1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_switch.h" 5 6 #define ICE_ETH_DA_OFFSET 0 7 #define ICE_ETH_ETHTYPE_OFFSET 12 8 #define ICE_ETH_VLAN_TCI_OFFSET 14 9 #define ICE_MAX_VLAN_ID 0xFFF 10 11 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 12 * struct to configure any switch filter rules. 13 * {DA (6 bytes), SA(6 bytes), 14 * Ether type (2 bytes for header without VLAN tag) OR 15 * VLAN tag (4 bytes for header with VLAN tag) } 16 * 17 * Word on Hardcoded values 18 * byte 0 = 0x2: to identify it as locally administered DA MAC 19 * byte 6 = 0x2: to identify it as locally administered SA MAC 20 * byte 12 = 0x81 & byte 13 = 0x00: 21 * In case of VLAN filter first two bytes defines ether type (0x8100) 22 * and remaining two bytes are placeholder for programming a given VLAN ID 23 * In case of Ether type filter it is treated as header without VLAN tag 24 * and byte 12 and 13 is used to program a given Ether type instead 25 */ 26 #define DUMMY_ETH_HDR_LEN 16 27 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 28 0x2, 0, 0, 0, 0, 0, 29 0x81, 0, 0, 0}; 30 31 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \ 32 (sizeof(struct ice_aqc_sw_rules_elem) - \ 33 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 34 sizeof(struct ice_sw_rule_lkup_rx_tx) + DUMMY_ETH_HDR_LEN - 1) 35 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \ 36 (sizeof(struct ice_aqc_sw_rules_elem) - \ 37 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 38 sizeof(struct ice_sw_rule_lkup_rx_tx) - 1) 39 #define ICE_SW_RULE_LG_ACT_SIZE(n) \ 40 (sizeof(struct ice_aqc_sw_rules_elem) - \ 41 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 42 sizeof(struct ice_sw_rule_lg_act) - \ 43 sizeof(((struct ice_sw_rule_lg_act *)0)->act) + \ 44 ((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act))) 45 #define ICE_SW_RULE_VSI_LIST_SIZE(n) \ 46 (sizeof(struct ice_aqc_sw_rules_elem) - \ 47 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 48 sizeof(struct ice_sw_rule_vsi_list) - \ 49 sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi) + \ 50 ((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi))) 51 52 /** 53 * ice_aq_alloc_free_res - command to allocate/free resources 54 * @hw: pointer to the HW struct 55 * @num_entries: number of resource entries in buffer 56 * @buf: Indirect buffer to hold data parameters and response 57 * @buf_size: size of buffer for indirect commands 58 * @opc: pass in the command opcode 59 * @cd: pointer to command details structure or NULL 60 * 61 * Helper function to allocate/free resources using the admin queue commands 62 */ 63 static enum ice_status 64 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries, 65 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, 66 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 67 { 68 struct ice_aqc_alloc_free_res_cmd *cmd; 69 struct ice_aq_desc desc; 70 71 cmd = &desc.params.sw_res_ctrl; 72 73 if (!buf) 74 return ICE_ERR_PARAM; 75 76 if (buf_size < (num_entries * sizeof(buf->elem[0]))) 77 return ICE_ERR_PARAM; 78 79 ice_fill_dflt_direct_cmd_desc(&desc, opc); 80 81 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 82 83 cmd->num_entries = cpu_to_le16(num_entries); 84 85 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 86 } 87 88 /** 89 * ice_init_def_sw_recp - initialize the recipe book keeping tables 90 * @hw: pointer to the HW struct 91 * 92 * Allocate memory for the entire recipe table and initialize the structures/ 93 * entries corresponding to basic recipes. 94 */ 95 enum ice_status ice_init_def_sw_recp(struct ice_hw *hw) 96 { 97 struct ice_sw_recipe *recps; 98 u8 i; 99 100 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 101 sizeof(*recps), GFP_KERNEL); 102 if (!recps) 103 return ICE_ERR_NO_MEMORY; 104 105 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 106 recps[i].root_rid = i; 107 INIT_LIST_HEAD(&recps[i].filt_rules); 108 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 109 mutex_init(&recps[i].filt_rule_lock); 110 } 111 112 hw->switch_info->recp_list = recps; 113 114 return 0; 115 } 116 117 /** 118 * ice_aq_get_sw_cfg - get switch configuration 119 * @hw: pointer to the hardware structure 120 * @buf: pointer to the result buffer 121 * @buf_size: length of the buffer available for response 122 * @req_desc: pointer to requested descriptor 123 * @num_elems: pointer to number of elements 124 * @cd: pointer to command details structure or NULL 125 * 126 * Get switch configuration (0x0200) to be placed in 'buff'. 127 * This admin command returns information such as initial VSI/port number 128 * and switch ID it belongs to. 129 * 130 * NOTE: *req_desc is both an input/output parameter. 131 * The caller of this function first calls this function with *request_desc set 132 * to 0. If the response from f/w has *req_desc set to 0, all the switch 133 * configuration information has been returned; if non-zero (meaning not all 134 * the information was returned), the caller should call this function again 135 * with *req_desc set to the previous value returned by f/w to get the 136 * next block of switch configuration information. 137 * 138 * *num_elems is output only parameter. This reflects the number of elements 139 * in response buffer. The caller of this function to use *num_elems while 140 * parsing the response buffer. 141 */ 142 static enum ice_status 143 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp *buf, 144 u16 buf_size, u16 *req_desc, u16 *num_elems, 145 struct ice_sq_cd *cd) 146 { 147 struct ice_aqc_get_sw_cfg *cmd; 148 enum ice_status status; 149 struct ice_aq_desc desc; 150 151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 152 cmd = &desc.params.get_sw_conf; 153 cmd->element = cpu_to_le16(*req_desc); 154 155 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 156 if (!status) { 157 *req_desc = le16_to_cpu(cmd->element); 158 *num_elems = le16_to_cpu(cmd->num_elems); 159 } 160 161 return status; 162 } 163 164 /** 165 * ice_aq_add_vsi 166 * @hw: pointer to the HW struct 167 * @vsi_ctx: pointer to a VSI context struct 168 * @cd: pointer to command details structure or NULL 169 * 170 * Add a VSI context to the hardware (0x0210) 171 */ 172 static enum ice_status 173 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 174 struct ice_sq_cd *cd) 175 { 176 struct ice_aqc_add_update_free_vsi_resp *res; 177 struct ice_aqc_add_get_update_free_vsi *cmd; 178 struct ice_aq_desc desc; 179 enum ice_status status; 180 181 cmd = &desc.params.vsi_cmd; 182 res = &desc.params.add_update_free_vsi_res; 183 184 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 185 186 if (!vsi_ctx->alloc_from_pool) 187 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 188 ICE_AQ_VSI_IS_VALID); 189 cmd->vf_id = vsi_ctx->vf_num; 190 191 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 192 193 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 194 195 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 196 sizeof(vsi_ctx->info), cd); 197 198 if (!status) { 199 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 200 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 201 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 202 } 203 204 return status; 205 } 206 207 /** 208 * ice_aq_free_vsi 209 * @hw: pointer to the HW struct 210 * @vsi_ctx: pointer to a VSI context struct 211 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 212 * @cd: pointer to command details structure or NULL 213 * 214 * Free VSI context info from hardware (0x0213) 215 */ 216 static enum ice_status 217 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 218 bool keep_vsi_alloc, struct ice_sq_cd *cd) 219 { 220 struct ice_aqc_add_update_free_vsi_resp *resp; 221 struct ice_aqc_add_get_update_free_vsi *cmd; 222 struct ice_aq_desc desc; 223 enum ice_status status; 224 225 cmd = &desc.params.vsi_cmd; 226 resp = &desc.params.add_update_free_vsi_res; 227 228 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 229 230 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 231 if (keep_vsi_alloc) 232 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 233 234 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 235 if (!status) { 236 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 237 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 238 } 239 240 return status; 241 } 242 243 /** 244 * ice_aq_update_vsi 245 * @hw: pointer to the HW struct 246 * @vsi_ctx: pointer to a VSI context struct 247 * @cd: pointer to command details structure or NULL 248 * 249 * Update VSI context in the hardware (0x0211) 250 */ 251 static enum ice_status 252 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 253 struct ice_sq_cd *cd) 254 { 255 struct ice_aqc_add_update_free_vsi_resp *resp; 256 struct ice_aqc_add_get_update_free_vsi *cmd; 257 struct ice_aq_desc desc; 258 enum ice_status status; 259 260 cmd = &desc.params.vsi_cmd; 261 resp = &desc.params.add_update_free_vsi_res; 262 263 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 264 265 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 266 267 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 268 269 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 270 sizeof(vsi_ctx->info), cd); 271 272 if (!status) { 273 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 274 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 275 } 276 277 return status; 278 } 279 280 /** 281 * ice_is_vsi_valid - check whether the VSI is valid or not 282 * @hw: pointer to the HW struct 283 * @vsi_handle: VSI handle 284 * 285 * check whether the VSI is valid or not 286 */ 287 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 288 { 289 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 290 } 291 292 /** 293 * ice_get_hw_vsi_num - return the HW VSI number 294 * @hw: pointer to the HW struct 295 * @vsi_handle: VSI handle 296 * 297 * return the HW VSI number 298 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 299 */ 300 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 301 { 302 return hw->vsi_ctx[vsi_handle]->vsi_num; 303 } 304 305 /** 306 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 307 * @hw: pointer to the HW struct 308 * @vsi_handle: VSI handle 309 * 310 * return the VSI context entry for a given VSI handle 311 */ 312 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 313 { 314 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 315 } 316 317 /** 318 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 319 * @hw: pointer to the HW struct 320 * @vsi_handle: VSI handle 321 * @vsi: VSI context pointer 322 * 323 * save the VSI context entry for a given VSI handle 324 */ 325 static void 326 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 327 { 328 hw->vsi_ctx[vsi_handle] = vsi; 329 } 330 331 /** 332 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 333 * @hw: pointer to the HW struct 334 * @vsi_handle: VSI handle 335 */ 336 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 337 { 338 struct ice_vsi_ctx *vsi; 339 u8 i; 340 341 vsi = ice_get_vsi_ctx(hw, vsi_handle); 342 if (!vsi) 343 return; 344 ice_for_each_traffic_class(i) { 345 if (vsi->lan_q_ctx[i]) { 346 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 347 vsi->lan_q_ctx[i] = NULL; 348 } 349 } 350 } 351 352 /** 353 * ice_clear_vsi_ctx - clear the VSI context entry 354 * @hw: pointer to the HW struct 355 * @vsi_handle: VSI handle 356 * 357 * clear the VSI context entry 358 */ 359 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 360 { 361 struct ice_vsi_ctx *vsi; 362 363 vsi = ice_get_vsi_ctx(hw, vsi_handle); 364 if (vsi) { 365 ice_clear_vsi_q_ctx(hw, vsi_handle); 366 devm_kfree(ice_hw_to_dev(hw), vsi); 367 hw->vsi_ctx[vsi_handle] = NULL; 368 } 369 } 370 371 /** 372 * ice_clear_all_vsi_ctx - clear all the VSI context entries 373 * @hw: pointer to the HW struct 374 */ 375 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 376 { 377 u16 i; 378 379 for (i = 0; i < ICE_MAX_VSI; i++) 380 ice_clear_vsi_ctx(hw, i); 381 } 382 383 /** 384 * ice_add_vsi - add VSI context to the hardware and VSI handle list 385 * @hw: pointer to the HW struct 386 * @vsi_handle: unique VSI handle provided by drivers 387 * @vsi_ctx: pointer to a VSI context struct 388 * @cd: pointer to command details structure or NULL 389 * 390 * Add a VSI context to the hardware also add it into the VSI handle list. 391 * If this function gets called after reset for existing VSIs then update 392 * with the new HW VSI number in the corresponding VSI handle list entry. 