1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 
7 #define ICE_ETH_DA_OFFSET		0
8 #define ICE_ETH_ETHTYPE_OFFSET		12
9 #define ICE_ETH_VLAN_TCI_OFFSET		14
10 #define ICE_MAX_VLAN_ID			0xFFF
11 #define ICE_IPV6_ETHER_ID		0x86DD
12 
13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14  * struct to configure any switch filter rules.
15  * {DA (6 bytes), SA(6 bytes),
16  * Ether type (2 bytes for header without VLAN tag) OR
17  * VLAN tag (4 bytes for header with VLAN tag) }
18  *
19  * Word on Hardcoded values
20  * byte 0 = 0x2: to identify it as locally administered DA MAC
21  * byte 6 = 0x2: to identify it as locally administered SA MAC
22  * byte 12 = 0x81 & byte 13 = 0x00:
23  *	In case of VLAN filter first two bytes defines ether type (0x8100)
24  *	and remaining two bytes are placeholder for programming a given VLAN ID
25  *	In case of Ether type filter it is treated as header without VLAN tag
26  *	and byte 12 and 13 is used to program a given Ether type instead
27  */
28 #define DUMMY_ETH_HDR_LEN		16
29 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
30 							0x2, 0, 0, 0, 0, 0,
31 							0x81, 0, 0, 0};
32 
33 enum {
34 	ICE_PKT_OUTER_IPV6	= BIT(0),
35 	ICE_PKT_TUN_GTPC	= BIT(1),
36 	ICE_PKT_TUN_GTPU	= BIT(2),
37 	ICE_PKT_TUN_NVGRE	= BIT(3),
38 	ICE_PKT_TUN_UDP		= BIT(4),
39 	ICE_PKT_INNER_IPV6	= BIT(5),
40 	ICE_PKT_INNER_TCP	= BIT(6),
41 	ICE_PKT_INNER_UDP	= BIT(7),
42 	ICE_PKT_GTP_NOPAY	= BIT(8),
43 	ICE_PKT_KMALLOC		= BIT(9),
44 	ICE_PKT_PPPOE		= BIT(10),
45 };
46 
47 struct ice_dummy_pkt_offsets {
48 	enum ice_protocol_type type;
49 	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50 };
51 
52 struct ice_dummy_pkt_profile {
53 	const struct ice_dummy_pkt_offsets *offsets;
54 	const u8 *pkt;
55 	u32 match;
56 	u16 pkt_len;
57 	u16 offsets_len;
58 };
59 
60 #define ICE_DECLARE_PKT_OFFSETS(type)					\
61 	static const struct ice_dummy_pkt_offsets			\
62 	ice_dummy_##type##_packet_offsets[]
63 
64 #define ICE_DECLARE_PKT_TEMPLATE(type)					\
65 	static const u8 ice_dummy_##type##_packet[]
66 
67 #define ICE_PKT_PROFILE(type, m) {					\
68 	.match		= (m),						\
69 	.pkt		= ice_dummy_##type##_packet,			\
70 	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
71 	.offsets	= ice_dummy_##type##_packet_offsets,		\
72 	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
73 }
74 
75 ICE_DECLARE_PKT_OFFSETS(vlan) = {
76 	{ ICE_VLAN_OFOS,        12 },
77 };
78 
79 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81 };
82 
83 ICE_DECLARE_PKT_OFFSETS(qinq) = {
84 	{ ICE_VLAN_EX,          12 },
85 	{ ICE_VLAN_IN,          16 },
86 };
87 
88 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89 	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91 };
92 
93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94 	{ ICE_MAC_OFOS,		0 },
95 	{ ICE_ETYPE_OL,		12 },
96 	{ ICE_IPV4_OFOS,	14 },
97 	{ ICE_NVGRE,		34 },
98 	{ ICE_MAC_IL,		42 },
99 	{ ICE_ETYPE_IL,		54 },
100 	{ ICE_IPV4_IL,		56 },
101 	{ ICE_TCP_IL,		76 },
102 	{ ICE_PROTOCOL_LAST,	0 },
103 };
104 
105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
107 	0x00, 0x00, 0x00, 0x00,
108 	0x00, 0x00, 0x00, 0x00,
109 
110 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
111 
112 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
113 	0x00, 0x00, 0x00, 0x00,
114 	0x00, 0x2F, 0x00, 0x00,
115 	0x00, 0x00, 0x00, 0x00,
116 	0x00, 0x00, 0x00, 0x00,
117 
118 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
119 	0x00, 0x00, 0x00, 0x00,
120 
121 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
122 	0x00, 0x00, 0x00, 0x00,
123 	0x00, 0x00, 0x00, 0x00,
124 
125 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
126 
127 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
128 	0x00, 0x00, 0x00, 0x00,
129 	0x00, 0x06, 0x00, 0x00,
130 	0x00, 0x00, 0x00, 0x00,
131 	0x00, 0x00, 0x00, 0x00,
132 
133 	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
134 	0x00, 0x00, 0x00, 0x00,
135 	0x00, 0x00, 0x00, 0x00,
136 	0x50, 0x02, 0x20, 0x00,
137 	0x00, 0x00, 0x00, 0x00
138 };
139 
140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141 	{ ICE_MAC_OFOS,		0 },
142 	{ ICE_ETYPE_OL,		12 },
143 	{ ICE_IPV4_OFOS,	14 },
144 	{ ICE_NVGRE,		34 },
145 	{ ICE_MAC_IL,		42 },
146 	{ ICE_ETYPE_IL,		54 },
147 	{ ICE_IPV4_IL,		56 },
148 	{ ICE_UDP_ILOS,		76 },
149 	{ ICE_PROTOCOL_LAST,	0 },
150 };
151 
152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
154 	0x00, 0x00, 0x00, 0x00,
155 	0x00, 0x00, 0x00, 0x00,
156 
157 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
158 
159 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
160 	0x00, 0x00, 0x00, 0x00,
161 	0x00, 0x2F, 0x00, 0x00,
162 	0x00, 0x00, 0x00, 0x00,
163 	0x00, 0x00, 0x00, 0x00,
164 
165 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
166 	0x00, 0x00, 0x00, 0x00,
167 
168 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
169 	0x00, 0x00, 0x00, 0x00,
170 	0x00, 0x00, 0x00, 0x00,
171 
172 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
173 
174 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
175 	0x00, 0x00, 0x00, 0x00,
176 	0x00, 0x11, 0x00, 0x00,
177 	0x00, 0x00, 0x00, 0x00,
178 	0x00, 0x00, 0x00, 0x00,
179 
180 	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
181 	0x00, 0x08, 0x00, 0x00,
182 };
183 
184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185 	{ ICE_MAC_OFOS,		0 },
186 	{ ICE_ETYPE_OL,		12 },
187 	{ ICE_IPV4_OFOS,	14 },
188 	{ ICE_UDP_OF,		34 },
189 	{ ICE_VXLAN,		42 },
190 	{ ICE_GENEVE,		42 },
191 	{ ICE_VXLAN_GPE,	42 },
192 	{ ICE_MAC_IL,		50 },
193 	{ ICE_ETYPE_IL,		62 },
194 	{ ICE_IPV4_IL,		64 },
195 	{ ICE_TCP_IL,		84 },
196 	{ ICE_PROTOCOL_LAST,	0 },
197 };
198 
199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
201 	0x00, 0x00, 0x00, 0x00,
202 	0x00, 0x00, 0x00, 0x00,
203 
204 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
205 
206 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207 	0x00, 0x01, 0x00, 0x00,
208 	0x40, 0x11, 0x00, 0x00,
209 	0x00, 0x00, 0x00, 0x00,
210 	0x00, 0x00, 0x00, 0x00,
211 
212 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213 	0x00, 0x46, 0x00, 0x00,
214 
215 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216 	0x00, 0x00, 0x00, 0x00,
217 
218 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219 	0x00, 0x00, 0x00, 0x00,
220 	0x00, 0x00, 0x00, 0x00,
221 
222 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
223 
224 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225 	0x00, 0x01, 0x00, 0x00,
226 	0x40, 0x06, 0x00, 0x00,
227 	0x00, 0x00, 0x00, 0x00,
228 	0x00, 0x00, 0x00, 0x00,
229 
230 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231 	0x00, 0x00, 0x00, 0x00,
232 	0x00, 0x00, 0x00, 0x00,
233 	0x50, 0x02, 0x20, 0x00,
234 	0x00, 0x00, 0x00, 0x00
235 };
236 
237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238 	{ ICE_MAC_OFOS,		0 },
239 	{ ICE_ETYPE_OL,		12 },
240 	{ ICE_IPV4_OFOS,	14 },
241 	{ ICE_UDP_OF,		34 },
242 	{ ICE_VXLAN,		42 },
243 	{ ICE_GENEVE,		42 },
244 	{ ICE_VXLAN_GPE,	42 },
245 	{ ICE_MAC_IL,		50 },
246 	{ ICE_ETYPE_IL,		62 },
247 	{ ICE_IPV4_IL,		64 },
248 	{ ICE_UDP_ILOS,		84 },
249 	{ ICE_PROTOCOL_LAST,	0 },
250 };
251 
252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
254 	0x00, 0x00, 0x00, 0x00,
255 	0x00, 0x00, 0x00, 0x00,
256 
257 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
258 
259 	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260 	0x00, 0x01, 0x00, 0x00,
261 	0x00, 0x11, 0x00, 0x00,
262 	0x00, 0x00, 0x00, 0x00,
263 	0x00, 0x00, 0x00, 0x00,
264 
265 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266 	0x00, 0x3a, 0x00, 0x00,
267 
268 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269 	0x00, 0x00, 0x00, 0x00,
270 
271 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272 	0x00, 0x00, 0x00, 0x00,
273 	0x00, 0x00, 0x00, 0x00,
274 
275 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
276 
277 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278 	0x00, 0x01, 0x00, 0x00,
279 	0x00, 0x11, 0x00, 0x00,
280 	0x00, 0x00, 0x00, 0x00,
281 	0x00, 0x00, 0x00, 0x00,
282 
283 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284 	0x00, 0x08, 0x00, 0x00,
285 };
286 
287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288 	{ ICE_MAC_OFOS,		0 },
289 	{ ICE_ETYPE_OL,		12 },
290 	{ ICE_IPV4_OFOS,	14 },
291 	{ ICE_NVGRE,		34 },
292 	{ ICE_MAC_IL,		42 },
293 	{ ICE_ETYPE_IL,		54 },
294 	{ ICE_IPV6_IL,		56 },
295 	{ ICE_TCP_IL,		96 },
296 	{ ICE_PROTOCOL_LAST,	0 },
297 };
298 
299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301 	0x00, 0x00, 0x00, 0x00,
302 	0x00, 0x00, 0x00, 0x00,
303 
304 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
305 
306 	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307 	0x00, 0x00, 0x00, 0x00,
308 	0x00, 0x2F, 0x00, 0x00,
309 	0x00, 0x00, 0x00, 0x00,
310 	0x00, 0x00, 0x00, 0x00,
311 
312 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313 	0x00, 0x00, 0x00, 0x00,
314 
315 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316 	0x00, 0x00, 0x00, 0x00,
317 	0x00, 0x00, 0x00, 0x00,
318 
319 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
320 
321 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322 	0x00, 0x08, 0x06, 0x40,
323 	0x00, 0x00, 0x00, 0x00,
324 	0x00, 0x00, 0x00, 0x00,
325 	0x00, 0x00, 0x00, 0x00,
326 	0x00, 0x00, 0x00, 0x00,
327 	0x00, 0x00, 0x00, 0x00,
328 	0x00, 0x00, 0x00, 0x00,
329 	0x00, 0x00, 0x00, 0x00,
330 	0x00, 0x00, 0x00, 0x00,
331 
332 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333 	0x00, 0x00, 0x00, 0x00,
334 	0x00, 0x00, 0x00, 0x00,
335 	0x50, 0x02, 0x20, 0x00,
336 	0x00, 0x00, 0x00, 0x00
337 };
338 
339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340 	{ ICE_MAC_OFOS,		0 },
341 	{ ICE_ETYPE_OL,		12 },
342 	{ ICE_IPV4_OFOS,	14 },
343 	{ ICE_NVGRE,		34 },
344 	{ ICE_MAC_IL,		42 },
345 	{ ICE_ETYPE_IL,		54 },
346 	{ ICE_IPV6_IL,		56 },
347 	{ ICE_UDP_ILOS,		96 },
348 	{ ICE_PROTOCOL_LAST,	0 },
349 };
350 
351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353 	0x00, 0x00, 0x00, 0x00,
354 	0x00, 0x00, 0x00, 0x00,
355 
356 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
357 
358 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359 	0x00, 0x00, 0x00, 0x00,
360 	0x00, 0x2F, 0x00, 0x00,
361 	0x00, 0x00, 0x00, 0x00,
362 	0x00, 0x00, 0x00, 0x00,
363 
364 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365 	0x00, 0x00, 0x00, 0x00,
366 
367 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368 	0x00, 0x00, 0x00, 0x00,
369 	0x00, 0x00, 0x00, 0x00,
370 
371 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
372 
373 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374 	0x00, 0x08, 0x11, 0x40,
375 	0x00, 0x00, 0x00, 0x00,
376 	0x00, 0x00, 0x00, 0x00,
377 	0x00, 0x00, 0x00, 0x00,
378 	0x00, 0x00, 0x00, 0x00,
379 	0x00, 0x00, 0x00, 0x00,
380 	0x00, 0x00, 0x00, 0x00,
381 	0x00, 0x00, 0x00, 0x00,
382 	0x00, 0x00, 0x00, 0x00,
383 
384 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385 	0x00, 0x08, 0x00, 0x00,
386 };
387 
388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389 	{ ICE_MAC_OFOS,		0 },
390 	{ ICE_ETYPE_OL,		12 },
391 	{ ICE_IPV4_OFOS,	14 },
392 	{ ICE_UDP_OF,		34 },
393 	{ ICE_VXLAN,		42 },
394 	{ ICE_GENEVE,		42 },
395 	{ ICE_VXLAN_GPE,	42 },
396 	{ ICE_MAC_IL,		50 },
397 	{ ICE_ETYPE_IL,		62 },
398 	{ ICE_IPV6_IL,		64 },
399 	{ ICE_TCP_IL,		104 },
400 	{ ICE_PROTOCOL_LAST,	0 },
401 };
402 
403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
405 	0x00, 0x00, 0x00, 0x00,
406 	0x00, 0x00, 0x00, 0x00,
407 
408 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
409 
410 	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411 	0x00, 0x01, 0x00, 0x00,
412 	0x40, 0x11, 0x00, 0x00,
413 	0x00, 0x00, 0x00, 0x00,
414 	0x00, 0x00, 0x00, 0x00,
415 
416 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417 	0x00, 0x5a, 0x00, 0x00,
418 
419 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420 	0x00, 0x00, 0x00, 0x00,
421 
422 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423 	0x00, 0x00, 0x00, 0x00,
424 	0x00, 0x00, 0x00, 0x00,
425 
426 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
427 
428 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429 	0x00, 0x08, 0x06, 0x40,
430 	0x00, 0x00, 0x00, 0x00,
431 	0x00, 0x00, 0x00, 0x00,
432 	0x00, 0x00, 0x00, 0x00,
433 	0x00, 0x00, 0x00, 0x00,
434 	0x00, 0x00, 0x00, 0x00,
435 	0x00, 0x00, 0x00, 0x00,
436 	0x00, 0x00, 0x00, 0x00,
437 	0x00, 0x00, 0x00, 0x00,
438 
439 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440 	0x00, 0x00, 0x00, 0x00,
441 	0x00, 0x00, 0x00, 0x00,
442 	0x50, 0x02, 0x20, 0x00,
443 	0x00, 0x00, 0x00, 0x00
444 };
445 
446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447 	{ ICE_MAC_OFOS,		0 },
448 	{ ICE_ETYPE_OL,		12 },
449 	{ ICE_IPV4_OFOS,	14 },
450 	{ ICE_UDP_OF,		34 },
