1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/xdp.h> 10 #include "ice_txrx_lib.h" 11 #include "ice_lib.h" 12 #include "ice.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_xsk.h" 15 16 #define ICE_RX_HDR_SIZE 256 17 18 #define FDIR_DESC_RXDID 0x40 19 #define ICE_FDIR_CLEAN_DELAY 10 20 21 /** 22 * ice_prgm_fdir_fltr - Program a Flow Director filter 23 * @vsi: VSI to send dummy packet 24 * @fdir_desc: flow director descriptor 25 * @raw_packet: allocated buffer for flow director 26 */ 27 int 28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 29 u8 *raw_packet) 30 { 31 struct ice_tx_buf *tx_buf, *first; 32 struct ice_fltr_desc *f_desc; 33 struct ice_tx_desc *tx_desc; 34 struct ice_ring *tx_ring; 35 struct device *dev; 36 dma_addr_t dma; 37 u32 td_cmd; 38 u16 i; 39 40 /* VSI and Tx ring */ 41 if (!vsi) 42 return -ENOENT; 43 tx_ring = vsi->tx_rings[0]; 44 if (!tx_ring || !tx_ring->desc) 45 return -ENOENT; 46 dev = tx_ring->dev; 47 48 /* we are using two descriptors to add/del a filter and we can wait */ 49 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 50 if (!i) 51 return -EAGAIN; 52 msleep_interruptible(1); 53 } 54 55 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 56 DMA_TO_DEVICE); 57 58 if (dma_mapping_error(dev, dma)) 59 return -EINVAL; 60 61 /* grab the next descriptor */ 62 i = tx_ring->next_to_use; 63 first = &tx_ring->tx_buf[i]; 64 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 65 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 66 67 i++; 68 i = (i < tx_ring->count) ? i : 0; 69 tx_desc = ICE_TX_DESC(tx_ring, i); 70 tx_buf = &tx_ring->tx_buf[i]; 71 72 i++; 73 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 74 75 memset(tx_buf, 0, sizeof(*tx_buf)); 76 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 77 dma_unmap_addr_set(tx_buf, dma, dma); 78 79 tx_desc->buf_addr = cpu_to_le64(dma); 80 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 81 ICE_TX_DESC_CMD_RE; 82 83 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 84 tx_buf->raw_buf = raw_packet; 85 86 tx_desc->cmd_type_offset_bsz = 87 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 88 89 /* Force memory write to complete before letting h/w know 90 * there are new descriptors to fetch. 91 */ 92 wmb(); 93 94 /* mark the data descriptor to be watched */ 95 first->next_to_watch = tx_desc; 96 97 writel(tx_ring->next_to_use, tx_ring->tail); 98 99 return 0; 100 } 101 102 /** 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer 104 * @ring: the ring that owns the buffer 105 * @tx_buf: the buffer to free 106 */ 107 static void 108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 109 { 110 if (tx_buf->skb) { 111 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 112 devm_kfree(ring->dev, tx_buf->raw_buf); 113 else if (ice_ring_is_xdp(ring)) 114 page_frag_free(tx_buf->raw_buf); 115 else 116 dev_kfree_skb_any(tx_buf->skb); 117 if (dma_unmap_len(tx_buf, len)) 118 dma_unmap_single(ring->dev, 119 dma_unmap_addr(tx_buf, dma), 120 dma_unmap_len(tx_buf, len), 121 DMA_TO_DEVICE); 122 } else if (dma_unmap_len(tx_buf, len)) { 123 dma_unmap_page(ring->dev, 124 dma_unmap_addr(tx_buf, dma), 125 dma_unmap_len(tx_buf, len), 126 DMA_TO_DEVICE); 127 } 128 129 tx_buf->next_to_watch = NULL; 130 tx_buf->skb = NULL; 131 dma_unmap_len_set(tx_buf, len, 0); 132 /* tx_buf must be completely set up in the transmit path */ 133 } 134 135 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 136 { 137 return netdev_get_tx_queue(ring->netdev, ring->q_index); 138 } 139 140 /** 141 * ice_clean_tx_ring - Free any empty Tx buffers 142 * @tx_ring: ring to be cleaned 143 */ 144 void ice_clean_tx_ring(struct ice_ring *tx_ring) 145 { 146 u16 i; 147 148 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 149 ice_xsk_clean_xdp_ring(tx_ring); 150 goto tx_skip_free; 151 } 152 153 /* ring already cleared, nothing to do */ 154 if (!tx_ring->tx_buf) 155 return; 156 157 /* Free all the Tx ring sk_buffs */ 158 for (i = 0; i < tx_ring->count; i++) 159 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 160 161 tx_skip_free: 162 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 163 164 /* Zero out the descriptor ring */ 165 memset(tx_ring->desc, 0, tx_ring->size); 166 167 tx_ring->next_to_use = 0; 168 tx_ring->next_to_clean = 0; 169 170 if (!tx_ring->netdev) 171 return; 172 173 /* cleanup Tx queue statistics */ 174 netdev_tx_reset_queue(txring_txq(tx_ring)); 175 } 176 177 /** 178 * ice_free_tx_ring - Free Tx resources per queue 179 * @tx_ring: Tx descriptor ring for a specific queue 180 * 181 * Free all transmit software resources 182 */ 183 void ice_free_tx_ring(struct ice_ring *tx_ring) 184 { 185 ice_clean_tx_ring(tx_ring); 186 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 187 tx_ring->tx_buf = NULL; 188 189 if (tx_ring->desc) { 190 dmam_free_coherent(tx_ring->dev, tx_ring->size, 191 tx_ring->desc, tx_ring->dma); 192 tx_ring->desc = NULL; 193 } 194 } 195 196 /** 197 * ice_clean_tx_irq - Reclaim resources after transmit completes 198 * @tx_ring: Tx ring to clean 199 * @napi_budget: Used to determine if we are in netpoll 200 * 201 * Returns true if there's any budget left (e.g. the clean is finished) 202 */ 203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) 204 { 205 unsigned int total_bytes = 0, total_pkts = 0; 206 unsigned int budget = ICE_DFLT_IRQ_WORK; 207 struct ice_vsi *vsi = tx_ring->vsi; 208 s16 i = tx_ring->next_to_clean; 209 struct ice_tx_desc *tx_desc; 210 struct ice_tx_buf *tx_buf; 211 212 tx_buf = &tx_ring->tx_buf[i]; 213 tx_desc = ICE_TX_DESC(tx_ring, i); 214 i -= tx_ring->count; 215 216 prefetch(&vsi->state); 217 218 do { 219 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 220 221 /* if next_to_watch is not set then there is no work pending */ 222 if (!eop_desc) 223 break; 224 225 smp_rmb(); /* prevent any other reads prior to eop_desc */ 226 227 /* if the descriptor isn't done, no work yet to do */ 228 if (!(eop_desc->cmd_type_offset_bsz & 229 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 230 break; 231 232 /* clear next_to_watch to prevent false hangs */ 233 tx_buf->next_to_watch = NULL; 234 235 /* update the statistics for this packet */ 236 total_bytes += tx_buf->bytecount; 237 total_pkts += tx_buf->gso_segs; 238 239 if (ice_ring_is_xdp(tx_ring)) 240 page_frag_free(tx_buf->raw_buf); 241 else 242 /* free the skb */ 243 napi_consume_skb(tx_buf->skb, napi_budget); 244 245 /* unmap skb header data */ 246 dma_unmap_single(tx_ring->dev, 247 dma_unmap_addr(tx_buf, dma), 248 dma_unmap_len(tx_buf, len), 249 DMA_TO_DEVICE); 250 251 /* clear tx_buf data */ 252 tx_buf->skb = NULL; 253 dma_unmap_len_set(tx_buf, len, 0); 254 255 /* unmap remaining buffers */ 256 while (tx_desc != eop_desc) { 257 tx_buf++; 258 tx_desc++; 259 i++; 260 if (unlikely(!i)) { 261 i -= tx_ring->count; 262 tx_buf = tx_ring->tx_buf; 263 tx_desc = ICE_TX_DESC(tx_ring, 0); 264 } 265 266 /* unmap any remaining paged data */ 267 if (dma_unmap_len(tx_buf, len)) { 268 dma_unmap_page(tx_ring->dev, 269 dma_unmap_addr(tx_buf, dma), 270 dma_unmap_len(tx_buf, len), 271 DMA_TO_DEVICE); 272 dma_unmap_len_set(tx_buf, len, 0); 273 } 274 } 275 276 /* move us one more past the eop_desc for start of next pkt */ 277 tx_buf++; 278 tx_desc++; 279 i++; 280 if (unlikely(!i)) { 281 i -= tx_ring->count; 282 tx_buf = tx_ring->tx_buf; 283 tx_desc = ICE_TX_DESC(tx_ring, 0); 284 } 285 286 prefetch(tx_desc); 287 288 /* update budget accounting */ 289 budget--; 290 } while (likely(budget)); 291 292 i += tx_ring->count; 293 tx_ring->next_to_clean = i; 294 295 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 296 297 if (ice_ring_is_xdp(tx_ring)) 298 return !!budget; 299 300 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 301 total_bytes); 302 303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 304 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 305 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 306 /* Make sure that anybody stopping the queue after this 307 * sees the new next_to_clean. 