393 */ 394 enum ice_status 395 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 396 struct ice_sq_cd *cd) 397 { 398 struct ice_vsi_ctx *tmp_vsi_ctx; 399 enum ice_status status; 400 401 if (vsi_handle >= ICE_MAX_VSI) 402 return ICE_ERR_PARAM; 403 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 404 if (status) 405 return status; 406 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 407 if (!tmp_vsi_ctx) { 408 /* Create a new VSI context */ 409 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 410 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 411 if (!tmp_vsi_ctx) { 412 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 413 return ICE_ERR_NO_MEMORY; 414 } 415 *tmp_vsi_ctx = *vsi_ctx; 416 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 417 } else { 418 /* update with new HW VSI num */ 419 if (tmp_vsi_ctx->vsi_num != vsi_ctx->vsi_num) 420 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 421 } 422 423 return 0; 424 } 425 426 /** 427 * ice_free_vsi- free VSI context from hardware and VSI handle list 428 * @hw: pointer to the HW struct 429 * @vsi_handle: unique VSI handle 430 * @vsi_ctx: pointer to a VSI context struct 431 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 432 * @cd: pointer to command details structure or NULL 433 * 434 * Free VSI context info from hardware as well as from VSI handle list 435 */ 436 enum ice_status 437 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 438 bool keep_vsi_alloc, struct ice_sq_cd *cd) 439 { 440 enum ice_status status; 441 442 if (!ice_is_vsi_valid(hw, vsi_handle)) 443 return ICE_ERR_PARAM; 444 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 445 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 446 if (!status) 447 ice_clear_vsi_ctx(hw, vsi_handle); 448 return status; 449 } 450 451 /** 452 * ice_update_vsi 453 * @hw: pointer to the HW struct 454 * @vsi_handle: unique VSI handle 455 * @vsi_ctx: pointer to a VSI context struct 456 * @cd: pointer to command details structure or NULL 457 * 458 * Update VSI context in the hardware 459 */ 460 enum ice_status 461 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 462 struct ice_sq_cd *cd) 463 { 464 if (!ice_is_vsi_valid(hw, vsi_handle)) 465 return ICE_ERR_PARAM; 466 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 467 return ice_aq_update_vsi(hw, vsi_ctx, cd); 468 } 469 470 /** 471 * ice_aq_alloc_free_vsi_list 472 * @hw: pointer to the HW struct 473 * @vsi_list_id: VSI list ID returned or used for lookup 474 * @lkup_type: switch rule filter lookup type 475 * @opc: switch rules population command type - pass in the command opcode 476 * 477 * allocates or free a VSI list resource 478 */ 479 static enum ice_status 480 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 481 enum ice_sw_lkup_type lkup_type, 482 enum ice_adminq_opc opc) 483 { 484 struct ice_aqc_alloc_free_res_elem *sw_buf; 485 struct ice_aqc_res_elem *vsi_ele; 486 enum ice_status status; 487 u16 buf_len; 488 489 buf_len = sizeof(*sw_buf); 490 sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL); 491 if (!sw_buf) 492 return ICE_ERR_NO_MEMORY; 493 sw_buf->num_elems = cpu_to_le16(1); 494 495 if (lkup_type == ICE_SW_LKUP_MAC || 496 lkup_type == ICE_SW_LKUP_MAC_VLAN || 497 lkup_type == ICE_SW_LKUP_ETHERTYPE || 498 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 499 lkup_type == ICE_SW_LKUP_PROMISC || 500 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) { 501 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 502 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 503 sw_buf->res_type = 504 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 505 } else { 506 status = ICE_ERR_PARAM; 507 goto ice_aq_alloc_free_vsi_list_exit; 508 } 509 510 if (opc == ice_aqc_opc_free_res) 511 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 512 513 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); 514 if (status) 515 goto ice_aq_alloc_free_vsi_list_exit; 516 517 if (opc == ice_aqc_opc_alloc_res) { 518 vsi_ele = &sw_buf->elem[0]; 519 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 520 } 521 522 ice_aq_alloc_free_vsi_list_exit: 523 devm_kfree(ice_hw_to_dev(hw), sw_buf); 524 return status; 525 } 526 527 /** 528 * ice_aq_sw_rules - add/update/remove switch rules 529 * @hw: pointer to the HW struct 530 * @rule_list: pointer to switch rule population list 531 * @rule_list_sz: total size of the rule list in bytes 532 * @num_rules: number of switch rules in the rule_list 533 * @opc: switch rules population command type - pass in the command opcode 534 * @cd: pointer to command details structure or NULL 535 * 536 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 537 */ 538 static enum ice_status 539 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 540 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 541 { 542 struct ice_aq_desc desc; 543 544 if (opc != ice_aqc_opc_add_sw_rules && 545 opc != ice_aqc_opc_update_sw_rules && 546 opc != ice_aqc_opc_remove_sw_rules) 547 return ICE_ERR_PARAM; 548 549 ice_fill_dflt_direct_cmd_desc(&desc, opc); 550 551 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 552 desc.params.sw_rules.num_rules_fltr_entry_index = 553 cpu_to_le16(num_rules); 554 return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 555 } 556 557 /* ice_init_port_info - Initialize port_info with switch configuration data 558 * @pi: pointer to port_info 559 * @vsi_port_num: VSI number or port number 560 * @type: Type of switch element (port or VSI) 561 * @swid: switch ID of the switch the element is attached to 562 * @pf_vf_num: PF or VF number 563 * @is_vf: true if the element is a VF, false otherwise 564 */ 565 static void 566 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 567 u16 swid, u16 pf_vf_num, bool is_vf) 568 { 569 switch (type) { 570 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 571 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 572 pi->sw_id = swid; 573 pi->pf_vf_num = pf_vf_num; 574 pi->is_vf = is_vf; 575 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 576 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 577 break; 578 default: 579 ice_debug(pi->hw, ICE_DBG_SW, 580 "incorrect VSI/port type received\n"); 581 break; 582 } 583 } 584 585 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 586 * @hw: pointer to the hardware structure 587 */ 588 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw) 589 { 590 struct ice_aqc_get_sw_cfg_resp *rbuf; 591 enum ice_status status; 592 u16 req_desc = 0; 593 u16 num_elems; 594 u16 i; 595 596 rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN, 597 GFP_KERNEL); 598 599 if (!rbuf) 600 return ICE_ERR_NO_MEMORY; 601 602 /* Multiple calls to ice_aq_get_sw_cfg may be required 603 * to get all the switch configuration information. The need 604 * for additional calls is indicated by ice_aq_get_sw_cfg 605 * writing a non-zero value in req_desc 606 */ 607 do { 608 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 609 &req_desc, &num_elems, NULL); 610 611 if (status) 612 break; 613 614 for (i = 0; i < num_elems; i++) { 615 struct ice_aqc_get_sw_cfg_resp_elem *ele; 616 u16 pf_vf_num, swid, vsi_port_num; 617 bool is_vf = false; 618 u8 type; 619 620 ele = rbuf[i].elements; 621 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 622 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 623 624 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 625 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 626 627 swid = le16_to_cpu(ele->swid); 628 629 if (le16_to_cpu(ele->pf_vf_num) & 630 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 631 is_vf = true; 632 633 type = le16_to_cpu(ele->vsi_port_num) >> 634 ICE_AQC_GET_SW_CONF_RESP_TYPE_S; 635 636 if (type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 637 /* FW VSI is not needed. Just continue. */ 638 continue; 639 } 640 641 ice_init_port_info(hw->port_info, vsi_port_num, 642 type, swid, pf_vf_num, is_vf); 643 } 644 } while (req_desc && !status); 645 646 devm_kfree(ice_hw_to_dev(hw), (void *)rbuf); 647 return status; 648 } 649 650 /** 651 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 652 * @hw: pointer to the hardware structure 653 * @fi: filter info structure to fill/update 654 * 655 * This helper function populates the lb_en and lan_en elements of the provided 656 * ice_fltr_info struct using the switch's type and characteristics of the 657 * switch rule being configured. 658 */ 659 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 660 { 661 fi->lb_en = false; 662 fi->lan_en = false; 663 if ((fi->flag & ICE_FLTR_TX) && 664 (fi->fltr_act == ICE_FWD_TO_VSI || 665 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 666 fi->fltr_act == ICE_FWD_TO_Q || 667 fi->fltr_act == ICE_FWD_TO_QGRP)) { 668 /* Setting LB for prune actions will result in replicated 669 * packets to the internal switch that will be dropped. 670 */ 671 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 672 fi->lb_en = true; 673 674 /* Set lan_en to TRUE if 675 * 1. The switch is a VEB AND 676 * 2 677 * 2.1 The lookup is a directional lookup like ethertype, 678 * promiscuous, ethertype-MAC, promiscuous-VLAN 679 * and default-port OR 680 * 2.2 The lookup is VLAN, OR 681 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 682 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 683 * 684 * OR 685 * 686 * The switch is a VEPA. 687 * 688 * In all other cases, the LAN enable has to be set to false. 