1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/mpls.h> 12 #include <net/xdp.h> 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 #include "ice.h" 16 #include "ice_trace.h" 17 #include "ice_dcb_lib.h" 18 #include "ice_xsk.h" 19 #include "ice_eswitch.h" 20 21 #define ICE_RX_HDR_SIZE 256 22 23 #define FDIR_DESC_RXDID 0x40 24 #define ICE_FDIR_CLEAN_DELAY 10 25 26 /** 27 * ice_prgm_fdir_fltr - Program a Flow Director filter 28 * @vsi: VSI to send dummy packet 29 * @fdir_desc: flow director descriptor 30 * @raw_packet: allocated buffer for flow director 31 */ 32 int 33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 34 u8 *raw_packet) 35 { 36 struct ice_tx_buf *tx_buf, *first; 37 struct ice_fltr_desc *f_desc; 38 struct ice_tx_desc *tx_desc; 39 struct ice_tx_ring *tx_ring; 40 struct device *dev; 41 dma_addr_t dma; 42 u32 td_cmd; 43 u16 i; 44 45 /* VSI and Tx ring */ 46 if (!vsi) 47 return -ENOENT; 48 tx_ring = vsi->tx_rings[0]; 49 if (!tx_ring || !tx_ring->desc) 50 return -ENOENT; 51 dev = tx_ring->dev; 52 53 /* we are using two descriptors to add/del a filter and we can wait */ 54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 55 if (!i) 56 return -EAGAIN; 57 msleep_interruptible(1); 58 } 59 60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 61 DMA_TO_DEVICE); 62 63 if (dma_mapping_error(dev, dma)) 64 return -EINVAL; 65 66 /* grab the next descriptor */ 67 i = tx_ring->next_to_use; 68 first = &tx_ring->tx_buf[i]; 69 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 70 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 71 72 i++; 73 i = (i < tx_ring->count) ? i : 0; 74 tx_desc = ICE_TX_DESC(tx_ring, i); 75 tx_buf = &tx_ring->tx_buf[i]; 76 77 i++; 78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 79 80 memset(tx_buf, 0, sizeof(*tx_buf)); 81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 82 dma_unmap_addr_set(tx_buf, dma, dma); 83 84 tx_desc->buf_addr = cpu_to_le64(dma); 85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 86 ICE_TX_DESC_CMD_RE; 87 88 tx_buf->type = ICE_TX_BUF_DUMMY; 89 tx_buf->raw_buf = raw_packet; 90 91 tx_desc->cmd_type_offset_bsz = 92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 93 94 /* Force memory write to complete before letting h/w know 95 * there are new descriptors to fetch. 96 */ 97 wmb(); 98 99 /* mark the data descriptor to be watched */ 100 first->next_to_watch = tx_desc; 101 102 writel(tx_ring->next_to_use, tx_ring->tail); 103 104 return 0; 105 } 106 107 /** 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer 109 * @ring: the ring that owns the buffer 110 * @tx_buf: the buffer to free 111 */ 112 static void 113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 114 { 115 if (dma_unmap_len(tx_buf, len)) 116 dma_unmap_page(ring->dev, 117 dma_unmap_addr(tx_buf, dma), 118 dma_unmap_len(tx_buf, len), 119 DMA_TO_DEVICE); 120 121 switch (tx_buf->type) { 122 case ICE_TX_BUF_DUMMY: 123 devm_kfree(ring->dev, tx_buf->raw_buf); 124 break; 125 case ICE_TX_BUF_SKB: 126 dev_kfree_skb_any(tx_buf->skb); 127 break; 128 case ICE_TX_BUF_XDP_TX: 129 page_frag_free(tx_buf->raw_buf); 130 break; 131 case ICE_TX_BUF_XDP_XMIT: 132 xdp_return_frame(tx_buf->xdpf); 133 break; 134 } 135 136 tx_buf->next_to_watch = NULL; 137 tx_buf->type = ICE_TX_BUF_EMPTY; 138 dma_unmap_len_set(tx_buf, len, 0); 139 /* tx_buf must be completely set up in the transmit path */ 140 } 141 142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 143 { 144 return netdev_get_tx_queue(ring->netdev, ring->q_index); 145 } 146 147 /** 148 * ice_clean_tx_ring - Free any empty Tx buffers 149 * @tx_ring: ring to be cleaned 150 */ 151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 152 { 153 u32 size; 154 u16 i; 155 156 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 157 ice_xsk_clean_xdp_ring(tx_ring); 158 goto tx_skip_free; 159 } 160 161 /* ring already cleared, nothing to do */ 162 if (!tx_ring->tx_buf) 163 return; 164 165 /* Free all the Tx ring sk_buffs */ 166 for (i = 0; i < tx_ring->count; i++) 167 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 168 169 tx_skip_free: 170 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 171 172 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 173 PAGE_SIZE); 174 /* Zero out the descriptor ring */ 175 memset(tx_ring->desc, 0, size); 176 177 tx_ring->next_to_use = 0; 178 tx_ring->next_to_clean = 0; 179 180 if (!tx_ring->netdev) 181 return; 182 183 /* cleanup Tx queue statistics */ 184 netdev_tx_reset_queue(txring_txq(tx_ring)); 185 } 186 187 /** 188 * ice_free_tx_ring - Free Tx resources per queue 189 * @tx_ring: Tx descriptor ring for a specific queue 190 * 191 * Free all transmit software resources 192 */ 193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 194 { 195 u32 size; 196 197 ice_clean_tx_ring(tx_ring); 198 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 199 tx_ring->tx_buf = NULL; 200 201 if (tx_ring->desc) { 202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 203 PAGE_SIZE); 204 dmam_free_coherent(tx_ring->dev, size, 205 tx_ring->desc, tx_ring->dma); 206 tx_ring->desc = NULL; 207 } 208 } 209 210 /** 211 * ice_clean_tx_irq - Reclaim resources after transmit completes 212 * @tx_ring: Tx ring to clean 213 * @napi_budget: Used to determine if we are in netpoll 214 * 215 * Returns true if there's any budget left (e.g. the clean is finished) 216 */ 217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 218 { 219 unsigned int total_bytes = 0, total_pkts = 0; 220 unsigned int budget = ICE_DFLT_IRQ_WORK; 221 struct ice_vsi *vsi = tx_ring->vsi; 222 s16 i = tx_ring->next_to_clean; 223 struct ice_tx_desc *tx_desc; 224 struct ice_tx_buf *tx_buf; 225 226 /* get the bql data ready */ 227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 228 229 tx_buf = &tx_ring->tx_buf[i]; 230 tx_desc = ICE_TX_DESC(tx_ring, i); 231 i -= tx_ring->count; 232 233 prefetch(&vsi->state); 234 235 do { 236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 237 238 /* if next_to_watch is not set then there is no work pending */ 239 if (!eop_desc) 240 break; 241 242 /* follow the guidelines of other drivers */ 243 prefetchw(&tx_buf->skb->users); 244 245 smp_rmb(); /* prevent any other reads prior to eop_desc */ 246 247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 248 /* if the descriptor isn't done, no work yet to do */ 249 if (!(eop_desc->cmd_type_offset_bsz & 250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 251 break; 252 253 /* clear next_to_watch to prevent false hangs */ 254 tx_buf->next_to_watch = NULL; 255 256 /* update the statistics for this packet */ 257 total_bytes += tx_buf->bytecount; 258 total_pkts += tx_buf->gso_segs; 259 260 /* free the skb */ 261 napi_consume_skb(tx_buf->skb, napi_budget); 262 263 /* unmap skb header data */ 264 dma_unmap_single(tx_ring->dev, 265 dma_unmap_addr(tx_buf, dma), 266 dma_unmap_len(tx_buf, len), 267 DMA_TO_DEVICE); 268 269 /* clear tx_buf data */ 270 tx_buf->type = ICE_TX_BUF_EMPTY; 271 dma_unmap_len_set(tx_buf, len, 0); 272 273 /* unmap remaining buffers */ 274 while (tx_desc != eop_desc) { 275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 276 tx_buf++; 277 tx_desc++; 278 i++; 279 if (unlikely(!i)) { 280 i -= tx_ring->count; 281 tx_buf = tx_ring->tx_buf; 282 tx_desc = ICE_TX_DESC(tx_ring, 0); 283 } 284 285 /* unmap any remaining paged data */ 286 if (dma_unmap_len(tx_buf, len)) { 287 dma_unmap_page(tx_ring->dev, 288 dma_unmap_addr(tx_buf, dma), 289 dma_unmap_len(tx_buf, len), 290 DMA_TO_DEVICE); 291 dma_unmap_len_set(tx_buf, len, 0); 292 } 293 } 294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 295 296 /* move us one more past the eop_desc for start of next pkt */ 297 tx_buf++; 298 tx_desc++; 299 i++; 300 if (unlikely(!i)) { 301 i -= tx_ring->count; 302 tx_buf = tx_ring->tx_buf; 303 tx_desc = ICE_TX_DESC(tx_ring, 0); 304 } 305 306 prefetch(tx_desc); 307 308 /* update budget accounting */ 309 budget--; 310 } while (likely(budget)); 311 312 i += tx_ring->count; 313 tx_ring->next_to_clean = i; 314 315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 317 318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 321 /* Make sure that anybody stopping the queue after this 322 * sees the new next_to_clean. 323 */ 324 smp_mb(); 325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 326 !test_bit(ICE_VSI_DOWN, vsi->state)) { 327 netif_tx_wake_queue(txring_txq(tx_ring)); 328 ++tx_ring->ring_stats->tx_stats.restart_q; 329 } 330 } 331 332 return !!budget; 333 } 334 335 /** 336 * ice_setup_tx_ring - Allocate the Tx descriptors 337 * @tx_ring: the Tx ring to set up 338 * 339 * Return 0 on success, negative on error 340 */ 341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 342 { 343 struct device *dev = tx_ring->dev; 344 u32 size; 345 346 if (!dev) 347 return -ENOMEM; 348 349 /* warn if we are about to overwrite the pointer */ 350 WARN_ON(tx_ring->tx_buf); 351 tx_ring->tx_buf = 352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 353 GFP_KERNEL); 354 if (!tx_ring->tx_buf) 355 return -ENOMEM; 356 357 /* round up to nearest page */ 358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 359 PAGE_SIZE); 360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 361 GFP_KERNEL); 362 if (!tx_ring->desc) { 363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 364 size); 365 goto err; 366 } 367 368 tx_ring->next_to_use = 0; 369 tx_ring->next_to_clean = 0; 370 tx_ring->ring_stats->tx_stats.prev_pkt = -1; 371 return 0; 372 373 err: 374 devm_kfree(dev, tx_ring->tx_buf); 375 tx_ring->tx_buf = NULL; 376 return -ENOMEM; 377 } 378 379 /** 380 * ice_clean_rx_ring - Free Rx buffers 381 * @rx_ring: ring to be cleaned 382 */ 383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 384 { 385 struct xdp_buff *xdp = &rx_ring->xdp; 386 struct device *dev = rx_ring->dev; 387 u32 size; 388 u16 i; 389 390 /* ring already cleared, nothing to do */ 391 if (!rx_ring->rx_buf) 392 return; 393 394 if (rx_ring->xsk_pool) { 395 ice_xsk_clean_rx_ring(rx_ring); 396 goto rx_skip_free; 397 } 398 399 if (xdp->data) { 400 xdp_return_buff(xdp); 401 xdp->data = NULL; 402 } 403 404 /* Free all the Rx ring sk_buffs */ 405 for (i = 0; i < rx_ring->count; i++) { 406 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 407 408 if (!rx_buf->page) 409 continue; 410 411 /* Invalidate cache lines that may have been written to by 412 * device so that we avoid corrupting memory. 