451 	{ ICE_VXLAN,		42 },
452 	{ ICE_GENEVE,		42 },
453 	{ ICE_VXLAN_GPE,	42 },
454 	{ ICE_MAC_IL,		50 },
455 	{ ICE_ETYPE_IL,		62 },
456 	{ ICE_IPV6_IL,		64 },
457 	{ ICE_UDP_ILOS,		104 },
458 	{ ICE_PROTOCOL_LAST,	0 },
459 };
460 
461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
463 	0x00, 0x00, 0x00, 0x00,
464 	0x00, 0x00, 0x00, 0x00,
465 
466 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
467 
468 	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469 	0x00, 0x01, 0x00, 0x00,
470 	0x00, 0x11, 0x00, 0x00,
471 	0x00, 0x00, 0x00, 0x00,
472 	0x00, 0x00, 0x00, 0x00,
473 
474 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475 	0x00, 0x4e, 0x00, 0x00,
476 
477 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478 	0x00, 0x00, 0x00, 0x00,
479 
480 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481 	0x00, 0x00, 0x00, 0x00,
482 	0x00, 0x00, 0x00, 0x00,
483 
484 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
485 
486 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487 	0x00, 0x08, 0x11, 0x40,
488 	0x00, 0x00, 0x00, 0x00,
489 	0x00, 0x00, 0x00, 0x00,
490 	0x00, 0x00, 0x00, 0x00,
491 	0x00, 0x00, 0x00, 0x00,
492 	0x00, 0x00, 0x00, 0x00,
493 	0x00, 0x00, 0x00, 0x00,
494 	0x00, 0x00, 0x00, 0x00,
495 	0x00, 0x00, 0x00, 0x00,
496 
497 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498 	0x00, 0x08, 0x00, 0x00,
499 };
500 
501 /* offset info for MAC + IPv4 + UDP dummy packet */
502 ICE_DECLARE_PKT_OFFSETS(udp) = {
503 	{ ICE_MAC_OFOS,		0 },
504 	{ ICE_ETYPE_OL,		12 },
505 	{ ICE_IPV4_OFOS,	14 },
506 	{ ICE_UDP_ILOS,		34 },
507 	{ ICE_PROTOCOL_LAST,	0 },
508 };
509 
510 /* Dummy packet for MAC + IPv4 + UDP */
511 ICE_DECLARE_PKT_TEMPLATE(udp) = {
512 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513 	0x00, 0x00, 0x00, 0x00,
514 	0x00, 0x00, 0x00, 0x00,
515 
516 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
517 
518 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519 	0x00, 0x01, 0x00, 0x00,
520 	0x00, 0x11, 0x00, 0x00,
521 	0x00, 0x00, 0x00, 0x00,
522 	0x00, 0x00, 0x00, 0x00,
523 
524 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525 	0x00, 0x08, 0x00, 0x00,
526 
527 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
528 };
529 
530 /* offset info for MAC + IPv4 + TCP dummy packet */
531 ICE_DECLARE_PKT_OFFSETS(tcp) = {
532 	{ ICE_MAC_OFOS,		0 },
533 	{ ICE_ETYPE_OL,		12 },
534 	{ ICE_IPV4_OFOS,	14 },
535 	{ ICE_TCP_IL,		34 },
536 	{ ICE_PROTOCOL_LAST,	0 },
537 };
538 
539 /* Dummy packet for MAC + IPv4 + TCP */
540 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542 	0x00, 0x00, 0x00, 0x00,
543 	0x00, 0x00, 0x00, 0x00,
544 
545 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
546 
547 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548 	0x00, 0x01, 0x00, 0x00,
549 	0x00, 0x06, 0x00, 0x00,
550 	0x00, 0x00, 0x00, 0x00,
551 	0x00, 0x00, 0x00, 0x00,
552 
553 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554 	0x00, 0x00, 0x00, 0x00,
555 	0x00, 0x00, 0x00, 0x00,
556 	0x50, 0x00, 0x00, 0x00,
557 	0x00, 0x00, 0x00, 0x00,
558 
559 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
560 };
561 
562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563 	{ ICE_MAC_OFOS,		0 },
564 	{ ICE_ETYPE_OL,		12 },
565 	{ ICE_IPV6_OFOS,	14 },
566 	{ ICE_TCP_IL,		54 },
567 	{ ICE_PROTOCOL_LAST,	0 },
568 };
569 
570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572 	0x00, 0x00, 0x00, 0x00,
573 	0x00, 0x00, 0x00, 0x00,
574 
575 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
576 
577 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579 	0x00, 0x00, 0x00, 0x00,
580 	0x00, 0x00, 0x00, 0x00,
581 	0x00, 0x00, 0x00, 0x00,
582 	0x00, 0x00, 0x00, 0x00,
583 	0x00, 0x00, 0x00, 0x00,
584 	0x00, 0x00, 0x00, 0x00,
585 	0x00, 0x00, 0x00, 0x00,
586 	0x00, 0x00, 0x00, 0x00,
587 
588 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589 	0x00, 0x00, 0x00, 0x00,
590 	0x00, 0x00, 0x00, 0x00,
591 	0x50, 0x00, 0x00, 0x00,
592 	0x00, 0x00, 0x00, 0x00,
593 
594 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
595 };
596 
597 /* IPv6 + UDP */
598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599 	{ ICE_MAC_OFOS,		0 },
600 	{ ICE_ETYPE_OL,		12 },
601 	{ ICE_IPV6_OFOS,	14 },
602 	{ ICE_UDP_ILOS,		54 },
603 	{ ICE_PROTOCOL_LAST,	0 },
604 };
605 
606 /* IPv6 + UDP dummy packet */
607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609 	0x00, 0x00, 0x00, 0x00,
610 	0x00, 0x00, 0x00, 0x00,
611 
612 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
613 
614 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616 	0x00, 0x00, 0x00, 0x00,
617 	0x00, 0x00, 0x00, 0x00,
618 	0x00, 0x00, 0x00, 0x00,
619 	0x00, 0x00, 0x00, 0x00,
620 	0x00, 0x00, 0x00, 0x00,
621 	0x00, 0x00, 0x00, 0x00,
622 	0x00, 0x00, 0x00, 0x00,
623 	0x00, 0x00, 0x00, 0x00,
624 
625 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626 	0x00, 0x10, 0x00, 0x00,
627 
628 	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629 	0x00, 0x00, 0x00, 0x00,
630 
631 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
632 };
633 
634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636 	{ ICE_MAC_OFOS,		0 },
637 	{ ICE_IPV4_OFOS,	14 },
638 	{ ICE_UDP_OF,		34 },
639 	{ ICE_GTP,		42 },
640 	{ ICE_IPV4_IL,		62 },
641 	{ ICE_TCP_IL,		82 },
642 	{ ICE_PROTOCOL_LAST,	0 },
643 };
644 
645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647 	0x00, 0x00, 0x00, 0x00,
648 	0x00, 0x00, 0x00, 0x00,
649 	0x08, 0x00,
650 
651 	0x45, 0x00, 0x00, 0x58, /* IP 14 */
652 	0x00, 0x00, 0x00, 0x00,
653 	0x00, 0x11, 0x00, 0x00,
654 	0x00, 0x00, 0x00, 0x00,
655 	0x00, 0x00, 0x00, 0x00,
656 
657 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658 	0x00, 0x44, 0x00, 0x00,
659 
660 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661 	0x00, 0x00, 0x00, 0x00,
662 	0x00, 0x00, 0x00, 0x85,
663 
664 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665 	0x00, 0x00, 0x00, 0x00,
666 
667 	0x45, 0x00, 0x00, 0x28, /* IP 62 */
668 	0x00, 0x00, 0x00, 0x00,
669 	0x00, 0x06, 0x00, 0x00,
670 	0x00, 0x00, 0x00, 0x00,
671 	0x00, 0x00, 0x00, 0x00,
672 
673 	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674 	0x00, 0x00, 0x00, 0x00,
675 	0x00, 0x00, 0x00, 0x00,
676 	0x50, 0x00, 0x00, 0x00,
677 	0x00, 0x00, 0x00, 0x00,
678 
679 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
680 };
681 
682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684 	{ ICE_MAC_OFOS,		0 },
685 	{ ICE_IPV4_OFOS,	14 },
686 	{ ICE_UDP_OF,		34 },
687 	{ ICE_GTP,		42 },
688 	{ ICE_IPV4_IL,		62 },
689 	{ ICE_UDP_ILOS,		82 },
690 	{ ICE_PROTOCOL_LAST,	0 },
691 };
692 
693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695 	0x00, 0x00, 0x00, 0x00,
696 	0x00, 0x00, 0x00, 0x00,
697 	0x08, 0x00,
698 
699 	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700 	0x00, 0x00, 0x00, 0x00,
701 	0x00, 0x11, 0x00, 0x00,
702 	0x00, 0x00, 0x00, 0x00,
703 	0x00, 0x00, 0x00, 0x00,
704 
705 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706 	0x00, 0x38, 0x00, 0x00,
707 
708 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709 	0x00, 0x00, 0x00, 0x00,
710 	0x00, 0x00, 0x00, 0x85,
711 
712 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713 	0x00, 0x00, 0x00, 0x00,
714 
715 	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716 	0x00, 0x00, 0x00, 0x00,
717 	0x00, 0x11, 0x00, 0x00,
718 	0x00, 0x00, 0x00, 0x00,
719 	0x00, 0x00, 0x00, 0x00,
720 
721 	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722 	0x00, 0x08, 0x00, 0x00,
723 
724 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
725 };
726 
727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729 	{ ICE_MAC_OFOS,		0 },
730 	{ ICE_IPV4_OFOS,	14 },
731 	{ ICE_UDP_OF,		34 },
732 	{ ICE_GTP,		42 },
733 	{ ICE_IPV6_IL,		62 },
734 	{ ICE_TCP_IL,		102 },
735 	{ ICE_PROTOCOL_LAST,	0 },
736 };
737 
738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740 	0x00, 0x00, 0x00, 0x00,
741 	0x00, 0x00, 0x00, 0x00,
742 	0x08, 0x00,
743 
744 	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745 	0x00, 0x00, 0x00, 0x00,
746 	0x00, 0x11, 0x00, 0x00,
747 	0x00, 0x00, 0x00, 0x00,
748 	0x00, 0x00, 0x00, 0x00,
749 
750 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751 	0x00, 0x58, 0x00, 0x00,
752 
753 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754 	0x00, 0x00, 0x00, 0x00,
755 	0x00, 0x00, 0x00, 0x85,
756 
757 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758 	0x00, 0x00, 0x00, 0x00,
759 
760 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761 	0x00, 0x14, 0x06, 0x00,
762 	0x00, 0x00, 0x00, 0x00,
763 	0x00, 0x00, 0x00, 0x00,
764 	0x00, 0x00, 0x00, 0x00,
765 	0x00, 0x00, 0x00, 0x00,
766 	0x00, 0x00, 0x00, 0x00,
767 	0x00, 0x00, 0x00, 0x00,
768 	0x00, 0x00, 0x00, 0x00,
769 	0x00, 0x00, 0x00, 0x00,
770 
771 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772 	0x00, 0x00, 0x00, 0x00,
773 	0x00, 0x00, 0x00, 0x00,
774 	0x50, 0x00, 0x00, 0x00,
775 	0x00, 0x00, 0x00, 0x00,
776 
777 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
778 };
779 
780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781 	{ ICE_MAC_OFOS,		0 },
782 	{ ICE_IPV4_OFOS,	14 },
783 	{ ICE_UDP_OF,		34 },
784 	{ ICE_GTP,		42 },
785 	{ ICE_IPV6_IL,		62 },
786 	{ ICE_UDP_ILOS,		102 },
787 	{ ICE_PROTOCOL_LAST,	0 },
788 };
789 
790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792 	0x00, 0x00, 0x00, 0x00,
793 	0x00, 0x00, 0x00, 0x00,
794 	0x08, 0x00,
795 
796 	0x45, 0x00, 0x00, 0x60, /* IP 14 */
797 	0x00, 0x00, 0x00, 0x00,
798 	0x00, 0x11, 0x00, 0x00,
799 	0x00, 0x00, 0x00, 0x00,
800 	0x00, 0x00, 0x00, 0x00,
801 
802 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803 	0x00, 0x4c, 0x00, 0x00,
804 
805 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806 	0x00, 0x00, 0x00, 0x00,
807 	0x00, 0x00, 0x00, 0x85,
808 
809 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810 	0x00, 0x00, 0x00, 0x00,
811 
812 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813 	0x00, 0x08, 0x11, 0x00,
814 	0x00, 0x00, 0x00, 0x00,
815 	0x00, 0x00, 0x00, 0x00,
816 	0x00, 0x00, 0x00, 0x00,
817 	0x00, 0x00, 0x00, 0x00,
818 	0x00, 0x00, 0x00, 0x00,
819 	0x00, 0x00, 0x00, 0x00,
820 	0x00, 0x00, 0x00, 0x00,
821 	0x00, 0x00, 0x00, 0x00,
822 
823 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824 	0x00, 0x08, 0x00, 0x00,
825 
826 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
827 };
828 
829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830 	{ ICE_MAC_OFOS,		0 },
831 	{ ICE_IPV6_OFOS,	14 },
832 	{ ICE_UDP_OF,		54 },
833 	{ ICE_GTP,		62 },
834 	{ ICE_IPV4_IL,		82 },
835 	{ ICE_TCP_IL,		102 },
836 	{ ICE_PROTOCOL_LAST,	0 },
837 };
838 
839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841 	0x00, 0x00, 0x00, 0x00,
842 	0x00, 0x00, 0x00, 0x00,
843 	0x86, 0xdd,
844 
845 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846 	0x00, 0x44, 0x11, 0x00,
847 	0x00, 0x00, 0x00, 0x00,
848 	0x00, 0x00, 0x00, 0x00,
849 	0x00, 0x00, 0x00, 0x00,
850 	0x00, 0x00, 0x00, 0x00,
851 	0x00, 0x00, 0x00, 0x00,
852 	0x00, 0x00, 0x00, 0x00,
853 	0x00, 0x00, 0x00, 0x00,
854 	0x00, 0x00, 0x00, 0x00,
855 
856 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857 	0x00, 0x44, 0x00, 0x00,
858 
859 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860 	0x00, 0x00, 0x00, 0x00,
861 	0x00, 0x00, 0x00, 0x85,
862 
863 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864 	0x00, 0x00, 0x00, 0x00,
865 
866 	0x45, 0x00, 0x00, 0x28, /* IP 82 */
867 	0x00, 0x00, 0x00, 0x00,
868 	0x00, 0x06, 0x00, 0x00,
869 	0x00, 0x00, 0x00, 0x00,
870 	0x00, 0x00, 0x00, 0x00,
871 
872 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873 	0x00, 0x00, 0x00, 0x00,
874 	0x00, 0x00, 0x00, 0x00,
875 	0x50, 0x00, 0x00, 0x00,
876 	0x00, 0x00, 0x00, 0x00,
877 
878 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
879 };
880 
881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882 	{ ICE_MAC_OFOS,		0 },
883 	{ ICE_IPV6_OFOS,	14 },
884 	{ ICE_UDP_OF,		54 },
885 	{ ICE_GTP,		62 },
886 	{ ICE_IPV4_IL,		82 },
887 	{ ICE_UDP_ILOS,		102 },
888 	{ ICE_PROTOCOL_LAST,	0 },
889 };
890 
891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893 	0x00, 0x00, 0x00, 0x00,
894 	0x00, 0x00, 0x00, 0x00,
895 	0x86, 0xdd,
896 
897 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898 	0x00, 0x38, 0x11, 0x00,
899 	0x00, 0x00, 0x00, 0x00,
900 	0x00, 0x00, 0x00, 0x00,
901 	0x00, 0x00, 0x00, 0x00,
902 	0x00, 0x00, 0x00, 0x00,
903 	0x00, 0x00, 0x00, 0x00,
904 	0x00, 0x00, 0x00, 0x00,
905 	0x00, 0x00, 0x00, 0x00,
906 	0x00, 0x00, 0x00, 0x00,
907 
908 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909 	0x00, 0x38, 0x00, 0x00,
910 
911 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912 	0x00, 0x00, 0x00, 0x00,
913 	0x00, 0x00, 0x00, 0x85,
914 
915 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916 	0x00, 0x00, 0x00, 0x00,
917 
