1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 #define FDIR_DESC_RXDID 0x40
19 #define ICE_FDIR_CLEAN_DELAY 10
20 
21 /**
22  * ice_prgm_fdir_fltr - Program a Flow Director filter
23  * @vsi: VSI to send dummy packet
24  * @fdir_desc: flow director descriptor
25  * @raw_packet: allocated buffer for flow director
26  */
27 int
28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
29 		   u8 *raw_packet)
30 {
31 	struct ice_tx_buf *tx_buf, *first;
32 	struct ice_fltr_desc *f_desc;
33 	struct ice_tx_desc *tx_desc;
34 	struct ice_ring *tx_ring;
35 	struct device *dev;
36 	dma_addr_t dma;
37 	u32 td_cmd;
38 	u16 i;
39 
40 	/* VSI and Tx ring */
41 	if (!vsi)
42 		return -ENOENT;
43 	tx_ring = vsi->tx_rings[0];
44 	if (!tx_ring || !tx_ring->desc)
45 		return -ENOENT;
46 	dev = tx_ring->dev;
47 
48 	/* we are using two descriptors to add/del a filter and we can wait */
49 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
50 		if (!i)
51 			return -EAGAIN;
52 		msleep_interruptible(1);
53 	}
54 
55 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
56 			     DMA_TO_DEVICE);
57 
58 	if (dma_mapping_error(dev, dma))
59 		return -EINVAL;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	first = &tx_ring->tx_buf[i];
64 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
65 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
66 
67 	i++;
68 	i = (i < tx_ring->count) ? i : 0;
69 	tx_desc = ICE_TX_DESC(tx_ring, i);
70 	tx_buf = &tx_ring->tx_buf[i];
71 
72 	i++;
73 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
74 
75 	memset(tx_buf, 0, sizeof(*tx_buf));
76 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
77 	dma_unmap_addr_set(tx_buf, dma, dma);
78 
79 	tx_desc->buf_addr = cpu_to_le64(dma);
80 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
81 		 ICE_TX_DESC_CMD_RE;
82 
83 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
84 	tx_buf->raw_buf = raw_packet;
85 
86 	tx_desc->cmd_type_offset_bsz =
87 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
88 
89 	/* Force memory write to complete before letting h/w know
90 	 * there are new descriptors to fetch.
91 	 */
92 	wmb();
93 
94 	/* mark the data descriptor to be watched */
95 	first->next_to_watch = tx_desc;
96 
97 	writel(tx_ring->next_to_use, tx_ring->tail);
98 
99 	return 0;
100 }
101 
102 /**
103  * ice_unmap_and_free_tx_buf - Release a Tx buffer
104  * @ring: the ring that owns the buffer
105  * @tx_buf: the buffer to free
106  */
107 static void
108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
109 {
110 	if (tx_buf->skb) {
111 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
112 			devm_kfree(ring->dev, tx_buf->raw_buf);
113 		else if (ice_ring_is_xdp(ring))
114 			page_frag_free(tx_buf->raw_buf);
115 		else
116 			dev_kfree_skb_any(tx_buf->skb);
117 		if (dma_unmap_len(tx_buf, len))
118 			dma_unmap_single(ring->dev,
119 					 dma_unmap_addr(tx_buf, dma),
120 					 dma_unmap_len(tx_buf, len),
121 					 DMA_TO_DEVICE);
122 	} else if (dma_unmap_len(tx_buf, len)) {
123 		dma_unmap_page(ring->dev,
124 			       dma_unmap_addr(tx_buf, dma),
125 			       dma_unmap_len(tx_buf, len),
126 			       DMA_TO_DEVICE);
127 	}
128 
129 	tx_buf->next_to_watch = NULL;
130 	tx_buf->skb = NULL;
131 	dma_unmap_len_set(tx_buf, len, 0);
132 	/* tx_buf must be completely set up in the transmit path */
133 }
134 
135 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
136 {
137 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
138 }
139 
140 /**
141  * ice_clean_tx_ring - Free any empty Tx buffers
142  * @tx_ring: ring to be cleaned
143  */
144 void ice_clean_tx_ring(struct ice_ring *tx_ring)
145 {
146 	u16 i;
147 
148 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
149 		ice_xsk_clean_xdp_ring(tx_ring);
150 		goto tx_skip_free;
151 	}
152 
153 	/* ring already cleared, nothing to do */
154 	if (!tx_ring->tx_buf)
155 		return;
156 
157 	/* Free all the Tx ring sk_buffs */
158 	for (i = 0; i < tx_ring->count; i++)
159 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
160 
161 tx_skip_free:
162 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
163 
164 	/* Zero out the descriptor ring */
165 	memset(tx_ring->desc, 0, tx_ring->size);
166 
167 	tx_ring->next_to_use = 0;
168 	tx_ring->next_to_clean = 0;
169 
170 	if (!tx_ring->netdev)
171 		return;
172 
173 	/* cleanup Tx queue statistics */
174 	netdev_tx_reset_queue(txring_txq(tx_ring));
175 }
176 
177 /**
178  * ice_free_tx_ring - Free Tx resources per queue
179  * @tx_ring: Tx descriptor ring for a specific queue
180  *
181  * Free all transmit software resources
182  */
183 void ice_free_tx_ring(struct ice_ring *tx_ring)
184 {
185 	ice_clean_tx_ring(tx_ring);
186 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
187 	tx_ring->tx_buf = NULL;
188 
189 	if (tx_ring->desc) {
190 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
191 				   tx_ring->desc, tx_ring->dma);
192 		tx_ring->desc = NULL;
193 	}
194 }
195 
196 /**
197  * ice_clean_tx_irq - Reclaim resources after transmit completes
198  * @tx_ring: Tx ring to clean
199  * @napi_budget: Used to determine if we are in netpoll
200  *
201  * Returns true if there's any budget left (e.g. the clean is finished)
202  */
203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
204 {
205 	unsigned int total_bytes = 0, total_pkts = 0;
206 	unsigned int budget = ICE_DFLT_IRQ_WORK;
207 	struct ice_vsi *vsi = tx_ring->vsi;
208 	s16 i = tx_ring->next_to_clean;
209 	struct ice_tx_desc *tx_desc;
210 	struct ice_tx_buf *tx_buf;
211 
212 	tx_buf = &tx_ring->tx_buf[i];
213 	tx_desc = ICE_TX_DESC(tx_ring, i);
214 	i -= tx_ring->count;
215 
216 	prefetch(&vsi->state);
217 
218 	do {
219 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
220 
221 		/* if next_to_watch is not set then there is no work pending */
222 		if (!eop_desc)
223 			break;
224 
225 		smp_rmb();	/* prevent any other reads prior to eop_desc */
226 
227 		/* if the descriptor isn't done, no work yet to do */
228 		if (!(eop_desc->cmd_type_offset_bsz &
229 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
230 			break;
231 
232 		/* clear next_to_watch to prevent false hangs */
233 		tx_buf->next_to_watch = NULL;
234 
235 		/* update the statistics for this packet */
236 		total_bytes += tx_buf->bytecount;
237 		total_pkts += tx_buf->gso_segs;
238 
239 		if (ice_ring_is_xdp(tx_ring))
240 			page_frag_free(tx_buf->raw_buf);
241 		else
242 			/* free the skb */
243 			napi_consume_skb(tx_buf->skb, napi_budget);
244 
245 		/* unmap skb header data */
246 		dma_unmap_single(tx_ring->dev,
247 				 dma_unmap_addr(tx_buf, dma),
248 				 dma_unmap_len(tx_buf, len),
249 				 DMA_TO_DEVICE);
250 
251 		/* clear tx_buf data */
252 		tx_buf->skb = NULL;
253 		dma_unmap_len_set(tx_buf, len, 0);
254 
255 		/* unmap remaining buffers */
256 		while (tx_desc != eop_desc) {
257 			tx_buf++;
258 			tx_desc++;
259 			i++;
260 			if (unlikely(!i)) {
261 				i -= tx_ring->count;
262 				tx_buf = tx_ring->tx_buf;
263 				tx_desc = ICE_TX_DESC(tx_ring, 0);
264 			}
265 
266 			/* unmap any remaining paged data */
267 			if (dma_unmap_len(tx_buf, len)) {
268 				dma_unmap_page(tx_ring->dev,
269 					       dma_unmap_addr(tx_buf, dma),
270 					       dma_unmap_len(tx_buf, len),
271 					       DMA_TO_DEVICE);
272 				dma_unmap_len_set(tx_buf, len, 0);
273 			}
274 		}
275 
276 		/* move us one more past the eop_desc for start of next pkt */
277 		tx_buf++;
278 		tx_desc++;
279 		i++;
280 		if (unlikely(!i)) {
281 			i -= tx_ring->count;
282 			tx_buf = tx_ring->tx_buf;
283 			tx_desc = ICE_TX_DESC(tx_ring, 0);
284 		}
285 
286 		prefetch(tx_desc);
287 
288 		/* update budget accounting */
289 		budget--;
290 	} while (likely(budget));
291 
292 	i += tx_ring->count;
293 	tx_ring->next_to_clean = i;
294 
295 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
296 
297 	if (ice_ring_is_xdp(tx_ring))
298 		return !!budget;
299 
300 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
301 				  total_bytes);
302 
303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
304 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
305 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
306 		/* Make sure that anybody stopping the queue after this
307 		 * sees the new next_to_clean.
