1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/xdp.h> 10 #include "ice_txrx_lib.h" 11 #include "ice_lib.h" 12 #include "ice.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_xsk.h" 15 16 #define ICE_RX_HDR_SIZE 256 17 18 #define FDIR_DESC_RXDID 0x40 19 #define ICE_FDIR_CLEAN_DELAY 10 20 21 /** 22 * ice_prgm_fdir_fltr - Program a Flow Director filter 23 * @vsi: VSI to send dummy packet 24 * @fdir_desc: flow director descriptor 25 * @raw_packet: allocated buffer for flow director 26 */ 27 int 28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 29 u8 *raw_packet) 30 { 31 struct ice_tx_buf *tx_buf, *first; 32 struct ice_fltr_desc *f_desc; 33 struct ice_tx_desc *tx_desc; 34 struct ice_ring *tx_ring; 35 struct device *dev; 36 dma_addr_t dma; 37 u32 td_cmd; 38 u16 i; 39 40 /* VSI and Tx ring */ 41 if (!vsi) 42 return -ENOENT; 43 tx_ring = vsi->tx_rings[0]; 44 if (!tx_ring || !tx_ring->desc) 45 return -ENOENT; 46 dev = tx_ring->dev; 47 48 /* we are using two descriptors to add/del a filter and we can wait */ 49 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 50 if (!i) 51 return -EAGAIN; 52 msleep_interruptible(1); 53 } 54 55 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 56 DMA_TO_DEVICE); 57 58 if (dma_mapping_error(dev, dma)) 59 return -EINVAL; 60 61 /* grab the next descriptor */ 62 i = tx_ring->next_to_use; 63 first = &tx_ring->tx_buf[i]; 64 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 65 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 66 67 i++; 68 i = (i < tx_ring->count) ? i : 0; 69 tx_desc = ICE_TX_DESC(tx_ring, i); 70 tx_buf = &tx_ring->tx_buf[i]; 71 72 i++; 73 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 74 75 memset(tx_buf, 0, sizeof(*tx_buf)); 76 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 77 dma_unmap_addr_set(tx_buf, dma, dma); 78 79 tx_desc->buf_addr = cpu_to_le64(dma); 80 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 81 ICE_TX_DESC_CMD_RE; 82 83 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 84 tx_buf->raw_buf = raw_packet; 85 86 tx_desc->cmd_type_offset_bsz = 87 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 88 89 /* Force memory write to complete before letting h/w know 90 * there are new descriptors to fetch. 91 */ 92 wmb(); 93 94 /* mark the data descriptor to be watched */ 95 first->next_to_watch = tx_desc; 96 97 writel(tx_ring->next_to_use, tx_ring->tail); 98 99 return 0; 100 } 101 102 /** 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer 104 * @ring: the ring that owns the buffer 105 * @tx_buf: the buffer to free 106 */ 107 static void 108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 109 { 110 if (tx_buf->skb) { 111 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 112 devm_kfree(ring->dev, tx_buf->raw_buf); 113 else if (ice_ring_is_xdp(ring)) 114 page_frag_free(tx_buf->raw_buf); 115 else 116 dev_kfree_skb_any(tx_buf->skb); 117 if (dma_unmap_len(tx_buf, len)) 118 dma_unmap_single(ring->dev, 119 dma_unmap_addr(tx_buf, dma), 120 dma_unmap_len(tx_buf, len), 121 DMA_TO_DEVICE); 122 } else if (dma_unmap_len(tx_buf, len)) { 123 dma_unmap_page(ring->dev, 124 dma_unmap_addr(tx_buf, dma), 125 dma_unmap_len(tx_buf, len), 126 DMA_TO_DEVICE); 127 } 128 129 tx_buf->next_to_watch = NULL; 130 tx_buf->skb = NULL; 131 dma_unmap_len_set(tx_buf, len, 0); 132 /* tx_buf must be completely set up in the transmit path */ 133 } 134 135 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 136 { 137 return netdev_get_tx_queue(ring->netdev, ring->q_index); 138 } 139 140 /** 141 * ice_clean_tx_ring - Free any empty Tx buffers 142 * @tx_ring: ring to be cleaned 143 */ 144 void ice_clean_tx_ring(struct ice_ring *tx_ring) 145 { 146 u16 i; 147 148 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 149 ice_xsk_clean_xdp_ring(tx_ring); 150 goto tx_skip_free; 151 } 152 153 /* ring already cleared, nothing to do */ 154 if (!tx_ring->tx_buf) 155 return; 156 157 /* Free all the Tx ring sk_buffs */ 158 for (i = 0; i < tx_ring->count; i++) 159 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 160 161 tx_skip_free: 162 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 163 164 /* Zero out the descriptor ring */ 165 memset(tx_ring->desc, 0, tx_ring->size); 166 167 tx_ring->next_to_use = 0; 168 tx_ring->next_to_clean = 0; 169 170 if (!tx_ring->netdev) 171 return; 172 173 /* cleanup Tx queue statistics */ 174 netdev_tx_reset_queue(txring_txq(tx_ring)); 175 } 176 177 /** 178 * ice_free_tx_ring - Free Tx resources per queue 179 * @tx_ring: Tx descriptor ring for a specific queue 180 * 181 * Free all transmit software resources 182 */ 183 void ice_free_tx_ring(struct ice_ring *tx_ring) 184 { 185 ice_clean_tx_ring(tx_ring); 186 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 187 tx_ring->tx_buf = NULL; 188 189 if (tx_ring->desc) { 190 dmam_free_coherent(tx_ring->dev, tx_ring->size, 191 tx_ring->desc, tx_ring->dma); 192 tx_ring->desc = NULL; 193 } 194 } 195 196 /** 197 * ice_clean_tx_irq - Reclaim resources after transmit completes 198 * @tx_ring: Tx ring to clean 199 * @napi_budget: Used to determine if we are in netpoll 200 * 201 * Returns true if there's any budget left (e.g. the clean is finished) 202 */ 203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) 204 { 205 unsigned int total_bytes = 0, total_pkts = 0; 206 unsigned int budget = ICE_DFLT_IRQ_WORK; 207 struct ice_vsi *vsi = tx_ring->vsi; 208 s16 i = tx_ring->next_to_clean; 209 struct ice_tx_desc *tx_desc; 210 struct ice_tx_buf *tx_buf; 211 212 tx_buf = &tx_ring->tx_buf[i]; 213 tx_desc = ICE_TX_DESC(tx_ring, i); 214 i -= tx_ring->count; 215 216 prefetch(&vsi->state); 217 218 do { 219 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 220 221 /* if next_to_watch is not set then there is no work pending */ 222 if (!eop_desc) 223 break; 224 225 smp_rmb(); /* prevent any other reads prior to eop_desc */ 226 227 /* if the descriptor isn't done, no work yet to do */ 228 if (!(eop_desc->cmd_type_offset_bsz & 229 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 230 break; 231 232 /* clear next_to_watch to prevent false hangs */ 233 tx_buf->next_to_watch = NULL; 234 235 /* update the statistics for this packet */ 236 total_bytes += tx_buf->bytecount; 237 total_pkts += tx_buf->gso_segs; 238 239 if (ice_ring_is_xdp(tx_ring)) 240 page_frag_free(tx_buf->raw_buf); 241 else 242 /* free the skb */ 243 napi_consume_skb(tx_buf->skb, napi_budget); 244 245 /* unmap skb header data */ 246 dma_unmap_single(tx_ring->dev, 247 dma_unmap_addr(tx_buf, dma), 248 dma_unmap_len(tx_buf, len), 249 DMA_TO_DEVICE); 250 251 /* clear tx_buf data */ 252 tx_buf->skb = NULL; 253 dma_unmap_len_set(tx_buf, len, 0); 254 255 /* unmap remaining buffers */ 256 while (tx_desc != eop_desc) { 257 tx_buf++; 258 tx_desc++; 259 i++; 260 if (unlikely(!i)) { 261 i -= tx_ring->count; 262 tx_buf = tx_ring->tx_buf; 263 tx_desc = ICE_TX_DESC(tx_ring, 0); 264 } 265 266 /* unmap any remaining paged data */ 267 if (dma_unmap_len(tx_buf, len)) { 268 dma_unmap_page(tx_ring->dev, 269 dma_unmap_addr(tx_buf, dma), 270 dma_unmap_len(tx_buf, len), 271 DMA_TO_DEVICE); 272 dma_unmap_len_set(tx_buf, len, 0); 273 } 274 } 275 276 /* move us one more past the eop_desc for start of next pkt */ 277 tx_buf++; 278 tx_desc++; 279 i++; 280 if (unlikely(!i)) { 281 i -= tx_ring->count; 282 tx_buf = tx_ring->tx_buf; 283 tx_desc = ICE_TX_DESC(tx_ring, 0); 284 } 285 286 prefetch(tx_desc); 287 288 /* update budget accounting */ 289 budget--; 290 } while (likely(budget)); 291 292 i += tx_ring->count; 293 tx_ring->next_to_clean = i; 294 295 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 296 297 if (ice_ring_is_xdp(tx_ring)) 298 return !!budget; 299 300 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 301 total_bytes); 302 303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 304 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 305 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 306 /* Make sure that anybody stopping the queue after this 307 * sees the new next_to_clean. 308 */ 309 smp_mb(); 310 if (__netif_subqueue_stopped(tx_ring->netdev, 311 tx_ring->q_index) && 312 !test_bit(__ICE_DOWN, vsi->state)) { 313 netif_wake_subqueue(tx_ring->netdev, 314 tx_ring->q_index); 315 ++tx_ring->tx_stats.restart_q; 316 } 317 } 318 319 return !!budget; 320 } 321 322 /** 323 * ice_setup_tx_ring - Allocate the Tx descriptors 324 * @tx_ring: the Tx ring to set up 325 * 326 * Return 0 on success, negative on error 327 */ 328 int ice_setup_tx_ring(struct ice_ring *tx_ring) 329 { 330 struct device *dev = tx_ring->dev; 331 332 if (!dev) 333 return -ENOMEM; 334 335 /* warn if we are about to overwrite the pointer */ 336 WARN_ON(tx_ring->tx_buf); 337 tx_ring->tx_buf = 338 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 339 GFP_KERNEL); 340 if (!tx_ring->tx_buf) 341 return -ENOMEM; 342 343 /* round up to nearest page */ 344 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 345 PAGE_SIZE); 346 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 347 GFP_KERNEL); 348 if (!tx_ring->desc) { 349 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 350 tx_ring->size); 351 goto err; 352 } 353 354 tx_ring->next_to_use = 0; 355 tx_ring->next_to_clean = 0; 356 tx_ring->tx_stats.prev_pkt = -1; 357 return 0; 358 359 err: 360 devm_kfree(dev, tx_ring->tx_buf); 361 tx_ring->tx_buf = NULL; 362 return -ENOMEM; 363 } 364 365 /** 366 * ice_clean_rx_ring - Free Rx buffers 367 * @rx_ring: ring to be cleaned 368 */ 369 void ice_clean_rx_ring(struct ice_ring *rx_ring) 370 { 371 struct device *dev = rx_ring->dev; 372 u16 i; 373 374 /* ring already cleared, nothing to do */ 375 if (!rx_ring->rx_buf) 376 return; 377 378 if (rx_ring->xsk_pool) { 379 ice_xsk_clean_rx_ring(rx_ring); 380 goto rx_skip_free; 381 } 382 383 /* Free all the Rx ring sk_buffs */ 384 for (i = 0; i < rx_ring->count; i++) { 385 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 386 387 if (rx_buf->skb) { 388 dev_kfree_skb(rx_buf->skb); 389 rx_buf->skb = NULL; 390 } 391 if (!rx_buf->page) 392 continue; 393 394 /* Invalidate cache lines that may have been written to by 395 * device so that we avoid corrupting memory. 