308 */ 309 smp_mb(); 310 if (__netif_subqueue_stopped(tx_ring->netdev, 311 tx_ring->q_index) && 312 !test_bit(ICE_VSI_DOWN, vsi->state)) { 313 netif_wake_subqueue(tx_ring->netdev, 314 tx_ring->q_index); 315 ++tx_ring->tx_stats.restart_q; 316 } 317 } 318 319 return !!budget; 320 } 321 322 /** 323 * ice_setup_tx_ring - Allocate the Tx descriptors 324 * @tx_ring: the Tx ring to set up 325 * 326 * Return 0 on success, negative on error 327 */ 328 int ice_setup_tx_ring(struct ice_ring *tx_ring) 329 { 330 struct device *dev = tx_ring->dev; 331 332 if (!dev) 333 return -ENOMEM; 334 335 /* warn if we are about to overwrite the pointer */ 336 WARN_ON(tx_ring->tx_buf); 337 tx_ring->tx_buf = 338 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 339 GFP_KERNEL); 340 if (!tx_ring->tx_buf) 341 return -ENOMEM; 342 343 /* round up to nearest page */ 344 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 345 PAGE_SIZE); 346 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 347 GFP_KERNEL); 348 if (!tx_ring->desc) { 349 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 350 tx_ring->size); 351 goto err; 352 } 353 354 tx_ring->next_to_use = 0; 355 tx_ring->next_to_clean = 0; 356 tx_ring->tx_stats.prev_pkt = -1; 357 return 0; 358 359 err: 360 devm_kfree(dev, tx_ring->tx_buf); 361 tx_ring->tx_buf = NULL; 362 return -ENOMEM; 363 } 364 365 /** 366 * ice_clean_rx_ring - Free Rx buffers 367 * @rx_ring: ring to be cleaned 368 */ 369 void ice_clean_rx_ring(struct ice_ring *rx_ring) 370 { 371 struct device *dev = rx_ring->dev; 372 u16 i; 373 374 /* ring already cleared, nothing to do */ 375 if (!rx_ring->rx_buf) 376 return; 377 378 if (rx_ring->skb) { 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 } 382 383 if (rx_ring->xsk_pool) { 384 ice_xsk_clean_rx_ring(rx_ring); 385 goto rx_skip_free; 386 } 387 388 /* Free all the Rx ring sk_buffs */ 389 for (i = 0; i < rx_ring->count; i++) { 390 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 391 392 if (!rx_buf->page) 393 continue; 394 395 /* Invalidate cache lines that may have been written to by 396 * device so that we avoid corrupting memory. 397 */ 398 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 399 rx_buf->page_offset, 400 rx_ring->rx_buf_len, 401 DMA_FROM_DEVICE); 402 403 /* free resources associated with mapping */ 404 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 405 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 406 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 407 408 rx_buf->page = NULL; 409 rx_buf->page_offset = 0; 410 } 411 412 rx_skip_free: 413 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 414 415 /* Zero out the descriptor ring */ 416 memset(rx_ring->desc, 0, rx_ring->size); 417 418 rx_ring->next_to_alloc = 0; 419 rx_ring->next_to_clean = 0; 420 rx_ring->next_to_use = 0; 421 } 422 423 /** 424 * ice_free_rx_ring - Free Rx resources 425 * @rx_ring: ring to clean the resources from 426 * 427 * Free all receive software resources 428 */ 429 void ice_free_rx_ring(struct ice_ring *rx_ring) 430 { 431 ice_clean_rx_ring(rx_ring); 432 if (rx_ring->vsi->type == ICE_VSI_PF) 433 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 434 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 435 rx_ring->xdp_prog = NULL; 436 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 437 rx_ring->rx_buf = NULL; 438 439 if (rx_ring->desc) { 440 dmam_free_coherent(rx_ring->dev, rx_ring->size, 441 rx_ring->desc, rx_ring->dma); 442 rx_ring->desc = NULL; 443 } 444 } 445 446 /** 447 * ice_setup_rx_ring - Allocate the Rx descriptors 448 * @rx_ring: the Rx ring to set up 449 * 450 * Return 0 on success, negative on error 451 */ 452 int ice_setup_rx_ring(struct ice_ring *rx_ring) 453 { 454 struct device *dev = rx_ring->dev; 455 456 if (!dev) 457 return -ENOMEM; 458 459 /* warn if we are about to overwrite the pointer */ 460 WARN_ON(rx_ring->rx_buf); 461 rx_ring->rx_buf = 462 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 463 GFP_KERNEL); 464 if (!rx_ring->rx_buf) 465 return -ENOMEM; 466 467 /* round up to nearest page */ 468 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 469 PAGE_SIZE); 470 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 471 GFP_KERNEL); 472 if (!rx_ring->desc) { 473 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 474 rx_ring->size); 475 goto err; 476 } 477 478 rx_ring->next_to_use = 0; 479 rx_ring->next_to_clean = 0; 480 481 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 482 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 483 484 if (rx_ring->vsi->type == ICE_VSI_PF && 485 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 486 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 487 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 488 goto err; 489 return 0; 490 491 err: 492 devm_kfree(dev, rx_ring->rx_buf); 493 rx_ring->rx_buf = NULL; 494 return -ENOMEM; 495 } 496 497 static unsigned int 498 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) 499 { 500 unsigned int truesize; 501 502 #if (PAGE_SIZE < 8192) 503 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 504 #else 505 truesize = rx_ring->rx_offset ? 506 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 507 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 508 SKB_DATA_ALIGN(size); 509 #endif 510 return truesize; 511 } 512 513 /** 514 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 515 * @rx_ring: Rx ring 516 * @xdp: xdp_buff used as input to the XDP program 517 * @xdp_prog: XDP program to run 518 * 519 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 520 */ 521 static int 522 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, 523 struct bpf_prog *xdp_prog) 524 { 525 struct ice_ring *xdp_ring; 526 int err; 527 u32 act; 528 529 act = bpf_prog_run_xdp(xdp_prog, xdp); 530 switch (act) { 531 case XDP_PASS: 532 return ICE_XDP_PASS; 533 case XDP_TX: 534 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; 535 return ice_xmit_xdp_buff(xdp, xdp_ring); 536 case XDP_REDIRECT: 537 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 538 return !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; 539 default: 540 bpf_warn_invalid_xdp_action(act); 541 fallthrough; 542 case XDP_ABORTED: 543 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 544 fallthrough; 545 case XDP_DROP: 546 return ICE_XDP_CONSUMED; 547 } 548 } 549 550 /** 551 * ice_xdp_xmit - submit packets to XDP ring for transmission 552 * @dev: netdev 553 * @n: number of XDP frames to be transmitted 554 * @frames: XDP frames to be transmitted 555 * @flags: transmit flags 556 * 557 * Returns number of frames successfully sent. Failed frames 558 * will be free'ed by XDP core. 559 * For error cases, a negative errno code is returned and no-frames 560 * are transmitted (caller must handle freeing frames). 561 */ 562 int 563 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 564 u32 flags) 565 { 566 struct ice_netdev_priv *np = netdev_priv(dev); 567 unsigned int queue_index = smp_processor_id(); 568 struct ice_vsi *vsi = np->vsi; 569 struct ice_ring *xdp_ring; 570 int nxmit = 0, i; 571 572 if (test_bit(ICE_VSI_DOWN, vsi->state)) 573 return -ENETDOWN; 574 575 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 576 return -ENXIO; 577 578 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 579 return -EINVAL; 580 581 xdp_ring = vsi->xdp_rings[queue_index]; 582 for (i = 0; i < n; i++) { 583 struct xdp_frame *xdpf = frames[i]; 584 int err; 585 586 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 587 if (err != ICE_XDP_TX) 588 break; 589 nxmit++; 590 } 591 592 if (unlikely(flags & XDP_XMIT_FLUSH)) 593 ice_xdp_ring_update_tail(xdp_ring); 594 595 return nxmit; 596 } 597 598 /** 599 * ice_alloc_mapped_page - recycle or make a new page 600 * @rx_ring: ring to use 601 * @bi: rx_buf struct to modify 602 * 603 * Returns true if the page was successfully allocated or 604 * reused. 605 */ 606 static bool 607 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 608 { 609 struct page *page = bi->page; 610 dma_addr_t dma; 611 612 /* since we are recycling buffers we should seldom need to alloc */ 613 if (likely(page)) 614 return true; 615 616 /* alloc new page for storage */ 617 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 618 if (unlikely(!page)) { 619 rx_ring->rx_stats.alloc_page_failed++; 620 return false; 621 } 622 623 /* map page for use */ 624 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 625 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 626 627 /* if mapping failed free memory back to system since 628 * there isn't much point in holding memory we can't use 629 */ 630 if (dma_mapping_error(rx_ring->dev, dma)) { 631 __free_pages(page, ice_rx_pg_order(rx_ring)); 632 rx_ring->rx_stats.alloc_page_failed++; 633 return false; 634 } 635 636 bi->dma = dma; 637 bi->page = page; 638 bi->page_offset = rx_ring->rx_offset; 639 page_ref_add(page, USHRT_MAX - 1); 640 bi->pagecnt_bias = USHRT_MAX; 641 642 return true; 643 } 644 645 /** 646 * ice_alloc_rx_bufs - Replace used receive buffers 647 * @rx_ring: ring to place buffers on 648 * @cleaned_count: number of buffers to replace 649 * 650 * Returns false if all allocations were successful, true if any fail. Returning 651 * true signals to the caller that we didn't replace cleaned_count buffers and 652 * there is more work to do. 653 * 654 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 655 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 656 * multiple tail writes per call. 657 */ 658 