413 */ 414 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 415 rx_buf->page_offset, 416 rx_ring->rx_buf_len, 417 DMA_FROM_DEVICE); 418 419 /* free resources associated with mapping */ 420 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 421 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 422 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 423 424 rx_buf->page = NULL; 425 rx_buf->page_offset = 0; 426 } 427 428 rx_skip_free: 429 if (rx_ring->xsk_pool) 430 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 431 else 432 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 433 434 /* Zero out the descriptor ring */ 435 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 436 PAGE_SIZE); 437 memset(rx_ring->desc, 0, size); 438 439 rx_ring->next_to_alloc = 0; 440 rx_ring->next_to_clean = 0; 441 rx_ring->first_desc = 0; 442 rx_ring->next_to_use = 0; 443 } 444 445 /** 446 * ice_free_rx_ring - Free Rx resources 447 * @rx_ring: ring to clean the resources from 448 * 449 * Free all receive software resources 450 */ 451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 452 { 453 u32 size; 454 455 ice_clean_rx_ring(rx_ring); 456 if (rx_ring->vsi->type == ICE_VSI_PF) 457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 459 rx_ring->xdp_prog = NULL; 460 if (rx_ring->xsk_pool) { 461 kfree(rx_ring->xdp_buf); 462 rx_ring->xdp_buf = NULL; 463 } else { 464 kfree(rx_ring->rx_buf); 465 rx_ring->rx_buf = NULL; 466 } 467 468 if (rx_ring->desc) { 469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 470 PAGE_SIZE); 471 dmam_free_coherent(rx_ring->dev, size, 472 rx_ring->desc, rx_ring->dma); 473 rx_ring->desc = NULL; 474 } 475 } 476 477 /** 478 * ice_setup_rx_ring - Allocate the Rx descriptors 479 * @rx_ring: the Rx ring to set up 480 * 481 * Return 0 on success, negative on error 482 */ 483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 484 { 485 struct device *dev = rx_ring->dev; 486 u32 size; 487 488 if (!dev) 489 return -ENOMEM; 490 491 /* warn if we are about to overwrite the pointer */ 492 WARN_ON(rx_ring->rx_buf); 493 rx_ring->rx_buf = 494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 495 if (!rx_ring->rx_buf) 496 return -ENOMEM; 497 498 /* round up to nearest page */ 499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 500 PAGE_SIZE); 501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 502 GFP_KERNEL); 503 if (!rx_ring->desc) { 504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 505 size); 506 goto err; 507 } 508 509 rx_ring->next_to_use = 0; 510 rx_ring->next_to_clean = 0; 511 rx_ring->first_desc = 0; 512 513 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 514 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 515 516 if (rx_ring->vsi->type == ICE_VSI_PF && 517 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 518 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 519 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 520 goto err; 521 return 0; 522 523 err: 524 kfree(rx_ring->rx_buf); 525 rx_ring->rx_buf = NULL; 526 return -ENOMEM; 527 } 528 529 /** 530 * ice_rx_frame_truesize 531 * @rx_ring: ptr to Rx ring 532 * @size: size 533 * 534 * calculate the truesize with taking into the account PAGE_SIZE of 535 * underlying arch 536 */ 537 static unsigned int 538 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, const unsigned int size) 539 { 540 unsigned int truesize; 541 542 #if (PAGE_SIZE < 8192) 543 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 544 #else 545 truesize = rx_ring->rx_offset ? 546 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 547 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 548 SKB_DATA_ALIGN(size); 549 #endif 550 return truesize; 551 } 552 553 /** 554 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 555 * @rx_ring: Rx ring 556 * @xdp: xdp_buff used as input to the XDP program 557 * @xdp_prog: XDP program to run 558 * @xdp_ring: ring to be used for XDP_TX action 559 * @rx_buf: Rx buffer to store the XDP action 560 * 561 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 562 */ 563 static void 564 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 565 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 566 struct ice_rx_buf *rx_buf) 567 { 568 unsigned int ret = ICE_XDP_PASS; 569 u32 act; 570 571 if (!xdp_prog) 572 goto exit; 573 574 act = bpf_prog_run_xdp(xdp_prog, xdp); 575 switch (act) { 576 case XDP_PASS: 577 break; 578 case XDP_TX: 579 if (static_branch_unlikely(&ice_xdp_locking_key)) 580 spin_lock(&xdp_ring->tx_lock); 581 ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false); 582 if (static_branch_unlikely(&ice_xdp_locking_key)) 583 spin_unlock(&xdp_ring->tx_lock); 584 if (ret == ICE_XDP_CONSUMED) 585 goto out_failure; 586 break; 587 case XDP_REDIRECT: 588 if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog)) 589 goto out_failure; 590 ret = ICE_XDP_REDIR; 591 break; 592 default: 593 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 594 fallthrough; 595 case XDP_ABORTED: 596 out_failure: 597 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 598 fallthrough; 599 case XDP_DROP: 600 ret = ICE_XDP_CONSUMED; 601 } 602 exit: 603 rx_buf->act = ret; 604 if (unlikely(xdp_buff_has_frags(xdp))) 605 ice_set_rx_bufs_act(xdp, rx_ring, ret); 606 } 607 608 /** 609 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission 610 * @xdpf: XDP frame that will be converted to XDP buff 611 * @xdp_ring: XDP ring for transmission 612 */ 613 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf, 614 struct ice_tx_ring *xdp_ring) 615 { 616 struct xdp_buff xdp; 617 618 xdp.data_hard_start = (void *)xdpf; 619 xdp.data = xdpf->data; 620 xdp.data_end = xdp.data + xdpf->len; 621 xdp.frame_sz = xdpf->frame_sz; 622 xdp.flags = xdpf->flags; 623 624 return __ice_xmit_xdp_ring(&xdp, xdp_ring, true); 625 } 626 627 /** 628 * ice_xdp_xmit - submit packets to XDP ring for transmission 629 * @dev: netdev 630 * @n: number of XDP frames to be transmitted 631 * @frames: XDP frames to be transmitted 632 * @flags: transmit flags 633 * 634 * Returns number of frames successfully sent. Failed frames 635 * will be free'ed by XDP core. 636 * For error cases, a negative errno code is returned and no-frames 637 * are transmitted (caller must handle freeing frames). 638 */ 639 int 640 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 641 u32 flags) 642 { 643 struct ice_netdev_priv *np = netdev_priv(dev); 644 unsigned int queue_index = smp_processor_id(); 645 struct ice_vsi *vsi = np->vsi; 646 struct ice_tx_ring *xdp_ring; 647 struct ice_tx_buf *tx_buf; 648 int nxmit = 0, i; 649 650 if (test_bit(ICE_VSI_DOWN, vsi->state)) 651 return -ENETDOWN; 652 653 if (!ice_is_xdp_ena_vsi(vsi)) 654 return -ENXIO; 655 656 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 657 return -EINVAL; 658 659 if (static_branch_unlikely(&ice_xdp_locking_key)) { 660 queue_index %= vsi->num_xdp_txq; 661 xdp_ring = vsi->xdp_rings[queue_index]; 662 spin_lock(&xdp_ring->tx_lock); 663 } else { 664 /* Generally, should not happen */ 665 if (unlikely(queue_index >= vsi->num_xdp_txq)) 666 return -ENXIO; 667 xdp_ring = vsi->xdp_rings[queue_index]; 668 } 669 670 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 671 for (i = 0; i < n; i++) { 672 const struct xdp_frame *xdpf = frames[i]; 673 int err; 674 675 err = ice_xmit_xdp_ring(xdpf, xdp_ring); 676 if (err != ICE_XDP_TX) 677 break; 678 nxmit++; 679 } 680 681 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 682 if (unlikely(flags & XDP_XMIT_FLUSH)) 683 ice_xdp_ring_update_tail(xdp_ring); 684 685 if (static_branch_unlikely(&ice_xdp_locking_key)) 686 spin_unlock(&xdp_ring->tx_lock); 687 688 return nxmit; 689 } 690 691 /** 692 * ice_alloc_mapped_page - recycle or make a new page 693 * @rx_ring: ring to use 694 * @bi: rx_buf struct to modify 695 * 696 * Returns true if the page was successfully allocated or 697 * reused. 