1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 
7 #define ICE_ETH_DA_OFFSET		0
8 #define ICE_ETH_ETHTYPE_OFFSET		12
9 #define ICE_ETH_VLAN_TCI_OFFSET		14
10 #define ICE_MAX_VLAN_ID			0xFFF
11 #define ICE_IPV6_ETHER_ID		0x86DD
12 
13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14  * struct to configure any switch filter rules.
15  * {DA (6 bytes), SA(6 bytes),
16  * Ether type (2 bytes for header without VLAN tag) OR
17  * VLAN tag (4 bytes for header with VLAN tag) }
18  *
19  * Word on Hardcoded values
20  * byte 0 = 0x2: to identify it as locally administered DA MAC
21  * byte 6 = 0x2: to identify it as locally administered SA MAC
22  * byte 12 = 0x81 & byte 13 = 0x00:
23  *	In case of VLAN filter first two bytes defines ether type (0x8100)
24  *	and remaining two bytes are placeholder for programming a given VLAN ID
25  *	In case of Ether type filter it is treated as header without VLAN tag
26  *	and byte 12 and 13 is used to program a given Ether type instead
27  */
28 #define DUMMY_ETH_HDR_LEN		16
29 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
30 							0x2, 0, 0, 0, 0, 0,
31 							0x81, 0, 0, 0};
32 
33 enum {
34 	ICE_PKT_OUTER_IPV6	= BIT(0),
35 	ICE_PKT_TUN_GTPC	= BIT(1),
36 	ICE_PKT_TUN_GTPU	= BIT(2),
37 	ICE_PKT_TUN_NVGRE	= BIT(3),
38 	ICE_PKT_TUN_UDP		= BIT(4),
39 	ICE_PKT_INNER_IPV6	= BIT(5),
40 	ICE_PKT_INNER_TCP	= BIT(6),
41 	ICE_PKT_INNER_UDP	= BIT(7),
42 	ICE_PKT_GTP_NOPAY	= BIT(8),
43 	ICE_PKT_KMALLOC		= BIT(9),
44 	ICE_PKT_PPPOE		= BIT(10),
45 };
46 
47 struct ice_dummy_pkt_offsets {
48 	enum ice_protocol_type type;
49 	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50 };
51 
52 struct ice_dummy_pkt_profile {
53 	const struct ice_dummy_pkt_offsets *offsets;
54 	const u8 *pkt;
55 	u32 match;
56 	u16 pkt_len;
57 	u16 offsets_len;
58 };
59 
60 #define ICE_DECLARE_PKT_OFFSETS(type)					\
61 	static const struct ice_dummy_pkt_offsets			\
62 	ice_dummy_##type##_packet_offsets[]
63 
64 #define ICE_DECLARE_PKT_TEMPLATE(type)					\
65 	static const u8 ice_dummy_##type##_packet[]
66 
67 #define ICE_PKT_PROFILE(type, m) {					\
68 	.match		= (m),						\
69 	.pkt		= ice_dummy_##type##_packet,			\
70 	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
71 	.offsets	= ice_dummy_##type##_packet_offsets,		\
72 	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
73 }
74 
75 ICE_DECLARE_PKT_OFFSETS(vlan) = {
76 	{ ICE_VLAN_OFOS,        12 },
77 };
78 
79 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81 };
82 
83 ICE_DECLARE_PKT_OFFSETS(qinq) = {
84 	{ ICE_VLAN_EX,          12 },
85 	{ ICE_VLAN_IN,          16 },
86 };
87 
88 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89 	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91 };
92 
93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94 	{ ICE_MAC_OFOS,		0 },
95 	{ ICE_ETYPE_OL,		12 },
96 	{ ICE_IPV4_OFOS,	14 },
97 	{ ICE_NVGRE,		34 },
98 	{ ICE_MAC_IL,		42 },
99 	{ ICE_ETYPE_IL,		54 },
100 	{ ICE_IPV4_IL,		56 },
101 	{ ICE_TCP_IL,		76 },
102 	{ ICE_PROTOCOL_LAST,	0 },
103 };
104 
105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
107 	0x00, 0x00, 0x00, 0x00,
108 	0x00, 0x00, 0x00, 0x00,
109 
110 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
111 
112 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
113 	0x00, 0x00, 0x00, 0x00,
114 	0x00, 0x2F, 0x00, 0x00,
115 	0x00, 0x00, 0x00, 0x00,
116 	0x00, 0x00, 0x00, 0x00,
117 
118 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
119 	0x00, 0x00, 0x00, 0x00,
120 
121 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
122 	0x00, 0x00, 0x00, 0x00,
123 	0x00, 0x00, 0x00, 0x00,
124 
125 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
126 
127 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
128 	0x00, 0x00, 0x00, 0x00,
129 	0x00, 0x06, 0x00, 0x00,
130 	0x00, 0x00, 0x00, 0x00,
131 	0x00, 0x00, 0x00, 0x00,
132 
133 	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
134 	0x00, 0x00, 0x00, 0x00,
135 	0x00, 0x00, 0x00, 0x00,
136 	0x50, 0x02, 0x20, 0x00,
137 	0x00, 0x00, 0x00, 0x00
138 };
139 
140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141 	{ ICE_MAC_OFOS,		0 },
142 	{ ICE_ETYPE_OL,		12 },
143 	{ ICE_IPV4_OFOS,	14 },
144 	{ ICE_NVGRE,		34 },
145 	{ ICE_MAC_IL,		42 },
146 	{ ICE_ETYPE_IL,		54 },
147 	{ ICE_IPV4_IL,		56 },
148 	{ ICE_UDP_ILOS,		76 },
149 	{ ICE_PROTOCOL_LAST,	0 },
150 };
151 
152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
154 	0x00, 0x00, 0x00, 0x00,
155 	0x00, 0x00, 0x00, 0x00,
156 
157 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
158 
159 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
160 	0x00, 0x00, 0x00, 0x00,
161 	0x00, 0x2F, 0x00, 0x00,
162 	0x00, 0x00, 0x00, 0x00,
163 	0x00, 0x00, 0x00, 0x00,
164 
165 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
166 	0x00, 0x00, 0x00, 0x00,
167 
168 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
169 	0x00, 0x00, 0x00, 0x00,
170 	0x00, 0x00, 0x00, 0x00,
171 
172 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
173 
174 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
175 	0x00, 0x00, 0x00, 0x00,
176 	0x00, 0x11, 0x00, 0x00,
177 	0x00, 0x00, 0x00, 0x00,
178 	0x00, 0x00, 0x00, 0x00,
179 
180 	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
181 	0x00, 0x08, 0x00, 0x00,
182 };
183 
184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185 	{ ICE_MAC_OFOS,		0 },
186 	{ ICE_ETYPE_OL,		12 },
187 	{ ICE_IPV4_OFOS,	14 },
188 	{ ICE_UDP_OF,		34 },
189 	{ ICE_VXLAN,		42 },
190 	{ ICE_GENEVE,		42 },
191 	{ ICE_VXLAN_GPE,	42 },
192 	{ ICE_MAC_IL,		50 },
193 	{ ICE_ETYPE_IL,		62 },
194 	{ ICE_IPV4_IL,		64 },
195 	{ ICE_TCP_IL,		84 },
196 	{ ICE_PROTOCOL_LAST,	0 },
197 };
198 
199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
201 	0x00, 0x00, 0x00, 0x00,
202 	0x00, 0x00, 0x00, 0x00,
203 
204 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
205 
206 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207 	0x00, 0x01, 0x00, 0x00,
208 	0x40, 0x11, 0x00, 0x00,
209 	0x00, 0x00, 0x00, 0x00,
210 	0x00, 0x00, 0x00, 0x00,
211 
212 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213 	0x00, 0x46, 0x00, 0x00,
214 
215 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216 	0x00, 0x00, 0x00, 0x00,
217 
218 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219 	0x00, 0x00, 0x00, 0x00,
220 	0x00, 0x00, 0x00, 0x00,
221 
222 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
223 
224 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225 	0x00, 0x01, 0x00, 0x00,
226 	0x40, 0x06, 0x00, 0x00,
227 	0x00, 0x00, 0x00, 0x00,
228 	0x00, 0x00, 0x00, 0x00,
229 
230 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231 	0x00, 0x00, 0x00, 0x00,
232 	0x00, 0x00, 0x00, 0x00,
233 	0x50, 0x02, 0x20, 0x00,
234 	0x00, 0x00, 0x00, 0x00
235 };
236 
237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238 	{ ICE_MAC_OFOS,		0 },
239 	{ ICE_ETYPE_OL,		12 },
240 	{ ICE_IPV4_OFOS,	14 },
241 	{ ICE_UDP_OF,		34 },
242 	{ ICE_VXLAN,		42 },
243 	{ ICE_GENEVE,		42 },
244 	{ ICE_VXLAN_GPE,	42 },
245 	{ ICE_MAC_IL,		50 },
246 	{ ICE_ETYPE_IL,		62 },
247 	{ ICE_IPV4_IL,		64 },
248 	{ ICE_UDP_ILOS,		84 },
249 	{ ICE_PROTOCOL_LAST,	0 },
250 };
251 
252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
254 	0x00, 0x00, 0x00, 0x00,
255 	0x00, 0x00, 0x00, 0x00,
256 
257 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
258 
259 	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260 	0x00, 0x01, 0x00, 0x00,
261 	0x00, 0x11, 0x00, 0x00,
262 	0x00, 0x00, 0x00, 0x00,
263 	0x00, 0x00, 0x00, 0x00,
264 
265 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266 	0x00, 0x3a, 0x00, 0x00,
267 
268 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269 	0x00, 0x00, 0x00, 0x00,
270 
271 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272 	0x00, 0x00, 0x00, 0x00,
273 	0x00, 0x00, 0x00, 0x00,
274 
275 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
276 
277 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278 	0x00, 0x01, 0x00, 0x00,
279 	0x00, 0x11, 0x00, 0x00,
280 	0x00, 0x00, 0x00, 0x00,
281 	0x00, 0x00, 0x00, 0x00,
282 
283 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284 	0x00, 0x08, 0x00, 0x00,
285 };
286 
287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288 	{ ICE_MAC_OFOS,		0 },
289 	{ ICE_ETYPE_OL,		12 },
290 	{ ICE_IPV4_OFOS,	14 },
291 	{ ICE_NVGRE,		34 },
292 	{ ICE_MAC_IL,		42 },
293 	{ ICE_ETYPE_IL,		54 },
294 	{ ICE_IPV6_IL,		56 },
295 	{ ICE_TCP_IL,		96 },
296 	{ ICE_PROTOCOL_LAST,	0 },
297 };
298 
299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301 	0x00, 0x00, 0x00, 0x00,
302 	0x00, 0x00, 0x00, 0x00,
303 
304 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
305 
306 	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307 	0x00, 0x00, 0x00, 0x00,
308 	0x00, 0x2F, 0x00, 0x00,
309 	0x00, 0x00, 0x00, 0x00,
310 	0x00, 0x00, 0x00, 0x00,
311 
312 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313 	0x00, 0x00, 0x00, 0x00,
314 
315 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316 	0x00, 0x00, 0x00, 0x00,
317 	0x00, 0x00, 0x00, 0x00,
318 
319 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
320 
321 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322 	0x00, 0x08, 0x06, 0x40,
323 	0x00, 0x00, 0x00, 0x00,
324 	0x00, 0x00, 0x00, 0x00,
325 	0x00, 0x00, 0x00, 0x00,
326 	0x00, 0x00, 0x00, 0x00,
327 	0x00, 0x00, 0x00, 0x00,
328 	0x00, 0x00, 0x00, 0x00,
329 	0x00, 0x00, 0x00, 0x00,
330 	0x00, 0x00, 0x00, 0x00,
331 
332 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333 	0x00, 0x00, 0x00, 0x00,
334 	0x00, 0x00, 0x00, 0x00,
335 	0x50, 0x02, 0x20, 0x00,
336 	0x00, 0x00, 0x00, 0x00
337 };
338 
339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340 	{ ICE_MAC_OFOS,		0 },
341 	{ ICE_ETYPE_OL,		12 },
342 	{ ICE_IPV4_OFOS,	14 },
343 	{ ICE_NVGRE,		34 },
344 	{ ICE_MAC_IL,		42 },
345 	{ ICE_ETYPE_IL,		54 },
346 	{ ICE_IPV6_IL,		56 },
347 	{ ICE_UDP_ILOS,		96 },
348 	{ ICE_PROTOCOL_LAST,	0 },
349 };
350 
351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353 	0x00, 0x00, 0x00, 0x00,
354 	0x00, 0x00, 0x00, 0x00,
355 
356 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
357 
358 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359 	0x00, 0x00, 0x00, 0x00,
360 	0x00, 0x2F, 0x00, 0x00,
361 	0x00, 0x00, 0x00, 0x00,
362 	0x00, 0x00, 0x00, 0x00,
363 
364 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365 	0x00, 0x00, 0x00, 0x00,
366 
367 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368 	0x00, 0x00, 0x00, 0x00,
369 	0x00, 0x00, 0x00, 0x00,
370 
371 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
372 
373 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374 	0x00, 0x08, 0x11, 0x40,
375 	0x00, 0x00, 0x00, 0x00,
376 	0x00, 0x00, 0x00, 0x00,
377 	0x00, 0x00, 0x00, 0x00,
378 	0x00, 0x00, 0x00, 0x00,
379 	0x00, 0x00, 0x00, 0x00,
380 	0x00, 0x00, 0x00, 0x00,
381 	0x00, 0x00, 0x00, 0x00,
382 	0x00, 0x00, 0x00, 0x00,
383 
384 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385 	0x00, 0x08, 0x00, 0x00,
386 };
387 
388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389 	{ ICE_MAC_OFOS,		0 },
390 	{ ICE_ETYPE_OL,		12 },
391 	{ ICE_IPV4_OFOS,	14 },
392 	{ ICE_UDP_OF,		34 },
393 	{ ICE_VXLAN,		42 },
394 	{ ICE_GENEVE,		42 },
395 	{ ICE_VXLAN_GPE,	42 },
396 	{ ICE_MAC_IL,		50 },
397 	{ ICE_ETYPE_IL,		62 },
398 	{ ICE_IPV6_IL,		64 },
399 	{ ICE_TCP_IL,		104 },
400 	{ ICE_PROTOCOL_LAST,	0 },
401 };
402 
403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
405 	0x00, 0x00, 0x00, 0x00,
406 	0x00, 0x00, 0x00, 0x00,
407 
408 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
409 
410 	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411 	0x00, 0x01, 0x00, 0x00,
412 	0x40, 0x11, 0x00, 0x00,
413 	0x00, 0x00, 0x00, 0x00,
414 	0x00, 0x00, 0x00, 0x00,
415 
416 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417 	0x00, 0x5a, 0x00, 0x00,
418 
419 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420 	0x00, 0x00, 0x00, 0x00,
421 
422 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423 	0x00, 0x00, 0x00, 0x00,
424 	0x00, 0x00, 0x00, 0x00,
425 
426 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
427 
428 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429 	0x00, 0x08, 0x06, 0x40,
430 	0x00, 0x00, 0x00, 0x00,
431 	0x00, 0x00, 0x00, 0x00,
432 	0x00, 0x00, 0x00, 0x00,
433 	0x00, 0x00, 0x00, 0x00,
434 	0x00, 0x00, 0x00, 0x00,
435 	0x00, 0x00, 0x00, 0x00,
436 	0x00, 0x00, 0x00, 0x00,
437 	0x00, 0x00, 0x00, 0x00,
438 
439 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440 	0x00, 0x00, 0x00, 0x00,
441 	0x00, 0x00, 0x00, 0x00,
442 	0x50, 0x02, 0x20, 0x00,
443 	0x00, 0x00, 0x00, 0x00
444 };
445 
446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447 	{ ICE_MAC_OFOS,		0 },
448 	{ ICE_ETYPE_OL,		12 },
449 	{ ICE_IPV4_OFOS,	14 },
450 	{ ICE_UDP_OF,		34 },
451 	{ ICE_VXLAN,		42 },
452 	{ ICE_GENEVE,		42 },
453 	{ ICE_VXLAN_GPE,	42 },
454 	{ ICE_MAC_IL,		50 },
455 	{ ICE_ETYPE_IL,		62 },
456 	{ ICE_IPV6_IL,		64 },
457 	{ ICE_UDP_ILOS,		104 },
458 	{ ICE_PROTOCOL_LAST,	0 },
459 };
460 
461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
463 	0x00, 0x00, 0x00, 0x00,
464 	0x00, 0x00, 0x00, 0x00,
465 
466 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
467 
468 	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469 	0x00, 0x01, 0x00, 0x00,
470 	0x00, 0x11, 0x00, 0x00,
471 	0x00, 0x00, 0x00, 0x00,
472 	0x00, 0x00, 0x00, 0x00,
473 
474 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475 	0x00, 0x4e, 0x00, 0x00,
476 
477 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478 	0x00, 0x00, 0x00, 0x00,
479 
480 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481 	0x00, 0x00, 0x00, 0x00,
482 	0x00, 0x00, 0x00, 0x00,
483 
484 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
485 
486 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487 	0x00, 0x08, 0x11, 0x40,
488 	0x00, 0x00, 0x00, 0x00,
489 	0x00, 0x00, 0x00, 0x00,
490 	0x00, 0x00, 0x00, 0x00,
491 	0x00, 0x00, 0x00, 0x00,
492 	0x00, 0x00, 0x00, 0x00,
493 	0x00, 0x00, 0x00, 0x00,
494 	0x00, 0x00, 0x00, 0x00,
495 	0x00, 0x00, 0x00, 0x00,
496 
497 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498 	0x00, 0x08, 0x00, 0x00,
499 };
500 
501 /* offset info for MAC + IPv4 + UDP dummy packet */
502 ICE_DECLARE_PKT_OFFSETS(udp) = {
503 	{ ICE_MAC_OFOS,		0 },
504 	{ ICE_ETYPE_OL,		12 },
505 	{ ICE_IPV4_OFOS,	14 },
506 	{ ICE_UDP_ILOS,		34 },
507 	{ ICE_PROTOCOL_LAST,	0 },
508 };
509 
510 /* Dummy packet for MAC + IPv4 + UDP */
511 ICE_DECLARE_PKT_TEMPLATE(udp) = {
512 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513 	0x00, 0x00, 0x00, 0x00,
514 	0x00, 0x00, 0x00, 0x00,
515 
516 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
517 
518 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519 	0x00, 0x01, 0x00, 0x00,
520 	0x00, 0x11, 0x00, 0x00,
521 	0x00, 0x00, 0x00, 0x00,
522 	0x00, 0x00, 0x00, 0x00,
523 
524 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525 	0x00, 0x08, 0x00, 0x00,
526 
527 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
528 };
529 
530 /* offset info for MAC + IPv4 + TCP dummy packet */
531 ICE_DECLARE_PKT_OFFSETS(tcp) = {
532 	{ ICE_MAC_OFOS,		0 },
533 	{ ICE_ETYPE_OL,		12 },
534 	{ ICE_IPV4_OFOS,	14 },
535 	{ ICE_TCP_IL,		34 },
536 	{ ICE_PROTOCOL_LAST,	0 },
537 };
538 
539 /* Dummy packet for MAC + IPv4 + TCP */
540 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542 	0x00, 0x00, 0x00, 0x00,
543 	0x00, 0x00, 0x00, 0x00,
544 
545 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
546 
547 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548 	0x00, 0x01, 0x00, 0x00,
549 	0x00, 0x06, 0x00, 0x00,
550 	0x00, 0x00, 0x00, 0x00,
551 	0x00, 0x00, 0x00, 0x00,
552 
553 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554 	0x00, 0x00, 0x00, 0x00,
555 	0x00, 0x00, 0x00, 0x00,
556 	0x50, 0x00, 0x00, 0x00,
557 	0x00, 0x00, 0x00, 0x00,
558 
559 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
560 };
561 
562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563 	{ ICE_MAC_OFOS,		0 },
564 	{ ICE_ETYPE_OL,		12 },
565 	{ ICE_IPV6_OFOS,	14 },
566 	{ ICE_TCP_IL,		54 },
567 	{ ICE_PROTOCOL_LAST,	0 },
568 };
569 
570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572 	0x00, 0x00, 0x00, 0x00,
573 	0x00, 0x00, 0x00, 0x00,
574 
575 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
576 
577 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579 	0x00, 0x00, 0x00, 0x00,
580 	0x00, 0x00, 0x00, 0x00,
581 	0x00, 0x00, 0x00, 0x00,
582 	0x00, 0x00, 0x00, 0x00,
583 	0x00, 0x00, 0x00, 0x00,
584 	0x00, 0x00, 0x00, 0x00,
585 	0x00, 0x00, 0x00, 0x00,
586 	0x00, 0x00, 0x00, 0x00,
587 
588 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589 	0x00, 0x00, 0x00, 0x00,
590 	0x00, 0x00, 0x00, 0x00,
591 	0x50, 0x00, 0x00, 0x00,
592 	0x00, 0x00, 0x00, 0x00,
593 
594 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
595 };
596 
597 /* IPv6 + UDP */
598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599 	{ ICE_MAC_OFOS,		0 },
600 	{ ICE_ETYPE_OL,		12 },
601 	{ ICE_IPV6_OFOS,	14 },
602 	{ ICE_UDP_ILOS,		54 },
603 	{ ICE_PROTOCOL_LAST,	0 },
604 };
605 
606 /* IPv6 + UDP dummy packet */
607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609 	0x00, 0x00, 0x00, 0x00,
610 	0x00, 0x00, 0x00, 0x00,
611 
612 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
613 
614 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616 	0x00, 0x00, 0x00, 0x00,
617 	0x00, 0x00, 0x00, 0x00,
618 	0x00, 0x00, 0x00, 0x00,
619 	0x00, 0x00, 0x00, 0x00,
620 	0x00, 0x00, 0x00, 0x00,
621 	0x00, 0x00, 0x00, 0x00,
622 	0x00, 0x00, 0x00, 0x00,
623 	0x00, 0x00, 0x00, 0x00,
624 
625 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626 	0x00, 0x10, 0x00, 0x00,
627 
628 	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629 	0x00, 0x00, 0x00, 0x00,
630 
631 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
632 };
633 
634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636 	{ ICE_MAC_OFOS,		0 },
637 	{ ICE_IPV4_OFOS,	14 },
638 	{ ICE_UDP_OF,		34 },
639 	{ ICE_GTP,		42 },
640 	{ ICE_IPV4_IL,		62 },
641 	{ ICE_TCP_IL,		82 },
642 	{ ICE_PROTOCOL_LAST,	0 },
643 };
644 
645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647 	0x00, 0x00, 0x00, 0x00,
648 	0x00, 0x00, 0x00, 0x00,
649 	0x08, 0x00,
650 
651 	0x45, 0x00, 0x00, 0x58, /* IP 14 */
652 	0x00, 0x00, 0x00, 0x00,
653 	0x00, 0x11, 0x00, 0x00,
654 	0x00, 0x00, 0x00, 0x00,
655 	0x00, 0x00, 0x00, 0x00,
656 
657 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658 	0x00, 0x44, 0x00, 0x00,
659 
660 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661 	0x00, 0x00, 0x00, 0x00,
662 	0x00, 0x00, 0x00, 0x85,
663 
664 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665 	0x00, 0x00, 0x00, 0x00,
666 
667 	0x45, 0x00, 0x00, 0x28, /* IP 62 */
668 	0x00, 0x00, 0x00, 0x00,
669 	0x00, 0x06, 0x00, 0x00,
670 	0x00, 0x00, 0x00, 0x00,
671 	0x00, 0x00, 0x00, 0x00,
672 
673 	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674 	0x00, 0x00, 0x00, 0x00,
675 	0x00, 0x00, 0x00, 0x00,
676 	0x50, 0x00, 0x00, 0x00,
677 	0x00, 0x00, 0x00, 0x00,
678 
679 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
680 };
681 
682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684 	{ ICE_MAC_OFOS,		0 },
685 	{ ICE_IPV4_OFOS,	14 },
686 	{ ICE_UDP_OF,		34 },
687 	{ ICE_GTP,		42 },
688 	{ ICE_IPV4_IL,		62 },
689 	{ ICE_UDP_ILOS,		82 },
690 	{ ICE_PROTOCOL_LAST,	0 },
691 };
692 
693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695 	0x00, 0x00, 0x00, 0x00,
696 	0x00, 0x00, 0x00, 0x00,
697 	0x08, 0x00,
698 
699 	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700 	0x00, 0x00, 0x00, 0x00,
701 	0x00, 0x11, 0x00, 0x00,
702 	0x00, 0x00, 0x00, 0x00,
703 	0x00, 0x00, 0x00, 0x00,
704 
705 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706 	0x00, 0x38, 0x00, 0x00,
707 
708 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709 	0x00, 0x00, 0x00, 0x00,
710 	0x00, 0x00, 0x00, 0x85,
711 
712 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713 	0x00, 0x00, 0x00, 0x00,
714 
715 	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716 	0x00, 0x00, 0x00, 0x00,
717 	0x00, 0x11, 0x00, 0x00,
718 	0x00, 0x00, 0x00, 0x00,
719 	0x00, 0x00, 0x00, 0x00,
720 
721 	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722 	0x00, 0x08, 0x00, 0x00,
723 
724 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
725 };
726 
727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729 	{ ICE_MAC_OFOS,		0 },
730 	{ ICE_IPV4_OFOS,	14 },
731 	{ ICE_UDP_OF,		34 },
732 	{ ICE_GTP,		42 },
733 	{ ICE_IPV6_IL,		62 },
734 	{ ICE_TCP_IL,		102 },
735 	{ ICE_PROTOCOL_LAST,	0 },
736 };
737 
738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740 	0x00, 0x00, 0x00, 0x00,
741 	0x00, 0x00, 0x00, 0x00,
742 	0x08, 0x00,
743 
744 	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745 	0x00, 0x00, 0x00, 0x00,
746 	0x00, 0x11, 0x00, 0x00,
747 	0x00, 0x00, 0x00, 0x00,
748 	0x00, 0x00, 0x00, 0x00,
749 
750 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751 	0x00, 0x58, 0x00, 0x00,
752 
753 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754 	0x00, 0x00, 0x00, 0x00,
755 	0x00, 0x00, 0x00, 0x85,
756 
757 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758 	0x00, 0x00, 0x00, 0x00,
759 
760 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761 	0x00, 0x14, 0x06, 0x00,
762 	0x00, 0x00, 0x00, 0x00,
763 	0x00, 0x00, 0x00, 0x00,
764 	0x00, 0x00, 0x00, 0x00,
765 	0x00, 0x00, 0x00, 0x00,
766 	0x00, 0x00, 0x00, 0x00,
767 	0x00, 0x00, 0x00, 0x00,
768 	0x00, 0x00, 0x00, 0x00,
769 	0x00, 0x00, 0x00, 0x00,
770 
771 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772 	0x00, 0x00, 0x00, 0x00,
773 	0x00, 0x00, 0x00, 0x00,
774 	0x50, 0x00, 0x00, 0x00,
775 	0x00, 0x00, 0x00, 0x00,
776 
777 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
778 };
779 
780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781 	{ ICE_MAC_OFOS,		0 },
782 	{ ICE_IPV4_OFOS,	14 },
783 	{ ICE_UDP_OF,		34 },
784 	{ ICE_GTP,		42 },
785 	{ ICE_IPV6_IL,		62 },
786 	{ ICE_UDP_ILOS,		102 },
787 	{ ICE_PROTOCOL_LAST,	0 },
788 };
789 
790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792 	0x00, 0x00, 0x00, 0x00,
793 	0x00, 0x00, 0x00, 0x00,
794 	0x08, 0x00,
795 
796 	0x45, 0x00, 0x00, 0x60, /* IP 14 */
797 	0x00, 0x00, 0x00, 0x00,
798 	0x00, 0x11, 0x00, 0x00,
799 	0x00, 0x00, 0x00, 0x00,
800 	0x00, 0x00, 0x00, 0x00,
801 
802 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803 	0x00, 0x4c, 0x00, 0x00,
804 
805 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806 	0x00, 0x00, 0x00, 0x00,
807 	0x00, 0x00, 0x00, 0x85,
808 
809 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810 	0x00, 0x00, 0x00, 0x00,
811 
812 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813 	0x00, 0x08, 0x11, 0x00,
814 	0x00, 0x00, 0x00, 0x00,
815 	0x00, 0x00, 0x00, 0x00,
816 	0x00, 0x00, 0x00, 0x00,
817 	0x00, 0x00, 0x00, 0x00,
818 	0x00, 0x00, 0x00, 0x00,
819 	0x00, 0x00, 0x00, 0x00,
820 	0x00, 0x00, 0x00, 0x00,
821 	0x00, 0x00, 0x00, 0x00,
822 
823 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824 	0x00, 0x08, 0x00, 0x00,
825 
826 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
827 };
828 
829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830 	{ ICE_MAC_OFOS,		0 },
831 	{ ICE_IPV6_OFOS,	14 },
832 	{ ICE_UDP_OF,		54 },
833 	{ ICE_GTP,		62 },
834 	{ ICE_IPV4_IL,		82 },
835 	{ ICE_TCP_IL,		102 },
836 	{ ICE_PROTOCOL_LAST,	0 },
837 };
838 
839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841 	0x00, 0x00, 0x00, 0x00,
842 	0x00, 0x00, 0x00, 0x00,
843 	0x86, 0xdd,
844 
845 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846 	0x00, 0x44, 0x11, 0x00,
847 	0x00, 0x00, 0x00, 0x00,
848 	0x00, 0x00, 0x00, 0x00,
849 	0x00, 0x00, 0x00, 0x00,
850 	0x00, 0x00, 0x00, 0x00,
851 	0x00, 0x00, 0x00, 0x00,
852 	0x00, 0x00, 0x00, 0x00,
853 	0x00, 0x00, 0x00, 0x00,
854 	0x00, 0x00, 0x00, 0x00,
855 
856 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857 	0x00, 0x44, 0x00, 0x00,
