1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_switch.h" 5 6 #define ICE_ETH_DA_OFFSET 0 7 #define ICE_ETH_ETHTYPE_OFFSET 12 8 #define ICE_ETH_VLAN_TCI_OFFSET 14 9 #define ICE_MAX_VLAN_ID 0xFFF 10 11 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 12 * struct to configure any switch filter rules. 13 * {DA (6 bytes), SA(6 bytes), 14 * Ether type (2 bytes for header without VLAN tag) OR 15 * VLAN tag (4 bytes for header with VLAN tag) } 16 * 17 * Word on Hardcoded values 18 * byte 0 = 0x2: to identify it as locally administered DA MAC 19 * byte 6 = 0x2: to identify it as locally administered SA MAC 20 * byte 12 = 0x81 & byte 13 = 0x00: 21 * In case of VLAN filter first two bytes defines ether type (0x8100) 22 * and remaining two bytes are placeholder for programming a given VLAN ID 23 * In case of Ether type filter it is treated as header without VLAN tag 24 * and byte 12 and 13 is used to program a given Ether type instead 25 */ 26 #define DUMMY_ETH_HDR_LEN 16 27 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 28 0x2, 0, 0, 0, 0, 0, 29 0x81, 0, 0, 0}; 30 31 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \ 32 (offsetof(struct ice_aqc_sw_rules_elem, pdata.lkup_tx_rx.hdr) + \ 33 (DUMMY_ETH_HDR_LEN * \ 34 sizeof(((struct ice_sw_rule_lkup_rx_tx *)0)->hdr[0]))) 35 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \ 36 (offsetof(struct ice_aqc_sw_rules_elem, pdata.lkup_tx_rx.hdr)) 37 #define ICE_SW_RULE_LG_ACT_SIZE(n) \ 38 (offsetof(struct ice_aqc_sw_rules_elem, pdata.lg_act.act) + \ 39 ((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act[0]))) 40 #define ICE_SW_RULE_VSI_LIST_SIZE(n) \ 41 (offsetof(struct ice_aqc_sw_rules_elem, pdata.vsi_list.vsi) + \ 42 ((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi[0]))) 43 44 /** 45 * ice_init_def_sw_recp - initialize the recipe book keeping tables 46 * @hw: pointer to the HW struct 47 * 48 * Allocate memory for the entire recipe table and initialize the structures/ 49 * entries corresponding to basic recipes. 50 */ 51 enum ice_status ice_init_def_sw_recp(struct ice_hw *hw) 52 { 53 struct ice_sw_recipe *recps; 54 u8 i; 55 56 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 57 sizeof(*recps), GFP_KERNEL); 58 if (!recps) 59 return ICE_ERR_NO_MEMORY; 60 61 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 62 recps[i].root_rid = i; 63 INIT_LIST_HEAD(&recps[i].filt_rules); 64 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 65 mutex_init(&recps[i].filt_rule_lock); 66 } 67 68 hw->switch_info->recp_list = recps; 69 70 return 0; 71 } 72 73 /** 74 * ice_aq_get_sw_cfg - get switch configuration 75 * @hw: pointer to the hardware structure 76 * @buf: pointer to the result buffer 77 * @buf_size: length of the buffer available for response 78 * @req_desc: pointer to requested descriptor 79 * @num_elems: pointer to number of elements 80 * @cd: pointer to command details structure or NULL 81 * 82 * Get switch configuration (0x0200) to be placed in buf. 83 * This admin command returns information such as initial VSI/port number 84 * and switch ID it belongs to. 85 * 86 * NOTE: *req_desc is both an input/output parameter. 87 * The caller of this function first calls this function with *request_desc set 88 * to 0. If the response from f/w has *req_desc set to 0, all the switch 89 * configuration information has been returned; if non-zero (meaning not all 90 * the information was returned), the caller should call this function again 91 * with *req_desc set to the previous value returned by f/w to get the 92 * next block of switch configuration information. 93 * 94 * *num_elems is output only parameter. This reflects the number of elements 95 * in response buffer. The caller of this function to use *num_elems while 96 * parsing the response buffer. 97 */ 98 static enum ice_status 99 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, 100 u16 buf_size, u16 *req_desc, u16 *num_elems, 101 struct ice_sq_cd *cd) 102 { 103 struct ice_aqc_get_sw_cfg *cmd; 104 struct ice_aq_desc desc; 105 enum ice_status status; 106 107 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 108 cmd = &desc.params.get_sw_conf; 109 cmd->element = cpu_to_le16(*req_desc); 110 111 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 112 if (!status) { 113 *req_desc = le16_to_cpu(cmd->element); 114 *num_elems = le16_to_cpu(cmd->num_elems); 115 } 116 117 return status; 118 } 119 120 /** 121 * ice_aq_add_vsi 122 * @hw: pointer to the HW struct 123 * @vsi_ctx: pointer to a VSI context struct 124 * @cd: pointer to command details structure or NULL 125 * 126 * Add a VSI context to the hardware (0x0210) 127 */ 128 static enum ice_status 129 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 130 struct ice_sq_cd *cd) 131 { 132 struct ice_aqc_add_update_free_vsi_resp *res; 133 struct ice_aqc_add_get_update_free_vsi *cmd; 134 struct ice_aq_desc desc; 135 enum ice_status status; 136 137 cmd = &desc.params.vsi_cmd; 138 res = &desc.params.add_update_free_vsi_res; 139 140 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 141 142 if (!vsi_ctx->alloc_from_pool) 143 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 144 ICE_AQ_VSI_IS_VALID); 145 cmd->vf_id = vsi_ctx->vf_num; 146 147 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 148 149 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 150 151 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 152 sizeof(vsi_ctx->info), cd); 153 154 if (!status) { 155 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 156 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 157 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 158 } 159 160 return status; 161 } 162 163 /** 164 * ice_aq_free_vsi 165 * @hw: pointer to the HW struct 166 * @vsi_ctx: pointer to a VSI context struct 167 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 168 * @cd: pointer to command details structure or NULL 169 * 170 * Free VSI context info from hardware (0x0213) 171 */ 172 static enum ice_status 173 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 174 bool keep_vsi_alloc, struct ice_sq_cd *cd) 175 { 176 struct ice_aqc_add_update_free_vsi_resp *resp; 177 struct ice_aqc_add_get_update_free_vsi *cmd; 178 struct ice_aq_desc desc; 179 enum ice_status status; 180 181 cmd = &desc.params.vsi_cmd; 182 resp = &desc.params.add_update_free_vsi_res; 183 184 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 185 186 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 187 if (keep_vsi_alloc) 188 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 189 190 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 191 if (!status) { 192 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 193 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 194 } 195 196 return status; 197 } 198 199 /** 200 * ice_aq_update_vsi 201 * @hw: pointer to the HW struct 202 * @vsi_ctx: pointer to a VSI context struct 203 * @cd: pointer to command details structure or NULL 204 * 205 * Update VSI context in the hardware (0x0211) 206 */ 207 static enum ice_status 208 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 209 struct ice_sq_cd *cd) 210 { 211 struct ice_aqc_add_update_free_vsi_resp *resp; 212 struct ice_aqc_add_get_update_free_vsi *cmd; 213 struct ice_aq_desc desc; 214 enum ice_status status; 215 216 cmd = &desc.params.vsi_cmd; 217 resp = &desc.params.add_update_free_vsi_res; 218 219 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 220 221 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 222 223 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 224 225 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 226 sizeof(vsi_ctx->info), cd); 227 228 if (!status) { 229 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 230 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 231 } 232 233 return status; 234 } 235 236 /** 237 * ice_is_vsi_valid - check whether the VSI is valid or not 238 * @hw: pointer to the HW struct 239 * @vsi_handle: VSI handle 240 * 241 * check whether the VSI is valid or not 242 */ 243 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 244 { 245 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 246 } 247 248 /** 249 * ice_get_hw_vsi_num - return the HW VSI number 250 * @hw: pointer to the HW struct 251 * @vsi_handle: VSI handle 252 * 253 * return the HW VSI number 254 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 255 */ 256 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 257 { 258 return hw->vsi_ctx[vsi_handle]->vsi_num; 259 } 260 261 /** 262 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 263 * @hw: pointer to the HW struct 264 * @vsi_handle: VSI handle 265 * 266 * return the VSI context entry for a given VSI handle 267 */ 268 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 269 { 270 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 271 } 272 273 /** 274 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 275 * @hw: pointer to the HW struct 276 * @vsi_handle: VSI handle 277 * @vsi: VSI context pointer 278 * 279 * save the VSI context entry for a given VSI handle 280 */ 281 static void 282 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 283 { 284 hw->vsi_ctx[vsi_handle] = vsi; 285 } 286 287 /** 288 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 289 * @hw: pointer to the HW struct 290 * @vsi_handle: VSI handle 291 */ 292 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 293 { 294 struct ice_vsi_ctx *vsi; 295 u8 i; 296 297 vsi = ice_get_vsi_ctx(hw, vsi_handle); 298 if (!vsi) 299 return; 300 ice_for_each_traffic_class(i) { 301 if (vsi->lan_q_ctx[i]) { 302 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 303 vsi->lan_q_ctx[i] = NULL; 304 } 305 } 306 } 307 308 /** 309 * ice_clear_vsi_ctx - clear the VSI context entry 310 * @hw: pointer to the HW struct 311 * @vsi_handle: VSI handle 312 * 313 * clear the VSI context entry 314 */ 315 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 316 { 317 struct ice_vsi_ctx *vsi; 318 319 vsi = ice_get_vsi_ctx(hw, vsi_handle); 320 if (vsi) { 321 ice_clear_vsi_q_ctx(hw, vsi_handle); 322 devm_kfree(ice_hw_to_dev(hw), vsi); 323 hw->vsi_ctx[vsi_handle] = NULL; 324 } 325 } 326 327 /** 328 * ice_clear_all_vsi_ctx - clear all the VSI context entries 329 * @hw: pointer to the HW struct 330 */ 331 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 332 { 333 u16 i; 334 335 for (i = 0; i < ICE_MAX_VSI; i++) 336 ice_clear_vsi_ctx(hw, i); 337 } 338 339 /** 340 * ice_add_vsi - add VSI context to the hardware and VSI handle list 341 * @hw: pointer to the HW struct 342 * @vsi_handle: unique VSI handle provided by drivers 343 * @vsi_ctx: pointer to a VSI context struct 344 * @cd: pointer to command details structure or NULL 345 * 346 * Add a VSI context to the hardware also add it into the VSI handle list. 347 * If this function gets called after reset for existing VSIs then update 348 * with the new HW VSI number in the corresponding VSI handle list entry. 