698 */ 699 static bool 700 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 701 { 702 struct page *page = bi->page; 703 dma_addr_t dma; 704 705 /* since we are recycling buffers we should seldom need to alloc */ 706 if (likely(page)) 707 return true; 708 709 /* alloc new page for storage */ 710 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 711 if (unlikely(!page)) { 712 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 713 return false; 714 } 715 716 /* map page for use */ 717 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 718 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 719 720 /* if mapping failed free memory back to system since 721 * there isn't much point in holding memory we can't use 722 */ 723 if (dma_mapping_error(rx_ring->dev, dma)) { 724 __free_pages(page, ice_rx_pg_order(rx_ring)); 725 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 726 return false; 727 } 728 729 bi->dma = dma; 730 bi->page = page; 731 bi->page_offset = rx_ring->rx_offset; 732 page_ref_add(page, USHRT_MAX - 1); 733 bi->pagecnt_bias = USHRT_MAX; 734 735 return true; 736 } 737 738 /** 739 * ice_alloc_rx_bufs - Replace used receive buffers 740 * @rx_ring: ring to place buffers on 741 * @cleaned_count: number of buffers to replace 742 * 743 * Returns false if all allocations were successful, true if any fail. Returning 744 * true signals to the caller that we didn't replace cleaned_count buffers and 745 * there is more work to do. 746 * 747 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 748 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 749 * multiple tail writes per call. 750 */ 751 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count) 752 { 753 union ice_32b_rx_flex_desc *rx_desc; 754 u16 ntu = rx_ring->next_to_use; 755 struct ice_rx_buf *bi; 756 757 /* do nothing if no valid netdev defined */ 758 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 759 !cleaned_count) 760 return false; 761 762 /* get the Rx descriptor and buffer based on next_to_use */ 763 rx_desc = ICE_RX_DESC(rx_ring, ntu); 764 bi = &rx_ring->rx_buf[ntu]; 765 766 do { 767 /* if we fail here, we have work remaining */ 768 if (!ice_alloc_mapped_page(rx_ring, bi)) 769 break; 770 771 /* sync the buffer for use by the device */ 772 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 773 bi->page_offset, 774 rx_ring->rx_buf_len, 775 DMA_FROM_DEVICE); 776 777 /* Refresh the desc even if buffer_addrs didn't change 778 * because each write-back erases this info. 779 */ 780 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 781 782 rx_desc++; 783 bi++; 784 ntu++; 785 if (unlikely(ntu == rx_ring->count)) { 786 rx_desc = ICE_RX_DESC(rx_ring, 0); 787 bi = rx_ring->rx_buf; 788 ntu = 0; 789 } 790 791 /* clear the status bits for the next_to_use descriptor */ 792 rx_desc->wb.status_error0 = 0; 793 794 cleaned_count--; 795 } while (cleaned_count); 796 797 if (rx_ring->next_to_use != ntu) 798 ice_release_rx_desc(rx_ring, ntu); 799 800 return !!cleaned_count; 801 } 802 803 /** 804 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 805 * @rx_buf: Rx buffer to adjust 806 * @size: Size of adjustment 807 * 808 * Update the offset within page so that Rx buf will be ready to be reused. 809 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 810 * so the second half of page assigned to Rx buffer will be used, otherwise 811 * the offset is moved by "size" bytes 812 */ 813 static void 814 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 815 { 816 #if (PAGE_SIZE < 8192) 817 /* flip page offset to other buffer */ 818 rx_buf->page_offset ^= size; 819 #else 820 /* move offset up to the next cache line */ 821 rx_buf->page_offset += size; 822 #endif 823 } 824 825 /** 826 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 827 * @rx_buf: buffer containing the page 828 * 829 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 830 * which will assign the current buffer to the buffer that next_to_alloc is 831 * pointing to; otherwise, the DMA mapping needs to be destroyed and 832 * page freed 833 */ 834 static bool 835 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 836 { 837 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 838 struct page *page = rx_buf->page; 839 840 /* avoid re-using remote and pfmemalloc pages */ 841 if (!dev_page_is_reusable(page)) 842 return false; 843 844 #if (PAGE_SIZE < 8192) 845 /* if we are only owner of page we can reuse it */ 846 if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1)) 847 return false; 848 #else 849 #define ICE_LAST_OFFSET \ 850 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 851 if (rx_buf->page_offset > ICE_LAST_OFFSET) 852 return false; 853 #endif /* PAGE_SIZE < 8192) */ 854 855 /* If we have drained the page fragment pool we need to update 856 * the pagecnt_bias and page count so that we fully restock the 857 * number of references the driver holds. 858 */ 859 if (unlikely(pagecnt_bias == 1)) { 860 page_ref_add(page, USHRT_MAX - 1); 861 rx_buf->pagecnt_bias = USHRT_MAX; 862 } 863 864 return true; 865 } 866 867 /** 868 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag 869 * @rx_ring: Rx descriptor ring to transact packets on 870 * @xdp: xdp buff to place the data into 871 * @rx_buf: buffer containing page to add 872 * @size: packet length from rx_desc 873 * 874 * This function will add the data contained in rx_buf->page to the xdp buf. 875 * It will just attach the page as a frag. 876 */ 877 static int 878 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 879 struct ice_rx_buf *rx_buf, const unsigned int size) 880 { 881 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 882 883 if (!size) 884 return 0; 885 886 if (!xdp_buff_has_frags(xdp)) { 887 sinfo->nr_frags = 0; 888 sinfo->xdp_frags_size = 0; 889 xdp_buff_set_frags_flag(xdp); 890 } 891 892 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 893 if (unlikely(xdp_buff_has_frags(xdp))) 894 ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED); 895 return -ENOMEM; 896 } 897 898 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page, 899 rx_buf->page_offset, size); 900 sinfo->xdp_frags_size += size; 901 902 if (page_is_pfmemalloc(rx_buf->page)) 903 xdp_buff_set_frag_pfmemalloc(xdp); 904 905 return 0; 906 } 907 908 /** 909 * ice_reuse_rx_page - page flip buffer and store it back on the ring 910 * @rx_ring: Rx descriptor ring to store buffers on 911 * @old_buf: donor buffer to have page reused 912 * 913 * Synchronizes page for reuse by the adapter 914 */ 915 static void 916 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 917 { 918 u16 nta = rx_ring->next_to_alloc; 919 struct ice_rx_buf *new_buf; 920 921 new_buf = &rx_ring->rx_buf[nta]; 922 923 /* update, and store next to alloc */ 924 nta++; 925 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 926 927 /* Transfer page from old buffer to new buffer. 928 * Move each member individually to avoid possible store 929 * forwarding stalls and unnecessary copy of skb. 930 */ 931 new_buf->dma = old_buf->dma; 932 new_buf->page = old_buf->page; 933 new_buf->page_offset = old_buf->page_offset; 934 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 935 } 936 937 /** 938 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 939 * @rx_ring: Rx descriptor ring to transact packets on 940 * @size: size of buffer to add to skb 941 * @ntc: index of next to clean element 942 * 943 * This function will pull an Rx buffer from the ring and synchronize it 944 * for use by the CPU. 945 */ 946 static struct ice_rx_buf * 947 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 948 const unsigned int ntc) 949 { 950 struct ice_rx_buf *rx_buf; 951 952 rx_buf = &rx_ring->rx_buf[ntc]; 953 rx_buf->pgcnt = 954 #if (PAGE_SIZE < 8192) 955 page_count(rx_buf->page); 956 #else 957 0; 958 #endif 959 prefetchw(rx_buf->page); 960 961 if (!size) 962 return rx_buf; 963 /* we are reusing so sync this buffer for CPU use */ 964 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 965 rx_buf->page_offset, size, 966 DMA_FROM_DEVICE); 967 968 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 969 rx_buf->pagecnt_bias--; 970 971 return rx_buf; 972 } 973 974 /** 975 * ice_build_skb - Build skb around an existing buffer 976 * @rx_ring: Rx descriptor ring to transact packets on 977 * @xdp: xdp_buff pointing to the data 978 * 979 * This function builds an skb around an existing XDP buffer, taking care 980 * to set up the skb correctly and avoid any memcpy overhead. Driver has 981 * already combined frags (if any) to skb_shared_info. 982 */ 983 static struct sk_buff * 984 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 985 { 986 u8 metasize = xdp->data - xdp->data_meta; 987 struct skb_shared_info *sinfo = NULL; 988 unsigned int nr_frags; 989 struct sk_buff *skb; 990 991 if (unlikely(xdp_buff_has_frags(xdp))) { 992 sinfo = xdp_get_shared_info_from_buff(xdp); 993 nr_frags = sinfo->nr_frags; 994 } 995 996 /* Prefetch first cache line of first page. If xdp->data_meta 997 * is unused, this points exactly as xdp->data, otherwise we 998 * likely have a consumer accessing first few bytes of meta 999 * data, and then actual data. 1000 */ 1001 net_prefetch(xdp->data_meta); 1002 /* build an skb around the page buffer */ 1003 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 1004 if (unlikely(!skb)) 1005 return NULL; 1006 1007 /* must to record Rx queue, otherwise OS features such as 1008 * symmetric queue won't work 1009 */ 1010 skb_record_rx_queue(skb, rx_ring->q_index); 1011 1012 /* update pointers within the skb to store the data */ 1013 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1014 __skb_put(skb, xdp->data_end - xdp->data); 1015 if (metasize) 1016 skb_metadata_set(skb, metasize); 1017 1018 if (unlikely(xdp_buff_has_frags(xdp))) 1019 xdp_update_skb_shared_info(skb, nr_frags, 1020 sinfo->xdp_frags_size, 1021 nr_frags * xdp->frame_sz, 1022 xdp_buff_is_frag_pfmemalloc(xdp)); 1023 1024 return skb; 1025 } 1026 1027 /** 1028 * ice_construct_skb - Allocate skb and populate it 1029 * @rx_ring: Rx descriptor ring to transact packets on 1030 * @xdp: xdp_buff pointing to the data 1031 * 1032 * This function allocates an skb. It then populates it with the page 1033 * data from the current receive descriptor, taking care to set up the 1034 * skb correctly. 