689 */ 690 if (hw->evb_veb) { 691 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 692 fi->lkup_type == ICE_SW_LKUP_PROMISC || 693 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 694 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 695 fi->lkup_type == ICE_SW_LKUP_DFLT || 696 fi->lkup_type == ICE_SW_LKUP_VLAN || 697 (fi->lkup_type == ICE_SW_LKUP_MAC && 698 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 699 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 700 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 701 fi->lan_en = true; 702 } else { 703 fi->lan_en = true; 704 } 705 } 706 } 707 708 /** 709 * ice_fill_sw_rule - Helper function to fill switch rule structure 710 * @hw: pointer to the hardware structure 711 * @f_info: entry containing packet forwarding information 712 * @s_rule: switch rule structure to be filled in based on mac_entry 713 * @opc: switch rules population command type - pass in the command opcode 714 */ 715 static void 716 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 717 struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc) 718 { 719 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 720 void *daddr = NULL; 721 u16 eth_hdr_sz; 722 u8 *eth_hdr; 723 u32 act = 0; 724 __be16 *off; 725 u8 q_rgn; 726 727 if (opc == ice_aqc_opc_remove_sw_rules) { 728 s_rule->pdata.lkup_tx_rx.act = 0; 729 s_rule->pdata.lkup_tx_rx.index = 730 cpu_to_le16(f_info->fltr_rule_id); 731 s_rule->pdata.lkup_tx_rx.hdr_len = 0; 732 return; 733 } 734 735 eth_hdr_sz = sizeof(dummy_eth_header); 736 eth_hdr = s_rule->pdata.lkup_tx_rx.hdr; 737 738 /* initialize the ether header with a dummy header */ 739 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 740 ice_fill_sw_info(hw, f_info); 741 742 switch (f_info->fltr_act) { 743 case ICE_FWD_TO_VSI: 744 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & 745 ICE_SINGLE_ACT_VSI_ID_M; 746 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 747 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 748 ICE_SINGLE_ACT_VALID_BIT; 749 break; 750 case ICE_FWD_TO_VSI_LIST: 751 act |= ICE_SINGLE_ACT_VSI_LIST; 752 act |= (f_info->fwd_id.vsi_list_id << 753 ICE_SINGLE_ACT_VSI_LIST_ID_S) & 754 ICE_SINGLE_ACT_VSI_LIST_ID_M; 755 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 756 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 757 ICE_SINGLE_ACT_VALID_BIT; 758 break; 759 case ICE_FWD_TO_Q: 760 act |= ICE_SINGLE_ACT_TO_Q; 761 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 762 ICE_SINGLE_ACT_Q_INDEX_M; 763 break; 764 case ICE_DROP_PACKET: 765 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 766 ICE_SINGLE_ACT_VALID_BIT; 767 break; 768 case ICE_FWD_TO_QGRP: 769 q_rgn = f_info->qgrp_size > 0 ? 770 (u8)ilog2(f_info->qgrp_size) : 0; 771 act |= ICE_SINGLE_ACT_TO_Q; 772 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 773 ICE_SINGLE_ACT_Q_INDEX_M; 774 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 775 ICE_SINGLE_ACT_Q_REGION_M; 776 break; 777 default: 778 return; 779 } 780 781 if (f_info->lb_en) 782 act |= ICE_SINGLE_ACT_LB_ENABLE; 783 if (f_info->lan_en) 784 act |= ICE_SINGLE_ACT_LAN_ENABLE; 785 786 switch (f_info->lkup_type) { 787 case ICE_SW_LKUP_MAC: 788 daddr = f_info->l_data.mac.mac_addr; 789 break; 790 case ICE_SW_LKUP_VLAN: 791 vlan_id = f_info->l_data.vlan.vlan_id; 792 if (f_info->fltr_act == ICE_FWD_TO_VSI || 793 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 794 act |= ICE_SINGLE_ACT_PRUNE; 795 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 796 } 797 break; 798 case ICE_SW_LKUP_ETHERTYPE_MAC: 799 daddr = f_info->l_data.ethertype_mac.mac_addr; 800 /* fall-through */ 801 case ICE_SW_LKUP_ETHERTYPE: 802 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 803 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 804 break; 805 case ICE_SW_LKUP_MAC_VLAN: 806 daddr = f_info->l_data.mac_vlan.mac_addr; 807 vlan_id = f_info->l_data.mac_vlan.vlan_id; 808 break; 809 case ICE_SW_LKUP_PROMISC_VLAN: 810 vlan_id = f_info->l_data.mac_vlan.vlan_id; 811 /* fall-through */ 812 case ICE_SW_LKUP_PROMISC: 813 daddr = f_info->l_data.mac_vlan.mac_addr; 814 break; 815 default: 816 break; 817 } 818 819 s_rule->type = (f_info->flag & ICE_FLTR_RX) ? 820 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 821 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 822 823 /* Recipe set depending on lookup type */ 824 s_rule->pdata.lkup_tx_rx.recipe_id = cpu_to_le16(f_info->lkup_type); 825 s_rule->pdata.lkup_tx_rx.src = cpu_to_le16(f_info->src); 826 s_rule->pdata.lkup_tx_rx.act = cpu_to_le32(act); 827 828 if (daddr) 829 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 830 831 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 832 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 833 *off = cpu_to_be16(vlan_id); 834 } 835 836 /* Create the switch rule with the final dummy Ethernet header */ 837 if (opc != ice_aqc_opc_update_sw_rules) 838 s_rule->pdata.lkup_tx_rx.hdr_len = cpu_to_le16(eth_hdr_sz); 839 } 840 841 /** 842 * ice_add_marker_act 843 * @hw: pointer to the hardware structure 844 * @m_ent: the management entry for which sw marker needs to be added 845 * @sw_marker: sw marker to tag the Rx descriptor with 846 * @l_id: large action resource ID 847 * 848 * Create a large action to hold software marker and update the switch rule 849 * entry pointed by m_ent with newly created large action 850 */ 851 static enum ice_status 852 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 853 u16 sw_marker, u16 l_id) 854 { 855 struct ice_aqc_sw_rules_elem *lg_act, *rx_tx; 856 /* For software marker we need 3 large actions 857 * 1. FWD action: FWD TO VSI or VSI LIST 858 * 2. GENERIC VALUE action to hold the profile ID 859 * 3. GENERIC VALUE action to hold the software marker ID 860 */ 861 const u16 num_lg_acts = 3; 862 enum ice_status status; 863 u16 lg_act_size; 864 u16 rules_size; 865 u32 act; 866 u16 id; 867 868 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 869 return ICE_ERR_PARAM; 870 871 /* Create two back-to-back switch rules and submit them to the HW using 872 * one memory buffer: 873 * 1. Large Action 874 * 2. Look up Tx Rx 875 */ 876 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts); 877 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 878 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 879 if (!lg_act) 880 return ICE_ERR_NO_MEMORY; 881 882 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); 883 884 /* Fill in the first switch rule i.e. large action */ 885 lg_act->type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 886 lg_act->pdata.lg_act.index = cpu_to_le16(l_id); 887 lg_act->pdata.lg_act.size = cpu_to_le16(num_lg_acts); 888 889 /* First action VSI forwarding or VSI list forwarding depending on how 890 * many VSIs 891 */ 892 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 893 m_ent->fltr_info.fwd_id.hw_vsi_id; 894 895 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 896 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & 897 ICE_LG_ACT_VSI_LIST_ID_M; 898 if (m_ent->vsi_count > 1) 899 act |= ICE_LG_ACT_VSI_LIST; 900 lg_act->pdata.lg_act.act[0] = cpu_to_le32(act); 901 902 /* Second action descriptor type */ 903 act = ICE_LG_ACT_GENERIC; 904 905 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; 906 lg_act->pdata.lg_act.act[1] = cpu_to_le32(act); 907 908 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << 909 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; 910 911 /* Third action Marker value */ 912 act |= ICE_LG_ACT_GENERIC; 913 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & 914 ICE_LG_ACT_GENERIC_VALUE_M; 915 916 lg_act->pdata.lg_act.act[2] = cpu_to_le32(act); 917 918 /* call the fill switch rule to fill the lookup Tx Rx structure */ 919 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 920 ice_aqc_opc_update_sw_rules); 921 922 /* Update the action to point to the large action ID */ 923 rx_tx->pdata.lkup_tx_rx.act = 924 cpu_to_le32(ICE_SINGLE_ACT_PTR | 925 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & 926 ICE_SINGLE_ACT_PTR_VAL_M)); 927 928 /* Use the filter rule ID of the previously created rule with single 929 * act. Once the update happens, hardware will treat this as large 930 * action 931 */ 932 rx_tx->pdata.lkup_tx_rx.index = 933 cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 934 935 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 936 ice_aqc_opc_update_sw_rules, NULL); 937 if (!status) { 938 m_ent->lg_act_idx = l_id; 939 m_ent->sw_marker_id = sw_marker; 940 } 941 942 devm_kfree(ice_hw_to_dev(hw), lg_act); 943 return status; 944 } 945 946 /** 947 * ice_create_vsi_list_map 948 * @hw: pointer to the hardware structure 949 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 950 * @num_vsi: number of VSI handles in the array 951 * @vsi_list_id: VSI list ID generated as part of allocate resource 952 * 953 * Helper function to create a new entry of VSI list ID to VSI mapping 954 * using the given VSI list ID 955 */ 956 static struct ice_vsi_list_map_info * 957 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 958 u16 vsi_list_id) 959 { 960 struct ice_switch_info *sw = hw->switch_info; 961 struct ice_vsi_list_map_info *v_map; 962 int i; 963 964 v_map = devm_kcalloc(ice_hw_to_dev(hw), 1, sizeof(*v_map), GFP_KERNEL); 965 if (!v_map) 966 return NULL; 967 968 v_map->vsi_list_id = vsi_list_id; 969 v_map->ref_cnt = 1; 970 for (i = 0; i < num_vsi; i++) 971 set_bit(vsi_handle_arr[i], v_map->vsi_map); 972 973 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 974 return v_map; 975 } 976 977 /** 978 * ice_update_vsi_list_rule 979 * @hw: pointer to the hardware structure 980 * @vsi_handle_arr: array of VSI handles to form a VSI list 981 * @num_vsi: number of VSI handles in the array 982 * @vsi_list_id: VSI list ID generated as part of allocate resource 983 * @remove: Boolean value to indicate if this is a remove action 984 * @opc: switch rules population command type - pass in the command opcode 985 * @lkup_type: lookup type of the filter 986 * 987 * Call AQ command to add a new switch rule or update existing switch rule 988 * using the given VSI list ID 989 */ 990 static enum ice_status 991 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 992 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 993 enum ice_sw_lkup_type lkup_type) 994 { 995 struct ice_aqc_sw_rules_elem *s_rule; 996 enum ice_status status; 997 u16 s_rule_size; 998 u16 type; 999 int i; 1000 1001 if (!num_vsi) 1002 return ICE_ERR_PARAM; 1003 1004 if (lkup_type == ICE_SW_LKUP_MAC || 1005 lkup_type == ICE_SW_LKUP_MAC_VLAN || 1006 lkup_type == ICE_SW_LKUP_ETHERTYPE || 1007 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1008 lkup_type == ICE_SW_LKUP_PROMISC || 1009 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) 1010 type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 1011 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 1012 else if (lkup_type == ICE_SW_LKUP_VLAN) 1013 type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 1014 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 1015 else 1016 return ICE_ERR_PARAM; 1017 1018 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi); 1019 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 1020 if (!s_rule) 1021 return ICE_ERR_NO_MEMORY; 1022 for (i = 0; i < num_vsi; i++) { 1023 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 1024 status = ICE_ERR_PARAM; 1025 goto exit; 1026 } 1027 /* AQ call requires hw_vsi_id(s) */ 1028 s_rule->pdata.vsi_list.vsi[i] = 1029 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 1030 } 1031 1032 s_rule->type = cpu_to_le16(type); 1033 s_rule->pdata.vsi_list.number_vsi = cpu_to_le16(num_vsi); 1034 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 1035 1036 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 1037 1038 exit: 1039 devm_kfree(ice_hw_to_dev(hw), s_rule); 1040 return status; 1041 } 1042 1043 /** 1044 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 1045 * @hw: pointer to the HW struct 1046 * @vsi_handle_arr: array of VSI handles to form a VSI list 1047 * @num_vsi: number of VSI handles in the array 1048 * @vsi_list_id: stores the ID of the VSI list to be created 1049 * @lkup_type: switch rule filter's lookup type 1050 */ 1051 static enum ice_status 1052 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 1053 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 1054 { 1055 enum ice_status status; 1056 1057 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 1058 ice_aqc_opc_alloc_res); 1059 if (status) 1060 return status; 1061 1062 /* Update the newly created VSI list to include the specified VSIs */ 1063 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 1064 *vsi_list_id, false, 1065 ice_aqc_opc_add_sw_rules, lkup_type); 1066 } 1067 1068 /** 1069 * ice_create_pkt_fwd_rule 1070 * @hw: pointer to the hardware structure 1071 * @f_entry: entry containing packet forwarding information 1072 * 1073 * Create switch rule with given filter information and add an entry 1074 * to the corresponding filter management list to track this switch rule 1075 * and VSI mapping 1076 */ 1077 static enum ice_status 1078 ice_create_pkt_fwd_rule(struct ice_hw *hw, 1079 struct ice_fltr_list_entry *f_entry) 1080 { 1081 struct ice_fltr_mgmt_list_entry *fm_entry; 1082 struct ice_aqc_sw_rules_elem *s_rule; 1083 enum ice_sw_lkup_type l_type; 1084 struct ice_sw_recipe *recp; 1085 enum ice_status status; 1086 1087 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1088 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1089 if (!s_rule) 1090 return ICE_ERR_NO_MEMORY; 1091 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 1092 GFP_KERNEL); 1093 if (!fm_entry) { 1094 status = ICE_ERR_NO_MEMORY; 1095 goto ice_create_pkt_fwd_rule_exit; 1096 } 1097 1098 fm_entry->fltr_info = f_entry->fltr_info; 1099 1100 /* Initialize all the fields for the management entry */ 1101 fm_entry->vsi_count = 1; 1102 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 1103 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 1104 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 1105 1106 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 1107 ice_aqc_opc_add_sw_rules); 1108 1109 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1110 ice_aqc_opc_add_sw_rules, NULL); 1111 if (status) { 1112 devm_kfree(ice_hw_to_dev(hw), fm_entry); 1113 goto ice_create_pkt_fwd_rule_exit; 1114 } 1115 1116 f_entry->fltr_info.fltr_rule_id = 1117 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1118 fm_entry->fltr_info.fltr_rule_id = 1119 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1120 1121 /* The book keeping entries will get removed when base driver 1122 * calls remove filter AQ command 1123 */ 1124 l_type = fm_entry->fltr_info.lkup_type; 1125 recp = &hw->switch_info->recp_list[l_type]; 1126 list_add(&fm_entry->list_entry, &recp->filt_rules); 1127 1128 ice_create_pkt_fwd_rule_exit: 1129 devm_kfree(ice_hw_to_dev(hw), s_rule); 1130 return status; 1131 } 1132 1133 /** 1134 * ice_update_pkt_fwd_rule 1135 * @hw: pointer to the hardware structure 1136 * @f_info: filter information for switch rule 1137 * 1138 * Call AQ command to update a previously created switch rule with a 1139 * VSI list ID 1140 */ 1141 static enum ice_status 1142 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 1143 { 1144 struct ice_aqc_sw_rules_elem *s_rule; 1145 enum ice_status status; 1146 1147 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1148 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1149 if (!s_rule) 1150 return ICE_ERR_NO_MEMORY; 1151 1152 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 1153 1154 s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(f_info->fltr_rule_id); 1155 1156 /* Update switch rule with new rule set to forward VSI list */ 1157 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1158 ice_aqc_opc_update_sw_rules, NULL); 1159 1160 devm_kfree(ice_hw_to_dev(hw), s_rule); 1161 return status; 1162 } 1163 1164 /** 1165 * ice_update_sw_rule_bridge_mode 1166 * @hw: pointer to the HW struct 1167 * 1168 * Updates unicast switch filter rules based on VEB/VEPA mode 1169 */ 1170 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 1171 { 1172 struct ice_switch_info *sw = hw->switch_info; 1173 struct ice_fltr_mgmt_list_entry *fm_entry; 1174 enum ice_status status = 0; 1175 struct list_head *rule_head; 1176 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1177 1178 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1179 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1180 1181 mutex_lock(rule_lock); 1182 list_for_each_entry(fm_entry, rule_head, list_entry) { 1183 struct ice_fltr_info *fi = &fm_entry->fltr_info; 1184 u8 *addr = fi->l_data.mac.mac_addr; 1185 1186 /* Update unicast Tx rules to reflect the selected 1187 * VEB/VEPA mode 1188 */ 1189 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 1190 (fi->fltr_act == ICE_FWD_TO_VSI || 1191 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 1192 fi->fltr_act == ICE_FWD_TO_Q || 1193 fi->fltr_act == ICE_FWD_TO_QGRP)) { 1194 status = ice_update_pkt_fwd_rule(hw, fi); 1195 if (status) 1196 break; 1197 } 1198 } 1199 1200 mutex_unlock(rule_lock); 1201 1202 return status; 1203 } 1204 1205 /** 1206 * ice_add_update_vsi_list 1207 * @hw: pointer to the hardware structure 1208 * @m_entry: pointer to current filter management list entry 1209 * @cur_fltr: filter information from the book keeping entry 1210 * @new_fltr: filter information with the new VSI to be added 1211 * 1212 * Call AQ command to add or update previously created VSI list with new VSI. 1213 * 1214 * Helper function to do book keeping associated with adding filter information 1215 * The algorithm to do the book keeping is described below : 1216 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 1217 * if only one VSI has been added till now 1218 * Allocate a new VSI list and add two VSIs 1219 * to this list using switch rule command 1220 * Update the previously created switch rule with the 1221 * newly created VSI list ID 1222 * if a VSI list was previously created 1223 * Add the new VSI to the previously created VSI list set 1224 * using the update switch rule command 1225 */ 1226 static enum ice_status 1227 ice_add_update_vsi_list(struct ice_hw *hw, 1228 struct ice_fltr_mgmt_list_entry *m_entry, 1229 struct ice_fltr_info *cur_fltr, 1230 struct ice_fltr_info *new_fltr) 1231 { 1232 enum ice_status status = 0; 1233 u16 vsi_list_id = 0; 1234 1235 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 1236 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 1237 return ICE_ERR_NOT_IMPL; 1238 1239 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 1240 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 1241 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 1242 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 1243 return ICE_ERR_NOT_IMPL; 1244 1245 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 1246 /* Only one entry existed in the mapping and it was not already 1247 * a part of a VSI list. So, create a VSI list with the old and 1248 * new VSIs. 1249 */ 1250 struct ice_fltr_info tmp_fltr; 1251 u16 vsi_handle_arr[2]; 1252 1253 /* A rule already exists with the new VSI being added */ 1254 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 1255 return ICE_ERR_ALREADY_EXISTS; 1256 1257 vsi_handle_arr[0] = cur_fltr->vsi_handle; 1258 vsi_handle_arr[1] = new_fltr->vsi_handle; 1259 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1260 &vsi_list_id, 1261 new_fltr->lkup_type); 1262 if (status) 1263 return status; 1264 1265 tmp_fltr = *new_fltr; 1266 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 1267 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1268 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1269 /* Update the previous switch rule of "MAC forward to VSI" to 1270 * "MAC fwd to VSI list" 1271 */ 1272 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1273 if (status) 1274 return status; 1275 1276 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 1277 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1278 m_entry->vsi_list_info = 1279 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1280 vsi_list_id); 1281 1282 /* If this entry was large action then the large action needs 1283 * to be updated to point to FWD to VSI list 1284 */ 1285 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 1286 status = 1287 ice_add_marker_act(hw, m_entry, 1288 m_entry->sw_marker_id, 1289 m_entry->lg_act_idx); 1290 } else { 1291 u16 vsi_handle = new_fltr->vsi_handle; 1292 enum ice_adminq_opc opcode; 1293 1294 if (!m_entry->vsi_list_info) 1295 return ICE_ERR_CFG; 1296 1297 /* A rule already exists with the new VSI being added */ 1298 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 1299 return 0; 1300 1301 /* Update the previously created VSI list set with 1302 * the new VSI ID passed in 1303 */ 1304 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 1305 opcode = ice_aqc_opc_update_sw_rules; 1306 1307 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 1308 vsi_list_id, false, opcode, 1309 new_fltr->lkup_type); 1310 /* update VSI list mapping info with new VSI ID */ 1311 if (!status) 1312 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 1313 } 1314 if (!status) 1315 m_entry->vsi_count++; 1316 return status; 1317 } 1318 1319 /** 1320 * ice_find_rule_entry - Search a rule entry 1321 * @hw: pointer to the hardware structure 1322 * @recp_id: lookup type for which the specified rule needs to be searched 1323 * @f_info: rule information 1324 * 1325 * Helper function to search for a given rule entry 1326 * Returns pointer to entry storing the rule if found 1327 */ 1328 static struct ice_fltr_mgmt_list_entry * 1329 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 1330 { 1331 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 1332 struct ice_switch_info *sw = hw->switch_info; 1333 struct list_head *list_head; 1334 1335 list_head = &sw->recp_list[recp_id].filt_rules; 1336 list_for_each_entry(list_itr, list_head, list_entry) { 1337 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 1338 sizeof(f_info->l_data)) && 1339 f_info->flag == list_itr->fltr_info.flag) { 1340 ret = list_itr; 1341 break; 1342 } 1343 } 1344 return ret; 1345 } 1346 1347 /** 1348 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 1349 * @hw: pointer to the hardware structure 1350 * @recp_id: lookup type for which VSI lists needs to be searched 1351 * @vsi_handle: VSI handle to be found in VSI list 1352 * @vsi_list_id: VSI list ID found containing vsi_handle 1353 * 1354 * Helper function to search a VSI list with single entry containing given VSI 1355 * handle element. This can be extended further to search VSI list with more 1356 * than 1 vsi_count. Returns pointer to VSI list entry if found. 