349 */ 350 enum ice_status 351 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 352 struct ice_sq_cd *cd) 353 { 354 struct ice_vsi_ctx *tmp_vsi_ctx; 355 enum ice_status status; 356 357 if (vsi_handle >= ICE_MAX_VSI) 358 return ICE_ERR_PARAM; 359 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 360 if (status) 361 return status; 362 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 363 if (!tmp_vsi_ctx) { 364 /* Create a new VSI context */ 365 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 366 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 367 if (!tmp_vsi_ctx) { 368 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 369 return ICE_ERR_NO_MEMORY; 370 } 371 *tmp_vsi_ctx = *vsi_ctx; 372 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 373 } else { 374 /* update with new HW VSI num */ 375 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 376 } 377 378 return 0; 379 } 380 381 /** 382 * ice_free_vsi- free VSI context from hardware and VSI handle list 383 * @hw: pointer to the HW struct 384 * @vsi_handle: unique VSI handle 385 * @vsi_ctx: pointer to a VSI context struct 386 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 387 * @cd: pointer to command details structure or NULL 388 * 389 * Free VSI context info from hardware as well as from VSI handle list 390 */ 391 enum ice_status 392 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 393 bool keep_vsi_alloc, struct ice_sq_cd *cd) 394 { 395 enum ice_status status; 396 397 if (!ice_is_vsi_valid(hw, vsi_handle)) 398 return ICE_ERR_PARAM; 399 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 400 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 401 if (!status) 402 ice_clear_vsi_ctx(hw, vsi_handle); 403 return status; 404 } 405 406 /** 407 * ice_update_vsi 408 * @hw: pointer to the HW struct 409 * @vsi_handle: unique VSI handle 410 * @vsi_ctx: pointer to a VSI context struct 411 * @cd: pointer to command details structure or NULL 412 * 413 * Update VSI context in the hardware 414 */ 415 enum ice_status 416 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 417 struct ice_sq_cd *cd) 418 { 419 if (!ice_is_vsi_valid(hw, vsi_handle)) 420 return ICE_ERR_PARAM; 421 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 422 return ice_aq_update_vsi(hw, vsi_ctx, cd); 423 } 424 425 /** 426 * ice_aq_alloc_free_vsi_list 427 * @hw: pointer to the HW struct 428 * @vsi_list_id: VSI list ID returned or used for lookup 429 * @lkup_type: switch rule filter lookup type 430 * @opc: switch rules population command type - pass in the command opcode 431 * 432 * allocates or free a VSI list resource 433 */ 434 static enum ice_status 435 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 436 enum ice_sw_lkup_type lkup_type, 437 enum ice_adminq_opc opc) 438 { 439 struct ice_aqc_alloc_free_res_elem *sw_buf; 440 struct ice_aqc_res_elem *vsi_ele; 441 enum ice_status status; 442 u16 buf_len; 443 444 buf_len = struct_size(sw_buf, elem, 1); 445 sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL); 446 if (!sw_buf) 447 return ICE_ERR_NO_MEMORY; 448 sw_buf->num_elems = cpu_to_le16(1); 449 450 if (lkup_type == ICE_SW_LKUP_MAC || 451 lkup_type == ICE_SW_LKUP_MAC_VLAN || 452 lkup_type == ICE_SW_LKUP_ETHERTYPE || 453 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 454 lkup_type == ICE_SW_LKUP_PROMISC || 455 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) { 456 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 457 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 458 sw_buf->res_type = 459 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 460 } else { 461 status = ICE_ERR_PARAM; 462 goto ice_aq_alloc_free_vsi_list_exit; 463 } 464 465 if (opc == ice_aqc_opc_free_res) 466 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 467 468 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); 469 if (status) 470 goto ice_aq_alloc_free_vsi_list_exit; 471 472 if (opc == ice_aqc_opc_alloc_res) { 473 vsi_ele = &sw_buf->elem[0]; 474 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 475 } 476 477 ice_aq_alloc_free_vsi_list_exit: 478 devm_kfree(ice_hw_to_dev(hw), sw_buf); 479 return status; 480 } 481 482 /** 483 * ice_aq_sw_rules - add/update/remove switch rules 484 * @hw: pointer to the HW struct 485 * @rule_list: pointer to switch rule population list 486 * @rule_list_sz: total size of the rule list in bytes 487 * @num_rules: number of switch rules in the rule_list 488 * @opc: switch rules population command type - pass in the command opcode 489 * @cd: pointer to command details structure or NULL 490 * 491 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 492 */ 493 static enum ice_status 494 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 495 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 496 { 497 struct ice_aq_desc desc; 498 499 if (opc != ice_aqc_opc_add_sw_rules && 500 opc != ice_aqc_opc_update_sw_rules && 501 opc != ice_aqc_opc_remove_sw_rules) 502 return ICE_ERR_PARAM; 503 504 ice_fill_dflt_direct_cmd_desc(&desc, opc); 505 506 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 507 desc.params.sw_rules.num_rules_fltr_entry_index = 508 cpu_to_le16(num_rules); 509 return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 510 } 511 512 /* ice_init_port_info - Initialize port_info with switch configuration data 513 * @pi: pointer to port_info 514 * @vsi_port_num: VSI number or port number 515 * @type: Type of switch element (port or VSI) 516 * @swid: switch ID of the switch the element is attached to 517 * @pf_vf_num: PF or VF number 518 * @is_vf: true if the element is a VF, false otherwise 519 */ 520 static void 521 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 522 u16 swid, u16 pf_vf_num, bool is_vf) 523 { 524 switch (type) { 525 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 526 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 527 pi->sw_id = swid; 528 pi->pf_vf_num = pf_vf_num; 529 pi->is_vf = is_vf; 530 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 531 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 532 break; 533 default: 534 ice_debug(pi->hw, ICE_DBG_SW, 535 "incorrect VSI/port type received\n"); 536 break; 537 } 538 } 539 540 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 541 * @hw: pointer to the hardware structure 542 */ 543 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw) 544 { 545 struct ice_aqc_get_sw_cfg_resp_elem *rbuf; 546 enum ice_status status; 547 u16 req_desc = 0; 548 u16 num_elems; 549 u16 i; 550 551 rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN, 552 GFP_KERNEL); 553 554 if (!rbuf) 555 return ICE_ERR_NO_MEMORY; 556 557 /* Multiple calls to ice_aq_get_sw_cfg may be required 558 * to get all the switch configuration information. The need 559 * for additional calls is indicated by ice_aq_get_sw_cfg 560 * writing a non-zero value in req_desc 561 */ 562 do { 563 struct ice_aqc_get_sw_cfg_resp_elem *ele; 564 565 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 566 &req_desc, &num_elems, NULL); 567 568 if (status) 569 break; 570 571 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { 572 u16 pf_vf_num, swid, vsi_port_num; 573 bool is_vf = false; 574 u8 res_type; 575 576 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 577 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 578 579 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 580 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 581 582 swid = le16_to_cpu(ele->swid); 583 584 if (le16_to_cpu(ele->pf_vf_num) & 585 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 586 is_vf = true; 587 588 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >> 589 ICE_AQC_GET_SW_CONF_RESP_TYPE_S); 590 591 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 592 /* FW VSI is not needed. Just continue. */ 593 continue; 594 } 595 596 ice_init_port_info(hw->port_info, vsi_port_num, 597 res_type, swid, pf_vf_num, is_vf); 598 } 599 } while (req_desc && !status); 600 601 devm_kfree(ice_hw_to_dev(hw), (void *)rbuf); 602 return status; 603 } 604 605 /** 606 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 607 * @hw: pointer to the hardware structure 608 * @fi: filter info structure to fill/update 609 * 610 * This helper function populates the lb_en and lan_en elements of the provided 611 * ice_fltr_info struct using the switch's type and characteristics of the 612 * switch rule being configured. 613 */ 614 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 615 { 616 fi->lb_en = false; 617 fi->lan_en = false; 618 if ((fi->flag & ICE_FLTR_TX) && 619 (fi->fltr_act == ICE_FWD_TO_VSI || 620 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 621 fi->fltr_act == ICE_FWD_TO_Q || 622 fi->fltr_act == ICE_FWD_TO_QGRP)) { 623 /* Setting LB for prune actions will result in replicated 624 * packets to the internal switch that will be dropped. 625 */ 626 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 627 fi->lb_en = true; 628 629 /* Set lan_en to TRUE if 630 * 1. The switch is a VEB AND 631 * 2 632 * 2.1 The lookup is a directional lookup like ethertype, 633 * promiscuous, ethertype-MAC, promiscuous-VLAN 634 * and default-port OR 635 * 2.2 The lookup is VLAN, OR 636 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 637 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 638 * 639 * OR 640 * 641 * The switch is a VEPA. 642 * 643 * In all other cases, the LAN enable has to be set to false. 644 */ 645 if (hw->evb_veb) { 646 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 647 fi->lkup_type == ICE_SW_LKUP_PROMISC || 648 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 649 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 650 fi->lkup_type == ICE_SW_LKUP_DFLT || 651 fi->lkup_type == ICE_SW_LKUP_VLAN || 652 (fi->lkup_type == ICE_SW_LKUP_MAC && 653 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 654 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 655 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 656 fi->lan_en = true; 657 } else { 658 fi->lan_en = true; 659 } 660 } 661 } 662 663 /** 664 * ice_fill_sw_rule - Helper function to fill switch rule structure 665 * @hw: pointer to the hardware structure 666 * @f_info: entry containing packet forwarding information 667 * @s_rule: switch rule structure to be filled in based on mac_entry 668 * @opc: switch rules population command type - pass in the command opcode 669 */ 670 static void 671 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 672 struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc) 673 { 674 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 675 void *daddr = NULL; 676 u16 eth_hdr_sz; 677 u8 *eth_hdr; 678 u32 act = 0; 679 __be16 *off; 680 u8 q_rgn; 681 682 if (opc == ice_aqc_opc_remove_sw_rules) { 683 s_rule->pdata.lkup_tx_rx.act = 0; 684 s_rule->pdata.lkup_tx_rx.index = 685 cpu_to_le16(f_info->fltr_rule_id); 686 s_rule->pdata.lkup_tx_rx.hdr_len = 0; 687 return; 688 } 689 690 eth_hdr_sz = sizeof(dummy_eth_header); 691 eth_hdr = s_rule->pdata.lkup_tx_rx.hdr; 692 693 /* initialize the ether header with a dummy header */ 694 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 695 ice_fill_sw_info(hw, f_info); 696 697 switch (f_info->fltr_act) { 698 case ICE_FWD_TO_VSI: 699 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & 700 ICE_SINGLE_ACT_VSI_ID_M; 701 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 702 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 703 ICE_SINGLE_ACT_VALID_BIT; 704 break; 705 case ICE_FWD_TO_VSI_LIST: 706 act |= ICE_SINGLE_ACT_VSI_LIST; 707 act |= (f_info->fwd_id.vsi_list_id << 708 ICE_SINGLE_ACT_VSI_LIST_ID_S) & 709 ICE_SINGLE_ACT_VSI_LIST_ID_M; 710 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 711 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 712 ICE_SINGLE_ACT_VALID_BIT; 713 break; 714 case ICE_FWD_TO_Q: 715 act |= ICE_SINGLE_ACT_TO_Q; 716 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 717 ICE_SINGLE_ACT_Q_INDEX_M; 718 break; 719 case ICE_DROP_PACKET: 720 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 721 ICE_SINGLE_ACT_VALID_BIT; 722 break; 723 case ICE_FWD_TO_QGRP: 724 q_rgn = f_info->qgrp_size > 0 ? 