1035 */ 1036 static struct sk_buff * 1037 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 1038 { 1039 unsigned int size = xdp->data_end - xdp->data; 1040 struct skb_shared_info *sinfo = NULL; 1041 struct ice_rx_buf *rx_buf; 1042 unsigned int nr_frags = 0; 1043 unsigned int headlen; 1044 struct sk_buff *skb; 1045 1046 /* prefetch first cache line of first page */ 1047 net_prefetch(xdp->data); 1048 1049 if (unlikely(xdp_buff_has_frags(xdp))) { 1050 sinfo = xdp_get_shared_info_from_buff(xdp); 1051 nr_frags = sinfo->nr_frags; 1052 } 1053 1054 /* allocate a skb to store the frags */ 1055 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 1056 GFP_ATOMIC | __GFP_NOWARN); 1057 if (unlikely(!skb)) 1058 return NULL; 1059 1060 rx_buf = &rx_ring->rx_buf[rx_ring->first_desc]; 1061 skb_record_rx_queue(skb, rx_ring->q_index); 1062 /* Determine available headroom for copy */ 1063 headlen = size; 1064 if (headlen > ICE_RX_HDR_SIZE) 1065 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1066 1067 /* align pull length to size of long to optimize memcpy performance */ 1068 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 1069 sizeof(long))); 1070 1071 /* if we exhaust the linear part then add what is left as a frag */ 1072 size -= headlen; 1073 if (size) { 1074 /* besides adding here a partial frag, we are going to add 1075 * frags from xdp_buff, make sure there is enough space for 1076 * them 1077 */ 1078 if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) { 1079 dev_kfree_skb(skb); 1080 return NULL; 1081 } 1082 skb_add_rx_frag(skb, 0, rx_buf->page, 1083 rx_buf->page_offset + headlen, size, 1084 xdp->frame_sz); 1085 } else { 1086 /* buffer is unused, change the act that should be taken later 1087 * on; data was copied onto skb's linear part so there's no 1088 * need for adjusting page offset and we can reuse this buffer 1089 * as-is 1090 */ 1091 rx_buf->act = ICE_SKB_CONSUMED; 1092 } 1093 1094 if (unlikely(xdp_buff_has_frags(xdp))) { 1095 struct skb_shared_info *skinfo = skb_shinfo(skb); 1096 1097 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 1098 sizeof(skb_frag_t) * nr_frags); 1099 1100 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, 1101 sinfo->xdp_frags_size, 1102 nr_frags * xdp->frame_sz, 1103 xdp_buff_is_frag_pfmemalloc(xdp)); 1104 } 1105 1106 return skb; 1107 } 1108 1109 /** 1110 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1111 * @rx_ring: Rx descriptor ring to transact packets on 1112 * @rx_buf: Rx buffer to pull data from 1113 * 1114 * This function will clean up the contents of the rx_buf. It will either 1115 * recycle the buffer or unmap it and free the associated resources. 1116 */ 1117 static void 1118 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf) 1119 { 1120 if (!rx_buf) 1121 return; 1122 1123 if (ice_can_reuse_rx_page(rx_buf)) { 1124 /* hand second half of page back to the ring */ 1125 ice_reuse_rx_page(rx_ring, rx_buf); 1126 } else { 1127 /* we are not reusing the buffer so unmap it */ 1128 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1129 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1130 ICE_RX_DMA_ATTR); 1131 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1132 } 1133 1134 /* clear contents of buffer_info */ 1135 rx_buf->page = NULL; 1136 } 1137 1138 /** 1139 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1140 * @rx_ring: Rx descriptor ring to transact packets on 1141 * @budget: Total limit on number of packets to process 1142 * 1143 * This function provides a "bounce buffer" approach to Rx interrupt 1144 * processing. The advantage to this is that on systems that have 1145 * expensive overhead for IOMMU access this provides a means of avoiding 1146 * it by maintaining the mapping of the page to the system. 1147 * 1148 * Returns amount of work completed 1149 */ 1150 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1151 { 1152 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1153 unsigned int offset = rx_ring->rx_offset; 1154 struct xdp_buff *xdp = &rx_ring->xdp; 1155 struct ice_tx_ring *xdp_ring = NULL; 1156 struct bpf_prog *xdp_prog = NULL; 1157 u32 ntc = rx_ring->next_to_clean; 1158 u32 cnt = rx_ring->count; 1159 u32 cached_ntc = ntc; 1160 u32 xdp_xmit = 0; 1161 u32 cached_ntu; 1162 bool failure; 1163 u32 first; 1164 1165 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1166 #if (PAGE_SIZE < 8192) 1167 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1168 #endif 1169 1170 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1171 if (xdp_prog) { 1172 xdp_ring = rx_ring->xdp_ring; 1173 cached_ntu = xdp_ring->next_to_use; 1174 } 1175 1176 /* start the loop to process Rx packets bounded by 'budget' */ 1177 while (likely(total_rx_pkts < (unsigned int)budget)) { 1178 union ice_32b_rx_flex_desc *rx_desc; 1179 struct ice_rx_buf *rx_buf; 1180 struct sk_buff *skb; 1181 unsigned int size; 1182 u16 stat_err_bits; 1183 u16 vlan_tag = 0; 1184 u16 rx_ptype; 1185 1186 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1187 rx_desc = ICE_RX_DESC(rx_ring, ntc); 1188 1189 /* status_error_len will always be zero for unused descriptors 1190 * because it's cleared in cleanup, and overlaps with hdr_addr 1191 * which is always zero because packet split isn't used, if the 1192 * hardware wrote DD then it will be non-zero 1193 */ 1194 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1195 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1196 break; 1197 1198 /* This memory barrier is needed to keep us from reading 1199 * any other fields out of the rx_desc until we know the 1200 * DD bit is set. 1201 */ 1202 dma_rmb(); 1203 1204 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1205 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1206 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1207 1208 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1209 ctrl_vsi->vf) 1210 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1211 if (++ntc == cnt) 1212 ntc = 0; 1213 rx_ring->first_desc = ntc; 1214 continue; 1215 } 1216 1217 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1218 ICE_RX_FLX_DESC_PKT_LEN_M; 1219 1220 /* retrieve a buffer from the ring */ 1221 rx_buf = ice_get_rx_buf(rx_ring, size, ntc); 1222 1223 if (!xdp->data) { 1224 void *hard_start; 1225 1226 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1227 offset; 1228 xdp_prepare_buff(xdp, hard_start, offset, size, !!offset); 1229 #if (PAGE_SIZE > 4096) 1230 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1231 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, size); 1232 #endif 1233 xdp_buff_clear_frags_flag(xdp); 1234 } else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) { 1235 break; 1236 } 1237 if (++ntc == cnt) 1238 ntc = 0; 1239 1240 /* skip if it is NOP desc */ 1241 if (ice_is_non_eop(rx_ring, rx_desc)) 1242 continue; 1243 1244 ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf); 1245 if (rx_buf->act == ICE_XDP_PASS) 1246 goto construct_skb; 1247 total_rx_bytes += xdp_get_buff_len(xdp); 1248 total_rx_pkts++; 1249 1250 xdp->data = NULL; 1251 rx_ring->first_desc = ntc; 1252 continue; 1253 construct_skb: 1254 if (likely(ice_ring_uses_build_skb(rx_ring))) 1255 skb = ice_build_skb(rx_ring, xdp); 1256 else 1257 skb = ice_construct_skb(rx_ring, xdp); 1258 /* exit if we failed to retrieve a buffer */ 1259 if (!skb) { 1260 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 1261 rx_buf->act = ICE_XDP_CONSUMED; 1262 if (unlikely(xdp_buff_has_frags(xdp))) 1263 ice_set_rx_bufs_act(xdp, rx_ring, 1264 ICE_XDP_CONSUMED); 1265 xdp->data = NULL; 1266 rx_ring->first_desc = ntc; 1267 break; 1268 } 1269 xdp->data = NULL; 1270 rx_ring->first_desc = ntc; 1271 1272 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1273 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1274 stat_err_bits))) { 1275 dev_kfree_skb_any(skb); 1276 continue; 1277 } 1278 1279 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 1280 1281 /* pad the skb if needed, to make a valid ethernet frame */ 1282 if (eth_skb_pad(skb)) 1283 continue; 1284 1285 /* probably a little skewed due to removing CRC */ 1286 total_rx_bytes += skb->len; 1287 1288 /* populate checksum, VLAN, and protocol */ 1289 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1290 ICE_RX_FLEX_DESC_PTYPE_M; 1291 1292 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1293 1294 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1295 /* send completed skb up the stack */ 1296 ice_receive_skb(rx_ring, skb, vlan_tag); 1297 1298 /* update budget accounting */ 1299 total_rx_pkts++; 1300 } 1301 1302 first = rx_ring->first_desc; 1303 while (cached_ntc != first) { 1304 struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc]; 1305 1306 if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1307 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1308 xdp_xmit |= buf->act; 1309 } else if (buf->act & ICE_XDP_CONSUMED) { 1310 buf->pagecnt_bias++; 1311 } else if (buf->act == ICE_XDP_PASS) { 1312 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1313 } 1314 1315 ice_put_rx_buf(rx_ring, buf); 1316 if (++cached_ntc >= cnt) 1317 cached_ntc = 0; 1318 } 1319 rx_ring->next_to_clean = ntc; 1320 /* return up to cleaned_count buffers to hardware */ 1321 failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring)); 1322 1323 if (xdp_xmit) 1324 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu); 1325 1326 if (rx_ring->ring_stats) 1327 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, 1328 total_rx_bytes); 1329 1330 /* guarantee a trip back through this routine if there was a failure */ 1331 return failure ? budget : (int)total_rx_pkts; 1332 } 1333 1334 static void __ice_update_sample(struct ice_q_vector *q_vector, 1335 struct ice_ring_container *rc, 1336 struct dim_sample *sample, 1337 bool is_tx) 1338 { 1339 u64 packets = 0, bytes = 0; 1340 1341 if (is_tx) { 1342 struct ice_tx_ring *tx_ring; 1343 1344 ice_for_each_tx_ring(tx_ring, *rc) { 1345 struct ice_ring_stats *ring_stats; 1346 1347 ring_stats = tx_ring->ring_stats; 1348 if (!ring_stats) 1349 continue; 1350 packets += ring_stats->stats.pkts; 1351 bytes += ring_stats->stats.bytes; 1352 } 1353 } else { 1354 struct ice_rx_ring *rx_ring; 1355 1356 ice_for_each_rx_ring(rx_ring, *rc) { 1357 struct ice_ring_stats *ring_stats; 1358 1359 ring_stats = rx_ring->ring_stats; 1360 if (!ring_stats) 1361 continue; 1362 packets += ring_stats->stats.pkts; 1363 bytes += ring_stats->stats.bytes; 1364 } 1365 } 1366 1367 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1368 sample->comp_ctr = 0; 1369 1370 /* if dim settings get stale, like when not updated for 1 1371 * second or longer, force it to start again. This addresses the 1372 * frequent case of an idle queue being switched to by the 1373 * scheduler. The 1,000 here means 1,000 milliseconds. 