396 */ 397 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 398 rx_buf->page_offset, 399 rx_ring->rx_buf_len, 400 DMA_FROM_DEVICE); 401 402 /* free resources associated with mapping */ 403 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 404 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 405 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 406 407 rx_buf->page = NULL; 408 rx_buf->page_offset = 0; 409 } 410 411 rx_skip_free: 412 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 413 414 /* Zero out the descriptor ring */ 415 memset(rx_ring->desc, 0, rx_ring->size); 416 417 rx_ring->next_to_alloc = 0; 418 rx_ring->next_to_clean = 0; 419 rx_ring->next_to_use = 0; 420 } 421 422 /** 423 * ice_free_rx_ring - Free Rx resources 424 * @rx_ring: ring to clean the resources from 425 * 426 * Free all receive software resources 427 */ 428 void ice_free_rx_ring(struct ice_ring *rx_ring) 429 { 430 ice_clean_rx_ring(rx_ring); 431 if (rx_ring->vsi->type == ICE_VSI_PF) 432 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 433 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 434 rx_ring->xdp_prog = NULL; 435 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 436 rx_ring->rx_buf = NULL; 437 438 if (rx_ring->desc) { 439 dmam_free_coherent(rx_ring->dev, rx_ring->size, 440 rx_ring->desc, rx_ring->dma); 441 rx_ring->desc = NULL; 442 } 443 } 444 445 /** 446 * ice_setup_rx_ring - Allocate the Rx descriptors 447 * @rx_ring: the Rx ring to set up 448 * 449 * Return 0 on success, negative on error 450 */ 451 int ice_setup_rx_ring(struct ice_ring *rx_ring) 452 { 453 struct device *dev = rx_ring->dev; 454 455 if (!dev) 456 return -ENOMEM; 457 458 /* warn if we are about to overwrite the pointer */ 459 WARN_ON(rx_ring->rx_buf); 460 rx_ring->rx_buf = 461 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 462 GFP_KERNEL); 463 if (!rx_ring->rx_buf) 464 return -ENOMEM; 465 466 /* round up to nearest page */ 467 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 468 PAGE_SIZE); 469 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 470 GFP_KERNEL); 471 if (!rx_ring->desc) { 472 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 473 rx_ring->size); 474 goto err; 475 } 476 477 rx_ring->next_to_use = 0; 478 rx_ring->next_to_clean = 0; 479 480 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 481 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 482 483 if (rx_ring->vsi->type == ICE_VSI_PF && 484 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 485 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 486 rx_ring->q_index)) 487 goto err; 488 return 0; 489 490 err: 491 devm_kfree(dev, rx_ring->rx_buf); 492 rx_ring->rx_buf = NULL; 493 return -ENOMEM; 494 } 495 496 /** 497 * ice_rx_offset - Return expected offset into page to access data 498 * @rx_ring: Ring we are requesting offset of 499 * 500 * Returns the offset value for ring into the data buffer. 501 */ 502 static unsigned int ice_rx_offset(struct ice_ring *rx_ring) 503 { 504 if (ice_ring_uses_build_skb(rx_ring)) 505 return ICE_SKB_PAD; 506 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 507 return XDP_PACKET_HEADROOM; 508 509 return 0; 510 } 511 512 static unsigned int 513 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) 514 { 515 unsigned int truesize; 516 517 #if (PAGE_SIZE < 8192) 518 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 519 #else 520 truesize = ice_rx_offset(rx_ring) ? 521 SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) + 522 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 523 SKB_DATA_ALIGN(size); 524 #endif 525 return truesize; 526 } 527 528 /** 529 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 530 * @rx_ring: Rx ring 531 * @xdp: xdp_buff used as input to the XDP program 532 * @xdp_prog: XDP program to run 533 * 534 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 535 */ 536 static int 537 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, 538 struct bpf_prog *xdp_prog) 539 { 540 int err, result = ICE_XDP_PASS; 541 struct ice_ring *xdp_ring; 542 u32 act; 543 544 act = bpf_prog_run_xdp(xdp_prog, xdp); 545 switch (act) { 546 case XDP_PASS: 547 break; 548 case XDP_TX: 549 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; 550 result = ice_xmit_xdp_buff(xdp, xdp_ring); 551 break; 552 case XDP_REDIRECT: 553 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 554 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; 555 break; 556 default: 557 bpf_warn_invalid_xdp_action(act); 558 fallthrough; 559 case XDP_ABORTED: 560 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 561 fallthrough; 562 case XDP_DROP: 563 result = ICE_XDP_CONSUMED; 564 break; 565 } 566 567 return result; 568 } 569 570 /** 571 * ice_xdp_xmit - submit packets to XDP ring for transmission 572 * @dev: netdev 573 * @n: number of XDP frames to be transmitted 574 * @frames: XDP frames to be transmitted 575 * @flags: transmit flags 576 * 577 * Returns number of frames successfully sent. Frames that fail are 578 * free'ed via XDP return API. 579 * For error cases, a negative errno code is returned and no-frames 580 * are transmitted (caller must handle freeing frames). 581 */ 582 int 583 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 584 u32 flags) 585 { 586 struct ice_netdev_priv *np = netdev_priv(dev); 587 unsigned int queue_index = smp_processor_id(); 588 struct ice_vsi *vsi = np->vsi; 589 struct ice_ring *xdp_ring; 590 int drops = 0, i; 591 592 if (test_bit(__ICE_DOWN, vsi->state)) 593 return -ENETDOWN; 594 595 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 596 return -ENXIO; 597 598 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 599 return -EINVAL; 600 601 xdp_ring = vsi->xdp_rings[queue_index]; 602 for (i = 0; i < n; i++) { 603 struct xdp_frame *xdpf = frames[i]; 604 int err; 605 606 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 607 if (err != ICE_XDP_TX) { 608 xdp_return_frame_rx_napi(xdpf); 609 drops++; 610 } 611 } 612 613 if (unlikely(flags & XDP_XMIT_FLUSH)) 614 ice_xdp_ring_update_tail(xdp_ring); 615 616 return n - drops; 617 } 618 619 /** 620 * ice_alloc_mapped_page - recycle or make a new page 621 * @rx_ring: ring to use 622 * @bi: rx_buf struct to modify 623 * 624 * Returns true if the page was successfully allocated or 625 * reused. 626 */ 627 static bool 628 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 629 { 630 struct page *page = bi->page; 631 dma_addr_t dma; 632 633 /* since we are recycling buffers we should seldom need to alloc */ 634 if (likely(page)) 635 return true; 636 637 /* alloc new page for storage */ 638 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 639 if (unlikely(!page)) { 640 rx_ring->rx_stats.alloc_page_failed++; 641 return false; 642 } 643 644 /* map page for use */ 645 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 646 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 647 648 /* if mapping failed free memory back to system since 649 * there isn't much point in holding memory we can't use 650 */ 651 if (dma_mapping_error(rx_ring->dev, dma)) { 652 __free_pages(page, ice_rx_pg_order(rx_ring)); 653 rx_ring->rx_stats.alloc_page_failed++; 654 return false; 655 } 656 657 bi->dma = dma; 658 bi->page = page; 659 bi->page_offset = ice_rx_offset(rx_ring); 660 page_ref_add(page, USHRT_MAX - 1); 661 bi->pagecnt_bias = USHRT_MAX; 662 663 return true; 664 } 665 666 /** 667 * ice_alloc_rx_bufs - Replace used receive buffers 668 * @rx_ring: ring to place buffers on 669 * @cleaned_count: number of buffers to replace 670 * 671 * Returns false if all allocations were successful, true if any fail. Returning 672 * true signals to the caller that we didn't replace cleaned_count buffers and 673 * there is more work to do. 674 * 675 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 676 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 677 * multiple tail writes per call. 678 */ 679 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 680 { 681 union ice_32b_rx_flex_desc *rx_desc; 682 u16 ntu = rx_ring->next_to_use; 683 struct ice_rx_buf *bi; 684 685 /* do nothing if no valid netdev defined */ 686 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 687 !cleaned_count) 688 return false; 689 690 /* get the Rx descriptor and buffer based on next_to_use */ 691 rx_desc = ICE_RX_DESC(rx_ring, ntu); 692 bi = &rx_ring->rx_buf[ntu]; 693 694 do { 695 /* if we fail here, we have work remaining */ 696 if (!ice_alloc_mapped_page(rx_ring, bi)) 697 break; 698 699 /* sync the buffer for use by the device */ 700 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 701 bi->page_offset, 702 rx_ring->rx_buf_len, 703 DMA_FROM_DEVICE); 704 705 /* Refresh the desc even if buffer_addrs didn't change 706 * because each write-back erases this info. 707 */ 708 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 709 710 rx_desc++; 711 bi++; 712 ntu++; 713 if (unlikely(ntu == rx_ring->count)) { 714 rx_desc = ICE_RX_DESC(rx_ring, 0); 715 bi = rx_ring->rx_buf; 716 ntu = 0; 717 } 718 719 /* clear the status bits for the next_to_use descriptor */ 720 rx_desc->wb.status_error0 = 0; 721 722 cleaned_count--; 723 } while (cleaned_count); 724 725 if (rx_ring->next_to_use != ntu) 726 ice_release_rx_desc(rx_ring, ntu); 727 728 return !!cleaned_count; 729 } 730 731 /** 732 * ice_page_is_reserved - check if reuse is possible 733 * @page: page struct to check 734 */ 735 static bool ice_page_is_reserved(struct page *page) 736 { 737 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 738 } 739 740 /** 741 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 742 * @rx_buf: Rx buffer to adjust 743 * @size: Size of adjustment 744 * 745 * Update the offset within page so that Rx buf will be ready to be reused. 