725 (u8)ilog2(f_info->qgrp_size) : 0; 726 act |= ICE_SINGLE_ACT_TO_Q; 727 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 728 ICE_SINGLE_ACT_Q_INDEX_M; 729 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 730 ICE_SINGLE_ACT_Q_REGION_M; 731 break; 732 default: 733 return; 734 } 735 736 if (f_info->lb_en) 737 act |= ICE_SINGLE_ACT_LB_ENABLE; 738 if (f_info->lan_en) 739 act |= ICE_SINGLE_ACT_LAN_ENABLE; 740 741 switch (f_info->lkup_type) { 742 case ICE_SW_LKUP_MAC: 743 daddr = f_info->l_data.mac.mac_addr; 744 break; 745 case ICE_SW_LKUP_VLAN: 746 vlan_id = f_info->l_data.vlan.vlan_id; 747 if (f_info->fltr_act == ICE_FWD_TO_VSI || 748 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 749 act |= ICE_SINGLE_ACT_PRUNE; 750 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 751 } 752 break; 753 case ICE_SW_LKUP_ETHERTYPE_MAC: 754 daddr = f_info->l_data.ethertype_mac.mac_addr; 755 fallthrough; 756 case ICE_SW_LKUP_ETHERTYPE: 757 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 758 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 759 break; 760 case ICE_SW_LKUP_MAC_VLAN: 761 daddr = f_info->l_data.mac_vlan.mac_addr; 762 vlan_id = f_info->l_data.mac_vlan.vlan_id; 763 break; 764 case ICE_SW_LKUP_PROMISC_VLAN: 765 vlan_id = f_info->l_data.mac_vlan.vlan_id; 766 fallthrough; 767 case ICE_SW_LKUP_PROMISC: 768 daddr = f_info->l_data.mac_vlan.mac_addr; 769 break; 770 default: 771 break; 772 } 773 774 s_rule->type = (f_info->flag & ICE_FLTR_RX) ? 775 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 776 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 777 778 /* Recipe set depending on lookup type */ 779 s_rule->pdata.lkup_tx_rx.recipe_id = cpu_to_le16(f_info->lkup_type); 780 s_rule->pdata.lkup_tx_rx.src = cpu_to_le16(f_info->src); 781 s_rule->pdata.lkup_tx_rx.act = cpu_to_le32(act); 782 783 if (daddr) 784 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 785 786 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 787 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 788 *off = cpu_to_be16(vlan_id); 789 } 790 791 /* Create the switch rule with the final dummy Ethernet header */ 792 if (opc != ice_aqc_opc_update_sw_rules) 793 s_rule->pdata.lkup_tx_rx.hdr_len = cpu_to_le16(eth_hdr_sz); 794 } 795 796 /** 797 * ice_add_marker_act 798 * @hw: pointer to the hardware structure 799 * @m_ent: the management entry for which sw marker needs to be added 800 * @sw_marker: sw marker to tag the Rx descriptor with 801 * @l_id: large action resource ID 802 * 803 * Create a large action to hold software marker and update the switch rule 804 * entry pointed by m_ent with newly created large action 805 */ 806 static enum ice_status 807 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 808 u16 sw_marker, u16 l_id) 809 { 810 struct ice_aqc_sw_rules_elem *lg_act, *rx_tx; 811 /* For software marker we need 3 large actions 812 * 1. FWD action: FWD TO VSI or VSI LIST 813 * 2. GENERIC VALUE action to hold the profile ID 814 * 3. GENERIC VALUE action to hold the software marker ID 815 */ 816 const u16 num_lg_acts = 3; 817 enum ice_status status; 818 u16 lg_act_size; 819 u16 rules_size; 820 u32 act; 821 u16 id; 822 823 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 824 return ICE_ERR_PARAM; 825 826 /* Create two back-to-back switch rules and submit them to the HW using 827 * one memory buffer: 828 * 1. Large Action 829 * 2. Look up Tx Rx 830 */ 831 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts); 832 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 833 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 834 if (!lg_act) 835 return ICE_ERR_NO_MEMORY; 836 837 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); 838 839 /* Fill in the first switch rule i.e. large action */ 840 lg_act->type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 841 lg_act->pdata.lg_act.index = cpu_to_le16(l_id); 842 lg_act->pdata.lg_act.size = cpu_to_le16(num_lg_acts); 843 844 /* First action VSI forwarding or VSI list forwarding depending on how 845 * many VSIs 846 */ 847 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 848 m_ent->fltr_info.fwd_id.hw_vsi_id; 849 850 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 851 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; 852 if (m_ent->vsi_count > 1) 853 act |= ICE_LG_ACT_VSI_LIST; 854 lg_act->pdata.lg_act.act[0] = cpu_to_le32(act); 855 856 /* Second action descriptor type */ 857 act = ICE_LG_ACT_GENERIC; 858 859 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; 860 lg_act->pdata.lg_act.act[1] = cpu_to_le32(act); 861 862 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << 863 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; 864 865 /* Third action Marker value */ 866 act |= ICE_LG_ACT_GENERIC; 867 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & 868 ICE_LG_ACT_GENERIC_VALUE_M; 869 870 lg_act->pdata.lg_act.act[2] = cpu_to_le32(act); 871 872 /* call the fill switch rule to fill the lookup Tx Rx structure */ 873 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 874 ice_aqc_opc_update_sw_rules); 875 876 /* Update the action to point to the large action ID */ 877 rx_tx->pdata.lkup_tx_rx.act = 878 cpu_to_le32(ICE_SINGLE_ACT_PTR | 879 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & 880 ICE_SINGLE_ACT_PTR_VAL_M)); 881 882 /* Use the filter rule ID of the previously created rule with single 883 * act. Once the update happens, hardware will treat this as large 884 * action 885 */ 886 rx_tx->pdata.lkup_tx_rx.index = 887 cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 888 889 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 890 ice_aqc_opc_update_sw_rules, NULL); 891 if (!status) { 892 m_ent->lg_act_idx = l_id; 893 m_ent->sw_marker_id = sw_marker; 894 } 895 896 devm_kfree(ice_hw_to_dev(hw), lg_act); 897 return status; 898 } 899 900 /** 901 * ice_create_vsi_list_map 902 * @hw: pointer to the hardware structure 903 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 904 * @num_vsi: number of VSI handles in the array 905 * @vsi_list_id: VSI list ID generated as part of allocate resource 906 * 907 * Helper function to create a new entry of VSI list ID to VSI mapping 908 * using the given VSI list ID 909 */ 910 static struct ice_vsi_list_map_info * 911 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 912 u16 vsi_list_id) 913 { 914 struct ice_switch_info *sw = hw->switch_info; 915 struct ice_vsi_list_map_info *v_map; 916 int i; 917 918 v_map = devm_kcalloc(ice_hw_to_dev(hw), 1, sizeof(*v_map), GFP_KERNEL); 919 if (!v_map) 920 return NULL; 921 922 v_map->vsi_list_id = vsi_list_id; 923 v_map->ref_cnt = 1; 924 for (i = 0; i < num_vsi; i++) 925 set_bit(vsi_handle_arr[i], v_map->vsi_map); 926 927 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 928 return v_map; 929 } 930 931 /** 932 * ice_update_vsi_list_rule 933 * @hw: pointer to the hardware structure 934 * @vsi_handle_arr: array of VSI handles to form a VSI list 935 * @num_vsi: number of VSI handles in the array 936 * @vsi_list_id: VSI list ID generated as part of allocate resource 937 * @remove: Boolean value to indicate if this is a remove action 938 * @opc: switch rules population command type - pass in the command opcode 939 * @lkup_type: lookup type of the filter 940 * 941 * Call AQ command to add a new switch rule or update existing switch rule 942 * using the given VSI list ID 943 */ 944 static enum ice_status 945 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 946 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 947 enum ice_sw_lkup_type lkup_type) 948 { 949 struct ice_aqc_sw_rules_elem *s_rule; 950 enum ice_status status; 951 u16 s_rule_size; 952 u16 rule_type; 953 int i; 954 955 if (!num_vsi) 956 return ICE_ERR_PARAM; 957 958 if (lkup_type == ICE_SW_LKUP_MAC || 959 lkup_type == ICE_SW_LKUP_MAC_VLAN || 960 lkup_type == ICE_SW_LKUP_ETHERTYPE || 961 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 962 lkup_type == ICE_SW_LKUP_PROMISC || 963 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) 964 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 965 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 966 else if (lkup_type == ICE_SW_LKUP_VLAN) 967 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 968 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 969 else 970 return ICE_ERR_PARAM; 971 972 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi); 973 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 974 if (!s_rule) 975 return ICE_ERR_NO_MEMORY; 976 for (i = 0; i < num_vsi; i++) { 977 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 978 status = ICE_ERR_PARAM; 979 goto exit; 980 } 981 /* AQ call requires hw_vsi_id(s) */ 982 s_rule->pdata.vsi_list.vsi[i] = 983 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 984 } 985 986 s_rule->type = cpu_to_le16(rule_type); 987 s_rule->pdata.vsi_list.number_vsi = cpu_to_le16(num_vsi); 988 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 989 990 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 991 992 exit: 993 devm_kfree(ice_hw_to_dev(hw), s_rule); 994 return status; 995 } 996 997 /** 998 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 999 * @hw: pointer to the HW struct 1000 * @vsi_handle_arr: array of VSI handles to form a VSI list 1001 * @num_vsi: number of VSI handles in the array 1002 * @vsi_list_id: stores the ID of the VSI list to be created 1003 * @lkup_type: switch rule filter's lookup type 1004 */ 1005 static enum ice_status 1006 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 1007 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 1008 { 1009 enum ice_status status; 1010 1011 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 1012 ice_aqc_opc_alloc_res); 1013 if (status) 1014 return status; 1015 1016 /* Update the newly created VSI list to include the specified VSIs */ 1017 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 1018 *vsi_list_id, false, 1019 ice_aqc_opc_add_sw_rules, lkup_type); 1020 } 1021 1022 /** 1023 * ice_create_pkt_fwd_rule 1024 * @hw: pointer to the hardware structure 1025 * @f_entry: entry containing packet forwarding information 1026 * 1027 * Create switch rule with given filter information and add an entry 1028 * to the corresponding filter management list to track this switch rule 1029 * and VSI mapping 1030 */ 1031 static enum ice_status 1032 ice_create_pkt_fwd_rule(struct ice_hw *hw, 1033 struct ice_fltr_list_entry *f_entry) 1034 { 1035 struct ice_fltr_mgmt_list_entry *fm_entry; 1036 struct ice_aqc_sw_rules_elem *s_rule; 1037 enum ice_sw_lkup_type l_type; 1038 struct ice_sw_recipe *recp; 1039 enum ice_status status; 1040 1041 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1042 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1043 if (!s_rule) 1044 return ICE_ERR_NO_MEMORY; 1045 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 1046 GFP_KERNEL); 1047 if (!fm_entry) { 1048 status = ICE_ERR_NO_MEMORY; 1049 goto ice_create_pkt_fwd_rule_exit; 1050 } 1051 1052 fm_entry->fltr_info = f_entry->fltr_info; 1053 1054 /* Initialize all the fields for the management entry */ 1055 fm_entry->vsi_count = 1; 1056 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 1057 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 1058 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 1059 1060 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 1061 ice_aqc_opc_add_sw_rules); 1062 1063 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1064 ice_aqc_opc_add_sw_rules, NULL); 1065 if (status) { 1066 devm_kfree(ice_hw_to_dev(hw), fm_entry); 1067 goto ice_create_pkt_fwd_rule_exit; 1068 } 1069 1070 f_entry->fltr_info.fltr_rule_id = 1071 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1072 fm_entry->fltr_info.fltr_rule_id = 1073 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1074 1075 /* The book keeping entries will get removed when base driver 1076 * calls remove filter AQ command 1077 */ 1078 l_type = fm_entry->fltr_info.lkup_type; 