1374 */ 1375 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1376 rc->dim.state = DIM_START_MEASURE; 1377 } 1378 1379 /** 1380 * ice_net_dim - Update net DIM algorithm 1381 * @q_vector: the vector associated with the interrupt 1382 * 1383 * Create a DIM sample and notify net_dim() so that it can possibly decide 1384 * a new ITR value based on incoming packets, bytes, and interrupts. 1385 * 1386 * This function is a no-op if the ring is not configured to dynamic ITR. 1387 */ 1388 static void ice_net_dim(struct ice_q_vector *q_vector) 1389 { 1390 struct ice_ring_container *tx = &q_vector->tx; 1391 struct ice_ring_container *rx = &q_vector->rx; 1392 1393 if (ITR_IS_DYNAMIC(tx)) { 1394 struct dim_sample dim_sample; 1395 1396 __ice_update_sample(q_vector, tx, &dim_sample, true); 1397 net_dim(&tx->dim, dim_sample); 1398 } 1399 1400 if (ITR_IS_DYNAMIC(rx)) { 1401 struct dim_sample dim_sample; 1402 1403 __ice_update_sample(q_vector, rx, &dim_sample, false); 1404 net_dim(&rx->dim, dim_sample); 1405 } 1406 } 1407 1408 /** 1409 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1410 * @itr_idx: interrupt throttling index 1411 * @itr: interrupt throttling value in usecs 1412 */ 1413 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1414 { 1415 /* The ITR value is reported in microseconds, and the register value is 1416 * recorded in 2 microsecond units. For this reason we only need to 1417 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1418 * granularity as a shift instead of division. The mask makes sure the 1419 * ITR value is never odd so we don't accidentally write into the field 1420 * prior to the ITR field. 1421 */ 1422 itr &= ICE_ITR_MASK; 1423 1424 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1425 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1426 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1427 } 1428 1429 /** 1430 * ice_enable_interrupt - re-enable MSI-X interrupt 1431 * @q_vector: the vector associated with the interrupt to enable 1432 * 1433 * If the VSI is down, the interrupt will not be re-enabled. Also, 1434 * when enabling the interrupt always reset the wb_on_itr to false 1435 * and trigger a software interrupt to clean out internal state. 1436 */ 1437 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1438 { 1439 struct ice_vsi *vsi = q_vector->vsi; 1440 bool wb_en = q_vector->wb_on_itr; 1441 u32 itr_val; 1442 1443 if (test_bit(ICE_DOWN, vsi->state)) 1444 return; 1445 1446 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1447 * make sure to catch any pending cleanups that might have been missed 1448 * due to interrupt state transition. If busy poll or poll isn't 1449 * enabled, then don't update ITR, and just enable the interrupt. 1450 */ 1451 if (!wb_en) { 1452 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1453 } else { 1454 q_vector->wb_on_itr = false; 1455 1456 /* do two things here with a single write. Set up the third ITR 1457 * index to be used for software interrupt moderation, and then 1458 * trigger a software interrupt with a rate limit of 20K on 1459 * software interrupts, this will help avoid high interrupt 1460 * loads due to frequently polling and exiting polling. 1461 */ 1462 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1463 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1464 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1465 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1466 } 1467 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1468 } 1469 1470 /** 1471 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1472 * @q_vector: q_vector to set WB_ON_ITR on 1473 * 1474 * We need to tell hardware to write-back completed descriptors even when 1475 * interrupts are disabled. Descriptors will be written back on cache line 1476 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1477 * descriptors may not be written back if they don't fill a cache line until 1478 * the next interrupt. 1479 * 1480 * This sets the write-back frequency to whatever was set previously for the 1481 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1482 * aren't meddling with the INTENA_M bit. 1483 */ 1484 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1485 { 1486 struct ice_vsi *vsi = q_vector->vsi; 1487 1488 /* already in wb_on_itr mode no need to change it */ 1489 if (q_vector->wb_on_itr) 1490 return; 1491 1492 /* use previously set ITR values for all of the ITR indices by 1493 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1494 * be static in non-adaptive mode (user configured) 1495 */ 1496 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1497 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1498 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1499 GLINT_DYN_CTL_WB_ON_ITR_M); 1500 1501 q_vector->wb_on_itr = true; 1502 } 1503 1504 /** 1505 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1506 * @napi: napi struct with our devices info in it 1507 * @budget: amount of work driver is allowed to do this pass, in packets 1508 * 1509 * This function will clean all queues associated with a q_vector. 1510 * 1511 * Returns the amount of work done 1512 */ 1513 int ice_napi_poll(struct napi_struct *napi, int budget) 1514 { 1515 struct ice_q_vector *q_vector = 1516 container_of(napi, struct ice_q_vector, napi); 1517 struct ice_tx_ring *tx_ring; 1518 struct ice_rx_ring *rx_ring; 1519 bool clean_complete = true; 1520 int budget_per_ring; 1521 int work_done = 0; 1522 1523 /* Since the actual Tx work is minimal, we can give the Tx a larger 1524 * budget and be more aggressive about cleaning up the Tx descriptors. 1525 */ 1526 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1527 bool wd; 1528 1529 if (tx_ring->xsk_pool) 1530 wd = ice_xmit_zc(tx_ring); 1531 else if (ice_ring_is_xdp(tx_ring)) 1532 wd = true; 1533 else 1534 wd = ice_clean_tx_irq(tx_ring, budget); 1535 1536 if (!wd) 1537 clean_complete = false; 1538 } 1539 1540 /* Handle case where we are called by netpoll with a budget of 0 */ 1541 if (unlikely(budget <= 0)) 1542 return budget; 1543 1544 /* normally we have 1 Rx ring per q_vector */ 1545 if (unlikely(q_vector->num_ring_rx > 1)) 1546 /* We attempt to distribute budget to each Rx queue fairly, but 1547 * don't allow the budget to go below 1 because that would exit 1548 * polling early. 1549 */ 1550 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1551 else 1552 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1553 budget_per_ring = budget; 1554 1555 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1556 int cleaned; 1557 1558 /* A dedicated path for zero-copy allows making a single 1559 * comparison in the irq context instead of many inside the 1560 * ice_clean_rx_irq function and makes the codebase cleaner. 1561 */ 1562 cleaned = rx_ring->xsk_pool ? 1563 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1564 ice_clean_rx_irq(rx_ring, budget_per_ring); 1565 work_done += cleaned; 1566 /* if we clean as many as budgeted, we must not be done */ 1567 if (cleaned >= budget_per_ring) 1568 clean_complete = false; 1569 } 1570 1571 /* If work not completed, return budget and polling will return */ 1572 if (!clean_complete) { 1573 /* Set the writeback on ITR so partial completions of 1574 * cache-lines will still continue even if we're polling. 1575 */ 1576 ice_set_wb_on_itr(q_vector); 1577 return budget; 1578 } 1579 1580 /* Exit the polling mode, but don't re-enable interrupts if stack might 1581 * poll us due to busy-polling 1582 */ 1583 if (napi_complete_done(napi, work_done)) { 1584 ice_net_dim(q_vector); 1585 ice_enable_interrupt(q_vector); 1586 } else { 1587 ice_set_wb_on_itr(q_vector); 1588 } 1589 1590 return min_t(int, work_done, budget - 1); 1591 } 1592 1593 /** 1594 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1595 * @tx_ring: the ring to be checked 1596 * @size: the size buffer we want to assure is available 1597 * 1598 * Returns -EBUSY if a stop is needed, else 0 1599 */ 1600 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1601 { 1602 netif_tx_stop_queue(txring_txq(tx_ring)); 1603 /* Memory barrier before checking head and tail */ 1604 smp_mb(); 1605 1606 /* Check again in a case another CPU has just made room available. */ 1607 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1608 return -EBUSY; 1609 1610 /* A reprieve! - use start_queue because it doesn't call schedule */ 1611 netif_tx_start_queue(txring_txq(tx_ring)); 1612 ++tx_ring->ring_stats->tx_stats.restart_q; 1613 return 0; 1614 } 1615 1616 /** 1617 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1618 * @tx_ring: the ring to be checked 1619 * @size: the size buffer we want to assure is available 1620 * 1621 * Returns 0 if stop is not needed 1622 */ 1623 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1624 { 1625 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1626 return 0; 1627 1628 return __ice_maybe_stop_tx(tx_ring, size); 1629 } 1630 1631 /** 1632 * ice_tx_map - Build the Tx descriptor 1633 * @tx_ring: ring to send buffer on 1634 * @first: first buffer info buffer to use 1635 * @off: pointer to struct that holds offload parameters 1636 * 1637 * This function loops over the skb data pointed to by *first 1638 * and gets a physical address for each memory location and programs 1639 * it and the length into the transmit descriptor. 