858 
859 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860 	0x00, 0x00, 0x00, 0x00,
861 	0x00, 0x00, 0x00, 0x85,
862 
863 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864 	0x00, 0x00, 0x00, 0x00,
865 
866 	0x45, 0x00, 0x00, 0x28, /* IP 82 */
867 	0x00, 0x00, 0x00, 0x00,
868 	0x00, 0x06, 0x00, 0x00,
869 	0x00, 0x00, 0x00, 0x00,
870 	0x00, 0x00, 0x00, 0x00,
871 
872 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873 	0x00, 0x00, 0x00, 0x00,
874 	0x00, 0x00, 0x00, 0x00,
875 	0x50, 0x00, 0x00, 0x00,
876 	0x00, 0x00, 0x00, 0x00,
877 
878 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
879 };
880 
881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882 	{ ICE_MAC_OFOS,		0 },
883 	{ ICE_IPV6_OFOS,	14 },
884 	{ ICE_UDP_OF,		54 },
885 	{ ICE_GTP,		62 },
886 	{ ICE_IPV4_IL,		82 },
887 	{ ICE_UDP_ILOS,		102 },
888 	{ ICE_PROTOCOL_LAST,	0 },
889 };
890 
891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893 	0x00, 0x00, 0x00, 0x00,
894 	0x00, 0x00, 0x00, 0x00,
895 	0x86, 0xdd,
896 
897 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898 	0x00, 0x38, 0x11, 0x00,
899 	0x00, 0x00, 0x00, 0x00,
900 	0x00, 0x00, 0x00, 0x00,
901 	0x00, 0x00, 0x00, 0x00,
902 	0x00, 0x00, 0x00, 0x00,
903 	0x00, 0x00, 0x00, 0x00,
904 	0x00, 0x00, 0x00, 0x00,
905 	0x00, 0x00, 0x00, 0x00,
906 	0x00, 0x00, 0x00, 0x00,
907 
908 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909 	0x00, 0x38, 0x00, 0x00,
910 
911 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912 	0x00, 0x00, 0x00, 0x00,
913 	0x00, 0x00, 0x00, 0x85,
914 
915 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916 	0x00, 0x00, 0x00, 0x00,
917 
918 	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919 	0x00, 0x00, 0x00, 0x00,
920 	0x00, 0x11, 0x00, 0x00,
921 	0x00, 0x00, 0x00, 0x00,
922 	0x00, 0x00, 0x00, 0x00,
923 
924 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925 	0x00, 0x08, 0x00, 0x00,
926 
927 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
928 };
929 
930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931 	{ ICE_MAC_OFOS,		0 },
932 	{ ICE_IPV6_OFOS,	14 },
933 	{ ICE_UDP_OF,		54 },
934 	{ ICE_GTP,		62 },
935 	{ ICE_IPV6_IL,		82 },
936 	{ ICE_TCP_IL,		122 },
937 	{ ICE_PROTOCOL_LAST,	0 },
938 };
939 
940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942 	0x00, 0x00, 0x00, 0x00,
943 	0x00, 0x00, 0x00, 0x00,
944 	0x86, 0xdd,
945 
946 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947 	0x00, 0x58, 0x11, 0x00,
948 	0x00, 0x00, 0x00, 0x00,
949 	0x00, 0x00, 0x00, 0x00,
950 	0x00, 0x00, 0x00, 0x00,
951 	0x00, 0x00, 0x00, 0x00,
952 	0x00, 0x00, 0x00, 0x00,
953 	0x00, 0x00, 0x00, 0x00,
954 	0x00, 0x00, 0x00, 0x00,
955 	0x00, 0x00, 0x00, 0x00,
956 
957 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958 	0x00, 0x58, 0x00, 0x00,
959 
960 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961 	0x00, 0x00, 0x00, 0x00,
962 	0x00, 0x00, 0x00, 0x85,
963 
964 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965 	0x00, 0x00, 0x00, 0x00,
966 
967 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968 	0x00, 0x14, 0x06, 0x00,
969 	0x00, 0x00, 0x00, 0x00,
970 	0x00, 0x00, 0x00, 0x00,
971 	0x00, 0x00, 0x00, 0x00,
972 	0x00, 0x00, 0x00, 0x00,
973 	0x00, 0x00, 0x00, 0x00,
974 	0x00, 0x00, 0x00, 0x00,
975 	0x00, 0x00, 0x00, 0x00,
976 	0x00, 0x00, 0x00, 0x00,
977 
978 	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979 	0x00, 0x00, 0x00, 0x00,
980 	0x00, 0x00, 0x00, 0x00,
981 	0x50, 0x00, 0x00, 0x00,
982 	0x00, 0x00, 0x00, 0x00,
983 
984 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
985 };
986 
987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988 	{ ICE_MAC_OFOS,		0 },
989 	{ ICE_IPV6_OFOS,	14 },
990 	{ ICE_UDP_OF,		54 },
991 	{ ICE_GTP,		62 },
992 	{ ICE_IPV6_IL,		82 },
993 	{ ICE_UDP_ILOS,		122 },
994 	{ ICE_PROTOCOL_LAST,	0 },
995 };
996 
997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999 	0x00, 0x00, 0x00, 0x00,
1000 	0x00, 0x00, 0x00, 0x00,
1001 	0x86, 0xdd,
1002 
1003 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004 	0x00, 0x4c, 0x11, 0x00,
1005 	0x00, 0x00, 0x00, 0x00,
1006 	0x00, 0x00, 0x00, 0x00,
1007 	0x00, 0x00, 0x00, 0x00,
1008 	0x00, 0x00, 0x00, 0x00,
1009 	0x00, 0x00, 0x00, 0x00,
1010 	0x00, 0x00, 0x00, 0x00,
1011 	0x00, 0x00, 0x00, 0x00,
1012 	0x00, 0x00, 0x00, 0x00,
1013 
1014 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015 	0x00, 0x4c, 0x00, 0x00,
1016 
1017 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018 	0x00, 0x00, 0x00, 0x00,
1019 	0x00, 0x00, 0x00, 0x85,
1020 
1021 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022 	0x00, 0x00, 0x00, 0x00,
1023 
1024 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025 	0x00, 0x08, 0x11, 0x00,
1026 	0x00, 0x00, 0x00, 0x00,
1027 	0x00, 0x00, 0x00, 0x00,
1028 	0x00, 0x00, 0x00, 0x00,
1029 	0x00, 0x00, 0x00, 0x00,
1030 	0x00, 0x00, 0x00, 0x00,
1031 	0x00, 0x00, 0x00, 0x00,
1032 	0x00, 0x00, 0x00, 0x00,
1033 	0x00, 0x00, 0x00, 0x00,
1034 
1035 	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036 	0x00, 0x08, 0x00, 0x00,
1037 
1038 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039 };
1040 
1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042 	{ ICE_MAC_OFOS,		0 },
1043 	{ ICE_IPV4_OFOS,	14 },
1044 	{ ICE_UDP_OF,		34 },
1045 	{ ICE_GTP_NO_PAY,	42 },
1046 	{ ICE_PROTOCOL_LAST,	0 },
1047 };
1048 
1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051 	0x00, 0x00, 0x00, 0x00,
1052 	0x00, 0x00, 0x00, 0x00,
1053 	0x08, 0x00,
1054 
1055 	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056 	0x00, 0x00, 0x40, 0x00,
1057 	0x40, 0x11, 0x00, 0x00,
1058 	0x00, 0x00, 0x00, 0x00,
1059 	0x00, 0x00, 0x00, 0x00,
1060 
1061 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062 	0x00, 0x00, 0x00, 0x00,
1063 
1064 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065 	0x00, 0x00, 0x00, 0x00,
1066 	0x00, 0x00, 0x00, 0x85,
1067 
1068 	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069 	0x00, 0x00, 0x00, 0x00,
1070 
1071 	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072 	0x00, 0x00, 0x40, 0x00,
1073 	0x40, 0x00, 0x00, 0x00,
1074 	0x00, 0x00, 0x00, 0x00,
1075 	0x00, 0x00, 0x00, 0x00,
1076 	0x00, 0x00,
1077 };
1078 
1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080 	{ ICE_MAC_OFOS,		0 },
1081 	{ ICE_IPV6_OFOS,	14 },
1082 	{ ICE_UDP_OF,		54 },
1083 	{ ICE_GTP_NO_PAY,	62 },
1084 	{ ICE_PROTOCOL_LAST,	0 },
1085 };
1086 
1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089 	0x00, 0x00, 0x00, 0x00,
1090 	0x00, 0x00, 0x00, 0x00,
1091 	0x86, 0xdd,
1092 
1093 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094 	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095 	0x00, 0x00, 0x00, 0x00,
1096 	0x00, 0x00, 0x00, 0x00,
1097 	0x00, 0x00, 0x00, 0x00,
1098 	0x00, 0x00, 0x00, 0x00,
1099 	0x00, 0x00, 0x00, 0x00,
1100 	0x00, 0x00, 0x00, 0x00,
1101 	0x00, 0x00, 0x00, 0x00,
1102 	0x00, 0x00, 0x00, 0x00,
1103 
1104 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105 	0x00, 0x00, 0x00, 0x00,
1106 
1107 	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108 	0x00, 0x00, 0x00, 0x00,
1109 
1110 	0x00, 0x00,
1111 };
1112 
1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114 	{ ICE_MAC_OFOS,		0 },
1115 	{ ICE_ETYPE_OL,		12 },
1116 	{ ICE_PPPOE,		14 },
1117 	{ ICE_IPV4_OFOS,	22 },
1118 	{ ICE_TCP_IL,		42 },
1119 	{ ICE_PROTOCOL_LAST,	0 },
1120 };
1121 
1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124 	0x00, 0x00, 0x00, 0x00,
1125 	0x00, 0x00, 0x00, 0x00,
1126 
1127 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128 
1129 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130 	0x00, 0x16,
1131 
1132 	0x00, 0x21,		/* PPP Link Layer 20 */
1133 
1134 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135 	0x00, 0x01, 0x00, 0x00,
1136 	0x00, 0x06, 0x00, 0x00,
1137 	0x00, 0x00, 0x00, 0x00,
1138 	0x00, 0x00, 0x00, 0x00,
1139 
1140 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141 	0x00, 0x00, 0x00, 0x00,
1142 	0x00, 0x00, 0x00, 0x00,
1143 	0x50, 0x00, 0x00, 0x00,
1144 	0x00, 0x00, 0x00, 0x00,
1145 
1146 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147 };
1148 
1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150 	{ ICE_MAC_OFOS,		0 },
1151 	{ ICE_ETYPE_OL,		12 },
1152 	{ ICE_PPPOE,		14 },
1153 	{ ICE_IPV4_OFOS,	22 },
1154 	{ ICE_UDP_ILOS,		42 },
1155 	{ ICE_PROTOCOL_LAST,	0 },
1156 };
1157 
1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160 	0x00, 0x00, 0x00, 0x00,
1161 	0x00, 0x00, 0x00, 0x00,
1162 
1163 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164 
1165 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166 	0x00, 0x16,
1167 
1168 	0x00, 0x21,		/* PPP Link Layer 20 */
1169 
1170 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171 	0x00, 0x01, 0x00, 0x00,
1172 	0x00, 0x11, 0x00, 0x00,
1173 	0x00, 0x00, 0x00, 0x00,
1174 	0x00, 0x00, 0x00, 0x00,
1175 
1176 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177 	0x00, 0x08, 0x00, 0x00,
1178 
1179 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180 };
1181 
1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183 	{ ICE_MAC_OFOS,		0 },
1184 	{ ICE_ETYPE_OL,		12 },
1185 	{ ICE_PPPOE,		14 },
1186 	{ ICE_IPV6_OFOS,	22 },
1187 	{ ICE_TCP_IL,		62 },
1188 	{ ICE_PROTOCOL_LAST,	0 },
1189 };
1190 
1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193 	0x00, 0x00, 0x00, 0x00,
1194 	0x00, 0x00, 0x00, 0x00,
1195 
1196 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197 
1198 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199 	0x00, 0x2a,
1200 
1201 	0x00, 0x57,		/* PPP Link Layer 20 */
1202 
1203 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205 	0x00, 0x00, 0x00, 0x00,
1206 	0x00, 0x00, 0x00, 0x00,
1207 	0x00, 0x00, 0x00, 0x00,
1208 	0x00, 0x00, 0x00, 0x00,
1209 	0x00, 0x00, 0x00, 0x00,
1210 	0x00, 0x00, 0x00, 0x00,
1211 	0x00, 0x00, 0x00, 0x00,
1212 	0x00, 0x00, 0x00, 0x00,
1213 
1214 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215 	0x00, 0x00, 0x00, 0x00,
1216 	0x00, 0x00, 0x00, 0x00,
1217 	0x50, 0x00, 0x00, 0x00,
1218 	0x00, 0x00, 0x00, 0x00,
1219 
1220 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221 };
1222 
1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224 	{ ICE_MAC_OFOS,		0 },
1225 	{ ICE_ETYPE_OL,		12 },
1226 	{ ICE_PPPOE,		14 },
1227 	{ ICE_IPV6_OFOS,	22 },
1228 	{ ICE_UDP_ILOS,		62 },
1229 	{ ICE_PROTOCOL_LAST,	0 },
1230 };
1231 
1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234 	0x00, 0x00, 0x00, 0x00,
1235 	0x00, 0x00, 0x00, 0x00,
1236 
1237 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238 
1239 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240 	0x00, 0x2a,
1241 
1242 	0x00, 0x57,		/* PPP Link Layer 20 */
1243 
1244 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245 	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246 	0x00, 0x00, 0x00, 0x00,
1247 	0x00, 0x00, 0x00, 0x00,
1248 	0x00, 0x00, 0x00, 0x00,
1249 	0x00, 0x00, 0x00, 0x00,
1250 	0x00, 0x00, 0x00, 0x00,
1251 	0x00, 0x00, 0x00, 0x00,
1252 	0x00, 0x00, 0x00, 0x00,
1253 	0x00, 0x00, 0x00, 0x00,
1254 
1255 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256 	0x00, 0x08, 0x00, 0x00,
1257 
1258 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259 };
1260 
1261 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1262 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1263 				  ICE_PKT_GTP_NOPAY),
1264 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1265 					    ICE_PKT_OUTER_IPV6 |
1266 					    ICE_PKT_INNER_IPV6 |
1267 					    ICE_PKT_INNER_UDP),
1268 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1269 					    ICE_PKT_OUTER_IPV6 |
1270 					    ICE_PKT_INNER_IPV6),
1271 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1272 					    ICE_PKT_OUTER_IPV6 |
1273 					    ICE_PKT_INNER_UDP),
1274 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1275 					    ICE_PKT_OUTER_IPV6),
1276 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1277 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1278 					    ICE_PKT_INNER_IPV6 |
1279 					    ICE_PKT_INNER_UDP),
1280 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1281 					    ICE_PKT_INNER_IPV6),
1282 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1283 					    ICE_PKT_INNER_UDP),
1284 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1285 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1286 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1287 	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1288 					ICE_PKT_INNER_UDP),
1289 	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1290 	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1291 	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1292 	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1293 				      ICE_PKT_INNER_TCP),
1294 	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1295 	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1296 	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1297 	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1298 					  ICE_PKT_INNER_IPV6 |
1299 					  ICE_PKT_INNER_TCP),
1300 	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1301 	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1302 					  ICE_PKT_INNER_IPV6),
1303 	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1304 	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1305 	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1306 	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1307 	ICE_PKT_PROFILE(tcp, 0),
1308 };
1309 
1310 #define ICE_SW_RULE_RX_TX_HDR_SIZE(s, l)	struct_size((s), hdr_data, (l))
1311 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s)	\
1312 	ICE_SW_RULE_RX_TX_HDR_SIZE((s), DUMMY_ETH_HDR_LEN)
1313 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s)	\
1314 	ICE_SW_RULE_RX_TX_HDR_SIZE((s), 0)
1315 #define ICE_SW_RULE_LG_ACT_SIZE(s, n)		struct_size((s), act, (n))
1316 #define ICE_SW_RULE_VSI_LIST_SIZE(s, n)		struct_size((s), vsi, (n))
1317 
1318 /* this is a recipe to profile association bitmap */
1319 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1320 			  ICE_MAX_NUM_PROFILES);
1321 
1322 /* this is a profile to recipe association bitmap */
1323 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1324 			  ICE_MAX_NUM_RECIPES);
1325 
1326 /**
1327  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1328  * @hw: pointer to the HW struct
1329  *
1330  * Allocate memory for the entire recipe table and initialize the structures/
1331  * entries corresponding to basic recipes.
1332  */
1333 int ice_init_def_sw_recp(struct ice_hw *hw)
1334 {
1335 	struct ice_sw_recipe *recps;
1336 	u8 i;
1337 
1338 	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1339 			     sizeof(*recps), GFP_KERNEL);
1340 	if (!recps)
1341 		return -ENOMEM;
1342 
1343 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1344 		recps[i].root_rid = i;
1345 		INIT_LIST_HEAD(&recps[i].filt_rules);
1346 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1347 		INIT_LIST_HEAD(&recps[i].rg_list);
1348 		mutex_init(&recps[i].filt_rule_lock);
1349 	}
1350 
1351 	hw->switch_info->recp_list = recps;
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  * ice_aq_get_sw_cfg - get switch configuration
1358  * @hw: pointer to the hardware structure
1359  * @buf: pointer to the result buffer
1360  * @buf_size: length of the buffer available for response
1361  * @req_desc: pointer to requested descriptor
1362  * @num_elems: pointer to number of elements
1363  * @cd: pointer to command details structure or NULL
1364  *
1365  * Get switch configuration (0x0200) to be placed in buf.
1366  * This admin command returns information such as initial VSI/port number
1367  * and switch ID it belongs to.
1368  *
1369  * NOTE: *req_desc is both an input/output parameter.
1370  * The caller of this function first calls this function with *request_desc set
1371  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1372  * configuration information has been returned; if non-zero (meaning not all
1373  * the information was returned), the caller should call this function again
1374  * with *req_desc set to the previous value returned by f/w to get the
1375  * next block of switch configuration information.
1376  *
1377  * *num_elems is output only parameter. This reflects the number of elements
1378  * in response buffer. The caller of this function to use *num_elems while
1379  * parsing the response buffer.
1380  */
1381 static int
1382 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1383 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1384 		  struct ice_sq_cd *cd)
1385 {
1386 	struct ice_aqc_get_sw_cfg *cmd;
1387 	struct ice_aq_desc desc;
1388 	int status;
1389 
1390 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1391 	cmd = &desc.params.get_sw_conf;
1392 	cmd->element = cpu_to_le16(*req_desc);
1393 
1394 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1395 	if (!status) {
1396 		*req_desc = le16_to_cpu(cmd->element);
1397 		*num_elems = le16_to_cpu(cmd->num_elems);
1398 	}
1399 
1400 	return status;
1401 }
1402 
1403 /**
1404  * ice_aq_add_vsi
1405  * @hw: pointer to the HW struct
1406  * @vsi_ctx: pointer to a VSI context struct
1407  * @cd: pointer to command details structure or NULL
1408  *
1409  * Add a VSI context to the hardware (0x0210)
1410  */
1411 static int
1412 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1413 	       struct ice_sq_cd *cd)
1414 {
1415 	struct ice_aqc_add_update_free_vsi_resp *res;
1416 	struct ice_aqc_add_get_update_free_vsi *cmd;
1417 	struct ice_aq_desc desc;
1418 	int status;
1419 
1420 	cmd = &desc.params.vsi_cmd;
1421 	res = &desc.params.add_update_free_vsi_res;
1422 
1423 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1424 
1425 	if (!vsi_ctx->alloc_from_pool)
1426 		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1427 					   ICE_AQ_VSI_IS_VALID);
1428 	cmd->vf_id = vsi_ctx->vf_num;
1429 
1430 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1431 
1432 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1433 
1434 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1435 				 sizeof(vsi_ctx->info), cd);
1436 
1437 	if (!status) {
1438 		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1439 		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1440 		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1441 	}
1442 
1443 	return status;
1444 }
1445 
1446 /**
1447  * ice_aq_free_vsi
1448  * @hw: pointer to the HW struct
1449  * @vsi_ctx: pointer to a VSI context struct
1450  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1451  * @cd: pointer to command details structure or NULL
1452  *
1453  * Free VSI context info from hardware (0x0213)
1454  */
1455 static int
1456 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1457 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1458 {
1459 	struct ice_aqc_add_update_free_vsi_resp *resp;
1460 	struct ice_aqc_add_get_update_free_vsi *cmd;
1461 	struct ice_aq_desc desc;
1462 	int status;
1463 
1464 	cmd = &desc.params.vsi_cmd;
1465 	resp = &desc.params.add_update_free_vsi_res;
1466 
1467 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1468 
1469 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1470 	if (keep_vsi_alloc)
1471 		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1472 
1473 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1474 	if (!status) {
1475 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1476 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1477 	}
1478 
1479 	return status;
1480 }
1481 
1482 /**
1483  * ice_aq_update_vsi
1484  * @hw: pointer to the HW struct
1485  * @vsi_ctx: pointer to a VSI context struct
1486  * @cd: pointer to command details structure or NULL
1487  *
1488  * Update VSI context in the hardware (0x0211)
1489  */
1490 static int
1491 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1492 		  struct ice_sq_cd *cd)
1493 {
1494 	struct ice_aqc_add_update_free_vsi_resp *resp;
1495 	struct ice_aqc_add_get_update_free_vsi *cmd;
1496 	struct ice_aq_desc desc;
1497 	int status;
1498 
1499 	cmd = &desc.params.vsi_cmd;
1500 	resp = &desc.params.add_update_free_vsi_res;
1501 
1502 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1503 
1504 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1505 
1506 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1507 
1508 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1509 				 sizeof(vsi_ctx->info), cd);
1510 
1511 	if (!status) {
1512 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1513 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1514 	}
1515 
1516 	return status;
1517 }
1518 
1519 /**
1520  * ice_is_vsi_valid - check whether the VSI is valid or not
1521  * @hw: pointer to the HW struct
1522  * @vsi_handle: VSI handle
1523  *
1524  * check whether the VSI is valid or not
1525  */
1526 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1527 {
1528 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1529 }
1530 
1531 /**
1532  * ice_get_hw_vsi_num - return the HW VSI number
1533  * @hw: pointer to the HW struct
1534  * @vsi_handle: VSI handle
1535  *
1536  * return the HW VSI number
1537  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1538  */
1539 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1540 {
1541 	return hw->vsi_ctx[vsi_handle]->vsi_num;
1542 }
1543 
1544 /**
1545  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1546  * @hw: pointer to the HW struct
1547  * @vsi_handle: VSI handle
1548  *
1549  * return the VSI context entry for a given VSI handle
1550  */
1551 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1552 {
1553 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1554 }
1555 
1556 /**
1557  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1558  * @hw: pointer to the HW struct
1559  * @vsi_handle: VSI handle
1560  * @vsi: VSI context pointer
1561  *
1562  * save the VSI context entry for a given VSI handle
1563  */
1564 static void
1565 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1566 {
1567 	hw->vsi_ctx[vsi_handle] = vsi;
1568 }
1569 
1570 /**
1571  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1572  * @hw: pointer to the HW struct
1573  * @vsi_handle: VSI handle
1574  */
1575 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1576 {
1577 	struct ice_vsi_ctx *vsi;
1578 	u8 i;
1579 
1580 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1581 	if (!vsi)
1582 		return;
1583 	ice_for_each_traffic_class(i) {
1584 		if (vsi->lan_q_ctx[i]) {
1585 			devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1586 			vsi->lan_q_ctx[i] = NULL;
1587 		}
1588 		if (vsi->rdma_q_ctx[i]) {
1589 			devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1590 			vsi->rdma_q_ctx[i] = NULL;
1591 		}
1592 	}
1593 }
1594 
1595 /**
1596  * ice_clear_vsi_ctx - clear the VSI context entry
1597  * @hw: pointer to the HW struct
1598  * @vsi_handle: VSI handle
1599  *
1600  * clear the VSI context entry
1601  */
1602 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1603 {
1604 	struct ice_vsi_ctx *vsi;
1605 
1606 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1607 	if (vsi) {
1608 		ice_clear_vsi_q_ctx(hw, vsi_handle);
1609 		devm_kfree(ice_hw_to_dev(hw), vsi);
1610 		hw->vsi_ctx[vsi_handle] = NULL;
1611 	}
1612 }
1613 
1614 /**
1615  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1616  * @hw: pointer to the HW struct
1617  */
1618 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1619 {
1620 	u16 i;
1621 
1622 	for (i = 0; i < ICE_MAX_VSI; i++)
1623 		ice_clear_vsi_ctx(hw, i);
1624 }
1625 
1626 /**
1627  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1628  * @hw: pointer to the HW struct
1629  * @vsi_handle: unique VSI handle provided by drivers
1630  * @vsi_ctx: pointer to a VSI context struct
1631  * @cd: pointer to command details structure or NULL
1632  *
1633  * Add a VSI context to the hardware also add it into the VSI handle list.