1079 recp = &hw->switch_info->recp_list[l_type]; 1080 list_add(&fm_entry->list_entry, &recp->filt_rules); 1081 1082 ice_create_pkt_fwd_rule_exit: 1083 devm_kfree(ice_hw_to_dev(hw), s_rule); 1084 return status; 1085 } 1086 1087 /** 1088 * ice_update_pkt_fwd_rule 1089 * @hw: pointer to the hardware structure 1090 * @f_info: filter information for switch rule 1091 * 1092 * Call AQ command to update a previously created switch rule with a 1093 * VSI list ID 1094 */ 1095 static enum ice_status 1096 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 1097 { 1098 struct ice_aqc_sw_rules_elem *s_rule; 1099 enum ice_status status; 1100 1101 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1102 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1103 if (!s_rule) 1104 return ICE_ERR_NO_MEMORY; 1105 1106 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 1107 1108 s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(f_info->fltr_rule_id); 1109 1110 /* Update switch rule with new rule set to forward VSI list */ 1111 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1112 ice_aqc_opc_update_sw_rules, NULL); 1113 1114 devm_kfree(ice_hw_to_dev(hw), s_rule); 1115 return status; 1116 } 1117 1118 /** 1119 * ice_update_sw_rule_bridge_mode 1120 * @hw: pointer to the HW struct 1121 * 1122 * Updates unicast switch filter rules based on VEB/VEPA mode 1123 */ 1124 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 1125 { 1126 struct ice_switch_info *sw = hw->switch_info; 1127 struct ice_fltr_mgmt_list_entry *fm_entry; 1128 enum ice_status status = 0; 1129 struct list_head *rule_head; 1130 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1131 1132 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1133 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1134 1135 mutex_lock(rule_lock); 1136 list_for_each_entry(fm_entry, rule_head, list_entry) { 1137 struct ice_fltr_info *fi = &fm_entry->fltr_info; 1138 u8 *addr = fi->l_data.mac.mac_addr; 1139 1140 /* Update unicast Tx rules to reflect the selected 1141 * VEB/VEPA mode 1142 */ 1143 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 1144 (fi->fltr_act == ICE_FWD_TO_VSI || 1145 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 1146 fi->fltr_act == ICE_FWD_TO_Q || 1147 fi->fltr_act == ICE_FWD_TO_QGRP)) { 1148 status = ice_update_pkt_fwd_rule(hw, fi); 1149 if (status) 1150 break; 1151 } 1152 } 1153 1154 mutex_unlock(rule_lock); 1155 1156 return status; 1157 } 1158 1159 /** 1160 * ice_add_update_vsi_list 1161 * @hw: pointer to the hardware structure 1162 * @m_entry: pointer to current filter management list entry 1163 * @cur_fltr: filter information from the book keeping entry 1164 * @new_fltr: filter information with the new VSI to be added 1165 * 1166 * Call AQ command to add or update previously created VSI list with new VSI. 1167 * 1168 * Helper function to do book keeping associated with adding filter information 1169 * The algorithm to do the book keeping is described below : 1170 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 1171 * if only one VSI has been added till now 1172 * Allocate a new VSI list and add two VSIs 1173 * to this list using switch rule command 1174 * Update the previously created switch rule with the 1175 * newly created VSI list ID 1176 * if a VSI list was previously created 1177 * Add the new VSI to the previously created VSI list set 1178 * using the update switch rule command 1179 */ 1180 static enum ice_status 1181 ice_add_update_vsi_list(struct ice_hw *hw, 1182 struct ice_fltr_mgmt_list_entry *m_entry, 1183 struct ice_fltr_info *cur_fltr, 1184 struct ice_fltr_info *new_fltr) 1185 { 1186 enum ice_status status = 0; 1187 u16 vsi_list_id = 0; 1188 1189 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 1190 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 1191 return ICE_ERR_NOT_IMPL; 1192 1193 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 1194 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 1195 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 1196 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 1197 return ICE_ERR_NOT_IMPL; 1198 1199 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 1200 /* Only one entry existed in the mapping and it was not already 1201 * a part of a VSI list. So, create a VSI list with the old and 1202 * new VSIs. 1203 */ 1204 struct ice_fltr_info tmp_fltr; 1205 u16 vsi_handle_arr[2]; 1206 1207 /* A rule already exists with the new VSI being added */ 1208 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 1209 return ICE_ERR_ALREADY_EXISTS; 1210 1211 vsi_handle_arr[0] = cur_fltr->vsi_handle; 1212 vsi_handle_arr[1] = new_fltr->vsi_handle; 1213 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1214 &vsi_list_id, 1215 new_fltr->lkup_type); 1216 if (status) 1217 return status; 1218 1219 tmp_fltr = *new_fltr; 1220 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 1221 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1222 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1223 /* Update the previous switch rule of "MAC forward to VSI" to 1224 * "MAC fwd to VSI list" 1225 */ 1226 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1227 if (status) 1228 return status; 1229 1230 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 1231 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1232 m_entry->vsi_list_info = 1233 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1234 vsi_list_id); 1235 1236 /* If this entry was large action then the large action needs 1237 * to be updated to point to FWD to VSI list 1238 */ 1239 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 1240 status = 1241 ice_add_marker_act(hw, m_entry, 1242 m_entry->sw_marker_id, 1243 m_entry->lg_act_idx); 1244 } else { 1245 u16 vsi_handle = new_fltr->vsi_handle; 1246 enum ice_adminq_opc opcode; 1247 1248 if (!m_entry->vsi_list_info) 1249 return ICE_ERR_CFG; 1250 1251 /* A rule already exists with the new VSI being added */ 1252 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 1253 return 0; 1254 1255 /* Update the previously created VSI list set with 1256 * the new VSI ID passed in 1257 */ 1258 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 1259 opcode = ice_aqc_opc_update_sw_rules; 1260 1261 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 1262 vsi_list_id, false, opcode, 1263 new_fltr->lkup_type); 1264 /* update VSI list mapping info with new VSI ID */ 1265 if (!status) 1266 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 1267 } 1268 if (!status) 1269 m_entry->vsi_count++; 1270 return status; 1271 } 1272 1273 /** 1274 * ice_find_rule_entry - Search a rule entry 1275 * @hw: pointer to the hardware structure 1276 * @recp_id: lookup type for which the specified rule needs to be searched 1277 * @f_info: rule information 1278 * 1279 * Helper function to search for a given rule entry 1280 * Returns pointer to entry storing the rule if found 1281 */ 1282 static struct ice_fltr_mgmt_list_entry * 1283 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 1284 { 1285 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 1286 struct ice_switch_info *sw = hw->switch_info; 1287 struct list_head *list_head; 1288 1289 list_head = &sw->recp_list[recp_id].filt_rules; 1290 list_for_each_entry(list_itr, list_head, list_entry) { 1291 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 1292 sizeof(f_info->l_data)) && 1293 f_info->flag == list_itr->fltr_info.flag) { 1294 ret = list_itr; 1295 break; 1296 } 1297 } 1298 return ret; 1299 } 1300 1301 /** 1302 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 1303 * @hw: pointer to the hardware structure 1304 * @recp_id: lookup type for which VSI lists needs to be searched 1305 * @vsi_handle: VSI handle to be found in VSI list 1306 * @vsi_list_id: VSI list ID found containing vsi_handle 1307 * 1308 * Helper function to search a VSI list with single entry containing given VSI 1309 * handle element. This can be extended further to search VSI list with more 1310 * than 1 vsi_count. Returns pointer to VSI list entry if found. 1311 */ 1312 static struct ice_vsi_list_map_info * 1313 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 1314 u16 *vsi_list_id) 1315 { 1316 struct ice_vsi_list_map_info *map_info = NULL; 1317 struct ice_switch_info *sw = hw->switch_info; 1318 struct ice_fltr_mgmt_list_entry *list_itr; 1319 struct list_head *list_head; 1320 1321 list_head = &sw->recp_list[recp_id].filt_rules; 1322 list_for_each_entry(list_itr, list_head, list_entry) { 1323 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) { 1324 map_info = list_itr->vsi_list_info; 1325 if (test_bit(vsi_handle, map_info->vsi_map)) { 1326 *vsi_list_id = map_info->vsi_list_id; 1327 return map_info; 1328 } 1329 } 1330 } 1331 return NULL; 1332 } 1333 1334 /** 1335 * ice_add_rule_internal - add rule for a given lookup type 1336 * @hw: pointer to the hardware structure 1337 * @recp_id: lookup type (recipe ID) for which rule has to be added 1338 * @f_entry: structure containing MAC forwarding information 1339 * 1340 * Adds or updates the rule lists for a given recipe 1341 */ 1342 static enum ice_status 1343 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 1344 struct ice_fltr_list_entry *f_entry) 1345 { 1346 struct ice_switch_info *sw = hw->switch_info; 1347 struct ice_fltr_info *new_fltr, *cur_fltr; 1348 struct ice_fltr_mgmt_list_entry *m_entry; 1349 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1350 enum ice_status status = 0; 1351 1352 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1353 return ICE_ERR_PARAM; 1354 f_entry->fltr_info.fwd_id.hw_vsi_id = 1355 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1356 1357 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1358 1359 mutex_lock(rule_lock); 1360 new_fltr = &f_entry->fltr_info; 1361 if (new_fltr->flag & ICE_FLTR_RX) 1362 new_fltr->src = hw->port_info->lport; 1363 else if (new_fltr->flag & ICE_FLTR_TX) 1364 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 1365 1366 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 1367 if (!m_entry) { 1368 mutex_unlock(rule_lock); 1369 return ice_create_pkt_fwd_rule(hw, f_entry); 1370 } 1371 1372 cur_fltr = &m_entry->fltr_info; 1373 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 1374 mutex_unlock(rule_lock); 1375 1376 return status; 1377 } 1378 1379 /** 1380 * ice_remove_vsi_list_rule 1381 * @hw: pointer to the hardware structure 1382 * @vsi_list_id: VSI list ID generated as part of allocate resource 1383 * @lkup_type: switch rule filter lookup type 1384 * 1385 * The VSI list should be emptied before this function is called to remove the 1386 * VSI list. 1387 */ 1388 static enum ice_status 1389 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 1390 enum ice_sw_lkup_type lkup_type) 1391 { 1392 struct ice_aqc_sw_rules_elem *s_rule; 1393 enum ice_status status; 1394 u16 s_rule_size; 1395 1396 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0); 1397 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 1398 if (!s_rule) 1399 return ICE_ERR_NO_MEMORY; 1400 1401 s_rule->type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 1402 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 1403 1404 /* Free the vsi_list resource that we allocated. It is assumed that the 1405 * list is empty at this point. 