308 		 */
309 		smp_mb();
310 		if (__netif_subqueue_stopped(tx_ring->netdev,
311 					     tx_ring->q_index) &&
312 		    !test_bit(__ICE_DOWN, vsi->state)) {
313 			netif_wake_subqueue(tx_ring->netdev,
314 					    tx_ring->q_index);
315 			++tx_ring->tx_stats.restart_q;
316 		}
317 	}
318 
319 	return !!budget;
320 }
321 
322 /**
323  * ice_setup_tx_ring - Allocate the Tx descriptors
324  * @tx_ring: the Tx ring to set up
325  *
326  * Return 0 on success, negative on error
327  */
328 int ice_setup_tx_ring(struct ice_ring *tx_ring)
329 {
330 	struct device *dev = tx_ring->dev;
331 
332 	if (!dev)
333 		return -ENOMEM;
334 
335 	/* warn if we are about to overwrite the pointer */
336 	WARN_ON(tx_ring->tx_buf);
337 	tx_ring->tx_buf =
338 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
339 			     GFP_KERNEL);
340 	if (!tx_ring->tx_buf)
341 		return -ENOMEM;
342 
343 	/* round up to nearest page */
344 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
345 			      PAGE_SIZE);
346 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
347 					    GFP_KERNEL);
348 	if (!tx_ring->desc) {
349 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
350 			tx_ring->size);
351 		goto err;
352 	}
353 
354 	tx_ring->next_to_use = 0;
355 	tx_ring->next_to_clean = 0;
356 	tx_ring->tx_stats.prev_pkt = -1;
357 	return 0;
358 
359 err:
360 	devm_kfree(dev, tx_ring->tx_buf);
361 	tx_ring->tx_buf = NULL;
362 	return -ENOMEM;
363 }
364 
365 /**
366  * ice_clean_rx_ring - Free Rx buffers
367  * @rx_ring: ring to be cleaned
368  */
369 void ice_clean_rx_ring(struct ice_ring *rx_ring)
370 {
371 	struct device *dev = rx_ring->dev;
372 	u16 i;
373 
374 	/* ring already cleared, nothing to do */
375 	if (!rx_ring->rx_buf)
376 		return;
377 
378 	if (rx_ring->xsk_pool) {
379 		ice_xsk_clean_rx_ring(rx_ring);
380 		goto rx_skip_free;
381 	}
382 
383 	/* Free all the Rx ring sk_buffs */
384 	for (i = 0; i < rx_ring->count; i++) {
385 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
386 
387 		if (rx_buf->skb) {
388 			dev_kfree_skb(rx_buf->skb);
389 			rx_buf->skb = NULL;
390 		}
391 		if (!rx_buf->page)
392 			continue;
393 
394 		/* Invalidate cache lines that may have been written to by
395 		 * device so that we avoid corrupting memory.
396 		 */
397 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
398 					      rx_buf->page_offset,
399 					      rx_ring->rx_buf_len,
400 					      DMA_FROM_DEVICE);
401 
402 		/* free resources associated with mapping */
403 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
404 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
405 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
406 
407 		rx_buf->page = NULL;
408 		rx_buf->page_offset = 0;
409 	}
410 
411 rx_skip_free:
412 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
413 
414 	/* Zero out the descriptor ring */
415 	memset(rx_ring->desc, 0, rx_ring->size);
416 
417 	rx_ring->next_to_alloc = 0;
418 	rx_ring->next_to_clean = 0;
419 	rx_ring->next_to_use = 0;
420 }
421 
422 /**
423  * ice_free_rx_ring - Free Rx resources
424  * @rx_ring: ring to clean the resources from
425  *
426  * Free all receive software resources
427  */
428 void ice_free_rx_ring(struct ice_ring *rx_ring)
429 {
430 	ice_clean_rx_ring(rx_ring);
431 	if (rx_ring->vsi->type == ICE_VSI_PF)
432 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
433 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
434 	rx_ring->xdp_prog = NULL;
435 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
436 	rx_ring->rx_buf = NULL;
437 
438 	if (rx_ring->desc) {
439 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
440 				   rx_ring->desc, rx_ring->dma);
441 		rx_ring->desc = NULL;
442 	}
443 }
444 
445 /**
446  * ice_setup_rx_ring - Allocate the Rx descriptors
447  * @rx_ring: the Rx ring to set up
448  *
449  * Return 0 on success, negative on error
450  */
451 int ice_setup_rx_ring(struct ice_ring *rx_ring)
452 {
453 	struct device *dev = rx_ring->dev;
454 
455 	if (!dev)
456 		return -ENOMEM;
457 
458 	/* warn if we are about to overwrite the pointer */
459 	WARN_ON(rx_ring->rx_buf);
460 	rx_ring->rx_buf =
461 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
462 			     GFP_KERNEL);
463 	if (!rx_ring->rx_buf)
464 		return -ENOMEM;
465 
466 	/* round up to nearest page */
467 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 			      PAGE_SIZE);
469 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
470 					    GFP_KERNEL);
471 	if (!rx_ring->desc) {
472 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
473 			rx_ring->size);
474 		goto err;
475 	}
476 
477 	rx_ring->next_to_use = 0;
478 	rx_ring->next_to_clean = 0;
479 
480 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
481 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
482 
483 	if (rx_ring->vsi->type == ICE_VSI_PF &&
484 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
485 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
486 				     rx_ring->q_index))
487 			goto err;
488 	return 0;
489 
490 err:
491 	devm_kfree(dev, rx_ring->rx_buf);
492 	rx_ring->rx_buf = NULL;
493 	return -ENOMEM;
494 }
495 
496 /**
497  * ice_rx_offset - Return expected offset into page to access data
498  * @rx_ring: Ring we are requesting offset of
499  *
500  * Returns the offset value for ring into the data buffer.
501  */
502 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
503 {
504 	if (ice_ring_uses_build_skb(rx_ring))
505 		return ICE_SKB_PAD;
506 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
507 		return XDP_PACKET_HEADROOM;
508 
509 	return 0;
510 }
511 
512 static unsigned int
513 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
514 {
515 	unsigned int truesize;
516 
517 #if (PAGE_SIZE < 8192)
518 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
519 #else
520 	truesize = ice_rx_offset(rx_ring) ?
521 		SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
522 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
523 		SKB_DATA_ALIGN(size);
524 #endif
525 	return truesize;
526 }
527 
528 /**
529  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
530  * @rx_ring: Rx ring
531  * @xdp: xdp_buff used as input to the XDP program
532  * @xdp_prog: XDP program to run
533  *
534  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
535  */
536 static int
537 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
538 	    struct bpf_prog *xdp_prog)
539 {
540 	int err, result = ICE_XDP_PASS;
541 	struct ice_ring *xdp_ring;
542 	u32 act;
543 
544 	act = bpf_prog_run_xdp(xdp_prog, xdp);
545 	switch (act) {
546 	case XDP_PASS:
547 		break;
548 	case XDP_TX:
549 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
550 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
551 		break;
552 	case XDP_REDIRECT:
553 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
554 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
555 		break;
556 	default:
557 		bpf_warn_invalid_xdp_action(act);
558 		fallthrough;
559 	case XDP_ABORTED:
560 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
561 		fallthrough;
562 	case XDP_DROP:
563 		result = ICE_XDP_CONSUMED;
564 		break;
565 	}
566 
567 	return result;
568 }
569 
570 /**
571  * ice_xdp_xmit - submit packets to XDP ring for transmission
572  * @dev: netdev
573  * @n: number of XDP frames to be transmitted
574  * @frames: XDP frames to be transmitted
575  * @flags: transmit flags
576  *
577  * Returns number of frames successfully sent. Frames that fail are
578  * free'ed via XDP return API.
579  * For error cases, a negative errno code is returned and no-frames
580  * are transmitted (caller must handle freeing frames).
581  */
582 int
583 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
584 	     u32 flags)
585 {
586 	struct ice_netdev_priv *np = netdev_priv(dev);
587 	unsigned int queue_index = smp_processor_id();
588 	struct ice_vsi *vsi = np->vsi;
589 	struct ice_ring *xdp_ring;
590 	int drops = 0, i;
591 
592 	if (test_bit(__ICE_DOWN, vsi->state))
593 		return -ENETDOWN;
594 
595 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
596 		return -ENXIO;
597 
598 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
599 		return -EINVAL;
600 
601 	xdp_ring = vsi->xdp_rings[queue_index];
602 	for (i = 0; i < n; i++) {
603 		struct xdp_frame *xdpf = frames[i];
604 		int err;
605 
606 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
607 		if (err != ICE_XDP_TX) {
608 			xdp_return_frame_rx_napi(xdpf);
609 			drops++;
610 		}
611 	}
612 
613 	if (unlikely(flags & XDP_XMIT_FLUSH))
614 		ice_xdp_ring_update_tail(xdp_ring);
615 
616 	return n - drops;
617 }
618 
619 /**
620  * ice_alloc_mapped_page - recycle or make a new page
621  * @rx_ring: ring to use
622  * @bi: rx_buf struct to modify
623  *
624  * Returns true if the page was successfully allocated or
625  * reused.
626  */
627 static bool
628 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
629 {
630 	struct page *page = bi->page;
631 	dma_addr_t dma;
632 
633 	/* since we are recycling buffers we should seldom need to alloc */
634 	if (likely(page))
635 		return true;
636 
637 	/* alloc new page for storage */
638 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
639 	if (unlikely(!page)) {
640 		rx_ring->rx_stats.alloc_page_failed++;
641 		return false;
642 	}
643 
644 	/* map page for use */
645 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
646 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
647 
648 	/* if mapping failed free memory back to system since
649 	 * there isn't much point in holding memory we can't use
650 	 */
651 	if (dma_mapping_error(rx_ring->dev, dma)) {
652 		__free_pages(page, ice_rx_pg_order(rx_ring));
653 		rx_ring->rx_stats.alloc_page_failed++;
654 		return false;
655 	}
656 
657 	bi->dma = dma;
658 	bi->page = page;
659 	bi->page_offset = ice_rx_offset(rx_ring);
660 	page_ref_add(page, USHRT_MAX - 1);
661 	bi->pagecnt_bias = USHRT_MAX;
662 
663 	return true;
664 }
665 
666 /**
667  * ice_alloc_rx_bufs - Replace used receive buffers
668  * @rx_ring: ring to place buffers on
669  * @cleaned_count: number of buffers to replace
670  *
671  * Returns false if all allocations were successful, true if any fail. Returning
672  * true signals to the caller that we didn't replace cleaned_count buffers and
673  * there is more work to do.