1634  * If this function gets called after reset for existing VSIs then update
1635  * with the new HW VSI number in the corresponding VSI handle list entry.
1636  */
1637 int
1638 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1639 	    struct ice_sq_cd *cd)
1640 {
1641 	struct ice_vsi_ctx *tmp_vsi_ctx;
1642 	int status;
1643 
1644 	if (vsi_handle >= ICE_MAX_VSI)
1645 		return -EINVAL;
1646 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1647 	if (status)
1648 		return status;
1649 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1650 	if (!tmp_vsi_ctx) {
1651 		/* Create a new VSI context */
1652 		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1653 					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1654 		if (!tmp_vsi_ctx) {
1655 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1656 			return -ENOMEM;
1657 		}
1658 		*tmp_vsi_ctx = *vsi_ctx;
1659 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1660 	} else {
1661 		/* update with new HW VSI num */
1662 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 /**
1669  * ice_free_vsi- free VSI context from hardware and VSI handle list
1670  * @hw: pointer to the HW struct
1671  * @vsi_handle: unique VSI handle
1672  * @vsi_ctx: pointer to a VSI context struct
1673  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1674  * @cd: pointer to command details structure or NULL
1675  *
1676  * Free VSI context info from hardware as well as from VSI handle list
1677  */
1678 int
1679 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1680 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1681 {
1682 	int status;
1683 
1684 	if (!ice_is_vsi_valid(hw, vsi_handle))
1685 		return -EINVAL;
1686 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1687 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1688 	if (!status)
1689 		ice_clear_vsi_ctx(hw, vsi_handle);
1690 	return status;
1691 }
1692 
1693 /**
1694  * ice_update_vsi
1695  * @hw: pointer to the HW struct
1696  * @vsi_handle: unique VSI handle
1697  * @vsi_ctx: pointer to a VSI context struct
1698  * @cd: pointer to command details structure or NULL
1699  *
1700  * Update VSI context in the hardware
1701  */
1702 int
1703 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1704 	       struct ice_sq_cd *cd)
1705 {
1706 	if (!ice_is_vsi_valid(hw, vsi_handle))
1707 		return -EINVAL;
1708 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1709 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1710 }
1711 
1712 /**
1713  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1714  * @hw: pointer to HW struct
1715  * @vsi_handle: VSI SW index
1716  * @enable: boolean for enable/disable
1717  */
1718 int
1719 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1720 {
1721 	struct ice_vsi_ctx *ctx;
1722 
1723 	ctx = ice_get_vsi_ctx(hw, vsi_handle);
1724 	if (!ctx)
1725 		return -EIO;
1726 
1727 	if (enable)
1728 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1729 	else
1730 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1731 
1732 	return ice_update_vsi(hw, vsi_handle, ctx, NULL);
1733 }
1734 
1735 /**
1736  * ice_aq_alloc_free_vsi_list
1737  * @hw: pointer to the HW struct
1738  * @vsi_list_id: VSI list ID returned or used for lookup
1739  * @lkup_type: switch rule filter lookup type
1740  * @opc: switch rules population command type - pass in the command opcode
1741  *
1742  * allocates or free a VSI list resource
1743  */
1744 static int
1745 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1746 			   enum ice_sw_lkup_type lkup_type,
1747 			   enum ice_adminq_opc opc)
1748 {
1749 	struct ice_aqc_alloc_free_res_elem *sw_buf;
1750 	struct ice_aqc_res_elem *vsi_ele;
1751 	u16 buf_len;
1752 	int status;
1753 
1754 	buf_len = struct_size(sw_buf, elem, 1);
1755 	sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
1756 	if (!sw_buf)
1757 		return -ENOMEM;
1758 	sw_buf->num_elems = cpu_to_le16(1);
1759 
1760 	if (lkup_type == ICE_SW_LKUP_MAC ||
1761 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1762 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1763 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1764 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1765 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1766 	    lkup_type == ICE_SW_LKUP_DFLT) {
1767 		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1768 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1769 		sw_buf->res_type =
1770 			cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1771 	} else {
1772 		status = -EINVAL;
1773 		goto ice_aq_alloc_free_vsi_list_exit;
1774 	}
1775 
1776 	if (opc == ice_aqc_opc_free_res)
1777 		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1778 
1779 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1780 	if (status)
1781 		goto ice_aq_alloc_free_vsi_list_exit;
1782 
1783 	if (opc == ice_aqc_opc_alloc_res) {
1784 		vsi_ele = &sw_buf->elem[0];
1785 		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1786 	}
1787 
1788 ice_aq_alloc_free_vsi_list_exit:
1789 	devm_kfree(ice_hw_to_dev(hw), sw_buf);
1790 	return status;
1791 }
1792 
1793 /**
1794  * ice_aq_sw_rules - add/update/remove switch rules
1795  * @hw: pointer to the HW struct
1796  * @rule_list: pointer to switch rule population list
1797  * @rule_list_sz: total size of the rule list in bytes
1798  * @num_rules: number of switch rules in the rule_list
1799  * @opc: switch rules population command type - pass in the command opcode
1800  * @cd: pointer to command details structure or NULL
1801  *
1802  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1803  */
1804 int
1805 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1806 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1807 {
1808 	struct ice_aq_desc desc;
1809 	int status;
1810 
1811 	if (opc != ice_aqc_opc_add_sw_rules &&
1812 	    opc != ice_aqc_opc_update_sw_rules &&
1813 	    opc != ice_aqc_opc_remove_sw_rules)
1814 		return -EINVAL;
1815 
1816 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1817 
1818 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1819 	desc.params.sw_rules.num_rules_fltr_entry_index =
1820 		cpu_to_le16(num_rules);
1821 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1822 	if (opc != ice_aqc_opc_add_sw_rules &&
1823 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1824 		status = -ENOENT;
1825 
1826 	return status;
1827 }
1828 
1829 /**
1830  * ice_aq_add_recipe - add switch recipe
1831  * @hw: pointer to the HW struct
1832  * @s_recipe_list: pointer to switch rule population list
1833  * @num_recipes: number of switch recipes in the list
1834  * @cd: pointer to command details structure or NULL
1835  *
1836  * Add(0x0290)
1837  */
1838 static int
1839 ice_aq_add_recipe(struct ice_hw *hw,
1840 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1841 		  u16 num_recipes, struct ice_sq_cd *cd)
1842 {
1843 	struct ice_aqc_add_get_recipe *cmd;
1844 	struct ice_aq_desc desc;
1845 	u16 buf_size;
1846 
1847 	cmd = &desc.params.add_get_recipe;
1848 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1849 
1850 	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1851 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1852 
1853 	buf_size = num_recipes * sizeof(*s_recipe_list);
1854 
1855 	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1856 }
1857 
1858 /**
1859  * ice_aq_get_recipe - get switch recipe
1860  * @hw: pointer to the HW struct
1861  * @s_recipe_list: pointer to switch rule population list
1862  * @num_recipes: pointer to the number of recipes (input and output)
1863  * @recipe_root: root recipe number of recipe(s) to retrieve
1864  * @cd: pointer to command details structure or NULL
1865  *
1866  * Get(0x0292)
1867  *
1868  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1869  * On output, *num_recipes will equal the number of entries returned in
1870  * s_recipe_list.
1871  *
1872  * The caller must supply enough space in s_recipe_list to hold all possible
1873  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1874  */
1875 static int
1876 ice_aq_get_recipe(struct ice_hw *hw,
1877 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1878 		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1879 {
1880 	struct ice_aqc_add_get_recipe *cmd;
1881 	struct ice_aq_desc desc;
1882 	u16 buf_size;
1883 	int status;
1884 
1885 	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1886 		return -EINVAL;
1887 
1888 	cmd = &desc.params.add_get_recipe;
1889 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1890 
1891 	cmd->return_index = cpu_to_le16(recipe_root);
1892 	cmd->num_sub_recipes = 0;
1893 
1894 	buf_size = *num_recipes * sizeof(*s_recipe_list);
1895 
1896 	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1897 	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1898 
1899 	return status;
1900 }
1901 
1902 /**
1903  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1904  * @hw: pointer to the HW struct
1905  * @params: parameters used to update the default recipe
1906  *
1907  * This function only supports updating default recipes and it only supports
1908  * updating a single recipe based on the lkup_idx at a time.
1909  *
1910  * This is done as a read-modify-write operation. First, get the current recipe
1911  * contents based on the recipe's ID. Then modify the field vector index and
1912  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1913  * the pre-existing recipe with the modifications.
1914  */
1915 int
1916 ice_update_recipe_lkup_idx(struct ice_hw *hw,
1917 			   struct ice_update_recipe_lkup_idx_params *params)
1918 {
1919 	struct ice_aqc_recipe_data_elem *rcp_list;
1920 	u16 num_recps = ICE_MAX_NUM_RECIPES;
1921 	int status;
1922 
1923 	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1924 	if (!rcp_list)
1925 		return -ENOMEM;
1926 
1927 	/* read current recipe list from firmware */
1928 	rcp_list->recipe_indx = params->rid;
1929 	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1930 	if (status) {
1931 		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1932 			  params->rid, status);
1933 		goto error_out;
1934 	}
1935 
1936 	/* only modify existing recipe's lkup_idx and mask if valid, while
1937 	 * leaving all other fields the same, then update the recipe firmware
1938 	 */
1939 	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
1940 	if (params->mask_valid)
1941 		rcp_list->content.mask[params->lkup_idx] =
1942 			cpu_to_le16(params->mask);
1943 
1944 	if (params->ignore_valid)
1945 		rcp_list->content.lkup_indx[params->lkup_idx] |=
1946 			ICE_AQ_RECIPE_LKUP_IGNORE;
1947 
1948 	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
1949 	if (status)
1950 		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
1951 			  params->rid, params->lkup_idx, params->fv_idx,
1952 			  params->mask, params->mask_valid ? "true" : "false",
1953 			  status);
1954 
1955 error_out:
1956 	kfree(rcp_list);
1957 	return status;
1958 }
1959 
1960 /**
1961  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
1962  * @hw: pointer to the HW struct
1963  * @profile_id: package profile ID to associate the recipe with
1964  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1965  * @cd: pointer to command details structure or NULL
1966  * Recipe to profile association (0x0291)
1967  */
1968 static int
1969 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1970 			     struct ice_sq_cd *cd)
1971 {
1972 	struct ice_aqc_recipe_to_profile *cmd;
1973 	struct ice_aq_desc desc;
1974 
1975 	cmd = &desc.params.recipe_to_profile;
1976 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
1977 	cmd->profile_id = cpu_to_le16(profile_id);
1978 	/* Set the recipe ID bit in the bitmask to let the device know which
1979 	 * profile we are associating the recipe to
1980 	 */
1981 	memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
1982 
1983 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1984 }
1985 
1986 /**
1987  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
1988  * @hw: pointer to the HW struct
1989  * @profile_id: package profile ID to associate the recipe with
1990  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1991  * @cd: pointer to command details structure or NULL
1992  * Associate profile ID with given recipe (0x0293)
1993  */
1994 static int
1995 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1996 			     struct ice_sq_cd *cd)
1997 {
1998 	struct ice_aqc_recipe_to_profile *cmd;
1999 	struct ice_aq_desc desc;
2000 	int status;
2001 
2002 	cmd = &desc.params.recipe_to_profile;
2003 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2004 	cmd->profile_id = cpu_to_le16(profile_id);
2005 
2006 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2007 	if (!status)
2008 		memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2009 
2010 	return status;
2011 }
2012 
2013 /**
2014  * ice_alloc_recipe - add recipe resource
2015  * @hw: pointer to the hardware structure
2016  * @rid: recipe ID returned as response to AQ call
2017  */
2018 static int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2019 {
2020 	struct ice_aqc_alloc_free_res_elem *sw_buf;
2021 	u16 buf_len;
2022 	int status;
2023 
2024 	buf_len = struct_size(sw_buf, elem, 1);
2025 	sw_buf = kzalloc(buf_len, GFP_KERNEL);
2026 	if (!sw_buf)
2027 		return -ENOMEM;
2028 
2029 	sw_buf->num_elems = cpu_to_le16(1);
2030 	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2031 					ICE_AQC_RES_TYPE_S) |
2032 					ICE_AQC_RES_TYPE_FLAG_SHARED);
2033 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2034 				       ice_aqc_opc_alloc_res, NULL);
2035 	if (!status)
2036 		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2037 	kfree(sw_buf);
2038 
2039 	return status;
2040 }
2041 
2042 /**
2043  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2044  * @hw: pointer to hardware structure
2045  *
2046  * This function is used to populate recipe_to_profile matrix where index to
2047  * this array is the recipe ID and the element is the mapping of which profiles
2048  * is this recipe mapped to.
2049  */
2050 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2051 {
2052 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2053 	u16 i;
2054 
2055 	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2056 		u16 j;
2057 
2058 		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2059 		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2060 		if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2061 			continue;
2062 		bitmap_copy(profile_to_recipe[i], r_bitmap,
2063 			    ICE_MAX_NUM_RECIPES);
2064 		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2065 			set_bit(i, recipe_to_profile[j]);
2066 	}
2067 }
2068 
2069 /**
2070  * ice_collect_result_idx - copy result index values
2071  * @buf: buffer that contains the result index
2072  * @recp: the recipe struct to copy data into
2073  */
2074 static void
2075 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2076 		       struct ice_sw_recipe *recp)
2077 {
2078 	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2079 		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2080 			recp->res_idxs);
2081 }
2082 
2083 /**
2084  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2085  * @hw: pointer to hardware structure
2086  * @recps: struct that we need to populate
2087  * @rid: recipe ID that we are populating
2088  * @refresh_required: true if we should get recipe to profile mapping from FW
2089  *
2090  * This function is used to populate all the necessary entries into our
2091  * bookkeeping so that we have a current list of all the recipes that are
2092  * programmed in the firmware.
2093  */
2094 static int
2095 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2096 		    bool *refresh_required)
2097 {
2098 	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2099 	struct ice_aqc_recipe_data_elem *tmp;
2100 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2101 	struct ice_prot_lkup_ext *lkup_exts;
2102 	u8 fv_word_idx = 0;
2103 	u16 sub_recps;
2104 	int status;
2105 
2106 	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2107 
2108 	/* we need a buffer big enough to accommodate all the recipes */
2109 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2110 	if (!tmp)
2111 		return -ENOMEM;
2112 
2113 	tmp[0].recipe_indx = rid;
2114 	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2115 	/* non-zero status meaning recipe doesn't exist */
2116 	if (status)
2117 		goto err_unroll;
2118 
2119 	/* Get recipe to profile map so that we can get the fv from lkups that
2120 	 * we read for a recipe from FW. Since we want to minimize the number of
2121 	 * times we make this FW call, just make one call and cache the copy
2122 	 * until a new recipe is added. This operation is only required the
2123 	 * first time to get the changes from FW. Then to search existing
2124 	 * entries we don't need to update the cache again until another recipe
2125 	 * gets added.
2126 	 */
2127 	if (*refresh_required) {
2128 		ice_get_recp_to_prof_map(hw);
2129 		*refresh_required = false;
2130 	}
2131 
2132 	/* Start populating all the entries for recps[rid] based on lkups from
2133 	 * firmware. Note that we are only creating the root recipe in our
2134 	 * database.
2135 	 */
2136 	lkup_exts = &recps[rid].lkup_exts;
2137 
2138 	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2139 		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2140 		struct ice_recp_grp_entry *rg_entry;
2141 		u8 i, prof, idx, prot = 0;
2142 		bool is_root;
2143 		u16 off = 0;
2144 
2145 		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2146 					GFP_KERNEL);
2147 		if (!rg_entry) {
2148 			status = -ENOMEM;
2149 			goto err_unroll;
2150 		}
2151 
2152 		idx = root_bufs.recipe_indx;
2153 		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2154 
2155 		/* Mark all result indices in this chain */
2156 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2157 			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2158 				result_bm);
2159 
2160 		/* get the first profile that is associated with rid */
2161 		prof = find_first_bit(recipe_to_profile[idx],
2162 				      ICE_MAX_NUM_PROFILES);
2163 		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2164 			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2165 
2166 			rg_entry->fv_idx[i] = lkup_indx;
2167 			rg_entry->fv_mask[i] =
2168 				le16_to_cpu(root_bufs.content.mask[i + 1]);
2169 
2170 			/* If the recipe is a chained recipe then all its
2171 			 * child recipe's result will have a result index.
2172 			 * To fill fv_words we should not use those result
2173 			 * index, we only need the protocol ids and offsets.
2174 			 * We will skip all the fv_idx which stores result
2175 			 * index in them. We also need to skip any fv_idx which
2176 			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2177 			 * valid offset value.
2178 			 */
2179 			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2180 			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2181 			    rg_entry->fv_idx[i] == 0)
2182 				continue;
2183 
2184 			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2185 					  rg_entry->fv_idx[i], &prot, &off);
2186 			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2187 			lkup_exts->fv_words[fv_word_idx].off = off;
2188 			lkup_exts->field_mask[fv_word_idx] =
2189 				rg_entry->fv_mask[i];
2190 			fv_word_idx++;
2191 		}
2192 		/* populate rg_list with the data from the child entry of this
2193 		 * recipe
2194 		 */
2195 		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2196 
2197 		/* Propagate some data to the recipe database */
2198 		recps[idx].is_root = !!is_root;
2199 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2200 		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2201 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2202 			recps[idx].chain_idx = root_bufs.content.result_indx &
2203 				~ICE_AQ_RECIPE_RESULT_EN;
2204 			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2205 		} else {
2206 			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2207 		}
2208 
2209 		if (!is_root)
2210 			continue;
2211 
2212 		/* Only do the following for root recipes entries */
2213 		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2214 		       sizeof(recps[idx].r_bitmap));
2215 		recps[idx].root_rid = root_bufs.content.rid &
2216 			~ICE_AQ_RECIPE_ID_IS_ROOT;
2217 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2218 	}
2219 
2220 	/* Complete initialization of the root recipe entry */
2221 	lkup_exts->n_val_words = fv_word_idx;
2222 	recps[rid].big_recp = (num_recps > 1);
2223 	recps[rid].n_grp_count = (u8)num_recps;
2224 	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2225 					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2226 					   GFP_KERNEL);
2227 	if (!recps[rid].root_buf) {
2228 		status = -ENOMEM;
2229 		goto err_unroll;
2230 	}
2231 
2232 	/* Copy result indexes */
2233 	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2234 	recps[rid].recp_created = true;
2235 
2236 err_unroll:
2237 	kfree(tmp);
2238 	return status;
2239 }
2240 
2241 /* ice_init_port_info - Initialize port_info with switch configuration data
2242  * @pi: pointer to port_info
2243  * @vsi_port_num: VSI number or port number
2244  * @type: Type of switch element (port or VSI)
2245  * @swid: switch ID of the switch the element is attached to
2246  * @pf_vf_num: PF or VF number
2247  * @is_vf: true if the element is a VF, false otherwise
2248  */
2249 static void
2250 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2251 		   u16 swid, u16 pf_vf_num, bool is_vf)
2252 {
2253 	switch (type) {
2254 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2255 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2256 		pi->sw_id = swid;
2257 		pi->pf_vf_num = pf_vf_num;
2258 		pi->is_vf = is_vf;
2259 		break;
2260 	default:
2261 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2262 		break;
2263 	}
2264 }
2265 
2266 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2267  * @hw: pointer to the hardware structure
2268  */
2269 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2270 {
2271 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2272 	u16 req_desc = 0;
2273 	u16 num_elems;
2274 	int status;
2275 	u16 i;
2276 
2277 	rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN,
2278 			    GFP_KERNEL);
2279 
2280 	if (!rbuf)
2281 		return -ENOMEM;
2282 
2283 	/* Multiple calls to ice_aq_get_sw_cfg may be required
2284 	 * to get all the switch configuration information. The need
2285 	 * for additional calls is indicated by ice_aq_get_sw_cfg
2286 	 * writing a non-zero value in req_desc
2287 	 */
2288 	do {
2289 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2290 
2291 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2292 					   &req_desc, &num_elems, NULL);
2293 
2294 		if (status)
2295 			break;
2296 
2297 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2298 			u16 pf_vf_num, swid, vsi_port_num;
2299 			bool is_vf = false;
2300 			u8 res_type;
2301 
2302 			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2303 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2304 
2305 			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2306 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2307 
2308 			swid = le16_to_cpu(ele->swid);
2309 
2310 			if (le16_to_cpu(ele->pf_vf_num) &
2311 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2312 				is_vf = true;
2313 
2314 			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2315 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2316 
2317 			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2318 				/* FW VSI is not needed. Just continue. */
2319 				continue;
2320 			}
2321 
2322 			ice_init_port_info(hw->port_info, vsi_port_num,
2323 					   res_type, swid, pf_vf_num, is_vf);
2324 		}
2325 	} while (req_desc && !status);
2326 
2327 	devm_kfree(ice_hw_to_dev(hw), rbuf);
2328 	return status;
2329 }
2330 
2331 /**
2332  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2333  * @hw: pointer to the hardware structure
2334  * @fi: filter info structure to fill/update
2335  *
2336  * This helper function populates the lb_en and lan_en elements of the provided
2337  * ice_fltr_info struct using the switch's type and characteristics of the
2338  * switch rule being configured.
2339  */
2340 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2341 {
2342 	fi->lb_en = false;
2343 	fi->lan_en = false;
2344 	if ((fi->flag & ICE_FLTR_TX) &&
2345 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2346 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2347 	     fi->fltr_act == ICE_FWD_TO_Q ||
2348 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2349 		/* Setting LB for prune actions will result in replicated
2350 		 * packets to the internal switch that will be dropped.
2351 		 */
2352 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2353 			fi->lb_en = true;
2354 
2355 		/* Set lan_en to TRUE if
2356 		 * 1. The switch is a VEB AND
2357 		 * 2
2358 		 * 2.1 The lookup is a directional lookup like ethertype,
2359 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2360 		 * and default-port OR
2361 		 * 2.2 The lookup is VLAN, OR
2362 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2363 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2364 		 *
2365 		 * OR
2366 		 *
2367 		 * The switch is a VEPA.
2368 		 *
2369 		 * In all other cases, the LAN enable has to be set to false.
2370 		 */
2371 		if (hw->evb_veb) {
2372 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2373 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2374 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2375 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2376 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2377 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2378 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2379 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2380 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2381 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2382 				fi->lan_en = true;
2383 		} else {
2384 			fi->lan_en = true;
2385 		}
2386 	}
2387 }
2388 
2389 /**
2390  * ice_fill_sw_rule - Helper function to fill switch rule structure
2391  * @hw: pointer to the hardware structure
2392  * @f_info: entry containing packet forwarding information
2393  * @s_rule: switch rule structure to be filled in based on mac_entry
2394  * @opc: switch rules population command type - pass in the command opcode
2395  */
2396 static void
2397 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2398 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2399 		 enum ice_adminq_opc opc)
2400 {
2401 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2402 	u16 vlan_tpid = ETH_P_8021Q;
2403 	void *daddr = NULL;
2404 	u16 eth_hdr_sz;
2405 	u8 *eth_hdr;
2406 	u32 act = 0;
2407 	__be16 *off;
2408 	u8 q_rgn;
2409 
2410 	if (opc == ice_aqc_opc_remove_sw_rules) {
2411 		s_rule->act = 0;
2412 		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2413 		s_rule->hdr_len = 0;
2414 		return;
2415 	}
2416 
2417 	eth_hdr_sz = sizeof(dummy_eth_header);
2418 	eth_hdr = s_rule->hdr_data;
2419 
2420 	/* initialize the ether header with a dummy header */
2421 	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2422 	ice_fill_sw_info(hw, f_info);
2423 
2424 	switch (f_info->fltr_act) {
2425 	case ICE_FWD_TO_VSI:
2426 		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2427 			ICE_SINGLE_ACT_VSI_ID_M;
2428 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2429 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2430 				ICE_SINGLE_ACT_VALID_BIT;
2431 		break;
2432 	case ICE_FWD_TO_VSI_LIST:
2433 		act |= ICE_SINGLE_ACT_VSI_LIST;
2434 		act |= (f_info->fwd_id.vsi_list_id <<
2435 			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2436 			ICE_SINGLE_ACT_VSI_LIST_ID_M;
2437 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2438 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2439 				ICE_SINGLE_ACT_VALID_BIT;
2440 		break;
2441 	case ICE_FWD_TO_Q:
2442 		act |= ICE_SINGLE_ACT_TO_Q;
2443 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2444 			ICE_SINGLE_ACT_Q_INDEX_M;
2445 		break;
2446 	case ICE_DROP_PACKET:
2447 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2448 			ICE_SINGLE_ACT_VALID_BIT;
2449 		break;
2450 	case ICE_FWD_TO_QGRP:
2451 		q_rgn = f_info->qgrp_size > 0 ?