746 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 747 * so the second half of page assigned to Rx buffer will be used, otherwise 748 * the offset is moved by "size" bytes 749 */ 750 static void 751 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 752 { 753 #if (PAGE_SIZE < 8192) 754 /* flip page offset to other buffer */ 755 rx_buf->page_offset ^= size; 756 #else 757 /* move offset up to the next cache line */ 758 rx_buf->page_offset += size; 759 #endif 760 } 761 762 /** 763 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 764 * @rx_buf: buffer containing the page 765 * 766 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 767 * which will assign the current buffer to the buffer that next_to_alloc is 768 * pointing to; otherwise, the DMA mapping needs to be destroyed and 769 * page freed 770 */ 771 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 772 { 773 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 774 struct page *page = rx_buf->page; 775 776 /* avoid re-using remote pages */ 777 if (unlikely(ice_page_is_reserved(page))) 778 return false; 779 780 #if (PAGE_SIZE < 8192) 781 /* if we are only owner of page we can reuse it */ 782 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 783 return false; 784 #else 785 #define ICE_LAST_OFFSET \ 786 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 787 if (rx_buf->page_offset > ICE_LAST_OFFSET) 788 return false; 789 #endif /* PAGE_SIZE < 8192) */ 790 791 /* If we have drained the page fragment pool we need to update 792 * the pagecnt_bias and page count so that we fully restock the 793 * number of references the driver holds. 794 */ 795 if (unlikely(pagecnt_bias == 1)) { 796 page_ref_add(page, USHRT_MAX - 1); 797 rx_buf->pagecnt_bias = USHRT_MAX; 798 } 799 800 return true; 801 } 802 803 /** 804 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 805 * @rx_ring: Rx descriptor ring to transact packets on 806 * @rx_buf: buffer containing page to add 807 * @skb: sk_buff to place the data into 808 * @size: packet length from rx_desc 809 * 810 * This function will add the data contained in rx_buf->page to the skb. 811 * It will just attach the page as a frag to the skb. 812 * The function will then update the page offset. 813 */ 814 static void 815 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 816 struct sk_buff *skb, unsigned int size) 817 { 818 #if (PAGE_SIZE >= 8192) 819 unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring)); 820 #else 821 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 822 #endif 823 824 if (!size) 825 return; 826 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 827 rx_buf->page_offset, size, truesize); 828 829 /* page is being used so we must update the page offset */ 830 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 831 } 832 833 /** 834 * ice_reuse_rx_page - page flip buffer and store it back on the ring 835 * @rx_ring: Rx descriptor ring to store buffers on 836 * @old_buf: donor buffer to have page reused 837 * 838 * Synchronizes page for reuse by the adapter 839 */ 840 static void 841 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 842 { 843 u16 nta = rx_ring->next_to_alloc; 844 struct ice_rx_buf *new_buf; 845 846 new_buf = &rx_ring->rx_buf[nta]; 847 848 /* update, and store next to alloc */ 849 nta++; 850 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 851 852 /* Transfer page from old buffer to new buffer. 853 * Move each member individually to avoid possible store 854 * forwarding stalls and unnecessary copy of skb. 855 */ 856 new_buf->dma = old_buf->dma; 857 new_buf->page = old_buf->page; 858 new_buf->page_offset = old_buf->page_offset; 859 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 860 } 861 862 /** 863 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 864 * @rx_ring: Rx descriptor ring to transact packets on 865 * @skb: skb to be used 866 * @size: size of buffer to add to skb 867 * 868 * This function will pull an Rx buffer from the ring and synchronize it 869 * for use by the CPU. 870 */ 871 static struct ice_rx_buf * 872 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, 873 const unsigned int size) 874 { 875 struct ice_rx_buf *rx_buf; 876 877 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 878 prefetchw(rx_buf->page); 879 *skb = rx_buf->skb; 880 881 if (!size) 882 return rx_buf; 883 /* we are reusing so sync this buffer for CPU use */ 884 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 885 rx_buf->page_offset, size, 886 DMA_FROM_DEVICE); 887 888 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 889 rx_buf->pagecnt_bias--; 890 891 return rx_buf; 892 } 893 894 /** 895 * ice_build_skb - Build skb around an existing buffer 896 * @rx_ring: Rx descriptor ring to transact packets on 897 * @rx_buf: Rx buffer to pull data from 898 * @xdp: xdp_buff pointing to the data 899 * 900 * This function builds an skb around an existing Rx buffer, taking care 901 * to set up the skb correctly and avoid any memcpy overhead. 902 */ 903 static struct sk_buff * 904 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 905 struct xdp_buff *xdp) 906 { 907 u8 metasize = xdp->data - xdp->data_meta; 908 #if (PAGE_SIZE < 8192) 909 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 910 #else 911 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 912 SKB_DATA_ALIGN(xdp->data_end - 913 xdp->data_hard_start); 914 #endif 915 struct sk_buff *skb; 916 917 /* Prefetch first cache line of first page. If xdp->data_meta 918 * is unused, this points exactly as xdp->data, otherwise we 919 * likely have a consumer accessing first few bytes of meta 920 * data, and then actual data. 921 */ 922 net_prefetch(xdp->data_meta); 923 /* build an skb around the page buffer */ 924 skb = build_skb(xdp->data_hard_start, truesize); 925 if (unlikely(!skb)) 926 return NULL; 927 928 /* must to record Rx queue, otherwise OS features such as 929 * symmetric queue won't work 930 */ 931 skb_record_rx_queue(skb, rx_ring->q_index); 932 933 /* update pointers within the skb to store the data */ 934 skb_reserve(skb, xdp->data - xdp->data_hard_start); 935 __skb_put(skb, xdp->data_end - xdp->data); 936 if (metasize) 937 skb_metadata_set(skb, metasize); 938 939 /* buffer is used by skb, update page_offset */ 940 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 941 942 return skb; 943 } 944 945 /** 946 * ice_construct_skb - Allocate skb and populate it 947 * @rx_ring: Rx descriptor ring to transact packets on 948 * @rx_buf: Rx buffer to pull data from 949 * @xdp: xdp_buff pointing to the data 950 * 951 * This function allocates an skb. It then populates it with the page 952 * data from the current receive descriptor, taking care to set up the 953 * skb correctly. 954 */ 955 static struct sk_buff * 956 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 957 struct xdp_buff *xdp) 958 { 959 unsigned int size = xdp->data_end - xdp->data; 960 unsigned int headlen; 961 struct sk_buff *skb; 962 963 /* prefetch first cache line of first page */ 964 net_prefetch(xdp->data); 965 966 /* allocate a skb to store the frags */ 967 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 968 GFP_ATOMIC | __GFP_NOWARN); 969 if (unlikely(!skb)) 970 return NULL; 971 972 skb_record_rx_queue(skb, rx_ring->q_index); 973 /* Determine available headroom for copy */ 974 headlen = size; 975 if (headlen > ICE_RX_HDR_SIZE) 976 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 977 978 /* align pull length to size of long to optimize memcpy performance */ 979 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 980 sizeof(long))); 981 982 /* if we exhaust the linear part then add what is left as a frag */ 983 size -= headlen; 984 if (size) { 985 #if (PAGE_SIZE >= 8192) 986 unsigned int truesize = SKB_DATA_ALIGN(size); 987 #else 988 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 989 #endif 990 skb_add_rx_frag(skb, 0, rx_buf->page, 991 rx_buf->page_offset + headlen, size, truesize); 992 /* buffer is used by skb, update page_offset */ 993 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 994 } else { 995 /* buffer is unused, reset bias back to rx_buf; data was copied 996 * onto skb's linear part so there's no need for adjusting 997 * page offset and we can reuse this buffer as-is 998 */ 999 rx_buf->pagecnt_bias++; 1000 } 1001 1002 return skb; 1003 } 1004 1005 /** 1006 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1007 * @rx_ring: Rx descriptor ring to transact packets on 1008 * @rx_buf: Rx buffer to pull data from 1009 * 1010 * This function will update next_to_clean and then clean up the contents 1011 * of the rx_buf. It will either recycle the buffer or unmap it and free 1012 * the associated resources. 1013 */ 1014 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) 1015 { 1016 u16 ntc = rx_ring->next_to_clean + 1; 1017 1018 /* fetch, update, and store next to clean */ 1019 ntc = (ntc < rx_ring->count) ? ntc : 0; 1020 rx_ring->next_to_clean = ntc; 1021 1022 if (!rx_buf) 1023 return; 1024 1025 if (ice_can_reuse_rx_page(rx_buf)) { 1026 /* hand second half of page back to the ring */ 1027 ice_reuse_rx_page(rx_ring, rx_buf); 1028 } else { 1029 /* we are not reusing the buffer so unmap it */ 1030 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1031 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1032 ICE_RX_DMA_ATTR); 1033 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1034 } 1035 1036 /* clear contents of buffer_info */ 1037 rx_buf->page = NULL; 1038 rx_buf->skb = NULL; 1039 } 1040 1041 /** 1042 * ice_is_non_eop - process handling of non-EOP buffers 1043 * @rx_ring: Rx ring being processed 1044 * @rx_desc: Rx descriptor for current buffer 1045 * @skb: Current socket buffer containing buffer in progress 1046 * 1047 * If the buffer is an EOP buffer, this function exits returning false, 1048 * otherwise return true indicating that this is in fact a non-EOP buffer. 