674  *
675  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
676  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
677  * multiple tail writes per call.
678  */
679 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
680 {
681 	union ice_32b_rx_flex_desc *rx_desc;
682 	u16 ntu = rx_ring->next_to_use;
683 	struct ice_rx_buf *bi;
684 
685 	/* do nothing if no valid netdev defined */
686 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
687 	    !cleaned_count)
688 		return false;
689 
690 	/* get the Rx descriptor and buffer based on next_to_use */
691 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
692 	bi = &rx_ring->rx_buf[ntu];
693 
694 	do {
695 		/* if we fail here, we have work remaining */
696 		if (!ice_alloc_mapped_page(rx_ring, bi))
697 			break;
698 
699 		/* sync the buffer for use by the device */
700 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
701 						 bi->page_offset,
702 						 rx_ring->rx_buf_len,
703 						 DMA_FROM_DEVICE);
704 
705 		/* Refresh the desc even if buffer_addrs didn't change
706 		 * because each write-back erases this info.
707 		 */
708 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
709 
710 		rx_desc++;
711 		bi++;
712 		ntu++;
713 		if (unlikely(ntu == rx_ring->count)) {
714 			rx_desc = ICE_RX_DESC(rx_ring, 0);
715 			bi = rx_ring->rx_buf;
716 			ntu = 0;
717 		}
718 
719 		/* clear the status bits for the next_to_use descriptor */
720 		rx_desc->wb.status_error0 = 0;
721 
722 		cleaned_count--;
723 	} while (cleaned_count);
724 
725 	if (rx_ring->next_to_use != ntu)
726 		ice_release_rx_desc(rx_ring, ntu);
727 
728 	return !!cleaned_count;
729 }
730 
731 /**
732  * ice_page_is_reserved - check if reuse is possible
733  * @page: page struct to check
734  */
735 static bool ice_page_is_reserved(struct page *page)
736 {
737 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
738 }
739 
740 /**
741  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
742  * @rx_buf: Rx buffer to adjust
743  * @size: Size of adjustment
744  *
745  * Update the offset within page so that Rx buf will be ready to be reused.
746  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
747  * so the second half of page assigned to Rx buffer will be used, otherwise
748  * the offset is moved by "size" bytes
749  */
750 static void
751 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
752 {
753 #if (PAGE_SIZE < 8192)
754 	/* flip page offset to other buffer */
755 	rx_buf->page_offset ^= size;
756 #else
757 	/* move offset up to the next cache line */
758 	rx_buf->page_offset += size;
759 #endif
760 }
761 
762 /**
763  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
764  * @rx_buf: buffer containing the page
765  *
766  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
767  * which will assign the current buffer to the buffer that next_to_alloc is
768  * pointing to; otherwise, the DMA mapping needs to be destroyed and
769  * page freed
770  */
771 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
772 {
773 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
774 	struct page *page = rx_buf->page;
775 
776 	/* avoid re-using remote pages */
777 	if (unlikely(ice_page_is_reserved(page)))
778 		return false;
779 
780 #if (PAGE_SIZE < 8192)
781 	/* if we are only owner of page we can reuse it */
782 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
783 		return false;
784 #else
785 #define ICE_LAST_OFFSET \
786 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
787 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
788 		return false;
789 #endif /* PAGE_SIZE < 8192) */
790 
791 	/* If we have drained the page fragment pool we need to update
792 	 * the pagecnt_bias and page count so that we fully restock the
793 	 * number of references the driver holds.
794 	 */
795 	if (unlikely(pagecnt_bias == 1)) {
796 		page_ref_add(page, USHRT_MAX - 1);
797 		rx_buf->pagecnt_bias = USHRT_MAX;
798 	}
799 
800 	return true;
801 }
802 
803 /**
804  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
805  * @rx_ring: Rx descriptor ring to transact packets on
806  * @rx_buf: buffer containing page to add
807  * @skb: sk_buff to place the data into
808  * @size: packet length from rx_desc
809  *
810  * This function will add the data contained in rx_buf->page to the skb.
811  * It will just attach the page as a frag to the skb.
812  * The function will then update the page offset.
813  */
814 static void
815 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
816 		struct sk_buff *skb, unsigned int size)
817 {
818 #if (PAGE_SIZE >= 8192)
819 	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
820 #else
821 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
822 #endif
823 
824 	if (!size)
825 		return;
826 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
827 			rx_buf->page_offset, size, truesize);
828 
829 	/* page is being used so we must update the page offset */
830 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
831 }
832 
833 /**
834  * ice_reuse_rx_page - page flip buffer and store it back on the ring
835  * @rx_ring: Rx descriptor ring to store buffers on
836  * @old_buf: donor buffer to have page reused
837  *
838  * Synchronizes page for reuse by the adapter
839  */
840 static void
841 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
842 {
843 	u16 nta = rx_ring->next_to_alloc;
844 	struct ice_rx_buf *new_buf;
845 
846 	new_buf = &rx_ring->rx_buf[nta];
847 
848 	/* update, and store next to alloc */
849 	nta++;
850 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
851 
852 	/* Transfer page from old buffer to new buffer.
853 	 * Move each member individually to avoid possible store
854 	 * forwarding stalls and unnecessary copy of skb.
855 	 */
856 	new_buf->dma = old_buf->dma;
857 	new_buf->page = old_buf->page;
858 	new_buf->page_offset = old_buf->page_offset;
859 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
860 }
861 
862 /**
863  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
864  * @rx_ring: Rx descriptor ring to transact packets on
865  * @skb: skb to be used
866  * @size: size of buffer to add to skb
867  *
868  * This function will pull an Rx buffer from the ring and synchronize it
869  * for use by the CPU.
870  */
871 static struct ice_rx_buf *
872 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
873 	       const unsigned int size)
874 {
875 	struct ice_rx_buf *rx_buf;
876 
877 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
878 	prefetchw(rx_buf->page);
879 	*skb = rx_buf->skb;
880 
881 	if (!size)
882 		return rx_buf;
883 	/* we are reusing so sync this buffer for CPU use */
884 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
885 				      rx_buf->page_offset, size,
886 				      DMA_FROM_DEVICE);
887 
888 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
889 	rx_buf->pagecnt_bias--;
890 
891 	return rx_buf;
892 }
893 
894 /**
895  * ice_build_skb - Build skb around an existing buffer
896  * @rx_ring: Rx descriptor ring to transact packets on
897  * @rx_buf: Rx buffer to pull data from
898  * @xdp: xdp_buff pointing to the data
899  *
900  * This function builds an skb around an existing Rx buffer, taking care
901  * to set up the skb correctly and avoid any memcpy overhead.
902  */
903 static struct sk_buff *
904 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
905 	      struct xdp_buff *xdp)
906 {
907 	u8 metasize = xdp->data - xdp->data_meta;
908 #if (PAGE_SIZE < 8192)
909 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
910 #else
911 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
912 				SKB_DATA_ALIGN(xdp->data_end -
913 					       xdp->data_hard_start);
914 #endif
915 	struct sk_buff *skb;
916 
917 	/* Prefetch first cache line of first page. If xdp->data_meta
918 	 * is unused, this points exactly as xdp->data, otherwise we
919 	 * likely have a consumer accessing first few bytes of meta
920 	 * data, and then actual data.
921 	 */
922 	net_prefetch(xdp->data_meta);
923 	/* build an skb around the page buffer */
924 	skb = build_skb(xdp->data_hard_start, truesize);
925 	if (unlikely(!skb))
926 		return NULL;
927 
928 	/* must to record Rx queue, otherwise OS features such as
929 	 * symmetric queue won't work
930 	 */
931 	skb_record_rx_queue(skb, rx_ring->q_index);
932 
933 	/* update pointers within the skb to store the data */
934 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
935 	__skb_put(skb, xdp->data_end - xdp->data);
936 	if (metasize)
937 		skb_metadata_set(skb, metasize);
938 
939 	/* buffer is used by skb, update page_offset */
940 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
941 
942 	return skb;
943 }
944 
945 /**
946  * ice_construct_skb - Allocate skb and populate it
947  * @rx_ring: Rx descriptor ring to transact packets on
948  * @rx_buf: Rx buffer to pull data from
949  * @xdp: xdp_buff pointing to the data
950  *
951  * This function allocates an skb. It then populates it with the page
952  * data from the current receive descriptor, taking care to set up the
953  * skb correctly.