1357 */ 1358 static struct ice_vsi_list_map_info * 1359 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 1360 u16 *vsi_list_id) 1361 { 1362 struct ice_vsi_list_map_info *map_info = NULL; 1363 struct ice_switch_info *sw = hw->switch_info; 1364 struct ice_fltr_mgmt_list_entry *list_itr; 1365 struct list_head *list_head; 1366 1367 list_head = &sw->recp_list[recp_id].filt_rules; 1368 list_for_each_entry(list_itr, list_head, list_entry) { 1369 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) { 1370 map_info = list_itr->vsi_list_info; 1371 if (test_bit(vsi_handle, map_info->vsi_map)) { 1372 *vsi_list_id = map_info->vsi_list_id; 1373 return map_info; 1374 } 1375 } 1376 } 1377 return NULL; 1378 } 1379 1380 /** 1381 * ice_add_rule_internal - add rule for a given lookup type 1382 * @hw: pointer to the hardware structure 1383 * @recp_id: lookup type (recipe ID) for which rule has to be added 1384 * @f_entry: structure containing MAC forwarding information 1385 * 1386 * Adds or updates the rule lists for a given recipe 1387 */ 1388 static enum ice_status 1389 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 1390 struct ice_fltr_list_entry *f_entry) 1391 { 1392 struct ice_switch_info *sw = hw->switch_info; 1393 struct ice_fltr_info *new_fltr, *cur_fltr; 1394 struct ice_fltr_mgmt_list_entry *m_entry; 1395 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1396 enum ice_status status = 0; 1397 1398 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1399 return ICE_ERR_PARAM; 1400 f_entry->fltr_info.fwd_id.hw_vsi_id = 1401 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1402 1403 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1404 1405 mutex_lock(rule_lock); 1406 new_fltr = &f_entry->fltr_info; 1407 if (new_fltr->flag & ICE_FLTR_RX) 1408 new_fltr->src = hw->port_info->lport; 1409 else if (new_fltr->flag & ICE_FLTR_TX) 1410 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 1411 1412 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 1413 if (!m_entry) { 1414 mutex_unlock(rule_lock); 1415 return ice_create_pkt_fwd_rule(hw, f_entry); 1416 } 1417 1418 cur_fltr = &m_entry->fltr_info; 1419 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 1420 mutex_unlock(rule_lock); 1421 1422 return status; 1423 } 1424 1425 /** 1426 * ice_remove_vsi_list_rule 1427 * @hw: pointer to the hardware structure 1428 * @vsi_list_id: VSI list ID generated as part of allocate resource 1429 * @lkup_type: switch rule filter lookup type 1430 * 1431 * The VSI list should be emptied before this function is called to remove the 1432 * VSI list. 1433 */ 1434 static enum ice_status 1435 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 1436 enum ice_sw_lkup_type lkup_type) 1437 { 1438 struct ice_aqc_sw_rules_elem *s_rule; 1439 enum ice_status status; 1440 u16 s_rule_size; 1441 1442 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0); 1443 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 1444 if (!s_rule) 1445 return ICE_ERR_NO_MEMORY; 1446 1447 s_rule->type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 1448 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 1449 1450 /* Free the vsi_list resource that we allocated. It is assumed that the 1451 * list is empty at this point. 1452 */ 1453 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 1454 ice_aqc_opc_free_res); 1455 1456 devm_kfree(ice_hw_to_dev(hw), s_rule); 1457 return status; 1458 } 1459 1460 /** 1461 * ice_rem_update_vsi_list 1462 * @hw: pointer to the hardware structure 1463 * @vsi_handle: VSI handle of the VSI to remove 1464 * @fm_list: filter management entry for which the VSI list management needs to 1465 * be done 1466 */ 1467 static enum ice_status 1468 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 1469 struct ice_fltr_mgmt_list_entry *fm_list) 1470 { 1471 enum ice_sw_lkup_type lkup_type; 1472 enum ice_status status = 0; 1473 u16 vsi_list_id; 1474 1475 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 1476 fm_list->vsi_count == 0) 1477 return ICE_ERR_PARAM; 1478 1479 /* A rule with the VSI being removed does not exist */ 1480 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 1481 return ICE_ERR_DOES_NOT_EXIST; 1482 1483 lkup_type = fm_list->fltr_info.lkup_type; 1484 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 1485 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 1486 ice_aqc_opc_update_sw_rules, 1487 lkup_type); 1488 if (status) 1489 return status; 1490 1491 fm_list->vsi_count--; 1492 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 1493 1494 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 1495 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 1496 struct ice_vsi_list_map_info *vsi_list_info = 1497 fm_list->vsi_list_info; 1498 u16 rem_vsi_handle; 1499 1500 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 1501 ICE_MAX_VSI); 1502 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 1503 return ICE_ERR_OUT_OF_RANGE; 1504 1505 /* Make sure VSI list is empty before removing it below */ 1506 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 1507 vsi_list_id, true, 1508 ice_aqc_opc_update_sw_rules, 1509 lkup_type); 1510 if (status) 1511 return status; 1512 1513 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 1514 tmp_fltr_info.fwd_id.hw_vsi_id = 1515 ice_get_hw_vsi_num(hw, rem_vsi_handle); 1516 tmp_fltr_info.vsi_handle = rem_vsi_handle; 1517 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 1518 if (status) { 1519 ice_debug(hw, ICE_DBG_SW, 1520 "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 1521 tmp_fltr_info.fwd_id.hw_vsi_id, status); 1522 return status; 1523 } 1524 1525 fm_list->fltr_info = tmp_fltr_info; 1526 } 1527 1528 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 1529 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 1530 struct ice_vsi_list_map_info *vsi_list_info = 1531 fm_list->vsi_list_info; 1532 1533 /* Remove the VSI list since it is no longer used */ 1534 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 1535 if (status) { 1536 ice_debug(hw, ICE_DBG_SW, 1537 "Failed to remove VSI list %d, error %d\n", 1538 vsi_list_id, status); 1539 return status; 1540 } 1541 1542 list_del(&vsi_list_info->list_entry); 1543 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 1544 fm_list->vsi_list_info = NULL; 1545 } 1546 1547 return status; 1548 } 1549 1550 /** 1551 * ice_remove_rule_internal - Remove a filter rule of a given type 1552 * @hw: pointer to the hardware structure 1553 * @recp_id: recipe ID for which the rule needs to removed 1554 * @f_entry: rule entry containing filter information 1555 */ 1556 static enum ice_status 1557 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 1558 struct ice_fltr_list_entry *f_entry) 1559 { 1560 struct ice_switch_info *sw = hw->switch_info; 1561 struct ice_fltr_mgmt_list_entry *list_elem; 1562 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1563 enum ice_status status = 0; 1564 bool remove_rule = false; 1565 u16 vsi_handle; 1566 1567 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1568 return ICE_ERR_PARAM; 1569 f_entry->fltr_info.fwd_id.hw_vsi_id = 1570 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1571 1572 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1573 mutex_lock(rule_lock); 1574 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 1575 if (!list_elem) { 1576 status = ICE_ERR_DOES_NOT_EXIST; 1577 goto exit; 1578 } 1579 1580 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 1581 remove_rule = true; 1582 } else if (!list_elem->vsi_list_info) { 1583 status = ICE_ERR_DOES_NOT_EXIST; 1584 goto exit; 1585 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 1586 /* a ref_cnt > 1 indicates that the vsi_list is being 1587 * shared by multiple rules. Decrement the ref_cnt and 1588 * remove this rule, but do not modify the list, as it 1589 * is in-use by other rules. 1590 */ 1591 list_elem->vsi_list_info->ref_cnt--; 1592 remove_rule = true; 1593 } else { 1594 /* a ref_cnt of 1 indicates the vsi_list is only used 1595 * by one rule. However, the original removal request is only 1596 * for a single VSI. Update the vsi_list first, and only 1597 * remove the rule if there are no further VSIs in this list. 1598 */ 1599 vsi_handle = f_entry->fltr_info.vsi_handle; 1600 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 1601 if (status) 1602 goto exit; 1603 /* if VSI count goes to zero after updating the VSI list */ 1604 if (list_elem->vsi_count == 0) 1605 remove_rule = true; 1606 } 1607 1608 if (remove_rule) { 1609 /* Remove the lookup rule */ 1610 struct ice_aqc_sw_rules_elem *s_rule; 1611 1612 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1613 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1614 GFP_KERNEL); 1615 if (!s_rule) { 1616 status = ICE_ERR_NO_MEMORY; 1617 goto exit; 1618 } 1619 1620 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 1621 ice_aqc_opc_remove_sw_rules); 1622 1623 status = ice_aq_sw_rules(hw, s_rule, 1624 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1, 1625 ice_aqc_opc_remove_sw_rules, NULL); 1626 1627 /* Remove a book keeping from the list */ 1628 devm_kfree(ice_hw_to_dev(hw), s_rule); 1629 1630 if (status) 1631 goto exit; 1632 1633 list_del(&list_elem->list_entry); 1634 devm_kfree(ice_hw_to_dev(hw), list_elem); 1635 } 1636 exit: 1637 mutex_unlock(rule_lock); 1638 return status; 1639 } 1640 1641 /** 1642 * ice_add_mac - Add a MAC address based filter rule 1643 * @hw: pointer to the hardware structure 1644 * @m_list: list of MAC addresses and forwarding information 1645 * 1646 * IMPORTANT: When the ucast_shared flag is set to false and m_list has 1647 * multiple unicast addresses, the function assumes that all the 1648 * addresses are unique in a given add_mac call. It doesn't 1649 * check for duplicates in this case, removing duplicates from a given 1650 * list should be taken care of in the caller of this function. 1651 */ 1652 enum ice_status 1653 ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 1654 { 1655 struct ice_aqc_sw_rules_elem *s_rule, *r_iter; 1656 struct ice_fltr_list_entry *m_list_itr; 1657 struct list_head *rule_head; 1658 u16 elem_sent, total_elem_left; 1659 struct ice_switch_info *sw; 1660 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1661 enum ice_status status = 0; 1662 u16 num_unicast = 0; 1663 u16 s_rule_size; 1664 1665 if (!m_list || !hw) 1666 return ICE_ERR_PARAM; 1667 1668 s_rule = NULL; 1669 sw = hw->switch_info; 1670 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1671 list_for_each_entry(m_list_itr, m_list, list_entry) { 1672 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 1673 u16 vsi_handle; 1674 u16 hw_vsi_id; 1675 1676 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 1677 vsi_handle = m_list_itr->fltr_info.vsi_handle; 1678 if (!ice_is_vsi_valid(hw, vsi_handle)) 1679 return ICE_ERR_PARAM; 1680 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 1681 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 1682 /* update the src in case it is VSI num */ 1683 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 1684 return ICE_ERR_PARAM; 1685 m_list_itr->fltr_info.src = hw_vsi_id; 1686 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 1687 is_zero_ether_addr(add)) 1688 return ICE_ERR_PARAM; 1689 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 1690 /* Don't overwrite the unicast address */ 1691 mutex_lock(rule_lock); 1692 if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, 1693 &m_list_itr->fltr_info)) { 1694 mutex_unlock(rule_lock); 1695 return ICE_ERR_ALREADY_EXISTS; 1696 } 1697 mutex_unlock(rule_lock); 1698 num_unicast++; 1699 } else if (is_multicast_ether_addr(add) || 1700 (is_unicast_ether_addr(add) && hw->ucast_shared)) { 1701 m_list_itr->status = 1702 ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 1703 m_list_itr); 1704 if (m_list_itr->status) 1705 return m_list_itr->status; 1706 } 1707 } 1708 1709 mutex_lock(rule_lock); 1710 /* Exit if no suitable entries were found for adding bulk switch rule */ 1711 if (!num_unicast) { 1712 status = 0; 1713 goto ice_add_mac_exit; 1714 } 1715 1716 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1717 1718 /* Allocate switch rule buffer for the bulk update for unicast */ 1719 s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 1720 s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size, 1721 GFP_KERNEL); 1722 if (!s_rule) { 1723 status = ICE_ERR_NO_MEMORY; 1724 goto ice_add_mac_exit; 1725 } 1726 1727 r_iter = s_rule; 1728 list_for_each_entry(m_list_itr, m_list, list_entry) { 1729 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1730 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1731 1732 if (is_unicast_ether_addr(mac_addr)) { 1733 ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, 1734 ice_aqc_opc_add_sw_rules); 1735 r_iter = (struct ice_aqc_sw_rules_elem *) 1736 ((u8 *)r_iter + s_rule_size); 1737 } 1738 } 1739 1740 /* Call AQ bulk switch rule update for all unicast addresses */ 1741 r_iter = s_rule; 1742 /* Call AQ switch rule in AQ_MAX chunk */ 1743 for (total_elem_left = num_unicast; total_elem_left > 0; 1744 total_elem_left -= elem_sent) { 1745 struct ice_aqc_sw_rules_elem *entry = r_iter; 1746 1747 