1049 */ 1050 static bool 1051 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 1052 struct sk_buff *skb) 1053 { 1054 /* if we are the last buffer then there is nothing else to do */ 1055 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1056 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1057 return false; 1058 1059 /* place skb in next buffer to be received */ 1060 rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb; 1061 rx_ring->rx_stats.non_eop_descs++; 1062 1063 return true; 1064 } 1065 1066 /** 1067 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1068 * @rx_ring: Rx descriptor ring to transact packets on 1069 * @budget: Total limit on number of packets to process 1070 * 1071 * This function provides a "bounce buffer" approach to Rx interrupt 1072 * processing. The advantage to this is that on systems that have 1073 * expensive overhead for IOMMU access this provides a means of avoiding 1074 * it by maintaining the mapping of the page to the system. 1075 * 1076 * Returns amount of work completed 1077 */ 1078 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1079 { 1080 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1081 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1082 unsigned int xdp_res, xdp_xmit = 0; 1083 struct bpf_prog *xdp_prog = NULL; 1084 struct xdp_buff xdp; 1085 bool failure; 1086 1087 xdp.rxq = &rx_ring->xdp_rxq; 1088 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1089 #if (PAGE_SIZE < 8192) 1090 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1091 #endif 1092 1093 /* start the loop to process Rx packets bounded by 'budget' */ 1094 while (likely(total_rx_pkts < (unsigned int)budget)) { 1095 union ice_32b_rx_flex_desc *rx_desc; 1096 struct ice_rx_buf *rx_buf; 1097 struct sk_buff *skb; 1098 unsigned int size; 1099 u16 stat_err_bits; 1100 u16 vlan_tag = 0; 1101 u8 rx_ptype; 1102 1103 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1104 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1105 1106 /* status_error_len will always be zero for unused descriptors 1107 * because it's cleared in cleanup, and overlaps with hdr_addr 1108 * which is always zero because packet split isn't used, if the 1109 * hardware wrote DD then it will be non-zero 1110 */ 1111 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1112 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1113 break; 1114 1115 /* This memory barrier is needed to keep us from reading 1116 * any other fields out of the rx_desc until we know the 1117 * DD bit is set. 1118 */ 1119 dma_rmb(); 1120 1121 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1122 ice_put_rx_buf(rx_ring, NULL); 1123 cleaned_count++; 1124 continue; 1125 } 1126 1127 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1128 ICE_RX_FLX_DESC_PKT_LEN_M; 1129 1130 /* retrieve a buffer from the ring */ 1131 rx_buf = ice_get_rx_buf(rx_ring, &skb, size); 1132 1133 if (!size) { 1134 xdp.data = NULL; 1135 xdp.data_end = NULL; 1136 xdp.data_hard_start = NULL; 1137 xdp.data_meta = NULL; 1138 goto construct_skb; 1139 } 1140 1141 xdp.data = page_address(rx_buf->page) + rx_buf->page_offset; 1142 xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring); 1143 xdp.data_meta = xdp.data; 1144 xdp.data_end = xdp.data + size; 1145 #if (PAGE_SIZE > 4096) 1146 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1147 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1148 #endif 1149 1150 rcu_read_lock(); 1151 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1152 if (!xdp_prog) { 1153 rcu_read_unlock(); 1154 goto construct_skb; 1155 } 1156 1157 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); 1158 rcu_read_unlock(); 1159 if (!xdp_res) 1160 goto construct_skb; 1161 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1162 xdp_xmit |= xdp_res; 1163 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1164 } else { 1165 rx_buf->pagecnt_bias++; 1166 } 1167 total_rx_bytes += size; 1168 total_rx_pkts++; 1169 1170 cleaned_count++; 1171 ice_put_rx_buf(rx_ring, rx_buf); 1172 continue; 1173 construct_skb: 1174 if (skb) { 1175 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1176 } else if (likely(xdp.data)) { 1177 if (ice_ring_uses_build_skb(rx_ring)) 1178 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1179 else 1180 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1181 } 1182 /* exit if we failed to retrieve a buffer */ 1183 if (!skb) { 1184 rx_ring->rx_stats.alloc_buf_failed++; 1185 if (rx_buf) 1186 rx_buf->pagecnt_bias++; 1187 break; 1188 } 1189 1190 ice_put_rx_buf(rx_ring, rx_buf); 1191 cleaned_count++; 1192 1193 /* skip if it is NOP desc */ 1194 if (ice_is_non_eop(rx_ring, rx_desc, skb)) 1195 continue; 1196 1197 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1198 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1199 dev_kfree_skb_any(skb); 1200 continue; 1201 } 1202 1203 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1204 if (ice_test_staterr(rx_desc, stat_err_bits)) 1205 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1206 1207 /* pad the skb if needed, to make a valid ethernet frame */ 1208 if (eth_skb_pad(skb)) { 1209 skb = NULL; 1210 continue; 1211 } 1212 1213 /* probably a little skewed due to removing CRC */ 1214 total_rx_bytes += skb->len; 1215 1216 /* populate checksum, VLAN, and protocol */ 1217 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1218 ICE_RX_FLEX_DESC_PTYPE_M; 1219 1220 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1221 1222 /* send completed skb up the stack */ 1223 ice_receive_skb(rx_ring, skb, vlan_tag); 1224 1225 /* update budget accounting */ 1226 total_rx_pkts++; 1227 } 1228 1229 /* return up to cleaned_count buffers to hardware */ 1230 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1231 1232 if (xdp_prog) 1233 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 1234 1235 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1236 1237 /* guarantee a trip back through this routine if there was a failure */ 1238 return failure ? budget : (int)total_rx_pkts; 1239 } 1240 1241 /** 1242 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic 1243 * @port_info: port_info structure containing the current link speed 1244 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine 1245 * @itr: ITR value to update 1246 * 1247 * Calculate how big of an increment should be applied to the ITR value passed 1248 * in based on wmem_default, SKB overhead, ethernet overhead, and the current 1249 * link speed. 1250 * 1251 * The following is a calculation derived from: 1252 * wmem_default / (size + overhead) = desired_pkts_per_int 1253 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1254 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1255 * 1256 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1257 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1258 * formula down to: 1259 * 1260 * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24 1261 * ITR = -------------------------------------------- * -------------- 1262 * rate pkt_size + 640 1263 */ 1264 static unsigned int 1265 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info, 1266 unsigned int avg_pkt_size, 1267 unsigned int itr) 1268 { 1269 switch (port_info->phy.link_info.link_speed) { 1270 case ICE_AQ_LINK_SPEED_100GB: 1271 itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24), 1272 avg_pkt_size + 640); 1273 break; 1274 case ICE_AQ_LINK_SPEED_50GB: 1275 itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24), 1276 avg_pkt_size + 640); 1277 break; 1278 case ICE_AQ_LINK_SPEED_40GB: 1279 itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24), 1280 avg_pkt_size + 640); 1281 break; 1282 case ICE_AQ_LINK_SPEED_25GB: 1283 itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24), 1284 avg_pkt_size + 640); 1285 break; 1286 case ICE_AQ_LINK_SPEED_20GB: 1287 itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24), 1288 avg_pkt_size + 640); 1289 break; 1290 case ICE_AQ_LINK_SPEED_10GB: 1291 default: 1292 itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24), 1293 avg_pkt_size + 640); 1294 break; 1295 } 1296 1297 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1298 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1299 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1300 } 1301 1302 return itr; 1303 } 1304 1305 /** 1306 * ice_update_itr - update the adaptive ITR value based on statistics 1307 * @q_vector: structure containing interrupt and ring information 1308 * @rc: structure containing ring performance data 1309 * 1310 * Stores a new ITR value based on packets and byte 1311 * counts during the last interrupt. The advantage of per interrupt 1312 * computation is faster updates and more accurate ITR for the current 1313 * traffic pattern. Constants in this function were computed 1314 * based on theoretical maximum wire speed and thresholds were set based 1315 * on testing data as well as attempting to minimize response time 1316 * while increasing bulk throughput. 1317 */ 1318 static void 1319 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) 1320 { 1321 unsigned long next_update = jiffies; 1322 unsigned int packets, bytes, itr; 1323 bool container_is_rx; 1324 1325 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) 1326 return; 1327 1328 /* If itr_countdown is set it means we programmed an ITR within 1329 * the last 4 interrupt cycles. This has a side effect of us 1330 * potentially firing an early interrupt. In order to work around 1331 * this we need to throw out any data received for a few 1332 * interrupts following the update. 