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 659 { 660 union ice_32b_rx_flex_desc *rx_desc; 661 u16 ntu = rx_ring->next_to_use; 662 struct ice_rx_buf *bi; 663 664 /* do nothing if no valid netdev defined */ 665 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 666 !cleaned_count) 667 return false; 668 669 /* get the Rx descriptor and buffer based on next_to_use */ 670 rx_desc = ICE_RX_DESC(rx_ring, ntu); 671 bi = &rx_ring->rx_buf[ntu]; 672 673 do { 674 /* if we fail here, we have work remaining */ 675 if (!ice_alloc_mapped_page(rx_ring, bi)) 676 break; 677 678 /* sync the buffer for use by the device */ 679 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 680 bi->page_offset, 681 rx_ring->rx_buf_len, 682 DMA_FROM_DEVICE); 683 684 /* Refresh the desc even if buffer_addrs didn't change 685 * because each write-back erases this info. 686 */ 687 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 688 689 rx_desc++; 690 bi++; 691 ntu++; 692 if (unlikely(ntu == rx_ring->count)) { 693 rx_desc = ICE_RX_DESC(rx_ring, 0); 694 bi = rx_ring->rx_buf; 695 ntu = 0; 696 } 697 698 /* clear the status bits for the next_to_use descriptor */ 699 rx_desc->wb.status_error0 = 0; 700 701 cleaned_count--; 702 } while (cleaned_count); 703 704 if (rx_ring->next_to_use != ntu) 705 ice_release_rx_desc(rx_ring, ntu); 706 707 return !!cleaned_count; 708 } 709 710 /** 711 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 712 * @rx_buf: Rx buffer to adjust 713 * @size: Size of adjustment 714 * 715 * Update the offset within page so that Rx buf will be ready to be reused. 716 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 717 * so the second half of page assigned to Rx buffer will be used, otherwise 718 * the offset is moved by "size" bytes 719 */ 720 static void 721 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 722 { 723 #if (PAGE_SIZE < 8192) 724 /* flip page offset to other buffer */ 725 rx_buf->page_offset ^= size; 726 #else 727 /* move offset up to the next cache line */ 728 rx_buf->page_offset += size; 729 #endif 730 } 731 732 /** 733 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 734 * @rx_buf: buffer containing the page 735 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 736 * 737 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 738 * which will assign the current buffer to the buffer that next_to_alloc is 739 * pointing to; otherwise, the DMA mapping needs to be destroyed and 740 * page freed 741 */ 742 static bool 743 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 744 { 745 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 746 struct page *page = rx_buf->page; 747 748 /* avoid re-using remote and pfmemalloc pages */ 749 if (!dev_page_is_reusable(page)) 750 return false; 751 752 #if (PAGE_SIZE < 8192) 753 /* if we are only owner of page we can reuse it */ 754 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 755 return false; 756 #else 757 #define ICE_LAST_OFFSET \ 758 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 759 if (rx_buf->page_offset > ICE_LAST_OFFSET) 760 return false; 761 #endif /* PAGE_SIZE < 8192) */ 762 763 /* If we have drained the page fragment pool we need to update 764 * the pagecnt_bias and page count so that we fully restock the 765 * number of references the driver holds. 766 */ 767 if (unlikely(pagecnt_bias == 1)) { 768 page_ref_add(page, USHRT_MAX - 1); 769 rx_buf->pagecnt_bias = USHRT_MAX; 770 } 771 772 return true; 773 } 774 775 /** 776 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 777 * @rx_ring: Rx descriptor ring to transact packets on 778 * @rx_buf: buffer containing page to add 779 * @skb: sk_buff to place the data into 780 * @size: packet length from rx_desc 781 * 782 * This function will add the data contained in rx_buf->page to the skb. 783 * It will just attach the page as a frag to the skb. 784 * The function will then update the page offset. 785 */ 786 static void 787 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 788 struct sk_buff *skb, unsigned int size) 789 { 790 #if (PAGE_SIZE >= 8192) 791 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 792 #else 793 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 794 #endif 795 796 if (!size) 797 return; 798 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 799 rx_buf->page_offset, size, truesize); 800 801 /* page is being used so we must update the page offset */ 802 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 803 } 804 805 /** 806 * ice_reuse_rx_page - page flip buffer and store it back on the ring 807 * @rx_ring: Rx descriptor ring to store buffers on 808 * @old_buf: donor buffer to have page reused 809 * 810 * Synchronizes page for reuse by the adapter 811 */ 812 static void 813 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 814 { 815 u16 nta = rx_ring->next_to_alloc; 816 struct ice_rx_buf *new_buf; 817 818 new_buf = &rx_ring->rx_buf[nta]; 819 820 /* update, and store next to alloc */ 821 nta++; 822 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 823 824 /* Transfer page from old buffer to new buffer. 825 * Move each member individually to avoid possible store 826 * forwarding stalls and unnecessary copy of skb. 827 */ 828 new_buf->dma = old_buf->dma; 829 new_buf->page = old_buf->page; 830 new_buf->page_offset = old_buf->page_offset; 831 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 832 } 833 834 /** 835 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 836 * @rx_ring: Rx descriptor ring to transact packets on 837 * @size: size of buffer to add to skb 838 * @rx_buf_pgcnt: rx_buf page refcount 839 * 840 * This function will pull an Rx buffer from the ring and synchronize it 841 * for use by the CPU. 842 */ 843 static struct ice_rx_buf * 844 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size, 845 int *rx_buf_pgcnt) 846 { 847 struct ice_rx_buf *rx_buf; 848 849 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 850 *rx_buf_pgcnt = 851 #if (PAGE_SIZE < 8192) 852 page_count(rx_buf->page); 853 #else 854 0; 855 #endif 856 prefetchw(rx_buf->page); 857 858 if (!size) 859 return rx_buf; 860 /* we are reusing so sync this buffer for CPU use */ 861 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 862 rx_buf->page_offset, size, 863 DMA_FROM_DEVICE); 864 865 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 866 rx_buf->pagecnt_bias--; 867 868 return rx_buf; 869 } 870 871 /** 872 * ice_build_skb - Build skb around an existing buffer 873 * @rx_ring: Rx descriptor ring to transact packets on 874 * @rx_buf: Rx buffer to pull data from 875 * @xdp: xdp_buff pointing to the data 876 * 877 * This function builds an skb around an existing Rx buffer, taking care 878 * to set up the skb correctly and avoid any memcpy overhead. 879 */ 880 static struct sk_buff * 881 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 882 struct xdp_buff *xdp) 883 { 884 u8 metasize = xdp->data - xdp->data_meta; 885 #if (PAGE_SIZE < 8192) 886 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 887 #else 888 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 889 SKB_DATA_ALIGN(xdp->data_end - 890 xdp->data_hard_start); 891 #endif 892 struct sk_buff *skb; 893 894 /* Prefetch first cache line of first page. If xdp->data_meta 895 * is unused, this points exactly as xdp->data, otherwise we 896 * likely have a consumer accessing first few bytes of meta 897 * data, and then actual data. 898 */ 899 net_prefetch(xdp->data_meta); 900 /* build an skb around the page buffer */ 901 skb = build_skb(xdp->data_hard_start, truesize); 902 if (unlikely(!skb)) 903 return NULL; 904 905 /* must to record Rx queue, otherwise OS features such as 906 * symmetric queue won't work 907 */ 908 skb_record_rx_queue(skb, rx_ring->q_index); 909 910 /* update pointers within the skb to store the data */ 911 skb_reserve(skb, xdp->data - xdp->data_hard_start); 912 __skb_put(skb, xdp->data_end - xdp->data); 913 if (metasize) 914 skb_metadata_set(skb, metasize); 915 916 /* buffer is used by skb, update page_offset */ 917 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 918 919 return skb; 920 } 921 922 /** 923 * ice_construct_skb - Allocate skb and populate it 924 * @rx_ring: Rx descriptor ring to transact packets on 925 * @rx_buf: Rx buffer to pull data from 926 * @xdp: xdp_buff pointing to the data 927 * 928 * This function allocates an skb. It then populates it with the page 929 * data from the current receive descriptor, taking care to set up the 930 * skb correctly. 