elem_sent = min(total_elem_left, 1748 (u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size)); 1749 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, 1750 elem_sent, ice_aqc_opc_add_sw_rules, 1751 NULL); 1752 if (status) 1753 goto ice_add_mac_exit; 1754 r_iter = (struct ice_aqc_sw_rules_elem *) 1755 ((u8 *)r_iter + (elem_sent * s_rule_size)); 1756 } 1757 1758 /* Fill up rule ID based on the value returned from FW */ 1759 r_iter = s_rule; 1760 list_for_each_entry(m_list_itr, m_list, list_entry) { 1761 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1762 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1763 struct ice_fltr_mgmt_list_entry *fm_entry; 1764 1765 if (is_unicast_ether_addr(mac_addr)) { 1766 f_info->fltr_rule_id = 1767 le16_to_cpu(r_iter->pdata.lkup_tx_rx.index); 1768 f_info->fltr_act = ICE_FWD_TO_VSI; 1769 /* Create an entry to track this MAC address */ 1770 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), 1771 sizeof(*fm_entry), GFP_KERNEL); 1772 if (!fm_entry) { 1773 status = ICE_ERR_NO_MEMORY; 1774 goto ice_add_mac_exit; 1775 } 1776 fm_entry->fltr_info = *f_info; 1777 fm_entry->vsi_count = 1; 1778 /* The book keeping entries will get removed when 1779 * base driver calls remove filter AQ command 1780 */ 1781 1782 list_add(&fm_entry->list_entry, rule_head); 1783 r_iter = (struct ice_aqc_sw_rules_elem *) 1784 ((u8 *)r_iter + s_rule_size); 1785 } 1786 } 1787 1788 ice_add_mac_exit: 1789 mutex_unlock(rule_lock); 1790 if (s_rule) 1791 devm_kfree(ice_hw_to_dev(hw), s_rule); 1792 return status; 1793 } 1794 1795 /** 1796 * ice_add_vlan_internal - Add one VLAN based filter rule 1797 * @hw: pointer to the hardware structure 1798 * @f_entry: filter entry containing one VLAN information 1799 */ 1800 static enum ice_status 1801 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 1802 { 1803 struct ice_switch_info *sw = hw->switch_info; 1804 struct ice_fltr_mgmt_list_entry *v_list_itr; 1805 struct ice_fltr_info *new_fltr, *cur_fltr; 1806 enum ice_sw_lkup_type lkup_type; 1807 u16 vsi_list_id = 0, vsi_handle; 1808 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1809 enum ice_status status = 0; 1810 1811 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1812 return ICE_ERR_PARAM; 1813 1814 f_entry->fltr_info.fwd_id.hw_vsi_id = 1815 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1816 new_fltr = &f_entry->fltr_info; 1817 1818 /* VLAN ID should only be 12 bits */ 1819 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 1820 return ICE_ERR_PARAM; 1821 1822 if (new_fltr->src_id != ICE_SRC_ID_VSI) 1823 return ICE_ERR_PARAM; 1824 1825 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 1826 lkup_type = new_fltr->lkup_type; 1827 vsi_handle = new_fltr->vsi_handle; 1828 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 1829 mutex_lock(rule_lock); 1830 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 1831 if (!v_list_itr) { 1832 struct ice_vsi_list_map_info *map_info = NULL; 1833 1834 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 1835 /* All VLAN pruning rules use a VSI list. Check if 1836 * there is already a VSI list containing VSI that we 1837 * want to add. If found, use the same vsi_list_id for 1838 * this new VLAN rule or else create a new list. 1839 */ 1840 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 1841 vsi_handle, 1842 &vsi_list_id); 1843 if (!map_info) { 1844 status = ice_create_vsi_list_rule(hw, 1845 &vsi_handle, 1846 1, 1847 &vsi_list_id, 1848 lkup_type); 1849 if (status) 1850 goto exit; 1851 } 1852 /* Convert the action to forwarding to a VSI list. */ 1853 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1854 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 1855 } 1856 1857 status = ice_create_pkt_fwd_rule(hw, f_entry); 1858 if (!status) { 1859 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 1860 new_fltr); 1861 if (!v_list_itr) { 1862 status = ICE_ERR_DOES_NOT_EXIST; 1863 goto exit; 1864 } 1865 /* reuse VSI list for new rule and increment ref_cnt */ 1866 if (map_info) { 1867 v_list_itr->vsi_list_info = map_info; 1868 map_info->ref_cnt++; 1869 } else { 1870 v_list_itr->vsi_list_info = 1871 ice_create_vsi_list_map(hw, &vsi_handle, 1872 1, vsi_list_id); 1873 } 1874 } 1875 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 1876 /* Update existing VSI list to add new VSI ID only if it used 1877 * by one VLAN rule. 1878 */ 1879 cur_fltr = &v_list_itr->fltr_info; 1880 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 1881 new_fltr); 1882 } else { 1883 /* If VLAN rule exists and VSI list being used by this rule is 1884 * referenced by more than 1 VLAN rule. Then create a new VSI 1885 * list appending previous VSI with new VSI and update existing 1886 * VLAN rule to point to new VSI list ID 1887 */ 1888 struct ice_fltr_info tmp_fltr; 1889 u16 vsi_handle_arr[2]; 1890 u16 cur_handle; 1891 1892 /* Current implementation only supports reusing VSI list with 1893 * one VSI count. We should never hit below condition 1894 */ 1895 if (v_list_itr->vsi_count > 1 && 1896 v_list_itr->vsi_list_info->ref_cnt > 1) { 1897 ice_debug(hw, ICE_DBG_SW, 1898 "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 1899 status = ICE_ERR_CFG; 1900 goto exit; 1901 } 1902 1903 cur_handle = 1904 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 1905 ICE_MAX_VSI); 1906 1907 /* A rule already exists with the new VSI being added */ 1908 if (cur_handle == vsi_handle) { 1909 status = ICE_ERR_ALREADY_EXISTS; 1910 goto exit; 1911 } 1912 1913 vsi_handle_arr[0] = cur_handle; 1914 vsi_handle_arr[1] = vsi_handle; 1915 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1916 &vsi_list_id, lkup_type); 1917 if (status) 1918 goto exit; 1919 1920 tmp_fltr = v_list_itr->fltr_info; 1921 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 1922 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1923 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1924 /* Update the previous switch rule to a new VSI list which 1925 * includes current VSI that is requested 1926 */ 1927 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1928 if (status) 1929 goto exit; 1930 1931 /* before overriding VSI list map info. decrement ref_cnt of 1932 * previous VSI list 1933 */ 1934 v_list_itr->vsi_list_info->ref_cnt--; 1935 1936 /* now update to newly created list */ 1937 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 1938 v_list_itr->vsi_list_info = 1939 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1940 vsi_list_id); 1941 v_list_itr->vsi_count++; 1942 } 1943 1944 exit: 1945 mutex_unlock(rule_lock); 1946 return status; 1947 } 1948 1949 /** 1950 * ice_add_vlan - Add VLAN based filter rule 1951 * @hw: pointer to the hardware structure 1952 * @v_list: list of VLAN entries and forwarding information 1953 */ 1954 enum ice_status 1955 ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 1956 { 1957 struct ice_fltr_list_entry *v_list_itr; 1958 1959 if (!v_list || !hw) 1960 return ICE_ERR_PARAM; 1961 1962 list_for_each_entry(v_list_itr, v_list, list_entry) { 1963 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 1964 return ICE_ERR_PARAM; 1965 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 1966 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 1967 if (v_list_itr->status) 1968 return v_list_itr->status; 1969 } 1970 return 0; 1971 } 1972 1973 /** 1974 * ice_add_eth_mac - Add ethertype and MAC based filter rule 1975 * @hw: pointer to the hardware structure 1976 * @em_list: list of ether type MAC filter, MAC is optional 1977 * 1978 * This function requires the caller to populate the entries in 1979 * the filter list with the necessary fields (including flags to 1980 * indicate Tx or Rx rules). 1981 */ 1982 enum ice_status 1983 ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 1984 { 1985 struct ice_fltr_list_entry *em_list_itr; 1986 1987 if (!em_list || !hw) 1988 return ICE_ERR_PARAM; 1989 1990 list_for_each_entry(em_list_itr, em_list, list_entry) { 1991 enum ice_sw_lkup_type l_type = 1992 em_list_itr->fltr_info.lkup_type; 1993 1994 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 1995 l_type != ICE_SW_LKUP_ETHERTYPE) 1996 return ICE_ERR_PARAM; 1997 1998 em_list_itr->status = ice_add_rule_internal(hw, l_type, 1999 em_list_itr); 2000 if (em_list_itr->status) 2001 return em_list_itr->status; 2002 } 2003 return 0; 2004 } 2005 2006 /** 2007 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 2008 * @hw: pointer to the hardware structure 2009 * @em_list: list of ethertype or ethertype MAC entries 2010 */ 2011 enum ice_status 2012 ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 2013 { 2014 struct ice_fltr_list_entry *em_list_itr, *tmp; 2015 2016 if (!em_list || !hw) 2017 return ICE_ERR_PARAM; 2018 2019 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 2020 enum ice_sw_lkup_type l_type = 2021 em_list_itr->fltr_info.lkup_type; 2022 2023 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 2024 l_type != ICE_SW_LKUP_ETHERTYPE) 2025 return ICE_ERR_PARAM; 2026 2027 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 2028 em_list_itr); 2029 if (em_list_itr->status) 2030 return em_list_itr->status; 2031 } 2032 return 0; 2033 } 2034 2035 /** 2036 * ice_rem_sw_rule_info 2037 * @hw: pointer to the hardware structure 2038 * @rule_head: pointer to the switch list structure that we want to delete 2039 */ 2040 static void 2041 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 2042 { 2043 if (!list_empty(rule_head)) { 2044 struct ice_fltr_mgmt_list_entry *entry; 2045 struct ice_fltr_mgmt_list_entry *tmp; 2046 2047 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 2048 list_del(&entry->list_entry); 2049 devm_kfree(ice_hw_to_dev(hw), entry); 2050 } 2051 } 2052 } 2053 2054 /** 2055 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 2056 * @hw: pointer to the hardware structure 2057 * @vsi_handle: VSI handle to set as default 2058 * @set: true to add the above mentioned switch rule, false to remove it 2059 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 2060 * 2061 * add filter rule to set/unset given VSI as default VSI for the switch 2062 * (represented by swid) 2063 */ 2064 enum ice_status 2065 ice_cfg_dflt_vsi(struct ice_hw *hw, u16 vsi_handle, bool set, u8 direction) 2066 { 2067 struct ice_aqc_sw_rules_elem *s_rule; 2068 struct ice_fltr_info f_info; 2069 enum ice_adminq_opc opcode; 2070 enum ice_status status; 2071 u16 s_rule_size; 2072 u16 hw_vsi_id; 2073 2074 if (!ice_is_vsi_valid(hw, vsi_handle)) 2075 return ICE_ERR_PARAM; 2076 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2077 2078 s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE : 2079 ICE_SW_RULE_RX_TX_NO_HDR_SIZE; 2080 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2081 if (!s_rule) 2082 return ICE_ERR_NO_MEMORY; 2083 2084 memset(&f_info, 0, sizeof(f_info)); 2085 2086 f_info.lkup_type = ICE_SW_LKUP_DFLT; 2087 f_info.flag = direction; 2088 f_info.fltr_act = ICE_FWD_TO_VSI; 2089 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 2090 2091 if (f_info.flag & ICE_FLTR_RX) { 2092 f_info.src = hw->port_info->lport; 2093 f_info.src_id = ICE_SRC_ID_LPORT; 2094 if (!set) 2095 f_info.fltr_rule_id = 2096 hw->port_info->dflt_rx_vsi_rule_id; 2097 } else if (f_info.flag & ICE_FLTR_TX) { 2098 f_info.src_id = ICE_SRC_ID_VSI; 2099 f_info.src = hw_vsi_id; 2100 if (!set) 2101 f_info.fltr_rule_id = 2102 hw->port_info->dflt_tx_vsi_rule_id; 2103 } 2104 2105 if (set) 2106 opcode = ice_aqc_opc_add_sw_rules; 2107 else 2108 opcode = ice_aqc_opc_remove_sw_rules; 2109 2110 ice_fill_sw_rule(hw, &f_info, s_rule, opcode); 2111 2112 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL); 2113 if (status || !