1333 */ 1334 if (q_vector->itr_countdown) { 1335 itr = rc->target_itr; 1336 goto clear_counts; 1337 } 1338 1339 container_is_rx = (&q_vector->rx == rc); 1340 /* For Rx we want to push the delay up and default to low latency. 1341 * for Tx we want to pull the delay down and default to high latency. 1342 */ 1343 itr = container_is_rx ? 1344 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : 1345 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; 1346 1347 /* If we didn't update within up to 1 - 2 jiffies we can assume 1348 * that either packets are coming in so slow there hasn't been 1349 * any work, or that there is so much work that NAPI is dealing 1350 * with interrupt moderation and we don't need to do anything. 1351 */ 1352 if (time_after(next_update, rc->next_update)) 1353 goto clear_counts; 1354 1355 prefetch(q_vector->vsi->port_info); 1356 1357 packets = rc->total_pkts; 1358 bytes = rc->total_bytes; 1359 1360 if (container_is_rx) { 1361 /* If Rx there are 1 to 4 packets and bytes are less than 1362 * 9000 assume insufficient data to use bulk rate limiting 1363 * approach unless Tx is already in bulk rate limiting. We 1364 * are likely latency driven. 1365 */ 1366 if (packets && packets < 4 && bytes < 9000 && 1367 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { 1368 itr = ICE_ITR_ADAPTIVE_LATENCY; 1369 goto adjust_by_size_and_speed; 1370 } 1371 } else if (packets < 4) { 1372 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1373 * bulk mode and we are receiving 4 or fewer packets just 1374 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1375 * that the Rx can relax. 1376 */ 1377 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && 1378 (q_vector->rx.target_itr & ICE_ITR_MASK) == 1379 ICE_ITR_ADAPTIVE_MAX_USECS) 1380 goto clear_counts; 1381 } else if (packets > 32) { 1382 /* If we have processed over 32 packets in a single interrupt 1383 * for Tx assume we need to switch over to "bulk" mode. 1384 */ 1385 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; 1386 } 1387 1388 /* We have no packets to actually measure against. This means 1389 * either one of the other queues on this vector is active or 1390 * we are a Tx queue doing TSO with too high of an interrupt rate. 1391 * 1392 * Between 4 and 56 we can assume that our current interrupt delay 1393 * is only slightly too low. As such we should increase it by a small 1394 * fixed amount. 1395 */ 1396 if (packets < 56) { 1397 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; 1398 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1399 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1400 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1401 } 1402 goto clear_counts; 1403 } 1404 1405 if (packets <= 256) { 1406 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1407 itr &= ICE_ITR_MASK; 1408 1409 /* Between 56 and 112 is our "goldilocks" zone where we are 1410 * working out "just right". Just report that our current 1411 * ITR is good for us. 1412 */ 1413 if (packets <= 112) 1414 goto clear_counts; 1415 1416 /* If packet count is 128 or greater we are likely looking 1417 * at a slight overrun of the delay we want. Try halving 1418 * our delay to see if that will cut the number of packets 1419 * in half per interrupt. 1420 */ 1421 itr >>= 1; 1422 itr &= ICE_ITR_MASK; 1423 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) 1424 itr = ICE_ITR_ADAPTIVE_MIN_USECS; 1425 1426 goto clear_counts; 1427 } 1428 1429 /* The paths below assume we are dealing with a bulk ITR since 1430 * number of packets is greater than 256. We are just going to have 1431 * to compute a value and try to bring the count under control, 1432 * though for smaller packet sizes there isn't much we can do as 1433 * NAPI polling will likely be kicking in sooner rather than later. 1434 */ 1435 itr = ICE_ITR_ADAPTIVE_BULK; 1436 1437 adjust_by_size_and_speed: 1438 1439 /* based on checks above packets cannot be 0 so division is safe */ 1440 itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info, 1441 bytes / packets, itr); 1442 1443 clear_counts: 1444 /* write back value */ 1445 rc->target_itr = itr; 1446 1447 /* next update should occur within next jiffy */ 1448 rc->next_update = next_update + 1; 1449 1450 rc->total_bytes = 0; 1451 rc->total_pkts = 0; 1452 } 1453 1454 /** 1455 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1456 * @itr_idx: interrupt throttling index 1457 * @itr: interrupt throttling value in usecs 1458 */ 1459 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1460 { 1461 /* The ITR value is reported in microseconds, and the register value is 1462 * recorded in 2 microsecond units. For this reason we only need to 1463 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1464 * granularity as a shift instead of division. The mask makes sure the 1465 * ITR value is never odd so we don't accidentally write into the field 1466 * prior to the ITR field. 1467 */ 1468 itr &= ICE_ITR_MASK; 1469 1470 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1471 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1472 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1473 } 1474 1475 /* The act of updating the ITR will cause it to immediately trigger. In order 1476 * to prevent this from throwing off adaptive update statistics we defer the 1477 * update so that it can only happen so often. So after either Tx or Rx are 1478 * updated we make the adaptive scheme wait until either the ITR completely 1479 * expires via the next_update expiration or we have been through at least 1480 * 3 interrupts. 1481 */ 1482 #define ITR_COUNTDOWN_START 3 1483 1484 /** 1485 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt 1486 * @q_vector: q_vector for which ITR is being updated and interrupt enabled 1487 */ 1488 static void ice_update_ena_itr(struct ice_q_vector *q_vector) 1489 { 1490 struct ice_ring_container *tx = &q_vector->tx; 1491 struct ice_ring_container *rx = &q_vector->rx; 1492 struct ice_vsi *vsi = q_vector->vsi; 1493 u32 itr_val; 1494 1495 /* when exiting WB_ON_ITR lets set a low ITR value and trigger 1496 * interrupts to expire right away in case we have more work ready to go 1497 * already 1498 */ 1499 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) { 1500 itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS); 1501 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1502 /* set target back to last user set value */ 1503 rx->target_itr = rx->itr_setting; 1504 /* set current to what we just wrote and dynamic if needed */ 1505 rx->current_itr = ICE_WB_ON_ITR_USECS | 1506 (rx->itr_setting & ICE_ITR_DYNAMIC); 1507 /* allow normal interrupt flow to start */ 1508 q_vector->itr_countdown = 0; 1509 return; 1510 } 1511 1512 /* This will do nothing if dynamic updates are not enabled */ 1513 ice_update_itr(q_vector, tx); 1514 ice_update_itr(q_vector, rx); 1515 1516 /* This block of logic allows us to get away with only updating 1517 * one ITR value with each interrupt. The idea is to perform a 1518 * pseudo-lazy update with the following criteria. 1519 * 1520 * 1. Rx is given higher priority than Tx if both are in same state 1521 * 2. If we must reduce an ITR that is given highest priority. 1522 * 3. We then give priority to increasing ITR based on amount. 1523 */ 1524 if (rx->target_itr < rx->current_itr) { 1525 /* Rx ITR needs to be reduced, this is highest priority */ 1526 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1527 rx->current_itr = rx->target_itr; 1528 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1529 } else if ((tx->target_itr < tx->current_itr) || 1530 ((rx->target_itr - rx->current_itr) < 1531 (tx->target_itr - tx->current_itr))) { 1532 /* Tx ITR needs to be reduced, this is second priority 1533 * Tx ITR needs to be increased more than Rx, fourth priority 1534 */ 1535 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); 1536 tx->current_itr = tx->target_itr; 1537 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1538 } else if (rx->current_itr != rx->target_itr) { 1539 /* Rx ITR needs to be increased, third priority */ 1540 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1541 rx->current_itr = rx->target_itr; 1542 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1543 } else { 1544 /* Still have to re-enable the interrupts */ 1545 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1546 if (q_vector->itr_countdown) 1547 q_vector->itr_countdown--; 1548 } 1549 1550 if (!test_bit(__ICE_DOWN, q_vector->vsi->state)) 1551 wr32(&q_vector->vsi->back->hw, 1552 GLINT_DYN_CTL(q_vector->reg_idx), 1553 itr_val); 1554 } 1555 1556 /** 1557 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1558 * @q_vector: q_vector to set WB_ON_ITR on 1559 * 1560 * We need to tell hardware to write-back completed descriptors even when 1561 * interrupts are disabled. Descriptors will be written back on cache line 1562 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1563 * descriptors may not be written back if they don't fill a cache line until the 1564 * next interrupt. 1565 * 1566 * This sets the write-back frequency to 2 microseconds as that is the minimum 1567 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to 1568 * make sure hardware knows we aren't meddling with the INTENA_M bit. 1569 */ 1570 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1571 { 1572 struct ice_vsi *vsi = q_vector->vsi; 1573 1574 /* already in WB_ON_ITR mode no need to change it */ 1575 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) 1576 return; 1577 1578 if (q_vector->num_ring_rx) 1579 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1580 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1581 ICE_RX_ITR)); 1582 1583 if (q_vector->num_ring_tx) 1584 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1585 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, 1586 ICE_TX_ITR)); 1587 1588 q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE; 1589 } 1590 1591 /** 1592 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1593 * @napi: napi struct with our devices info in it 1594 * @budget: amount of work driver is allowed to do this pass, in packets 1595 * 1596 * This function will clean all queues associated with a q_vector. 