918 	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919 	0x00, 0x00, 0x00, 0x00,
920 	0x00, 0x11, 0x00, 0x00,
921 	0x00, 0x00, 0x00, 0x00,
922 	0x00, 0x00, 0x00, 0x00,
923 
924 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925 	0x00, 0x08, 0x00, 0x00,
926 
927 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
928 };
929 
930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931 	{ ICE_MAC_OFOS,		0 },
932 	{ ICE_IPV6_OFOS,	14 },
933 	{ ICE_UDP_OF,		54 },
934 	{ ICE_GTP,		62 },
935 	{ ICE_IPV6_IL,		82 },
936 	{ ICE_TCP_IL,		122 },
937 	{ ICE_PROTOCOL_LAST,	0 },
938 };
939 
940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942 	0x00, 0x00, 0x00, 0x00,
943 	0x00, 0x00, 0x00, 0x00,
944 	0x86, 0xdd,
945 
946 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947 	0x00, 0x58, 0x11, 0x00,
948 	0x00, 0x00, 0x00, 0x00,
949 	0x00, 0x00, 0x00, 0x00,
950 	0x00, 0x00, 0x00, 0x00,
951 	0x00, 0x00, 0x00, 0x00,
952 	0x00, 0x00, 0x00, 0x00,
953 	0x00, 0x00, 0x00, 0x00,
954 	0x00, 0x00, 0x00, 0x00,
955 	0x00, 0x00, 0x00, 0x00,
956 
957 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958 	0x00, 0x58, 0x00, 0x00,
959 
960 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961 	0x00, 0x00, 0x00, 0x00,
962 	0x00, 0x00, 0x00, 0x85,
963 
964 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965 	0x00, 0x00, 0x00, 0x00,
966 
967 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968 	0x00, 0x14, 0x06, 0x00,
969 	0x00, 0x00, 0x00, 0x00,
970 	0x00, 0x00, 0x00, 0x00,
971 	0x00, 0x00, 0x00, 0x00,
972 	0x00, 0x00, 0x00, 0x00,
973 	0x00, 0x00, 0x00, 0x00,
974 	0x00, 0x00, 0x00, 0x00,
975 	0x00, 0x00, 0x00, 0x00,
976 	0x00, 0x00, 0x00, 0x00,
977 
978 	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979 	0x00, 0x00, 0x00, 0x00,
980 	0x00, 0x00, 0x00, 0x00,
981 	0x50, 0x00, 0x00, 0x00,
982 	0x00, 0x00, 0x00, 0x00,
983 
984 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
985 };
986 
987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988 	{ ICE_MAC_OFOS,		0 },
989 	{ ICE_IPV6_OFOS,	14 },
990 	{ ICE_UDP_OF,		54 },
991 	{ ICE_GTP,		62 },
992 	{ ICE_IPV6_IL,		82 },
993 	{ ICE_UDP_ILOS,		122 },
994 	{ ICE_PROTOCOL_LAST,	0 },
995 };
996 
997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999 	0x00, 0x00, 0x00, 0x00,
1000 	0x00, 0x00, 0x00, 0x00,
1001 	0x86, 0xdd,
1002 
1003 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004 	0x00, 0x4c, 0x11, 0x00,
1005 	0x00, 0x00, 0x00, 0x00,
1006 	0x00, 0x00, 0x00, 0x00,
1007 	0x00, 0x00, 0x00, 0x00,
1008 	0x00, 0x00, 0x00, 0x00,
1009 	0x00, 0x00, 0x00, 0x00,
1010 	0x00, 0x00, 0x00, 0x00,
1011 	0x00, 0x00, 0x00, 0x00,
1012 	0x00, 0x00, 0x00, 0x00,
1013 
1014 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015 	0x00, 0x4c, 0x00, 0x00,
1016 
1017 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018 	0x00, 0x00, 0x00, 0x00,
1019 	0x00, 0x00, 0x00, 0x85,
1020 
1021 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022 	0x00, 0x00, 0x00, 0x00,
1023 
1024 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025 	0x00, 0x08, 0x11, 0x00,
1026 	0x00, 0x00, 0x00, 0x00,
1027 	0x00, 0x00, 0x00, 0x00,
1028 	0x00, 0x00, 0x00, 0x00,
1029 	0x00, 0x00, 0x00, 0x00,
1030 	0x00, 0x00, 0x00, 0x00,
1031 	0x00, 0x00, 0x00, 0x00,
1032 	0x00, 0x00, 0x00, 0x00,
1033 	0x00, 0x00, 0x00, 0x00,
1034 
1035 	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036 	0x00, 0x08, 0x00, 0x00,
1037 
1038 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039 };
1040 
1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042 	{ ICE_MAC_OFOS,		0 },
1043 	{ ICE_IPV4_OFOS,	14 },
1044 	{ ICE_UDP_OF,		34 },
1045 	{ ICE_GTP_NO_PAY,	42 },
1046 	{ ICE_PROTOCOL_LAST,	0 },
1047 };
1048 
1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051 	0x00, 0x00, 0x00, 0x00,
1052 	0x00, 0x00, 0x00, 0x00,
1053 	0x08, 0x00,
1054 
1055 	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056 	0x00, 0x00, 0x40, 0x00,
1057 	0x40, 0x11, 0x00, 0x00,
1058 	0x00, 0x00, 0x00, 0x00,
1059 	0x00, 0x00, 0x00, 0x00,
1060 
1061 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062 	0x00, 0x00, 0x00, 0x00,
1063 
1064 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065 	0x00, 0x00, 0x00, 0x00,
1066 	0x00, 0x00, 0x00, 0x85,
1067 
1068 	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069 	0x00, 0x00, 0x00, 0x00,
1070 
1071 	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072 	0x00, 0x00, 0x40, 0x00,
1073 	0x40, 0x00, 0x00, 0x00,
1074 	0x00, 0x00, 0x00, 0x00,
1075 	0x00, 0x00, 0x00, 0x00,
1076 	0x00, 0x00,
1077 };
1078 
1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080 	{ ICE_MAC_OFOS,		0 },
1081 	{ ICE_IPV6_OFOS,	14 },
1082 	{ ICE_UDP_OF,		54 },
1083 	{ ICE_GTP_NO_PAY,	62 },
1084 	{ ICE_PROTOCOL_LAST,	0 },
1085 };
1086 
1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089 	0x00, 0x00, 0x00, 0x00,
1090 	0x00, 0x00, 0x00, 0x00,
1091 	0x86, 0xdd,
1092 
1093 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094 	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095 	0x00, 0x00, 0x00, 0x00,
1096 	0x00, 0x00, 0x00, 0x00,
1097 	0x00, 0x00, 0x00, 0x00,
1098 	0x00, 0x00, 0x00, 0x00,
1099 	0x00, 0x00, 0x00, 0x00,
1100 	0x00, 0x00, 0x00, 0x00,
1101 	0x00, 0x00, 0x00, 0x00,
1102 	0x00, 0x00, 0x00, 0x00,
1103 
1104 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105 	0x00, 0x00, 0x00, 0x00,
1106 
1107 	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108 	0x00, 0x00, 0x00, 0x00,
1109 
1110 	0x00, 0x00,
1111 };
1112 
1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114 	{ ICE_MAC_OFOS,		0 },
1115 	{ ICE_ETYPE_OL,		12 },
1116 	{ ICE_PPPOE,		14 },
1117 	{ ICE_IPV4_OFOS,	22 },
1118 	{ ICE_TCP_IL,		42 },
1119 	{ ICE_PROTOCOL_LAST,	0 },
1120 };
1121 
1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124 	0x00, 0x00, 0x00, 0x00,
1125 	0x00, 0x00, 0x00, 0x00,
1126 
1127 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128 
1129 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130 	0x00, 0x16,
1131 
1132 	0x00, 0x21,		/* PPP Link Layer 20 */
1133 
1134 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135 	0x00, 0x01, 0x00, 0x00,
1136 	0x00, 0x06, 0x00, 0x00,
1137 	0x00, 0x00, 0x00, 0x00,
1138 	0x00, 0x00, 0x00, 0x00,
1139 
1140 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141 	0x00, 0x00, 0x00, 0x00,
1142 	0x00, 0x00, 0x00, 0x00,
1143 	0x50, 0x00, 0x00, 0x00,
1144 	0x00, 0x00, 0x00, 0x00,
1145 
1146 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147 };
1148 
1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150 	{ ICE_MAC_OFOS,		0 },
1151 	{ ICE_ETYPE_OL,		12 },
1152 	{ ICE_PPPOE,		14 },
1153 	{ ICE_IPV4_OFOS,	22 },
1154 	{ ICE_UDP_ILOS,		42 },
1155 	{ ICE_PROTOCOL_LAST,	0 },
1156 };
1157 
1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160 	0x00, 0x00, 0x00, 0x00,
1161 	0x00, 0x00, 0x00, 0x00,
1162 
1163 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164 
1165 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166 	0x00, 0x16,
1167 
1168 	0x00, 0x21,		/* PPP Link Layer 20 */
1169 
1170 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171 	0x00, 0x01, 0x00, 0x00,
1172 	0x00, 0x11, 0x00, 0x00,
1173 	0x00, 0x00, 0x00, 0x00,
1174 	0x00, 0x00, 0x00, 0x00,
1175 
1176 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177 	0x00, 0x08, 0x00, 0x00,
1178 
1179 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180 };
1181 
1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183 	{ ICE_MAC_OFOS,		0 },
1184 	{ ICE_ETYPE_OL,		12 },
1185 	{ ICE_PPPOE,		14 },
1186 	{ ICE_IPV6_OFOS,	22 },
1187 	{ ICE_TCP_IL,		62 },
1188 	{ ICE_PROTOCOL_LAST,	0 },
1189 };
1190 
1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193 	0x00, 0x00, 0x00, 0x00,
1194 	0x00, 0x00, 0x00, 0x00,
1195 
1196 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197 
1198 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199 	0x00, 0x2a,
1200 
1201 	0x00, 0x57,		/* PPP Link Layer 20 */
1202 
1203 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205 	0x00, 0x00, 0x00, 0x00,
1206 	0x00, 0x00, 0x00, 0x00,
1207 	0x00, 0x00, 0x00, 0x00,
1208 	0x00, 0x00, 0x00, 0x00,
1209 	0x00, 0x00, 0x00, 0x00,
1210 	0x00, 0x00, 0x00, 0x00,
1211 	0x00, 0x00, 0x00, 0x00,
1212 	0x00, 0x00, 0x00, 0x00,
1213 
1214 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215 	0x00, 0x00, 0x00, 0x00,
1216 	0x00, 0x00, 0x00, 0x00,
1217 	0x50, 0x00, 0x00, 0x00,
1218 	0x00, 0x00, 0x00, 0x00,
1219 
1220 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221 };
1222 
1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224 	{ ICE_MAC_OFOS,		0 },
1225 	{ ICE_ETYPE_OL,		12 },
1226 	{ ICE_PPPOE,		14 },
1227 	{ ICE_IPV6_OFOS,	22 },
1228 	{ ICE_UDP_ILOS,		62 },
1229 	{ ICE_PROTOCOL_LAST,	0 },
1230 };
1231 
1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234 	0x00, 0x00, 0x00, 0x00,
1235 	0x00, 0x00, 0x00, 0x00,
1236 
1237 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238 
1239 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240 	0x00, 0x2a,
1241 
1242 	0x00, 0x57,		/* PPP Link Layer 20 */
1243 
1244 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245 	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246 	0x00, 0x00, 0x00, 0x00,
1247 	0x00, 0x00, 0x00, 0x00,
1248 	0x00, 0x00, 0x00, 0x00,
1249 	0x00, 0x00, 0x00, 0x00,
1250 	0x00, 0x00, 0x00, 0x00,
1251 	0x00, 0x00, 0x00, 0x00,
1252 	0x00, 0x00, 0x00, 0x00,
1253 	0x00, 0x00, 0x00, 0x00,
1254 
1255 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256 	0x00, 0x08, 0x00, 0x00,
1257 
1258 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259 };
1260 
1261 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1262 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1263 				  ICE_PKT_GTP_NOPAY),
1264 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1265 					    ICE_PKT_OUTER_IPV6 |
1266 					    ICE_PKT_INNER_IPV6 |
1267 					    ICE_PKT_INNER_UDP),
1268 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1269 					    ICE_PKT_OUTER_IPV6 |
1270 					    ICE_PKT_INNER_IPV6),
1271 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1272 					    ICE_PKT_OUTER_IPV6 |
1273 					    ICE_PKT_INNER_UDP),
1274 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1275 					    ICE_PKT_OUTER_IPV6),
1276 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1277 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1278 					    ICE_PKT_INNER_IPV6 |
1279 					    ICE_PKT_INNER_UDP),
1280 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1281 					    ICE_PKT_INNER_IPV6),
1282 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1283 					    ICE_PKT_INNER_UDP),
1284 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1285 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1286 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1287 	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1288 					ICE_PKT_INNER_UDP),
1289 	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1290 	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1291 	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1292 	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1293 				      ICE_PKT_INNER_TCP),
1294 	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1295 	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1296 	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1297 	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1298 					  ICE_PKT_INNER_IPV6 |
1299 					  ICE_PKT_INNER_TCP),
1300 	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1301 	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1302 					  ICE_PKT_INNER_IPV6),
1303 	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1304 	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1305 	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1306 	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1307 	ICE_PKT_PROFILE(tcp, 0),
1308 };
1309 
1310 #define ICE_SW_RULE_RX_TX_HDR_SIZE(s, l)	struct_size((s), hdr_data, (l))
1311 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s)	\
1312 	ICE_SW_RULE_RX_TX_HDR_SIZE((s), DUMMY_ETH_HDR_LEN)
1313 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s)	\
1314 	ICE_SW_RULE_RX_TX_HDR_SIZE((s), 0)
1315 #define ICE_SW_RULE_LG_ACT_SIZE(s, n)		struct_size((s), act, (n))
1316 #define ICE_SW_RULE_VSI_LIST_SIZE(s, n)		struct_size((s), vsi, (n))
1317 
1318 /* this is a recipe to profile association bitmap */
1319 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1320 			  ICE_MAX_NUM_PROFILES);
1321 
1322 /* this is a profile to recipe association bitmap */
1323 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1324 			  ICE_MAX_NUM_RECIPES);
1325 
1326 /**
1327  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1328  * @hw: pointer to the HW struct
1329  *
1330  * Allocate memory for the entire recipe table and initialize the structures/
1331  * entries corresponding to basic recipes.