931 */ 932 static struct sk_buff * 933 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 934 struct xdp_buff *xdp) 935 { 936 unsigned int size = xdp->data_end - xdp->data; 937 unsigned int headlen; 938 struct sk_buff *skb; 939 940 /* prefetch first cache line of first page */ 941 net_prefetch(xdp->data); 942 943 /* allocate a skb to store the frags */ 944 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 945 GFP_ATOMIC | __GFP_NOWARN); 946 if (unlikely(!skb)) 947 return NULL; 948 949 skb_record_rx_queue(skb, rx_ring->q_index); 950 /* Determine available headroom for copy */ 951 headlen = size; 952 if (headlen > ICE_RX_HDR_SIZE) 953 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 954 955 /* align pull length to size of long to optimize memcpy performance */ 956 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 957 sizeof(long))); 958 959 /* if we exhaust the linear part then add what is left as a frag */ 960 size -= headlen; 961 if (size) { 962 #if (PAGE_SIZE >= 8192) 963 unsigned int truesize = SKB_DATA_ALIGN(size); 964 #else 965 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 966 #endif 967 skb_add_rx_frag(skb, 0, rx_buf->page, 968 rx_buf->page_offset + headlen, size, truesize); 969 /* buffer is used by skb, update page_offset */ 970 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 971 } else { 972 /* buffer is unused, reset bias back to rx_buf; data was copied 973 * onto skb's linear part so there's no need for adjusting 974 * page offset and we can reuse this buffer as-is 975 */ 976 rx_buf->pagecnt_bias++; 977 } 978 979 return skb; 980 } 981 982 /** 983 * ice_put_rx_buf - Clean up used buffer and either recycle or free 984 * @rx_ring: Rx descriptor ring to transact packets on 985 * @rx_buf: Rx buffer to pull data from 986 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 987 * 988 * This function will update next_to_clean and then clean up the contents 989 * of the rx_buf. It will either recycle the buffer or unmap it and free 990 * the associated resources. 991 */ 992 static void 993 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 994 int rx_buf_pgcnt) 995 { 996 u16 ntc = rx_ring->next_to_clean + 1; 997 998 /* fetch, update, and store next to clean */ 999 ntc = (ntc < rx_ring->count) ? ntc : 0; 1000 rx_ring->next_to_clean = ntc; 1001 1002 if (!rx_buf) 1003 return; 1004 1005 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1006 /* hand second half of page back to the ring */ 1007 ice_reuse_rx_page(rx_ring, rx_buf); 1008 } else { 1009 /* we are not reusing the buffer so unmap it */ 1010 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1011 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1012 ICE_RX_DMA_ATTR); 1013 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1014 } 1015 1016 /* clear contents of buffer_info */ 1017 rx_buf->page = NULL; 1018 } 1019 1020 /** 1021 * ice_is_non_eop - process handling of non-EOP buffers 1022 * @rx_ring: Rx ring being processed 1023 * @rx_desc: Rx descriptor for current buffer 1024 * 1025 * If the buffer is an EOP buffer, this function exits returning false, 1026 * otherwise return true indicating that this is in fact a non-EOP buffer. 1027 */ 1028 static bool 1029 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1030 { 1031 /* if we are the last buffer then there is nothing else to do */ 1032 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1033 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1034 return false; 1035 1036 rx_ring->rx_stats.non_eop_descs++; 1037 1038 return true; 1039 } 1040 1041 /** 1042 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1043 * @rx_ring: Rx descriptor ring to transact packets on 1044 * @budget: Total limit on number of packets to process 1045 * 1046 * This function provides a "bounce buffer" approach to Rx interrupt 1047 * processing. The advantage to this is that on systems that have 1048 * expensive overhead for IOMMU access this provides a means of avoiding 1049 * it by maintaining the mapping of the page to the system. 1050 * 1051 * Returns amount of work completed 1052 */ 1053 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1054 { 1055 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1056 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1057 unsigned int offset = rx_ring->rx_offset; 1058 unsigned int xdp_res, xdp_xmit = 0; 1059 struct sk_buff *skb = rx_ring->skb; 1060 struct bpf_prog *xdp_prog = NULL; 1061 struct xdp_buff xdp; 1062 bool failure; 1063 1064 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1065 #if (PAGE_SIZE < 8192) 1066 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1067 #endif 1068 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1069 1070 /* start the loop to process Rx packets bounded by 'budget' */ 1071 while (likely(total_rx_pkts < (unsigned int)budget)) { 1072 union ice_32b_rx_flex_desc *rx_desc; 1073 struct ice_rx_buf *rx_buf; 1074 unsigned char *hard_start; 1075 unsigned int size; 1076 u16 stat_err_bits; 1077 int rx_buf_pgcnt; 1078 u16 vlan_tag = 0; 1079 u8 rx_ptype; 1080 1081 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1082 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1083 1084 /* status_error_len will always be zero for unused descriptors 1085 * because it's cleared in cleanup, and overlaps with hdr_addr 1086 * which is always zero because packet split isn't used, if the 1087 * hardware wrote DD then it will be non-zero 1088 */ 1089 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1090 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1091 break; 1092 1093 /* This memory barrier is needed to keep us from reading 1094 * any other fields out of the rx_desc until we know the 1095 * DD bit is set. 1096 */ 1097 dma_rmb(); 1098 1099 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1100 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1101 1102 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1103 ctrl_vsi->vf_id != ICE_INVAL_VFID) 1104 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1105 ice_put_rx_buf(rx_ring, NULL, 0); 1106 cleaned_count++; 1107 continue; 1108 } 1109 1110 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1111 ICE_RX_FLX_DESC_PKT_LEN_M; 1112 1113 /* retrieve a buffer from the ring */ 1114 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1115 1116 if (!size) { 1117 xdp.data = NULL; 1118 xdp.data_end = NULL; 1119 xdp.data_hard_start = NULL; 1120 xdp.data_meta = NULL; 1121 goto construct_skb; 1122 } 1123 1124 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1125 offset; 1126 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1127 #if (PAGE_SIZE > 4096) 1128 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1129 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1130 #endif 1131 1132 rcu_read_lock(); 1133 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1134 if (!xdp_prog) { 1135 rcu_read_unlock(); 1136 goto construct_skb; 1137 } 1138 1139 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); 1140 rcu_read_unlock(); 1141 if (!xdp_res) 1142 goto construct_skb; 1143 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1144 xdp_xmit |= xdp_res; 1145 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1146 } else { 1147 rx_buf->pagecnt_bias++; 1148 } 1149 total_rx_bytes += size; 1150 total_rx_pkts++; 1151 1152 cleaned_count++; 1153 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1154 continue; 1155 construct_skb: 1156 if (skb) { 1157 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1158 } else if (likely(xdp.data)) { 1159 if (ice_ring_uses_build_skb(rx_ring)) 1160 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1161 else 1162 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1163 } 1164 /* exit if we failed to retrieve a buffer */ 1165 if (!skb) { 1166 rx_ring->rx_stats.alloc_buf_failed++; 1167 if (rx_buf) 1168 rx_buf->pagecnt_bias++; 1169 break; 1170 } 1171 1172 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1173 cleaned_count++; 1174 1175 /* skip if it is NOP desc */ 1176 if (ice_is_non_eop(rx_ring, rx_desc)) 1177 continue; 1178 1179 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1180 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1181 dev_kfree_skb_any(skb); 1182 continue; 1183 } 1184 1185 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1186 if (ice_test_staterr(rx_desc, stat_err_bits)) 1187 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1188 1189 /* pad the skb if needed, to make a valid ethernet frame */ 1190 if (eth_skb_pad(skb)) { 1191 skb = NULL; 1192 continue; 1193 } 1194 1195 /* probably a little skewed due to removing CRC */ 1196 total_rx_bytes += skb->len; 1197 1198 /* populate checksum, VLAN, and protocol */ 1199 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1200 ICE_RX_FLEX_DESC_PTYPE_M; 1201 1202 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1203 1204 /* send completed skb up the stack */ 1205 ice_receive_skb(rx_ring, skb, vlan_tag); 1206 skb = NULL; 1207 1208 /* update budget accounting */ 1209 total_rx_pkts++; 1210 } 1211 1212 /* return up to cleaned_count buffers to hardware */ 1213 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1214 1215 if (xdp_prog) 1216 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 1217 rx_ring->skb = skb; 1218 1219 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1220 1221 /* guarantee a trip back through this routine if there was a failure */ 1222 return failure ? budget : (int)total_rx_pkts; 1223 } 1224 1225 /** 1226 * ice_net_dim - Update net DIM algorithm 1227 * @q_vector: the vector associated with the interrupt 1228 * 1229 * Create a DIM sample and notify net_dim() so that it can possibly decide 1230 * a new ITR value based on incoming packets, bytes, and interrupts. 