(f_info.flag & ICE_FLTR_TX_RX)) 2114 goto out; 2115 if (set) { 2116 u16 index = le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 2117 2118 if (f_info.flag & ICE_FLTR_TX) { 2119 hw->port_info->dflt_tx_vsi_num = hw_vsi_id; 2120 hw->port_info->dflt_tx_vsi_rule_id = index; 2121 } else if (f_info.flag & ICE_FLTR_RX) { 2122 hw->port_info->dflt_rx_vsi_num = hw_vsi_id; 2123 hw->port_info->dflt_rx_vsi_rule_id = index; 2124 } 2125 } else { 2126 if (f_info.flag & ICE_FLTR_TX) { 2127 hw->port_info->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 2128 hw->port_info->dflt_tx_vsi_rule_id = ICE_INVAL_ACT; 2129 } else if (f_info.flag & ICE_FLTR_RX) { 2130 hw->port_info->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 2131 hw->port_info->dflt_rx_vsi_rule_id = ICE_INVAL_ACT; 2132 } 2133 } 2134 2135 out: 2136 devm_kfree(ice_hw_to_dev(hw), s_rule); 2137 return status; 2138 } 2139 2140 /** 2141 * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry 2142 * @hw: pointer to the hardware structure 2143 * @recp_id: lookup type for which the specified rule needs to be searched 2144 * @f_info: rule information 2145 * 2146 * Helper function to search for a unicast rule entry - this is to be used 2147 * to remove unicast MAC filter that is not shared with other VSIs on the 2148 * PF switch. 2149 * 2150 * Returns pointer to entry storing the rule if found 2151 */ 2152 static struct ice_fltr_mgmt_list_entry * 2153 ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id, 2154 struct ice_fltr_info *f_info) 2155 { 2156 struct ice_switch_info *sw = hw->switch_info; 2157 struct ice_fltr_mgmt_list_entry *list_itr; 2158 struct list_head *list_head; 2159 2160 list_head = &sw->recp_list[recp_id].filt_rules; 2161 list_for_each_entry(list_itr, list_head, list_entry) { 2162 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 2163 sizeof(f_info->l_data)) && 2164 f_info->fwd_id.hw_vsi_id == 2165 list_itr->fltr_info.fwd_id.hw_vsi_id && 2166 f_info->flag == list_itr->fltr_info.flag) 2167 return list_itr; 2168 } 2169 return NULL; 2170 } 2171 2172 /** 2173 * ice_remove_mac - remove a MAC address based filter rule 2174 * @hw: pointer to the hardware structure 2175 * @m_list: list of MAC addresses and forwarding information 2176 * 2177 * This function removes either a MAC filter rule or a specific VSI from a 2178 * VSI list for a multicast MAC address. 2179 * 2180 * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by 2181 * ice_add_mac. Caller should be aware that this call will only work if all 2182 * the entries passed into m_list were added previously. It will not attempt to 2183 * do a partial remove of entries that were found. 2184 */ 2185 enum ice_status 2186 ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 2187 { 2188 struct ice_fltr_list_entry *list_itr, *tmp; 2189 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2190 2191 if (!m_list) 2192 return ICE_ERR_PARAM; 2193 2194 rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 2195 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 2196 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 2197 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0]; 2198 u16 vsi_handle; 2199 2200 if (l_type != ICE_SW_LKUP_MAC) 2201 return ICE_ERR_PARAM; 2202 2203 vsi_handle = list_itr->fltr_info.vsi_handle; 2204 if (!ice_is_vsi_valid(hw, vsi_handle)) 2205 return ICE_ERR_PARAM; 2206 2207 list_itr->fltr_info.fwd_id.hw_vsi_id = 2208 ice_get_hw_vsi_num(hw, vsi_handle); 2209 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 2210 /* Don't remove the unicast address that belongs to 2211 * another VSI on the switch, since it is not being 2212 * shared... 2213 */ 2214 mutex_lock(rule_lock); 2215 if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC, 2216 &list_itr->fltr_info)) { 2217 mutex_unlock(rule_lock); 2218 return ICE_ERR_DOES_NOT_EXIST; 2219 } 2220 mutex_unlock(rule_lock); 2221 } 2222 list_itr->status = ice_remove_rule_internal(hw, 2223 ICE_SW_LKUP_MAC, 2224 list_itr); 2225 if (list_itr->status) 2226 return list_itr->status; 2227 } 2228 return 0; 2229 } 2230 2231 /** 2232 * ice_remove_vlan - Remove VLAN based filter rule 2233 * @hw: pointer to the hardware structure 2234 * @v_list: list of VLAN entries and forwarding information 2235 */ 2236 enum ice_status 2237 ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 2238 { 2239 struct ice_fltr_list_entry *v_list_itr, *tmp; 2240 2241 if (!v_list || !hw) 2242 return ICE_ERR_PARAM; 2243 2244 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2245 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 2246 2247 if (l_type != ICE_SW_LKUP_VLAN) 2248 return ICE_ERR_PARAM; 2249 v_list_itr->status = ice_remove_rule_internal(hw, 2250 ICE_SW_LKUP_VLAN, 2251 v_list_itr); 2252 if (v_list_itr->status) 2253 return v_list_itr->status; 2254 } 2255 return 0; 2256 } 2257 2258 /** 2259 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 2260 * @fm_entry: filter entry to inspect 2261 * @vsi_handle: VSI handle to compare with filter info 2262 */ 2263 static bool 2264 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 2265 { 2266 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 2267 fm_entry->fltr_info.vsi_handle == vsi_handle) || 2268 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 2269 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 2270 } 2271 2272 /** 2273 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 2274 * @hw: pointer to the hardware structure 2275 * @vsi_handle: VSI handle to remove filters from 2276 * @vsi_list_head: pointer to the list to add entry to 2277 * @fi: pointer to fltr_info of filter entry to copy & add 2278 * 2279 * Helper function, used when creating a list of filters to remove from 2280 * a specific VSI. The entry added to vsi_list_head is a COPY of the 2281 * original filter entry, with the exception of fltr_info.fltr_act and 2282 * fltr_info.fwd_id fields. These are set such that later logic can 2283 * extract which VSI to remove the fltr from, and pass on that information. 2284 */ 2285 static enum ice_status 2286 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2287 struct list_head *vsi_list_head, 2288 struct ice_fltr_info *fi) 2289 { 2290 struct ice_fltr_list_entry *tmp; 2291 2292 /* this memory is freed up in the caller function 2293 * once filters for this VSI are removed 2294 */ 2295 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 2296 if (!tmp) 2297 return ICE_ERR_NO_MEMORY; 2298 2299 tmp->fltr_info = *fi; 2300 2301 /* Overwrite these fields to indicate which VSI to remove filter from, 2302 * so find and remove logic can extract the information from the 2303 * list entries. Note that original entries will still have proper 2304 * values. 2305 */ 2306 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 2307 tmp->fltr_info.vsi_handle = vsi_handle; 2308 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2309 2310 list_add(&tmp->list_entry, vsi_list_head); 2311 2312 return 0; 2313 } 2314 2315 /** 2316 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 2317 * @hw: pointer to the hardware structure 2318 * @vsi_handle: VSI handle to remove filters from 2319 * @lkup_list_head: pointer to the list that has certain lookup type filters 2320 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 2321 * 2322 * Locates all filters in lkup_list_head that are used by the given VSI, 2323 * and adds COPIES of those entries to vsi_list_head (intended to be used 2324 * to remove the listed filters). 2325 * Note that this means all entries in vsi_list_head must be explicitly 2326 * deallocated by the caller when done with list. 2327 */ 2328 static enum ice_status 2329 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2330 struct list_head *lkup_list_head, 2331 struct list_head *vsi_list_head) 2332 { 2333 struct ice_fltr_mgmt_list_entry *fm_entry; 2334 enum ice_status status = 0; 2335 2336 /* check to make sure VSI ID is valid and within boundary */ 2337 if (!ice_is_vsi_valid(hw, vsi_handle)) 2338 return ICE_ERR_PARAM; 2339 2340 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 2341 struct ice_fltr_info *fi; 2342 2343 fi = &fm_entry->fltr_info; 2344 if (!fi || !ice_vsi_uses_fltr(fm_entry, vsi_handle)) 2345 continue; 2346 2347 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2348 vsi_list_head, fi); 2349 if (status) 2350 return status; 2351 } 2352 return status; 2353 } 2354 2355 /** 2356 * ice_determine_promisc_mask 2357 * @fi: filter info to parse 2358 * 2359 * Helper function to determine which ICE_PROMISC_ mask corresponds 2360 * to given filter into. 2361 */ 2362 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 2363 { 2364 u16 vid = fi->l_data.mac_vlan.vlan_id; 2365 u8 *macaddr = fi->l_data.mac.mac_addr; 2366 bool is_tx_fltr = false; 2367 u8 promisc_mask = 0; 2368 2369 if (fi->flag == ICE_FLTR_TX) 2370 is_tx_fltr = true; 2371 2372 if (is_broadcast_ether_addr(macaddr)) 2373 promisc_mask |= is_tx_fltr ? 2374 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 2375 else if (is_multicast_ether_addr(macaddr)) 2376 promisc_mask |= is_tx_fltr ? 2377 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 2378 else if (is_unicast_ether_addr(macaddr)) 2379 promisc_mask |= is_tx_fltr ? 2380 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 2381 if (vid) 2382 promisc_mask |= is_tx_fltr ? 2383 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 2384 2385 return promisc_mask; 2386 } 2387 2388 /** 2389 * ice_remove_promisc - Remove promisc based filter rules 2390 * @hw: pointer to the hardware structure 2391 * @recp_id: recipe ID for which the rule needs to removed 2392 * @v_list: list of promisc entries 2393 */ 2394 static enum ice_status 2395 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, 2396 struct list_head *v_list) 2397 { 2398 struct ice_fltr_list_entry *v_list_itr, *tmp; 2399 2400 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2401 v_list_itr->status = 2402 ice_remove_rule_internal(hw, recp_id, v_list_itr); 2403 if (v_list_itr->status) 2404 return v_list_itr->status; 2405 } 2406 return 0; 2407 } 2408 2409 /** 2410 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 2411 * @hw: pointer to the hardware structure 2412 * @vsi_handle: VSI handle to clear mode 2413 * @promisc_mask: mask of promiscuous config bits to clear 2414 * @vid: VLAN ID to clear VLAN promiscuous 2415 */ 2416 enum ice_status 2417 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2418 u16 vid) 2419 { 2420 struct ice_switch_info *sw = hw->switch_info; 2421 struct ice_fltr_list_entry *fm_entry, *tmp; 2422 struct list_head remove_list_head; 2423 struct ice_fltr_mgmt_list_entry *itr; 2424 struct list_head *rule_head; 2425 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2426 enum ice_status status = 0; 2427 u8 recipe_id; 2428 2429 if (!ice_is_vsi_valid(hw, vsi_handle)) 2430 return ICE_ERR_PARAM; 2431 2432 if (vid) 2433 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2434 else 2435 recipe_id = ICE_SW_LKUP_PROMISC; 2436 2437 rule_head = &sw->recp_list[recipe_id].filt_rules; 2438 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 2439 2440 INIT_LIST_HEAD(&remove_list_head); 2441 2442 mutex_lock(rule_lock); 2443 list_for_each_entry(itr, rule_head, list_entry) { 2444 u8 fltr_promisc_mask = 0; 2445 2446 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 2447 continue; 2448 2449 fltr_promisc_mask |= 2450 ice_determine_promisc_mask(&itr->fltr_info); 2451 2452 /* Skip if filter is not completely specified by given mask */ 2453 if (fltr_promisc_mask & ~promisc_mask) 2454 continue; 2455 2456 