1332  */
1333 int ice_init_def_sw_recp(struct ice_hw *hw)
1334 {
1335 	struct ice_sw_recipe *recps;
1336 	u8 i;
1337 
1338 	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1339 			     sizeof(*recps), GFP_KERNEL);
1340 	if (!recps)
1341 		return -ENOMEM;
1342 
1343 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1344 		recps[i].root_rid = i;
1345 		INIT_LIST_HEAD(&recps[i].filt_rules);
1346 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1347 		INIT_LIST_HEAD(&recps[i].rg_list);
1348 		mutex_init(&recps[i].filt_rule_lock);
1349 	}
1350 
1351 	hw->switch_info->recp_list = recps;
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  * ice_aq_get_sw_cfg - get switch configuration
1358  * @hw: pointer to the hardware structure
1359  * @buf: pointer to the result buffer
1360  * @buf_size: length of the buffer available for response
1361  * @req_desc: pointer to requested descriptor
1362  * @num_elems: pointer to number of elements
1363  * @cd: pointer to command details structure or NULL
1364  *
1365  * Get switch configuration (0x0200) to be placed in buf.
1366  * This admin command returns information such as initial VSI/port number
1367  * and switch ID it belongs to.
1368  *
1369  * NOTE: *req_desc is both an input/output parameter.
1370  * The caller of this function first calls this function with *request_desc set
1371  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1372  * configuration information has been returned; if non-zero (meaning not all
1373  * the information was returned), the caller should call this function again
1374  * with *req_desc set to the previous value returned by f/w to get the
1375  * next block of switch configuration information.
1376  *
1377  * *num_elems is output only parameter. This reflects the number of elements
1378  * in response buffer. The caller of this function to use *num_elems while
1379  * parsing the response buffer.
1380  */
1381 static int
1382 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1383 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1384 		  struct ice_sq_cd *cd)
1385 {
1386 	struct ice_aqc_get_sw_cfg *cmd;
1387 	struct ice_aq_desc desc;
1388 	int status;
1389 
1390 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1391 	cmd = &desc.params.get_sw_conf;
1392 	cmd->element = cpu_to_le16(*req_desc);
1393 
1394 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1395 	if (!status) {
1396 		*req_desc = le16_to_cpu(cmd->element);
1397 		*num_elems = le16_to_cpu(cmd->num_elems);
1398 	}
1399 
1400 	return status;
1401 }
1402 
1403 /**
1404  * ice_aq_add_vsi
1405  * @hw: pointer to the HW struct
1406  * @vsi_ctx: pointer to a VSI context struct
1407  * @cd: pointer to command details structure or NULL
1408  *
1409  * Add a VSI context to the hardware (0x0210)
1410  */
1411 static int
1412 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1413 	       struct ice_sq_cd *cd)
1414 {
1415 	struct ice_aqc_add_update_free_vsi_resp *res;
1416 	struct ice_aqc_add_get_update_free_vsi *cmd;
1417 	struct ice_aq_desc desc;
1418 	int status;
1419 
1420 	cmd = &desc.params.vsi_cmd;
1421 	res = &desc.params.add_update_free_vsi_res;
1422 
1423 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1424 
1425 	if (!vsi_ctx->alloc_from_pool)
1426 		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1427 					   ICE_AQ_VSI_IS_VALID);
1428 	cmd->vf_id = vsi_ctx->vf_num;
1429 
1430 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1431 
1432 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1433 
1434 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1435 				 sizeof(vsi_ctx->info), cd);
1436 
1437 	if (!status) {
1438 		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1439 		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1440 		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1441 	}
1442 
1443 	return status;
1444 }
1445 
1446 /**
1447  * ice_aq_free_vsi
1448  * @hw: pointer to the HW struct
1449  * @vsi_ctx: pointer to a VSI context struct
1450  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1451  * @cd: pointer to command details structure or NULL
1452  *
1453  * Free VSI context info from hardware (0x0213)
1454  */
1455 static int
1456 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1457 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1458 {
1459 	struct ice_aqc_add_update_free_vsi_resp *resp;
1460 	struct ice_aqc_add_get_update_free_vsi *cmd;
1461 	struct ice_aq_desc desc;
1462 	int status;
1463 
1464 	cmd = &desc.params.vsi_cmd;
1465 	resp = &desc.params.add_update_free_vsi_res;
1466 
1467 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1468 
1469 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1470 	if (keep_vsi_alloc)
1471 		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1472 
1473 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1474 	if (!status) {
1475 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1476 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1477 	}
1478 
1479 	return status;
1480 }
1481 
1482 /**
1483  * ice_aq_update_vsi
1484  * @hw: pointer to the HW struct
1485  * @vsi_ctx: pointer to a VSI context struct
1486  * @cd: pointer to command details structure or NULL
1487  *
1488  * Update VSI context in the hardware (0x0211)
1489  */
1490 static int
1491 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1492 		  struct ice_sq_cd *cd)
1493 {
1494 	struct ice_aqc_add_update_free_vsi_resp *resp;
1495 	struct ice_aqc_add_get_update_free_vsi *cmd;
1496 	struct ice_aq_desc desc;
1497 	int status;
1498 
1499 	cmd = &desc.params.vsi_cmd;
1500 	resp = &desc.params.add_update_free_vsi_res;
1501 
1502 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1503 
1504 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1505 
1506 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1507 
1508 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1509 				 sizeof(vsi_ctx->info), cd);
1510 
1511 	if (!status) {
1512 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1513 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1514 	}
1515 
1516 	return status;
1517 }
1518 
1519 /**
1520  * ice_is_vsi_valid - check whether the VSI is valid or not
1521  * @hw: pointer to the HW struct
1522  * @vsi_handle: VSI handle
1523  *
1524  * check whether the VSI is valid or not
1525  */
1526 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1527 {
1528 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1529 }
1530 
1531 /**
1532  * ice_get_hw_vsi_num - return the HW VSI number
1533  * @hw: pointer to the HW struct
1534  * @vsi_handle: VSI handle
1535  *
1536  * return the HW VSI number
1537  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1538  */
1539 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1540 {
1541 	return hw->vsi_ctx[vsi_handle]->vsi_num;
1542 }
1543 
1544 /**
1545  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1546  * @hw: pointer to the HW struct
1547  * @vsi_handle: VSI handle
1548  *
1549  * return the VSI context entry for a given VSI handle
1550  */
1551 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1552 {
1553 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1554 }
1555 
1556 /**
1557  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1558  * @hw: pointer to the HW struct
1559  * @vsi_handle: VSI handle
1560  * @vsi: VSI context pointer
1561  *
1562  * save the VSI context entry for a given VSI handle
1563  */
1564 static void
1565 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1566 {
1567 	hw->vsi_ctx[vsi_handle] = vsi;
1568 }
1569 
1570 /**
1571  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1572  * @hw: pointer to the HW struct
1573  * @vsi_handle: VSI handle
1574  */
1575 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1576 {
1577 	struct ice_vsi_ctx *vsi;
1578 	u8 i;
1579 
1580 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1581 	if (!vsi)
1582 		return;
1583 	ice_for_each_traffic_class(i) {
1584 		if (vsi->lan_q_ctx[i]) {
1585 			devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1586 			vsi->lan_q_ctx[i] = NULL;
1587 		}
1588 		if (vsi->rdma_q_ctx[i]) {
1589 			devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1590 			vsi->rdma_q_ctx[i] = NULL;
1591 		}
1592 	}
1593 }
1594 
1595 /**
1596  * ice_clear_vsi_ctx - clear the VSI context entry
1597  * @hw: pointer to the HW struct
1598  * @vsi_handle: VSI handle
1599  *
1600  * clear the VSI context entry
1601  */
1602 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1603 {
1604 	struct ice_vsi_ctx *vsi;
1605 
1606 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1607 	if (vsi) {
1608 		ice_clear_vsi_q_ctx(hw, vsi_handle);
1609 		devm_kfree(ice_hw_to_dev(hw), vsi);
1610 		hw->vsi_ctx[vsi_handle] = NULL;
1611 	}
1612 }
1613 
1614 /**
1615  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1616  * @hw: pointer to the HW struct
1617  */
1618 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1619 {
1620 	u16 i;
1621 
1622 	for (i = 0; i < ICE_MAX_VSI; i++)
1623 		ice_clear_vsi_ctx(hw, i);
1624 }
1625 
1626 /**
1627  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1628  * @hw: pointer to the HW struct
1629  * @vsi_handle: unique VSI handle provided by drivers
1630  * @vsi_ctx: pointer to a VSI context struct
1631  * @cd: pointer to command details structure or NULL
1632  *
1633  * Add a VSI context to the hardware also add it into the VSI handle list.
1634  * If this function gets called after reset for existing VSIs then update
1635  * with the new HW VSI number in the corresponding VSI handle list entry.
1636  */
1637 int
1638 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1639 	    struct ice_sq_cd *cd)
1640 {
1641 	struct ice_vsi_ctx *tmp_vsi_ctx;
1642 	int status;
1643 
1644 	if (vsi_handle >= ICE_MAX_VSI)
1645 		return -EINVAL;
1646 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1647 	if (status)
1648 		return status;
1649 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1650 	if (!tmp_vsi_ctx) {
1651 		/* Create a new VSI context */
1652 		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1653 					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1654 		if (!tmp_vsi_ctx) {
1655 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1656 			return -ENOMEM;
1657 		}
1658 		*tmp_vsi_ctx = *vsi_ctx;
1659 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1660 	} else {
1661 		/* update with new HW VSI num */
1662 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 /**
1669  * ice_free_vsi- free VSI context from hardware and VSI handle list
1670  * @hw: pointer to the HW struct
1671  * @vsi_handle: unique VSI handle
1672  * @vsi_ctx: pointer to a VSI context struct
1673  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1674  * @cd: pointer to command details structure or NULL
1675  *
1676  * Free VSI context info from hardware as well as from VSI handle list
1677  */
1678 int
1679 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1680 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1681 {
1682 	int status;
1683 
1684 	if (!ice_is_vsi_valid(hw, vsi_handle))
1685 		return -EINVAL;
1686 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1687 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1688 	if (!status)
1689 		ice_clear_vsi_ctx(hw, vsi_handle);
1690 	return status;
1691 }
1692 
1693 /**
1694  * ice_update_vsi
1695  * @hw: pointer to the HW struct
1696  * @vsi_handle: unique VSI handle
1697  * @vsi_ctx: pointer to a VSI context struct
1698  * @cd: pointer to command details structure or NULL
1699  *
1700  * Update VSI context in the hardware
1701  */
1702 int
1703 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1704 	       struct ice_sq_cd *cd)
1705 {
1706 	if (!ice_is_vsi_valid(hw, vsi_handle))
1707 		return -EINVAL;
1708 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1709 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1710 }
1711 
1712 /**
1713  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1714  * @hw: pointer to HW struct
1715  * @vsi_handle: VSI SW index
1716  * @enable: boolean for enable/disable
1717  */
1718 int
1719 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1720 {
1721 	struct ice_vsi_ctx *ctx;
1722 
1723 	ctx = ice_get_vsi_ctx(hw, vsi_handle);
1724 	if (!ctx)
1725 		return -EIO;
1726 
1727 	if (enable)
1728 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1729 	else
1730 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1731 
1732 	return ice_update_vsi(hw, vsi_handle, ctx, NULL);
1733 }
1734 
1735 /**
1736  * ice_aq_alloc_free_vsi_list
1737  * @hw: pointer to the HW struct
1738  * @vsi_list_id: VSI list ID returned or used for lookup
1739  * @lkup_type: switch rule filter lookup type
1740  * @opc: switch rules population command type - pass in the command opcode
1741  *
1742  * allocates or free a VSI list resource
1743  */
1744 static int
1745 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1746 			   enum ice_sw_lkup_type lkup_type,
1747 			   enum ice_adminq_opc opc)
1748 {
1749 	struct ice_aqc_alloc_free_res_elem *sw_buf;
1750 	struct ice_aqc_res_elem *vsi_ele;
1751 	u16 buf_len;
1752 	int status;
1753 
1754 	buf_len = struct_size(sw_buf, elem, 1);
1755 	sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
1756 	if (!sw_buf)
1757 		return -ENOMEM;
1758 	sw_buf->num_elems = cpu_to_le16(1);
1759 
1760 	if (lkup_type == ICE_SW_LKUP_MAC ||
1761 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1762 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1763 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1764 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1765 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1766 	    lkup_type == ICE_SW_LKUP_DFLT) {
1767 		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1768 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1769 		sw_buf->res_type =
1770 			cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1771 	} else {
1772 		status = -EINVAL;
1773 		goto ice_aq_alloc_free_vsi_list_exit;
1774 	}
1775 
1776 	if (opc == ice_aqc_opc_free_res)
1777 		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1778 
1779 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1780 	if (status)
1781 		goto ice_aq_alloc_free_vsi_list_exit;
1782 
1783 	if (opc == ice_aqc_opc_alloc_res) {
1784 		vsi_ele = &sw_buf->elem[0];
1785 		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1786 	}
1787 
1788 ice_aq_alloc_free_vsi_list_exit:
1789 	devm_kfree(ice_hw_to_dev(hw), sw_buf);
1790 	return status;
1791 }
1792 
1793 /**
1794  * ice_aq_sw_rules - add/update/remove switch rules
1795  * @hw: pointer to the HW struct
1796  * @rule_list: pointer to switch rule population list
1797  * @rule_list_sz: total size of the rule list in bytes
1798  * @num_rules: number of switch rules in the rule_list
1799  * @opc: switch rules population command type - pass in the command opcode
1800  * @cd: pointer to command details structure or NULL
1801  *
1802  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1803  */
1804 int
1805 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1806 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1807 {
1808 	struct ice_aq_desc desc;
1809 	int status;
1810 
1811 	if (opc != ice_aqc_opc_add_sw_rules &&
1812 	    opc != ice_aqc_opc_update_sw_rules &&
1813 	    opc != ice_aqc_opc_remove_sw_rules)
1814 		return -EINVAL;
1815 
1816 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1817 
1818 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1819 	desc.params.sw_rules.num_rules_fltr_entry_index =
1820 		cpu_to_le16(num_rules);
1821 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1822 	if (opc != ice_aqc_opc_add_sw_rules &&
1823 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1824 		status = -ENOENT;
1825 
1826 	return status;
1827 }
1828 
1829 /**
1830  * ice_aq_add_recipe - add switch recipe
1831  * @hw: pointer to the HW struct
1832  * @s_recipe_list: pointer to switch rule population list
1833  * @num_recipes: number of switch recipes in the list
1834  * @cd: pointer to command details structure or NULL
1835  *
1836  * Add(0x0290)
1837  */
1838 static int
1839 ice_aq_add_recipe(struct ice_hw *hw,
1840 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1841 		  u16 num_recipes, struct ice_sq_cd *cd)
1842 {
1843 	struct ice_aqc_add_get_recipe *cmd;
1844 	struct ice_aq_desc desc;
1845 	u16 buf_size;
1846 
1847 	cmd = &desc.params.add_get_recipe;
1848 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1849 
1850 	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1851 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1852 
1853 	buf_size = num_recipes * sizeof(*s_recipe_list);
1854 
1855 	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1856 }
1857 
1858 /**
1859  * ice_aq_get_recipe - get switch recipe
1860  * @hw: pointer to the HW struct
1861  * @s_recipe_list: pointer to switch rule population list
1862  * @num_recipes: pointer to the number of recipes (input and output)
1863  * @recipe_root: root recipe number of recipe(s) to retrieve
1864  * @cd: pointer to command details structure or NULL
1865  *
1866  * Get(0x0292)
1867  *
1868  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1869  * On output, *num_recipes will equal the number of entries returned in
1870  * s_recipe_list.