1597 * 1598 * Returns the amount of work done 1599 */ 1600 int ice_napi_poll(struct napi_struct *napi, int budget) 1601 { 1602 struct ice_q_vector *q_vector = 1603 container_of(napi, struct ice_q_vector, napi); 1604 bool clean_complete = true; 1605 struct ice_ring *ring; 1606 int budget_per_ring; 1607 int work_done = 0; 1608 1609 /* Since the actual Tx work is minimal, we can give the Tx a larger 1610 * budget and be more aggressive about cleaning up the Tx descriptors. 1611 */ 1612 ice_for_each_ring(ring, q_vector->tx) { 1613 bool wd = ring->xsk_pool ? 1614 ice_clean_tx_irq_zc(ring, budget) : 1615 ice_clean_tx_irq(ring, budget); 1616 1617 if (!wd) 1618 clean_complete = false; 1619 } 1620 1621 /* Handle case where we are called by netpoll with a budget of 0 */ 1622 if (unlikely(budget <= 0)) 1623 return budget; 1624 1625 /* normally we have 1 Rx ring per q_vector */ 1626 if (unlikely(q_vector->num_ring_rx > 1)) 1627 /* We attempt to distribute budget to each Rx queue fairly, but 1628 * don't allow the budget to go below 1 because that would exit 1629 * polling early. 1630 */ 1631 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1632 else 1633 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1634 budget_per_ring = budget; 1635 1636 ice_for_each_ring(ring, q_vector->rx) { 1637 int cleaned; 1638 1639 /* A dedicated path for zero-copy allows making a single 1640 * comparison in the irq context instead of many inside the 1641 * ice_clean_rx_irq function and makes the codebase cleaner. 1642 */ 1643 cleaned = ring->xsk_pool ? 1644 ice_clean_rx_irq_zc(ring, budget_per_ring) : 1645 ice_clean_rx_irq(ring, budget_per_ring); 1646 work_done += cleaned; 1647 /* if we clean as many as budgeted, we must not be done */ 1648 if (cleaned >= budget_per_ring) 1649 clean_complete = false; 1650 } 1651 1652 /* If work not completed, return budget and polling will return */ 1653 if (!clean_complete) 1654 return budget; 1655 1656 /* Exit the polling mode, but don't re-enable interrupts if stack might 1657 * poll us due to busy-polling 1658 */ 1659 if (likely(napi_complete_done(napi, work_done))) 1660 ice_update_ena_itr(q_vector); 1661 else 1662 ice_set_wb_on_itr(q_vector); 1663 1664 return min_t(int, work_done, budget - 1); 1665 } 1666 1667 /** 1668 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1669 * @tx_ring: the ring to be checked 1670 * @size: the size buffer we want to assure is available 1671 * 1672 * Returns -EBUSY if a stop is needed, else 0 1673 */ 1674 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1675 { 1676 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1677 /* Memory barrier before checking head and tail */ 1678 smp_mb(); 1679 1680 /* Check again in a case another CPU has just made room available. */ 1681 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1682 return -EBUSY; 1683 1684 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1685 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1686 ++tx_ring->tx_stats.restart_q; 1687 return 0; 1688 } 1689 1690 /** 1691 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1692 * @tx_ring: the ring to be checked 1693 * @size: the size buffer we want to assure is available 1694 * 1695 * Returns 0 if stop is not needed 1696 */ 1697 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1698 { 1699 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1700 return 0; 1701 1702 return __ice_maybe_stop_tx(tx_ring, size); 1703 } 1704 1705 /** 1706 * ice_tx_map - Build the Tx descriptor 1707 * @tx_ring: ring to send buffer on 1708 * @first: first buffer info buffer to use 1709 * @off: pointer to struct that holds offload parameters 1710 * 1711 * This function loops over the skb data pointed to by *first 1712 * and gets a physical address for each memory location and programs 1713 * it and the length into the transmit descriptor. 1714 */ 1715 static void 1716 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1717 struct ice_tx_offload_params *off) 1718 { 1719 u64 td_offset, td_tag, td_cmd; 1720 u16 i = tx_ring->next_to_use; 1721 unsigned int data_len, size; 1722 struct ice_tx_desc *tx_desc; 1723 struct ice_tx_buf *tx_buf; 1724 struct sk_buff *skb; 1725 skb_frag_t *frag; 1726 dma_addr_t dma; 1727 1728 td_tag = off->td_l2tag1; 1729 td_cmd = off->td_cmd; 1730 td_offset = off->td_offset; 1731 skb = first->skb; 1732 1733 data_len = skb->data_len; 1734 size = skb_headlen(skb); 1735 1736 tx_desc = ICE_TX_DESC(tx_ring, i); 1737 1738 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1739 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1740 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1741 ICE_TX_FLAGS_VLAN_S; 1742 } 1743 1744 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1745 1746 tx_buf = first; 1747 1748 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1749 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1750 1751 if (dma_mapping_error(tx_ring->dev, dma)) 1752 goto dma_error; 1753 1754 /* record length, and DMA address */ 1755 dma_unmap_len_set(tx_buf, len, size); 1756 dma_unmap_addr_set(tx_buf, dma, dma); 1757 1758 /* align size to end of page */ 1759 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1760 tx_desc->buf_addr = cpu_to_le64(dma); 1761 1762 /* account for data chunks larger than the hardware 1763 * can handle 1764 */ 1765 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1766 tx_desc->cmd_type_offset_bsz = 1767 ice_build_ctob(td_cmd, td_offset, max_data, 1768 td_tag); 1769 1770 tx_desc++; 1771 i++; 1772 1773 if (i == tx_ring->count) { 1774 tx_desc = ICE_TX_DESC(tx_ring, 0); 1775 i = 0; 1776 } 1777 1778 dma += max_data; 1779 size -= max_data; 1780 1781 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1782 tx_desc->buf_addr = cpu_to_le64(dma); 1783 } 1784 1785 if (likely(!data_len)) 1786 break; 1787 1788 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1789 size, td_tag); 1790 1791 tx_desc++; 1792 i++; 1793 1794 if (i == tx_ring->count) { 1795 tx_desc = ICE_TX_DESC(tx_ring, 0); 1796 i = 0; 1797 } 1798 1799 size = skb_frag_size(frag); 1800 data_len -= size; 1801 1802 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1803 DMA_TO_DEVICE); 1804 1805 tx_buf = &tx_ring->tx_buf[i]; 1806 } 1807 1808 /* record bytecount for BQL */ 1809 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1810 1811 /* record SW timestamp if HW timestamp is not available */ 1812 skb_tx_timestamp(first->skb); 1813 1814 i++; 1815 if (i == tx_ring->count) 1816 i = 0; 1817 1818 /* write last descriptor with RS and EOP bits */ 1819 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1820 tx_desc->cmd_type_offset_bsz = 1821 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1822 1823 /* Force memory writes to complete before letting h/w know there 1824 * are new descriptors to fetch. 1825 * 1826 * We also use this memory barrier to make certain all of the 1827 * status bits have been updated before next_to_watch is written. 1828 */ 1829 wmb(); 1830 1831 /* set next_to_watch value indicating a packet is present */ 1832 first->next_to_watch = tx_desc; 1833 1834 tx_ring->next_to_use = i; 1835 1836 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1837 1838 /* notify HW of packet */ 1839 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1840 writel(i, tx_ring->tail); 1841 1842 return; 1843 1844 dma_error: 1845 /* clear DMA mappings for failed tx_buf map */ 1846 for (;;) { 1847 tx_buf = &tx_ring->tx_buf[i]; 1848 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1849 if (tx_buf == first) 1850 break; 1851 if (i == 0) 1852 i = tx_ring->count; 1853 i--; 1854 } 1855 1856 tx_ring->next_to_use = i; 1857 } 1858 1859 /** 1860 * ice_tx_csum - Enable Tx checksum offloads 1861 * @first: pointer to the first descriptor 1862 * @off: pointer to struct that holds offload parameters 1863 * 1864 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1865 */ 1866 static 1867 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1868 { 1869 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1870 struct sk_buff *skb = first->skb; 1871 union { 1872 struct iphdr *v4; 1873 struct ipv6hdr *v6; 1874 unsigned char *hdr; 1875 } ip; 1876 union { 1877 struct tcphdr *tcp; 1878 unsigned char *hdr; 1879 } l4; 1880 __be16 frag_off, protocol; 1881 unsigned char *exthdr; 1882 u32 offset, cmd = 0; 1883 u8 l4_proto = 0; 1884 1885 if (skb->ip_summed != CHECKSUM_PARTIAL) 1886 return 0; 1887 1888 ip.hdr = skb_network_header(skb); 1889 l4.hdr = skb_transport_header(skb); 1890 1891 /* compute outer L2 header size */ 1892 l2_len = ip.hdr - skb->data; 1893 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1894 1895 protocol = vlan_get_protocol(skb); 1896 1897 if (protocol == htons(ETH_P_IP)) 1898 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1899 else if (protocol == htons(ETH_P_IPV6)) 1900 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1901 1902 if (skb->encapsulation) { 1903 bool gso_ena = false; 1904 u32 tunnel = 0; 1905 1906 /* define outer network header type */ 1907 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1908 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1909 ICE_TX_CTX_EIPT_IPV4 : 1910 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1911 l4_proto = ip.v4->protocol; 1912 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1913 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1914 exthdr = ip.hdr + sizeof(*ip.v6); 1915 l4_proto = ip.v6->nexthdr; 1916 if (l4.hdr != exthdr) 1917 ipv6_skip_exthdr(skb, exthdr - skb->data, 1918 &l4_proto, &frag_off); 1919 } 1920 1921 /* define outer transport */ 1922 switch (l4_proto) { 1923 case IPPROTO_UDP: 1924 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1925 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1926 break; 1927 case IPPROTO_GRE: 1928 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1929 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1930 break; 1931 case IPPROTO_IPIP: 1932 case IPPROTO_IPV6: 1933 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1934 l4.hdr = skb_inner_network_header(skb); 1935 break; 1936 default: 1937 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1938 return -1; 1939 1940 skb_checksum_help(skb); 1941 return 0; 1942 } 1943 1944 /* compute outer L3 header size */ 1945 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1946 ICE_TXD_CTX_QW0_EIPLEN_S; 1947 1948 /* switch IP header pointer from outer to inner header */ 1949 ip.hdr = skb_inner_network_header(skb); 1950 1951 /* compute tunnel header size */ 1952 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1953 ICE_TXD_CTX_QW0_NATLEN_S; 1954 1955 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1956 /* indicate if we need to offload outer UDP header */ 1957 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1958 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1959 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1960 1961 /* record tunnel offload values */ 1962 off->cd_tunnel_params |= tunnel; 1963 1964 /* set DTYP=1 to indicate that it's an Tx context descriptor 1965 * in IPsec tunnel mode with Tx offloads in Quad word 1 1966 */ 1967 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1968 1969 /* switch L4 header pointer from outer to inner */ 1970 l4.hdr = skb_inner_transport_header(skb); 1971 l4_proto = 0; 1972 1973 /* reset type as we transition from outer to inner headers */ 1974 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1975 if (ip.v4->version == 4) 1976 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1977 if (ip.v6->version == 6) 1978 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1979 } 1980 1981 /* Enable IP checksum offloads */ 1982 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1983 l4_proto = ip.v4->protocol; 1984 /* the stack computes the IP header already, the only time we 1985 * need the hardware to recompute it is in the case of TSO. 1986 */ 1987 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1988 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1989 else 1990 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1991 1992 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1993 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1994 exthdr = ip.hdr + sizeof(*ip.v6); 1995 l4_proto = ip.v6->nexthdr; 1996 if (l4.hdr != exthdr) 1997 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1998 &frag_off); 1999 } else { 2000 return -1; 2001 } 2002 2003 /* compute inner L3 header size */ 2004 l3_len = l4.hdr - ip.hdr; 2005 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 2006 2007 /* Enable L4 checksum offloads */ 2008 switch (l4_proto) { 2009 case IPPROTO_TCP: 2010 /* enable checksum offloads */ 2011 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 2012 l4_len = l4.tcp->doff; 2013 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2014 break; 2015 case IPPROTO_UDP: 2016 /* enable UDP checksum offload */ 2017 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 2018 l4_len = (sizeof(struct udphdr) >> 2); 2019 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2020 break; 2021 case IPPROTO_SCTP: 2022 /* enable SCTP checksum offload */ 2023 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 2024 l4_len = sizeof(struct sctphdr) >> 2; 2025 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2026 break; 2027 2028 default: 2029 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2030 return -1; 2031 skb_checksum_help(skb); 2032 return 0; 2033 } 2034 2035 off->td_cmd |= cmd; 2036 off->td_offset |= offset; 2037 return 1; 2038 } 2039 2040 /** 2041 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 2042 * @tx_ring: ring to send buffer on 2043 * @first: pointer to struct ice_tx_buf 2044 * 2045 * Checks the skb and set up correspondingly several generic transmit flags 2046 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2047 */ 2048 static void 2049 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 2050 { 2051 struct sk_buff *skb = first->skb; 2052 2053 /* nothing left to do, software offloaded VLAN */ 2054 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 2055 return; 2056 2057 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 2058 * insertion for 802.1AD is not supported 2059 */ 2060 if (skb_vlan_tag_present(skb)) { 2061 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 2062 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2063 } 2064 2065 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2066 } 2067 2068 /** 2069 * ice_tso - computes mss and TSO length to prepare for TSO 2070 * @first: pointer to struct ice_tx_buf 2071 * @off: pointer to struct that holds offload parameters 2072 * 2073 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2074 */ 2075 static 2076 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2077 { 2078 struct sk_buff *skb = first->skb; 2079 union { 2080 struct iphdr *v4; 2081 struct ipv6hdr *v6; 2082 unsigned char *hdr; 2083 } ip; 2084 union { 2085 struct tcphdr *tcp; 2086 struct udphdr *udp; 2087 unsigned char *hdr; 2088 } l4; 2089 u64 cd_mss, cd_tso_len; 2090 u32 paylen; 2091 u8 l4_start; 2092 int err; 2093 2094 if (skb->ip_summed != CHECKSUM_PARTIAL) 2095 return 0; 2096 2097 if (!skb_is_gso(skb)) 2098 return 0; 2099 2100 err = skb_cow_head(skb, 0); 2101 if (err < 0) 2102 return err; 2103 2104 /* cppcheck-suppress unreadVariable */ 2105 ip.hdr = skb_network_header(skb); 2106 l4.hdr = skb_transport_header(skb); 2107 2108 /* initialize outer IP header fields */ 2109 if (ip.v4->version == 4) { 2110 ip.v4->tot_len = 0; 2111 ip.v4->check = 0; 2112 } else { 2113 ip.v6->payload_len = 0; 2114 } 2115 2116 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2117 SKB_GSO_GRE_CSUM | 2118 SKB_GSO_IPXIP4 | 2119 SKB_GSO_IPXIP6 | 2120 SKB_GSO_UDP_TUNNEL | 2121 SKB_GSO_UDP_TUNNEL_CSUM)) { 2122 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2123 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2124 l4.udp->len = 0; 2125 2126 /* determine offset of outer transport header */ 2127 l4_start = (u8)(l4.hdr - skb->data); 2128 2129 /* remove payload length from outer checksum */ 2130 paylen = skb->len - l4_start; 2131 csum_replace_by_diff(&l4.udp->check, 2132 (__force __wsum)htonl(paylen)); 2133 } 2134 2135 /* reset pointers to inner headers */ 2136 2137 /* cppcheck-suppress unreadVariable */ 2138 ip.hdr = skb_inner_network_header(skb); 2139 l4.hdr = skb_inner_transport_header(skb); 2140 2141 /* initialize inner IP header fields */ 2142 if (ip.v4->version == 4) { 2143 ip.v4->tot_len = 0; 2144 ip.v4->check = 0; 2145 } else { 2146 ip.v6->payload_len = 0; 2147 } 2148 } 2149 2150 /* determine offset of transport header */ 2151 l4_start = (u8)(l4.hdr - skb->data); 2152 2153 /* remove payload length from checksum */ 2154 paylen = skb->len - l4_start; 2155 2156 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2157 csum_replace_by_diff(&l4.udp->check, 2158 (__force __wsum)htonl(paylen)); 2159 /* compute length of UDP segmentation header */ 2160 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2161 } else { 2162 csum_replace_by_diff(&l4.tcp->check, 2163 (__force __wsum)htonl(paylen)); 2164 /* compute length of TCP segmentation header */ 2165 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2166 } 2167 2168 /* update gso_segs and bytecount */ 2169 first->gso_segs = skb_shinfo(skb)->gso_segs; 2170 first->bytecount += (first->gso_segs - 1) * off->header_len; 2171 2172 cd_tso_len = skb->len - off->header_len; 2173 cd_mss = skb_shinfo(skb)->gso_size; 2174 2175 /* record cdesc_qw1 with TSO parameters */ 2176 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2177 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2178 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2179 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2180 first->tx_flags |= ICE_TX_FLAGS_TSO; 2181 return 1; 2182 } 2183 2184 /** 2185 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2186 * @size: transmit request size in bytes 2187 * 2188 * Due to hardware alignment restrictions (4K alignment), we need to 2189 * assume that we can have no more than 12K of data per descriptor, even 2190 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2191 * Thus, we need to divide by 12K. But division is slow! Instead, 2192 * we decompose the operation into shifts and one relatively cheap 2193 * multiply operation. 2194 * 2195 * To divide by 12K, we first divide by 4K, then divide by 3: 2196 * To divide by 4K, shift right by 12 bits 2197 * To divide by 3, multiply by 85, then divide by 256 2198 * (Divide by 256 is done by shifting right by 8 bits) 2199 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2200 * 3, we'll underestimate near each multiple of 12K. This is actually more 2201 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2202 * segment. For our purposes this is accurate out to 1M which is orders of 2203 * magnitude greater than our largest possible GSO size. 2204 * 2205 * This would then be implemented as: 2206 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2207 * 2208 * Since multiplication and division are commutative, we can reorder 2209 * operations into: 2210 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2211 */ 2212 static unsigned int ice_txd_use_count(unsigned int size) 2213 { 2214 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2215 } 2216 2217 /** 2218 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2219 * @skb: send buffer 2220 * 2221 * Returns number of data descriptors needed for this skb. 2222 */ 2223 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2224 { 2225 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2226 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2227 unsigned int count = 0, size = skb_headlen(skb); 2228 2229 for (;;) { 2230 count += ice_txd_use_count(size); 2231 2232 if (!nr_frags--) 2233 break; 2234 2235 size = skb_frag_size(frag++); 2236 } 2237 2238 return count; 2239 } 2240 2241 /** 2242 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2243 * @skb: send buffer 2244 * 2245 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2246 * and so we need to figure out the cases where we need to linearize the skb. 2247 * 2248 * For TSO we need to count the TSO header and segment payload separately. 