2452 			(u8)ilog2(f_info->qgrp_size) : 0;
2453 		act |= ICE_SINGLE_ACT_TO_Q;
2454 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2455 			ICE_SINGLE_ACT_Q_INDEX_M;
2456 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2457 			ICE_SINGLE_ACT_Q_REGION_M;
2458 		break;
2459 	default:
2460 		return;
2461 	}
2462 
2463 	if (f_info->lb_en)
2464 		act |= ICE_SINGLE_ACT_LB_ENABLE;
2465 	if (f_info->lan_en)
2466 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2467 
2468 	switch (f_info->lkup_type) {
2469 	case ICE_SW_LKUP_MAC:
2470 		daddr = f_info->l_data.mac.mac_addr;
2471 		break;
2472 	case ICE_SW_LKUP_VLAN:
2473 		vlan_id = f_info->l_data.vlan.vlan_id;
2474 		if (f_info->l_data.vlan.tpid_valid)
2475 			vlan_tpid = f_info->l_data.vlan.tpid;
2476 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2477 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2478 			act |= ICE_SINGLE_ACT_PRUNE;
2479 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2480 		}
2481 		break;
2482 	case ICE_SW_LKUP_ETHERTYPE_MAC:
2483 		daddr = f_info->l_data.ethertype_mac.mac_addr;
2484 		fallthrough;
2485 	case ICE_SW_LKUP_ETHERTYPE:
2486 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2487 		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2488 		break;
2489 	case ICE_SW_LKUP_MAC_VLAN:
2490 		daddr = f_info->l_data.mac_vlan.mac_addr;
2491 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2492 		break;
2493 	case ICE_SW_LKUP_PROMISC_VLAN:
2494 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2495 		fallthrough;
2496 	case ICE_SW_LKUP_PROMISC:
2497 		daddr = f_info->l_data.mac_vlan.mac_addr;
2498 		break;
2499 	default:
2500 		break;
2501 	}
2502 
2503 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2504 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2505 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2506 
2507 	/* Recipe set depending on lookup type */
2508 	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2509 	s_rule->src = cpu_to_le16(f_info->src);
2510 	s_rule->act = cpu_to_le32(act);
2511 
2512 	if (daddr)
2513 		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2514 
2515 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2516 		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2517 		*off = cpu_to_be16(vlan_id);
2518 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2519 		*off = cpu_to_be16(vlan_tpid);
2520 	}
2521 
2522 	/* Create the switch rule with the final dummy Ethernet header */
2523 	if (opc != ice_aqc_opc_update_sw_rules)
2524 		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2525 }
2526 
2527 /**
2528  * ice_add_marker_act
2529  * @hw: pointer to the hardware structure
2530  * @m_ent: the management entry for which sw marker needs to be added
2531  * @sw_marker: sw marker to tag the Rx descriptor with
2532  * @l_id: large action resource ID
2533  *
2534  * Create a large action to hold software marker and update the switch rule
2535  * entry pointed by m_ent with newly created large action
2536  */
2537 static int
2538 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2539 		   u16 sw_marker, u16 l_id)
2540 {
2541 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2542 	struct ice_sw_rule_lg_act *lg_act;
2543 	/* For software marker we need 3 large actions
2544 	 * 1. FWD action: FWD TO VSI or VSI LIST
2545 	 * 2. GENERIC VALUE action to hold the profile ID
2546 	 * 3. GENERIC VALUE action to hold the software marker ID
2547 	 */
2548 	const u16 num_lg_acts = 3;
2549 	u16 lg_act_size;
2550 	u16 rules_size;
2551 	int status;
2552 	u32 act;
2553 	u16 id;
2554 
2555 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2556 		return -EINVAL;
2557 
2558 	/* Create two back-to-back switch rules and submit them to the HW using
2559 	 * one memory buffer:
2560 	 *    1. Large Action
2561 	 *    2. Look up Tx Rx
2562 	 */
2563 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2564 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2565 	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2566 	if (!lg_act)
2567 		return -ENOMEM;
2568 
2569 	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2570 
2571 	/* Fill in the first switch rule i.e. large action */
2572 	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2573 	lg_act->index = cpu_to_le16(l_id);
2574 	lg_act->size = cpu_to_le16(num_lg_acts);
2575 
2576 	/* First action VSI forwarding or VSI list forwarding depending on how
2577 	 * many VSIs
2578 	 */
2579 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2580 		m_ent->fltr_info.fwd_id.hw_vsi_id;
2581 
2582 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2583 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2584 	if (m_ent->vsi_count > 1)
2585 		act |= ICE_LG_ACT_VSI_LIST;
2586 	lg_act->act[0] = cpu_to_le32(act);
2587 
2588 	/* Second action descriptor type */
2589 	act = ICE_LG_ACT_GENERIC;
2590 
2591 	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2592 	lg_act->act[1] = cpu_to_le32(act);
2593 
2594 	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2595 	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2596 
2597 	/* Third action Marker value */
2598 	act |= ICE_LG_ACT_GENERIC;
2599 	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2600 		ICE_LG_ACT_GENERIC_VALUE_M;
2601 
2602 	lg_act->act[2] = cpu_to_le32(act);
2603 
2604 	/* call the fill switch rule to fill the lookup Tx Rx structure */
2605 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2606 			 ice_aqc_opc_update_sw_rules);
2607 
2608 	/* Update the action to point to the large action ID */
2609 	rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2610 				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2611 				  ICE_SINGLE_ACT_PTR_VAL_M));
2612 
2613 	/* Use the filter rule ID of the previously created rule with single
2614 	 * act. Once the update happens, hardware will treat this as large
2615 	 * action
2616 	 */
2617 	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2618 
2619 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2620 				 ice_aqc_opc_update_sw_rules, NULL);
2621 	if (!status) {
2622 		m_ent->lg_act_idx = l_id;
2623 		m_ent->sw_marker_id = sw_marker;
2624 	}
2625 
2626 	devm_kfree(ice_hw_to_dev(hw), lg_act);
2627 	return status;
2628 }
2629 
2630 /**
2631  * ice_create_vsi_list_map
2632  * @hw: pointer to the hardware structure
2633  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2634  * @num_vsi: number of VSI handles in the array
2635  * @vsi_list_id: VSI list ID generated as part of allocate resource
2636  *
2637  * Helper function to create a new entry of VSI list ID to VSI mapping
2638  * using the given VSI list ID
2639  */
2640 static struct ice_vsi_list_map_info *
2641 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2642 			u16 vsi_list_id)
2643 {
2644 	struct ice_switch_info *sw = hw->switch_info;
2645 	struct ice_vsi_list_map_info *v_map;
2646 	int i;
2647 
2648 	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2649 	if (!v_map)
2650 		return NULL;
2651 
2652 	v_map->vsi_list_id = vsi_list_id;
2653 	v_map->ref_cnt = 1;
2654 	for (i = 0; i < num_vsi; i++)
2655 		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2656 
2657 	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2658 	return v_map;
2659 }
2660 
2661 /**
2662  * ice_update_vsi_list_rule
2663  * @hw: pointer to the hardware structure
2664  * @vsi_handle_arr: array of VSI handles to form a VSI list
2665  * @num_vsi: number of VSI handles in the array
2666  * @vsi_list_id: VSI list ID generated as part of allocate resource
2667  * @remove: Boolean value to indicate if this is a remove action
2668  * @opc: switch rules population command type - pass in the command opcode
2669  * @lkup_type: lookup type of the filter
2670  *
2671  * Call AQ command to add a new switch rule or update existing switch rule
2672  * using the given VSI list ID
2673  */
2674 static int
2675 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2676 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2677 			 enum ice_sw_lkup_type lkup_type)
2678 {
2679 	struct ice_sw_rule_vsi_list *s_rule;
2680 	u16 s_rule_size;
2681 	u16 rule_type;
2682 	int status;
2683 	int i;
2684 
2685 	if (!num_vsi)
2686 		return -EINVAL;
2687 
2688 	if (lkup_type == ICE_SW_LKUP_MAC ||
2689 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2690 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2691 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2692 	    lkup_type == ICE_SW_LKUP_PROMISC ||
2693 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2694 	    lkup_type == ICE_SW_LKUP_DFLT)
2695 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2696 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2697 	else if (lkup_type == ICE_SW_LKUP_VLAN)
2698 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2699 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2700 	else
2701 		return -EINVAL;
2702 
2703 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2704 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2705 	if (!s_rule)
2706 		return -ENOMEM;
2707 	for (i = 0; i < num_vsi; i++) {
2708 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2709 			status = -EINVAL;
2710 			goto exit;
2711 		}
2712 		/* AQ call requires hw_vsi_id(s) */
2713 		s_rule->vsi[i] =
2714 			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2715 	}
2716 
2717 	s_rule->hdr.type = cpu_to_le16(rule_type);
2718 	s_rule->number_vsi = cpu_to_le16(num_vsi);
2719 	s_rule->index = cpu_to_le16(vsi_list_id);
2720 
2721 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2722 
2723 exit:
2724 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2725 	return status;
2726 }
2727 
2728 /**
2729  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2730  * @hw: pointer to the HW struct
2731  * @vsi_handle_arr: array of VSI handles to form a VSI list
2732  * @num_vsi: number of VSI handles in the array
2733  * @vsi_list_id: stores the ID of the VSI list to be created
2734  * @lkup_type: switch rule filter's lookup type
2735  */
2736 static int
2737 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2738 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2739 {
2740 	int status;
2741 
2742 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2743 					    ice_aqc_opc_alloc_res);
2744 	if (status)
2745 		return status;
2746 
2747 	/* Update the newly created VSI list to include the specified VSIs */
2748 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2749 					*vsi_list_id, false,
2750 					ice_aqc_opc_add_sw_rules, lkup_type);
2751 }
2752 
2753 /**
2754  * ice_create_pkt_fwd_rule
2755  * @hw: pointer to the hardware structure
2756  * @f_entry: entry containing packet forwarding information
2757  *
2758  * Create switch rule with given filter information and add an entry
2759  * to the corresponding filter management list to track this switch rule
2760  * and VSI mapping
2761  */
2762 static int
2763 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2764 			struct ice_fltr_list_entry *f_entry)
2765 {
2766 	struct ice_fltr_mgmt_list_entry *fm_entry;
2767 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2768 	enum ice_sw_lkup_type l_type;
2769 	struct ice_sw_recipe *recp;
2770 	int status;
2771 
2772 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2773 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2774 			      GFP_KERNEL);
2775 	if (!s_rule)
2776 		return -ENOMEM;
2777 	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2778 				GFP_KERNEL);
2779 	if (!fm_entry) {
2780 		status = -ENOMEM;
2781 		goto ice_create_pkt_fwd_rule_exit;
2782 	}
2783 
2784 	fm_entry->fltr_info = f_entry->fltr_info;
2785 
2786 	/* Initialize all the fields for the management entry */
2787 	fm_entry->vsi_count = 1;
2788 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2789 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2790 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2791 
2792 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2793 			 ice_aqc_opc_add_sw_rules);
2794 
2795 	status = ice_aq_sw_rules(hw, s_rule,
2796 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2797 				 ice_aqc_opc_add_sw_rules, NULL);
2798 	if (status) {
2799 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2800 		goto ice_create_pkt_fwd_rule_exit;
2801 	}
2802 
2803 	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2804 	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2805 
2806 	/* The book keeping entries will get removed when base driver
2807 	 * calls remove filter AQ command
2808 	 */
2809 	l_type = fm_entry->fltr_info.lkup_type;
2810 	recp = &hw->switch_info->recp_list[l_type];
2811 	list_add(&fm_entry->list_entry, &recp->filt_rules);
2812 
2813 ice_create_pkt_fwd_rule_exit:
2814 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2815 	return status;
2816 }
2817 
2818 /**
2819  * ice_update_pkt_fwd_rule
2820  * @hw: pointer to the hardware structure
2821  * @f_info: filter information for switch rule
2822  *
2823  * Call AQ command to update a previously created switch rule with a
2824  * VSI list ID
2825  */
2826 static int
2827 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2828 {
2829 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2830 	int status;
2831 
2832 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2833 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2834 			      GFP_KERNEL);
2835 	if (!s_rule)
2836 		return -ENOMEM;
2837 
2838 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2839 
2840 	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2841 
2842 	/* Update switch rule with new rule set to forward VSI list */
2843 	status = ice_aq_sw_rules(hw, s_rule,
2844 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2845 				 ice_aqc_opc_update_sw_rules, NULL);
2846 
2847 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2848 	return status;
2849 }
2850 
2851 /**
2852  * ice_update_sw_rule_bridge_mode
2853  * @hw: pointer to the HW struct
2854  *
2855  * Updates unicast switch filter rules based on VEB/VEPA mode
2856  */
2857 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2858 {
2859 	struct ice_switch_info *sw = hw->switch_info;
2860 	struct ice_fltr_mgmt_list_entry *fm_entry;
2861 	struct list_head *rule_head;
2862 	struct mutex *rule_lock; /* Lock to protect filter rule list */
2863 	int status = 0;
2864 
2865 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2866 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2867 
2868 	mutex_lock(rule_lock);
2869 	list_for_each_entry(fm_entry, rule_head, list_entry) {
2870 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2871 		u8 *addr = fi->l_data.mac.mac_addr;
2872 
2873 		/* Update unicast Tx rules to reflect the selected
2874 		 * VEB/VEPA mode
2875 		 */
2876 		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2877 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2878 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2879 		     fi->fltr_act == ICE_FWD_TO_Q ||
2880 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2881 			status = ice_update_pkt_fwd_rule(hw, fi);
2882 			if (status)
2883 				break;
2884 		}
2885 	}
2886 
2887 	mutex_unlock(rule_lock);
2888 
2889 	return status;
2890 }
2891 
2892 /**
2893  * ice_add_update_vsi_list
2894  * @hw: pointer to the hardware structure
2895  * @m_entry: pointer to current filter management list entry
2896  * @cur_fltr: filter information from the book keeping entry
2897  * @new_fltr: filter information with the new VSI to be added
2898  *
2899  * Call AQ command to add or update previously created VSI list with new VSI.
2900  *
2901  * Helper function to do book keeping associated with adding filter information
2902  * The algorithm to do the book keeping is described below :
2903  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2904  *	if only one VSI has been added till now
2905  *		Allocate a new VSI list and add two VSIs
2906  *		to this list using switch rule command
2907  *		Update the previously created switch rule with the
2908  *		newly created VSI list ID
2909  *	if a VSI list was previously created
2910  *		Add the new VSI to the previously created VSI list set
2911  *		using the update switch rule command
2912  */
2913 static int
2914 ice_add_update_vsi_list(struct ice_hw *hw,
2915 			struct ice_fltr_mgmt_list_entry *m_entry,
2916 			struct ice_fltr_info *cur_fltr,
2917 			struct ice_fltr_info *new_fltr)
2918 {
2919 	u16 vsi_list_id = 0;
2920 	int status = 0;
2921 
2922 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2923 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2924 		return -EOPNOTSUPP;
2925 
2926 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2927 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2928 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2929 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2930 		return -EOPNOTSUPP;
2931 
2932 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2933 		/* Only one entry existed in the mapping and it was not already
2934 		 * a part of a VSI list. So, create a VSI list with the old and
2935 		 * new VSIs.
2936 		 */
2937 		struct ice_fltr_info tmp_fltr;
2938 		u16 vsi_handle_arr[2];
2939 
2940 		/* A rule already exists with the new VSI being added */
2941 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
2942 			return -EEXIST;
2943 
2944 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
2945 		vsi_handle_arr[1] = new_fltr->vsi_handle;
2946 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2947 						  &vsi_list_id,
2948 						  new_fltr->lkup_type);
2949 		if (status)
2950 			return status;
2951 
2952 		tmp_fltr = *new_fltr;
2953 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
2954 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2955 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2956 		/* Update the previous switch rule of "MAC forward to VSI" to
2957 		 * "MAC fwd to VSI list"
2958 		 */
2959 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2960 		if (status)
2961 			return status;
2962 
2963 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
2964 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2965 		m_entry->vsi_list_info =
2966 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2967 						vsi_list_id);
2968 
2969 		if (!m_entry->vsi_list_info)
2970 			return -ENOMEM;
2971 
2972 		/* If this entry was large action then the large action needs
2973 		 * to be updated to point to FWD to VSI list
2974 		 */
2975 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
2976 			status =
2977 			    ice_add_marker_act(hw, m_entry,
2978 					       m_entry->sw_marker_id,
2979 					       m_entry->lg_act_idx);
2980 	} else {
2981 		u16 vsi_handle = new_fltr->vsi_handle;
2982 		enum ice_adminq_opc opcode;
2983 
2984 		if (!m_entry->vsi_list_info)
2985 			return -EIO;
2986 
2987 		/* A rule already exists with the new VSI being added */
2988 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
2989 			return 0;
2990 
2991 		/* Update the previously created VSI list set with
2992 		 * the new VSI ID passed in
2993 		 */
2994 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
2995 		opcode = ice_aqc_opc_update_sw_rules;
2996 
2997 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
2998 						  vsi_list_id, false, opcode,
2999 						  new_fltr->lkup_type);
3000 		/* update VSI list mapping info with new VSI ID */
3001 		if (!status)
3002 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3003 	}
3004 	if (!status)
3005 		m_entry->vsi_count++;
3006 	return status;
3007 }
3008 
3009 /**
3010  * ice_find_rule_entry - Search a rule entry
3011  * @hw: pointer to the hardware structure
3012  * @recp_id: lookup type for which the specified rule needs to be searched
3013  * @f_info: rule information
3014  *
3015  * Helper function to search for a given rule entry
3016  * Returns pointer to entry storing the rule if found
3017  */
3018 static struct ice_fltr_mgmt_list_entry *
3019 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3020 {
3021 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3022 	struct ice_switch_info *sw = hw->switch_info;
3023 	struct list_head *list_head;
3024 
3025 	list_head = &sw->recp_list[recp_id].filt_rules;
3026 	list_for_each_entry(list_itr, list_head, list_entry) {
3027 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3028 			    sizeof(f_info->l_data)) &&
3029 		    f_info->flag == list_itr->fltr_info.flag) {
3030 			ret = list_itr;
3031 			break;
3032 		}
3033 	}
3034 	return ret;
3035 }
3036 
3037 /**
3038  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3039  * @hw: pointer to the hardware structure
3040  * @recp_id: lookup type for which VSI lists needs to be searched
3041  * @vsi_handle: VSI handle to be found in VSI list
3042  * @vsi_list_id: VSI list ID found containing vsi_handle
3043  *
3044  * Helper function to search a VSI list with single entry containing given VSI
3045  * handle element. This can be extended further to search VSI list with more
3046  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3047  */
3048 static struct ice_vsi_list_map_info *
3049 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3050 			u16 *vsi_list_id)
3051 {
3052 	struct ice_vsi_list_map_info *map_info = NULL;
3053 	struct ice_switch_info *sw = hw->switch_info;
3054 	struct ice_fltr_mgmt_list_entry *list_itr;
3055 	struct list_head *list_head;
3056 
3057 	list_head = &sw->recp_list[recp_id].filt_rules;
3058 	list_for_each_entry(list_itr, list_head, list_entry) {
3059 		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3060 			map_info = list_itr->vsi_list_info;
3061 			if (test_bit(vsi_handle, map_info->vsi_map)) {
3062 				*vsi_list_id = map_info->vsi_list_id;
3063 				return map_info;
3064 			}
3065 		}
3066 	}
3067 	return NULL;
3068 }
3069 
3070 /**
3071  * ice_add_rule_internal - add rule for a given lookup type
3072  * @hw: pointer to the hardware structure
3073  * @recp_id: lookup type (recipe ID) for which rule has to be added
3074  * @f_entry: structure containing MAC forwarding information
3075  *
3076  * Adds or updates the rule lists for a given recipe
3077  */
3078 static int
3079 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3080 		      struct ice_fltr_list_entry *f_entry)
3081 {
3082 	struct ice_switch_info *sw = hw->switch_info;
3083 	struct ice_fltr_info *new_fltr, *cur_fltr;
3084 	struct ice_fltr_mgmt_list_entry *m_entry;
3085 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3086 	int status = 0;
3087 
3088 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3089 		return -EINVAL;
3090 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3091 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3092 
3093 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3094 
3095 	mutex_lock(rule_lock);
3096 	new_fltr = &f_entry->fltr_info;
3097 	if (new_fltr->flag & ICE_FLTR_RX)
3098 		new_fltr->src = hw->port_info->lport;
3099 	else if (new_fltr->flag & ICE_FLTR_TX)
3100 		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3101 
3102 	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3103 	if (!m_entry) {
3104 		mutex_unlock(rule_lock);
3105 		return ice_create_pkt_fwd_rule(hw, f_entry);
3106 	}
3107 
3108 	cur_fltr = &m_entry->fltr_info;
3109 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3110 	mutex_unlock(rule_lock);
3111 
3112 	return status;
3113 }
3114 
3115 /**
3116  * ice_remove_vsi_list_rule
3117  * @hw: pointer to the hardware structure
3118  * @vsi_list_id: VSI list ID generated as part of allocate resource
3119  * @lkup_type: switch rule filter lookup type
3120  *
3121  * The VSI list should be emptied before this function is called to remove the
3122  * VSI list.
3123  */
3124 static int
3125 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3126 			 enum ice_sw_lkup_type lkup_type)
3127 {
3128 	struct ice_sw_rule_vsi_list *s_rule;
3129 	u16 s_rule_size;
3130 	int status;
3131 
3132 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3133 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3134 	if (!s_rule)
3135 		return -ENOMEM;
3136 
3137 	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3138 	s_rule->index = cpu_to_le16(vsi_list_id);
3139 
3140 	/* Free the vsi_list resource that we allocated. It is assumed that the
3141 	 * list is empty at this point.
3142 	 */
3143 	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3144 					    ice_aqc_opc_free_res);
3145 
3146 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3147 	return status;
3148 }
3149 
3150 /**
3151  * ice_rem_update_vsi_list
3152  * @hw: pointer to the hardware structure
3153  * @vsi_handle: VSI handle of the VSI to remove
3154  * @fm_list: filter management entry for which the VSI list management needs to
3155  *           be done
3156  */
3157 static int
3158 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3159 			struct ice_fltr_mgmt_list_entry *fm_list)
3160 {
3161 	enum ice_sw_lkup_type lkup_type;
3162 	u16 vsi_list_id;
3163 	int status = 0;
3164 
3165 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3166 	    fm_list->vsi_count == 0)
3167 		return -EINVAL;
3168 
3169 	/* A rule with the VSI being removed does not exist */
3170 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3171 		return -ENOENT;
3172 
3173 	lkup_type = fm_list->fltr_info.lkup_type;
3174 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3175 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3176 					  ice_aqc_opc_update_sw_rules,
3177 					  lkup_type);
3178 	if (status)
3179 		return status;
3180 
3181 	fm_list->vsi_count--;
3182 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3183 
3184 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3185 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3186 		struct ice_vsi_list_map_info *vsi_list_info =
3187 			fm_list->vsi_list_info;
3188 		u16 rem_vsi_handle;
3189 
3190 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3191 						ICE_MAX_VSI);
3192 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3193 			return -EIO;
3194 
3195 		/* Make sure VSI list is empty before removing it below */
3196 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3197 						  vsi_list_id, true,
3198 						  ice_aqc_opc_update_sw_rules,
3199 						  lkup_type);
3200 		if (status)
3201 			return status;
3202 
3203 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3204 		tmp_fltr_info.fwd_id.hw_vsi_id =
3205 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3206 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3207 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3208 		if (status) {
3209 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3210 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3211 			return status;
3212 		}
3213 
3214 		fm_list->fltr_info = tmp_fltr_info;
3215 	}
3216 
3217 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3218 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3219 		struct ice_vsi_list_map_info *vsi_list_info =
3220 			fm_list->vsi_list_info;
3221 
3222 		/* Remove the VSI list since it is no longer used */
3223 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3224 		if (status) {
3225 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3226 				  vsi_list_id, status);
3227 			return status;
3228 		}
3229 
3230 		list_del(&vsi_list_info->list_entry);
3231 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3232 		fm_list->vsi_list_info = NULL;
3233 	}
3234 
3235 	return status;
3236 }
3237 
3238 /**
3239  * ice_remove_rule_internal - Remove a filter rule of a given type
3240  * @hw: pointer to the hardware structure
3241  * @recp_id: recipe ID for which the rule needs to removed
3242  * @f_entry: rule entry containing filter information
3243  */
3244 static int
3245 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3246 			 struct ice_fltr_list_entry *f_entry)
3247 {
3248 	struct ice_switch_info *sw = hw->switch_info;
3249 	struct ice_fltr_mgmt_list_entry *list_elem;
3250 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3251 	bool remove_rule = false;
3252 	u16 vsi_handle;
3253 	int status = 0;
3254 
3255 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3256 		return -EINVAL;
3257 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3258 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3259 
3260 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3261 	mutex_lock(rule_lock);
3262 	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3263 	if (!list_elem) {
3264 		status = -ENOENT;
3265 		goto exit;
3266 	}
3267 
3268 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3269 		remove_rule = true;
3270 	} else if (!list_elem->vsi_list_info) {
3271 		status = -ENOENT;
3272 		goto exit;
3273 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3274 		/* a ref_cnt > 1 indicates that the vsi_list is being
3275 		 * shared by multiple rules. Decrement the ref_cnt and
3276 		 * remove this rule, but do not modify the list, as it
3277 		 * is in-use by other rules.
3278 		 */
3279 		list_elem->vsi_list_info->ref_cnt--;
3280 		remove_rule = true;
3281 	} else {
3282 		/* a ref_cnt of 1 indicates the vsi_list is only used
3283 		 * by one rule. However, the original removal request is only
3284 		 * for a single VSI. Update the vsi_list first, and only
3285 		 * remove the rule if there are no further VSIs in this list.