1231 * 1232 * This function is a no-op if the ring is not configured to dynamic ITR. 1233 */ 1234 static void ice_net_dim(struct ice_q_vector *q_vector) 1235 { 1236 struct ice_ring_container *tx = &q_vector->tx; 1237 struct ice_ring_container *rx = &q_vector->rx; 1238 1239 if (ITR_IS_DYNAMIC(tx)) { 1240 struct dim_sample dim_sample = {}; 1241 u64 packets = 0, bytes = 0; 1242 struct ice_ring *ring; 1243 1244 ice_for_each_ring(ring, q_vector->tx) { 1245 packets += ring->stats.pkts; 1246 bytes += ring->stats.bytes; 1247 } 1248 1249 dim_update_sample(q_vector->total_events, packets, bytes, 1250 &dim_sample); 1251 1252 net_dim(&tx->dim, dim_sample); 1253 } 1254 1255 if (ITR_IS_DYNAMIC(rx)) { 1256 struct dim_sample dim_sample = {}; 1257 u64 packets = 0, bytes = 0; 1258 struct ice_ring *ring; 1259 1260 ice_for_each_ring(ring, q_vector->rx) { 1261 packets += ring->stats.pkts; 1262 bytes += ring->stats.bytes; 1263 } 1264 1265 dim_update_sample(q_vector->total_events, packets, bytes, 1266 &dim_sample); 1267 1268 net_dim(&rx->dim, dim_sample); 1269 } 1270 } 1271 1272 /** 1273 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1274 * @itr_idx: interrupt throttling index 1275 * @itr: interrupt throttling value in usecs 1276 */ 1277 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1278 { 1279 /* The ITR value is reported in microseconds, and the register value is 1280 * recorded in 2 microsecond units. For this reason we only need to 1281 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1282 * granularity as a shift instead of division. The mask makes sure the 1283 * ITR value is never odd so we don't accidentally write into the field 1284 * prior to the ITR field. 1285 */ 1286 itr &= ICE_ITR_MASK; 1287 1288 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1289 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1290 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1291 } 1292 1293 /** 1294 * ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt 1295 * @q_vector: the vector associated with the interrupt to enable 1296 * 1297 * Update the net_dim() algorithm and re-enable the interrupt associated with 1298 * this vector. 1299 * 1300 * If the VSI is down, the interrupt will not be re-enabled. 1301 */ 1302 static void ice_update_ena_itr(struct ice_q_vector *q_vector) 1303 { 1304 struct ice_vsi *vsi = q_vector->vsi; 1305 bool wb_en = q_vector->wb_on_itr; 1306 u32 itr_val; 1307 1308 if (test_bit(ICE_DOWN, vsi->state)) 1309 return; 1310 1311 /* When exiting WB_ON_ITR, let ITR resume its normal 1312 * interrupts-enabled path. 1313 */ 1314 if (wb_en) 1315 q_vector->wb_on_itr = false; 1316 1317 /* This will do nothing if dynamic updates are not enabled. */ 1318 ice_net_dim(q_vector); 1319 1320 /* net_dim() updates ITR out-of-band using a work item */ 1321 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1322 /* trigger an immediate software interrupt when exiting 1323 * busy poll, to make sure to catch any pending cleanups 1324 * that might have been missed due to interrupt state 1325 * transition. 1326 */ 1327 if (wb_en) { 1328 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1329 GLINT_DYN_CTL_SW_ITR_INDX_M | 1330 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1331 } 1332 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1333 } 1334 1335 /** 1336 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1337 * @q_vector: q_vector to set WB_ON_ITR on 1338 * 1339 * We need to tell hardware to write-back completed descriptors even when 1340 * interrupts are disabled. Descriptors will be written back on cache line 1341 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1342 * descriptors may not be written back if they don't fill a cache line until 1343 * the next interrupt. 1344 * 1345 * This sets the write-back frequency to whatever was set previously for the 1346 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1347 * aren't meddling with the INTENA_M bit. 1348 */ 1349 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1350 { 1351 struct ice_vsi *vsi = q_vector->vsi; 1352 1353 /* already in wb_on_itr mode no need to change it */ 1354 if (q_vector->wb_on_itr) 1355 return; 1356 1357 /* use previously set ITR values for all of the ITR indices by 1358 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1359 * be static in non-adaptive mode (user configured) 1360 */ 1361 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1362 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1363 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1364 GLINT_DYN_CTL_WB_ON_ITR_M); 1365 1366 q_vector->wb_on_itr = true; 1367 } 1368 1369 /** 1370 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1371 * @napi: napi struct with our devices info in it 1372 * @budget: amount of work driver is allowed to do this pass, in packets 1373 * 1374 * This function will clean all queues associated with a q_vector. 1375 * 1376 * Returns the amount of work done 1377 */ 1378 int ice_napi_poll(struct napi_struct *napi, int budget) 1379 { 1380 struct ice_q_vector *q_vector = 1381 container_of(napi, struct ice_q_vector, napi); 1382 bool clean_complete = true; 1383 struct ice_ring *ring; 1384 int budget_per_ring; 1385 int work_done = 0; 1386 1387 /* Since the actual Tx work is minimal, we can give the Tx a larger 1388 * budget and be more aggressive about cleaning up the Tx descriptors. 1389 */ 1390 ice_for_each_ring(ring, q_vector->tx) { 1391 bool wd = ring->xsk_pool ? 1392 ice_clean_tx_irq_zc(ring, budget) : 1393 ice_clean_tx_irq(ring, budget); 1394 1395 if (!wd) 1396 clean_complete = false; 1397 } 1398 1399 /* Handle case where we are called by netpoll with a budget of 0 */ 1400 if (unlikely(budget <= 0)) 1401 return budget; 1402 1403 /* normally we have 1 Rx ring per q_vector */ 1404 if (unlikely(q_vector->num_ring_rx > 1)) 1405 /* We attempt to distribute budget to each Rx queue fairly, but 1406 * don't allow the budget to go below 1 because that would exit 1407 * polling early. 1408 */ 1409 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1410 else 1411 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1412 budget_per_ring = budget; 1413 1414 ice_for_each_ring(ring, q_vector->rx) { 1415 int cleaned; 1416 1417 /* A dedicated path for zero-copy allows making a single 1418 * comparison in the irq context instead of many inside the 1419 * ice_clean_rx_irq function and makes the codebase cleaner. 1420 */ 1421 cleaned = ring->xsk_pool ? 1422 ice_clean_rx_irq_zc(ring, budget_per_ring) : 1423 ice_clean_rx_irq(ring, budget_per_ring); 1424 work_done += cleaned; 1425 /* if we clean as many as budgeted, we must not be done */ 1426 if (cleaned >= budget_per_ring) 1427 clean_complete = false; 1428 } 1429 1430 /* If work not completed, return budget and polling will return */ 1431 if (!clean_complete) { 1432 /* Set the writeback on ITR so partial completions of 1433 * cache-lines will still continue even if we're polling. 1434 */ 1435 ice_set_wb_on_itr(q_vector); 1436 return budget; 1437 } 1438 1439 /* Exit the polling mode, but don't re-enable interrupts if stack might 1440 * poll us due to busy-polling 1441 */ 1442 if (likely(napi_complete_done(napi, work_done))) 1443 ice_update_ena_itr(q_vector); 1444 else 1445 ice_set_wb_on_itr(q_vector); 1446 1447 return min_t(int, work_done, budget - 1); 1448 } 1449 1450 /** 1451 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1452 * @tx_ring: the ring to be checked 1453 * @size: the size buffer we want to assure is available 1454 * 1455 * Returns -EBUSY if a stop is needed, else 0 1456 */ 1457 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1458 { 1459 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1460 /* Memory barrier before checking head and tail */ 1461 smp_mb(); 1462 1463 /* Check again in a case another CPU has just made room available. */ 1464 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1465 return -EBUSY; 1466 1467 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1468 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1469 ++tx_ring->tx_stats.restart_q; 1470 return 0; 1471 } 1472 1473 /** 1474 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1475 * @tx_ring: the ring to be checked 1476 * @size: the size buffer we want to assure is available 1477 * 1478 * Returns 0 if stop is not needed 1479 */ 1480 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1481 { 1482 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1483 return 0; 1484 1485 return __ice_maybe_stop_tx(tx_ring, size); 1486 } 1487 1488 /** 1489 * ice_tx_map - Build the Tx descriptor 1490 * @tx_ring: ring to send buffer on 1491 * @first: first buffer info buffer to use 1492 * @off: pointer to struct that holds offload parameters 1493 * 1494 * This function loops over the skb data pointed to by *first 1495 * and gets a physical address for each memory location and programs 1496 * it and the length into the transmit descriptor. 