2249 * As such we need to check cases where we have 7 fragments or more as we 2250 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2251 * the segment payload in the first descriptor, and another 7 for the 2252 * fragments. 2253 */ 2254 static bool __ice_chk_linearize(struct sk_buff *skb) 2255 { 2256 const skb_frag_t *frag, *stale; 2257 int nr_frags, sum; 2258 2259 /* no need to check if number of frags is less than 7 */ 2260 nr_frags = skb_shinfo(skb)->nr_frags; 2261 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2262 return false; 2263 2264 /* We need to walk through the list and validate that each group 2265 * of 6 fragments totals at least gso_size. 2266 */ 2267 nr_frags -= ICE_MAX_BUF_TXD - 2; 2268 frag = &skb_shinfo(skb)->frags[0]; 2269 2270 /* Initialize size to the negative value of gso_size minus 1. We 2271 * use this as the worst case scenario in which the frag ahead 2272 * of us only provides one byte which is why we are limited to 6 2273 * descriptors for a single transmit as the header and previous 2274 * fragment are already consuming 2 descriptors. 2275 */ 2276 sum = 1 - skb_shinfo(skb)->gso_size; 2277 2278 /* Add size of frags 0 through 4 to create our initial sum */ 2279 sum += skb_frag_size(frag++); 2280 sum += skb_frag_size(frag++); 2281 sum += skb_frag_size(frag++); 2282 sum += skb_frag_size(frag++); 2283 sum += skb_frag_size(frag++); 2284 2285 /* Walk through fragments adding latest fragment, testing it, and 2286 * then removing stale fragments from the sum. 2287 */ 2288 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2289 int stale_size = skb_frag_size(stale); 2290 2291 sum += skb_frag_size(frag++); 2292 2293 /* The stale fragment may present us with a smaller 2294 * descriptor than the actual fragment size. To account 2295 * for that we need to remove all the data on the front and 2296 * figure out what the remainder would be in the last 2297 * descriptor associated with the fragment. 2298 */ 2299 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2300 int align_pad = -(skb_frag_off(stale)) & 2301 (ICE_MAX_READ_REQ_SIZE - 1); 2302 2303 sum -= align_pad; 2304 stale_size -= align_pad; 2305 2306 do { 2307 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2308 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2309 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2310 } 2311 2312 /* if sum is negative we failed to make sufficient progress */ 2313 if (sum < 0) 2314 return true; 2315 2316 if (!nr_frags--) 2317 break; 2318 2319 sum -= stale_size; 2320 } 2321 2322 return false; 2323 } 2324 2325 /** 2326 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2327 * @skb: send buffer 2328 * @count: number of buffers used 2329 * 2330 * Note: Our HW can't scatter-gather more than 8 fragments to build 2331 * a packet on the wire and so we need to figure out the cases where we 2332 * need to linearize the skb. 2333 */ 2334 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2335 { 2336 /* Both TSO and single send will work if count is less than 8 */ 2337 if (likely(count < ICE_MAX_BUF_TXD)) 2338 return false; 2339 2340 if (skb_is_gso(skb)) 2341 return __ice_chk_linearize(skb); 2342 2343 /* we can support up to 8 data buffers for a single send */ 2344 return count != ICE_MAX_BUF_TXD; 2345 } 2346 2347 /** 2348 * ice_xmit_frame_ring - Sends buffer on Tx ring 2349 * @skb: send buffer 2350 * @tx_ring: ring to send buffer on 2351 * 2352 * Returns NETDEV_TX_OK if sent, else an error code 2353 */ 2354 static netdev_tx_t 2355 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2356 { 2357 struct ice_tx_offload_params offload = { 0 }; 2358 struct ice_vsi *vsi = tx_ring->vsi; 2359 struct ice_tx_buf *first; 2360 unsigned int count; 2361 int tso, csum; 2362 2363 count = ice_xmit_desc_count(skb); 2364 if (ice_chk_linearize(skb, count)) { 2365 if (__skb_linearize(skb)) 2366 goto out_drop; 2367 count = ice_txd_use_count(skb->len); 2368 tx_ring->tx_stats.tx_linearize++; 2369 } 2370 2371 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2372 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2373 * + 4 desc gap to avoid the cache line where head is, 2374 * + 1 desc for context descriptor, 2375 * otherwise try next time 2376 */ 2377 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2378 ICE_DESCS_FOR_CTX_DESC)) { 2379 tx_ring->tx_stats.tx_busy++; 2380 return NETDEV_TX_BUSY; 2381 } 2382 2383 offload.tx_ring = tx_ring; 2384 2385 /* record the location of the first descriptor for this packet */ 2386 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2387 first->skb = skb; 2388 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2389 first->gso_segs = 1; 2390 first->tx_flags = 0; 2391 2392 /* prepare the VLAN tagging flags for Tx */ 2393 ice_tx_prepare_vlan_flags(tx_ring, first); 2394 2395 /* set up TSO offload */ 2396 tso = ice_tso(first, &offload); 2397 if (tso < 0) 2398 goto out_drop; 2399 2400 /* always set up Tx checksum offload */ 2401 csum = ice_tx_csum(first, &offload); 2402 if (csum < 0) 2403 goto out_drop; 2404 2405 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2406 if (unlikely(skb->priority == TC_PRIO_CONTROL && 2407 vsi->type == ICE_VSI_PF && 2408 vsi->port_info->is_sw_lldp)) 2409 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2410 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2411 ICE_TXD_CTX_QW1_CMD_S); 2412 2413 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2414 struct ice_tx_ctx_desc *cdesc; 2415 u16 i = tx_ring->next_to_use; 2416 2417 /* grab the next descriptor */ 2418 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2419 i++; 2420 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2421 2422 /* setup context descriptor */ 2423 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2424 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2425 cdesc->rsvd = cpu_to_le16(0); 2426 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2427 } 2428 2429 ice_tx_map(tx_ring, first, &offload); 2430 return NETDEV_TX_OK; 2431 2432 out_drop: 2433 dev_kfree_skb_any(skb); 2434 return NETDEV_TX_OK; 2435 } 2436 2437 /** 2438 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2439 * @skb: send buffer 2440 * @netdev: network interface device structure 2441 * 2442 * Returns NETDEV_TX_OK if sent, else an error code 2443 */ 2444 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2445 { 2446 struct ice_netdev_priv *np = netdev_priv(netdev); 2447 struct ice_vsi *vsi = np->vsi; 2448 struct ice_ring *tx_ring; 2449 2450 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2451 2452 /* hardware can't handle really short frames, hardware padding works 2453 * beyond this point 2454 */ 2455 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2456 return NETDEV_TX_OK; 2457 2458 return ice_xmit_frame_ring(skb, tx_ring); 2459 } 2460 2461 /** 2462 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2463 * @tx_ring: tx_ring to clean 2464 */ 2465 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) 2466 { 2467 struct ice_vsi *vsi = tx_ring->vsi; 2468 s16 i = tx_ring->next_to_clean; 2469 int budget = ICE_DFLT_IRQ_WORK; 2470 struct ice_tx_desc *tx_desc; 2471 struct ice_tx_buf *tx_buf; 2472 2473 tx_buf = &tx_ring->tx_buf[i]; 2474 tx_desc = ICE_TX_DESC(tx_ring, i); 2475 i -= tx_ring->count; 2476 2477 do { 2478 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2479 2480 /* if next_to_watch is not set then there is no pending work */ 2481 if (!eop_desc) 2482 break; 2483 2484 /* prevent any other reads prior to eop_desc */ 2485 smp_rmb(); 2486 2487 /* if the descriptor isn't done, no work to do */ 2488 if (!(eop_desc->cmd_type_offset_bsz & 2489 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2490 break; 2491 2492 /* clear next_to_watch to prevent false hangs */ 2493 tx_buf->next_to_watch = NULL; 2494 tx_desc->buf_addr = 0; 2495 tx_desc->cmd_type_offset_bsz = 0; 2496 2497 /* move past filter desc */ 2498 tx_buf++; 2499 tx_desc++; 2500 i++; 2501 if (unlikely(!i)) { 2502 i -= tx_ring->count; 2503 tx_buf = tx_ring->tx_buf; 2504 tx_desc = ICE_TX_DESC(tx_ring, 0); 2505 } 2506 2507 /* unmap the data header */ 2508 if (dma_unmap_len(tx_buf, len)) 2509 dma_unmap_single(tx_ring->dev, 2510 dma_unmap_addr(tx_buf, dma), 2511 dma_unmap_len(tx_buf, len), 2512 DMA_TO_DEVICE); 2513 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2514 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2515 2516 /* clear next_to_watch to prevent false hangs */ 2517 tx_buf->raw_buf = NULL; 2518 tx_buf->tx_flags = 0; 2519 tx_buf->next_to_watch = NULL; 2520 dma_unmap_len_set(tx_buf, len, 0); 2521 tx_desc->buf_addr = 0; 2522 tx_desc->cmd_type_offset_bsz = 0; 2523 2524 /* move past eop_desc for start of next FD desc */ 2525 tx_buf++; 2526 tx_desc++; 2527 i++; 2528 if (unlikely(!i)) { 2529 i -= tx_ring->count; 2530 tx_buf = tx_ring->tx_buf; 2531 tx_desc = ICE_TX_DESC(tx_ring, 0); 2532 } 2533 2534 budget--; 2535 } while (likely(budget)); 2536 2537 i += tx_ring->count; 2538 tx_ring->next_to_clean = i; 2539 2540 /* re-enable interrupt if needed */ 2541 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2542 } 2543