1871  *
1872  * The caller must supply enough space in s_recipe_list to hold all possible
1873  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1874  */
1875 static int
1876 ice_aq_get_recipe(struct ice_hw *hw,
1877 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1878 		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1879 {
1880 	struct ice_aqc_add_get_recipe *cmd;
1881 	struct ice_aq_desc desc;
1882 	u16 buf_size;
1883 	int status;
1884 
1885 	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1886 		return -EINVAL;
1887 
1888 	cmd = &desc.params.add_get_recipe;
1889 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1890 
1891 	cmd->return_index = cpu_to_le16(recipe_root);
1892 	cmd->num_sub_recipes = 0;
1893 
1894 	buf_size = *num_recipes * sizeof(*s_recipe_list);
1895 
1896 	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1897 	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1898 
1899 	return status;
1900 }
1901 
1902 /**
1903  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1904  * @hw: pointer to the HW struct
1905  * @params: parameters used to update the default recipe
1906  *
1907  * This function only supports updating default recipes and it only supports
1908  * updating a single recipe based on the lkup_idx at a time.
1909  *
1910  * This is done as a read-modify-write operation. First, get the current recipe
1911  * contents based on the recipe's ID. Then modify the field vector index and
1912  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1913  * the pre-existing recipe with the modifications.
1914  */
1915 int
1916 ice_update_recipe_lkup_idx(struct ice_hw *hw,
1917 			   struct ice_update_recipe_lkup_idx_params *params)
1918 {
1919 	struct ice_aqc_recipe_data_elem *rcp_list;
1920 	u16 num_recps = ICE_MAX_NUM_RECIPES;
1921 	int status;
1922 
1923 	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1924 	if (!rcp_list)
1925 		return -ENOMEM;
1926 
1927 	/* read current recipe list from firmware */
1928 	rcp_list->recipe_indx = params->rid;
1929 	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1930 	if (status) {
1931 		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1932 			  params->rid, status);
1933 		goto error_out;
1934 	}
1935 
1936 	/* only modify existing recipe's lkup_idx and mask if valid, while
1937 	 * leaving all other fields the same, then update the recipe firmware
1938 	 */
1939 	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
1940 	if (params->mask_valid)
1941 		rcp_list->content.mask[params->lkup_idx] =
1942 			cpu_to_le16(params->mask);
1943 
1944 	if (params->ignore_valid)
1945 		rcp_list->content.lkup_indx[params->lkup_idx] |=
1946 			ICE_AQ_RECIPE_LKUP_IGNORE;
1947 
1948 	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
1949 	if (status)
1950 		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
1951 			  params->rid, params->lkup_idx, params->fv_idx,
1952 			  params->mask, params->mask_valid ? "true" : "false",
1953 			  status);
1954 
1955 error_out:
1956 	kfree(rcp_list);
1957 	return status;
1958 }
1959 
1960 /**
1961  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
1962  * @hw: pointer to the HW struct
1963  * @profile_id: package profile ID to associate the recipe with
1964  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1965  * @cd: pointer to command details structure or NULL
1966  * Recipe to profile association (0x0291)
1967  */
1968 static int
1969 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1970 			     struct ice_sq_cd *cd)
1971 {
1972 	struct ice_aqc_recipe_to_profile *cmd;
1973 	struct ice_aq_desc desc;
1974 
1975 	cmd = &desc.params.recipe_to_profile;
1976 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
1977 	cmd->profile_id = cpu_to_le16(profile_id);
1978 	/* Set the recipe ID bit in the bitmask to let the device know which
1979 	 * profile we are associating the recipe to
1980 	 */
1981 	memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
1982 
1983 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1984 }
1985 
1986 /**
1987  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
1988  * @hw: pointer to the HW struct
1989  * @profile_id: package profile ID to associate the recipe with
1990  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1991  * @cd: pointer to command details structure or NULL
1992  * Associate profile ID with given recipe (0x0293)
1993  */
1994 static int
1995 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1996 			     struct ice_sq_cd *cd)
1997 {
1998 	struct ice_aqc_recipe_to_profile *cmd;
1999 	struct ice_aq_desc desc;
2000 	int status;
2001 
2002 	cmd = &desc.params.recipe_to_profile;
2003 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2004 	cmd->profile_id = cpu_to_le16(profile_id);
2005 
2006 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2007 	if (!status)
2008 		memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2009 
2010 	return status;
2011 }
2012 
2013 /**
2014  * ice_alloc_recipe - add recipe resource
2015  * @hw: pointer to the hardware structure
2016  * @rid: recipe ID returned as response to AQ call
2017  */
2018 static int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2019 {
2020 	struct ice_aqc_alloc_free_res_elem *sw_buf;
2021 	u16 buf_len;
2022 	int status;
2023 
2024 	buf_len = struct_size(sw_buf, elem, 1);
2025 	sw_buf = kzalloc(buf_len, GFP_KERNEL);
2026 	if (!sw_buf)
2027 		return -ENOMEM;
2028 
2029 	sw_buf->num_elems = cpu_to_le16(1);
2030 	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2031 					ICE_AQC_RES_TYPE_S) |
2032 					ICE_AQC_RES_TYPE_FLAG_SHARED);
2033 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2034 				       ice_aqc_opc_alloc_res, NULL);
2035 	if (!status)
2036 		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2037 	kfree(sw_buf);
2038 
2039 	return status;
2040 }
2041 
2042 /**
2043  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2044  * @hw: pointer to hardware structure
2045  *
2046  * This function is used to populate recipe_to_profile matrix where index to
2047  * this array is the recipe ID and the element is the mapping of which profiles
2048  * is this recipe mapped to.
2049  */
2050 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2051 {
2052 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2053 	u16 i;
2054 
2055 	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2056 		u16 j;
2057 
2058 		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2059 		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2060 		if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2061 			continue;
2062 		bitmap_copy(profile_to_recipe[i], r_bitmap,
2063 			    ICE_MAX_NUM_RECIPES);
2064 		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2065 			set_bit(i, recipe_to_profile[j]);
2066 	}
2067 }
2068 
2069 /**
2070  * ice_collect_result_idx - copy result index values
2071  * @buf: buffer that contains the result index
2072  * @recp: the recipe struct to copy data into
2073  */
2074 static void
2075 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2076 		       struct ice_sw_recipe *recp)
2077 {
2078 	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2079 		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2080 			recp->res_idxs);
2081 }
2082 
2083 /**
2084  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2085  * @hw: pointer to hardware structure
2086  * @recps: struct that we need to populate
2087  * @rid: recipe ID that we are populating
2088  * @refresh_required: true if we should get recipe to profile mapping from FW
2089  *
2090  * This function is used to populate all the necessary entries into our
2091  * bookkeeping so that we have a current list of all the recipes that are
2092  * programmed in the firmware.
2093  */
2094 static int
2095 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2096 		    bool *refresh_required)
2097 {
2098 	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2099 	struct ice_aqc_recipe_data_elem *tmp;
2100 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2101 	struct ice_prot_lkup_ext *lkup_exts;
2102 	u8 fv_word_idx = 0;
2103 	u16 sub_recps;
2104 	int status;
2105 
2106 	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2107 
2108 	/* we need a buffer big enough to accommodate all the recipes */
2109 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2110 	if (!tmp)
2111 		return -ENOMEM;
2112 
2113 	tmp[0].recipe_indx = rid;
2114 	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2115 	/* non-zero status meaning recipe doesn't exist */
2116 	if (status)
2117 		goto err_unroll;
2118 
2119 	/* Get recipe to profile map so that we can get the fv from lkups that
2120 	 * we read for a recipe from FW. Since we want to minimize the number of
2121 	 * times we make this FW call, just make one call and cache the copy
2122 	 * until a new recipe is added. This operation is only required the
2123 	 * first time to get the changes from FW. Then to search existing
2124 	 * entries we don't need to update the cache again until another recipe
2125 	 * gets added.
2126 	 */
2127 	if (*refresh_required) {
2128 		ice_get_recp_to_prof_map(hw);
2129 		*refresh_required = false;
2130 	}
2131 
2132 	/* Start populating all the entries for recps[rid] based on lkups from
2133 	 * firmware. Note that we are only creating the root recipe in our
2134 	 * database.
2135 	 */
2136 	lkup_exts = &recps[rid].lkup_exts;
2137 
2138 	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2139 		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2140 		struct ice_recp_grp_entry *rg_entry;
2141 		u8 i, prof, idx, prot = 0;
2142 		bool is_root;
2143 		u16 off = 0;
2144 
2145 		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2146 					GFP_KERNEL);
2147 		if (!rg_entry) {
2148 			status = -ENOMEM;
2149 			goto err_unroll;
2150 		}
2151 
2152 		idx = root_bufs.recipe_indx;
2153 		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2154 
2155 		/* Mark all result indices in this chain */
2156 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2157 			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2158 				result_bm);
2159 
2160 		/* get the first profile that is associated with rid */
2161 		prof = find_first_bit(recipe_to_profile[idx],
2162 				      ICE_MAX_NUM_PROFILES);
2163 		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2164 			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2165 
2166 			rg_entry->fv_idx[i] = lkup_indx;
2167 			rg_entry->fv_mask[i] =
2168 				le16_to_cpu(root_bufs.content.mask[i + 1]);
2169 
2170 			/* If the recipe is a chained recipe then all its
2171 			 * child recipe's result will have a result index.
2172 			 * To fill fv_words we should not use those result
2173 			 * index, we only need the protocol ids and offsets.
2174 			 * We will skip all the fv_idx which stores result
2175 			 * index in them. We also need to skip any fv_idx which
2176 			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2177 			 * valid offset value.
2178 			 */
2179 			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2180 			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2181 			    rg_entry->fv_idx[i] == 0)
2182 				continue;
2183 
2184 			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2185 					  rg_entry->fv_idx[i], &prot, &off);
2186 			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2187 			lkup_exts->fv_words[fv_word_idx].off = off;
2188 			lkup_exts->field_mask[fv_word_idx] =
2189 				rg_entry->fv_mask[i];
2190 			fv_word_idx++;
2191 		}
2192 		/* populate rg_list with the data from the child entry of this
2193 		 * recipe
2194 		 */
2195 		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2196 
2197 		/* Propagate some data to the recipe database */
2198 		recps[idx].is_root = !!is_root;
2199 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2200 		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2201 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2202 			recps[idx].chain_idx = root_bufs.content.result_indx &
2203 				~ICE_AQ_RECIPE_RESULT_EN;
2204 			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2205 		} else {
2206 			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2207 		}
2208 
2209 		if (!is_root)
2210 			continue;
2211 
2212 		/* Only do the following for root recipes entries */
2213 		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2214 		       sizeof(recps[idx].r_bitmap));
2215 		recps[idx].root_rid = root_bufs.content.rid &
2216 			~ICE_AQ_RECIPE_ID_IS_ROOT;
2217 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2218 	}
2219 
2220 	/* Complete initialization of the root recipe entry */
2221 	lkup_exts->n_val_words = fv_word_idx;
2222 	recps[rid].big_recp = (num_recps > 1);
2223 	recps[rid].n_grp_count = (u8)num_recps;
2224 	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2225 					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2226 					   GFP_KERNEL);
2227 	if (!recps[rid].root_buf) {
2228 		status = -ENOMEM;
2229 		goto err_unroll;
2230 	}
2231 
2232 	/* Copy result indexes */
2233 	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2234 	recps[rid].recp_created = true;
2235 
2236 err_unroll:
2237 	kfree(tmp);
2238 	return status;
2239 }
2240 
2241 /* ice_init_port_info - Initialize port_info with switch configuration data
2242  * @pi: pointer to port_info
2243  * @vsi_port_num: VSI number or port number
2244  * @type: Type of switch element (port or VSI)
2245  * @swid: switch ID of the switch the element is attached to
2246  * @pf_vf_num: PF or VF number
2247  * @is_vf: true if the element is a VF, false otherwise
2248  */
2249 static void
2250 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2251 		   u16 swid, u16 pf_vf_num, bool is_vf)
2252 {
2253 	switch (type) {
2254 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2255 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2256 		pi->sw_id = swid;
2257 		pi->pf_vf_num = pf_vf_num;
2258 		pi->is_vf = is_vf;
2259 		break;
2260 	default:
2261 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2262 		break;
2263 	}
2264 }
2265 
2266 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2267  * @hw: pointer to the hardware structure
2268  */
2269 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2270 {
2271 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2272 	u16 req_desc = 0;
2273 	u16 num_elems;
2274 	int status;
2275 	u16 i;
2276 
2277 	rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN,
2278 			    GFP_KERNEL);
2279 
2280 	if (!rbuf)
2281 		return -ENOMEM;
2282 
2283 	/* Multiple calls to ice_aq_get_sw_cfg may be required
2284 	 * to get all the switch configuration information. The need
2285 	 * for additional calls is indicated by ice_aq_get_sw_cfg
2286 	 * writing a non-zero value in req_desc
2287 	 */
2288 	do {
2289 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2290 
2291 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2292 					   &req_desc, &num_elems, NULL);
2293 
2294 		if (status)
2295 			break;
2296 
2297 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2298 			u16 pf_vf_num, swid, vsi_port_num;
2299 			bool is_vf = false;
2300 			u8 res_type;
2301 
2302 			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2303 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2304 
2305 			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2306 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2307 
2308 			swid = le16_to_cpu(ele->swid);
2309 
2310 			if (le16_to_cpu(ele->pf_vf_num) &
2311 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2312 				is_vf = true;
2313 
2314 			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2315 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2316 
2317 			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2318 				/* FW VSI is not needed. Just continue. */
2319 				continue;
2320 			}
2321 
2322 			ice_init_port_info(hw->port_info, vsi_port_num,
2323 					   res_type, swid, pf_vf_num, is_vf);
2324 		}
2325 	} while (req_desc && !status);
2326 
2327 	devm_kfree(ice_hw_to_dev(hw), rbuf);
2328 	return status;
2329 }
2330 
2331 /**
2332  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2333  * @hw: pointer to the hardware structure
2334  * @fi: filter info structure to fill/update
2335  *
2336  * This helper function populates the lb_en and lan_en elements of the provided
2337  * ice_fltr_info struct using the switch's type and characteristics of the
2338  * switch rule being configured.
2339  */
2340 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2341 {
2342 	fi->lb_en = false;
2343 	fi->lan_en = false;
2344 	if ((fi->flag & ICE_FLTR_TX) &&
2345 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2346 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2347 	     fi->fltr_act == ICE_FWD_TO_Q ||
2348 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2349 		/* Setting LB for prune actions will result in replicated
2350 		 * packets to the internal switch that will be dropped.
2351 		 */
2352 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2353 			fi->lb_en = true;
2354 
2355 		/* Set lan_en to TRUE if
2356 		 * 1. The switch is a VEB AND
2357 		 * 2
2358 		 * 2.1 The lookup is a directional lookup like ethertype,
2359 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2360 		 * and default-port OR
2361 		 * 2.2 The lookup is VLAN, OR
2362 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2363 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2364 		 *
2365 		 * OR
2366 		 *
2367 		 * The switch is a VEPA.
2368 		 *
2369 		 * In all other cases, the LAN enable has to be set to false.