1497 */ 1498 static void 1499 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1500 struct ice_tx_offload_params *off) 1501 { 1502 u64 td_offset, td_tag, td_cmd; 1503 u16 i = tx_ring->next_to_use; 1504 unsigned int data_len, size; 1505 struct ice_tx_desc *tx_desc; 1506 struct ice_tx_buf *tx_buf; 1507 struct sk_buff *skb; 1508 skb_frag_t *frag; 1509 dma_addr_t dma; 1510 1511 td_tag = off->td_l2tag1; 1512 td_cmd = off->td_cmd; 1513 td_offset = off->td_offset; 1514 skb = first->skb; 1515 1516 data_len = skb->data_len; 1517 size = skb_headlen(skb); 1518 1519 tx_desc = ICE_TX_DESC(tx_ring, i); 1520 1521 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1522 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1523 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1524 ICE_TX_FLAGS_VLAN_S; 1525 } 1526 1527 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1528 1529 tx_buf = first; 1530 1531 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1532 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1533 1534 if (dma_mapping_error(tx_ring->dev, dma)) 1535 goto dma_error; 1536 1537 /* record length, and DMA address */ 1538 dma_unmap_len_set(tx_buf, len, size); 1539 dma_unmap_addr_set(tx_buf, dma, dma); 1540 1541 /* align size to end of page */ 1542 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1543 tx_desc->buf_addr = cpu_to_le64(dma); 1544 1545 /* account for data chunks larger than the hardware 1546 * can handle 1547 */ 1548 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1549 tx_desc->cmd_type_offset_bsz = 1550 ice_build_ctob(td_cmd, td_offset, max_data, 1551 td_tag); 1552 1553 tx_desc++; 1554 i++; 1555 1556 if (i == tx_ring->count) { 1557 tx_desc = ICE_TX_DESC(tx_ring, 0); 1558 i = 0; 1559 } 1560 1561 dma += max_data; 1562 size -= max_data; 1563 1564 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1565 tx_desc->buf_addr = cpu_to_le64(dma); 1566 } 1567 1568 if (likely(!data_len)) 1569 break; 1570 1571 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1572 size, td_tag); 1573 1574 tx_desc++; 1575 i++; 1576 1577 if (i == tx_ring->count) { 1578 tx_desc = ICE_TX_DESC(tx_ring, 0); 1579 i = 0; 1580 } 1581 1582 size = skb_frag_size(frag); 1583 data_len -= size; 1584 1585 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1586 DMA_TO_DEVICE); 1587 1588 tx_buf = &tx_ring->tx_buf[i]; 1589 } 1590 1591 /* record bytecount for BQL */ 1592 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1593 1594 /* record SW timestamp if HW timestamp is not available */ 1595 skb_tx_timestamp(first->skb); 1596 1597 i++; 1598 if (i == tx_ring->count) 1599 i = 0; 1600 1601 /* write last descriptor with RS and EOP bits */ 1602 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1603 tx_desc->cmd_type_offset_bsz = 1604 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1605 1606 /* Force memory writes to complete before letting h/w know there 1607 * are new descriptors to fetch. 1608 * 1609 * We also use this memory barrier to make certain all of the 1610 * status bits have been updated before next_to_watch is written. 1611 */ 1612 wmb(); 1613 1614 /* set next_to_watch value indicating a packet is present */ 1615 first->next_to_watch = tx_desc; 1616 1617 tx_ring->next_to_use = i; 1618 1619 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1620 1621 /* notify HW of packet */ 1622 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1623 writel(i, tx_ring->tail); 1624 1625 return; 1626 1627 dma_error: 1628 /* clear DMA mappings for failed tx_buf map */ 1629 for (;;) { 1630 tx_buf = &tx_ring->tx_buf[i]; 1631 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1632 if (tx_buf == first) 1633 break; 1634 if (i == 0) 1635 i = tx_ring->count; 1636 i--; 1637 } 1638 1639 tx_ring->next_to_use = i; 1640 } 1641 1642 /** 1643 * ice_tx_csum - Enable Tx checksum offloads 1644 * @first: pointer to the first descriptor 1645 * @off: pointer to struct that holds offload parameters 1646 * 1647 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1648 */ 1649 static 1650 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1651 { 1652 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1653 struct sk_buff *skb = first->skb; 1654 union { 1655 struct iphdr *v4; 1656 struct ipv6hdr *v6; 1657 unsigned char *hdr; 1658 } ip; 1659 union { 1660 struct tcphdr *tcp; 1661 unsigned char *hdr; 1662 } l4; 1663 __be16 frag_off, protocol; 1664 unsigned char *exthdr; 1665 u32 offset, cmd = 0; 1666 u8 l4_proto = 0; 1667 1668 if (skb->ip_summed != CHECKSUM_PARTIAL) 1669 return 0; 1670 1671 ip.hdr = skb_network_header(skb); 1672 l4.hdr = skb_transport_header(skb); 1673 1674 /* compute outer L2 header size */ 1675 l2_len = ip.hdr - skb->data; 1676 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1677 1678 protocol = vlan_get_protocol(skb); 1679 1680 if (protocol == htons(ETH_P_IP)) 1681 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1682 else if (protocol == htons(ETH_P_IPV6)) 1683 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1684 1685 if (skb->encapsulation) { 1686 bool gso_ena = false; 1687 u32 tunnel = 0; 1688 1689 /* define outer network header type */ 1690 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1691 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1692 ICE_TX_CTX_EIPT_IPV4 : 1693 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1694 l4_proto = ip.v4->protocol; 1695 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1696 int ret; 1697 1698 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1699 exthdr = ip.hdr + sizeof(*ip.v6); 1700 l4_proto = ip.v6->nexthdr; 1701 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1702 &l4_proto, &frag_off); 1703 if (ret < 0) 1704 return -1; 1705 } 1706 1707 /* define outer transport */ 1708 switch (l4_proto) { 1709 case IPPROTO_UDP: 1710 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1711 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1712 break; 1713 case IPPROTO_GRE: 1714 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1715 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1716 break; 1717 case IPPROTO_IPIP: 1718 case IPPROTO_IPV6: 1719 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1720 l4.hdr = skb_inner_network_header(skb); 1721 break; 1722 default: 1723 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1724 return -1; 1725 1726 skb_checksum_help(skb); 1727 return 0; 1728 } 1729 1730 /* compute outer L3 header size */ 1731 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1732 ICE_TXD_CTX_QW0_EIPLEN_S; 1733 1734 /* switch IP header pointer from outer to inner header */ 1735 ip.hdr = skb_inner_network_header(skb); 1736 1737 /* compute tunnel header size */ 1738 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1739 ICE_TXD_CTX_QW0_NATLEN_S; 1740 1741 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1742 /* indicate if we need to offload outer UDP header */ 1743 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1744 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1745 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1746 1747 /* record tunnel offload values */ 1748 off->cd_tunnel_params |= tunnel; 1749 1750 /* set DTYP=1 to indicate that it's an Tx context descriptor 1751 * in IPsec tunnel mode with Tx offloads in Quad word 1 1752 */ 1753 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1754 1755 /* switch L4 header pointer from outer to inner */ 1756 l4.hdr = skb_inner_transport_header(skb); 1757 l4_proto = 0; 1758 1759 /* reset type as we transition from outer to inner headers */ 1760 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1761 if (ip.v4->version == 4) 1762 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1763 if (ip.v6->version == 6) 1764 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1765 } 1766 1767 /* Enable IP checksum offloads */ 1768 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1769 l4_proto = ip.v4->protocol; 1770 /* the stack computes the IP header already, the only