954  */
955 static struct sk_buff *
956 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
957 		  struct xdp_buff *xdp)
958 {
959 	unsigned int size = xdp->data_end - xdp->data;
960 	unsigned int headlen;
961 	struct sk_buff *skb;
962 
963 	/* prefetch first cache line of first page */
964 	net_prefetch(xdp->data);
965 
966 	/* allocate a skb to store the frags */
967 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
968 			       GFP_ATOMIC | __GFP_NOWARN);
969 	if (unlikely(!skb))
970 		return NULL;
971 
972 	skb_record_rx_queue(skb, rx_ring->q_index);
973 	/* Determine available headroom for copy */
974 	headlen = size;
975 	if (headlen > ICE_RX_HDR_SIZE)
976 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
977 
978 	/* align pull length to size of long to optimize memcpy performance */
979 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
980 							 sizeof(long)));
981 
982 	/* if we exhaust the linear part then add what is left as a frag */
983 	size -= headlen;
984 	if (size) {
985 #if (PAGE_SIZE >= 8192)
986 		unsigned int truesize = SKB_DATA_ALIGN(size);
987 #else
988 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
989 #endif
990 		skb_add_rx_frag(skb, 0, rx_buf->page,
991 				rx_buf->page_offset + headlen, size, truesize);
992 		/* buffer is used by skb, update page_offset */
993 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
994 	} else {
995 		/* buffer is unused, reset bias back to rx_buf; data was copied
996 		 * onto skb's linear part so there's no need for adjusting
997 		 * page offset and we can reuse this buffer as-is
998 		 */
999 		rx_buf->pagecnt_bias++;
1000 	}
1001 
1002 	return skb;
1003 }
1004 
1005 /**
1006  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1007  * @rx_ring: Rx descriptor ring to transact packets on
1008  * @rx_buf: Rx buffer to pull data from
1009  *
1010  * This function will update next_to_clean and then clean up the contents
1011  * of the rx_buf. It will either recycle the buffer or unmap it and free
1012  * the associated resources.
1013  */
1014 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
1015 {
1016 	u16 ntc = rx_ring->next_to_clean + 1;
1017 
1018 	/* fetch, update, and store next to clean */
1019 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1020 	rx_ring->next_to_clean = ntc;
1021 
1022 	if (!rx_buf)
1023 		return;
1024 
1025 	if (ice_can_reuse_rx_page(rx_buf)) {
1026 		/* hand second half of page back to the ring */
1027 		ice_reuse_rx_page(rx_ring, rx_buf);
1028 	} else {
1029 		/* we are not reusing the buffer so unmap it */
1030 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1031 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1032 				     ICE_RX_DMA_ATTR);
1033 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1034 	}
1035 
1036 	/* clear contents of buffer_info */
1037 	rx_buf->page = NULL;
1038 	rx_buf->skb = NULL;
1039 }
1040 
1041 /**
1042  * ice_is_non_eop - process handling of non-EOP buffers
1043  * @rx_ring: Rx ring being processed
1044  * @rx_desc: Rx descriptor for current buffer
1045  * @skb: Current socket buffer containing buffer in progress
1046  *
1047  * If the buffer is an EOP buffer, this function exits returning false,
1048  * otherwise return true indicating that this is in fact a non-EOP buffer.
1049  */
1050 static bool
1051 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
1052 	       struct sk_buff *skb)
1053 {
1054 	/* if we are the last buffer then there is nothing else to do */
1055 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1056 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1057 		return false;
1058 
1059 	/* place skb in next buffer to be received */
1060 	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
1061 	rx_ring->rx_stats.non_eop_descs++;
1062 
1063 	return true;
1064 }
1065 
1066 /**
1067  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1068  * @rx_ring: Rx descriptor ring to transact packets on
1069  * @budget: Total limit on number of packets to process
1070  *
1071  * This function provides a "bounce buffer" approach to Rx interrupt
1072  * processing. The advantage to this is that on systems that have
1073  * expensive overhead for IOMMU access this provides a means of avoiding
1074  * it by maintaining the mapping of the page to the system.
1075  *
1076  * Returns amount of work completed
1077  */
1078 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1079 {
1080 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1081 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1082 	unsigned int xdp_res, xdp_xmit = 0;
1083 	struct bpf_prog *xdp_prog = NULL;
1084 	struct xdp_buff xdp;
1085 	bool failure;
1086 
1087 	xdp.rxq = &rx_ring->xdp_rxq;
1088 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1089 #if (PAGE_SIZE < 8192)
1090 	xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1091 #endif
1092 
1093 	/* start the loop to process Rx packets bounded by 'budget' */
1094 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1095 		union ice_32b_rx_flex_desc *rx_desc;
1096 		struct ice_rx_buf *rx_buf;
1097 		struct sk_buff *skb;
1098 		unsigned int size;
1099 		u16 stat_err_bits;
1100 		u16 vlan_tag = 0;
1101 		u8 rx_ptype;
1102 
1103 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1104 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1105 
1106 		/* status_error_len will always be zero for unused descriptors
1107 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1108 		 * which is always zero because packet split isn't used, if the
1109 		 * hardware wrote DD then it will be non-zero
1110 		 */
1111 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1112 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1113 			break;
1114 
1115 		/* This memory barrier is needed to keep us from reading
1116 		 * any other fields out of the rx_desc until we know the
1117 		 * DD bit is set.
1118 		 */
1119 		dma_rmb();
1120 
1121 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1122 			ice_put_rx_buf(rx_ring, NULL);
1123 			cleaned_count++;
1124 			continue;
1125 		}
1126 
1127 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1128 			ICE_RX_FLX_DESC_PKT_LEN_M;
1129 
1130 		/* retrieve a buffer from the ring */
1131 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1132 
1133 		if (!size) {
1134 			xdp.data = NULL;
1135 			xdp.data_end = NULL;
1136 			xdp.data_hard_start = NULL;
1137 			xdp.data_meta = NULL;
1138 			goto construct_skb;
1139 		}
1140 
1141 		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1142 		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1143 		xdp.data_meta = xdp.data;
1144 		xdp.data_end = xdp.data + size;
1145 #if (PAGE_SIZE > 4096)
1146 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1147 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1148 #endif
1149 
1150 		rcu_read_lock();
1151 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1152 		if (!xdp_prog) {
1153 			rcu_read_unlock();
1154 			goto construct_skb;
1155 		}
1156 
1157 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1158 		rcu_read_unlock();
1159 		if (!xdp_res)
1160 			goto construct_skb;
1161 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1162 			xdp_xmit |= xdp_res;
1163 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1164 		} else {
1165 			rx_buf->pagecnt_bias++;
1166 		}
1167 		total_rx_bytes += size;
1168 		total_rx_pkts++;
1169 
1170 		cleaned_count++;
1171 		ice_put_rx_buf(rx_ring, rx_buf);
1172 		continue;
1173 construct_skb:
1174 		if (skb) {
1175 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1176 		} else if (likely(xdp.data)) {
1177 			if (ice_ring_uses_build_skb(rx_ring))
1178 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1179 			else
1180 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1181 		}
1182 		/* exit if we failed to retrieve a buffer */
1183 		if (!skb) {
1184 			rx_ring->rx_stats.alloc_buf_failed++;
1185 			if (rx_buf)
1186 				rx_buf->pagecnt_bias++;
1187 			break;
1188 		}
1189 
1190 		ice_put_rx_buf(rx_ring, rx_buf);
1191 		cleaned_count++;
1192 
1193 		/* skip if it is NOP desc */
1194 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1195 			continue;
1196 
1197 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1198 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1199 			dev_kfree_skb_any(skb);
1200 			continue;
1201 		}
1202 
1203 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1204 		if (ice_test_staterr(rx_desc, stat_err_bits))
1205 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1206 
1207 		/* pad the skb if needed, to make a valid ethernet frame */
1208 		if (eth_skb_pad(skb)) {
1209 			skb = NULL;
1210 			continue;
1211 		}
1212 
1213 		/* probably a little skewed due to removing CRC */
1214 		total_rx_bytes += skb->len;
1215 
1216 		/* populate checksum, VLAN, and protocol */
1217 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1218 			ICE_RX_FLEX_DESC_PTYPE_M;
1219 
1220 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1221 
1222 		/* send completed skb up the stack */
1223 		ice_receive_skb(rx_ring, skb, vlan_tag);
1224 
1225 		/* update budget accounting */
1226 		total_rx_pkts++;
1227 	}
1228 
1229 	/* return up to cleaned_count buffers to hardware */
1230 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1231 
1232 	if (xdp_prog)
1233 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1234 
1235 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1236 
1237 	/* guarantee a trip back through this routine if there was a failure */
1238 	return failure ? budget : (int)total_rx_pkts;
1239 }
1240 
1241 /**
1242  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1243  * @port_info: port_info structure containing the current link speed
1244  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1245  * @itr: ITR value to update
1246  *
1247  * Calculate how big of an increment should be applied to the ITR value passed
1248  * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1249  * link speed.
1250  *
1251  * The following is a calculation derived from:
1252  *  wmem_default / (size + overhead) = desired_pkts_per_int
1253  *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1254  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1255  *
1256  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1257  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1258  * formula down to:
1259  *
1260  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1261  * ITR = -------------------------------------------- * --------------
1262  *			     rate			pkt_size + 640
1263  */
1264 static unsigned int
1265 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1266 				 unsigned int avg_pkt_size,
1267 				 unsigned int itr)
1268 {
1269 	switch (port_info->phy.link_info.link_speed) {
1270 	case ICE_AQ_LINK_SPEED_100GB:
1271 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1272 				    avg_pkt_size + 640);
1273 		break;
1274 	case ICE_AQ_LINK_SPEED_50GB:
1275 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1276 				    avg_pkt_size + 640);
1277 		break;
1278 	case ICE_AQ_LINK_SPEED_40GB:
1279 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1280 				    avg_pkt_size + 640);
1281 		break;
1282 	case ICE_AQ_LINK_SPEED_25GB:
1283 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1284 				    avg_pkt_size + 640);
1285 		break;
1286 	case ICE_AQ_LINK_SPEED_20GB:
1287 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1288 				    avg_pkt_size + 640);
1289 		break;
1290 	case ICE_AQ_LINK_SPEED_10GB:
1291 	default:
1292 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1293 				    avg_pkt_size + 640);
1294 		break;
1295 	}
1296 
1297 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1298 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1299 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1300 	}
1301 
1302 	return itr;
1303 }
1304 
1305 /**
1306  * ice_update_itr - update the adaptive ITR value based on statistics
1307  * @q_vector: structure containing interrupt and ring information
1308  * @rc: structure containing ring performance data
1309  *
1310  * Stores a new ITR value based on packets and byte
1311  * counts during the last interrupt.  The advantage of per interrupt
1312  * computation is faster updates and more accurate ITR for the current
1313  * traffic pattern.  Constants in this function were computed
1314  * based on theoretical maximum wire speed and thresholds were set based
1315  * on testing data as well as attempting to minimize response time
1316  * while increasing bulk throughput.