1640 */ 1641 static void 1642 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1643 struct ice_tx_offload_params *off) 1644 { 1645 u64 td_offset, td_tag, td_cmd; 1646 u16 i = tx_ring->next_to_use; 1647 unsigned int data_len, size; 1648 struct ice_tx_desc *tx_desc; 1649 struct ice_tx_buf *tx_buf; 1650 struct sk_buff *skb; 1651 skb_frag_t *frag; 1652 dma_addr_t dma; 1653 bool kick; 1654 1655 td_tag = off->td_l2tag1; 1656 td_cmd = off->td_cmd; 1657 td_offset = off->td_offset; 1658 skb = first->skb; 1659 1660 data_len = skb->data_len; 1661 size = skb_headlen(skb); 1662 1663 tx_desc = ICE_TX_DESC(tx_ring, i); 1664 1665 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1666 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1667 td_tag = first->vid; 1668 } 1669 1670 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1671 1672 tx_buf = first; 1673 1674 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1675 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1676 1677 if (dma_mapping_error(tx_ring->dev, dma)) 1678 goto dma_error; 1679 1680 /* record length, and DMA address */ 1681 dma_unmap_len_set(tx_buf, len, size); 1682 dma_unmap_addr_set(tx_buf, dma, dma); 1683 1684 /* align size to end of page */ 1685 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1686 tx_desc->buf_addr = cpu_to_le64(dma); 1687 1688 /* account for data chunks larger than the hardware 1689 * can handle 1690 */ 1691 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1692 tx_desc->cmd_type_offset_bsz = 1693 ice_build_ctob(td_cmd, td_offset, max_data, 1694 td_tag); 1695 1696 tx_desc++; 1697 i++; 1698 1699 if (i == tx_ring->count) { 1700 tx_desc = ICE_TX_DESC(tx_ring, 0); 1701 i = 0; 1702 } 1703 1704 dma += max_data; 1705 size -= max_data; 1706 1707 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1708 tx_desc->buf_addr = cpu_to_le64(dma); 1709 } 1710 1711 if (likely(!data_len)) 1712 break; 1713 1714 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1715 size, td_tag); 1716 1717 tx_desc++; 1718 i++; 1719 1720 if (i == tx_ring->count) { 1721 tx_desc = ICE_TX_DESC(tx_ring, 0); 1722 i = 0; 1723 } 1724 1725 size = skb_frag_size(frag); 1726 data_len -= size; 1727 1728 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1729 DMA_TO_DEVICE); 1730 1731 tx_buf = &tx_ring->tx_buf[i]; 1732 tx_buf->type = ICE_TX_BUF_FRAG; 1733 } 1734 1735 /* record SW timestamp if HW timestamp is not available */ 1736 skb_tx_timestamp(first->skb); 1737 1738 i++; 1739 if (i == tx_ring->count) 1740 i = 0; 1741 1742 /* write last descriptor with RS and EOP bits */ 1743 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1744 tx_desc->cmd_type_offset_bsz = 1745 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1746 1747 /* Force memory writes to complete before letting h/w know there 1748 * are new descriptors to fetch. 1749 * 1750 * We also use this memory barrier to make certain all of the 1751 * status bits have been updated before next_to_watch is written. 1752 */ 1753 wmb(); 1754 1755 /* set next_to_watch value indicating a packet is present */ 1756 first->next_to_watch = tx_desc; 1757 1758 tx_ring->next_to_use = i; 1759 1760 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1761 1762 /* notify HW of packet */ 1763 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1764 netdev_xmit_more()); 1765 if (kick) 1766 /* notify HW of packet */ 1767 writel(i, tx_ring->tail); 1768 1769 return; 1770 1771 dma_error: 1772 /* clear DMA mappings for failed tx_buf map */ 1773 for (;;) { 1774 tx_buf = &tx_ring->tx_buf[i]; 1775 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1776 if (tx_buf == first) 1777 break; 1778 if (i == 0) 1779 i = tx_ring->count; 1780 i--; 1781 } 1782 1783 tx_ring->next_to_use = i; 1784 } 1785 1786 /** 1787 * ice_tx_csum - Enable Tx checksum offloads 1788 * @first: pointer to the first descriptor 1789 * @off: pointer to struct that holds offload parameters 1790 * 1791 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1792 */ 1793 static 1794 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1795 { 1796 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1797 struct sk_buff *skb = first->skb; 1798 union { 1799 struct iphdr *v4; 1800 struct ipv6hdr *v6; 1801 unsigned char *hdr; 1802 } ip; 1803 union { 1804 struct tcphdr *tcp; 1805 unsigned char *hdr; 1806 } l4; 1807 __be16 frag_off, protocol; 1808 unsigned char *exthdr; 1809 u32 offset, cmd = 0; 1810 u8 l4_proto = 0; 1811 1812 if (skb->ip_summed != CHECKSUM_PARTIAL) 1813 return 0; 1814 1815 protocol = vlan_get_protocol(skb); 1816 1817 if (eth_p_mpls(protocol)) { 1818 ip.hdr = skb_inner_network_header(skb); 1819 l4.hdr = skb_checksum_start(skb); 1820 } else { 1821 ip.hdr = skb_network_header(skb); 1822 l4.hdr = skb_transport_header(skb); 1823 } 1824 1825 /* compute outer L2 header size */ 1826 l2_len = ip.hdr - skb->data; 1827 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1828 1829 /* set the tx_flags to indicate the IP protocol type. this is 1830 * required so that checksum header computation below is accurate. 1831 */ 1832 if (ip.v4->version == 4) 1833 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1834 else if (ip.v6->version == 6) 1835 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1836 1837 if (skb->encapsulation) { 1838 bool gso_ena = false; 1839 u32 tunnel = 0; 1840 1841 /* define outer network header type */ 1842 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1843 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1844 ICE_TX_CTX_EIPT_IPV4 : 1845 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1846 l4_proto = ip.v4->protocol; 1847 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1848 int ret; 1849 1850 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1851 exthdr = ip.hdr + sizeof(*ip.v6); 1852 l4_proto = ip.v6->nexthdr; 1853 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1854 &l4_proto, &frag_off); 1855 if (ret < 0) 1856 return -1; 1857 } 1858 1859 /* define outer transport */ 1860 switch (l4_proto) { 1861 case IPPROTO_UDP: 1862 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1863 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1864 break; 1865 case IPPROTO_GRE: 1866 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1867 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1868 break; 1869 case IPPROTO_IPIP: 1870 case IPPROTO_IPV6: 1871 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1872 l4.hdr = skb_inner_network_header(skb); 1873 break; 1874 default: 1875 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1876 return -1; 1877 1878 skb_checksum_help(skb); 1879 return 0; 1880 } 1881 1882 /* compute outer L3 header size */ 1883 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1884 ICE_TXD_CTX_QW0_EIPLEN_S; 1885 1886 /* switch IP header pointer from outer to inner header */ 1887 ip.hdr = skb_inner_network_header(skb); 1888 1889 /* compute tunnel header size */ 1890 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1891 ICE_TXD_CTX_QW0_NATLEN_S; 1892 1893 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1894 /* indicate if we need to offload outer UDP header */ 1895 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1896 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1897 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1898 1899 /* record tunnel offload values */ 1900 off->cd_tunnel_params |= tunnel; 1901 1902 /* set DTYP=1 to indicate that it's an Tx context descriptor 1903 * in IPsec tunnel mode with Tx offloads in Quad word 1 1904 */ 1905 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1906 1907 /* switch L4 header pointer from outer to inner */ 1908 l4.hdr = skb_inner_transport_header(skb); 1909 l4_proto = 0; 1910 1911 /* reset type as we transition from outer to inner headers */ 1912 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1913 if (ip.v4->version == 4) 1914 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1915 if (ip.v6->version == 6) 1916 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1917 } 1918 1919 /* Enable IP checksum offloads */ 1920 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1921 l4_proto = ip.v4->protocol; 1922 /* the stack computes the IP header already, the only time we 1923 * need the hardware to recompute it is in the case of TSO. 1924 */ 1925 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1926 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1927 else 1928 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1929 1930 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1931 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1932 exthdr = ip.hdr + sizeof(*ip.v6); 1933 l4_proto = ip.v6->nexthdr; 1934 if (l4.hdr != exthdr) 1935 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1936 &frag_off); 1937 } else { 1938 return -1; 1939 } 1940 1941 /* compute inner L3 header size */ 1942 l3_len = l4.hdr - ip.hdr; 1943 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1944 1945 /* Enable L4 checksum offloads */ 1946 switch (l4_proto) { 1947 case IPPROTO_TCP: 1948 /* enable checksum offloads */ 1949 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1950 l4_len = l4.tcp->doff; 1951 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1952 break; 1953 case IPPROTO_UDP: 1954 /* enable UDP checksum offload */ 1955 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1956 l4_len = (sizeof(struct udphdr) >> 2); 1957 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1958 break; 1959 case IPPROTO_SCTP: 1960 /* enable SCTP checksum offload */ 1961 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1962 l4_len = sizeof(struct sctphdr) >> 2; 1963 