time we 1771 * need the hardware to recompute it is in the case of TSO. 1772 */ 1773 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1774 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1775 else 1776 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1777 1778 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1779 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1780 exthdr = ip.hdr + sizeof(*ip.v6); 1781 l4_proto = ip.v6->nexthdr; 1782 if (l4.hdr != exthdr) 1783 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1784 &frag_off); 1785 } else { 1786 return -1; 1787 } 1788 1789 /* compute inner L3 header size */ 1790 l3_len = l4.hdr - ip.hdr; 1791 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1792 1793 /* Enable L4 checksum offloads */ 1794 switch (l4_proto) { 1795 case IPPROTO_TCP: 1796 /* enable checksum offloads */ 1797 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1798 l4_len = l4.tcp->doff; 1799 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1800 break; 1801 case IPPROTO_UDP: 1802 /* enable UDP checksum offload */ 1803 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1804 l4_len = (sizeof(struct udphdr) >> 2); 1805 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1806 break; 1807 case IPPROTO_SCTP: 1808 /* enable SCTP checksum offload */ 1809 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1810 l4_len = sizeof(struct sctphdr) >> 2; 1811 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1812 break; 1813 1814 default: 1815 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1816 return -1; 1817 skb_checksum_help(skb); 1818 return 0; 1819 } 1820 1821 off->td_cmd |= cmd; 1822 off->td_offset |= offset; 1823 return 1; 1824 } 1825 1826 /** 1827 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1828 * @tx_ring: ring to send buffer on 1829 * @first: pointer to struct ice_tx_buf 1830 * 1831 * Checks the skb and set up correspondingly several generic transmit flags 1832 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1833 */ 1834 static void 1835 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 1836 { 1837 struct sk_buff *skb = first->skb; 1838 1839 /* nothing left to do, software offloaded VLAN */ 1840 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1841 return; 1842 1843 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 1844 * insertion for 802.1AD is not supported 1845 */ 1846 if (skb_vlan_tag_present(skb)) { 1847 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1848 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1849 } 1850 1851 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1852 } 1853 1854 /** 1855 * ice_tso - computes mss and TSO length to prepare for TSO 1856 * @first: pointer to struct ice_tx_buf 1857 * @off: pointer to struct that holds offload parameters 1858 * 1859 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1860 */ 1861 static 1862 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1863 { 1864 struct sk_buff *skb = first->skb; 1865 union { 1866 struct iphdr *v4; 1867 struct ipv6hdr *v6; 1868 unsigned char *hdr; 1869 } ip; 1870 union { 1871 struct tcphdr *tcp; 1872 struct udphdr *udp; 1873 unsigned char *hdr; 1874 } l4; 1875 u64 cd_mss, cd_tso_len; 1876 u32 paylen; 1877 u8 l4_start; 1878 int err; 1879 1880 if (skb->ip_summed != CHECKSUM_PARTIAL) 1881 return 0; 1882 1883 if (!skb_is_gso(skb)) 1884 return 0; 1885 1886 err = skb_cow_head(skb, 0); 1887 if (err < 0) 1888 return err; 1889 1890 /* cppcheck-suppress unreadVariable */ 1891 ip.hdr = skb_network_header(skb); 1892 l4.hdr = skb_transport_header(skb); 1893 1894 /* initialize outer IP header fields */ 1895 if (ip.v4->version == 4) { 1896 ip.v4->tot_len = 0; 1897 ip.v4->check = 0; 1898 } else { 1899 ip.v6->payload_len = 0; 1900 } 1901 1902 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1903 SKB_GSO_GRE_CSUM | 1904 SKB_GSO_IPXIP4 | 1905 SKB_GSO_IPXIP6 | 1906 SKB_GSO_UDP_TUNNEL | 1907 SKB_GSO_UDP_TUNNEL_CSUM)) { 1908 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1909 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1910 l4.udp->len = 0; 1911 1912 /* determine offset of outer transport header */ 1913 l4_start = (u8)(l4.hdr - skb->data); 1914 1915 /* remove payload length from outer checksum */ 1916 paylen = skb->len - l4_start; 1917 csum_replace_by_diff(&l4.udp->check, 1918 (__force __wsum)htonl(paylen)); 1919 } 1920 1921 /* reset pointers to inner headers */ 1922 1923 /* cppcheck-suppress unreadVariable */ 1924 ip.hdr = skb_inner_network_header(skb); 1925 l4.hdr = skb_inner_transport_header(skb); 1926 1927 /* initialize inner IP header fields */ 1928 if (ip.v4->version == 4) { 1929 ip.v4->tot_len = 0; 1930 ip.v4->check = 0; 1931 } else { 1932 ip.v6->payload_len = 0; 1933 } 1934 } 1935 1936 /* determine offset of transport header */ 1937 l4_start = (u8)(l4.hdr - skb->data); 1938 1939 /* remove payload length from checksum */ 1940 paylen = skb->len - l4_start; 1941 1942 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1943 csum_replace_by_diff(&l4.udp->check, 1944 (__force __wsum)htonl(paylen)); 1945 /* compute length of UDP segmentation header */ 1946 off->header_len = (u8)sizeof(l4.udp) + l4_start; 1947 } else { 1948 csum_replace_by_diff(&l4.tcp->check, 1949 (__force __wsum)htonl(paylen)); 1950 /* compute length of TCP segmentation header */ 1951 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 1952 } 1953 1954 /* update gso_segs and bytecount */ 1955 first->gso_segs = skb_shinfo(skb)->gso_segs; 1956 first->bytecount += (first->gso_segs - 1) * off->header_len; 1957 1958 cd_tso_len = skb->len - off->header_len; 1959 cd_mss = skb_shinfo(skb)->gso_size; 1960 1961 /* record cdesc_qw1 with TSO parameters */ 1962 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 1963 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 1964 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 1965 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 1966 first->tx_flags |= ICE_TX_FLAGS_TSO; 1967 return 1; 1968 } 1969 1970 /** 1971 * ice_txd_use_count - estimate the number of descriptors needed for Tx 1972 * @size: transmit request size in bytes 1973 * 1974 * Due to hardware alignment restrictions (4K alignment), we need to 1975 * assume that we can have no more than 12K of data per descriptor, even 1976 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 1977 * Thus, we need to divide by 12K. But division is slow! Instead, 1978 * we decompose the operation into shifts and one relatively cheap 1979 * multiply operation. 1980 * 1981 * To divide by 12K, we first divide by 4K, then divide by 3: 1982 * To divide by 4K, shift right by 12 bits 1983 * To divide by 3, multiply by 85, then divide by 256 1984 * (Divide by 256 is done by shifting right by 8 bits) 1985 * Finally, we add one to round up. Because 256 isn't an exact multiple of 1986 * 3, we'll underestimate near each multiple of 12K. This is actually more 1987 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 1988 * segment. For our purposes this is accurate out to 1M which is orders of 1989 * magnitude greater than our largest possible GSO size. 1990 * 1991 * This would then be implemented as: 1992 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 1993 * 1994 * Since multiplication and division are commutative, we can reorder 1995 * operations into: 1996 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 1997 */ 1998 static unsigned int ice_txd_use_count(unsigned int size) 1999 { 2000 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2001 } 2002 2003 /** 2004 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2005 * @skb: send buffer 2006 * 2007 * Returns number of data descriptors needed for this skb. 2008 */ 2009 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2010 { 2011 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2012 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2013 unsigned int count = 0, size = skb_headlen(skb); 2014 2015 for (;;) { 2016 count += ice_txd_use_count(size); 2017 2018 if (!nr_frags--) 2019 break; 2020 2021 size = skb_frag_size(frag++); 2022 } 2023 2024 return count; 2025 } 2026 2027 /** 2028 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2029 * @skb: send buffer 2030 * 2031 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2032 * and so we need to figure out the cases where we need to linearize the skb. 2033 * 2034 * For TSO we need to count the TSO header and segment payload separately. 2035 * As such we need to check cases where we have 7 fragments or more as we 2036 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2037 * the segment payload in the first descriptor, and another 7 for the 2038 * fragments. 