2370 		 */
2371 		if (hw->evb_veb) {
2372 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2373 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2374 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2375 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2376 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2377 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2378 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2379 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2380 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2381 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2382 				fi->lan_en = true;
2383 		} else {
2384 			fi->lan_en = true;
2385 		}
2386 	}
2387 }
2388 
2389 /**
2390  * ice_fill_sw_rule - Helper function to fill switch rule structure
2391  * @hw: pointer to the hardware structure
2392  * @f_info: entry containing packet forwarding information
2393  * @s_rule: switch rule structure to be filled in based on mac_entry
2394  * @opc: switch rules population command type - pass in the command opcode
2395  */
2396 static void
2397 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2398 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2399 		 enum ice_adminq_opc opc)
2400 {
2401 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2402 	u16 vlan_tpid = ETH_P_8021Q;
2403 	void *daddr = NULL;
2404 	u16 eth_hdr_sz;
2405 	u8 *eth_hdr;
2406 	u32 act = 0;
2407 	__be16 *off;
2408 	u8 q_rgn;
2409 
2410 	if (opc == ice_aqc_opc_remove_sw_rules) {
2411 		s_rule->act = 0;
2412 		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2413 		s_rule->hdr_len = 0;
2414 		return;
2415 	}
2416 
2417 	eth_hdr_sz = sizeof(dummy_eth_header);
2418 	eth_hdr = s_rule->hdr_data;
2419 
2420 	/* initialize the ether header with a dummy header */
2421 	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2422 	ice_fill_sw_info(hw, f_info);
2423 
2424 	switch (f_info->fltr_act) {
2425 	case ICE_FWD_TO_VSI:
2426 		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2427 			ICE_SINGLE_ACT_VSI_ID_M;
2428 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2429 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2430 				ICE_SINGLE_ACT_VALID_BIT;
2431 		break;
2432 	case ICE_FWD_TO_VSI_LIST:
2433 		act |= ICE_SINGLE_ACT_VSI_LIST;
2434 		act |= (f_info->fwd_id.vsi_list_id <<
2435 			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2436 			ICE_SINGLE_ACT_VSI_LIST_ID_M;
2437 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2438 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2439 				ICE_SINGLE_ACT_VALID_BIT;
2440 		break;
2441 	case ICE_FWD_TO_Q:
2442 		act |= ICE_SINGLE_ACT_TO_Q;
2443 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2444 			ICE_SINGLE_ACT_Q_INDEX_M;
2445 		break;
2446 	case ICE_DROP_PACKET:
2447 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2448 			ICE_SINGLE_ACT_VALID_BIT;
2449 		break;
2450 	case ICE_FWD_TO_QGRP:
2451 		q_rgn = f_info->qgrp_size > 0 ?
2452 			(u8)ilog2(f_info->qgrp_size) : 0;
2453 		act |= ICE_SINGLE_ACT_TO_Q;
2454 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2455 			ICE_SINGLE_ACT_Q_INDEX_M;
2456 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2457 			ICE_SINGLE_ACT_Q_REGION_M;
2458 		break;
2459 	default:
2460 		return;
2461 	}
2462 
2463 	if (f_info->lb_en)
2464 		act |= ICE_SINGLE_ACT_LB_ENABLE;
2465 	if (f_info->lan_en)
2466 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2467 
2468 	switch (f_info->lkup_type) {
2469 	case ICE_SW_LKUP_MAC:
2470 		daddr = f_info->l_data.mac.mac_addr;
2471 		break;
2472 	case ICE_SW_LKUP_VLAN:
2473 		vlan_id = f_info->l_data.vlan.vlan_id;
2474 		if (f_info->l_data.vlan.tpid_valid)
2475 			vlan_tpid = f_info->l_data.vlan.tpid;
2476 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2477 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2478 			act |= ICE_SINGLE_ACT_PRUNE;
2479 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2480 		}
2481 		break;
2482 	case ICE_SW_LKUP_ETHERTYPE_MAC:
2483 		daddr = f_info->l_data.ethertype_mac.mac_addr;
2484 		fallthrough;
2485 	case ICE_SW_LKUP_ETHERTYPE:
2486 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2487 		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2488 		break;
2489 	case ICE_SW_LKUP_MAC_VLAN:
2490 		daddr = f_info->l_data.mac_vlan.mac_addr;
2491 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2492 		break;
2493 	case ICE_SW_LKUP_PROMISC_VLAN:
2494 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2495 		fallthrough;
2496 	case ICE_SW_LKUP_PROMISC:
2497 		daddr = f_info->l_data.mac_vlan.mac_addr;
2498 		break;
2499 	default:
2500 		break;
2501 	}
2502 
2503 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2504 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2505 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2506 
2507 	/* Recipe set depending on lookup type */
2508 	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2509 	s_rule->src = cpu_to_le16(f_info->src);
2510 	s_rule->act = cpu_to_le32(act);
2511 
2512 	if (daddr)
2513 		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2514 
2515 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2516 		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2517 		*off = cpu_to_be16(vlan_id);
2518 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2519 		*off = cpu_to_be16(vlan_tpid);
2520 	}
2521 
2522 	/* Create the switch rule with the final dummy Ethernet header */
2523 	if (opc != ice_aqc_opc_update_sw_rules)
2524 		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2525 }
2526 
2527 /**
2528  * ice_add_marker_act
2529  * @hw: pointer to the hardware structure
2530  * @m_ent: the management entry for which sw marker needs to be added
2531  * @sw_marker: sw marker to tag the Rx descriptor with
2532  * @l_id: large action resource ID
2533  *
2534  * Create a large action to hold software marker and update the switch rule
2535  * entry pointed by m_ent with newly created large action
2536  */
2537 static int
2538 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2539 		   u16 sw_marker, u16 l_id)
2540 {
2541 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2542 	struct ice_sw_rule_lg_act *lg_act;
2543 	/* For software marker we need 3 large actions
2544 	 * 1. FWD action: FWD TO VSI or VSI LIST
2545 	 * 2. GENERIC VALUE action to hold the profile ID
2546 	 * 3. GENERIC VALUE action to hold the software marker ID
2547 	 */
2548 	const u16 num_lg_acts = 3;
2549 	u16 lg_act_size;
2550 	u16 rules_size;
2551 	int status;
2552 	u32 act;
2553 	u16 id;
2554 
2555 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2556 		return -EINVAL;
2557 
2558 	/* Create two back-to-back switch rules and submit them to the HW using
2559 	 * one memory buffer:
2560 	 *    1. Large Action
2561 	 *    2. Look up Tx Rx
2562 	 */
2563 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2564 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2565 	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2566 	if (!lg_act)
2567 		return -ENOMEM;
2568 
2569 	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2570 
2571 	/* Fill in the first switch rule i.e. large action */
2572 	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2573 	lg_act->index = cpu_to_le16(l_id);
2574 	lg_act->size = cpu_to_le16(num_lg_acts);
2575 
2576 	/* First action VSI forwarding or VSI list forwarding depending on how
2577 	 * many VSIs
2578 	 */
2579 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2580 		m_ent->fltr_info.fwd_id.hw_vsi_id;
2581 
2582 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2583 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2584 	if (m_ent->vsi_count > 1)
2585 		act |= ICE_LG_ACT_VSI_LIST;
2586 	lg_act->act[0] = cpu_to_le32(act);
2587 
2588 	/* Second action descriptor type */
2589 	act = ICE_LG_ACT_GENERIC;
2590 
2591 	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2592 	lg_act->act[1] = cpu_to_le32(act);
2593 
2594 	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2595 	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2596 
2597 	/* Third action Marker value */
2598 	act |= ICE_LG_ACT_GENERIC;
2599 	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2600 		ICE_LG_ACT_GENERIC_VALUE_M;
2601 
2602 	lg_act->act[2] = cpu_to_le32(act);
2603 
2604 	/* call the fill switch rule to fill the lookup Tx Rx structure */
2605 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2606 			 ice_aqc_opc_update_sw_rules);
2607 
2608 	/* Update the action to point to the large action ID */
2609 	rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2610 				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2611 				  ICE_SINGLE_ACT_PTR_VAL_M));
2612 
2613 	/* Use the filter rule ID of the previously created rule with single
2614 	 * act. Once the update happens, hardware will treat this as large
2615 	 * action
2616 	 */
2617 	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2618 
2619 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2620 				 ice_aqc_opc_update_sw_rules, NULL);
2621 	if (!status) {
2622 		m_ent->lg_act_idx = l_id;
2623 		m_ent->sw_marker_id = sw_marker;
2624 	}
2625 
2626 	devm_kfree(ice_hw_to_dev(hw), lg_act);
2627 	return status;
2628 }
2629 
2630 /**
2631  * ice_create_vsi_list_map
2632  * @hw: pointer to the hardware structure
2633  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2634  * @num_vsi: number of VSI handles in the array
2635  * @vsi_list_id: VSI list ID generated as part of allocate resource
2636  *
2637  * Helper function to create a new entry of VSI list ID to VSI mapping
2638  * using the given VSI list ID
2639  */
2640 static struct ice_vsi_list_map_info *
2641 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2642 			u16 vsi_list_id)
2643 {
2644 	struct ice_switch_info *sw = hw->switch_info;
2645 	struct ice_vsi_list_map_info *v_map;
2646 	int i;
2647 
2648 	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2649 	if (!v_map)
2650 		return NULL;
2651 
2652 	v_map->vsi_list_id = vsi_list_id;
2653 	v_map->ref_cnt = 1;
2654 	for (i = 0; i < num_vsi; i++)
2655 		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2656 
2657 	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2658 	return v_map;
2659 }
2660 
2661 /**
2662  * ice_update_vsi_list_rule
2663  * @hw: pointer to the hardware structure
2664  * @vsi_handle_arr: array of VSI handles to form a VSI list
2665  * @num_vsi: number of VSI handles in the array
2666  * @vsi_list_id: VSI list ID generated as part of allocate resource
2667  * @remove: Boolean value to indicate if this is a remove action
2668  * @opc: switch rules population command type - pass in the command opcode
2669  * @lkup_type: lookup type of the filter
2670  *
2671  * Call AQ command to add a new switch rule or update existing switch rule
2672  * using the given VSI list ID
2673  */
2674 static int
2675 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2676 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2677 			 enum ice_sw_lkup_type lkup_type)
2678 {
2679 	struct ice_sw_rule_vsi_list *s_rule;
2680 	u16 s_rule_size;
2681 	u16 rule_type;
2682 	int status;
2683 	int i;
2684 
2685 	if (!num_vsi)
2686 		return -EINVAL;
2687 
2688 	if (lkup_type == ICE_SW_LKUP_MAC ||
2689 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2690 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2691 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2692 	    lkup_type == ICE_SW_LKUP_PROMISC ||
2693 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2694 	    lkup_type == ICE_SW_LKUP_DFLT)
2695 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2696 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2697 	else if (lkup_type == ICE_SW_LKUP_VLAN)
2698 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2699 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2700 	else
2701 		return -EINVAL;
2702 
2703 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2704 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2705 	if (!s_rule)
2706 		return -ENOMEM;
2707 	for (i = 0; i < num_vsi; i++) {
2708 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2709 			status = -EINVAL;
2710 			goto exit;
2711 		}
2712 		/* AQ call requires hw_vsi_id(s) */
2713 		s_rule->vsi[i] =
2714 			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2715 	}
2716 
2717 	s_rule->hdr.type = cpu_to_le16(rule_type);
2718 	s_rule->number_vsi = cpu_to_le16(num_vsi);
2719 	s_rule->index = cpu_to_le16(vsi_list_id);
2720 
2721 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2722 
2723 exit:
2724 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2725 	return status;
2726 }
2727 
2728 /**
2729  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2730  * @hw: pointer to the HW struct
2731  * @vsi_handle_arr: array of VSI handles to form a VSI list
2732  * @num_vsi: number of VSI handles in the array
2733  * @vsi_list_id: stores the ID of the VSI list to be created
2734  * @lkup_type: switch rule filter's lookup type
2735  */
2736 static int
2737 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2738 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2739 {
2740 	int status;
2741 
2742 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2743 					    ice_aqc_opc_alloc_res);
2744 	if (status)
2745 		return status;
2746 
2747 	/* Update the newly created VSI list to include the specified VSIs */
2748 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2749 					*vsi_list_id, false,
2750 					ice_aqc_opc_add_sw_rules, lkup_type);
2751 }
2752 
2753 /**
2754  * ice_create_pkt_fwd_rule
2755  * @hw: pointer to the hardware structure
2756  * @f_entry: entry containing packet forwarding information
2757  *
2758  * Create switch rule with given filter information and add an entry
2759  * to the corresponding filter management list to track this switch rule
2760  * and VSI mapping
2761  */
2762 static int
2763 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2764 			struct ice_fltr_list_entry *f_entry)
2765 {
2766 	struct ice_fltr_mgmt_list_entry *fm_entry;
2767 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2768 	enum ice_sw_lkup_type l_type;
2769 	struct ice_sw_recipe *recp;
2770 	int status;
2771 
2772 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2773 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2774 			      GFP_KERNEL);
2775 	if (!s_rule)
2776 		return -ENOMEM;
2777 	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2778 				GFP_KERNEL);
2779 	if (!fm_entry) {
2780 		status = -ENOMEM;
2781 		goto ice_create_pkt_fwd_rule_exit;
2782 	}
2783 
2784 	fm_entry->fltr_info = f_entry->fltr_info;
2785 
2786 	/* Initialize all the fields for the management entry */
2787 	fm_entry->vsi_count = 1;
2788 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2789 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2790 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2791 
2792 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2793 			 ice_aqc_opc_add_sw_rules);
2794 
2795 	status = ice_aq_sw_rules(hw, s_rule,
2796 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2797 				 ice_aqc_opc_add_sw_rules, NULL);
2798 	if (status) {
2799 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2800 		goto ice_create_pkt_fwd_rule_exit;
2801 	}
2802 
2803 	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2804 	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2805 
2806 	/* The book keeping entries will get removed when base driver
2807 	 * calls remove filter AQ command
2808 	 */
2809 	l_type = fm_entry->fltr_info.lkup_type;
2810 	recp = &hw->switch_info->recp_list[l_type];
2811 	list_add(&fm_entry->list_entry, &recp->filt_rules);
2812 
2813 ice_create_pkt_fwd_rule_exit:
2814 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2815 	return status;
2816 }
2817 
2818 /**
2819  * ice_update_pkt_fwd_rule
2820  * @hw: pointer to the hardware structure
2821  * @f_info: filter information for switch rule
2822  *
2823  * Call AQ command to update a previously created switch rule with a
2824  * VSI list ID
2825  */
2826 static int
2827 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2828 {
2829 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2830 	int status;
2831 
2832 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2833 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2834 			      GFP_KERNEL);
2835 	if (!s_rule)
2836 		return -ENOMEM;
2837 
2838 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2839 
2840 	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2841 
2842 	/* Update switch rule with new rule set to forward VSI list */
2843 	status = ice_aq_sw_rules(hw, s_rule,
2844 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2845 				 ice_aqc_opc_update_sw_rules, NULL);
2846 
2847 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2848 	return status;
2849 }
2850 
2851 /**
2852  * ice_update_sw_rule_bridge_mode
2853  * @hw: pointer to the HW struct
2854  *
2855  * Updates unicast switch filter rules based on VEB/VEPA mode
2856  */
2857 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2858 {
2859 	struct ice_switch_info *sw = hw->switch_info;
2860 	struct ice_fltr_mgmt_list_entry *fm_entry;
2861 	struct list_head *rule_head;
2862 	struct mutex *rule_lock; /* Lock to protect filter rule list */
2863 	int status = 0;
2864 
2865 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2866 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2867 
2868 	mutex_lock(rule_lock);
2869 	list_for_each_entry(fm_entry, rule_head, list_entry) {
2870 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2871 		u8 *addr = fi->l_data.mac.mac_addr;
2872 
2873 		/* Update unicast Tx rules to reflect the selected
2874 		 * VEB/VEPA mode
2875 		 */
2876 		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2877 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2878 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2879 		     fi->fltr_act == ICE_FWD_TO_Q ||
2880 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2881 			status = ice_update_pkt_fwd_rule(hw, fi);
2882 			if (status)
2883 				break;
2884 		}
2885 	}
2886 
2887 	mutex_unlock(rule_lock);
2888 
2889 	return status;
2890 }
2891 
2892 /**
2893  * ice_add_update_vsi_list
2894  * @hw: pointer to the hardware structure
2895  * @m_entry: pointer to current filter management list entry
2896  * @cur_fltr: filter information from the book keeping entry
2897  * @new_fltr: filter information with the new VSI to be added
2898  *
2899  * Call AQ command to add or update previously created VSI list with new VSI.