1317  */
1318 static void
1319 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1320 {
1321 	unsigned long next_update = jiffies;
1322 	unsigned int packets, bytes, itr;
1323 	bool container_is_rx;
1324 
1325 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1326 		return;
1327 
1328 	/* If itr_countdown is set it means we programmed an ITR within
1329 	 * the last 4 interrupt cycles. This has a side effect of us
1330 	 * potentially firing an early interrupt. In order to work around
1331 	 * this we need to throw out any data received for a few
1332 	 * interrupts following the update.
1333 	 */
1334 	if (q_vector->itr_countdown) {
1335 		itr = rc->target_itr;
1336 		goto clear_counts;
1337 	}
1338 
1339 	container_is_rx = (&q_vector->rx == rc);
1340 	/* For Rx we want to push the delay up and default to low latency.
1341 	 * for Tx we want to pull the delay down and default to high latency.
1342 	 */
1343 	itr = container_is_rx ?
1344 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1345 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1346 
1347 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1348 	 * that either packets are coming in so slow there hasn't been
1349 	 * any work, or that there is so much work that NAPI is dealing
1350 	 * with interrupt moderation and we don't need to do anything.
1351 	 */
1352 	if (time_after(next_update, rc->next_update))
1353 		goto clear_counts;
1354 
1355 	prefetch(q_vector->vsi->port_info);
1356 
1357 	packets = rc->total_pkts;
1358 	bytes = rc->total_bytes;
1359 
1360 	if (container_is_rx) {
1361 		/* If Rx there are 1 to 4 packets and bytes are less than
1362 		 * 9000 assume insufficient data to use bulk rate limiting
1363 		 * approach unless Tx is already in bulk rate limiting. We
1364 		 * are likely latency driven.
1365 		 */
1366 		if (packets && packets < 4 && bytes < 9000 &&
1367 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1368 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1369 			goto adjust_by_size_and_speed;
1370 		}
1371 	} else if (packets < 4) {
1372 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1373 		 * bulk mode and we are receiving 4 or fewer packets just
1374 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1375 		 * that the Rx can relax.
1376 		 */
1377 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1378 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1379 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1380 			goto clear_counts;
1381 	} else if (packets > 32) {
1382 		/* If we have processed over 32 packets in a single interrupt
1383 		 * for Tx assume we need to switch over to "bulk" mode.
1384 		 */
1385 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1386 	}
1387 
1388 	/* We have no packets to actually measure against. This means
1389 	 * either one of the other queues on this vector is active or
1390 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1391 	 *
1392 	 * Between 4 and 56 we can assume that our current interrupt delay
1393 	 * is only slightly too low. As such we should increase it by a small
1394 	 * fixed amount.
1395 	 */
1396 	if (packets < 56) {
1397 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1398 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1399 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1400 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1401 		}
1402 		goto clear_counts;
1403 	}
1404 
1405 	if (packets <= 256) {
1406 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1407 		itr &= ICE_ITR_MASK;
1408 
1409 		/* Between 56 and 112 is our "goldilocks" zone where we are
1410 		 * working out "just right". Just report that our current
1411 		 * ITR is good for us.
1412 		 */
1413 		if (packets <= 112)
1414 			goto clear_counts;
1415 
1416 		/* If packet count is 128 or greater we are likely looking
1417 		 * at a slight overrun of the delay we want. Try halving
1418 		 * our delay to see if that will cut the number of packets
1419 		 * in half per interrupt.
1420 		 */
1421 		itr >>= 1;
1422 		itr &= ICE_ITR_MASK;
1423 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1424 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1425 
1426 		goto clear_counts;
1427 	}
1428 
1429 	/* The paths below assume we are dealing with a bulk ITR since
1430 	 * number of packets is greater than 256. We are just going to have
1431 	 * to compute a value and try to bring the count under control,
1432 	 * though for smaller packet sizes there isn't much we can do as
1433 	 * NAPI polling will likely be kicking in sooner rather than later.
1434 	 */
1435 	itr = ICE_ITR_ADAPTIVE_BULK;
1436 
1437 adjust_by_size_and_speed:
1438 
1439 	/* based on checks above packets cannot be 0 so division is safe */
1440 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1441 					       bytes / packets, itr);
1442 
1443 clear_counts:
1444 	/* write back value */
1445 	rc->target_itr = itr;
1446 
1447 	/* next update should occur within next jiffy */
1448 	rc->next_update = next_update + 1;
1449 
1450 	rc->total_bytes = 0;
1451 	rc->total_pkts = 0;
1452 }
1453 
1454 /**
1455  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1456  * @itr_idx: interrupt throttling index
1457  * @itr: interrupt throttling value in usecs
1458  */
1459 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1460 {
1461 	/* The ITR value is reported in microseconds, and the register value is
1462 	 * recorded in 2 microsecond units. For this reason we only need to
1463 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1464 	 * granularity as a shift instead of division. The mask makes sure the
1465 	 * ITR value is never odd so we don't accidentally write into the field
1466 	 * prior to the ITR field.
1467 	 */
1468 	itr &= ICE_ITR_MASK;
1469 
1470 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1471 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1472 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1473 }
1474 
1475 /* The act of updating the ITR will cause it to immediately trigger. In order
1476  * to prevent this from throwing off adaptive update statistics we defer the
1477  * update so that it can only happen so often. So after either Tx or Rx are
1478  * updated we make the adaptive scheme wait until either the ITR completely
1479  * expires via the next_update expiration or we have been through at least
1480  * 3 interrupts.
1481  */
1482 #define ITR_COUNTDOWN_START 3
1483 
1484 /**
1485  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1486  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1487  */
1488 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1489 {
1490 	struct ice_ring_container *tx = &q_vector->tx;
1491 	struct ice_ring_container *rx = &q_vector->rx;
1492 	struct ice_vsi *vsi = q_vector->vsi;
1493 	u32 itr_val;
1494 
1495 	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1496 	 * interrupts to expire right away in case we have more work ready to go
1497 	 * already
1498 	 */
1499 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1500 		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1501 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1502 		/* set target back to last user set value */
1503 		rx->target_itr = rx->itr_setting;
1504 		/* set current to what we just wrote and dynamic if needed */
1505 		rx->current_itr = ICE_WB_ON_ITR_USECS |
1506 			(rx->itr_setting & ICE_ITR_DYNAMIC);
1507 		/* allow normal interrupt flow to start */
1508 		q_vector->itr_countdown = 0;
1509 		return;
1510 	}
1511 
1512 	/* This will do nothing if dynamic updates are not enabled */
1513 	ice_update_itr(q_vector, tx);
1514 	ice_update_itr(q_vector, rx);
1515 
1516 	/* This block of logic allows us to get away with only updating
1517 	 * one ITR value with each interrupt. The idea is to perform a
1518 	 * pseudo-lazy update with the following criteria.
1519 	 *
1520 	 * 1. Rx is given higher priority than Tx if both are in same state
1521 	 * 2. If we must reduce an ITR that is given highest priority.
1522 	 * 3. We then give priority to increasing ITR based on amount.
1523 	 */
1524 	if (rx->target_itr < rx->current_itr) {
1525 		/* Rx ITR needs to be reduced, this is highest priority */
1526 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1527 		rx->current_itr = rx->target_itr;
1528 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1529 	} else if ((tx->target_itr < tx->current_itr) ||
1530 		   ((rx->target_itr - rx->current_itr) <
1531 		    (tx->target_itr - tx->current_itr))) {
1532 		/* Tx ITR needs to be reduced, this is second priority
1533 		 * Tx ITR needs to be increased more than Rx, fourth priority
1534 		 */
1535 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1536 		tx->current_itr = tx->target_itr;
1537 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1538 	} else if (rx->current_itr != rx->target_itr) {
1539 		/* Rx ITR needs to be increased, third priority */
1540 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1541 		rx->current_itr = rx->target_itr;
1542 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1543 	} else {
1544 		/* Still have to re-enable the interrupts */
1545 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1546 		if (q_vector->itr_countdown)
1547 			q_vector->itr_countdown--;
1548 	}
1549 
1550 	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1551 		wr32(&q_vector->vsi->back->hw,
1552 		     GLINT_DYN_CTL(q_vector->reg_idx),
1553 		     itr_val);
1554 }
1555 
1556 /**
1557  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1558  * @q_vector: q_vector to set WB_ON_ITR on
1559  *
1560  * We need to tell hardware to write-back completed descriptors even when
1561  * interrupts are disabled. Descriptors will be written back on cache line
1562  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1563  * descriptors may not be written back if they don't fill a cache line until the
1564  * next interrupt.
1565  *
1566  * This sets the write-back frequency to 2 microseconds as that is the minimum
1567  * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1568  * make sure hardware knows we aren't meddling with the INTENA_M bit.
1569  */
1570 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1571 {
1572 	struct ice_vsi *vsi = q_vector->vsi;
1573 
1574 	/* already in WB_ON_ITR mode no need to change it */
1575 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1576 		return;
1577 
1578 	if (q_vector->num_ring_rx)
1579 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1580 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1581 						 ICE_RX_ITR));
1582 
1583 	if (q_vector->num_ring_tx)
1584 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1585 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1586 						 ICE_TX_ITR));
1587 
1588 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1589 }
1590 
1591 /**
1592  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1593  * @napi: napi struct with our devices info in it
1594  * @budget: amount of work driver is allowed to do this pass, in packets
1595  *
1596  * This function will clean all queues associated with a q_vector.