1406 */ 1407 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 1408 ice_aqc_opc_free_res); 1409 1410 devm_kfree(ice_hw_to_dev(hw), s_rule); 1411 return status; 1412 } 1413 1414 /** 1415 * ice_rem_update_vsi_list 1416 * @hw: pointer to the hardware structure 1417 * @vsi_handle: VSI handle of the VSI to remove 1418 * @fm_list: filter management entry for which the VSI list management needs to 1419 * be done 1420 */ 1421 static enum ice_status 1422 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 1423 struct ice_fltr_mgmt_list_entry *fm_list) 1424 { 1425 enum ice_sw_lkup_type lkup_type; 1426 enum ice_status status = 0; 1427 u16 vsi_list_id; 1428 1429 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 1430 fm_list->vsi_count == 0) 1431 return ICE_ERR_PARAM; 1432 1433 /* A rule with the VSI being removed does not exist */ 1434 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 1435 return ICE_ERR_DOES_NOT_EXIST; 1436 1437 lkup_type = fm_list->fltr_info.lkup_type; 1438 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 1439 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 1440 ice_aqc_opc_update_sw_rules, 1441 lkup_type); 1442 if (status) 1443 return status; 1444 1445 fm_list->vsi_count--; 1446 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 1447 1448 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 1449 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 1450 struct ice_vsi_list_map_info *vsi_list_info = 1451 fm_list->vsi_list_info; 1452 u16 rem_vsi_handle; 1453 1454 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 1455 ICE_MAX_VSI); 1456 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 1457 return ICE_ERR_OUT_OF_RANGE; 1458 1459 /* Make sure VSI list is empty before removing it below */ 1460 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 1461 vsi_list_id, true, 1462 ice_aqc_opc_update_sw_rules, 1463 lkup_type); 1464 if (status) 1465 return status; 1466 1467 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 1468 tmp_fltr_info.fwd_id.hw_vsi_id = 1469 ice_get_hw_vsi_num(hw, rem_vsi_handle); 1470 tmp_fltr_info.vsi_handle = rem_vsi_handle; 1471 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 1472 if (status) { 1473 ice_debug(hw, ICE_DBG_SW, 1474 "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 1475 tmp_fltr_info.fwd_id.hw_vsi_id, status); 1476 return status; 1477 } 1478 1479 fm_list->fltr_info = tmp_fltr_info; 1480 } 1481 1482 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 1483 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 1484 struct ice_vsi_list_map_info *vsi_list_info = 1485 fm_list->vsi_list_info; 1486 1487 /* Remove the VSI list since it is no longer used */ 1488 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 1489 if (status) { 1490 ice_debug(hw, ICE_DBG_SW, 1491 "Failed to remove VSI list %d, error %d\n", 1492 vsi_list_id, status); 1493 return status; 1494 } 1495 1496 list_del(&vsi_list_info->list_entry); 1497 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 1498 fm_list->vsi_list_info = NULL; 1499 } 1500 1501 return status; 1502 } 1503 1504 /** 1505 * ice_remove_rule_internal - Remove a filter rule of a given type 1506 * @hw: pointer to the hardware structure 1507 * @recp_id: recipe ID for which the rule needs to removed 1508 * @f_entry: rule entry containing filter information 1509 */ 1510 static enum ice_status 1511 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 1512 struct ice_fltr_list_entry *f_entry) 1513 { 1514 struct ice_switch_info *sw = hw->switch_info; 1515 struct ice_fltr_mgmt_list_entry *list_elem; 1516 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1517 enum ice_status status = 0; 1518 bool remove_rule = false; 1519 u16 vsi_handle; 1520 1521 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1522 return ICE_ERR_PARAM; 1523 f_entry->fltr_info.fwd_id.hw_vsi_id = 1524 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1525 1526 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1527 mutex_lock(rule_lock); 1528 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 1529 if (!list_elem) { 1530 status = ICE_ERR_DOES_NOT_EXIST; 1531 goto exit; 1532 } 1533 1534 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 1535 remove_rule = true; 1536 } else if (!list_elem->vsi_list_info) { 1537 status = ICE_ERR_DOES_NOT_EXIST; 1538 goto exit; 1539 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 1540 /* a ref_cnt > 1 indicates that the vsi_list is being 1541 * shared by multiple rules. Decrement the ref_cnt and 1542 * remove this rule, but do not modify the list, as it 1543 * is in-use by other rules. 1544 */ 1545 list_elem->vsi_list_info->ref_cnt--; 1546 remove_rule = true; 1547 } else { 1548 /* a ref_cnt of 1 indicates the vsi_list is only used 1549 * by one rule. However, the original removal request is only 1550 * for a single VSI. Update the vsi_list first, and only 1551 * remove the rule if there are no further VSIs in this list. 1552 */ 1553 vsi_handle = f_entry->fltr_info.vsi_handle; 1554 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 1555 if (status) 1556 goto exit; 1557 /* if VSI count goes to zero after updating the VSI list */ 1558 if (list_elem->vsi_count == 0) 1559 remove_rule = true; 1560 } 1561 1562 if (remove_rule) { 1563 /* Remove the lookup rule */ 1564 struct ice_aqc_sw_rules_elem *s_rule; 1565 1566 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1567 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1568 GFP_KERNEL); 1569 if (!s_rule) { 1570 status = ICE_ERR_NO_MEMORY; 1571 goto exit; 1572 } 1573 1574 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 1575 ice_aqc_opc_remove_sw_rules); 1576 1577 status = ice_aq_sw_rules(hw, s_rule, 1578 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1, 1579 ice_aqc_opc_remove_sw_rules, NULL); 1580 1581 /* Remove a book keeping from the list */ 1582 devm_kfree(ice_hw_to_dev(hw), s_rule); 1583 1584 if (status) 1585 goto exit; 1586 1587 list_del(&list_elem->list_entry); 1588 devm_kfree(ice_hw_to_dev(hw), list_elem); 1589 } 1590 exit: 1591 mutex_unlock(rule_lock); 1592 return status; 1593 } 1594 1595 /** 1596 * ice_add_mac - Add a MAC address based filter rule 1597 * @hw: pointer to the hardware structure 1598 * @m_list: list of MAC addresses and forwarding information 1599 * 1600 * IMPORTANT: When the ucast_shared flag is set to false and m_list has 1601 * multiple unicast addresses, the function assumes that all the 1602 * addresses are unique in a given add_mac call. It doesn't 1603 * check for duplicates in this case, removing duplicates from a given 1604 * list should be taken care of in the caller of this function. 1605 */ 1606 enum ice_status ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 1607 { 1608 struct ice_aqc_sw_rules_elem *s_rule, *r_iter; 1609 struct ice_fltr_list_entry *m_list_itr; 1610 struct list_head *rule_head; 1611 u16 total_elem_left, s_rule_size; 1612 struct ice_switch_info *sw; 1613 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1614 enum ice_status status = 0; 1615 u16 num_unicast = 0; 1616 u8 elem_sent; 1617 1618 if (!m_list || !hw) 1619 return ICE_ERR_PARAM; 1620 1621 s_rule = NULL; 1622 sw = hw->switch_info; 1623 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1624 list_for_each_entry(m_list_itr, m_list, list_entry) { 1625 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 1626 u16 vsi_handle; 1627 u16 hw_vsi_id; 1628 1629 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 1630 vsi_handle = m_list_itr->fltr_info.vsi_handle; 1631 if (!ice_is_vsi_valid(hw, vsi_handle)) 1632 return ICE_ERR_PARAM; 1633 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 1634 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 1635 /* update the src in case it is VSI num */ 1636 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 1637 return ICE_ERR_PARAM; 1638 m_list_itr->fltr_info.src = hw_vsi_id; 1639 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 1640 is_zero_ether_addr(add)) 1641 return ICE_ERR_PARAM; 1642 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 1643 /* Don't overwrite the unicast address */ 1644 mutex_lock(rule_lock); 1645 if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, 1646 &m_list_itr->fltr_info)) { 1647 mutex_unlock(rule_lock); 1648 return ICE_ERR_ALREADY_EXISTS; 1649 } 1650 mutex_unlock(rule_lock); 1651 num_unicast++; 1652 } else if (is_multicast_ether_addr(add) || 1653 (is_unicast_ether_addr(add) && hw->ucast_shared)) { 1654 m_list_itr->status = 1655 ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 1656 m_list_itr); 1657 if (m_list_itr->status) 1658 return m_list_itr->status; 1659 } 1660 } 1661 1662 mutex_lock(rule_lock); 1663 /* Exit if no suitable entries were found for adding bulk switch rule */ 1664 if (!num_unicast) { 1665 status = 0; 1666 goto ice_add_mac_exit; 1667 } 1668 1669 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1670 1671 /* Allocate switch rule buffer for the bulk update for unicast */ 1672 s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 1673 s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size, 1674 GFP_KERNEL); 1675 if (!s_rule) { 1676 status = ICE_ERR_NO_MEMORY; 1677 goto ice_add_mac_exit; 1678 } 1679 1680 r_iter = s_rule; 1681 list_for_each_entry(m_list_itr, m_list, list_entry) { 1682 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1683 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1684 1685 if (is_unicast_ether_addr(mac_addr)) { 1686 ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, 1687 ice_aqc_opc_add_sw_rules); 1688 r_iter = (struct ice_aqc_sw_rules_elem *) 1689 ((u8 *)r_iter + s_rule_size); 1690 } 1691 } 1692 1693 /* Call AQ bulk switch rule update for all unicast addresses */ 1694 r_iter = s_rule; 1695 /* Call AQ switch rule in AQ_MAX chunk */ 1696 for (total_elem_left = num_unicast; total_elem_left > 0; 1697 total_elem_left -= elem_sent) { 1698 struct ice_aqc_sw_rules_elem *entry = r_iter; 1699 1700 elem_sent = min_t(u8, total_elem_left, 1701 (ICE_AQ_MAX_BUF_LEN / s_rule_size)); 1702 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, 1703 elem_sent, ice_aqc_opc_add_sw_rules, 1704 NULL); 1705 if (status) 1706 goto ice_add_mac_exit; 1707 r_iter = (struct ice_aqc_sw_rules_elem *) 1708 ((u8 *)r_iter + (elem_sent * s_rule_size)); 1709 } 1710 1711 /* Fill up rule ID based on the value returned from FW */ 1712 r_iter = s_rule; 1713 list_for_each_entry(m_list_itr, m_list, list_entry) { 1714 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1715 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1716 struct ice_fltr_mgmt_list_entry *fm_entry; 1717 1718 if (is_unicast_ether_addr(mac_addr)) { 1719 f_info->fltr_rule_id = 1720 le16_to_cpu(r_iter->pdata.lkup_tx_rx.index); 1721 f_info->fltr_act = ICE_FWD_TO_VSI; 1722 /* Create an entry to track this MAC address */ 1723 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), 1724 sizeof(*fm_entry), GFP_KERNEL); 1725 if (!fm_entry) { 1726 status = ICE_ERR_NO_MEMORY; 1727 goto ice_add_mac_exit; 1728 } 1729 fm_entry->fltr_info = *f_info; 1730 fm_entry->vsi_count = 1; 1731 /* The book keeping entries will get removed when 1732 * base driver calls remove filter AQ command 1733 */ 1734 1735 list_add(&fm_entry->list_entry, rule_head); 1736 r_iter = (struct ice_aqc_sw_rules_elem *) 1737 ((u8 *)r_iter + s_rule_size); 1738 } 1739 } 1740 1741 ice_add_mac_exit: 1742 mutex_unlock(rule_lock); 1743 if (s_rule) 1744 devm_kfree(ice_hw_to_dev(hw), s_rule); 1745 return status; 1746 } 1747 1748 /** 1749 * ice_add_vlan_internal - Add one VLAN based filter rule 1750 * @hw: pointer to the hardware structure 1751 * @f_entry: filter entry containing one VLAN information 1752 */ 1753 static enum ice_status 1754 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 1755 { 1756 struct ice_switch_info *sw = hw->switch_info; 1757 struct ice_fltr_mgmt_list_entry *v_list_itr; 1758 struct ice_fltr_info *new_fltr, *cur_fltr; 1759 enum ice_sw_lkup_type lkup_type; 1760 u16 vsi_list_id = 0, vsi_handle; 1761 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1762 enum ice_status status = 0; 1763 1764 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1765 return ICE_ERR_PARAM; 1766 1767 f_entry->fltr_info.fwd_id.hw_vsi_id = 1768 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1769 new_fltr = &f_entry->fltr_info; 1770 1771 /* VLAN ID should only be 12 bits */ 1772 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 1773 return ICE_ERR_PARAM; 1774 1775 if (new_fltr->src_id != ICE_SRC_ID_VSI) 1776 return ICE_ERR_PARAM; 1777 1778 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 1779 lkup_type = new_fltr->lkup_type; 1780 vsi_handle = new_fltr->vsi_handle; 1781 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 1782 mutex_lock(rule_lock); 1783 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 1784 if (!v_list_itr) { 1785 struct ice_vsi_list_map_info *map_info = NULL; 1786 1787 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 1788 /* All VLAN pruning rules use a VSI list. Check if 1789 * there is already a VSI list containing VSI that we 1790 * want to add. If found, use the same vsi_list_id for 1791 * this new VLAN rule or else create a new list. 1792 */ 1793 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 1794 vsi_handle, 1795 &vsi_list_id); 1796 if (!map_info) { 1797 status = ice_create_vsi_list_rule(hw, 1798 &vsi_handle, 1799 1, 1800 &vsi_list_id, 1801 lkup_type); 1802 if (status) 1803 goto exit; 1804 } 1805 /* Convert the action to forwarding to a VSI list. */ 1806 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1807 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 1808 } 1809 1810 status = ice_create_pkt_fwd_rule(hw, f_entry); 1811 if (!status) { 1812 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 1813 new_fltr); 1814 if (!v_list_itr) { 1815 status = ICE_ERR_DOES_NOT_EXIST; 1816 goto exit; 1817 } 1818 /* reuse VSI list for new rule and increment ref_cnt */ 1819 if (map_info) { 1820 v_list_itr->vsi_list_info = map_info; 1821 map_info->ref_cnt++; 1822 } else { 1823 v_list_itr->vsi_list_info = 1824 ice_create_vsi_list_map(hw, &vsi_handle, 1825 1, vsi_list_id); 1826 } 1827 } 1828 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 1829 /* Update existing VSI list to add new VSI ID only if it used 1830 * by one VLAN rule. 1831 */ 1832 cur_fltr = &v_list_itr->fltr_info; 1833 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 1834 new_fltr); 1835 } else { 1836 /* If VLAN rule exists and VSI list being used by this rule is 1837 * referenced by more than 1 VLAN rule. Then create a new VSI 1838 * list appending previous VSI with new VSI and update existing 1839 * VLAN rule to point to new VSI list ID 1840 */ 1841 struct ice_fltr_info tmp_fltr; 1842 u16 vsi_handle_arr[2]; 1843 u16 cur_handle; 1844 1845 /* Current implementation only supports reusing VSI list with 1846 * one VSI count. We should never hit below condition 1847 */ 1848 if (v_list_itr->vsi_count > 1 && 1849 v_list_itr->vsi_list_info->ref_cnt > 1) { 1850 ice_debug(hw, ICE_DBG_SW, 1851 "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 1852 status = ICE_ERR_CFG; 1853 goto exit; 1854 } 1855 1856 cur_handle = 1857 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 1858 ICE_MAX_VSI); 1859 1860 /* A rule already exists with the new VSI being added */ 1861 if (cur_handle == vsi_handle) { 1862 status = ICE_ERR_ALREADY_EXISTS; 1863 goto exit; 1864 } 1865 1866 vsi_handle_arr[0] = cur_handle; 1867 vsi_handle_arr[1] = vsi_handle; 1868 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1869 &vsi_list_id, lkup_type); 1870 if (status) 1871 goto exit; 1872 1873 tmp_fltr = v_list_itr->fltr_info; 1874 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 1875 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1876 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1877 /* Update the previous switch rule to a new VSI list which 1878 * includes current VSI that is requested 1879 */ 1880 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1881 if (status) 1882 goto exit; 1883 1884 /* before overriding VSI list map info. decrement ref_cnt of 1885 * previous VSI list 1886 */ 1887 v_list_itr->vsi_list_info->ref_cnt--; 1888 1889 /* now update to newly created list */ 1890 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 1891 v_list_itr->vsi_list_info = 1892 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1893 vsi_list_id); 1894 v_list_itr->vsi_count++; 1895 } 1896 1897 exit: 1898 mutex_unlock(rule_lock); 1899 return status; 1900 } 1901 1902 /** 1903 * ice_add_vlan - Add VLAN based filter rule 1904 * @hw: pointer to the hardware structure 1905 * @v_list: list of VLAN entries and forwarding information 1906 */ 1907 enum ice_status ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 1908 { 1909 struct ice_fltr_list_entry *v_list_itr; 1910 1911 if (!v_list || !hw) 1912 return ICE_ERR_PARAM; 1913 1914 list_for_each_entry(v_list_itr, v_list, list_entry) { 1915 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 1916 return ICE_ERR_PARAM; 1917 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 1918 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 1919 if (v_list_itr->status) 1920 return v_list_itr->status; 1921 } 1922 return 0; 1923 } 1924 1925 /** 1926 * ice_add_eth_mac - Add ethertype and MAC based filter rule 1927 * @hw: pointer to the hardware structure 1928 * @em_list: list of ether type MAC filter, MAC is optional 1929 * 1930 * This function requires the caller to populate the entries in 1931 * the filter list with the necessary fields (including flags to 1932 * indicate Tx or Rx rules). 1933 */ 1934 enum ice_status 1935 ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 1936 { 1937 struct ice_fltr_list_entry *em_list_itr; 1938 1939 if (!em_list || !hw) 1940 return ICE_ERR_PARAM; 1941 1942 list_for_each_entry(em_list_itr, em_list, list_entry) { 1943 enum ice_sw_lkup_type l_type = 1944 em_list_itr->fltr_info.lkup_type; 1945 1946 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 1947 l_type != ICE_SW_LKUP_ETHERTYPE) 1948 return ICE_ERR_PARAM; 1949 1950 em_list_itr->status = ice_add_rule_internal(hw, l_type, 1951 em_list_itr); 1952 if (em_list_itr->status) 1953 return em_list_itr->status; 1954 } 1955 return 0; 1956 } 1957 1958 /** 1959 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 1960 * @hw: pointer to the hardware structure 1961 * @em_list: list of ethertype or ethertype MAC entries 1962 */ 1963 enum ice_status 1964 ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 1965 { 1966 struct ice_fltr_list_entry *em_list_itr, *tmp; 1967 1968 if (!em_list || !hw) 1969 return ICE_ERR_PARAM; 1970 1971 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 1972 enum ice_sw_lkup_type l_type = 1973 em_list_itr->fltr_info.lkup_type; 1974 1975 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 1976 l_type != ICE_SW_LKUP_ETHERTYPE) 1977 return ICE_ERR_PARAM; 1978 1979 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 1980 em_list_itr); 1981 if (em_list_itr->status) 1982 return em_list_itr->status; 1983 } 1984 return 0; 1985 } 1986 1987 /** 1988 * ice_rem_sw_rule_info 1989 * @hw: pointer to the hardware structure 1990 * @rule_head: pointer to the switch list structure that we want to delete 1991 */ 1992 static void 1993 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 1994 { 1995 if (!list_empty(rule_head)) { 1996 struct ice_fltr_mgmt_list_entry *entry; 1997 struct ice_fltr_mgmt_list_entry *tmp; 1998 1999 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 2000 list_del(&entry->list_entry); 2001 devm_kfree(ice_hw_to_dev(hw), entry); 2002 } 2003 } 2004 } 2005 2006 /** 2007 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 2008 * @hw: pointer to the hardware structure 2009 * @vsi_handle: VSI handle to set as default 2010 * @set: true to add the above mentioned switch rule, false to remove it 2011 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 2012 * 2013 * add filter rule to set/unset given VSI as default VSI for the switch 2014 * (represented by swid) 2015 */ 2016 enum ice_status 2017 ice_cfg_dflt_vsi(struct ice_hw *hw, u16 vsi_handle, bool set, u8 direction) 2018 { 2019 struct ice_aqc_sw_rules_elem *s_rule; 2020 struct ice_fltr_info f_info; 2021 enum ice_adminq_opc opcode; 2022 enum ice_status status; 2023 u16 s_rule_size; 2024 u16 hw_vsi_id; 2025 2026 if (!ice_is_vsi_valid(hw, vsi_handle)) 2027 return ICE_ERR_PARAM; 2028 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2029 2030 s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE : 2031 ICE_SW_RULE_RX_TX_NO_HDR_SIZE; 2032 2033 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2034 if (!s_rule) 2035 return ICE_ERR_NO_MEMORY; 2036 2037 memset(&f_info, 0, sizeof(f_info)); 2038 2039 f_info.lkup_type = ICE_SW_LKUP_DFLT; 2040 f_info.flag = direction; 2041 f_info.fltr_act = ICE_FWD_TO_VSI; 2042 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 2043 2044 if (f_info.flag & ICE_FLTR_RX) { 2045 f_info.src = hw->port_info->lport; 2046 f_info.src_id = ICE_SRC_ID_LPORT; 2047 if (!set) 2048 f_info.fltr_rule_id = 2049 hw->port_info->dflt_rx_vsi_rule_id; 2050 } else if (f_info.flag & ICE_FLTR_TX) { 2051 f_info.src_id = ICE_SRC_ID_VSI; 2052 f_info.src = hw_vsi_id; 2053 if (!set) 2054 f_info.fltr_rule_id = 2055 hw->port_info->dflt_tx_vsi_rule_id; 2056 } 2057 2058 if (set) 2059 opcode = ice_aqc_opc_add_sw_rules; 2060 else 2061 opcode = ice_aqc_opc_remove_sw_rules; 2062 2063 ice_fill_sw_rule(hw, &f_info, s_rule, opcode); 2064 2065 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL); 2066 if (status || !(f_info.flag & ICE_FLTR_TX_RX)) 2067 goto out; 2068 if (set) { 2069 u16 index = le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 2070 2071 if (f_info.flag & ICE_FLTR_TX) { 2072 hw->port_info->dflt_tx_vsi_num = hw_vsi_id; 2073 hw->port_info->dflt_tx_vsi_rule_id = index; 2074 } else if (f_info.flag & ICE_FLTR_RX) { 2075 hw->port_info->dflt_rx_vsi_num = hw_vsi_id; 2076 hw->port_info->dflt_rx_vsi_rule_id = index; 2077 } 2078 } else { 2079 if (f_info.flag & ICE_FLTR_TX) { 2080 hw->port_info->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 2081 hw->port_info->dflt_tx_vsi_rule_id = ICE_INVAL_ACT; 2082 } else if (f_info.flag & ICE_FLTR_RX) { 2083 hw->port_info->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 2084 hw->port_info->dflt_rx_vsi_rule_id = ICE_INVAL_ACT; 2085 } 2086 } 2087 2088 out: 2089 devm_kfree(ice_hw_to_dev(hw), s_rule); 2090 return status; 2091 } 2092 2093 /** 2094 * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry 2095 * @hw: pointer to the hardware structure 2096 * @recp_id: lookup type for which the specified rule needs to be searched 2097 * @f_info: rule information 2098 * 2099 * Helper function to search for a unicast rule entry - this is to be used 2100 * to remove unicast MAC filter that is not shared with other VSIs on the 2101 * PF switch. 2102 * 2103 * Returns pointer to entry storing the rule if found 2104 */ 2105 static struct ice_fltr_mgmt_list_entry * 2106 ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id, 2107 struct ice_fltr_info *f_info) 2108 { 2109 struct ice_switch_info *sw = hw->switch_info; 2110 struct ice_fltr_mgmt_list_entry *list_itr; 2111 struct list_head *list_head; 2112 2113 list_head = &sw->recp_list[recp_id].filt_rules; 2114 list_for_each_entry(list_itr, list_head, list_entry) { 2115 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 2116 sizeof(f_info->l_data)) && 2117 f_info->fwd_id.hw_vsi_id == 2118 list_itr->fltr_info.fwd_id.hw_vsi_id && 2119 f_info->flag == list_itr->fltr_info.flag) 2120 return list_itr; 2121 } 2122 return NULL; 2123 } 2124 2125 /** 2126 * ice_remove_mac - remove a MAC address based filter rule 2127 * @hw: pointer to the hardware structure 2128 * @m_list: list of MAC addresses and forwarding information 2129 * 2130 * This function removes either a MAC filter rule or a specific VSI from a 2131 * VSI list for a multicast MAC address. 