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1964 break; 1965 1966 default: 1967 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1968 return -1; 1969 skb_checksum_help(skb); 1970 return 0; 1971 } 1972 1973 off->td_cmd |= cmd; 1974 off->td_offset |= offset; 1975 return 1; 1976 } 1977 1978 /** 1979 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1980 * @tx_ring: ring to send buffer on 1981 * @first: pointer to struct ice_tx_buf 1982 * 1983 * Checks the skb and set up correspondingly several generic transmit flags 1984 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1985 */ 1986 static void 1987 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1988 { 1989 struct sk_buff *skb = first->skb; 1990 1991 /* nothing left to do, software offloaded VLAN */ 1992 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1993 return; 1994 1995 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 1996 * feature flags, which the driver only allows either 802.1Q or 802.1ad 1997 * VLAN offloads exclusively so we only care about the VLAN ID here 1998 */ 1999 if (skb_vlan_tag_present(skb)) { 2000 first->vid = skb_vlan_tag_get(skb); 2001 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 2002 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 2003 else 2004 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2005 } 2006 2007 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2008 } 2009 2010 /** 2011 * ice_tso - computes mss and TSO length to prepare for TSO 2012 * @first: pointer to struct ice_tx_buf 2013 * @off: pointer to struct that holds offload parameters 2014 * 2015 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2016 */ 2017 static 2018 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2019 { 2020 struct sk_buff *skb = first->skb; 2021 union { 2022 struct iphdr *v4; 2023 struct ipv6hdr *v6; 2024 unsigned char *hdr; 2025 } ip; 2026 union { 2027 struct tcphdr *tcp; 2028 struct udphdr *udp; 2029 unsigned char *hdr; 2030 } l4; 2031 u64 cd_mss, cd_tso_len; 2032 __be16 protocol; 2033 u32 paylen; 2034 u8 l4_start; 2035 int err; 2036 2037 if (skb->ip_summed != CHECKSUM_PARTIAL) 2038 return 0; 2039 2040 if (!skb_is_gso(skb)) 2041 return 0; 2042 2043 err = skb_cow_head(skb, 0); 2044 if (err < 0) 2045 return err; 2046 2047 protocol = vlan_get_protocol(skb); 2048 2049 if (eth_p_mpls(protocol)) 2050 ip.hdr = skb_inner_network_header(skb); 2051 else 2052 ip.hdr = skb_network_header(skb); 2053 l4.hdr = skb_checksum_start(skb); 2054 2055 /* initialize outer IP header fields */ 2056 if (ip.v4->version == 4) { 2057 ip.v4->tot_len = 0; 2058 ip.v4->check = 0; 2059 } else { 2060 ip.v6->payload_len = 0; 2061 } 2062 2063 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2064 SKB_GSO_GRE_CSUM | 2065 SKB_GSO_IPXIP4 | 2066 SKB_GSO_IPXIP6 | 2067 SKB_GSO_UDP_TUNNEL | 2068 SKB_GSO_UDP_TUNNEL_CSUM)) { 2069 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2070 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2071 l4.udp->len = 0; 2072 2073 /* determine offset of outer transport header */ 2074 l4_start = (u8)(l4.hdr - skb->data); 2075 2076 /* remove payload length from outer checksum */ 2077 paylen = skb->len - l4_start; 2078 csum_replace_by_diff(&l4.udp->check, 2079 (__force __wsum)htonl(paylen)); 2080 } 2081 2082 /* reset pointers to inner headers */ 2083 ip.hdr = skb_inner_network_header(skb); 2084 l4.hdr = skb_inner_transport_header(skb); 2085 2086 /* initialize inner IP header fields */ 2087 if (ip.v4->version == 4) { 2088 ip.v4->tot_len = 0; 2089 ip.v4->check = 0; 2090 } else { 2091 ip.v6->payload_len = 0; 2092 } 2093 } 2094 2095 /* determine offset of transport header */ 2096 l4_start = (u8)(l4.hdr - skb->data); 2097 2098 /* remove payload length from checksum */ 2099 paylen = skb->len - l4_start; 2100 2101 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2102 csum_replace_by_diff(&l4.udp->check, 2103 (__force __wsum)htonl(paylen)); 2104 /* compute length of UDP segmentation header */ 2105 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2106 } else { 2107 csum_replace_by_diff(&l4.tcp->check, 2108 (__force __wsum)htonl(paylen)); 2109 /* compute length of TCP segmentation header */ 2110 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2111 } 2112 2113 /* update gso_segs and bytecount */ 2114 first->gso_segs = skb_shinfo(skb)->gso_segs; 2115 first->bytecount += (first->gso_segs - 1) * off->header_len; 2116 2117 cd_tso_len = skb->len - off->header_len; 2118 cd_mss = skb_shinfo(skb)->gso_size; 2119 2120 /* record cdesc_qw1 with TSO parameters */ 2121 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2122 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2123 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2124 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2125 first->tx_flags |= ICE_TX_FLAGS_TSO; 2126 return 1; 2127 } 2128 2129 /** 2130 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2131 * @size: transmit request size in bytes 2132 * 2133 * Due to hardware alignment restrictions (4K alignment), we need to 2134 * assume that we can have no more than 12K of data per descriptor, even 2135 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2136 * Thus, we need to divide by 12K. But division is slow! Instead, 2137 * we decompose the operation into shifts and one relatively cheap 2138 * multiply operation. 2139 * 2140 * To divide by 12K, we first divide by 4K, then divide by 3: 2141 * To divide by 4K, shift right by 12 bits 2142 * To divide by 3, multiply by 85, then divide by 256 2143 * (Divide by 256 is done by shifting right by 8 bits) 2144 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2145 * 3, we'll underestimate near each multiple of 12K. This is actually more 2146 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2147 * segment. For our purposes this is accurate out to 1M which is orders of 2148 * magnitude greater than our largest possible GSO size. 2149 * 2150 * This would then be implemented as: 2151 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2152 * 2153 * Since multiplication and division are commutative, we can reorder 2154 * operations into: 2155 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2156 */ 2157 static unsigned int ice_txd_use_count(unsigned int size) 2158 { 2159 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2160 } 2161 2162 /** 2163 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2164 * @skb: send buffer 2165 * 2166 * Returns number of data descriptors needed for this skb. 2167 */ 2168 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2169 { 2170 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2171 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2172 unsigned int count = 0, size = skb_headlen(skb); 2173 2174 for (;;) { 2175 count += ice_txd_use_count(size); 2176 2177 if (!nr_frags--) 2178 break; 2179 2180 size = skb_frag_size(frag++); 2181 } 2182 2183 return count; 2184 } 2185 2186 /** 2187 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2188 * @skb: send buffer 2189 * 2190 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2191 * and so we need to figure out the cases where we need to linearize the skb. 2192 * 2193 * For TSO we need to count the TSO header and segment payload separately. 2194 * As such we need to check cases where we have 7 fragments or more as we 2195 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2196 * the segment payload in the first descriptor, and another 7 for the 2197 * fragments. 2198 */ 2199 static bool __ice_chk_linearize(struct sk_buff *skb) 2200 { 2201 const skb_frag_t *frag, *stale; 2202 int nr_frags, sum; 2203 2204 /* no need to check if number of frags is less than 7 */ 2205 nr_frags = skb_shinfo(skb)->nr_frags; 2206 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2207 return false; 2208 2209 /* We need to walk through the list and validate that each group 2210 * of 6 fragments totals at least gso_size. 2211 */ 2212 nr_frags -= ICE_MAX_BUF_TXD - 2; 2213 frag = &skb_shinfo(skb)->frags[0]; 2214 2215 /* Initialize size to the negative value of gso_size minus 1. We 2216 * use this as the worst case scenario in which the frag ahead 2217 * of us only provides one byte which is why we are limited to 6 2218 * descriptors for a single transmit as the header and previous 2219 * fragment are already consuming 2 descriptors. 2220 */ 2221 sum = 1 - skb_shinfo(skb)->gso_size; 2222 2223 /* Add size of frags 0 through 4 to create our initial sum */ 2224 sum += skb_frag_size(frag++); 2225 sum += skb_frag_size(frag++); 2226 sum += skb_frag_size(frag++); 2227 sum += skb_frag_size(frag++); 2228 sum += skb_frag_size(frag++); 2229 2230 /* Walk through fragments adding latest fragment, testing it, and 2231 * then removing stale fragments from the sum. 2232 */ 2233 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2234 int stale_size = skb_frag_size(stale); 2235 2236 sum += skb_frag_size(frag++); 2237 2238 /* The stale fragment may present us with a smaller 2239 * descriptor than the actual fragment size. To account 2240 * for that we need to remove all the data on the front and 2241 * figure out what the remainder would be in the last 2242 * descriptor associated with the fragment. 