1597  *
1598  * Returns the amount of work done
1599  */
1600 int ice_napi_poll(struct napi_struct *napi, int budget)
1601 {
1602 	struct ice_q_vector *q_vector =
1603 				container_of(napi, struct ice_q_vector, napi);
1604 	bool clean_complete = true;
1605 	struct ice_ring *ring;
1606 	int budget_per_ring;
1607 	int work_done = 0;
1608 
1609 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1610 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1611 	 */
1612 	ice_for_each_ring(ring, q_vector->tx) {
1613 		bool wd = ring->xsk_pool ?
1614 			  ice_clean_tx_irq_zc(ring, budget) :
1615 			  ice_clean_tx_irq(ring, budget);
1616 
1617 		if (!wd)
1618 			clean_complete = false;
1619 	}
1620 
1621 	/* Handle case where we are called by netpoll with a budget of 0 */
1622 	if (unlikely(budget <= 0))
1623 		return budget;
1624 
1625 	/* normally we have 1 Rx ring per q_vector */
1626 	if (unlikely(q_vector->num_ring_rx > 1))
1627 		/* We attempt to distribute budget to each Rx queue fairly, but
1628 		 * don't allow the budget to go below 1 because that would exit
1629 		 * polling early.
1630 		 */
1631 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1632 	else
1633 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1634 		budget_per_ring = budget;
1635 
1636 	ice_for_each_ring(ring, q_vector->rx) {
1637 		int cleaned;
1638 
1639 		/* A dedicated path for zero-copy allows making a single
1640 		 * comparison in the irq context instead of many inside the
1641 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1642 		 */
1643 		cleaned = ring->xsk_pool ?
1644 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1645 			  ice_clean_rx_irq(ring, budget_per_ring);
1646 		work_done += cleaned;
1647 		/* if we clean as many as budgeted, we must not be done */
1648 		if (cleaned >= budget_per_ring)
1649 			clean_complete = false;
1650 	}
1651 
1652 	/* If work not completed, return budget and polling will return */
1653 	if (!clean_complete)
1654 		return budget;
1655 
1656 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1657 	 * poll us due to busy-polling
1658 	 */
1659 	if (likely(napi_complete_done(napi, work_done)))
1660 		ice_update_ena_itr(q_vector);
1661 	else
1662 		ice_set_wb_on_itr(q_vector);
1663 
1664 	return min_t(int, work_done, budget - 1);
1665 }
1666 
1667 /**
1668  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1669  * @tx_ring: the ring to be checked
1670  * @size: the size buffer we want to assure is available
1671  *
1672  * Returns -EBUSY if a stop is needed, else 0
1673  */
1674 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1675 {
1676 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1677 	/* Memory barrier before checking head and tail */
1678 	smp_mb();
1679 
1680 	/* Check again in a case another CPU has just made room available. */
1681 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1682 		return -EBUSY;
1683 
1684 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1685 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1686 	++tx_ring->tx_stats.restart_q;
1687 	return 0;
1688 }
1689 
1690 /**
1691  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1692  * @tx_ring: the ring to be checked
1693  * @size:    the size buffer we want to assure is available
1694  *
1695  * Returns 0 if stop is not needed
1696  */
1697 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1698 {
1699 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1700 		return 0;
1701 
1702 	return __ice_maybe_stop_tx(tx_ring, size);
1703 }
1704 
1705 /**
1706  * ice_tx_map - Build the Tx descriptor
1707  * @tx_ring: ring to send buffer on
1708  * @first: first buffer info buffer to use
1709  * @off: pointer to struct that holds offload parameters
1710  *
1711  * This function loops over the skb data pointed to by *first
1712  * and gets a physical address for each memory location and programs
1713  * it and the length into the transmit descriptor.
1714  */
1715 static void
1716 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1717 	   struct ice_tx_offload_params *off)
1718 {
1719 	u64 td_offset, td_tag, td_cmd;
1720 	u16 i = tx_ring->next_to_use;
1721 	unsigned int data_len, size;
1722 	struct ice_tx_desc *tx_desc;
1723 	struct ice_tx_buf *tx_buf;
1724 	struct sk_buff *skb;
1725 	skb_frag_t *frag;
1726 	dma_addr_t dma;
1727 
1728 	td_tag = off->td_l2tag1;
1729 	td_cmd = off->td_cmd;
1730 	td_offset = off->td_offset;
1731 	skb = first->skb;
1732 
1733 	data_len = skb->data_len;
1734 	size = skb_headlen(skb);
1735 
1736 	tx_desc = ICE_TX_DESC(tx_ring, i);
1737 
1738 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1739 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1740 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1741 			  ICE_TX_FLAGS_VLAN_S;
1742 	}
1743 
1744 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1745 
1746 	tx_buf = first;
1747 
1748 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1749 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1750 
1751 		if (dma_mapping_error(tx_ring->dev, dma))
1752 			goto dma_error;
1753 
1754 		/* record length, and DMA address */
1755 		dma_unmap_len_set(tx_buf, len, size);
1756 		dma_unmap_addr_set(tx_buf, dma, dma);
1757 
1758 		/* align size to end of page */
1759 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1760 		tx_desc->buf_addr = cpu_to_le64(dma);
1761 
1762 		/* account for data chunks larger than the hardware
1763 		 * can handle
1764 		 */
1765 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1766 			tx_desc->cmd_type_offset_bsz =
1767 				ice_build_ctob(td_cmd, td_offset, max_data,
1768 					       td_tag);
1769 
1770 			tx_desc++;
1771 			i++;
1772 
1773 			if (i == tx_ring->count) {
1774 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1775 				i = 0;
1776 			}
1777 
1778 			dma += max_data;
1779 			size -= max_data;
1780 
1781 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1782 			tx_desc->buf_addr = cpu_to_le64(dma);
1783 		}
1784 
1785 		if (likely(!data_len))
1786 			break;
1787 
1788 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1789 							      size, td_tag);
1790 
1791 		tx_desc++;
1792 		i++;
1793 
1794 		if (i == tx_ring->count) {
1795 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1796 			i = 0;
1797 		}
1798 
1799 		size = skb_frag_size(frag);
1800 		data_len -= size;
1801 
1802 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1803 				       DMA_TO_DEVICE);
1804 
1805 		tx_buf = &tx_ring->tx_buf[i];
1806 	}
1807 
1808 	/* record bytecount for BQL */
1809 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1810 
1811 	/* record SW timestamp if HW timestamp is not available */
1812 	skb_tx_timestamp(first->skb);
1813 
1814 	i++;
1815 	if (i == tx_ring->count)
1816 		i = 0;
1817 
1818 	/* write last descriptor with RS and EOP bits */
1819 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1820 	tx_desc->cmd_type_offset_bsz =
1821 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1822 
1823 	/* Force memory writes to complete before letting h/w know there
1824 	 * are new descriptors to fetch.
1825 	 *
1826 	 * We also use this memory barrier to make certain all of the
1827 	 * status bits have been updated before next_to_watch is written.
1828 	 */
1829 	wmb();
1830 
1831 	/* set next_to_watch value indicating a packet is present */
1832 	first->next_to_watch = tx_desc;
1833 
1834 	tx_ring->next_to_use = i;
1835 
1836 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1837 
1838 	/* notify HW of packet */
1839 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1840 		writel(i, tx_ring->tail);
1841 
1842 	return;
1843 
1844 dma_error:
1845 	/* clear DMA mappings for failed tx_buf map */
1846 	for (;;) {
1847 		tx_buf = &tx_ring->tx_buf[i];
1848 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1849 		if (tx_buf == first)
1850 			break;
1851 		if (i == 0)
1852 			i = tx_ring->count;
1853 		i--;
1854 	}
1855 
1856 	tx_ring->next_to_use = i;
1857 }
1858 
1859 /**
1860  * ice_tx_csum - Enable Tx checksum offloads
1861  * @first: pointer to the first descriptor
1862  * @off: pointer to struct that holds offload parameters
1863  *
1864  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1865  */
1866 static
1867 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1868 {
1869 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1870 	struct sk_buff *skb = first->skb;
1871 	union {
1872 		struct iphdr *v4;
1873 		struct ipv6hdr *v6;
1874 		unsigned char *hdr;
1875 	} ip;
1876 	union {
1877 		struct tcphdr *tcp;
1878 		unsigned char *hdr;
1879 	} l4;
1880 	__be16 frag_off, protocol;
1881 	unsigned char *exthdr;
1882 	u32 offset, cmd = 0;
1883 	u8 l4_proto = 0;
1884 
1885 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1886 		return 0;
1887 
1888 	ip.hdr = skb_network_header(skb);
1889 	l4.hdr = skb_transport_header(skb);
1890 
1891 	/* compute outer L2 header size */
1892 	l2_len = ip.hdr - skb->data;
1893 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1894 
1895 	protocol = vlan_get_protocol(skb);
1896 
1897 	if (protocol == htons(ETH_P_IP))
1898 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1899 	else if (protocol == htons(ETH_P_IPV6))
1900 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1901 
1902 	if (skb->encapsulation) {
1903 		bool gso_ena = false;
1904 		u32 tunnel = 0;
1905 
1906 		/* define outer network header type */
1907 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1908 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1909 				  ICE_TX_CTX_EIPT_IPV4 :
1910 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1911 			l4_proto = ip.v4->protocol;
1912 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1913 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1914 			exthdr = ip.hdr + sizeof(*ip.v6);
1915 			l4_proto = ip.v6->nexthdr;
1916 			if (l4.hdr != exthdr)
1917 				ipv6_skip_exthdr(skb, exthdr - skb->data,
1918 						 &l4_proto, &frag_off);
1919 		}
1920 
1921 		/* define outer transport */
1922 		switch (l4_proto) {
1923 		case IPPROTO_UDP:
1924 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1925 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1926 			break;
1927 		case IPPROTO_GRE:
1928 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1929 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1930 			break;
1931 		case IPPROTO_IPIP:
1932 		case IPPROTO_IPV6:
1933 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1934 			l4.hdr = skb_inner_network_header(skb);
1935 			break;
1936 		default:
1937 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1938 				return -1;
1939 
1940 			skb_checksum_help(skb);
1941 			return 0;
1942 		}
1943 
1944 		/* compute outer L3 header size */
1945 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1946 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1947 
1948 		/* switch IP header pointer from outer to inner header */
1949 		ip.hdr = skb_inner_network_header(skb);
1950 
1951 		/* compute tunnel header size */
1952 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1953 			   ICE_TXD_CTX_QW0_NATLEN_S;
1954 
1955 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1956 		/* indicate if we need to offload outer UDP header */
1957 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1958 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1959 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1960 
1961 		/* record tunnel offload values */
1962 		off->cd_tunnel_params |= tunnel;
1963 
1964 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1965 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1966 		 */
1967 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1968 
1969 		/* switch L4 header pointer from outer to inner */
1970 		l4.hdr = skb_inner_transport_header(skb);
1971 		l4_proto = 0;
1972 
1973 		/* reset type as we transition from outer to inner headers */
1974 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1975 		if (ip.v4->version == 4)
1976 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1977 		if (ip.v6->version == 6)
1978 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1979 	}
1980 
1981 	/* Enable IP checksum offloads */
1982 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1983 		l4_proto = ip.v4->protocol;
1984 		/* the stack computes the IP header already, the only time we
1985 		 * need the hardware to recompute it is in the case of TSO.