3286 		 */
3287 		vsi_handle = f_entry->fltr_info.vsi_handle;
3288 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3289 		if (status)
3290 			goto exit;
3291 		/* if VSI count goes to zero after updating the VSI list */
3292 		if (list_elem->vsi_count == 0)
3293 			remove_rule = true;
3294 	}
3295 
3296 	if (remove_rule) {
3297 		/* Remove the lookup rule */
3298 		struct ice_sw_rule_lkup_rx_tx *s_rule;
3299 
3300 		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3301 				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3302 				      GFP_KERNEL);
3303 		if (!s_rule) {
3304 			status = -ENOMEM;
3305 			goto exit;
3306 		}
3307 
3308 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3309 				 ice_aqc_opc_remove_sw_rules);
3310 
3311 		status = ice_aq_sw_rules(hw, s_rule,
3312 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3313 					 1, ice_aqc_opc_remove_sw_rules, NULL);
3314 
3315 		/* Remove a book keeping from the list */
3316 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3317 
3318 		if (status)
3319 			goto exit;
3320 
3321 		list_del(&list_elem->list_entry);
3322 		devm_kfree(ice_hw_to_dev(hw), list_elem);
3323 	}
3324 exit:
3325 	mutex_unlock(rule_lock);
3326 	return status;
3327 }
3328 
3329 /**
3330  * ice_mac_fltr_exist - does this MAC filter exist for given VSI
3331  * @hw: pointer to the hardware structure
3332  * @mac: MAC address to be checked (for MAC filter)
3333  * @vsi_handle: check MAC filter for this VSI
3334  */
3335 bool ice_mac_fltr_exist(struct ice_hw *hw, u8 *mac, u16 vsi_handle)
3336 {
3337 	struct ice_fltr_mgmt_list_entry *entry;
3338 	struct list_head *rule_head;
3339 	struct ice_switch_info *sw;
3340 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3341 	u16 hw_vsi_id;
3342 
3343 	if (!ice_is_vsi_valid(hw, vsi_handle))
3344 		return false;
3345 
3346 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3347 	sw = hw->switch_info;
3348 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3349 	if (!rule_head)
3350 		return false;
3351 
3352 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3353 	mutex_lock(rule_lock);
3354 	list_for_each_entry(entry, rule_head, list_entry) {
3355 		struct ice_fltr_info *f_info = &entry->fltr_info;
3356 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3357 
3358 		if (is_zero_ether_addr(mac_addr))
3359 			continue;
3360 
3361 		if (f_info->flag != ICE_FLTR_TX ||
3362 		    f_info->src_id != ICE_SRC_ID_VSI ||
3363 		    f_info->lkup_type != ICE_SW_LKUP_MAC ||
3364 		    f_info->fltr_act != ICE_FWD_TO_VSI ||
3365 		    hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3366 			continue;
3367 
3368 		if (ether_addr_equal(mac, mac_addr)) {
3369 			mutex_unlock(rule_lock);
3370 			return true;
3371 		}
3372 	}
3373 	mutex_unlock(rule_lock);
3374 	return false;
3375 }
3376 
3377 /**
3378  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3379  * @hw: pointer to the hardware structure
3380  * @vlan_id: VLAN ID
3381  * @vsi_handle: check MAC filter for this VSI
3382  */
3383 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3384 {
3385 	struct ice_fltr_mgmt_list_entry *entry;
3386 	struct list_head *rule_head;
3387 	struct ice_switch_info *sw;
3388 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3389 	u16 hw_vsi_id;
3390 
3391 	if (vlan_id > ICE_MAX_VLAN_ID)
3392 		return false;
3393 
3394 	if (!ice_is_vsi_valid(hw, vsi_handle))
3395 		return false;
3396 
3397 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3398 	sw = hw->switch_info;
3399 	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3400 	if (!rule_head)
3401 		return false;
3402 
3403 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3404 	mutex_lock(rule_lock);
3405 	list_for_each_entry(entry, rule_head, list_entry) {
3406 		struct ice_fltr_info *f_info = &entry->fltr_info;
3407 		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3408 		struct ice_vsi_list_map_info *map_info;
3409 
3410 		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3411 			continue;
3412 
3413 		if (f_info->flag != ICE_FLTR_TX ||
3414 		    f_info->src_id != ICE_SRC_ID_VSI ||
3415 		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3416 			continue;
3417 
3418 		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3419 		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3420 		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3421 			continue;
3422 
3423 		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3424 			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3425 				continue;
3426 		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3427 			/* If filter_action is FWD_TO_VSI_LIST, make sure
3428 			 * that VSI being checked is part of VSI list
3429 			 */
3430 			if (entry->vsi_count == 1 &&
3431 			    entry->vsi_list_info) {
3432 				map_info = entry->vsi_list_info;
3433 				if (!test_bit(vsi_handle, map_info->vsi_map))
3434 					continue;
3435 			}
3436 		}
3437 
3438 		if (vlan_id == entry_vlan_id) {
3439 			mutex_unlock(rule_lock);
3440 			return true;
3441 		}
3442 	}
3443 	mutex_unlock(rule_lock);
3444 
3445 	return false;
3446 }
3447 
3448 /**
3449  * ice_add_mac - Add a MAC address based filter rule
3450  * @hw: pointer to the hardware structure
3451  * @m_list: list of MAC addresses and forwarding information
3452  */
3453 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3454 {
3455 	struct ice_fltr_list_entry *m_list_itr;
3456 	int status = 0;
3457 
3458 	if (!m_list || !hw)
3459 		return -EINVAL;
3460 
3461 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3462 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3463 		u16 vsi_handle;
3464 		u16 hw_vsi_id;
3465 
3466 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3467 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3468 		if (!ice_is_vsi_valid(hw, vsi_handle))
3469 			return -EINVAL;
3470 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3471 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3472 		/* update the src in case it is VSI num */
3473 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3474 			return -EINVAL;
3475 		m_list_itr->fltr_info.src = hw_vsi_id;
3476 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3477 		    is_zero_ether_addr(add))
3478 			return -EINVAL;
3479 
3480 		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3481 							   m_list_itr);
3482 		if (m_list_itr->status)
3483 			return m_list_itr->status;
3484 	}
3485 
3486 	return status;
3487 }
3488 
3489 /**
3490  * ice_add_vlan_internal - Add one VLAN based filter rule
3491  * @hw: pointer to the hardware structure
3492  * @f_entry: filter entry containing one VLAN information
3493  */
3494 static int
3495 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3496 {
3497 	struct ice_switch_info *sw = hw->switch_info;
3498 	struct ice_fltr_mgmt_list_entry *v_list_itr;
3499 	struct ice_fltr_info *new_fltr, *cur_fltr;
3500 	enum ice_sw_lkup_type lkup_type;
3501 	u16 vsi_list_id = 0, vsi_handle;
3502 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3503 	int status = 0;
3504 
3505 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3506 		return -EINVAL;
3507 
3508 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3509 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3510 	new_fltr = &f_entry->fltr_info;
3511 
3512 	/* VLAN ID should only be 12 bits */
3513 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3514 		return -EINVAL;
3515 
3516 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3517 		return -EINVAL;
3518 
3519 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3520 	lkup_type = new_fltr->lkup_type;
3521 	vsi_handle = new_fltr->vsi_handle;
3522 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3523 	mutex_lock(rule_lock);
3524 	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3525 	if (!v_list_itr) {
3526 		struct ice_vsi_list_map_info *map_info = NULL;
3527 
3528 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3529 			/* All VLAN pruning rules use a VSI list. Check if
3530 			 * there is already a VSI list containing VSI that we
3531 			 * want to add. If found, use the same vsi_list_id for
3532 			 * this new VLAN rule or else create a new list.
3533 			 */
3534 			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3535 							   vsi_handle,
3536 							   &vsi_list_id);
3537 			if (!map_info) {
3538 				status = ice_create_vsi_list_rule(hw,
3539 								  &vsi_handle,
3540 								  1,
3541 								  &vsi_list_id,
3542 								  lkup_type);
3543 				if (status)
3544 					goto exit;
3545 			}
3546 			/* Convert the action to forwarding to a VSI list. */
3547 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3548 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3549 		}
3550 
3551 		status = ice_create_pkt_fwd_rule(hw, f_entry);
3552 		if (!status) {
3553 			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3554 							 new_fltr);
3555 			if (!v_list_itr) {
3556 				status = -ENOENT;
3557 				goto exit;
3558 			}
3559 			/* reuse VSI list for new rule and increment ref_cnt */
3560 			if (map_info) {
3561 				v_list_itr->vsi_list_info = map_info;
3562 				map_info->ref_cnt++;
3563 			} else {
3564 				v_list_itr->vsi_list_info =
3565 					ice_create_vsi_list_map(hw, &vsi_handle,
3566 								1, vsi_list_id);
3567 			}
3568 		}
3569 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3570 		/* Update existing VSI list to add new VSI ID only if it used
3571 		 * by one VLAN rule.
3572 		 */
3573 		cur_fltr = &v_list_itr->fltr_info;
3574 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3575 						 new_fltr);
3576 	} else {
3577 		/* If VLAN rule exists and VSI list being used by this rule is
3578 		 * referenced by more than 1 VLAN rule. Then create a new VSI
3579 		 * list appending previous VSI with new VSI and update existing
3580 		 * VLAN rule to point to new VSI list ID
3581 		 */
3582 		struct ice_fltr_info tmp_fltr;
3583 		u16 vsi_handle_arr[2];
3584 		u16 cur_handle;
3585 
3586 		/* Current implementation only supports reusing VSI list with
3587 		 * one VSI count. We should never hit below condition
3588 		 */
3589 		if (v_list_itr->vsi_count > 1 &&
3590 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3591 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3592 			status = -EIO;
3593 			goto exit;
3594 		}
3595 
3596 		cur_handle =
3597 			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3598 				       ICE_MAX_VSI);
3599 
3600 		/* A rule already exists with the new VSI being added */
3601 		if (cur_handle == vsi_handle) {
3602 			status = -EEXIST;
3603 			goto exit;
3604 		}
3605 
3606 		vsi_handle_arr[0] = cur_handle;
3607 		vsi_handle_arr[1] = vsi_handle;
3608 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3609 						  &vsi_list_id, lkup_type);
3610 		if (status)
3611 			goto exit;
3612 
3613 		tmp_fltr = v_list_itr->fltr_info;
3614 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3615 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3616 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3617 		/* Update the previous switch rule to a new VSI list which
3618 		 * includes current VSI that is requested
3619 		 */
3620 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3621 		if (status)
3622 			goto exit;
3623 
3624 		/* before overriding VSI list map info. decrement ref_cnt of
3625 		 * previous VSI list
3626 		 */
3627 		v_list_itr->vsi_list_info->ref_cnt--;
3628 
3629 		/* now update to newly created list */
3630 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3631 		v_list_itr->vsi_list_info =
3632 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3633 						vsi_list_id);
3634 		v_list_itr->vsi_count++;
3635 	}
3636 
3637 exit:
3638 	mutex_unlock(rule_lock);
3639 	return status;
3640 }
3641 
3642 /**
3643  * ice_add_vlan - Add VLAN based filter rule
3644  * @hw: pointer to the hardware structure
3645  * @v_list: list of VLAN entries and forwarding information
3646  */
3647 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3648 {
3649 	struct ice_fltr_list_entry *v_list_itr;
3650 
3651 	if (!v_list || !hw)
3652 		return -EINVAL;
3653 
3654 	list_for_each_entry(v_list_itr, v_list, list_entry) {
3655 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3656 			return -EINVAL;
3657 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3658 		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3659 		if (v_list_itr->status)
3660 			return v_list_itr->status;
3661 	}
3662 	return 0;
3663 }
3664 
3665 /**
3666  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3667  * @hw: pointer to the hardware structure
3668  * @em_list: list of ether type MAC filter, MAC is optional
3669  *
3670  * This function requires the caller to populate the entries in
3671  * the filter list with the necessary fields (including flags to
3672  * indicate Tx or Rx rules).
3673  */
3674 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3675 {
3676 	struct ice_fltr_list_entry *em_list_itr;
3677 
3678 	if (!em_list || !hw)
3679 		return -EINVAL;
3680 
3681 	list_for_each_entry(em_list_itr, em_list, list_entry) {
3682 		enum ice_sw_lkup_type l_type =
3683 			em_list_itr->fltr_info.lkup_type;
3684 
3685 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3686 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3687 			return -EINVAL;
3688 
3689 		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3690 							    em_list_itr);
3691 		if (em_list_itr->status)
3692 			return em_list_itr->status;
3693 	}
3694 	return 0;
3695 }
3696 
3697 /**
3698  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3699  * @hw: pointer to the hardware structure
3700  * @em_list: list of ethertype or ethertype MAC entries
3701  */
3702 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3703 {
3704 	struct ice_fltr_list_entry *em_list_itr, *tmp;
3705 
3706 	if (!em_list || !hw)
3707 		return -EINVAL;
3708 
3709 	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3710 		enum ice_sw_lkup_type l_type =
3711 			em_list_itr->fltr_info.lkup_type;
3712 
3713 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3714 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3715 			return -EINVAL;
3716 
3717 		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3718 							       em_list_itr);
3719 		if (em_list_itr->status)
3720 			return em_list_itr->status;
3721 	}
3722 	return 0;
3723 }
3724 
3725 /**
3726  * ice_rem_sw_rule_info
3727  * @hw: pointer to the hardware structure
3728  * @rule_head: pointer to the switch list structure that we want to delete
3729  */
3730 static void
3731 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3732 {
3733 	if (!list_empty(rule_head)) {
3734 		struct ice_fltr_mgmt_list_entry *entry;
3735 		struct ice_fltr_mgmt_list_entry *tmp;
3736 
3737 		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3738 			list_del(&entry->list_entry);
3739 			devm_kfree(ice_hw_to_dev(hw), entry);
3740 		}
3741 	}
3742 }
3743 
3744 /**
3745  * ice_rem_adv_rule_info
3746  * @hw: pointer to the hardware structure
3747  * @rule_head: pointer to the switch list structure that we want to delete
3748  */
3749 static void
3750 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3751 {
3752 	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3753 	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3754 
3755 	if (list_empty(rule_head))
3756 		return;
3757 
3758 	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3759 		list_del(&lst_itr->list_entry);
3760 		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3761 		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3762 	}
3763 }
3764 
3765 /**
3766  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3767  * @pi: pointer to the port_info structure
3768  * @vsi_handle: VSI handle to set as default
3769  * @set: true to add the above mentioned switch rule, false to remove it
3770  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3771  *
3772  * add filter rule to set/unset given VSI as default VSI for the switch
3773  * (represented by swid)
3774  */
3775 int
3776 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3777 		 u8 direction)
3778 {
3779 	struct ice_fltr_list_entry f_list_entry;
3780 	struct ice_fltr_info f_info;
3781 	struct ice_hw *hw = pi->hw;
3782 	u16 hw_vsi_id;
3783 	int status;
3784 
3785 	if (!ice_is_vsi_valid(hw, vsi_handle))
3786 		return -EINVAL;
3787 
3788 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3789 
3790 	memset(&f_info, 0, sizeof(f_info));
3791 
3792 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3793 	f_info.flag = direction;
3794 	f_info.fltr_act = ICE_FWD_TO_VSI;
3795 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3796 	f_info.vsi_handle = vsi_handle;
3797 
3798 	if (f_info.flag & ICE_FLTR_RX) {
3799 		f_info.src = hw->port_info->lport;
3800 		f_info.src_id = ICE_SRC_ID_LPORT;
3801 	} else if (f_info.flag & ICE_FLTR_TX) {
3802 		f_info.src_id = ICE_SRC_ID_VSI;
3803 		f_info.src = hw_vsi_id;
3804 	}
3805 	f_list_entry.fltr_info = f_info;
3806 
3807 	if (set)
3808 		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3809 					       &f_list_entry);
3810 	else
3811 		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3812 						  &f_list_entry);
3813 
3814 	return status;
3815 }
3816 
3817 /**
3818  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3819  * @fm_entry: filter entry to inspect
3820  * @vsi_handle: VSI handle to compare with filter info
3821  */
3822 static bool
3823 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3824 {
3825 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3826 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3827 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3828 		 fm_entry->vsi_list_info &&
3829 		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3830 }
3831 
3832 /**
3833  * ice_check_if_dflt_vsi - check if VSI is default VSI
3834  * @pi: pointer to the port_info structure
3835  * @vsi_handle: vsi handle to check for in filter list
3836  * @rule_exists: indicates if there are any VSI's in the rule list
3837  *
3838  * checks if the VSI is in a default VSI list, and also indicates
3839  * if the default VSI list is empty
3840  */
3841 bool
3842 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3843 		      bool *rule_exists)
3844 {
3845 	struct ice_fltr_mgmt_list_entry *fm_entry;
3846 	struct ice_sw_recipe *recp_list;
3847 	struct list_head *rule_head;
3848 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3849 	bool ret = false;
3850 
3851 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3852 	rule_lock = &recp_list->filt_rule_lock;
3853 	rule_head = &recp_list->filt_rules;
3854 
3855 	mutex_lock(rule_lock);
3856 
3857 	if (rule_exists && !list_empty(rule_head))
3858 		*rule_exists = true;
3859 
3860 	list_for_each_entry(fm_entry, rule_head, list_entry) {
3861 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3862 			ret = true;
3863 			break;
3864 		}
3865 	}
3866 
3867 	mutex_unlock(rule_lock);
3868 
3869 	return ret;
3870 }
3871 
3872 /**
3873  * ice_remove_mac - remove a MAC address based filter rule
3874  * @hw: pointer to the hardware structure
3875  * @m_list: list of MAC addresses and forwarding information
3876  *
3877  * This function removes either a MAC filter rule or a specific VSI from a
3878  * VSI list for a multicast MAC address.
3879  *
3880  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3881  * be aware that this call will only work if all the entries passed into m_list
3882  * were added previously. It will not attempt to do a partial remove of entries
3883  * that were found.
3884  */
3885 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3886 {
3887 	struct ice_fltr_list_entry *list_itr, *tmp;
3888 
3889 	if (!m_list)
3890 		return -EINVAL;
3891 
3892 	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3893 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3894 		u16 vsi_handle;
3895 
3896 		if (l_type != ICE_SW_LKUP_MAC)
3897 			return -EINVAL;
3898 
3899 		vsi_handle = list_itr->fltr_info.vsi_handle;
3900 		if (!ice_is_vsi_valid(hw, vsi_handle))
3901 			return -EINVAL;
3902 
3903 		list_itr->fltr_info.fwd_id.hw_vsi_id =
3904 					ice_get_hw_vsi_num(hw, vsi_handle);
3905 
3906 		list_itr->status = ice_remove_rule_internal(hw,
3907 							    ICE_SW_LKUP_MAC,
3908 							    list_itr);
3909 		if (list_itr->status)
3910 			return list_itr->status;
3911 	}
3912 	return 0;
3913 }
3914 
3915 /**
3916  * ice_remove_vlan - Remove VLAN based filter rule
3917  * @hw: pointer to the hardware structure
3918  * @v_list: list of VLAN entries and forwarding information
3919  */
3920 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3921 {
3922 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3923 
3924 	if (!v_list || !hw)
3925 		return -EINVAL;
3926 
3927 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3928 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3929 
3930 		if (l_type != ICE_SW_LKUP_VLAN)
3931 			return -EINVAL;
3932 		v_list_itr->status = ice_remove_rule_internal(hw,
3933 							      ICE_SW_LKUP_VLAN,
3934 							      v_list_itr);
3935 		if (v_list_itr->status)
3936 			return v_list_itr->status;
3937 	}
3938 	return 0;
3939 }
3940 
3941 /**
3942  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3943  * @hw: pointer to the hardware structure
3944  * @vsi_handle: VSI handle to remove filters from
3945  * @vsi_list_head: pointer to the list to add entry to
3946  * @fi: pointer to fltr_info of filter entry to copy & add
3947  *
3948  * Helper function, used when creating a list of filters to remove from
3949  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3950  * original filter entry, with the exception of fltr_info.fltr_act and
3951  * fltr_info.fwd_id fields. These are set such that later logic can
3952  * extract which VSI to remove the fltr from, and pass on that information.
3953  */
3954 static int
3955 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3956 			       struct list_head *vsi_list_head,
3957 			       struct ice_fltr_info *fi)
3958 {
3959 	struct ice_fltr_list_entry *tmp;
3960 
3961 	/* this memory is freed up in the caller function
3962 	 * once filters for this VSI are removed
3963 	 */
3964 	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3965 	if (!tmp)
3966 		return -ENOMEM;
3967 
3968 	tmp->fltr_info = *fi;
3969 
3970 	/* Overwrite these fields to indicate which VSI to remove filter from,
3971 	 * so find and remove logic can extract the information from the
3972 	 * list entries. Note that original entries will still have proper
3973 	 * values.
3974 	 */
3975 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3976 	tmp->fltr_info.vsi_handle = vsi_handle;
3977 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3978 
3979 	list_add(&tmp->list_entry, vsi_list_head);
3980 
3981 	return 0;
3982 }
3983 
3984 /**
3985  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3986  * @hw: pointer to the hardware structure
3987  * @vsi_handle: VSI handle to remove filters from
3988  * @lkup_list_head: pointer to the list that has certain lookup type filters
3989  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3990  *
3991  * Locates all filters in lkup_list_head that are used by the given VSI,
3992  * and adds COPIES of those entries to vsi_list_head (intended to be used
3993  * to remove the listed filters).
3994  * Note that this means all entries in vsi_list_head must be explicitly
3995  * deallocated by the caller when done with list.
3996  */
3997 static int
3998 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3999 			 struct list_head *lkup_list_head,
4000 			 struct list_head *vsi_list_head)
4001 {
4002 	struct ice_fltr_mgmt_list_entry *fm_entry;
4003 	int status = 0;
4004 
4005 	/* check to make sure VSI ID is valid and within boundary */
4006 	if (!ice_is_vsi_valid(hw, vsi_handle))
4007 		return -EINVAL;
4008 
4009 	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4010 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4011 			continue;
4012 
4013 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4014 							vsi_list_head,
4015 							&fm_entry->fltr_info);
4016 		if (status)
4017 			return status;
4018 	}
4019 	return status;
4020 }
4021 
4022 /**
4023  * ice_determine_promisc_mask
4024  * @fi: filter info to parse
4025  *
4026  * Helper function to determine which ICE_PROMISC_ mask corresponds
4027  * to given filter into.
4028  */
4029 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4030 {
4031 	u16 vid = fi->l_data.mac_vlan.vlan_id;
4032 	u8 *macaddr = fi->l_data.mac.mac_addr;
4033 	bool is_tx_fltr = false;
4034 	u8 promisc_mask = 0;
4035 
4036 	if (fi->flag == ICE_FLTR_TX)
4037 		is_tx_fltr = true;
4038 
4039 	if (is_broadcast_ether_addr(macaddr))
4040 		promisc_mask |= is_tx_fltr ?
4041 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4042 	else if (is_multicast_ether_addr(macaddr))
4043 		promisc_mask |= is_tx_fltr ?
4044 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4045 	else if (is_unicast_ether_addr(macaddr))
4046 		promisc_mask |= is_tx_fltr ?
4047 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4048 	if (vid)
4049 		promisc_mask |= is_tx_fltr ?
4050 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4051 
4052 	return promisc_mask;
4053 }
4054 
4055 /**
4056  * ice_remove_promisc - Remove promisc based filter rules
4057  * @hw: pointer to the hardware structure
4058  * @recp_id: recipe ID for which the rule needs to removed
4059  * @v_list: list of promisc entries
4060  */
4061 static int
4062 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4063 {
4064 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4065 
4066 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4067 		v_list_itr->status =
4068 			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4069 		if (v_list_itr->status)
4070 			return v_list_itr->status;
4071 	}
4072 	return 0;
4073 }
4074 
4075 /**
4076  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4077  * @hw: pointer to the hardware structure
4078  * @vsi_handle: VSI handle to clear mode
4079  * @promisc_mask: mask of promiscuous config bits to clear
4080  * @vid: VLAN ID to clear VLAN promiscuous
4081  */
4082 int
4083 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4084 		      u16 vid)
4085 {
4086 	struct ice_switch_info *sw = hw->switch_info;
4087 	struct ice_fltr_list_entry *fm_entry, *tmp;
4088 	struct list_head remove_list_head;
4089 	struct ice_fltr_mgmt_list_entry *itr;
4090 	struct list_head *rule_head;
4091 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4092 	int status = 0;
4093 	u8 recipe_id;
4094 
4095 	if (!ice_is_vsi_valid(hw, vsi_handle))
4096 		return -EINVAL;
4097 
4098 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4099 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4100 	else
4101 		recipe_id = ICE_SW_LKUP_PROMISC;
4102 
4103 	rule_head = &sw->recp_list[recipe_id].filt_rules;
4104 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4105 
4106 	INIT_LIST_HEAD(&remove_list_head);
4107 
4108 	mutex_lock(rule_lock);
4109 	list_for_each_entry(itr, rule_head, list_entry) {
4110 		struct ice_fltr_info *fltr_info;
4111 		u8 fltr_promisc_mask = 0;
4112 
4113 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4114 			continue;
4115 		fltr_info = &itr->fltr_info;
4116 
4117 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4118 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4119 			continue;
4120 
4121 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4122 
4123 		/* Skip if filter is not completely specified by given mask */
4124 		if (fltr_promisc_mask & ~promisc_mask)
4125 			continue;
4126 
4127 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4128 							&remove_list_head,
4129 							fltr_info);
4130 		if (status) {
4131 			mutex_unlock(rule_lock);
4132 			goto free_fltr_list;
4133 		}
4134 	}
4135 	mutex_unlock(rule_lock);
4136 
4137 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4138 
4139 free_fltr_list:
4140 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4141 		list_del(&fm_entry->list_entry);
4142 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4143 	}
4144 
4145 	return status;
4146 }
4147 
4148 /**
4149  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4150  * @hw: pointer to the hardware structure
4151  * @vsi_handle: VSI handle to configure
4152  * @promisc_mask: mask of promiscuous config bits
4153  * @vid: VLAN ID to set VLAN promiscuous
4154  */
4155 int
4156 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4157 {
4158 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4159 	struct ice_fltr_list_entry f_list_entry;
4160 	struct ice_fltr_info new_fltr;
4161 	bool is_tx_fltr;
4162 	int status = 0;
4163 	u16 hw_vsi_id;
4164 	int pkt_type;
4165 	u8 recipe_id;
4166 
4167 	if (!ice_is_vsi_valid(hw, vsi_handle))
4168 		return -EINVAL;
4169 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4170 
4171 	memset(&new_fltr, 0, sizeof(new_fltr));
4172 
4173 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4174 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4175 		new_fltr.l_data.mac_vlan.vlan_id = vid;
4176 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4177 	} else {
4178 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4179 		recipe_id = ICE_SW_LKUP_PROMISC;
4180 	}
4181 
4182 	/* Separate filters must be set for each direction/packet type
4183 	 * combination, so we will loop over the mask value, store the
4184 	 * individual type, and clear it out in the input mask as it
4185 	 * is found.