2132 * 2133 * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by 2134 * ice_add_mac. Caller should be aware that this call will only work if all 2135 * the entries passed into m_list were added previously. It will not attempt to 2136 * do a partial remove of entries that were found. 2137 */ 2138 enum ice_status ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 2139 { 2140 struct ice_fltr_list_entry *list_itr, *tmp; 2141 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2142 2143 if (!m_list) 2144 return ICE_ERR_PARAM; 2145 2146 rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 2147 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 2148 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 2149 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0]; 2150 u16 vsi_handle; 2151 2152 if (l_type != ICE_SW_LKUP_MAC) 2153 return ICE_ERR_PARAM; 2154 2155 vsi_handle = list_itr->fltr_info.vsi_handle; 2156 if (!ice_is_vsi_valid(hw, vsi_handle)) 2157 return ICE_ERR_PARAM; 2158 2159 list_itr->fltr_info.fwd_id.hw_vsi_id = 2160 ice_get_hw_vsi_num(hw, vsi_handle); 2161 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 2162 /* Don't remove the unicast address that belongs to 2163 * another VSI on the switch, since it is not being 2164 * shared... 2165 */ 2166 mutex_lock(rule_lock); 2167 if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC, 2168 &list_itr->fltr_info)) { 2169 mutex_unlock(rule_lock); 2170 return ICE_ERR_DOES_NOT_EXIST; 2171 } 2172 mutex_unlock(rule_lock); 2173 } 2174 list_itr->status = ice_remove_rule_internal(hw, 2175 ICE_SW_LKUP_MAC, 2176 list_itr); 2177 if (list_itr->status) 2178 return list_itr->status; 2179 } 2180 return 0; 2181 } 2182 2183 /** 2184 * ice_remove_vlan - Remove VLAN based filter rule 2185 * @hw: pointer to the hardware structure 2186 * @v_list: list of VLAN entries and forwarding information 2187 */ 2188 enum ice_status 2189 ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 2190 { 2191 struct ice_fltr_list_entry *v_list_itr, *tmp; 2192 2193 if (!v_list || !hw) 2194 return ICE_ERR_PARAM; 2195 2196 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2197 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 2198 2199 if (l_type != ICE_SW_LKUP_VLAN) 2200 return ICE_ERR_PARAM; 2201 v_list_itr->status = ice_remove_rule_internal(hw, 2202 ICE_SW_LKUP_VLAN, 2203 v_list_itr); 2204 if (v_list_itr->status) 2205 return v_list_itr->status; 2206 } 2207 return 0; 2208 } 2209 2210 /** 2211 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 2212 * @fm_entry: filter entry to inspect 2213 * @vsi_handle: VSI handle to compare with filter info 2214 */ 2215 static bool 2216 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 2217 { 2218 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 2219 fm_entry->fltr_info.vsi_handle == vsi_handle) || 2220 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 2221 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 2222 } 2223 2224 /** 2225 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 2226 * @hw: pointer to the hardware structure 2227 * @vsi_handle: VSI handle to remove filters from 2228 * @vsi_list_head: pointer to the list to add entry to 2229 * @fi: pointer to fltr_info of filter entry to copy & add 2230 * 2231 * Helper function, used when creating a list of filters to remove from 2232 * a specific VSI. The entry added to vsi_list_head is a COPY of the 2233 * original filter entry, with the exception of fltr_info.fltr_act and 2234 * fltr_info.fwd_id fields. These are set such that later logic can 2235 * extract which VSI to remove the fltr from, and pass on that information. 2236 */ 2237 static enum ice_status 2238 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2239 struct list_head *vsi_list_head, 2240 struct ice_fltr_info *fi) 2241 { 2242 struct ice_fltr_list_entry *tmp; 2243 2244 /* this memory is freed up in the caller function 2245 * once filters for this VSI are removed 2246 */ 2247 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 2248 if (!tmp) 2249 return ICE_ERR_NO_MEMORY; 2250 2251 tmp->fltr_info = *fi; 2252 2253 /* Overwrite these fields to indicate which VSI to remove filter from, 2254 * so find and remove logic can extract the information from the 2255 * list entries. Note that original entries will still have proper 2256 * values. 2257 */ 2258 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 2259 tmp->fltr_info.vsi_handle = vsi_handle; 2260 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2261 2262 list_add(&tmp->list_entry, vsi_list_head); 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 2269 * @hw: pointer to the hardware structure 2270 * @vsi_handle: VSI handle to remove filters from 2271 * @lkup_list_head: pointer to the list that has certain lookup type filters 2272 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 2273 * 2274 * Locates all filters in lkup_list_head that are used by the given VSI, 2275 * and adds COPIES of those entries to vsi_list_head (intended to be used 2276 * to remove the listed filters). 2277 * Note that this means all entries in vsi_list_head must be explicitly 2278 * deallocated by the caller when done with list. 2279 */ 2280 static enum ice_status 2281 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2282 struct list_head *lkup_list_head, 2283 struct list_head *vsi_list_head) 2284 { 2285 struct ice_fltr_mgmt_list_entry *fm_entry; 2286 enum ice_status status = 0; 2287 2288 /* check to make sure VSI ID is valid and within boundary */ 2289 if (!ice_is_vsi_valid(hw, vsi_handle)) 2290 return ICE_ERR_PARAM; 2291 2292 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 2293 struct ice_fltr_info *fi; 2294 2295 fi = &fm_entry->fltr_info; 2296 if (!fi || !ice_vsi_uses_fltr(fm_entry, vsi_handle)) 2297 continue; 2298 2299 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2300 vsi_list_head, fi); 2301 if (status) 2302 return status; 2303 } 2304 return status; 2305 } 2306 2307 /** 2308 * ice_determine_promisc_mask 2309 * @fi: filter info to parse 2310 * 2311 * Helper function to determine which ICE_PROMISC_ mask corresponds 2312 * to given filter into. 2313 */ 2314 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 2315 { 2316 u16 vid = fi->l_data.mac_vlan.vlan_id; 2317 u8 *macaddr = fi->l_data.mac.mac_addr; 2318 bool is_tx_fltr = false; 2319 u8 promisc_mask = 0; 2320 2321 if (fi->flag == ICE_FLTR_TX) 2322 is_tx_fltr = true; 2323 2324 if (is_broadcast_ether_addr(macaddr)) 2325 promisc_mask |= is_tx_fltr ? 2326 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 2327 else if (is_multicast_ether_addr(macaddr)) 2328 promisc_mask |= is_tx_fltr ? 2329 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 2330 else if (is_unicast_ether_addr(macaddr)) 2331 promisc_mask |= is_tx_fltr ? 2332 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 2333 if (vid) 2334 promisc_mask |= is_tx_fltr ? 2335 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 2336 2337 return promisc_mask; 2338 } 2339 2340 /** 2341 * ice_remove_promisc - Remove promisc based filter rules 2342 * @hw: pointer to the hardware structure 2343 * @recp_id: recipe ID for which the rule needs to removed 2344 * @v_list: list of promisc entries 2345 */ 2346 static enum ice_status 2347 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, 2348 struct list_head *v_list) 2349 { 2350 struct ice_fltr_list_entry *v_list_itr, *tmp; 2351 2352 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2353 v_list_itr->status = 2354 ice_remove_rule_internal(hw, recp_id, v_list_itr); 2355 if (v_list_itr->status) 2356 return v_list_itr->status; 2357 } 2358 return 0; 2359 } 2360 2361 /** 2362 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 2363 * @hw: pointer to the hardware structure 2364 * @vsi_handle: VSI handle to clear mode 2365 * @promisc_mask: mask of promiscuous config bits to clear 2366 * @vid: VLAN ID to clear VLAN promiscuous 2367 */ 2368 enum ice_status 2369 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2370 u16 vid) 2371 { 2372 struct ice_switch_info *sw = hw->switch_info; 2373 struct ice_fltr_list_entry *fm_entry, *tmp; 2374 struct list_head remove_list_head; 2375 struct ice_fltr_mgmt_list_entry *itr; 2376 struct list_head *rule_head; 2377 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2378 enum ice_status status = 0; 2379 u8 recipe_id; 2380 2381 if (!ice_is_vsi_valid(hw, vsi_handle)) 2382 return ICE_ERR_PARAM; 2383 2384 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 2385 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2386 else 2387 recipe_id = ICE_SW_LKUP_PROMISC; 2388 2389 rule_head = &sw->recp_list[recipe_id].filt_rules; 2390 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 2391 2392 INIT_LIST_HEAD(&remove_list_head); 2393 2394 mutex_lock(rule_lock); 2395 list_for_each_entry(itr, rule_head, list_entry) { 2396 struct ice_fltr_info *fltr_info; 2397 u8 fltr_promisc_mask = 0; 2398 2399 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 2400 continue; 2401 fltr_info = &itr->fltr_info; 2402 2403 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 2404 vid != fltr_info->l_data.mac_vlan.vlan_id) 2405 continue; 2406 2407 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 2408 2409 /* Skip if filter is not completely specified by given mask */ 2410 if (fltr_promisc_mask & ~promisc_mask) 2411 continue; 2412 2413 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2414 &remove_list_head, 2415 fltr_info); 2416 if (status) { 2417 mutex_unlock(rule_lock); 2418 goto free_fltr_list; 2419 } 2420 } 2421 mutex_unlock(rule_lock); 2422 2423 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 2424 2425 free_fltr_list: 2426 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2427 list_del(&fm_entry->list_entry); 2428 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2429 } 2430 2431 return status; 2432 } 2433 2434 /** 2435 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 2436 * @hw: pointer to the hardware structure 2437 * @vsi_handle: VSI handle to configure 2438 * @promisc_mask: mask of promiscuous config bits 2439 * @vid: VLAN ID to set VLAN promiscuous 2440 */ 2441 enum ice_status 2442 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 2443 { 2444 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 2445 struct ice_fltr_list_entry f_list_entry; 2446 struct ice_fltr_info new_fltr; 2447 enum ice_status status = 0; 2448 bool is_tx_fltr; 2449 u16 hw_vsi_id; 2450 int pkt_type; 2451 u8 recipe_id; 2452 2453 if (!ice_is_vsi_valid(hw, vsi_handle)) 2454 return ICE_ERR_PARAM; 2455 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2456 2457 memset(&new_fltr, 0, sizeof(new_fltr)); 2458 2459 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 2460 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 2461 new_fltr.l_data.mac_vlan.vlan_id = vid; 2462 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2463 } else { 2464 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 2465 recipe_id = ICE_SW_LKUP_PROMISC; 2466 } 2467 2468 /* Separate filters must be set for each direction/packet type 2469 * combination, so we will loop over the mask value, store the 2470 * individual type, and clear it out in the input mask as it 2471 * is found. 