1986 		 */
1987 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1988 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1989 		else
1990 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1991 
1992 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1993 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1994 		exthdr = ip.hdr + sizeof(*ip.v6);
1995 		l4_proto = ip.v6->nexthdr;
1996 		if (l4.hdr != exthdr)
1997 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1998 					 &frag_off);
1999 	} else {
2000 		return -1;
2001 	}
2002 
2003 	/* compute inner L3 header size */
2004 	l3_len = l4.hdr - ip.hdr;
2005 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
2006 
2007 	/* Enable L4 checksum offloads */
2008 	switch (l4_proto) {
2009 	case IPPROTO_TCP:
2010 		/* enable checksum offloads */
2011 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2012 		l4_len = l4.tcp->doff;
2013 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2014 		break;
2015 	case IPPROTO_UDP:
2016 		/* enable UDP checksum offload */
2017 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2018 		l4_len = (sizeof(struct udphdr) >> 2);
2019 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2020 		break;
2021 	case IPPROTO_SCTP:
2022 		/* enable SCTP checksum offload */
2023 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2024 		l4_len = sizeof(struct sctphdr) >> 2;
2025 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2026 		break;
2027 
2028 	default:
2029 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
2030 			return -1;
2031 		skb_checksum_help(skb);
2032 		return 0;
2033 	}
2034 
2035 	off->td_cmd |= cmd;
2036 	off->td_offset |= offset;
2037 	return 1;
2038 }
2039 
2040 /**
2041  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2042  * @tx_ring: ring to send buffer on
2043  * @first: pointer to struct ice_tx_buf
2044  *
2045  * Checks the skb and set up correspondingly several generic transmit flags
2046  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2047  */
2048 static void
2049 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2050 {
2051 	struct sk_buff *skb = first->skb;
2052 
2053 	/* nothing left to do, software offloaded VLAN */
2054 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2055 		return;
2056 
2057 	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
2058 	 * insertion for 802.1AD is not supported
2059 	 */
2060 	if (skb_vlan_tag_present(skb)) {
2061 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2062 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2063 	}
2064 
2065 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2066 }
2067 
2068 /**
2069  * ice_tso - computes mss and TSO length to prepare for TSO
2070  * @first: pointer to struct ice_tx_buf
2071  * @off: pointer to struct that holds offload parameters
2072  *
2073  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2074  */
2075 static
2076 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2077 {
2078 	struct sk_buff *skb = first->skb;
2079 	union {
2080 		struct iphdr *v4;
2081 		struct ipv6hdr *v6;
2082 		unsigned char *hdr;
2083 	} ip;
2084 	union {
2085 		struct tcphdr *tcp;
2086 		struct udphdr *udp;
2087 		unsigned char *hdr;
2088 	} l4;
2089 	u64 cd_mss, cd_tso_len;
2090 	u32 paylen;
2091 	u8 l4_start;
2092 	int err;
2093 
2094 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2095 		return 0;
2096 
2097 	if (!skb_is_gso(skb))
2098 		return 0;
2099 
2100 	err = skb_cow_head(skb, 0);
2101 	if (err < 0)
2102 		return err;
2103 
2104 	/* cppcheck-suppress unreadVariable */
2105 	ip.hdr = skb_network_header(skb);
2106 	l4.hdr = skb_transport_header(skb);
2107 
2108 	/* initialize outer IP header fields */
2109 	if (ip.v4->version == 4) {
2110 		ip.v4->tot_len = 0;
2111 		ip.v4->check = 0;
2112 	} else {
2113 		ip.v6->payload_len = 0;
2114 	}
2115 
2116 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2117 					 SKB_GSO_GRE_CSUM |
2118 					 SKB_GSO_IPXIP4 |
2119 					 SKB_GSO_IPXIP6 |
2120 					 SKB_GSO_UDP_TUNNEL |
2121 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2122 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2123 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2124 			l4.udp->len = 0;
2125 
2126 			/* determine offset of outer transport header */
2127 			l4_start = (u8)(l4.hdr - skb->data);
2128 
2129 			/* remove payload length from outer checksum */
2130 			paylen = skb->len - l4_start;
2131 			csum_replace_by_diff(&l4.udp->check,
2132 					     (__force __wsum)htonl(paylen));
2133 		}
2134 
2135 		/* reset pointers to inner headers */
2136 
2137 		/* cppcheck-suppress unreadVariable */
2138 		ip.hdr = skb_inner_network_header(skb);
2139 		l4.hdr = skb_inner_transport_header(skb);
2140 
2141 		/* initialize inner IP header fields */
2142 		if (ip.v4->version == 4) {
2143 			ip.v4->tot_len = 0;
2144 			ip.v4->check = 0;
2145 		} else {
2146 			ip.v6->payload_len = 0;
2147 		}
2148 	}
2149 
2150 	/* determine offset of transport header */
2151 	l4_start = (u8)(l4.hdr - skb->data);
2152 
2153 	/* remove payload length from checksum */
2154 	paylen = skb->len - l4_start;
2155 
2156 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2157 		csum_replace_by_diff(&l4.udp->check,
2158 				     (__force __wsum)htonl(paylen));
2159 		/* compute length of UDP segmentation header */
2160 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2161 	} else {
2162 		csum_replace_by_diff(&l4.tcp->check,
2163 				     (__force __wsum)htonl(paylen));
2164 		/* compute length of TCP segmentation header */
2165 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2166 	}
2167 
2168 	/* update gso_segs and bytecount */
2169 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2170 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2171 
2172 	cd_tso_len = skb->len - off->header_len;
2173 	cd_mss = skb_shinfo(skb)->gso_size;
2174 
2175 	/* record cdesc_qw1 with TSO parameters */
2176 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2177 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2178 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2179 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2180 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2181 	return 1;
2182 }
2183 
2184 /**
2185  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2186  * @size: transmit request size in bytes
2187  *
2188  * Due to hardware alignment restrictions (4K alignment), we need to
2189  * assume that we can have no more than 12K of data per descriptor, even
2190  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2191  * Thus, we need to divide by 12K. But division is slow! Instead,
2192  * we decompose the operation into shifts and one relatively cheap
2193  * multiply operation.
2194  *
2195  * To divide by 12K, we first divide by 4K, then divide by 3:
2196  *     To divide by 4K, shift right by 12 bits
2197  *     To divide by 3, multiply by 85, then divide by 256
2198  *     (Divide by 256 is done by shifting right by 8 bits)
2199  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2200  * 3, we'll underestimate near each multiple of 12K. This is actually more
2201  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2202  * segment. For our purposes this is accurate out to 1M which is orders of
2203  * magnitude greater than our largest possible GSO size.
2204  *
2205  * This would then be implemented as:
2206  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2207  *
2208  * Since multiplication and division are commutative, we can reorder
2209  * operations into:
2210  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2211  */
2212 static unsigned int ice_txd_use_count(unsigned int size)
2213 {
2214 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2215 }
2216 
2217 /**
2218  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2219  * @skb: send buffer
2220  *
2221  * Returns number of data descriptors needed for this skb.
2222  */
2223 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2224 {
2225 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2226 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2227 	unsigned int count = 0, size = skb_headlen(skb);
2228 
2229 	for (;;) {
2230 		count += ice_txd_use_count(size);
2231 
2232 		if (!nr_frags--)
2233 			break;
2234 
2235 		size = skb_frag_size(frag++);
2236 	}
2237 
2238 	return count;
2239 }
2240 
2241 /**
2242  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2243  * @skb: send buffer
2244  *
2245  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2246  * and so we need to figure out the cases where we need to linearize the skb.
2247  *
2248  * For TSO we need to count the TSO header and segment payload separately.
