data per descriptor, even 2196 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2197 * Thus, we need to divide by 12K. But division is slow! Instead, 2198 * we decompose the operation into shifts and one relatively cheap 2199 * multiply operation. 2200 * 2201 * To divide by 12K, we first divide by 4K, then divide by 3: 2202 * To divide by 4K, shift right by 12 bits 2203 * To divide by 3, multiply by 85, then divide by 256 2204 * (Divide by 256 is done by shifting right by 8 bits) 2205 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2206 * 3, we'll underestimate near each multiple of 12K. This is actually more 2207 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2208 * segment. For our purposes this is accurate out to 1M which is orders of 2209 * magnitude greater than our largest possible GSO size. 2210 * 2211 * This would then be implemented as: 2212 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2213 * 2214 * Since multiplication and division are commutative, we can reorder 2215 * operations into: 2216 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2217 */ 2218 static unsigned int ice_txd_use_count(unsigned int size) 2219 { 2220 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2221 } 2222 2223 /** 2224 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2225 * @skb: send buffer 2226 * 2227 * Returns number of data descriptors needed for this skb. 2228 */ 2229 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2230 { 2231 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2232 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2233 unsigned int count = 0, size = skb_headlen(skb); 2234 2235 for (;;) { 2236 count += ice_txd_use_count(size); 2237 2238 if (!nr_frags--) 2239 break; 2240 2241 size = skb_frag_size(frag++); 2242 } 2243 2244 return count; 2245 } 2246 2247 /** 2248 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2249 * @skb: send buffer 2250 * 2251 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2252 * and so we need to figure out the cases where we need to linearize the skb. 2253 * 2254 * For TSO we need to count the TSO header and segment payload separately. 2255 * As such we need to check cases where we have 7 fragments or more as we 2256 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2257 * the segment payload in the first descriptor, and another 7 for the 2258 * fragments. 2259 */ 2260 static bool __ice_chk_linearize(struct sk_buff *skb) 2261 { 2262 const skb_frag_t *frag, *stale; 2263 int nr_frags, sum; 2264 2265 /* no need to check if number of frags is less than 7 */ 2266 nr_frags = skb_shinfo(skb)->nr_frags; 2267 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2268 return false; 2269 2270 /* We need to walk through the list and validate that each group 2271 * of 6 fragments totals at least gso_size. 2272 */ 2273 nr_frags -= ICE_MAX_BUF_TXD - 2; 2274 frag = &skb_shinfo(skb)->frags[0]; 2275 2276 /* Initialize size to the negative value of gso_size minus 1. We 2277 * use this as the worst case scenario in which the frag ahead 2278 * of us only provides one byte which is why we are limited to 6 2279 * descriptors for a single transmit as the header and previous 2280 * fragment are already consuming 2 descriptors. 2281 */ 2282 sum = 1 - skb_shinfo(skb)->gso_size; 2283 2284 /* Add size of frags 0 through 4 to create our initial sum */ 2285 sum += skb_frag_size(frag++); 2286 sum += skb_frag_size(frag++); 2287 sum += skb_frag_size(frag++); 2288 sum += skb_frag_size(frag++); 2289 sum += skb_frag_size(frag++); 2290 2291 /* Walk through fragments adding latest fragment, testing it, and 2292 * then removing stale fragments from the sum. 2293 */ 2294 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2295 int stale_size = skb_frag_size(stale); 2296 2297 sum += skb_frag_size(frag++); 2298 2299 /* The stale fragment may present us with a smaller 2300 * descriptor than the actual fragment size. To account 2301 * for that we need to remove all the data on the front and 2302 * figure out what the remainder would be in the last 2303 * descriptor associated with the fragment. 2304 */ 2305 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2306 int align_pad = -(skb_frag_off(stale)) & 2307 (ICE_MAX_READ_REQ_SIZE - 1); 2308 2309 sum -= align_pad; 2310 stale_size -= align_pad; 2311 2312 do { 2313 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2314 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2315 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2316 } 2317 2318 /* if sum is negative we failed to make sufficient progress */ 2319 if (sum < 0) 2320 return true; 2321 2322 if (!nr_frags--) 2323 break; 2324 2325 sum -= stale_size; 2326 } 2327 2328 return false; 2329 } 2330 2331 /** 2332 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2333 * @skb: send buffer 2334 * @count: number of buffers used 2335 * 2336 * Note: Our HW can't scatter-gather more than 8 fragments to build 2337 * a packet on the wire and so we need to figure out the cases where we 2338 * need to linearize the skb. 2339 */ 2340 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2341 { 2342 /* Both TSO and single send will work if count is less than 8 */ 2343 if (likely(count < ICE_MAX_BUF_TXD)) 2344 return false; 2345 2346 if (skb_is_gso(skb)) 2347 return __ice_chk_linearize(skb); 2348 2349 /* we can support up to 8 data buffers for a single send */ 2350 return count != ICE_MAX_BUF_TXD; 2351 } 2352 2353 /** 2354 * ice_xmit_frame_ring - Sends buffer on Tx ring 2355 * @skb: send buffer 2356 * @tx_ring: ring to send buffer on 2357 * 2358 * Returns NETDEV_TX_OK if sent, else an error