4186 	 */
4187 	while (promisc_mask) {
4188 		u8 *mac_addr;
4189 
4190 		pkt_type = 0;
4191 		is_tx_fltr = false;
4192 
4193 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4194 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4195 			pkt_type = UCAST_FLTR;
4196 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4197 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4198 			pkt_type = UCAST_FLTR;
4199 			is_tx_fltr = true;
4200 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4201 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4202 			pkt_type = MCAST_FLTR;
4203 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4204 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4205 			pkt_type = MCAST_FLTR;
4206 			is_tx_fltr = true;
4207 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4208 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4209 			pkt_type = BCAST_FLTR;
4210 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4211 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4212 			pkt_type = BCAST_FLTR;
4213 			is_tx_fltr = true;
4214 		}
4215 
4216 		/* Check for VLAN promiscuous flag */
4217 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4218 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4219 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4220 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4221 			is_tx_fltr = true;
4222 		}
4223 
4224 		/* Set filter DA based on packet type */
4225 		mac_addr = new_fltr.l_data.mac.mac_addr;
4226 		if (pkt_type == BCAST_FLTR) {
4227 			eth_broadcast_addr(mac_addr);
4228 		} else if (pkt_type == MCAST_FLTR ||
4229 			   pkt_type == UCAST_FLTR) {
4230 			/* Use the dummy ether header DA */
4231 			ether_addr_copy(mac_addr, dummy_eth_header);
4232 			if (pkt_type == MCAST_FLTR)
4233 				mac_addr[0] |= 0x1;	/* Set multicast bit */
4234 		}
4235 
4236 		/* Need to reset this to zero for all iterations */
4237 		new_fltr.flag = 0;
4238 		if (is_tx_fltr) {
4239 			new_fltr.flag |= ICE_FLTR_TX;
4240 			new_fltr.src = hw_vsi_id;
4241 		} else {
4242 			new_fltr.flag |= ICE_FLTR_RX;
4243 			new_fltr.src = hw->port_info->lport;
4244 		}
4245 
4246 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4247 		new_fltr.vsi_handle = vsi_handle;
4248 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4249 		f_list_entry.fltr_info = new_fltr;
4250 
4251 		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4252 		if (status)
4253 			goto set_promisc_exit;
4254 	}
4255 
4256 set_promisc_exit:
4257 	return status;
4258 }
4259 
4260 /**
4261  * ice_set_vlan_vsi_promisc
4262  * @hw: pointer to the hardware structure
4263  * @vsi_handle: VSI handle to configure
4264  * @promisc_mask: mask of promiscuous config bits
4265  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4266  *
4267  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4268  */
4269 int
4270 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4271 			 bool rm_vlan_promisc)
4272 {
4273 	struct ice_switch_info *sw = hw->switch_info;
4274 	struct ice_fltr_list_entry *list_itr, *tmp;
4275 	struct list_head vsi_list_head;
4276 	struct list_head *vlan_head;
4277 	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4278 	u16 vlan_id;
4279 	int status;
4280 
4281 	INIT_LIST_HEAD(&vsi_list_head);
4282 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4283 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4284 	mutex_lock(vlan_lock);
4285 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4286 					  &vsi_list_head);
4287 	mutex_unlock(vlan_lock);
4288 	if (status)
4289 		goto free_fltr_list;
4290 
4291 	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4292 		/* Avoid enabling or disabling VLAN zero twice when in double
4293 		 * VLAN mode
4294 		 */
4295 		if (ice_is_dvm_ena(hw) &&
4296 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4297 			continue;
4298 
4299 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4300 		if (rm_vlan_promisc)
4301 			status = ice_clear_vsi_promisc(hw, vsi_handle,
4302 						       promisc_mask, vlan_id);
4303 		else
4304 			status = ice_set_vsi_promisc(hw, vsi_handle,
4305 						     promisc_mask, vlan_id);
4306 		if (status && status != -EEXIST)
4307 			break;
4308 	}
4309 
4310 free_fltr_list:
4311 	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4312 		list_del(&list_itr->list_entry);
4313 		devm_kfree(ice_hw_to_dev(hw), list_itr);
4314 	}
4315 	return status;
4316 }
4317 
4318 /**
4319  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4320  * @hw: pointer to the hardware structure
4321  * @vsi_handle: VSI handle to remove filters from
4322  * @lkup: switch rule filter lookup type
4323  */
4324 static void
4325 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4326 			 enum ice_sw_lkup_type lkup)
4327 {
4328 	struct ice_switch_info *sw = hw->switch_info;
4329 	struct ice_fltr_list_entry *fm_entry;
4330 	struct list_head remove_list_head;
4331 	struct list_head *rule_head;
4332 	struct ice_fltr_list_entry *tmp;
4333 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4334 	int status;
4335 
4336 	INIT_LIST_HEAD(&remove_list_head);
4337 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4338 	rule_head = &sw->recp_list[lkup].filt_rules;
4339 	mutex_lock(rule_lock);
4340 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4341 					  &remove_list_head);
4342 	mutex_unlock(rule_lock);
4343 	if (status)
4344 		goto free_fltr_list;
4345 
4346 	switch (lkup) {
4347 	case ICE_SW_LKUP_MAC:
4348 		ice_remove_mac(hw, &remove_list_head);
4349 		break;
4350 	case ICE_SW_LKUP_VLAN:
4351 		ice_remove_vlan(hw, &remove_list_head);
4352 		break;
4353 	case ICE_SW_LKUP_PROMISC:
4354 	case ICE_SW_LKUP_PROMISC_VLAN:
4355 		ice_remove_promisc(hw, lkup, &remove_list_head);
4356 		break;
4357 	case ICE_SW_LKUP_MAC_VLAN:
4358 	case ICE_SW_LKUP_ETHERTYPE:
4359 	case ICE_SW_LKUP_ETHERTYPE_MAC:
4360 	case ICE_SW_LKUP_DFLT:
4361 	case ICE_SW_LKUP_LAST:
4362 	default:
4363 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4364 		break;
4365 	}
4366 
4367 free_fltr_list:
4368 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4369 		list_del(&fm_entry->list_entry);
4370 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4371 	}
4372 }
4373 
4374 /**
4375  * ice_remove_vsi_fltr - Remove all filters for a VSI
4376  * @hw: pointer to the hardware structure
4377  * @vsi_handle: VSI handle to remove filters from
4378  */
4379 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4380 {
4381 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4382 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4383 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4384 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4385 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4386 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4387 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4388 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4389 }
4390 
4391 /**
4392  * ice_alloc_res_cntr - allocating resource counter
4393  * @hw: pointer to the hardware structure
4394  * @type: type of resource
4395  * @alloc_shared: if set it is shared else dedicated
4396  * @num_items: number of entries requested for FD resource type
4397  * @counter_id: counter index returned by AQ call
4398  */
4399 int
4400 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4401 		   u16 *counter_id)
4402 {
4403 	struct ice_aqc_alloc_free_res_elem *buf;
4404 	u16 buf_len;
4405 	int status;
4406 
4407 	/* Allocate resource */
4408 	buf_len = struct_size(buf, elem, 1);
4409 	buf = kzalloc(buf_len, GFP_KERNEL);
4410 	if (!buf)
4411 		return -ENOMEM;
4412 
4413 	buf->num_elems = cpu_to_le16(num_items);
4414 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4415 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4416 
4417 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4418 				       ice_aqc_opc_alloc_res, NULL);
4419 	if (status)
4420 		goto exit;
4421 
4422 	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4423 
4424 exit:
4425 	kfree(buf);
4426 	return status;
4427 }
4428 
4429 /**
4430  * ice_free_res_cntr - free resource counter
4431  * @hw: pointer to the hardware structure
4432  * @type: type of resource
4433  * @alloc_shared: if set it is shared else dedicated
4434  * @num_items: number of entries to be freed for FD resource type
4435  * @counter_id: counter ID resource which needs to be freed
4436  */
4437 int
4438 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4439 		  u16 counter_id)
4440 {
4441 	struct ice_aqc_alloc_free_res_elem *buf;
4442 	u16 buf_len;
4443 	int status;
4444 
4445 	/* Free resource */
4446 	buf_len = struct_size(buf, elem, 1);
4447 	buf = kzalloc(buf_len, GFP_KERNEL);
4448 	if (!buf)
4449 		return -ENOMEM;
4450 
4451 	buf->num_elems = cpu_to_le16(num_items);
4452 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4453 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4454 	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4455 
4456 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4457 				       ice_aqc_opc_free_res, NULL);
4458 	if (status)
4459 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4460 
4461 	kfree(buf);
4462 	return status;
4463 }
4464 
4465 /* This is mapping table entry that maps every word within a given protocol
4466  * structure to the real byte offset as per the specification of that
4467  * protocol header.
4468  * for example dst address is 3 words in ethertype header and corresponding
4469  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4470  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4471  * matching entry describing its field. This needs to be updated if new
4472  * structure is added to that union.
4473  */
4474 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4475 	{ ICE_MAC_OFOS,		{ 0, 2, 4, 6, 8, 10, 12 } },
4476 	{ ICE_MAC_IL,		{ 0, 2, 4, 6, 8, 10, 12 } },
4477 	{ ICE_ETYPE_OL,		{ 0 } },
4478 	{ ICE_ETYPE_IL,		{ 0 } },
4479 	{ ICE_VLAN_OFOS,	{ 2, 0 } },
4480 	{ ICE_IPV4_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4481 	{ ICE_IPV4_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4482 	{ ICE_IPV6_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4483 				 26, 28, 30, 32, 34, 36, 38 } },
4484 	{ ICE_IPV6_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4485 				 26, 28, 30, 32, 34, 36, 38 } },
4486 	{ ICE_TCP_IL,		{ 0, 2 } },
4487 	{ ICE_UDP_OF,		{ 0, 2 } },
4488 	{ ICE_UDP_ILOS,		{ 0, 2 } },
4489 	{ ICE_VXLAN,		{ 8, 10, 12, 14 } },
4490 	{ ICE_GENEVE,		{ 8, 10, 12, 14 } },
4491 	{ ICE_NVGRE,		{ 0, 2, 4, 6 } },
4492 	{ ICE_GTP,		{ 8, 10, 12, 14, 16, 18, 20, 22 } },
4493 	{ ICE_GTP_NO_PAY,	{ 8, 10, 12, 14 } },
4494 	{ ICE_PPPOE,		{ 0, 2, 4, 6 } },
4495 	{ ICE_VLAN_EX,          { 2, 0 } },
4496 	{ ICE_VLAN_IN,          { 2, 0 } },
4497 };
4498 
4499 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4500 	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4501 	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4502 	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4503 	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4504 	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4505 	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4506 	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4507 	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4508 	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4509 	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4510 	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4511 	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4512 	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4513 	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4514 	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4515 	{ ICE_GTP,		ICE_UDP_OF_HW },
4516 	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4517 	{ ICE_PPPOE,		ICE_PPPOE_HW },
4518 	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4519 	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4520 };
4521 
4522 /**
4523  * ice_find_recp - find a recipe
4524  * @hw: pointer to the hardware structure
4525  * @lkup_exts: extension sequence to match
4526  * @tun_type: type of recipe tunnel
4527  *
4528  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4529  */
4530 static u16
4531 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4532 	      enum ice_sw_tunnel_type tun_type)
4533 {
4534 	bool refresh_required = true;
4535 	struct ice_sw_recipe *recp;
4536 	u8 i;
4537 
4538 	/* Walk through existing recipes to find a match */
4539 	recp = hw->switch_info->recp_list;
4540 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4541 		/* If recipe was not created for this ID, in SW bookkeeping,
4542 		 * check if FW has an entry for this recipe. If the FW has an
4543 		 * entry update it in our SW bookkeeping and continue with the
4544 		 * matching.
4545 		 */
4546 		if (!recp[i].recp_created)
4547 			if (ice_get_recp_frm_fw(hw,
4548 						hw->switch_info->recp_list, i,
4549 						&refresh_required))
4550 				continue;
4551 
4552 		/* Skip inverse action recipes */
4553 		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4554 		    ICE_AQ_RECIPE_ACT_INV_ACT)
4555 			continue;
4556 
4557 		/* if number of words we are looking for match */
4558 		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4559 			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4560 			struct ice_fv_word *be = lkup_exts->fv_words;
4561 			u16 *cr = recp[i].lkup_exts.field_mask;
4562 			u16 *de = lkup_exts->field_mask;
4563 			bool found = true;
4564 			u8 pe, qr;
4565 
4566 			/* ar, cr, and qr are related to the recipe words, while
4567 			 * be, de, and pe are related to the lookup words
4568 			 */
4569 			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4570 				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4571 				     qr++) {
4572 					if (ar[qr].off == be[pe].off &&
4573 					    ar[qr].prot_id == be[pe].prot_id &&
4574 					    cr[qr] == de[pe])
4575 						/* Found the "pe"th word in the
4576 						 * given recipe
4577 						 */
4578 						break;
4579 				}
4580 				/* After walking through all the words in the
4581 				 * "i"th recipe if "p"th word was not found then
4582 				 * this recipe is not what we are looking for.
4583 				 * So break out from this loop and try the next
4584 				 * recipe
4585 				 */
4586 				if (qr >= recp[i].lkup_exts.n_val_words) {
4587 					found = false;
4588 					break;
4589 				}
4590 			}
4591 			/* If for "i"th recipe the found was never set to false
4592 			 * then it means we found our match
4593 			 * Also tun type of recipe needs to be checked
4594 			 */
4595 			if (found && recp[i].tun_type == tun_type)
4596 				return i; /* Return the recipe ID */
4597 		}
4598 	}
4599 	return ICE_MAX_NUM_RECIPES;
4600 }
4601 
4602 /**
4603  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4604  *
4605  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4606  * supported protocol array record for outer vlan has to be modified to
4607  * reflect the value proper for DVM.
4608  */
4609 void ice_change_proto_id_to_dvm(void)
4610 {
4611 	u8 i;
4612 
4613 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4614 		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4615 		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4616 			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4617 }
4618 
4619 /**
4620  * ice_prot_type_to_id - get protocol ID from protocol type
4621  * @type: protocol type
4622  * @id: pointer to variable that will receive the ID
4623  *
4624  * Returns true if found, false otherwise
4625  */
4626 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4627 {
4628 	u8 i;
4629 
4630 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4631 		if (ice_prot_id_tbl[i].type == type) {
4632 			*id = ice_prot_id_tbl[i].protocol_id;
4633 			return true;
4634 		}
4635 	return false;
4636 }
4637 
4638 /**
4639  * ice_fill_valid_words - count valid words
4640  * @rule: advanced rule with lookup information
4641  * @lkup_exts: byte offset extractions of the words that are valid
4642  *
4643  * calculate valid words in a lookup rule using mask value
4644  */
4645 static u8
4646 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4647 		     struct ice_prot_lkup_ext *lkup_exts)
4648 {
4649 	u8 j, word, prot_id, ret_val;
4650 
4651 	if (!ice_prot_type_to_id(rule->type, &prot_id))
4652 		return 0;
4653 
4654 	word = lkup_exts->n_val_words;
4655 
4656 	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4657 		if (((u16 *)&rule->m_u)[j] &&
4658 		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4659 			/* No more space to accommodate */
4660 			if (word >= ICE_MAX_CHAIN_WORDS)
4661 				return 0;
4662 			lkup_exts->fv_words[word].off =
4663 				ice_prot_ext[rule->type].offs[j];
4664 			lkup_exts->fv_words[word].prot_id =
4665 				ice_prot_id_tbl[rule->type].protocol_id;
4666 			lkup_exts->field_mask[word] =
4667 				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4668 			word++;
4669 		}
4670 
4671 	ret_val = word - lkup_exts->n_val_words;
4672 	lkup_exts->n_val_words = word;
4673 
4674 	return ret_val;
4675 }
4676 
4677 /**
4678  * ice_create_first_fit_recp_def - Create a recipe grouping
4679  * @hw: pointer to the hardware structure
4680  * @lkup_exts: an array of protocol header extractions
4681  * @rg_list: pointer to a list that stores new recipe groups
4682  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4683  *
4684  * Using first fit algorithm, take all the words that are still not done
4685  * and start grouping them in 4-word groups. Each group makes up one
4686  * recipe.
4687  */
4688 static int
4689 ice_create_first_fit_recp_def(struct ice_hw *hw,
4690 			      struct ice_prot_lkup_ext *lkup_exts,
4691 			      struct list_head *rg_list,
4692 			      u8 *recp_cnt)
4693 {
4694 	struct ice_pref_recipe_group *grp = NULL;
4695 	u8 j;
4696 
4697 	*recp_cnt = 0;
4698 
4699 	/* Walk through every word in the rule to check if it is not done. If so
4700 	 * then this word needs to be part of a new recipe.
4701 	 */
4702 	for (j = 0; j < lkup_exts->n_val_words; j++)
4703 		if (!test_bit(j, lkup_exts->done)) {
4704 			if (!grp ||
4705 			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4706 				struct ice_recp_grp_entry *entry;
4707 
4708 				entry = devm_kzalloc(ice_hw_to_dev(hw),
4709 						     sizeof(*entry),
4710 						     GFP_KERNEL);
4711 				if (!entry)
4712 					return -ENOMEM;
4713 				list_add(&entry->l_entry, rg_list);
4714 				grp = &entry->r_group;
4715 				(*recp_cnt)++;
4716 			}
4717 
4718 			grp->pairs[grp->n_val_pairs].prot_id =
4719 				lkup_exts->fv_words[j].prot_id;
4720 			grp->pairs[grp->n_val_pairs].off =
4721 				lkup_exts->fv_words[j].off;
4722 			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4723 			grp->n_val_pairs++;
4724 		}
4725 
4726 	return 0;
4727 }
4728 
4729 /**
4730  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4731  * @hw: pointer to the hardware structure
4732  * @fv_list: field vector with the extraction sequence information
4733  * @rg_list: recipe groupings with protocol-offset pairs
4734  *
4735  * Helper function to fill in the field vector indices for protocol-offset
4736  * pairs. These indexes are then ultimately programmed into a recipe.
4737  */
4738 static int
4739 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4740 		       struct list_head *rg_list)
4741 {
4742 	struct ice_sw_fv_list_entry *fv;
4743 	struct ice_recp_grp_entry *rg;
4744 	struct ice_fv_word *fv_ext;
4745 
4746 	if (list_empty(fv_list))
4747 		return 0;
4748 
4749 	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4750 			      list_entry);
4751 	fv_ext = fv->fv_ptr->ew;
4752 
4753 	list_for_each_entry(rg, rg_list, l_entry) {
4754 		u8 i;
4755 
4756 		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4757 			struct ice_fv_word *pr;
4758 			bool found = false;
4759 			u16 mask;
4760 			u8 j;
4761 
4762 			pr = &rg->r_group.pairs[i];
4763 			mask = rg->r_group.mask[i];
4764 
4765 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4766 				if (fv_ext[j].prot_id == pr->prot_id &&
4767 				    fv_ext[j].off == pr->off) {
4768 					found = true;
4769 
4770 					/* Store index of field vector */
4771 					rg->fv_idx[i] = j;
4772 					rg->fv_mask[i] = mask;
4773 					break;
4774 				}
4775 
4776 			/* Protocol/offset could not be found, caller gave an
4777 			 * invalid pair
4778 			 */
4779 			if (!found)
4780 				return -EINVAL;
4781 		}
4782 	}
4783 
4784 	return 0;
4785 }
4786 
4787 /**
4788  * ice_find_free_recp_res_idx - find free result indexes for recipe
4789  * @hw: pointer to hardware structure
4790  * @profiles: bitmap of profiles that will be associated with the new recipe
4791  * @free_idx: pointer to variable to receive the free index bitmap
4792  *
4793  * The algorithm used here is:
4794  *	1. When creating a new recipe, create a set P which contains all
4795  *	   Profiles that will be associated with our new recipe
4796  *
4797  *	2. For each Profile p in set P:
4798  *	    a. Add all recipes associated with Profile p into set R
4799  *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4800  *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4801  *		i. Or just assume they all have the same possible indexes:
4802  *			44, 45, 46, 47
4803  *			i.e., PossibleIndexes = 0x0000F00000000000
4804  *
4805  *	3. For each Recipe r in set R:
4806  *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4807  *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4808  *
4809  *	FreeIndexes will contain the bits indicating the indexes free for use,
4810  *      then the code needs to update the recipe[r].used_result_idx_bits to
4811  *      indicate which indexes were selected for use by this recipe.
4812  */
4813 static u16
4814 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4815 			   unsigned long *free_idx)
4816 {
4817 	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4818 	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4819 	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4820 	u16 bit;
4821 
4822 	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4823 	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4824 
4825 	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4826 
4827 	/* For each profile we are going to associate the recipe with, add the
4828 	 * recipes that are associated with that profile. This will give us
4829 	 * the set of recipes that our recipe may collide with. Also, determine
4830 	 * what possible result indexes are usable given this set of profiles.
4831 	 */
4832 	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4833 		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4834 			  ICE_MAX_NUM_RECIPES);
4835 		bitmap_and(possible_idx, possible_idx,
4836 			   hw->switch_info->prof_res_bm[bit],
4837 			   ICE_MAX_FV_WORDS);
4838 	}
4839 
4840 	/* For each recipe that our new recipe may collide with, determine
4841 	 * which indexes have been used.
4842 	 */
4843 	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4844 		bitmap_or(used_idx, used_idx,
4845 			  hw->switch_info->recp_list[bit].res_idxs,
4846 			  ICE_MAX_FV_WORDS);
4847 
4848 	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4849 
4850 	/* return number of free indexes */
4851 	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4852 }
4853 
4854 /**
4855  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4856  * @hw: pointer to hardware structure
4857  * @rm: recipe management list entry
4858  * @profiles: bitmap of profiles that will be associated.
4859  */
4860 static int
4861 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4862 		  unsigned long *profiles)
4863 {
4864 	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4865 	struct ice_aqc_recipe_data_elem *tmp;
4866 	struct ice_aqc_recipe_data_elem *buf;
4867 	struct ice_recp_grp_entry *entry;
4868 	u16 free_res_idx;
4869 	u16 recipe_count;
4870 	u8 chain_idx;
4871 	u8 recps = 0;
4872 	int status;
4873 
4874 	/* When more than one recipe are required, another recipe is needed to
4875 	 * chain them together. Matching a tunnel metadata ID takes up one of
4876 	 * the match fields in the chaining recipe reducing the number of
4877 	 * chained recipes by one.
4878 	 */
4879 	 /* check number of free result indices */
4880 	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4881 	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4882 
4883 	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4884 		  free_res_idx, rm->n_grp_count);
4885 
4886 	if (rm->n_grp_count > 1) {
4887 		if (rm->n_grp_count > free_res_idx)
4888 			return -ENOSPC;
4889 
4890 		rm->n_grp_count++;
4891 	}
4892 
4893 	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4894 		return -ENOSPC;
4895 
4896 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4897 	if (!tmp)
4898 		return -ENOMEM;
4899 
4900 	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4901 			   GFP_KERNEL);
4902 	if (!buf) {
4903 		status = -ENOMEM;
4904 		goto err_mem;
4905 	}
4906 
4907 	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4908 	recipe_count = ICE_MAX_NUM_RECIPES;
4909 	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4910 				   NULL);
4911 	if (status || recipe_count == 0)
4912 		goto err_unroll;
4913 
4914 	/* Allocate the recipe resources, and configure them according to the
4915 	 * match fields from protocol headers and extracted field vectors.
4916 	 */
4917 	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4918 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4919 		u8 i;
4920 
4921 		status = ice_alloc_recipe(hw, &entry->rid);
4922 		if (status)
4923 			goto err_unroll;
4924 
4925 		/* Clear the result index of the located recipe, as this will be
4926 		 * updated, if needed, later in the recipe creation process.
4927 		 */
4928 		tmp[0].content.result_indx = 0;
4929 
4930 		buf[recps] = tmp[0];
4931 		buf[recps].recipe_indx = (u8)entry->rid;
4932 		/* if the recipe is a non-root recipe RID should be programmed
4933 		 * as 0 for the rules to be applied correctly.
4934 		 */
4935 		buf[recps].content.rid = 0;
4936 		memset(&buf[recps].content.lkup_indx, 0,
4937 		       sizeof(buf[recps].content.lkup_indx));
4938 
4939 		/* All recipes use look-up index 0 to match switch ID. */
4940 		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4941 		buf[recps].content.mask[0] =
4942 			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
4943 		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4944 		 * to be 0
4945 		 */
4946 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4947 			buf[recps].content.lkup_indx[i] = 0x80;
4948 			buf[recps].content.mask[i] = 0;
4949 		}
4950 
4951 		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
4952 			buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
4953 			buf[recps].content.mask[i + 1] =
4954 				cpu_to_le16(entry->fv_mask[i]);
4955 		}
4956 
4957 		if (rm->n_grp_count > 1) {
4958 			/* Checks to see if there really is a valid result index
4959 			 * that can be used.
4960 			 */
4961 			if (chain_idx >= ICE_MAX_FV_WORDS) {
4962 				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
4963 				status = -ENOSPC;
4964 				goto err_unroll;
4965 			}
4966 
4967 			entry->chain_idx = chain_idx;
4968 			buf[recps].content.result_indx =
4969 				ICE_AQ_RECIPE_RESULT_EN |
4970 				((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
4971 				 ICE_AQ_RECIPE_RESULT_DATA_M);
4972 			clear_bit(chain_idx, result_idx_bm);
4973 			chain_idx = find_first_bit(result_idx_bm,
4974 						   ICE_MAX_FV_WORDS);
4975 		}
4976 
4977 		/* fill recipe dependencies */
4978 		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
4979 			    ICE_MAX_NUM_RECIPES);
4980 		set_bit(buf[recps].recipe_indx,
4981 			(unsigned long *)buf[recps].recipe_bitmap);
4982 		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
4983 		recps++;
4984 	}
4985 
4986 	if (rm->n_grp_count == 1) {
4987 		rm->root_rid = buf[0].recipe_indx;
4988 		set_bit(buf[0].recipe_indx, rm->r_bitmap);
4989 		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
4990 		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
4991 			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
4992 			       sizeof(buf[0].recipe_bitmap));
4993 		} else {
4994 			status = -EINVAL;
4995 			goto err_unroll;
4996 		}
4997 		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
4998 		 * the recipe which is getting created if specified
4999 		 * by user. Usually any advanced switch filter, which results
5000 		 * into new extraction sequence, ended up creating a new recipe
5001 		 * of type ROOT and usually recipes are associated with profiles
5002 		 * Switch rule referreing newly created recipe, needs to have
5003 		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5004 		 * evaluation will not happen correctly. In other words, if
5005 		 * switch rule to be evaluated on priority basis, then recipe
5006 		 * needs to have priority, otherwise it will be evaluated last.