2243 */ 2244 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2245 int align_pad = -(skb_frag_off(stale)) & 2246 (ICE_MAX_READ_REQ_SIZE - 1); 2247 2248 sum -= align_pad; 2249 stale_size -= align_pad; 2250 2251 do { 2252 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2253 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2254 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2255 } 2256 2257 /* if sum is negative we failed to make sufficient progress */ 2258 if (sum < 0) 2259 return true; 2260 2261 if (!nr_frags--) 2262 break; 2263 2264 sum -= stale_size; 2265 } 2266 2267 return false; 2268 } 2269 2270 /** 2271 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2272 * @skb: send buffer 2273 * @count: number of buffers used 2274 * 2275 * Note: Our HW can't scatter-gather more than 8 fragments to build 2276 * a packet on the wire and so we need to figure out the cases where we 2277 * need to linearize the skb. 2278 */ 2279 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2280 { 2281 /* Both TSO and single send will work if count is less than 8 */ 2282 if (likely(count < ICE_MAX_BUF_TXD)) 2283 return false; 2284 2285 if (skb_is_gso(skb)) 2286 return __ice_chk_linearize(skb); 2287 2288 /* we can support up to 8 data buffers for a single send */ 2289 return count != ICE_MAX_BUF_TXD; 2290 } 2291 2292 /** 2293 * ice_tstamp - set up context descriptor for hardware timestamp 2294 * @tx_ring: pointer to the Tx ring to send buffer on 2295 * @skb: pointer to the SKB we're sending 2296 * @first: Tx buffer 2297 * @off: Tx offload parameters 2298 */ 2299 static void 2300 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2301 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2302 { 2303 s8 idx; 2304 2305 /* only timestamp the outbound packet if the user has requested it */ 2306 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2307 return; 2308 2309 if (!tx_ring->ptp_tx) 2310 return; 2311 2312 /* Tx timestamps cannot be sampled when doing TSO */ 2313 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2314 return; 2315 2316 /* Grab an open timestamp slot */ 2317 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2318 if (idx < 0) { 2319 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++; 2320 return; 2321 } 2322 2323 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2324 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2325 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2326 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2327 } 2328 2329 /** 2330 * ice_xmit_frame_ring - Sends buffer on Tx ring 2331 * @skb: send buffer 2332 * @tx_ring: ring to send buffer on 2333 * 2334 * Returns NETDEV_TX_OK if sent, else an error code 2335 */ 2336 static netdev_tx_t 2337 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2338 { 2339 struct ice_tx_offload_params offload = { 0 }; 2340 struct ice_vsi *vsi = tx_ring->vsi; 2341 struct ice_tx_buf *first; 2342 struct ethhdr *eth; 2343 unsigned int count; 2344 int tso, csum; 2345 2346 ice_trace(xmit_frame_ring, tx_ring, skb); 2347 2348 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 2349 goto out_drop; 2350 2351 count = ice_xmit_desc_count(skb); 2352 if (ice_chk_linearize(skb, count)) { 2353 if (__skb_linearize(skb)) 2354 goto out_drop; 2355 count = ice_txd_use_count(skb->len); 2356 tx_ring->ring_stats->tx_stats.tx_linearize++; 2357 } 2358 2359 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2360 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2361 * + 4 desc gap to avoid the cache line where head is, 2362 * + 1 desc for context descriptor, 2363 * otherwise try next time 2364 */ 2365 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2366 ICE_DESCS_FOR_CTX_DESC)) { 2367 tx_ring->ring_stats->tx_stats.tx_busy++; 2368 return NETDEV_TX_BUSY; 2369 } 2370 2371 /* prefetch for bql data which is infrequently used */ 2372 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2373 2374 offload.tx_ring = tx_ring; 2375 2376 /* record the location of the first descriptor for this packet */ 2377 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2378 first->skb = skb; 2379 first->type = ICE_TX_BUF_SKB; 2380 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2381 first->gso_segs = 1; 2382 first->tx_flags = 0; 2383 2384 /* prepare the VLAN tagging flags for Tx */ 2385 ice_tx_prepare_vlan_flags(tx_ring, first); 2386 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2387 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2388 (ICE_TX_CTX_DESC_IL2TAG2 << 2389 ICE_TXD_CTX_QW1_CMD_S)); 2390 offload.cd_l2tag2 = first->vid; 2391 } 2392 2393 /* set up TSO offload */ 2394 tso = ice_tso(first, &offload); 2395 if (tso < 0) 2396 goto out_drop; 2397 2398 /* always set up Tx checksum offload */ 2399 csum = ice_tx_csum(first, &offload); 2400 if (csum < 0) 2401 goto out_drop; 2402 2403 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2404 eth = (struct ethhdr *)skb_mac_header(skb); 2405 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2406 eth->h_proto == htons(ETH_P_LLDP)) && 2407 vsi->type == ICE_VSI_PF && 2408 vsi->port_info->qos_cfg.is_sw_lldp)) 2409 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2410 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2411 ICE_TXD_CTX_QW1_CMD_S); 2412 2413 ice_tstamp(tx_ring, skb, first, &offload); 2414 if (ice_is_switchdev_running(vsi->back)) 2415 ice_eswitch_set_target_vsi(skb, &offload); 2416 2417 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2418 struct ice_tx_ctx_desc *cdesc; 2419 u16 i = tx_ring->next_to_use; 2420 2421 /* grab the next descriptor */ 2422 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2423 i++; 2424 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2425 2426 /* setup context descriptor */ 2427 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2428 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2429 cdesc->rsvd = cpu_to_le16(0); 2430 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2431 } 2432 2433 ice_tx_map(tx_ring, first, &offload); 2434 return NETDEV_TX_OK; 2435 2436 out_drop: 2437 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2438 dev_kfree_skb_any(skb); 2439 return NETDEV_TX_OK; 2440 } 2441 2442 /** 2443 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2444 * @skb: send buffer 2445 * @netdev: network interface device structure 2446 * 2447 * Returns NETDEV_TX_OK if sent, else an error code 2448 */ 2449 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2450 { 2451 struct ice_netdev_priv *np = netdev_priv(netdev); 2452 struct ice_vsi *vsi = np->vsi; 2453 struct ice_tx_ring *tx_ring; 2454 2455 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2456 2457 /* hardware can't handle really short frames, hardware padding works 2458 * beyond this point 2459 */ 2460 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2461 return NETDEV_TX_OK; 2462 2463 return ice_xmit_frame_ring(skb, tx_ring); 2464 } 2465 2466 /** 2467 * ice_get_dscp_up - return the UP/TC value for a SKB 2468 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2469 * @skb: SKB to query for info to determine UP/TC 2470 * 2471 * This function is to only be called when the PF is in L3 DSCP PFC mode 2472 */ 2473 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2474 { 2475 u8 dscp = 0; 2476 2477 if (skb->protocol == htons(ETH_P_IP)) 2478 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2479 else if (skb->protocol == htons(ETH_P_IPV6)) 2480 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2481 2482 return dcbcfg->dscp_map[dscp]; 2483 } 2484 2485 u16 2486 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2487 struct net_device *sb_dev) 2488 { 2489 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2490 struct ice_dcbx_cfg *dcbcfg; 2491 2492 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2493 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2494 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2495 2496 return netdev_pick_tx(netdev, skb, sb_dev); 2497 } 2498 2499 /** 2500 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2501 * @tx_ring: tx_ring to clean 2502 */ 2503 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2504 { 2505 struct ice_vsi *vsi = tx_ring->vsi; 2506 s16 i = tx_ring->next_to_clean; 2507 int budget = ICE_DFLT_IRQ_WORK; 2508 struct ice_tx_desc *tx_desc; 2509 struct ice_tx_buf *tx_buf; 2510 2511 tx_buf = &tx_ring->tx_buf[i]; 2512 tx_desc = ICE_TX_DESC(tx_ring, i); 2513 i -= tx_ring->count; 2514 2515 do { 2516 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2517 2518 /* if next_to_watch is not set then there is no pending work */ 2519 if (!eop_desc) 2520 break; 2521 2522 /* prevent any other reads prior to eop_desc */ 2523 smp_rmb(); 2524 2525 /* if the descriptor isn't done, no work to do */ 2526 if (!(eop_desc->cmd_type_offset_bsz & 2527 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2528 break; 2529 2530 /* clear next_to_watch to prevent false hangs */ 2531 tx_buf->next_to_watch = NULL; 2532 tx_desc->buf_addr = 0; 2533 tx_desc->cmd_type_offset_bsz = 0; 2534 2535 /* move past filter desc */ 2536 tx_buf++; 2537 tx_desc++; 2538 i++; 2539 if (unlikely(!i)) { 2540 i -= tx_ring->count; 2541 tx_buf = tx_ring->tx_buf; 2542 tx_desc = ICE_TX_DESC(tx_ring, 0); 2543 } 2544 2545 /* unmap the data header */ 2546 if (dma_unmap_len(tx_buf, len)) 2547 dma_unmap_single(tx_ring->dev, 2548 dma_unmap_addr(tx_buf, dma), 2549 dma_unmap_len(tx_buf, len), 2550 DMA_TO_DEVICE); 2551 if (tx_buf->type == ICE_TX_BUF_DUMMY) 2552 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2553 2554 /* clear next_to_watch to prevent false hangs */ 2555 tx_buf->type = ICE_TX_BUF_EMPTY; 2556 tx_buf->tx_flags = 0; 2557 tx_buf->next_to_watch = NULL; 2558 dma_unmap_len_set(tx_buf, len, 0); 2559 tx_desc->buf_addr = 0; 2560 tx_desc->cmd_type_offset_bsz = 0; 2561 2562 /* move past eop_desc for start of next FD desc */ 2563 tx_buf++; 2564 tx_desc++; 2565 i++; 2566 if (unlikely(!i)) { 2567 i -= tx_ring->count; 2568 tx_buf = tx_ring->tx_buf; 2569 tx_desc = ICE_TX_DESC(tx_ring, 0); 2570 } 2571 2572 budget--; 2573 } while (likely(budget)); 2574 2575 i += tx_ring->count; 2576 tx_ring->next_to_clean = i; 2577 2578 /* re-enable interrupt if needed */ 2579 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2580 } 2581