code 2359 */ 2360 static netdev_tx_t 2361 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2362 { 2363 struct ice_tx_offload_params offload = { 0 }; 2364 struct ice_vsi *vsi = tx_ring->vsi; 2365 struct ice_tx_buf *first; 2366 unsigned int count; 2367 int tso, csum; 2368 2369 count = ice_xmit_desc_count(skb); 2370 if (ice_chk_linearize(skb, count)) { 2371 if (__skb_linearize(skb)) 2372 goto out_drop; 2373 count = ice_txd_use_count(skb->len); 2374 tx_ring->tx_stats.tx_linearize++; 2375 } 2376 2377 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2378 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2379 * + 4 desc gap to avoid the cache line where head is, 2380 * + 1 desc for context descriptor, 2381 * otherwise try next time 2382 */ 2383 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2384 ICE_DESCS_FOR_CTX_DESC)) { 2385 tx_ring->tx_stats.tx_busy++; 2386 return NETDEV_TX_BUSY; 2387 } 2388 2389 offload.tx_ring = tx_ring; 2390 2391 /* record the location of the first descriptor for this packet */ 2392 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2393 first->skb = skb; 2394 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2395 first->gso_segs = 1; 2396 first->tx_flags = 0; 2397 2398 /* prepare the VLAN tagging flags for Tx */ 2399 ice_tx_prepare_vlan_flags(tx_ring, first); 2400 2401 /* set up TSO offload */ 2402 tso = ice_tso(first, &offload); 2403 if (tso < 0) 2404 goto out_drop; 2405 2406 /* always set up Tx checksum offload */ 2407 csum = ice_tx_csum(first, &offload); 2408 if (csum < 0) 2409 goto out_drop; 2410 2411 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2412 if (unlikely(skb->priority == TC_PRIO_CONTROL && 2413 vsi->type == ICE_VSI_PF && 2414 vsi->port_info->is_sw_lldp)) 2415 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2416 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2417 ICE_TXD_CTX_QW1_CMD_S); 2418 2419 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2420 struct ice_tx_ctx_desc *cdesc; 2421 u16 i = tx_ring->next_to_use; 2422 2423 /* grab the next descriptor */ 2424 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2425 i++; 2426 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2427 2428 /* setup context descriptor */ 2429 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2430 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2431 cdesc->rsvd = cpu_to_le16(0); 2432 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2433 } 2434 2435 ice_tx_map(tx_ring, first, &offload); 2436 return NETDEV_TX_OK; 2437 2438 out_drop: 2439 dev_kfree_skb_any(skb); 2440 return NETDEV_TX_OK; 2441 } 2442 2443 /** 2444 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2445 * @skb: send buffer 2446 * @netdev: network interface device structure 2447 * 2448 * Returns NETDEV_TX_OK if sent, else an error code 2449 */ 2450 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2451 { 2452 struct ice_netdev_priv *np = netdev_priv(netdev); 2453 struct ice_vsi *vsi = np->vsi; 2454 struct ice_ring *tx_ring; 2455 2456 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2457 2458 /* hardware can't handle really short frames, hardware padding works 2459 * beyond this point 2460 */ 2461 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2462 return NETDEV_TX_OK; 2463 2464 return ice_xmit_frame_ring(skb, tx_ring); 2465 } 2466 2467 /** 2468 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2469 * @tx_ring: tx_ring to clean 2470 */ 2471 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) 2472 { 2473 struct ice_vsi *vsi = tx_ring->vsi; 2474 s16 i = tx_ring->next_to_clean; 2475 int budget = ICE_DFLT_IRQ_WORK; 2476 struct ice_tx_desc *tx_desc; 2477 struct ice_tx_buf *tx_buf; 2478 2479 tx_buf = &tx_ring->tx_buf[i]; 2480 tx_desc = ICE_TX_DESC(tx_ring, i); 2481 i -= tx_ring->count; 2482 2483 do { 2484 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2485 2486 /* if next_to_watch is not set then there is no pending work */ 2487 if (!eop_desc) 2488 break; 2489 2490 /* prevent any other reads prior to eop_desc */ 2491 smp_rmb(); 2492 2493 /* if the descriptor isn't done, no work to do */ 2494 if (!(eop_desc->cmd_type_offset_bsz & 2495 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2496 break; 2497 2498 /* clear next_to_watch to prevent false hangs */ 2499 tx_buf->next_to_watch = NULL; 2500 tx_desc->buf_addr = 0; 2501 tx_desc->cmd_type_offset_bsz = 0; 2502 2503 /* move past filter desc */ 2504 tx_buf++; 2505 tx_desc++; 2506 i++; 2507 if (unlikely(!i)) { 2508 i -= tx_ring->count; 2509 tx_buf = tx_ring->tx_buf; 2510 tx_desc = ICE_TX_DESC(tx_ring, 0); 2511 } 2512 2513 /* unmap the data header */ 2514 if (dma_unmap_len(tx_buf, len)) 2515 dma_unmap_single(tx_ring->dev, 2516 dma_unmap_addr(tx_buf, dma), 2517 dma_unmap_len(tx_buf, len), 2518 DMA_TO_DEVICE); 2519 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2520 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2521 2522 /* clear next_to_watch to prevent false hangs */ 2523 tx_buf->raw_buf = NULL; 2524 tx_buf->tx_flags = 0; 2525 tx_buf->next_to_watch = NULL; 2526 dma_unmap_len_set(tx_buf, len, 0); 2527 tx_desc->buf_addr = 0; 2528 tx_desc->cmd_type_offset_bsz = 0; 2529 2530 /* move past eop_desc for start of next FD desc */ 2531 tx_buf++; 2532 tx_desc++; 2533 i++; 2534 if (unlikely(!i)) { 2535 i -= tx_ring->count; 2536 tx_buf = tx_ring->tx_buf; 2537 tx_desc = ICE_TX_DESC(tx_ring, 0); 2538 } 2539 2540 budget--; 2541 } while (likely(budget)); 2542 2543 i += tx_ring->count; 2544 tx_ring->next_to_clean = i; 2545 2546 /* re-enable interrupt if needed */ 2547 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2548 } 2549