5007 		 */
5008 		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5009 	} else {
5010 		struct ice_recp_grp_entry *last_chain_entry;
5011 		u16 rid, i;
5012 
5013 		/* Allocate the last recipe that will chain the outcomes of the
5014 		 * other recipes together
5015 		 */
5016 		status = ice_alloc_recipe(hw, &rid);
5017 		if (status)
5018 			goto err_unroll;
5019 
5020 		buf[recps].recipe_indx = (u8)rid;
5021 		buf[recps].content.rid = (u8)rid;
5022 		buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5023 		/* the new entry created should also be part of rg_list to
5024 		 * make sure we have complete recipe
5025 		 */
5026 		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5027 						sizeof(*last_chain_entry),
5028 						GFP_KERNEL);
5029 		if (!last_chain_entry) {
5030 			status = -ENOMEM;
5031 			goto err_unroll;
5032 		}
5033 		last_chain_entry->rid = rid;
5034 		memset(&buf[recps].content.lkup_indx, 0,
5035 		       sizeof(buf[recps].content.lkup_indx));
5036 		/* All recipes use look-up index 0 to match switch ID. */
5037 		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5038 		buf[recps].content.mask[0] =
5039 			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5040 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5041 			buf[recps].content.lkup_indx[i] =
5042 				ICE_AQ_RECIPE_LKUP_IGNORE;
5043 			buf[recps].content.mask[i] = 0;
5044 		}
5045 
5046 		i = 1;
5047 		/* update r_bitmap with the recp that is used for chaining */
5048 		set_bit(rid, rm->r_bitmap);
5049 		/* this is the recipe that chains all the other recipes so it
5050 		 * should not have a chaining ID to indicate the same
5051 		 */
5052 		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5053 		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5054 			last_chain_entry->fv_idx[i] = entry->chain_idx;
5055 			buf[recps].content.lkup_indx[i] = entry->chain_idx;
5056 			buf[recps].content.mask[i++] = cpu_to_le16(0xFFFF);
5057 			set_bit(entry->rid, rm->r_bitmap);
5058 		}
5059 		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5060 		if (sizeof(buf[recps].recipe_bitmap) >=
5061 		    sizeof(rm->r_bitmap)) {
5062 			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5063 			       sizeof(buf[recps].recipe_bitmap));
5064 		} else {
5065 			status = -EINVAL;
5066 			goto err_unroll;
5067 		}
5068 		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5069 
5070 		recps++;
5071 		rm->root_rid = (u8)rid;
5072 	}
5073 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5074 	if (status)
5075 		goto err_unroll;
5076 
5077 	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5078 	ice_release_change_lock(hw);
5079 	if (status)
5080 		goto err_unroll;
5081 
5082 	/* Every recipe that just got created add it to the recipe
5083 	 * book keeping list
5084 	 */
5085 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5086 		struct ice_switch_info *sw = hw->switch_info;
5087 		bool is_root, idx_found = false;
5088 		struct ice_sw_recipe *recp;
5089 		u16 idx, buf_idx = 0;
5090 
5091 		/* find buffer index for copying some data */
5092 		for (idx = 0; idx < rm->n_grp_count; idx++)
5093 			if (buf[idx].recipe_indx == entry->rid) {
5094 				buf_idx = idx;
5095 				idx_found = true;
5096 			}
5097 
5098 		if (!idx_found) {
5099 			status = -EIO;
5100 			goto err_unroll;
5101 		}
5102 
5103 		recp = &sw->recp_list[entry->rid];
5104 		is_root = (rm->root_rid == entry->rid);
5105 		recp->is_root = is_root;
5106 
5107 		recp->root_rid = entry->rid;
5108 		recp->big_recp = (is_root && rm->n_grp_count > 1);
5109 
5110 		memcpy(&recp->ext_words, entry->r_group.pairs,
5111 		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5112 
5113 		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5114 		       sizeof(recp->r_bitmap));
5115 
5116 		/* Copy non-result fv index values and masks to recipe. This
5117 		 * call will also update the result recipe bitmask.
5118 		 */
5119 		ice_collect_result_idx(&buf[buf_idx], recp);
5120 
5121 		/* for non-root recipes, also copy to the root, this allows
5122 		 * easier matching of a complete chained recipe
5123 		 */
5124 		if (!is_root)
5125 			ice_collect_result_idx(&buf[buf_idx],
5126 					       &sw->recp_list[rm->root_rid]);
5127 
5128 		recp->n_ext_words = entry->r_group.n_val_pairs;
5129 		recp->chain_idx = entry->chain_idx;
5130 		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5131 		recp->n_grp_count = rm->n_grp_count;
5132 		recp->tun_type = rm->tun_type;
5133 		recp->recp_created = true;
5134 	}
5135 	rm->root_buf = buf;
5136 	kfree(tmp);
5137 	return status;
5138 
5139 err_unroll:
5140 err_mem:
5141 	kfree(tmp);
5142 	devm_kfree(ice_hw_to_dev(hw), buf);
5143 	return status;
5144 }
5145 
5146 /**
5147  * ice_create_recipe_group - creates recipe group
5148  * @hw: pointer to hardware structure
5149  * @rm: recipe management list entry
5150  * @lkup_exts: lookup elements
5151  */
5152 static int
5153 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5154 			struct ice_prot_lkup_ext *lkup_exts)
5155 {
5156 	u8 recp_count = 0;
5157 	int status;
5158 
5159 	rm->n_grp_count = 0;
5160 
5161 	/* Create recipes for words that are marked not done by packing them
5162 	 * as best fit.
5163 	 */
5164 	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5165 					       &rm->rg_list, &recp_count);
5166 	if (!status) {
5167 		rm->n_grp_count += recp_count;
5168 		rm->n_ext_words = lkup_exts->n_val_words;
5169 		memcpy(&rm->ext_words, lkup_exts->fv_words,
5170 		       sizeof(rm->ext_words));
5171 		memcpy(rm->word_masks, lkup_exts->field_mask,
5172 		       sizeof(rm->word_masks));
5173 	}
5174 
5175 	return status;
5176 }
5177 
5178 /**
5179  * ice_tun_type_match_word - determine if tun type needs a match mask
5180  * @tun_type: tunnel type
5181  * @mask: mask to be used for the tunnel
5182  */
5183 static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask)
5184 {
5185 	switch (tun_type) {
5186 	case ICE_SW_TUN_GENEVE:
5187 	case ICE_SW_TUN_VXLAN:
5188 	case ICE_SW_TUN_NVGRE:
5189 	case ICE_SW_TUN_GTPU:
5190 	case ICE_SW_TUN_GTPC:
5191 		*mask = ICE_TUN_FLAG_MASK;
5192 		return true;
5193 
5194 	default:
5195 		*mask = 0;
5196 		return false;
5197 	}
5198 }
5199 
5200 /**
5201  * ice_add_special_words - Add words that are not protocols, such as metadata
5202  * @rinfo: other information regarding the rule e.g. priority and action info
5203  * @lkup_exts: lookup word structure
5204  * @dvm_ena: is double VLAN mode enabled
5205  */
5206 static int
5207 ice_add_special_words(struct ice_adv_rule_info *rinfo,
5208 		      struct ice_prot_lkup_ext *lkup_exts, bool dvm_ena)
5209 {
5210 	u16 mask;
5211 
5212 	/* If this is a tunneled packet, then add recipe index to match the
5213 	 * tunnel bit in the packet metadata flags.
5214 	 */
5215 	if (ice_tun_type_match_word(rinfo->tun_type, &mask)) {
5216 		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5217 			u8 word = lkup_exts->n_val_words++;
5218 
5219 			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5220 			lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF;
5221 			lkup_exts->field_mask[word] = mask;
5222 		} else {
5223 			return -ENOSPC;
5224 		}
5225 	}
5226 
5227 	if (rinfo->vlan_type != 0 && dvm_ena) {
5228 		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5229 			u8 word = lkup_exts->n_val_words++;
5230 
5231 			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5232 			lkup_exts->fv_words[word].off = ICE_VLAN_FLAG_MDID_OFF;
5233 			lkup_exts->field_mask[word] =
5234 					ICE_PKT_FLAGS_0_TO_15_VLAN_FLAGS_MASK;
5235 		} else {
5236 			return -ENOSPC;
5237 		}
5238 	}
5239 
5240 	return 0;
5241 }
5242 
5243 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5244  * @hw: pointer to hardware structure
5245  * @rinfo: other information regarding the rule e.g. priority and action info
5246  * @bm: pointer to memory for returning the bitmap of field vectors
5247  */
5248 static void
5249 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5250 			 unsigned long *bm)
5251 {
5252 	enum ice_prof_type prof_type;
5253 
5254 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5255 
5256 	switch (rinfo->tun_type) {
5257 	case ICE_NON_TUN:
5258 		prof_type = ICE_PROF_NON_TUN;
5259 		break;
5260 	case ICE_ALL_TUNNELS:
5261 		prof_type = ICE_PROF_TUN_ALL;
5262 		break;
5263 	case ICE_SW_TUN_GENEVE:
5264 	case ICE_SW_TUN_VXLAN:
5265 		prof_type = ICE_PROF_TUN_UDP;
5266 		break;
5267 	case ICE_SW_TUN_NVGRE:
5268 		prof_type = ICE_PROF_TUN_GRE;
5269 		break;
5270 	case ICE_SW_TUN_GTPU:
5271 		prof_type = ICE_PROF_TUN_GTPU;
5272 		break;
5273 	case ICE_SW_TUN_GTPC:
5274 		prof_type = ICE_PROF_TUN_GTPC;
5275 		break;
5276 	case ICE_SW_TUN_AND_NON_TUN:
5277 	default:
5278 		prof_type = ICE_PROF_ALL;
5279 		break;
5280 	}
5281 
5282 	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5283 }
5284 
5285 /**
5286  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5287  * @hw: pointer to hardware structure
5288  * @lkups: lookup elements or match criteria for the advanced recipe, one
5289  *  structure per protocol header
5290  * @lkups_cnt: number of protocols
5291  * @rinfo: other information regarding the rule e.g. priority and action info
5292  * @rid: return the recipe ID of the recipe created
5293  */
5294 static int
5295 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5296 		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5297 {
5298 	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5299 	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5300 	struct ice_prot_lkup_ext *lkup_exts;
5301 	struct ice_recp_grp_entry *r_entry;
5302 	struct ice_sw_fv_list_entry *fvit;
5303 	struct ice_recp_grp_entry *r_tmp;
5304 	struct ice_sw_fv_list_entry *tmp;
5305 	struct ice_sw_recipe *rm;
5306 	int status = 0;
5307 	u8 i;
5308 
5309 	if (!lkups_cnt)
5310 		return -EINVAL;
5311 
5312 	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5313 	if (!lkup_exts)
5314 		return -ENOMEM;
5315 
5316 	/* Determine the number of words to be matched and if it exceeds a
5317 	 * recipe's restrictions
5318 	 */
5319 	for (i = 0; i < lkups_cnt; i++) {
5320 		u16 count;
5321 
5322 		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5323 			status = -EIO;
5324 			goto err_free_lkup_exts;
5325 		}
5326 
5327 		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5328 		if (!count) {
5329 			status = -EIO;
5330 			goto err_free_lkup_exts;
5331 		}
5332 	}
5333 
5334 	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5335 	if (!rm) {
5336 		status = -ENOMEM;
5337 		goto err_free_lkup_exts;
5338 	}
5339 
5340 	/* Get field vectors that contain fields extracted from all the protocol
5341 	 * headers being programmed.
5342 	 */
5343 	INIT_LIST_HEAD(&rm->fv_list);
5344 	INIT_LIST_HEAD(&rm->rg_list);
5345 
5346 	/* Get bitmap of field vectors (profiles) that are compatible with the
5347 	 * rule request; only these will be searched in the subsequent call to
5348 	 * ice_get_sw_fv_list.
5349 	 */
5350 	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5351 
5352 	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5353 	if (status)
5354 		goto err_unroll;
5355 
5356 	/* Create any special protocol/offset pairs, such as looking at tunnel
5357 	 * bits by extracting metadata
5358 	 */
5359 	status = ice_add_special_words(rinfo, lkup_exts, ice_is_dvm_ena(hw));
5360 	if (status)
5361 		goto err_free_lkup_exts;
5362 
5363 	/* Group match words into recipes using preferred recipe grouping
5364 	 * criteria.
5365 	 */
5366 	status = ice_create_recipe_group(hw, rm, lkup_exts);
5367 	if (status)
5368 		goto err_unroll;
5369 
5370 	/* set the recipe priority if specified */
5371 	rm->priority = (u8)rinfo->priority;
5372 
5373 	/* Find offsets from the field vector. Pick the first one for all the
5374 	 * recipes.
5375 	 */
5376 	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5377 	if (status)
5378 		goto err_unroll;
5379 
5380 	/* get bitmap of all profiles the recipe will be associated with */
5381 	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5382 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5383 		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5384 		set_bit((u16)fvit->profile_id, profiles);
5385 	}
5386 
5387 	/* Look for a recipe which matches our requested fv / mask list */
5388 	*rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type);
5389 	if (*rid < ICE_MAX_NUM_RECIPES)
5390 		/* Success if found a recipe that match the existing criteria */
5391 		goto err_unroll;
5392 
5393 	rm->tun_type = rinfo->tun_type;
5394 	/* Recipe we need does not exist, add a recipe */
5395 	status = ice_add_sw_recipe(hw, rm, profiles);
5396 	if (status)
5397 		goto err_unroll;
5398 
5399 	/* Associate all the recipes created with all the profiles in the
5400 	 * common field vector.
5401 	 */
5402 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5403 		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5404 		u16 j;
5405 
5406 		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5407 						      (u8 *)r_bitmap, NULL);
5408 		if (status)
5409 			goto err_unroll;
5410 
5411 		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5412 			  ICE_MAX_NUM_RECIPES);
5413 		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5414 		if (status)
5415 			goto err_unroll;
5416 
5417 		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5418 						      (u8 *)r_bitmap,
5419 						      NULL);
5420 		ice_release_change_lock(hw);
5421 
5422 		if (status)
5423 			goto err_unroll;
5424 
5425 		/* Update profile to recipe bitmap array */
5426 		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5427 			    ICE_MAX_NUM_RECIPES);
5428 
5429 		/* Update recipe to profile bitmap array */
5430 		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5431 			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5432 	}
5433 
5434 	*rid = rm->root_rid;
5435 	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5436 	       sizeof(*lkup_exts));
5437 err_unroll:
5438 	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5439 		list_del(&r_entry->l_entry);
5440 		devm_kfree(ice_hw_to_dev(hw), r_entry);
5441 	}
5442 
5443 	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5444 		list_del(&fvit->list_entry);
5445 		devm_kfree(ice_hw_to_dev(hw), fvit);
5446 	}
5447 
5448 	if (rm->root_buf)
5449 		devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5450 
5451 	kfree(rm);
5452 
5453 err_free_lkup_exts:
5454 	kfree(lkup_exts);
5455 
5456 	return status;
5457 }
5458 
5459 /**
5460  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5461  *
5462  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5463  * @num_vlan: number of VLAN tags
5464  */
5465 static struct ice_dummy_pkt_profile *
5466 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5467 			  u32 num_vlan)
5468 {
5469 	struct ice_dummy_pkt_profile *profile;
5470 	struct ice_dummy_pkt_offsets *offsets;
5471 	u32 buf_len, off, etype_off, i;
5472 	u8 *pkt;
5473 
5474 	if (num_vlan < 1 || num_vlan > 2)
5475 		return ERR_PTR(-EINVAL);
5476 
5477 	off = num_vlan * VLAN_HLEN;
5478 
5479 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5480 		  dummy_pkt->offsets_len;
5481 	offsets = kzalloc(buf_len, GFP_KERNEL);
5482 	if (!offsets)
5483 		return ERR_PTR(-ENOMEM);
5484 
5485 	offsets[0] = dummy_pkt->offsets[0];
5486 	if (num_vlan == 2) {
5487 		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5488 		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5489 	} else if (num_vlan == 1) {
5490 		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5491 	}
5492 
5493 	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5494 		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5495 		offsets[i + num_vlan].offset =
5496 			dummy_pkt->offsets[i].offset + off;
5497 	}
5498 	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5499 
5500 	etype_off = dummy_pkt->offsets[1].offset;
5501 
5502 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5503 		  dummy_pkt->pkt_len;
5504 	pkt = kzalloc(buf_len, GFP_KERNEL);
5505 	if (!pkt) {
5506 		kfree(offsets);
5507 		return ERR_PTR(-ENOMEM);
5508 	}
5509 
5510 	memcpy(pkt, dummy_pkt->pkt, etype_off);
5511 	memcpy(pkt + etype_off,
5512 	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5513 	       off);
5514 	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5515 	       dummy_pkt->pkt_len - etype_off);
5516 
5517 	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5518 	if (!profile) {
5519 		kfree(offsets);
5520 		kfree(pkt);
5521 		return ERR_PTR(-ENOMEM);
5522 	}
5523 
5524 	profile->offsets = offsets;
5525 	profile->pkt = pkt;
5526 	profile->pkt_len = buf_len;
5527 	profile->match |= ICE_PKT_KMALLOC;
5528 
5529 	return profile;
5530 }
5531 
5532 /**
5533  * ice_find_dummy_packet - find dummy packet
5534  *
5535  * @lkups: lookup elements or match criteria for the advanced recipe, one
5536  *	   structure per protocol header
5537  * @lkups_cnt: number of protocols
5538  * @tun_type: tunnel type
5539  *
5540  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5541  */
5542 static const struct ice_dummy_pkt_profile *
5543 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5544 		      enum ice_sw_tunnel_type tun_type)
5545 {
5546 	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5547 	u32 match = 0, vlan_count = 0;
5548 	u16 i;
5549 
5550 	switch (tun_type) {
5551 	case ICE_SW_TUN_GTPC:
5552 		match |= ICE_PKT_TUN_GTPC;
5553 		break;
5554 	case ICE_SW_TUN_GTPU:
5555 		match |= ICE_PKT_TUN_GTPU;
5556 		break;
5557 	case ICE_SW_TUN_NVGRE:
5558 		match |= ICE_PKT_TUN_NVGRE;
5559 		break;
5560 	case ICE_SW_TUN_GENEVE:
5561 	case ICE_SW_TUN_VXLAN:
5562 		match |= ICE_PKT_TUN_UDP;
5563 		break;
5564 	default:
5565 		break;
5566 	}
5567 
5568 	for (i = 0; i < lkups_cnt; i++) {
5569 		if (lkups[i].type == ICE_UDP_ILOS)
5570 			match |= ICE_PKT_INNER_UDP;
5571 		else if (lkups[i].type == ICE_TCP_IL)
5572 			match |= ICE_PKT_INNER_TCP;
5573 		else if (lkups[i].type == ICE_IPV6_OFOS)
5574 			match |= ICE_PKT_OUTER_IPV6;
5575 		else if (lkups[i].type == ICE_VLAN_OFOS ||
5576 			 lkups[i].type == ICE_VLAN_EX)
5577 			vlan_count++;
5578 		else if (lkups[i].type == ICE_VLAN_IN)
5579 			vlan_count++;
5580 		else if (lkups[i].type == ICE_ETYPE_OL &&
5581 			 lkups[i].h_u.ethertype.ethtype_id ==
5582 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5583 			 lkups[i].m_u.ethertype.ethtype_id ==
5584 				cpu_to_be16(0xFFFF))
5585 			match |= ICE_PKT_OUTER_IPV6;
5586 		else if (lkups[i].type == ICE_ETYPE_IL &&
5587 			 lkups[i].h_u.ethertype.ethtype_id ==
5588 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5589 			 lkups[i].m_u.ethertype.ethtype_id ==
5590 				cpu_to_be16(0xFFFF))
5591 			match |= ICE_PKT_INNER_IPV6;
5592 		else if (lkups[i].type == ICE_IPV6_IL)
5593 			match |= ICE_PKT_INNER_IPV6;
5594 		else if (lkups[i].type == ICE_GTP_NO_PAY)
5595 			match |= ICE_PKT_GTP_NOPAY;
5596 		else if (lkups[i].type == ICE_PPPOE) {
5597 			match |= ICE_PKT_PPPOE;
5598 			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5599 			    htons(PPP_IPV6))
5600 				match |= ICE_PKT_OUTER_IPV6;
5601 		}
5602 	}
5603 
5604 	while (ret->match && (match & ret->match) != ret->match)
5605 		ret++;
5606 
5607 	if (vlan_count != 0)
5608 		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5609 
5610 	return ret;
5611 }
5612 
5613 /**
5614  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5615  *
5616  * @lkups: lookup elements or match criteria for the advanced recipe, one
5617  *	   structure per protocol header
5618  * @lkups_cnt: number of protocols
5619  * @s_rule: stores rule information from the match criteria
5620  * @profile: dummy packet profile (the template, its size and header offsets)
5621  */
5622 static int
5623 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5624 			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5625 			  const struct ice_dummy_pkt_profile *profile)
5626 {
5627 	u8 *pkt;
5628 	u16 i;
5629 
5630 	/* Start with a packet with a pre-defined/dummy content. Then, fill
5631 	 * in the header values to be looked up or matched.
5632 	 */
5633 	pkt = s_rule->hdr_data;
5634 
5635 	memcpy(pkt, profile->pkt, profile->pkt_len);
5636 
5637 	for (i = 0; i < lkups_cnt; i++) {
5638 		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5639 		enum ice_protocol_type type;
5640 		u16 offset = 0, len = 0, j;
5641 		bool found = false;
5642 
5643 		/* find the start of this layer; it should be found since this
5644 		 * was already checked when search for the dummy packet
5645 		 */
5646 		type = lkups[i].type;
5647 		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5648 			if (type == offsets[j].type) {
5649 				offset = offsets[j].offset;
5650 				found = true;
5651 				break;
5652 			}
5653 		}
5654 		/* this should never happen in a correct calling sequence */
5655 		if (!found)
5656 			return -EINVAL;
5657 
5658 		switch (lkups[i].type) {
5659 		case ICE_MAC_OFOS:
5660 		case ICE_MAC_IL:
5661 			len = sizeof(struct ice_ether_hdr);
5662 			break;
5663 		case ICE_ETYPE_OL:
5664 		case ICE_ETYPE_IL:
5665 			len = sizeof(struct ice_ethtype_hdr);
5666 			break;
5667 		case ICE_VLAN_OFOS:
5668 		case ICE_VLAN_EX:
5669 		case ICE_VLAN_IN:
5670 			len = sizeof(struct ice_vlan_hdr);
5671 			break;
5672 		case ICE_IPV4_OFOS:
5673 		case ICE_IPV4_IL:
5674 			len = sizeof(struct ice_ipv4_hdr);
5675 			break;
5676 		case ICE_IPV6_OFOS:
5677 		case ICE_IPV6_IL:
5678 			len = sizeof(struct ice_ipv6_hdr);
5679 			break;
5680 		case ICE_TCP_IL:
5681 		case ICE_UDP_OF:
5682 		case ICE_UDP_ILOS:
5683 			len = sizeof(struct ice_l4_hdr);
5684 			break;
5685 		case ICE_SCTP_IL:
5686 			len = sizeof(struct ice_sctp_hdr);
5687 			break;
5688 		case ICE_NVGRE:
5689 			len = sizeof(struct ice_nvgre_hdr);
5690 			break;
5691 		case ICE_VXLAN:
5692 		case ICE_GENEVE:
5693 			len = sizeof(struct ice_udp_tnl_hdr);
5694 			break;
5695 		case ICE_GTP_NO_PAY:
5696 		case ICE_GTP:
5697 			len = sizeof(struct ice_udp_gtp_hdr);
5698 			break;
5699 		case ICE_PPPOE:
5700 			len = sizeof(struct ice_pppoe_hdr);
5701 			break;
5702 		default:
5703 			return -EINVAL;
5704 		}
5705 
5706 		/* the length should be a word multiple */
5707 		if (len % ICE_BYTES_PER_WORD)
5708 			return -EIO;
5709 
5710 		/* We have the offset to the header start, the length, the
5711 		 * caller's header values and mask. Use this information to
5712 		 * copy the data into the dummy packet appropriately based on
5713 		 * the mask. Note that we need to only write the bits as
5714 		 * indicated by the mask to make sure we don't improperly write
5715 		 * over any significant packet data.