2249  * As such we need to check cases where we have 7 fragments or more as we
2250  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2251  * the segment payload in the first descriptor, and another 7 for the
2252  * fragments.
2253  */
2254 static bool __ice_chk_linearize(struct sk_buff *skb)
2255 {
2256 	const skb_frag_t *frag, *stale;
2257 	int nr_frags, sum;
2258 
2259 	/* no need to check if number of frags is less than 7 */
2260 	nr_frags = skb_shinfo(skb)->nr_frags;
2261 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2262 		return false;
2263 
2264 	/* We need to walk through the list and validate that each group
2265 	 * of 6 fragments totals at least gso_size.
2266 	 */
2267 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2268 	frag = &skb_shinfo(skb)->frags[0];
2269 
2270 	/* Initialize size to the negative value of gso_size minus 1. We
2271 	 * use this as the worst case scenario in which the frag ahead
2272 	 * of us only provides one byte which is why we are limited to 6
2273 	 * descriptors for a single transmit as the header and previous
2274 	 * fragment are already consuming 2 descriptors.
2275 	 */
2276 	sum = 1 - skb_shinfo(skb)->gso_size;
2277 
2278 	/* Add size of frags 0 through 4 to create our initial sum */
2279 	sum += skb_frag_size(frag++);
2280 	sum += skb_frag_size(frag++);
2281 	sum += skb_frag_size(frag++);
2282 	sum += skb_frag_size(frag++);
2283 	sum += skb_frag_size(frag++);
2284 
2285 	/* Walk through fragments adding latest fragment, testing it, and
2286 	 * then removing stale fragments from the sum.
2287 	 */
2288 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2289 		int stale_size = skb_frag_size(stale);
2290 
2291 		sum += skb_frag_size(frag++);
2292 
2293 		/* The stale fragment may present us with a smaller
2294 		 * descriptor than the actual fragment size. To account
2295 		 * for that we need to remove all the data on the front and
2296 		 * figure out what the remainder would be in the last
2297 		 * descriptor associated with the fragment.
2298 		 */
2299 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2300 			int align_pad = -(skb_frag_off(stale)) &
2301 					(ICE_MAX_READ_REQ_SIZE - 1);
2302 
2303 			sum -= align_pad;
2304 			stale_size -= align_pad;
2305 
2306 			do {
2307 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2308 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2309 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2310 		}
2311 
2312 		/* if sum is negative we failed to make sufficient progress */
2313 		if (sum < 0)
2314 			return true;
2315 
2316 		if (!nr_frags--)
2317 			break;
2318 
2319 		sum -= stale_size;
2320 	}
2321 
2322 	return false;
2323 }
2324 
2325 /**
2326  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2327  * @skb:      send buffer
2328  * @count:    number of buffers used
2329  *
2330  * Note: Our HW can't scatter-gather more than 8 fragments to build
2331  * a packet on the wire and so we need to figure out the cases where we
2332  * need to linearize the skb.
2333  */
2334 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2335 {
2336 	/* Both TSO and single send will work if count is less than 8 */
2337 	if (likely(count < ICE_MAX_BUF_TXD))
2338 		return false;
2339 
2340 	if (skb_is_gso(skb))
2341 		return __ice_chk_linearize(skb);
2342 
2343 	/* we can support up to 8 data buffers for a single send */
2344 	return count != ICE_MAX_BUF_TXD;
2345 }
2346 
2347 /**
2348  * ice_xmit_frame_ring - Sends buffer on Tx ring
2349  * @skb: send buffer
2350  * @tx_ring: ring to send buffer on
2351  *
2352  * Returns NETDEV_TX_OK if sent, else an error code
2353  */
2354 static netdev_tx_t
2355 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2356 {
2357 	struct ice_tx_offload_params offload = { 0 };
2358 	struct ice_vsi *vsi = tx_ring->vsi;
2359 	struct ice_tx_buf *first;
2360 	unsigned int count;
2361 	int tso, csum;
2362 
2363 	count = ice_xmit_desc_count(skb);
2364 	if (ice_chk_linearize(skb, count)) {
2365 		if (__skb_linearize(skb))
2366 			goto out_drop;
2367 		count = ice_txd_use_count(skb->len);
2368 		tx_ring->tx_stats.tx_linearize++;
2369 	}
2370 
2371 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2372 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2373 	 *       + 4 desc gap to avoid the cache line where head is,
2374 	 *       + 1 desc for context descriptor,
2375 	 * otherwise try next time
2376 	 */
2377 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2378 			      ICE_DESCS_FOR_CTX_DESC)) {
2379 		tx_ring->tx_stats.tx_busy++;
2380 		return NETDEV_TX_BUSY;
2381 	}
2382 
2383 	offload.tx_ring = tx_ring;
2384 
2385 	/* record the location of the first descriptor for this packet */
2386 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2387 	first->skb = skb;
2388 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2389 	first->gso_segs = 1;
2390 	first->tx_flags = 0;
2391 
2392 	/* prepare the VLAN tagging flags for Tx */
2393 	ice_tx_prepare_vlan_flags(tx_ring, first);
2394 
2395 	/* set up TSO offload */
2396 	tso = ice_tso(first, &offload);
2397 	if (tso < 0)
2398 		goto out_drop;
2399 
2400 	/* always set up Tx checksum offload */
2401 	csum = ice_tx_csum(first, &offload);
2402 	if (csum < 0)
2403 		goto out_drop;
2404 
2405 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2406 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2407 		     vsi->type == ICE_VSI_PF &&
2408 		     vsi->port_info->is_sw_lldp))
2409 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2410 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2411 					ICE_TXD_CTX_QW1_CMD_S);
2412 
2413 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2414 		struct ice_tx_ctx_desc *cdesc;
2415 		u16 i = tx_ring->next_to_use;
2416 
2417 		/* grab the next descriptor */
2418 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2419 		i++;
2420 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2421 
2422 		/* setup context descriptor */
2423 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2424 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2425 		cdesc->rsvd = cpu_to_le16(0);
2426 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2427 	}
2428 
2429 	ice_tx_map(tx_ring, first, &offload);
2430 	return NETDEV_TX_OK;
2431 
2432 out_drop:
2433 	dev_kfree_skb_any(skb);
2434 	return NETDEV_TX_OK;
2435 }
2436 
2437 /**
2438  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2439  * @skb: send buffer
2440  * @netdev: network interface device structure
2441  *
2442  * Returns NETDEV_TX_OK if sent, else an error code
2443  */
2444 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2445 {
2446 	struct ice_netdev_priv *np = netdev_priv(netdev);
2447 	struct ice_vsi *vsi = np->vsi;
2448 	struct ice_ring *tx_ring;
2449 
2450 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2451 
2452 	/* hardware can't handle really short frames, hardware padding works
2453 	 * beyond this point
2454 	 */
2455 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2456 		return NETDEV_TX_OK;
2457 
2458 	return ice_xmit_frame_ring(skb, tx_ring);
2459 }
2460 
2461 /**
2462  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2463  * @tx_ring: tx_ring to clean
2464  */
2465 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2466 {
2467 	struct ice_vsi *vsi = tx_ring->vsi;
2468 	s16 i = tx_ring->next_to_clean;
2469 	int budget = ICE_DFLT_IRQ_WORK;
2470 	struct ice_tx_desc *tx_desc;
2471 	struct ice_tx_buf *tx_buf;
2472 
2473 	tx_buf = &tx_ring->tx_buf[i];
2474 	tx_desc = ICE_TX_DESC(tx_ring, i);
2475 	i -= tx_ring->count;
2476 
2477 	do {
2478 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2479 
2480 		/* if next_to_watch is not set then there is no pending work */
2481 		if (!eop_desc)
2482 			break;
2483 
2484 		/* prevent any other reads prior to eop_desc */
2485 		smp_rmb();
2486 
2487 		/* if the descriptor isn't done, no work to do */
2488 		if (!(eop_desc->cmd_type_offset_bsz &
2489 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2490 			break;
2491 
2492 		/* clear next_to_watch to prevent false hangs */
2493 		tx_buf->next_to_watch = NULL;
2494 		tx_desc->buf_addr = 0;
2495 		tx_desc->cmd_type_offset_bsz = 0;
2496 
2497 		/* move past filter desc */
2498 		tx_buf++;
2499 		tx_desc++;
2500 		i++;
2501 		if (unlikely(!i)) {
2502 			i -= tx_ring->count;
2503 			tx_buf = tx_ring->tx_buf;
2504 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2505 		}
2506 
2507 		/* unmap the data header */
2508 		if (dma_unmap_len(tx_buf, len))
2509 			dma_unmap_single(tx_ring->dev,
2510 					 dma_unmap_addr(tx_buf, dma),
2511 					 dma_unmap_len(tx_buf, len),
2512 					 DMA_TO_DEVICE);
2513 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2514 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2515 
2516 		/* clear next_to_watch to prevent false hangs */
2517 		tx_buf->raw_buf = NULL;
2518 		tx_buf->tx_flags = 0;
2519 		tx_buf->next_to_watch = NULL;
2520 		dma_unmap_len_set(tx_buf, len, 0);
2521 		tx_desc->buf_addr = 0;
2522 		tx_desc->cmd_type_offset_bsz = 0;
2523 
2524 		/* move past eop_desc for start of next FD desc */
2525 		tx_buf++;
2526 		tx_desc++;
2527 		i++;
2528 		if (unlikely(!i)) {
2529 			i -= tx_ring->count;
2530 			tx_buf = tx_ring->tx_buf;
2531 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2532 		}
2533 
2534 		budget--;
2535 	} while (likely(budget));
2536 
2537 	i += tx_ring->count;
2538 	tx_ring->next_to_clean = i;
2539 
2540 	/* re-enable interrupt if needed */
2541 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2542 }
2543