2900  *
2901  * Helper function to do book keeping associated with adding filter information
2902  * The algorithm to do the book keeping is described below :
2903  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2904  *	if only one VSI has been added till now
2905  *		Allocate a new VSI list and add two VSIs
2906  *		to this list using switch rule command
2907  *		Update the previously created switch rule with the
2908  *		newly created VSI list ID
2909  *	if a VSI list was previously created
2910  *		Add the new VSI to the previously created VSI list set
2911  *		using the update switch rule command
2912  */
2913 static int
2914 ice_add_update_vsi_list(struct ice_hw *hw,
2915 			struct ice_fltr_mgmt_list_entry *m_entry,
2916 			struct ice_fltr_info *cur_fltr,
2917 			struct ice_fltr_info *new_fltr)
2918 {
2919 	u16 vsi_list_id = 0;
2920 	int status = 0;
2921 
2922 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2923 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2924 		return -EOPNOTSUPP;
2925 
2926 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2927 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2928 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2929 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2930 		return -EOPNOTSUPP;
2931 
2932 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2933 		/* Only one entry existed in the mapping and it was not already
2934 		 * a part of a VSI list. So, create a VSI list with the old and
2935 		 * new VSIs.
2936 		 */
2937 		struct ice_fltr_info tmp_fltr;
2938 		u16 vsi_handle_arr[2];
2939 
2940 		/* A rule already exists with the new VSI being added */
2941 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
2942 			return -EEXIST;
2943 
2944 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
2945 		vsi_handle_arr[1] = new_fltr->vsi_handle;
2946 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2947 						  &vsi_list_id,
2948 						  new_fltr->lkup_type);
2949 		if (status)
2950 			return status;
2951 
2952 		tmp_fltr = *new_fltr;
2953 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
2954 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2955 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2956 		/* Update the previous switch rule of "MAC forward to VSI" to
2957 		 * "MAC fwd to VSI list"
2958 		 */
2959 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2960 		if (status)
2961 			return status;
2962 
2963 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
2964 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2965 		m_entry->vsi_list_info =
2966 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2967 						vsi_list_id);
2968 
2969 		if (!m_entry->vsi_list_info)
2970 			return -ENOMEM;
2971 
2972 		/* If this entry was large action then the large action needs
2973 		 * to be updated to point to FWD to VSI list
2974 		 */
2975 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
2976 			status =
2977 			    ice_add_marker_act(hw, m_entry,
2978 					       m_entry->sw_marker_id,
2979 					       m_entry->lg_act_idx);
2980 	} else {
2981 		u16 vsi_handle = new_fltr->vsi_handle;
2982 		enum ice_adminq_opc opcode;
2983 
2984 		if (!m_entry->vsi_list_info)
2985 			return -EIO;
2986 
2987 		/* A rule already exists with the new VSI being added */
2988 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
2989 			return 0;
2990 
2991 		/* Update the previously created VSI list set with
2992 		 * the new VSI ID passed in
2993 		 */
2994 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
2995 		opcode = ice_aqc_opc_update_sw_rules;
2996 
2997 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
2998 						  vsi_list_id, false, opcode,
2999 						  new_fltr->lkup_type);
3000 		/* update VSI list mapping info with new VSI ID */
3001 		if (!status)
3002 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3003 	}
3004 	if (!status)
3005 		m_entry->vsi_count++;
3006 	return status;
3007 }
3008 
3009 /**
3010  * ice_find_rule_entry - Search a rule entry
3011  * @hw: pointer to the hardware structure
3012  * @recp_id: lookup type for which the specified rule needs to be searched
3013  * @f_info: rule information
3014  *
3015  * Helper function to search for a given rule entry
3016  * Returns pointer to entry storing the rule if found
3017  */
3018 static struct ice_fltr_mgmt_list_entry *
3019 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3020 {
3021 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3022 	struct ice_switch_info *sw = hw->switch_info;
3023 	struct list_head *list_head;
3024 
3025 	list_head = &sw->recp_list[recp_id].filt_rules;
3026 	list_for_each_entry(list_itr, list_head, list_entry) {
3027 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3028 			    sizeof(f_info->l_data)) &&
3029 		    f_info->flag == list_itr->fltr_info.flag) {
3030 			ret = list_itr;
3031 			break;
3032 		}
3033 	}
3034 	return ret;
3035 }
3036 
3037 /**
3038  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3039  * @hw: pointer to the hardware structure
3040  * @recp_id: lookup type for which VSI lists needs to be searched
3041  * @vsi_handle: VSI handle to be found in VSI list
3042  * @vsi_list_id: VSI list ID found containing vsi_handle
3043  *
3044  * Helper function to search a VSI list with single entry containing given VSI
3045  * handle element. This can be extended further to search VSI list with more
3046  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3047  */
3048 static struct ice_vsi_list_map_info *
3049 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3050 			u16 *vsi_list_id)
3051 {
3052 	struct ice_vsi_list_map_info *map_info = NULL;
3053 	struct ice_switch_info *sw = hw->switch_info;
3054 	struct ice_fltr_mgmt_list_entry *list_itr;
3055 	struct list_head *list_head;
3056 
3057 	list_head = &sw->recp_list[recp_id].filt_rules;
3058 	list_for_each_entry(list_itr, list_head, list_entry) {
3059 		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3060 			map_info = list_itr->vsi_list_info;
3061 			if (test_bit(vsi_handle, map_info->vsi_map)) {
3062 				*vsi_list_id = map_info->vsi_list_id;
3063 				return map_info;
3064 			}
3065 		}
3066 	}
3067 	return NULL;
3068 }
3069 
3070 /**
3071  * ice_add_rule_internal - add rule for a given lookup type
3072  * @hw: pointer to the hardware structure
3073  * @recp_id: lookup type (recipe ID) for which rule has to be added
3074  * @f_entry: structure containing MAC forwarding information
3075  *
3076  * Adds or updates the rule lists for a given recipe
3077  */
3078 static int
3079 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3080 		      struct ice_fltr_list_entry *f_entry)
3081 {
3082 	struct ice_switch_info *sw = hw->switch_info;
3083 	struct ice_fltr_info *new_fltr, *cur_fltr;
3084 	struct ice_fltr_mgmt_list_entry *m_entry;
3085 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3086 	int status = 0;
3087 
3088 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3089 		return -EINVAL;
3090 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3091 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3092 
3093 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3094 
3095 	mutex_lock(rule_lock);
3096 	new_fltr = &f_entry->fltr_info;
3097 	if (new_fltr->flag & ICE_FLTR_RX)
3098 		new_fltr->src = hw->port_info->lport;
3099 	else if (new_fltr->flag & ICE_FLTR_TX)
3100 		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3101 
3102 	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3103 	if (!m_entry) {
3104 		mutex_unlock(rule_lock);
3105 		return ice_create_pkt_fwd_rule(hw, f_entry);
3106 	}
3107 
3108 	cur_fltr = &m_entry->fltr_info;
3109 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3110 	mutex_unlock(rule_lock);
3111 
3112 	return status;
3113 }
3114 
3115 /**
3116  * ice_remove_vsi_list_rule
3117  * @hw: pointer to the hardware structure
3118  * @vsi_list_id: VSI list ID generated as part of allocate resource
3119  * @lkup_type: switch rule filter lookup type
3120  *
3121  * The VSI list should be emptied before this function is called to remove the
3122  * VSI list.
3123  */
3124 static int
3125 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3126 			 enum ice_sw_lkup_type lkup_type)
3127 {
3128 	struct ice_sw_rule_vsi_list *s_rule;
3129 	u16 s_rule_size;
3130 	int status;
3131 
3132 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3133 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3134 	if (!s_rule)
3135 		return -ENOMEM;
3136 
3137 	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3138 	s_rule->index = cpu_to_le16(vsi_list_id);
3139 
3140 	/* Free the vsi_list resource that we allocated. It is assumed that the
3141 	 * list is empty at this point.
3142 	 */
3143 	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3144 					    ice_aqc_opc_free_res);
3145 
3146 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3147 	return status;
3148 }
3149 
3150 /**
3151  * ice_rem_update_vsi_list
3152  * @hw: pointer to the hardware structure
3153  * @vsi_handle: VSI handle of the VSI to remove
3154  * @fm_list: filter management entry for which the VSI list management needs to
3155  *           be done
3156  */
3157 static int
3158 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3159 			struct ice_fltr_mgmt_list_entry *fm_list)
3160 {
3161 	enum ice_sw_lkup_type lkup_type;
3162 	u16 vsi_list_id;
3163 	int status = 0;
3164 
3165 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3166 	    fm_list->vsi_count == 0)
3167 		return -EINVAL;
3168 
3169 	/* A rule with the VSI being removed does not exist */
3170 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3171 		return -ENOENT;
3172 
3173 	lkup_type = fm_list->fltr_info.lkup_type;
3174 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3175 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3176 					  ice_aqc_opc_update_sw_rules,
3177 					  lkup_type);
3178 	if (status)
3179 		return status;
3180 
3181 	fm_list->vsi_count--;
3182 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3183 
3184 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3185 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3186 		struct ice_vsi_list_map_info *vsi_list_info =
3187 			fm_list->vsi_list_info;
3188 		u16 rem_vsi_handle;
3189 
3190 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3191 						ICE_MAX_VSI);
3192 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3193 			return -EIO;
3194 
3195 		/* Make sure VSI list is empty before removing it below */
3196 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3197 						  vsi_list_id, true,
3198 						  ice_aqc_opc_update_sw_rules,
3199 						  lkup_type);
3200 		if (status)
3201 			return status;
3202 
3203 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3204 		tmp_fltr_info.fwd_id.hw_vsi_id =
3205 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3206 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3207 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3208 		if (status) {
3209 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3210 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3211 			return status;
3212 		}
3213 
3214 		fm_list->fltr_info = tmp_fltr_info;
3215 	}
3216 
3217 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3218 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3219 		struct ice_vsi_list_map_info *vsi_list_info =
3220 			fm_list->vsi_list_info;
3221 
3222 		/* Remove the VSI list since it is no longer used */
3223 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3224 		if (status) {
3225 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3226 				  vsi_list_id, status);
3227 			return status;
3228 		}
3229 
3230 		list_del(&vsi_list_info->list_entry);
3231 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3232 		fm_list->vsi_list_info = NULL;
3233 	}
3234 
3235 	return status;
3236 }
3237 
3238 /**
3239  * ice_remove_rule_internal - Remove a filter rule of a given type
3240  * @hw: pointer to the hardware structure
3241  * @recp_id: recipe ID for which the rule needs to removed
3242  * @f_entry: rule entry containing filter information
3243  */
3244 static int
3245 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3246 			 struct ice_fltr_list_entry *f_entry)
3247 {
3248 	struct ice_switch_info *sw = hw->switch_info;
3249 	struct ice_fltr_mgmt_list_entry *list_elem;
3250 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3251 	bool remove_rule = false;
3252 	u16 vsi_handle;
3253 	int status = 0;
3254 
3255 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3256 		return -EINVAL;
3257 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3258 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3259 
3260 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3261 	mutex_lock(rule_lock);
3262 	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3263 	if (!list_elem) {
3264 		status = -ENOENT;
3265 		goto exit;
3266 	}
3267 
3268 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3269 		remove_rule = true;
3270 	} else if (!list_elem->vsi_list_info) {
3271 		status = -ENOENT;
3272 		goto exit;
3273 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3274 		/* a ref_cnt > 1 indicates that the vsi_list is being
3275 		 * shared by multiple rules. Decrement the ref_cnt and
3276 		 * remove this rule, but do not modify the list, as it
3277 		 * is in-use by other rules.
3278 		 */
3279 		list_elem->vsi_list_info->ref_cnt--;
3280 		remove_rule = true;
3281 	} else {
3282 		/* a ref_cnt of 1 indicates the vsi_list is only used
3283 		 * by one rule. However, the original removal request is only
3284 		 * for a single VSI. Update the vsi_list first, and only
3285 		 * remove the rule if there are no further VSIs in this list.
3286 		 */
3287 		vsi_handle = f_entry->fltr_info.vsi_handle;
3288 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3289 		if (status)
3290 			goto exit;
3291 		/* if VSI count goes to zero after updating the VSI list */
3292 		if (list_elem->vsi_count == 0)
3293 			remove_rule = true;
3294 	}
3295 
3296 	if (remove_rule) {
3297 		/* Remove the lookup rule */
3298 		struct ice_sw_rule_lkup_rx_tx *s_rule;
3299 
3300 		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3301 				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3302 				      GFP_KERNEL);
3303 		if (!s_rule) {
3304 			status = -ENOMEM;
3305 			goto exit;
3306 		}
3307 
3308 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3309 				 ice_aqc_opc_remove_sw_rules);
3310 
3311 		status = ice_aq_sw_rules(hw, s_rule,
3312 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3313 					 1, ice_aqc_opc_remove_sw_rules, NULL);
3314 
3315 		/* Remove a book keeping from the list */
3316 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3317 
3318 		if (status)
3319 			goto exit;
3320 
3321 		list_del(&list_elem->list_entry);
3322 		devm_kfree(ice_hw_to_dev(hw), list_elem);
3323 	}
3324 exit:
3325 	mutex_unlock(rule_lock);
3326 	return status;
3327 }
3328 
3329 /**
3330  * ice_mac_fltr_exist - does this MAC filter exist for given VSI
3331  * @hw: pointer to the hardware structure
3332  * @mac: MAC address to be checked (for MAC filter)
3333  * @vsi_handle: check MAC filter for this VSI
3334  */
3335 bool ice_mac_fltr_exist(struct ice_hw *hw, u8 *mac, u16 vsi_handle)
3336 {
3337 	struct ice_fltr_mgmt_list_entry *entry;
3338 	struct list_head *rule_head;
3339 	struct ice_switch_info *sw;
3340 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3341 	u16 hw_vsi_id;
3342 
3343 	if (!ice_is_vsi_valid(hw, vsi_handle))
3344 		return false;
3345 
3346 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3347 	sw = hw->switch_info;
3348 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3349 	if (!rule_head)
3350 		return false;
3351 
3352 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3353 	mutex_lock(rule_lock);
3354 	list_for_each_entry(entry, rule_head, list_entry) {
3355 		struct ice_fltr_info *f_info = &entry->fltr_info;
3356 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3357 
3358 		if (is_zero_ether_addr(mac_addr))
3359 			continue;
3360 
3361 		if (f_info->flag != ICE_FLTR_TX ||
3362 		    f_info->src_id != ICE_SRC_ID_VSI ||
3363 		    f_info->lkup_type != ICE_SW_LKUP_MAC ||
3364 		    f_info->fltr_act != ICE_FWD_TO_VSI ||
3365 		    hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3366 			continue;
3367 
3368 		if (ether_addr_equal(mac, mac_addr)) {
3369 			mutex_unlock(rule_lock);
3370 			return true;
3371 		}
3372 	}
3373 	mutex_unlock(rule_lock);
3374 	return false;
3375 }
3376 
3377 /**
3378  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3379  * @hw: pointer to the hardware structure
3380  * @vlan_id: VLAN ID
3381  * @vsi_handle: check MAC filter for this VSI
3382  */
3383 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3384 {
3385 	struct ice_fltr_mgmt_list_entry *entry;
3386 	struct list_head *rule_head;
3387 	struct ice_switch_info *sw;
3388 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3389 	u16 hw_vsi_id;
3390 
3391 	if (vlan_id > ICE_MAX_VLAN_ID)
3392 		return false;
3393 
3394 	if (!ice_is_vsi_valid(hw, vsi_handle))
3395 		return false;
3396 
3397 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3398 	sw = hw->switch_info;
3399 	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3400 	if (!rule_head)
3401 		return false;
3402 
3403 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3404 	mutex_lock(rule_lock);
3405 	list_for_each_entry(entry, rule_head, list_entry) {
3406 		struct ice_fltr_info *f_info = &entry->fltr_info;
3407 		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3408 		struct ice_vsi_list_map_info *map_info;
3409 
3410 		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3411 			continue;
3412 
3413 		if (f_info->flag != ICE_FLTR_TX ||
3414 		    f_info->src_id != ICE_SRC_ID_VSI ||
3415 		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3416 			continue;
3417 
3418 		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3419 		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3420 		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3421 			continue;
3422 
3423 		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3424 			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3425 				continue;
3426 		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3427 			/* If filter_action is FWD_TO_VSI_LIST, make sure
3428 			 * that VSI being checked is part of VSI list
3429 			 */
3430 			if (entry->vsi_count == 1 &&
3431 			    entry->vsi_list_info) {
3432 				map_info = entry->vsi_list_info;
3433 				if (!test_bit(vsi_handle, map_info->vsi_map))
3434 					continue;
3435 			}
3436 		}
3437 
3438 		if (vlan_id == entry_vlan_id) {
3439 			mutex_unlock(rule_lock);
3440 			return true;
3441 		}
3442 	}
3443 	mutex_unlock(rule_lock);
3444 
3445 	return false;
3446 }
3447 
3448 /**
3449  * ice_add_mac - Add a MAC address based filter rule
3450  * @hw: pointer to the hardware structure
3451  * @m_list: list of MAC addresses and forwarding information
3452  *
3453  * IMPORTANT: When the ucast_shared flag is set to false and m_list has
3454  * multiple unicast addresses, the function assumes that all the
3455  * addresses are unique in a given add_mac call. It doesn't
3456  * check for duplicates in this case, removing duplicates from a given
3457  * list should be taken care of in the caller of this function.