2472 */ 2473 while (promisc_mask) { 2474 u8 *mac_addr; 2475 2476 pkt_type = 0; 2477 is_tx_fltr = false; 2478 2479 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 2480 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 2481 pkt_type = UCAST_FLTR; 2482 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 2483 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 2484 pkt_type = UCAST_FLTR; 2485 is_tx_fltr = true; 2486 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 2487 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 2488 pkt_type = MCAST_FLTR; 2489 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 2490 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 2491 pkt_type = MCAST_FLTR; 2492 is_tx_fltr = true; 2493 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 2494 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 2495 pkt_type = BCAST_FLTR; 2496 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 2497 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 2498 pkt_type = BCAST_FLTR; 2499 is_tx_fltr = true; 2500 } 2501 2502 /* Check for VLAN promiscuous flag */ 2503 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 2504 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 2505 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 2506 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 2507 is_tx_fltr = true; 2508 } 2509 2510 /* Set filter DA based on packet type */ 2511 mac_addr = new_fltr.l_data.mac.mac_addr; 2512 if (pkt_type == BCAST_FLTR) { 2513 eth_broadcast_addr(mac_addr); 2514 } else if (pkt_type == MCAST_FLTR || 2515 pkt_type == UCAST_FLTR) { 2516 /* Use the dummy ether header DA */ 2517 ether_addr_copy(mac_addr, dummy_eth_header); 2518 if (pkt_type == MCAST_FLTR) 2519 mac_addr[0] |= 0x1; /* Set multicast bit */ 2520 } 2521 2522 /* Need to reset this to zero for all iterations */ 2523 new_fltr.flag = 0; 2524 if (is_tx_fltr) { 2525 new_fltr.flag |= ICE_FLTR_TX; 2526 new_fltr.src = hw_vsi_id; 2527 } else { 2528 new_fltr.flag |= ICE_FLTR_RX; 2529 new_fltr.src = hw->port_info->lport; 2530 } 2531 2532 new_fltr.fltr_act = ICE_FWD_TO_VSI; 2533 new_fltr.vsi_handle = vsi_handle; 2534 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 2535 f_list_entry.fltr_info = new_fltr; 2536 2537 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 2538 if (status) 2539 goto set_promisc_exit; 2540 } 2541 2542 set_promisc_exit: 2543 return status; 2544 } 2545 2546 /** 2547 * ice_set_vlan_vsi_promisc 2548 * @hw: pointer to the hardware structure 2549 * @vsi_handle: VSI handle to configure 2550 * @promisc_mask: mask of promiscuous config bits 2551 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 2552 * 2553 * Configure VSI with all associated VLANs to given promiscuous mode(s) 2554 */ 2555 enum ice_status 2556 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2557 bool rm_vlan_promisc) 2558 { 2559 struct ice_switch_info *sw = hw->switch_info; 2560 struct ice_fltr_list_entry *list_itr, *tmp; 2561 struct list_head vsi_list_head; 2562 struct list_head *vlan_head; 2563 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 2564 enum ice_status status; 2565 u16 vlan_id; 2566 2567 INIT_LIST_HEAD(&vsi_list_head); 2568 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 2569 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 2570 mutex_lock(vlan_lock); 2571 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 2572 &vsi_list_head); 2573 mutex_unlock(vlan_lock); 2574 if (status) 2575 goto free_fltr_list; 2576 2577 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 2578 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 2579 if (rm_vlan_promisc) 2580 status = ice_clear_vsi_promisc(hw, vsi_handle, 2581 promisc_mask, vlan_id); 2582 else 2583 status = ice_set_vsi_promisc(hw, vsi_handle, 2584 promisc_mask, vlan_id); 2585 if (status) 2586 break; 2587 } 2588 2589 free_fltr_list: 2590 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 2591 list_del(&list_itr->list_entry); 2592 devm_kfree(ice_hw_to_dev(hw), list_itr); 2593 } 2594 return status; 2595 } 2596 2597 /** 2598 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 2599 * @hw: pointer to the hardware structure 2600 * @vsi_handle: VSI handle to remove filters from 2601 * @lkup: switch rule filter lookup type 2602 */ 2603 static void 2604 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 2605 enum ice_sw_lkup_type lkup) 2606 { 2607 struct ice_switch_info *sw = hw->switch_info; 2608 struct ice_fltr_list_entry *fm_entry; 2609 struct list_head remove_list_head; 2610 struct list_head *rule_head; 2611 struct ice_fltr_list_entry *tmp; 2612 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2613 enum ice_status status; 2614 2615 INIT_LIST_HEAD(&remove_list_head); 2616 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 2617 rule_head = &sw->recp_list[lkup].filt_rules; 2618 mutex_lock(rule_lock); 2619 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 2620 &remove_list_head); 2621 mutex_unlock(rule_lock); 2622 if (status) 2623 return; 2624 2625 switch (lkup) { 2626 case ICE_SW_LKUP_MAC: 2627 ice_remove_mac(hw, &remove_list_head); 2628 break; 2629 case ICE_SW_LKUP_VLAN: 2630 ice_remove_vlan(hw, &remove_list_head); 2631 break; 2632 case ICE_SW_LKUP_PROMISC: 2633 case ICE_SW_LKUP_PROMISC_VLAN: 2634 ice_remove_promisc(hw, lkup, &remove_list_head); 2635 break; 2636 case ICE_SW_LKUP_MAC_VLAN: 2637 case ICE_SW_LKUP_ETHERTYPE: 2638 case ICE_SW_LKUP_ETHERTYPE_MAC: 2639 case ICE_SW_LKUP_DFLT: 2640 case ICE_SW_LKUP_LAST: 2641 default: 2642 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 2643 break; 2644 } 2645 2646 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2647 list_del(&fm_entry->list_entry); 2648 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2649 } 2650 } 2651 2652 /** 2653 * ice_remove_vsi_fltr - Remove all filters for a VSI 2654 * @hw: pointer to the hardware structure 2655 * @vsi_handle: VSI handle to remove filters from 2656 */ 2657 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 2658 { 2659 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 2660 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 2661 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 2662 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 2663 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 2664 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 2665 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 2666 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 2667 } 2668 2669 /** 2670 * ice_alloc_res_cntr - allocating resource counter 2671 * @hw: pointer to the hardware structure 2672 * @type: type of resource 2673 * @alloc_shared: if set it is shared else dedicated 2674 * @num_items: number of entries requested for FD resource type 2675 * @counter_id: counter index returned by AQ call 2676 */ 2677 enum ice_status 2678 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 2679 u16 *counter_id) 2680 { 2681 struct ice_aqc_alloc_free_res_elem *buf; 2682 enum ice_status status; 2683 u16 buf_len; 2684 2685 /* Allocate resource */ 2686 buf_len = struct_size(buf, elem, 1); 2687 buf = kzalloc(buf_len, GFP_KERNEL); 2688 if (!buf) 2689 return ICE_ERR_NO_MEMORY; 2690 2691 buf->num_elems = cpu_to_le16(num_items); 2692 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 2693 ICE_AQC_RES_TYPE_M) | alloc_shared); 2694 2695 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 2696 ice_aqc_opc_alloc_res, NULL); 2697 if (status) 2698 goto exit; 2699 2700 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp); 2701 2702 exit: 2703 kfree(buf); 2704 return status; 2705 } 2706 2707 /** 2708 * ice_free_res_cntr - free resource counter 2709 * @hw: pointer to the hardware structure 2710 * @type: type of resource 2711 * @alloc_shared: if set it is shared else dedicated 2712 * @num_items: number of entries to be freed for FD resource type 2713 * @counter_id: counter ID resource which needs to be freed 2714 */ 2715 enum ice_status 2716 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 2717 u16 counter_id) 2718 { 2719 struct ice_aqc_alloc_free_res_elem *buf; 2720 enum ice_status status; 2721 u16 buf_len; 2722 2723 /* Free resource */ 2724 buf_len = struct_size(buf, elem, 1); 2725 buf = kzalloc(buf_len, GFP_KERNEL); 2726 if (!buf) 2727 return ICE_ERR_NO_MEMORY; 2728 2729 buf->num_elems = cpu_to_le16(num_items); 2730 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 2731 ICE_AQC_RES_TYPE_M) | alloc_shared); 2732 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id); 2733 2734 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 2735 ice_aqc_opc_free_res, NULL); 2736 if (status) 2737 ice_debug(hw, ICE_DBG_SW, 2738 "counter resource could not be freed\n"); 2739 2740 kfree(buf); 2741 return status; 2742 } 2743 2744 /** 2745 * ice_replay_vsi_fltr - Replay filters for requested VSI 2746 * @hw: pointer to the hardware structure 2747 * @vsi_handle: driver VSI handle 2748 * @recp_id: Recipe ID for which rules need to be replayed 2749 * @list_head: list for which filters need to be replayed 2750 * 2751 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 2752 * It is required to pass valid VSI handle. 2753 */ 2754 static enum ice_status 2755 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 2756 struct list_head *list_head) 2757 { 2758 struct ice_fltr_mgmt_list_entry *itr; 2759 enum ice_status status = 0; 2760 u16 hw_vsi_id; 2761 2762 if (list_empty(list_head)) 2763 return status; 2764 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2765 2766 list_for_each_entry(itr, list_head, list_entry) { 2767 struct ice_fltr_list_entry f_entry; 2768 2769 f_entry.fltr_info = itr->fltr_info; 2770 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 2771 itr->fltr_info.vsi_handle == vsi_handle) { 2772 /* update the src in case it is VSI num */ 2773 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2774 f_entry.fltr_info.src = hw_vsi_id; 2775 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2776 if (status) 2777 goto end; 2778 continue; 2779 } 2780 if (!itr->vsi_list_info || 2781 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 2782 continue; 2783 /* Clearing it so that the logic can add it back */ 2784 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 2785 f_entry.fltr_info.vsi_handle = vsi_handle; 2786 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 2787 /* update the src in case it is VSI num */ 2788 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2789 f_entry.fltr_info.src = hw_vsi_id; 2790 if (recp_id == ICE_SW_LKUP_VLAN) 2791 status = ice_add_vlan_internal(hw, &f_entry); 2792 else 2793 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2794 if (status) 2795 goto end; 2796 } 2797 end: 2798 return status; 2799 } 2800 2801 /** 2802 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 2803 * @hw: pointer to the hardware structure 2804 * @vsi_handle: driver VSI handle 2805 * 2806 * Replays filters for requested VSI via vsi_handle. 2807 */ 2808 enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 2809 { 2810 struct ice_switch_info *sw = hw->switch_info; 2811 enum ice_status status = 0; 2812 u8 i; 2813 2814 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2815 struct list_head *head; 2816 2817 head = &sw->recp_list[i].filt_replay_rules; 2818 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 2819 if (status) 2820 return status; 2821 } 2822 return status; 2823 } 2824 2825 /** 2826 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 2827 * @hw: pointer to the HW struct 2828 * 2829 * Deletes the filter replay rules. 2830 */ 2831 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 2832 { 2833 struct ice_switch_info *sw = hw->switch_info; 2834 u8 i; 2835 2836 if (!sw) 2837 return; 2838 2839 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2840 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 2841 struct list_head *l_head; 2842 2843 l_head = &sw->recp_list[i].filt_replay_rules; 2844 ice_rem_sw_rule_info(hw, l_head); 2845 } 2846 } 2847 } 2848