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2457 &remove_list_head, 2458 &itr->fltr_info); 2459 if (status) { 2460 mutex_unlock(rule_lock); 2461 goto free_fltr_list; 2462 } 2463 } 2464 mutex_unlock(rule_lock); 2465 2466 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 2467 2468 free_fltr_list: 2469 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2470 list_del(&fm_entry->list_entry); 2471 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2472 } 2473 2474 return status; 2475 } 2476 2477 /** 2478 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 2479 * @hw: pointer to the hardware structure 2480 * @vsi_handle: VSI handle to configure 2481 * @promisc_mask: mask of promiscuous config bits 2482 * @vid: VLAN ID to set VLAN promiscuous 2483 */ 2484 enum ice_status 2485 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 2486 { 2487 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 2488 struct ice_fltr_list_entry f_list_entry; 2489 struct ice_fltr_info new_fltr; 2490 enum ice_status status = 0; 2491 bool is_tx_fltr; 2492 u16 hw_vsi_id; 2493 int pkt_type; 2494 u8 recipe_id; 2495 2496 if (!ice_is_vsi_valid(hw, vsi_handle)) 2497 return ICE_ERR_PARAM; 2498 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2499 2500 memset(&new_fltr, 0, sizeof(new_fltr)); 2501 2502 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 2503 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 2504 new_fltr.l_data.mac_vlan.vlan_id = vid; 2505 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2506 } else { 2507 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 2508 recipe_id = ICE_SW_LKUP_PROMISC; 2509 } 2510 2511 /* Separate filters must be set for each direction/packet type 2512 * combination, so we will loop over the mask value, store the 2513 * individual type, and clear it out in the input mask as it 2514 * is found. 2515 */ 2516 while (promisc_mask) { 2517 u8 *mac_addr; 2518 2519 pkt_type = 0; 2520 is_tx_fltr = false; 2521 2522 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 2523 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 2524 pkt_type = UCAST_FLTR; 2525 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 2526 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 2527 pkt_type = UCAST_FLTR; 2528 is_tx_fltr = true; 2529 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 2530 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 2531 pkt_type = MCAST_FLTR; 2532 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 2533 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 2534 pkt_type = MCAST_FLTR; 2535 is_tx_fltr = true; 2536 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 2537 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 2538 pkt_type = BCAST_FLTR; 2539 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 2540 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 2541 pkt_type = BCAST_FLTR; 2542 is_tx_fltr = true; 2543 } 2544 2545 /* Check for VLAN promiscuous flag */ 2546 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 2547 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 2548 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 2549 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 2550 is_tx_fltr = true; 2551 } 2552 2553 /* Set filter DA based on packet type */ 2554 mac_addr = new_fltr.l_data.mac.mac_addr; 2555 if (pkt_type == BCAST_FLTR) { 2556 eth_broadcast_addr(mac_addr); 2557 } else if (pkt_type == MCAST_FLTR || 2558 pkt_type == UCAST_FLTR) { 2559 /* Use the dummy ether header DA */ 2560 ether_addr_copy(mac_addr, dummy_eth_header); 2561 if (pkt_type == MCAST_FLTR) 2562 mac_addr[0] |= 0x1; /* Set multicast bit */ 2563 } 2564 2565 /* Need to reset this to zero for all iterations */ 2566 new_fltr.flag = 0; 2567 if (is_tx_fltr) { 2568 new_fltr.flag |= ICE_FLTR_TX; 2569 new_fltr.src = hw_vsi_id; 2570 } else { 2571 new_fltr.flag |= ICE_FLTR_RX; 2572 new_fltr.src = hw->port_info->lport; 2573 } 2574 2575 new_fltr.fltr_act = ICE_FWD_TO_VSI; 2576 new_fltr.vsi_handle = vsi_handle; 2577 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 2578 f_list_entry.fltr_info = new_fltr; 2579 2580 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 2581 if (status) 2582 goto set_promisc_exit; 2583 } 2584 2585 set_promisc_exit: 2586 return status; 2587 } 2588 2589 /** 2590 * ice_set_vlan_vsi_promisc 2591 * @hw: pointer to the hardware structure 2592 * @vsi_handle: VSI handle to configure 2593 * @promisc_mask: mask of promiscuous config bits 2594 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 2595 * 2596 * Configure VSI with all associated VLANs to given promiscuous mode(s) 2597 */ 2598 enum ice_status 2599 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2600 bool rm_vlan_promisc) 2601 { 2602 struct ice_switch_info *sw = hw->switch_info; 2603 struct ice_fltr_list_entry *list_itr, *tmp; 2604 struct list_head vsi_list_head; 2605 struct list_head *vlan_head; 2606 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 2607 enum ice_status status; 2608 u16 vlan_id; 2609 2610 INIT_LIST_HEAD(&vsi_list_head); 2611 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 2612 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 2613 mutex_lock(vlan_lock); 2614 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 2615 &vsi_list_head); 2616 mutex_unlock(vlan_lock); 2617 if (status) 2618 goto free_fltr_list; 2619 2620 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 2621 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 2622 if (rm_vlan_promisc) 2623 status = ice_clear_vsi_promisc(hw, vsi_handle, 2624 promisc_mask, vlan_id); 2625 else 2626 status = ice_set_vsi_promisc(hw, vsi_handle, 2627 promisc_mask, vlan_id); 2628 if (status) 2629 break; 2630 } 2631 2632 free_fltr_list: 2633 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 2634 list_del(&list_itr->list_entry); 2635 devm_kfree(ice_hw_to_dev(hw), list_itr); 2636 } 2637 return status; 2638 } 2639 2640 /** 2641 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 2642 * @hw: pointer to the hardware structure 2643 * @vsi_handle: VSI handle to remove filters from 2644 * @lkup: switch rule filter lookup type 2645 */ 2646 static void 2647 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 2648 enum ice_sw_lkup_type lkup) 2649 { 2650 struct ice_switch_info *sw = hw->switch_info; 2651 struct ice_fltr_list_entry *fm_entry; 2652 struct list_head remove_list_head; 2653 struct list_head *rule_head; 2654 struct ice_fltr_list_entry *tmp; 2655 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2656 enum ice_status status; 2657 2658 INIT_LIST_HEAD(&remove_list_head); 2659 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 2660 rule_head = &sw->recp_list[lkup].filt_rules; 2661 mutex_lock(rule_lock); 2662 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 2663 &remove_list_head); 2664 mutex_unlock(rule_lock); 2665 if (status) 2666 return; 2667 2668 switch (lkup) { 2669 case ICE_SW_LKUP_MAC: 2670 ice_remove_mac(hw, &remove_list_head); 2671 break; 2672 case ICE_SW_LKUP_VLAN: 2673 ice_remove_vlan(hw, &remove_list_head); 2674 break; 2675 case ICE_SW_LKUP_PROMISC: 2676 case ICE_SW_LKUP_PROMISC_VLAN: 2677 ice_remove_promisc(hw, lkup, &remove_list_head); 2678 break; 2679 case ICE_SW_LKUP_MAC_VLAN: 2680 case ICE_SW_LKUP_ETHERTYPE: 2681 case ICE_SW_LKUP_ETHERTYPE_MAC: 2682 case ICE_SW_LKUP_DFLT: 2683 case ICE_SW_LKUP_LAST: 2684 default: 2685 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 2686 break; 2687 } 2688 2689 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2690 list_del(&fm_entry->list_entry); 2691 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2692 } 2693 } 2694 2695 /** 2696 * ice_remove_vsi_fltr - Remove all filters for a VSI 2697 * @hw: pointer to the hardware structure 2698 * @vsi_handle: VSI handle to remove filters from 2699 */ 2700 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 2701 { 2702 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 2703 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 2704 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 2705 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 2706 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 2707 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 2708 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 2709 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 2710 } 2711 2712 /** 2713 * ice_replay_vsi_fltr - Replay filters for requested VSI 2714 * @hw: pointer to the hardware structure 2715 * @vsi_handle: driver VSI handle 2716 * @recp_id: Recipe ID for which rules need to be replayed 2717 * @list_head: list for which filters need to be replayed 2718 * 2719 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 2720 * It is required to pass valid VSI handle. 2721 */ 2722 static enum ice_status 2723 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 2724 struct list_head *list_head) 2725 { 2726 struct ice_fltr_mgmt_list_entry *itr; 2727 enum ice_status status = 0; 2728 u16 hw_vsi_id; 2729 2730 if (list_empty(list_head)) 2731 return status; 2732 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2733 2734 list_for_each_entry(itr, list_head, list_entry) { 2735 struct ice_fltr_list_entry f_entry; 2736 2737 f_entry.fltr_info = itr->fltr_info; 2738 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 2739 itr->fltr_info.vsi_handle == vsi_handle) { 2740 /* update the src in case it is VSI num */ 2741 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2742 f_entry.fltr_info.src = hw_vsi_id; 2743 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2744 if (status) 2745 goto end; 2746 continue; 2747 } 2748 if (!itr->vsi_list_info || 2749 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 2750 continue; 2751 /* Clearing it so that the logic can add it back */ 2752 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 2753 f_entry.fltr_info.vsi_handle = vsi_handle; 2754 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 2755 /* update the src in case it is VSI num */ 2756 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2757 f_entry.fltr_info.src = hw_vsi_id; 2758 if (recp_id == ICE_SW_LKUP_VLAN) 2759 status = ice_add_vlan_internal(hw, &f_entry); 2760 else 2761 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2762 if (status) 2763 goto end; 2764 } 2765 end: 2766 return status; 2767 } 2768 2769 /** 2770 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 2771 * @hw: pointer to the hardware structure 2772 * @vsi_handle: driver VSI handle 2773 * 2774 * Replays filters for requested VSI via vsi_handle. 2775 */ 2776 enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 2777 { 2778 struct ice_switch_info *sw = hw->switch_info; 2779 enum ice_status status = 0; 2780 u8 i; 2781 2782 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2783 struct list_head *head; 2784 2785 head = &sw->recp_list[i].filt_replay_rules; 2786 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 2787 if (status) 2788 return status; 2789 } 2790 return status; 2791 } 2792 2793 /** 2794 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 2795 * @hw: pointer to the HW struct 2796 * 2797 * Deletes the filter replay rules. 2798 */ 2799 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 2800 { 2801 struct ice_switch_info *sw = hw->switch_info; 2802 u8 i; 2803 2804 if (!sw) 2805 return; 2806 2807 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2808 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 2809 struct list_head *l_head; 2810 2811 l_head = &sw->recp_list[i].filt_replay_rules; 2812 ice_rem_sw_rule_info(hw, l_head); 2813 } 2814 } 2815 } 2816