5716 		 */
5717 		for (j = 0; j < len / sizeof(u16); j++) {
5718 			u16 *ptr = (u16 *)(pkt + offset);
5719 			u16 mask = lkups[i].m_raw[j];
5720 
5721 			if (!mask)
5722 				continue;
5723 
5724 			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5725 		}
5726 	}
5727 
5728 	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5729 
5730 	return 0;
5731 }
5732 
5733 /**
5734  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5735  * @hw: pointer to the hardware structure
5736  * @tun_type: tunnel type
5737  * @pkt: dummy packet to fill in
5738  * @offsets: offset info for the dummy packet
5739  */
5740 static int
5741 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5742 			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5743 {
5744 	u16 open_port, i;
5745 
5746 	switch (tun_type) {
5747 	case ICE_SW_TUN_VXLAN:
5748 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5749 			return -EIO;
5750 		break;
5751 	case ICE_SW_TUN_GENEVE:
5752 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5753 			return -EIO;
5754 		break;
5755 	default:
5756 		/* Nothing needs to be done for this tunnel type */
5757 		return 0;
5758 	}
5759 
5760 	/* Find the outer UDP protocol header and insert the port number */
5761 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5762 		if (offsets[i].type == ICE_UDP_OF) {
5763 			struct ice_l4_hdr *hdr;
5764 			u16 offset;
5765 
5766 			offset = offsets[i].offset;
5767 			hdr = (struct ice_l4_hdr *)&pkt[offset];
5768 			hdr->dst_port = cpu_to_be16(open_port);
5769 
5770 			return 0;
5771 		}
5772 	}
5773 
5774 	return -EIO;
5775 }
5776 
5777 /**
5778  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5779  * @vlan_type: VLAN tag type
5780  * @pkt: dummy packet to fill in
5781  * @offsets: offset info for the dummy packet
5782  */
5783 static int
5784 ice_fill_adv_packet_vlan(u16 vlan_type, u8 *pkt,
5785 			 const struct ice_dummy_pkt_offsets *offsets)
5786 {
5787 	u16 i;
5788 
5789 	/* Find VLAN header and insert VLAN TPID */
5790 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5791 		if (offsets[i].type == ICE_VLAN_OFOS ||
5792 		    offsets[i].type == ICE_VLAN_EX) {
5793 			struct ice_vlan_hdr *hdr;
5794 			u16 offset;
5795 
5796 			offset = offsets[i].offset;
5797 			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5798 			hdr->type = cpu_to_be16(vlan_type);
5799 
5800 			return 0;
5801 		}
5802 	}
5803 
5804 	return -EIO;
5805 }
5806 
5807 /**
5808  * ice_find_adv_rule_entry - Search a rule entry
5809  * @hw: pointer to the hardware structure
5810  * @lkups: lookup elements or match criteria for the advanced recipe, one
5811  *	   structure per protocol header
5812  * @lkups_cnt: number of protocols
5813  * @recp_id: recipe ID for which we are finding the rule
5814  * @rinfo: other information regarding the rule e.g. priority and action info
5815  *
5816  * Helper function to search for a given advance rule entry
5817  * Returns pointer to entry storing the rule if found
5818  */
5819 static struct ice_adv_fltr_mgmt_list_entry *
5820 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5821 			u16 lkups_cnt, u16 recp_id,
5822 			struct ice_adv_rule_info *rinfo)
5823 {
5824 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5825 	struct ice_switch_info *sw = hw->switch_info;
5826 	int i;
5827 
5828 	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5829 			    list_entry) {
5830 		bool lkups_matched = true;
5831 
5832 		if (lkups_cnt != list_itr->lkups_cnt)
5833 			continue;
5834 		for (i = 0; i < list_itr->lkups_cnt; i++)
5835 			if (memcmp(&list_itr->lkups[i], &lkups[i],
5836 				   sizeof(*lkups))) {
5837 				lkups_matched = false;
5838 				break;
5839 			}
5840 		if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5841 		    rinfo->tun_type == list_itr->rule_info.tun_type &&
5842 		    rinfo->vlan_type == list_itr->rule_info.vlan_type &&
5843 		    lkups_matched)
5844 			return list_itr;
5845 	}
5846 	return NULL;
5847 }
5848 
5849 /**
5850  * ice_adv_add_update_vsi_list
5851  * @hw: pointer to the hardware structure
5852  * @m_entry: pointer to current adv filter management list entry
5853  * @cur_fltr: filter information from the book keeping entry
5854  * @new_fltr: filter information with the new VSI to be added
5855  *
5856  * Call AQ command to add or update previously created VSI list with new VSI.
5857  *
5858  * Helper function to do book keeping associated with adding filter information
5859  * The algorithm to do the booking keeping is described below :
5860  * When a VSI needs to subscribe to a given advanced filter
5861  *	if only one VSI has been added till now
5862  *		Allocate a new VSI list and add two VSIs
5863  *		to this list using switch rule command
5864  *		Update the previously created switch rule with the
5865  *		newly created VSI list ID
5866  *	if a VSI list was previously created
5867  *		Add the new VSI to the previously created VSI list set
5868  *		using the update switch rule command
5869  */
5870 static int
5871 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5872 			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5873 			    struct ice_adv_rule_info *cur_fltr,
5874 			    struct ice_adv_rule_info *new_fltr)
5875 {
5876 	u16 vsi_list_id = 0;
5877 	int status;
5878 
5879 	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5880 	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5881 	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5882 		return -EOPNOTSUPP;
5883 
5884 	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5885 	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5886 	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5887 	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5888 		return -EOPNOTSUPP;
5889 
5890 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5891 		 /* Only one entry existed in the mapping and it was not already
5892 		  * a part of a VSI list. So, create a VSI list with the old and
5893 		  * new VSIs.
5894 		  */
5895 		struct ice_fltr_info tmp_fltr;
5896 		u16 vsi_handle_arr[2];
5897 
5898 		/* A rule already exists with the new VSI being added */
5899 		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5900 		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5901 			return -EEXIST;
5902 
5903 		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5904 		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5905 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5906 						  &vsi_list_id,
5907 						  ICE_SW_LKUP_LAST);
5908 		if (status)
5909 			return status;
5910 
5911 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5912 		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5913 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5914 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5915 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5916 		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5917 
5918 		/* Update the previous switch rule of "forward to VSI" to
5919 		 * "fwd to VSI list"
5920 		 */
5921 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5922 		if (status)
5923 			return status;
5924 
5925 		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5926 		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5927 		m_entry->vsi_list_info =
5928 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5929 						vsi_list_id);
5930 	} else {
5931 		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5932 
5933 		if (!m_entry->vsi_list_info)
5934 			return -EIO;
5935 
5936 		/* A rule already exists with the new VSI being added */
5937 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5938 			return 0;
5939 
5940 		/* Update the previously created VSI list set with
5941 		 * the new VSI ID passed in
5942 		 */
5943 		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5944 
5945 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5946 						  vsi_list_id, false,
5947 						  ice_aqc_opc_update_sw_rules,
5948 						  ICE_SW_LKUP_LAST);
5949 		/* update VSI list mapping info with new VSI ID */
5950 		if (!status)
5951 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5952 	}
5953 	if (!status)
5954 		m_entry->vsi_count++;
5955 	return status;
5956 }
5957 
5958 /**
5959  * ice_add_adv_rule - helper function to create an advanced switch rule
5960  * @hw: pointer to the hardware structure
5961  * @lkups: information on the words that needs to be looked up. All words
5962  * together makes one recipe
5963  * @lkups_cnt: num of entries in the lkups array
5964  * @rinfo: other information related to the rule that needs to be programmed
5965  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
5966  *               ignored is case of error.
5967  *
5968  * This function can program only 1 rule at a time. The lkups is used to
5969  * describe the all the words that forms the "lookup" portion of the recipe.
5970  * These words can span multiple protocols. Callers to this function need to
5971  * pass in a list of protocol headers with lookup information along and mask
5972  * that determines which words are valid from the given protocol header.
5973  * rinfo describes other information related to this rule such as forwarding
5974  * IDs, priority of this rule, etc.
5975  */
5976 int
5977 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5978 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
5979 		 struct ice_rule_query_data *added_entry)
5980 {
5981 	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
5982 	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
5983 	const struct ice_dummy_pkt_profile *profile;
5984 	u16 rid = 0, i, rule_buf_sz, vsi_handle;
5985 	struct list_head *rule_head;
5986 	struct ice_switch_info *sw;
5987 	u16 word_cnt;
5988 	u32 act = 0;
5989 	int status;
5990 	u8 q_rgn;
5991 
5992 	/* Initialize profile to result index bitmap */
5993 	if (!hw->switch_info->prof_res_bm_init) {
5994 		hw->switch_info->prof_res_bm_init = 1;
5995 		ice_init_prof_result_bm(hw);
5996 	}
5997 
5998 	if (!lkups_cnt)
5999 		return -EINVAL;
6000 
6001 	/* get # of words we need to match */
6002 	word_cnt = 0;
6003 	for (i = 0; i < lkups_cnt; i++) {
6004 		u16 j;
6005 
6006 		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6007 			if (lkups[i].m_raw[j])
6008 				word_cnt++;
6009 	}
6010 
6011 	if (!word_cnt)
6012 		return -EINVAL;
6013 
6014 	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6015 		return -ENOSPC;
6016 
6017 	/* locate a dummy packet */
6018 	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6019 	if (IS_ERR(profile))
6020 		return PTR_ERR(profile);
6021 
6022 	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6023 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6024 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6025 	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET)) {
6026 		status = -EIO;
6027 		goto free_pkt_profile;
6028 	}
6029 
6030 	vsi_handle = rinfo->sw_act.vsi_handle;
6031 	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6032 		status =  -EINVAL;
6033 		goto free_pkt_profile;
6034 	}
6035 
6036 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6037 		rinfo->sw_act.fwd_id.hw_vsi_id =
6038 			ice_get_hw_vsi_num(hw, vsi_handle);
6039 	if (rinfo->sw_act.flag & ICE_FLTR_TX)
6040 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6041 
6042 	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6043 	if (status)
6044 		goto free_pkt_profile;
6045 	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6046 	if (m_entry) {
6047 		/* we have to add VSI to VSI_LIST and increment vsi_count.
6048 		 * Also Update VSI list so that we can change forwarding rule
6049 		 * if the rule already exists, we will check if it exists with
6050 		 * same vsi_id, if not then add it to the VSI list if it already
6051 		 * exists if not then create a VSI list and add the existing VSI
6052 		 * ID and the new VSI ID to the list
6053 		 * We will add that VSI to the list
6054 		 */
6055 		status = ice_adv_add_update_vsi_list(hw, m_entry,
6056 						     &m_entry->rule_info,
6057 						     rinfo);
6058 		if (added_entry) {
6059 			added_entry->rid = rid;
6060 			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6061 			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6062 		}
6063 		goto free_pkt_profile;
6064 	}
6065 	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6066 	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6067 	if (!s_rule) {
6068 		status = -ENOMEM;
6069 		goto free_pkt_profile;
6070 	}
6071 	if (!rinfo->flags_info.act_valid) {
6072 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
6073 		act |= ICE_SINGLE_ACT_LB_ENABLE;
6074 	} else {
6075 		act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6076 						ICE_SINGLE_ACT_LB_ENABLE);
6077 	}
6078 
6079 	switch (rinfo->sw_act.fltr_act) {
6080 	case ICE_FWD_TO_VSI:
6081 		act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6082 			ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6083 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6084 		break;
6085 	case ICE_FWD_TO_Q:
6086 		act |= ICE_SINGLE_ACT_TO_Q;
6087 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6088 		       ICE_SINGLE_ACT_Q_INDEX_M;
6089 		break;
6090 	case ICE_FWD_TO_QGRP:
6091 		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6092 			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6093 		act |= ICE_SINGLE_ACT_TO_Q;
6094 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6095 		       ICE_SINGLE_ACT_Q_INDEX_M;
6096 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6097 		       ICE_SINGLE_ACT_Q_REGION_M;
6098 		break;
6099 	case ICE_DROP_PACKET:
6100 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6101 		       ICE_SINGLE_ACT_VALID_BIT;
6102 		break;
6103 	default:
6104 		status = -EIO;
6105 		goto err_ice_add_adv_rule;
6106 	}
6107 
6108 	/* set the rule LOOKUP type based on caller specified 'Rx'
6109 	 * instead of hardcoding it to be either LOOKUP_TX/RX
6110 	 *
6111 	 * for 'Rx' set the source to be the port number
6112 	 * for 'Tx' set the source to be the source HW VSI number (determined
6113 	 * by caller)
6114 	 */
6115 	if (rinfo->rx) {
6116 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6117 		s_rule->src = cpu_to_le16(hw->port_info->lport);
6118 	} else {
6119 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6120 		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6121 	}
6122 
6123 	s_rule->recipe_id = cpu_to_le16(rid);
6124 	s_rule->act = cpu_to_le32(act);
6125 
6126 	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6127 	if (status)
6128 		goto err_ice_add_adv_rule;
6129 
6130 	if (rinfo->tun_type != ICE_NON_TUN &&
6131 	    rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
6132 		status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
6133 						 s_rule->hdr_data,
6134 						 profile->offsets);
6135 		if (status)
6136 			goto err_ice_add_adv_rule;
6137 	}
6138 
6139 	if (rinfo->vlan_type != 0 && ice_is_dvm_ena(hw)) {
6140 		status = ice_fill_adv_packet_vlan(rinfo->vlan_type,
6141 						  s_rule->hdr_data,
6142 						  profile->offsets);
6143 		if (status)
6144 			goto err_ice_add_adv_rule;
6145 	}
6146 
6147 	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6148 				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6149 				 NULL);
6150 	if (status)
6151 		goto err_ice_add_adv_rule;
6152 	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6153 				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6154 				GFP_KERNEL);
6155 	if (!adv_fltr) {
6156 		status = -ENOMEM;
6157 		goto err_ice_add_adv_rule;
6158 	}
6159 
6160 	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6161 				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6162 	if (!adv_fltr->lkups) {
6163 		status = -ENOMEM;
6164 		goto err_ice_add_adv_rule;
6165 	}
6166 
6167 	adv_fltr->lkups_cnt = lkups_cnt;
6168 	adv_fltr->rule_info = *rinfo;
6169 	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6170 	sw = hw->switch_info;
6171 	sw->recp_list[rid].adv_rule = true;
6172 	rule_head = &sw->recp_list[rid].filt_rules;
6173 
6174 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6175 		adv_fltr->vsi_count = 1;
6176 
6177 	/* Add rule entry to book keeping list */
6178 	list_add(&adv_fltr->list_entry, rule_head);
6179 	if (added_entry) {
6180 		added_entry->rid = rid;
6181 		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6182 		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6183 	}
6184 err_ice_add_adv_rule:
6185 	if (status && adv_fltr) {
6186 		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6187 		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6188 	}
6189 
6190 	kfree(s_rule);
6191 
6192 free_pkt_profile:
6193 	if (profile->match & ICE_PKT_KMALLOC) {
6194 		kfree(profile->offsets);
6195 		kfree(profile->pkt);
6196 		kfree(profile);
6197 	}
6198 
6199 	return status;
6200 }
6201 
6202 /**
6203  * ice_replay_vsi_fltr - Replay filters for requested VSI
6204  * @hw: pointer to the hardware structure
6205  * @vsi_handle: driver VSI handle
6206  * @recp_id: Recipe ID for which rules need to be replayed
6207  * @list_head: list for which filters need to be replayed
6208  *
6209  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6210  * It is required to pass valid VSI handle.
6211  */
6212 static int
6213 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6214 		    struct list_head *list_head)
6215 {
6216 	struct ice_fltr_mgmt_list_entry *itr;
6217 	int status = 0;
6218 	u16 hw_vsi_id;
6219 
6220 	if (list_empty(list_head))
6221 		return status;
6222 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6223 
6224 	list_for_each_entry(itr, list_head, list_entry) {
6225 		struct ice_fltr_list_entry f_entry;
6226 
6227 		f_entry.fltr_info = itr->fltr_info;
6228 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6229 		    itr->fltr_info.vsi_handle == vsi_handle) {
6230 			/* update the src in case it is VSI num */
6231 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6232 				f_entry.fltr_info.src = hw_vsi_id;
6233 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6234 			if (status)
6235 				goto end;
6236 			continue;
6237 		}
6238 		if (!itr->vsi_list_info ||
6239 		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6240 			continue;
6241 		/* Clearing it so that the logic can add it back */
6242 		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6243 		f_entry.fltr_info.vsi_handle = vsi_handle;
6244 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6245 		/* update the src in case it is VSI num */
6246 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6247 			f_entry.fltr_info.src = hw_vsi_id;
6248 		if (recp_id == ICE_SW_LKUP_VLAN)
6249 			status = ice_add_vlan_internal(hw, &f_entry);
6250 		else
6251 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6252 		if (status)
6253 			goto end;
6254 	}
6255 end:
6256 	return status;
6257 }
6258 
6259 /**
6260  * ice_adv_rem_update_vsi_list
6261  * @hw: pointer to the hardware structure
6262  * @vsi_handle: VSI handle of the VSI to remove
6263  * @fm_list: filter management entry for which the VSI list management needs to
6264  *	     be done
6265  */
6266 static int
6267 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6268 			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6269 {
6270 	struct ice_vsi_list_map_info *vsi_list_info;
6271 	enum ice_sw_lkup_type lkup_type;
6272 	u16 vsi_list_id;
6273 	int status;
6274 
6275 	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6276 	    fm_list->vsi_count == 0)
6277 		return -EINVAL;
6278 
6279 	/* A rule with the VSI being removed does not exist */
6280 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6281 		return -ENOENT;
6282 
6283 	lkup_type = ICE_SW_LKUP_LAST;
6284 	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6285 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6286 					  ice_aqc_opc_update_sw_rules,
6287 					  lkup_type);
6288 	if (status)
6289 		return status;
6290 
6291 	fm_list->vsi_count--;
6292 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6293 	vsi_list_info = fm_list->vsi_list_info;
6294 	if (fm_list->vsi_count == 1) {
6295 		struct ice_fltr_info tmp_fltr;
6296 		u16 rem_vsi_handle;
6297 
6298 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6299 						ICE_MAX_VSI);
6300 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6301 			return -EIO;
6302 
6303 		/* Make sure VSI list is empty before removing it below */
6304 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6305 						  vsi_list_id, true,
6306 						  ice_aqc_opc_update_sw_rules,
6307 						  lkup_type);
6308 		if (status)
6309 			return status;
6310 
6311 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6312 		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6313 		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6314 		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6315 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6316 		tmp_fltr.fwd_id.hw_vsi_id =
6317 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6318 		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6319 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6320 		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6321 
6322 		/* Update the previous switch rule of "MAC forward to VSI" to
6323 		 * "MAC fwd to VSI list"
6324 		 */
6325 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6326 		if (status) {
6327 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6328 				  tmp_fltr.fwd_id.hw_vsi_id, status);
6329 			return status;
6330 		}
6331 		fm_list->vsi_list_info->ref_cnt--;
6332 
6333 		/* Remove the VSI list since it is no longer used */
6334 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6335 		if (status) {
6336 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6337 				  vsi_list_id, status);
6338 			return status;
6339 		}
6340 
6341 		list_del(&vsi_list_info->list_entry);
6342 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6343 		fm_list->vsi_list_info = NULL;
6344 	}
6345 
6346 	return status;
6347 }
6348 
6349 /**
6350  * ice_rem_adv_rule - removes existing advanced switch rule
6351  * @hw: pointer to the hardware structure
6352  * @lkups: information on the words that needs to be looked up. All words
6353  *         together makes one recipe
6354  * @lkups_cnt: num of entries in the lkups array
6355  * @rinfo: Its the pointer to the rule information for the rule
6356  *
6357  * This function can be used to remove 1 rule at a time. The lkups is
6358  * used to describe all the words that forms the "lookup" portion of the
6359  * rule. These words can span multiple protocols. Callers to this function
6360  * need to pass in a list of protocol headers with lookup information along
6361  * and mask that determines which words are valid from the given protocol
6362  * header. rinfo describes other information related to this rule such as
6363  * forwarding IDs, priority of this rule, etc.
6364  */
6365 static int
6366 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6367 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6368 {
6369 	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6370 	struct ice_prot_lkup_ext lkup_exts;
6371 	bool remove_rule = false;
6372 	struct mutex *rule_lock; /* Lock to protect filter rule list */
6373 	u16 i, rid, vsi_handle;
6374 	int status = 0;
6375 
6376 	memset(&lkup_exts, 0, sizeof(lkup_exts));
6377 	for (i = 0; i < lkups_cnt; i++) {
6378 		u16 count;
6379 
6380 		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6381 			return -EIO;
6382 
6383 		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6384 		if (!count)
6385 			return -EIO;
6386 	}
6387 
6388 	/* Create any special protocol/offset pairs, such as looking at tunnel
6389 	 * bits by extracting metadata
6390 	 */
6391 	status = ice_add_special_words(rinfo, &lkup_exts, ice_is_dvm_ena(hw));
6392 	if (status)
6393 		return status;
6394 
6395 	rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type);
6396 	/* If did not find a recipe that match the existing criteria */
6397 	if (rid == ICE_MAX_NUM_RECIPES)
6398 		return -EINVAL;
6399 
6400 	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6401 	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6402 	/* the rule is already removed */
6403 	if (!list_elem)
6404 		return 0;
6405 	mutex_lock(rule_lock);
6406 	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6407 		remove_rule = true;
6408 	} else if (list_elem->vsi_count > 1) {
6409 		remove_rule = false;
6410 		vsi_handle = rinfo->sw_act.vsi_handle;
6411 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6412 	} else {
6413 		vsi_handle = rinfo->sw_act.vsi_handle;
6414 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6415 		if (status) {
6416 			mutex_unlock(rule_lock);
6417 			return status;
6418 		}
6419 		if (list_elem->vsi_count == 0)
6420 			remove_rule = true;
6421 	}
6422 	mutex_unlock(rule_lock);
6423 	if (remove_rule) {
6424 		struct ice_sw_rule_lkup_rx_tx *s_rule;
6425 		u16 rule_buf_sz;
6426 
6427 		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6428 		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6429 		if (!s_rule)
6430 			return -ENOMEM;
6431 		s_rule->act = 0;
6432 		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6433 		s_rule->hdr_len = 0;
6434 		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6435 					 rule_buf_sz, 1,
6436 					 ice_aqc_opc_remove_sw_rules, NULL);
6437 		if (!status || status == -ENOENT) {
6438 			struct ice_switch_info *sw = hw->switch_info;
6439 
6440 			mutex_lock(rule_lock);
6441 			list_del(&list_elem->list_entry);
6442 			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6443 			devm_kfree(ice_hw_to_dev(hw), list_elem);
6444 			mutex_unlock(rule_lock);
6445 			if (list_empty(&sw->recp_list[rid].filt_rules))
6446 				sw->recp_list[rid].adv_rule = false;
6447 		}
6448 		kfree(s_rule);
6449 	}
6450 	return status;
6451 }
6452 
6453 /**
6454  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6455  * @hw: pointer to the hardware structure
6456  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6457  *
6458  * This function is used to remove 1 rule at a time. The removal is based on
6459  * the remove_entry parameter. This function will remove rule for a given
6460  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6461  */
6462 int
6463 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6464 		       struct ice_rule_query_data *remove_entry)
6465 {
6466 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6467 	struct list_head *list_head;
6468 	struct ice_adv_rule_info rinfo;
6469 	struct ice_switch_info *sw;
6470 
6471 	sw = hw->switch_info;
6472 	if (!sw->recp_list[remove_entry->rid].recp_created)
6473 		return -EINVAL;
6474 	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6475 	list_for_each_entry(list_itr, list_head, list_entry) {
6476 		if (list_itr->rule_info.fltr_rule_id ==
6477 		    remove_entry->rule_id) {
6478 			rinfo = list_itr->rule_info;
6479 			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6480 			return ice_rem_adv_rule(hw, list_itr->lkups,
6481 						list_itr->lkups_cnt, &rinfo);
6482 		}
6483 	}
6484 	/* either list is empty or unable to find rule */
6485 	return -ENOENT;
6486 }
6487 
6488 /**
6489  * ice_rem_adv_rule_for_vsi - removes existing advanced switch rules for a
6490  *                            given VSI handle
6491  * @hw: pointer to the hardware structure
6492  * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
6493  *
6494  * This function is used to remove all the rules for a given VSI and as soon
6495  * as removing a rule fails, it will return immediately with the error code,
6496  * else it will return success.
6497  */
6498 int ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
6499 {
6500 	struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry;
6501 	struct ice_vsi_list_map_info *map_info;
6502 	struct ice_adv_rule_info rinfo;
6503 	struct list_head *list_head;
6504 	struct ice_switch_info *sw;
6505 	int status;
6506 	u8 rid;
6507 
6508 	sw = hw->switch_info;
6509 	for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
6510 		if (!sw->recp_list[rid].recp_created)
6511 			continue;
6512 		if (!sw->recp_list[rid].adv_rule)
6513 			continue;
6514 
6515 		list_head = &sw->recp_list[rid].filt_rules;
6516 		list_for_each_entry_safe(list_itr, tmp_entry, list_head,
6517 					 list_entry) {
6518 			rinfo = list_itr->rule_info;
6519 
6520 			if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) {
6521 				map_info = list_itr->vsi_list_info;
6522 				if (!map_info)
6523 					continue;
6524 
6525 				if (!test_bit(vsi_handle, map_info->vsi_map))
6526 					continue;
6527 			} else if (rinfo.sw_act.vsi_handle != vsi_handle) {
6528 				continue;
6529 			}
6530 
6531 			rinfo.sw_act.vsi_handle = vsi_handle;
6532 			status = ice_rem_adv_rule(hw, list_itr->lkups,
6533 						  list_itr->lkups_cnt, &rinfo);
6534 			if (status)
6535 				return status;
6536 		}
6537 	}
6538 	return 0;
6539 }
6540 
6541 /**
6542  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6543  * @hw: pointer to the hardware structure
6544  * @vsi_handle: driver VSI handle
6545  * @list_head: list for which filters need to be replayed
6546  *
6547  * Replay the advanced rule for the given VSI.
6548  */
6549 static int
6550 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6551 			struct list_head *list_head)
6552 {
6553 	struct ice_rule_query_data added_entry = { 0 };
6554 	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6555 	int status = 0;
6556 
6557 	if (list_empty(list_head))
6558 		return status;
6559 	list_for_each_entry(adv_fltr, list_head, list_entry) {
6560 		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6561 		u16 lk_cnt = adv_fltr->lkups_cnt;
6562 
6563 		if (vsi_handle != rinfo->sw_act.vsi_handle)
6564 			continue;
6565 		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6566 					  &added_entry);
6567 		if (status)
6568 			break;
6569 	}
6570 	return status;
6571 }
6572 
6573 /**
6574  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6575  * @hw: pointer to the hardware structure
6576  * @vsi_handle: driver VSI handle
6577  *
6578  * Replays filters for requested VSI via vsi_handle.
6579  */
6580 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6581 {
6582 	struct ice_switch_info *sw = hw->switch_info;
6583 	int status;
6584 	u8 i;
6585 
6586 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6587 		struct list_head *head;
6588 
6589 		head = &sw->recp_list[i].filt_replay_rules;
6590 		if (!sw->recp_list[i].adv_rule)
6591 			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6592 		else
6593 			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6594 		if (status)
6595 			return status;
6596 	}
6597 	return status;
6598 }
6599 
6600 /**
6601  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6602  * @hw: pointer to the HW struct
6603  *
6604  * Deletes the filter replay rules.
6605  */
6606 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6607 {
6608 	struct ice_switch_info *sw = hw->switch_info;
6609 	u8 i;
6610 
6611 	if (!sw)
6612 		return;
6613 
6614 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6615 		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6616 			struct list_head *l_head;
6617 
6618 			l_head = &sw->recp_list[i].filt_replay_rules;
6619 			if (!sw->recp_list[i].adv_rule)
6620 				ice_rem_sw_rule_info(hw, l_head);
6621 			else
6622 				ice_rem_adv_rule_info(hw, l_head);
6623 		}
6624 	}
6625 }
6626