2039 */ 2040 static bool __ice_chk_linearize(struct sk_buff *skb) 2041 { 2042 const skb_frag_t *frag, *stale; 2043 int nr_frags, sum; 2044 2045 /* no need to check if number of frags is less than 7 */ 2046 nr_frags = skb_shinfo(skb)->nr_frags; 2047 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2048 return false; 2049 2050 /* We need to walk through the list and validate that each group 2051 * of 6 fragments totals at least gso_size. 2052 */ 2053 nr_frags -= ICE_MAX_BUF_TXD - 2; 2054 frag = &skb_shinfo(skb)->frags[0]; 2055 2056 /* Initialize size to the negative value of gso_size minus 1. We 2057 * use this as the worst case scenario in which the frag ahead 2058 * of us only provides one byte which is why we are limited to 6 2059 * descriptors for a single transmit as the header and previous 2060 * fragment are already consuming 2 descriptors. 2061 */ 2062 sum = 1 - skb_shinfo(skb)->gso_size; 2063 2064 /* Add size of frags 0 through 4 to create our initial sum */ 2065 sum += skb_frag_size(frag++); 2066 sum += skb_frag_size(frag++); 2067 sum += skb_frag_size(frag++); 2068 sum += skb_frag_size(frag++); 2069 sum += skb_frag_size(frag++); 2070 2071 /* Walk through fragments adding latest fragment, testing it, and 2072 * then removing stale fragments from the sum. 2073 */ 2074 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2075 int stale_size = skb_frag_size(stale); 2076 2077 sum += skb_frag_size(frag++); 2078 2079 /* The stale fragment may present us with a smaller 2080 * descriptor than the actual fragment size. To account 2081 * for that we need to remove all the data on the front and 2082 * figure out what the remainder would be in the last 2083 * descriptor associated with the fragment. 2084 */ 2085 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2086 int align_pad = -(skb_frag_off(stale)) & 2087 (ICE_MAX_READ_REQ_SIZE - 1); 2088 2089 sum -= align_pad; 2090 stale_size -= align_pad; 2091 2092 do { 2093 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2094 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2095 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2096 } 2097 2098 /* if sum is negative we failed to make sufficient progress */ 2099 if (sum < 0) 2100 return true; 2101 2102 if (!nr_frags--) 2103 break; 2104 2105 sum -= stale_size; 2106 } 2107 2108 return false; 2109 } 2110 2111 /** 2112 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2113 * @skb: send buffer 2114 * @count: number of buffers used 2115 * 2116 * Note: Our HW can't scatter-gather more than 8 fragments to build 2117 * a packet on the wire and so we need to figure out the cases where we 2118 * need to linearize the skb. 2119 */ 2120 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2121 { 2122 /* Both TSO and single send will work if count is less than 8 */ 2123 if (likely(count < ICE_MAX_BUF_TXD)) 2124 return false; 2125 2126 if (skb_is_gso(skb)) 2127 return __ice_chk_linearize(skb); 2128 2129 /* we can support up to 8 data buffers for a single send */ 2130 return count != ICE_MAX_BUF_TXD; 2131 } 2132 2133 /** 2134 * ice_xmit_frame_ring - Sends buffer on Tx ring 2135 * @skb: send buffer 2136 * @tx_ring: ring to send buffer on 2137 * 2138 * Returns NETDEV_TX_OK if sent, else an error code 2139 */ 2140 static netdev_tx_t 2141 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2142 { 2143 struct ice_tx_offload_params offload = { 0 }; 2144 struct ice_vsi *vsi = tx_ring->vsi; 2145 struct ice_tx_buf *first; 2146 unsigned int count; 2147 int tso, csum; 2148 2149 count = ice_xmit_desc_count(skb); 2150 if (ice_chk_linearize(skb, count)) { 2151 if (__skb_linearize(skb)) 2152 goto out_drop; 2153 count = ice_txd_use_count(skb->len); 2154 tx_ring->tx_stats.tx_linearize++; 2155 } 2156 2157 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2158 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2159 * + 4 desc gap to avoid the cache line where head is, 2160 * + 1 desc for context descriptor, 2161 * otherwise try next time 2162 */ 2163 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2164 ICE_DESCS_FOR_CTX_DESC)) { 2165 tx_ring->tx_stats.tx_busy++; 2166 return NETDEV_TX_BUSY; 2167 } 2168 2169 offload.tx_ring = tx_ring; 2170 2171 /* record the location of the first descriptor for this packet */ 2172 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2173 first->skb = skb; 2174 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2175 first->gso_segs = 1; 2176 first->tx_flags = 0; 2177 2178 /* prepare the VLAN tagging flags for Tx */ 2179 ice_tx_prepare_vlan_flags(tx_ring, first); 2180 2181 /* set up TSO offload */ 2182 tso = ice_tso(first, &offload); 2183 if (tso < 0) 2184 goto out_drop; 2185 2186 /* always set up Tx checksum offload */ 2187 csum = ice_tx_csum(first, &offload); 2188 if (csum < 0) 2189 goto out_drop; 2190 2191 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2192 if (unlikely(skb->priority == TC_PRIO_CONTROL && 2193 vsi->type == ICE_VSI_PF && 2194 vsi->port_info->qos_cfg.is_sw_lldp)) 2195 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2196 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2197 ICE_TXD_CTX_QW1_CMD_S); 2198 2199 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2200 struct ice_tx_ctx_desc *cdesc; 2201 u16 i = tx_ring->next_to_use; 2202 2203 /* grab the next descriptor */ 2204 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2205 i++; 2206 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2207 2208 /* setup context descriptor */ 2209 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2210 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2211 cdesc->rsvd = cpu_to_le16(0); 2212 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2213 } 2214 2215 ice_tx_map(tx_ring, first, &offload); 2216 return NETDEV_TX_OK; 2217 2218 out_drop: 2219 dev_kfree_skb_any(skb); 2220 return NETDEV_TX_OK; 2221 } 2222 2223 /** 2224 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2225 * @skb: send buffer 2226 * @netdev: network interface device structure 2227 * 2228 * Returns NETDEV_TX_OK if sent, else an error code 2229 */ 2230 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2231 { 2232 struct ice_netdev_priv *np = netdev_priv(netdev); 2233 struct ice_vsi *vsi = np->vsi; 2234 struct ice_ring *tx_ring; 2235 2236 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2237 2238 /* hardware can't handle really short frames, hardware padding works 2239 * beyond this point 2240 */ 2241 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2242 return NETDEV_TX_OK; 2243 2244 return ice_xmit_frame_ring(skb, tx_ring); 2245 } 2246 2247 /** 2248 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2249 * @tx_ring: tx_ring to clean 2250 */ 2251 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) 2252 { 2253 struct ice_vsi *vsi = tx_ring->vsi; 2254 s16 i = tx_ring->next_to_clean; 2255 int budget = ICE_DFLT_IRQ_WORK; 2256 struct ice_tx_desc *tx_desc; 2257 struct ice_tx_buf *tx_buf; 2258 2259 tx_buf = &tx_ring->tx_buf[i]; 2260 tx_desc = ICE_TX_DESC(tx_ring, i); 2261 i -= tx_ring->count; 2262 2263 do { 2264 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2265 2266 /* if next_to_watch is not set then there is no pending work */ 2267 if (!eop_desc) 2268 break; 2269 2270 /* prevent any other reads prior to eop_desc */ 2271 smp_rmb(); 2272 2273 /* if the descriptor isn't done, no work to do */ 2274 if (!(eop_desc->cmd_type_offset_bsz & 2275 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2276 break; 2277 2278 /* clear next_to_watch to prevent false hangs */ 2279 tx_buf->next_to_watch = NULL; 2280 tx_desc->buf_addr = 0; 2281 tx_desc->cmd_type_offset_bsz = 0; 2282 2283 /* move past filter desc */ 2284 tx_buf++; 2285 tx_desc++; 2286 i++; 2287 if (unlikely(!i)) { 2288 i -= tx_ring->count; 2289 tx_buf = tx_ring->tx_buf; 2290 tx_desc = ICE_TX_DESC(tx_ring, 0); 2291 } 2292 2293 /* unmap the data header */ 2294 if (dma_unmap_len(tx_buf, len)) 2295 dma_unmap_single(tx_ring->dev, 2296 dma_unmap_addr(tx_buf, dma), 2297 dma_unmap_len(tx_buf, len), 2298 DMA_TO_DEVICE); 2299 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2300 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2301 2302 /* clear next_to_watch to prevent false hangs */ 2303 tx_buf->raw_buf = NULL; 2304 tx_buf->tx_flags = 0; 2305 tx_buf->next_to_watch = NULL; 2306 dma_unmap_len_set(tx_buf, len, 0); 2307 tx_desc->buf_addr = 0; 2308 tx_desc->cmd_type_offset_bsz = 0; 2309 2310 /* move past eop_desc for start of next FD desc */ 2311 tx_buf++; 2312 tx_desc++; 2313 i++; 2314 if (unlikely(!i)) { 2315 i -= tx_ring->count; 2316 tx_buf = tx_ring->tx_buf; 2317 tx_desc = ICE_TX_DESC(tx_ring, 0); 2318 } 2319 2320 budget--; 2321 } while (likely(budget)); 2322 2323 i += tx_ring->count; 2324 tx_ring->next_to_clean = i; 2325 2326 /* re-enable interrupt if needed */ 2327 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2328 } 2329