3458  */
3459 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3460 {
3461 	struct ice_sw_rule_lkup_rx_tx *s_rule, *r_iter;
3462 	struct ice_fltr_list_entry *m_list_itr;
3463 	struct list_head *rule_head;
3464 	u16 total_elem_left, s_rule_size;
3465 	struct ice_switch_info *sw;
3466 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3467 	u16 num_unicast = 0;
3468 	int status = 0;
3469 	u8 elem_sent;
3470 
3471 	if (!m_list || !hw)
3472 		return -EINVAL;
3473 
3474 	s_rule = NULL;
3475 	sw = hw->switch_info;
3476 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3477 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3478 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3479 		u16 vsi_handle;
3480 		u16 hw_vsi_id;
3481 
3482 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3483 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3484 		if (!ice_is_vsi_valid(hw, vsi_handle))
3485 			return -EINVAL;
3486 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3487 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3488 		/* update the src in case it is VSI num */
3489 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3490 			return -EINVAL;
3491 		m_list_itr->fltr_info.src = hw_vsi_id;
3492 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3493 		    is_zero_ether_addr(add))
3494 			return -EINVAL;
3495 		if (is_unicast_ether_addr(add) && !hw->ucast_shared) {
3496 			/* Don't overwrite the unicast address */
3497 			mutex_lock(rule_lock);
3498 			if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC,
3499 						&m_list_itr->fltr_info)) {
3500 				mutex_unlock(rule_lock);
3501 				return -EEXIST;
3502 			}
3503 			mutex_unlock(rule_lock);
3504 			num_unicast++;
3505 		} else if (is_multicast_ether_addr(add) ||
3506 			   (is_unicast_ether_addr(add) && hw->ucast_shared)) {
3507 			m_list_itr->status =
3508 				ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3509 						      m_list_itr);
3510 			if (m_list_itr->status)
3511 				return m_list_itr->status;
3512 		}
3513 	}
3514 
3515 	mutex_lock(rule_lock);
3516 	/* Exit if no suitable entries were found for adding bulk switch rule */
3517 	if (!num_unicast) {
3518 		status = 0;
3519 		goto ice_add_mac_exit;
3520 	}
3521 
3522 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3523 
3524 	/* Allocate switch rule buffer for the bulk update for unicast */
3525 	s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule);
3526 	s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size,
3527 			      GFP_KERNEL);
3528 	if (!s_rule) {
3529 		status = -ENOMEM;
3530 		goto ice_add_mac_exit;
3531 	}
3532 
3533 	r_iter = s_rule;
3534 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3535 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
3536 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3537 
3538 		if (is_unicast_ether_addr(mac_addr)) {
3539 			ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
3540 					 ice_aqc_opc_add_sw_rules);
3541 			r_iter = (typeof(s_rule))((u8 *)r_iter + s_rule_size);
3542 		}
3543 	}
3544 
3545 	/* Call AQ bulk switch rule update for all unicast addresses */
3546 	r_iter = s_rule;
3547 	/* Call AQ switch rule in AQ_MAX chunk */
3548 	for (total_elem_left = num_unicast; total_elem_left > 0;
3549 	     total_elem_left -= elem_sent) {
3550 		struct ice_sw_rule_lkup_rx_tx *entry = r_iter;
3551 
3552 		elem_sent = min_t(u8, total_elem_left,
3553 				  (ICE_AQ_MAX_BUF_LEN / s_rule_size));
3554 		status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
3555 					 elem_sent, ice_aqc_opc_add_sw_rules,
3556 					 NULL);
3557 		if (status)
3558 			goto ice_add_mac_exit;
3559 		r_iter = (typeof(s_rule))
3560 			((u8 *)r_iter + (elem_sent * s_rule_size));
3561 	}
3562 
3563 	/* Fill up rule ID based on the value returned from FW */
3564 	r_iter = s_rule;
3565 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3566 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
3567 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3568 		struct ice_fltr_mgmt_list_entry *fm_entry;
3569 
3570 		if (is_unicast_ether_addr(mac_addr)) {
3571 			f_info->fltr_rule_id = le16_to_cpu(r_iter->index);
3572 			f_info->fltr_act = ICE_FWD_TO_VSI;
3573 			/* Create an entry to track this MAC address */
3574 			fm_entry = devm_kzalloc(ice_hw_to_dev(hw),
3575 						sizeof(*fm_entry), GFP_KERNEL);
3576 			if (!fm_entry) {
3577 				status = -ENOMEM;
3578 				goto ice_add_mac_exit;
3579 			}
3580 			fm_entry->fltr_info = *f_info;
3581 			fm_entry->vsi_count = 1;
3582 			/* The book keeping entries will get removed when
3583 			 * base driver calls remove filter AQ command
3584 			 */
3585 
3586 			list_add(&fm_entry->list_entry, rule_head);
3587 			r_iter = (typeof(s_rule))((u8 *)r_iter + s_rule_size);
3588 		}
3589 	}
3590 
3591 ice_add_mac_exit:
3592 	mutex_unlock(rule_lock);
3593 	if (s_rule)
3594 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3595 	return status;
3596 }
3597 
3598 /**
3599  * ice_add_vlan_internal - Add one VLAN based filter rule
3600  * @hw: pointer to the hardware structure
3601  * @f_entry: filter entry containing one VLAN information
3602  */
3603 static int
3604 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3605 {
3606 	struct ice_switch_info *sw = hw->switch_info;
3607 	struct ice_fltr_mgmt_list_entry *v_list_itr;
3608 	struct ice_fltr_info *new_fltr, *cur_fltr;
3609 	enum ice_sw_lkup_type lkup_type;
3610 	u16 vsi_list_id = 0, vsi_handle;
3611 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3612 	int status = 0;
3613 
3614 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3615 		return -EINVAL;
3616 
3617 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3618 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3619 	new_fltr = &f_entry->fltr_info;
3620 
3621 	/* VLAN ID should only be 12 bits */
3622 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3623 		return -EINVAL;
3624 
3625 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3626 		return -EINVAL;
3627 
3628 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3629 	lkup_type = new_fltr->lkup_type;
3630 	vsi_handle = new_fltr->vsi_handle;
3631 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3632 	mutex_lock(rule_lock);
3633 	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3634 	if (!v_list_itr) {
3635 		struct ice_vsi_list_map_info *map_info = NULL;
3636 
3637 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3638 			/* All VLAN pruning rules use a VSI list. Check if
3639 			 * there is already a VSI list containing VSI that we
3640 			 * want to add. If found, use the same vsi_list_id for
3641 			 * this new VLAN rule or else create a new list.
3642 			 */
3643 			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3644 							   vsi_handle,
3645 							   &vsi_list_id);
3646 			if (!map_info) {
3647 				status = ice_create_vsi_list_rule(hw,
3648 								  &vsi_handle,
3649 								  1,
3650 								  &vsi_list_id,
3651 								  lkup_type);
3652 				if (status)
3653 					goto exit;
3654 			}
3655 			/* Convert the action to forwarding to a VSI list. */
3656 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3657 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3658 		}
3659 
3660 		status = ice_create_pkt_fwd_rule(hw, f_entry);
3661 		if (!status) {
3662 			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3663 							 new_fltr);
3664 			if (!v_list_itr) {
3665 				status = -ENOENT;
3666 				goto exit;
3667 			}
3668 			/* reuse VSI list for new rule and increment ref_cnt */
3669 			if (map_info) {
3670 				v_list_itr->vsi_list_info = map_info;
3671 				map_info->ref_cnt++;
3672 			} else {
3673 				v_list_itr->vsi_list_info =
3674 					ice_create_vsi_list_map(hw, &vsi_handle,
3675 								1, vsi_list_id);
3676 			}
3677 		}
3678 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3679 		/* Update existing VSI list to add new VSI ID only if it used
3680 		 * by one VLAN rule.
3681 		 */
3682 		cur_fltr = &v_list_itr->fltr_info;
3683 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3684 						 new_fltr);
3685 	} else {
3686 		/* If VLAN rule exists and VSI list being used by this rule is
3687 		 * referenced by more than 1 VLAN rule. Then create a new VSI
3688 		 * list appending previous VSI with new VSI and update existing
3689 		 * VLAN rule to point to new VSI list ID
3690 		 */
3691 		struct ice_fltr_info tmp_fltr;
3692 		u16 vsi_handle_arr[2];
3693 		u16 cur_handle;
3694 
3695 		/* Current implementation only supports reusing VSI list with
3696 		 * one VSI count. We should never hit below condition
3697 		 */
3698 		if (v_list_itr->vsi_count > 1 &&
3699 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3700 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3701 			status = -EIO;
3702 			goto exit;
3703 		}
3704 
3705 		cur_handle =
3706 			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3707 				       ICE_MAX_VSI);
3708 
3709 		/* A rule already exists with the new VSI being added */
3710 		if (cur_handle == vsi_handle) {
3711 			status = -EEXIST;
3712 			goto exit;
3713 		}
3714 
3715 		vsi_handle_arr[0] = cur_handle;
3716 		vsi_handle_arr[1] = vsi_handle;
3717 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3718 						  &vsi_list_id, lkup_type);
3719 		if (status)
3720 			goto exit;
3721 
3722 		tmp_fltr = v_list_itr->fltr_info;
3723 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3724 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3725 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3726 		/* Update the previous switch rule to a new VSI list which
3727 		 * includes current VSI that is requested
3728 		 */
3729 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3730 		if (status)
3731 			goto exit;
3732 
3733 		/* before overriding VSI list map info. decrement ref_cnt of
3734 		 * previous VSI list
3735 		 */
3736 		v_list_itr->vsi_list_info->ref_cnt--;
3737 
3738 		/* now update to newly created list */
3739 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3740 		v_list_itr->vsi_list_info =
3741 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3742 						vsi_list_id);
3743 		v_list_itr->vsi_count++;
3744 	}
3745 
3746 exit:
3747 	mutex_unlock(rule_lock);
3748 	return status;
3749 }
3750 
3751 /**
3752  * ice_add_vlan - Add VLAN based filter rule
3753  * @hw: pointer to the hardware structure
3754  * @v_list: list of VLAN entries and forwarding information
3755  */
3756 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3757 {
3758 	struct ice_fltr_list_entry *v_list_itr;
3759 
3760 	if (!v_list || !hw)
3761 		return -EINVAL;
3762 
3763 	list_for_each_entry(v_list_itr, v_list, list_entry) {
3764 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3765 			return -EINVAL;
3766 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3767 		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3768 		if (v_list_itr->status)
3769 			return v_list_itr->status;
3770 	}
3771 	return 0;
3772 }
3773 
3774 /**
3775  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3776  * @hw: pointer to the hardware structure
3777  * @em_list: list of ether type MAC filter, MAC is optional
3778  *
3779  * This function requires the caller to populate the entries in
3780  * the filter list with the necessary fields (including flags to
3781  * indicate Tx or Rx rules).
3782  */
3783 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3784 {
3785 	struct ice_fltr_list_entry *em_list_itr;
3786 
3787 	if (!em_list || !hw)
3788 		return -EINVAL;
3789 
3790 	list_for_each_entry(em_list_itr, em_list, list_entry) {
3791 		enum ice_sw_lkup_type l_type =
3792 			em_list_itr->fltr_info.lkup_type;
3793 
3794 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3795 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3796 			return -EINVAL;
3797 
3798 		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3799 							    em_list_itr);
3800 		if (em_list_itr->status)
3801 			return em_list_itr->status;
3802 	}
3803 	return 0;
3804 }
3805 
3806 /**
3807  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3808  * @hw: pointer to the hardware structure
3809  * @em_list: list of ethertype or ethertype MAC entries
3810  */
3811 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3812 {
3813 	struct ice_fltr_list_entry *em_list_itr, *tmp;
3814 
3815 	if (!em_list || !hw)
3816 		return -EINVAL;
3817 
3818 	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3819 		enum ice_sw_lkup_type l_type =
3820 			em_list_itr->fltr_info.lkup_type;
3821 
3822 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3823 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3824 			return -EINVAL;
3825 
3826 		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3827 							       em_list_itr);
3828 		if (em_list_itr->status)
3829 			return em_list_itr->status;
3830 	}
3831 	return 0;
3832 }
3833 
3834 /**
3835  * ice_rem_sw_rule_info
3836  * @hw: pointer to the hardware structure
3837  * @rule_head: pointer to the switch list structure that we want to delete
3838  */
3839 static void
3840 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3841 {
3842 	if (!list_empty(rule_head)) {
3843 		struct ice_fltr_mgmt_list_entry *entry;
3844 		struct ice_fltr_mgmt_list_entry *tmp;
3845 
3846 		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3847 			list_del(&entry->list_entry);
3848 			devm_kfree(ice_hw_to_dev(hw), entry);
3849 		}
3850 	}
3851 }
3852 
3853 /**
3854  * ice_rem_adv_rule_info
3855  * @hw: pointer to the hardware structure
3856  * @rule_head: pointer to the switch list structure that we want to delete
3857  */
3858 static void
3859 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3860 {
3861 	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3862 	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3863 
3864 	if (list_empty(rule_head))
3865 		return;
3866 
3867 	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3868 		list_del(&lst_itr->list_entry);
3869 		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3870 		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3871 	}
3872 }
3873 
3874 /**
3875  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3876  * @pi: pointer to the port_info structure
3877  * @vsi_handle: VSI handle to set as default
3878  * @set: true to add the above mentioned switch rule, false to remove it
3879  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3880  *
3881  * add filter rule to set/unset given VSI as default VSI for the switch
3882  * (represented by swid)
3883  */
3884 int
3885 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3886 		 u8 direction)
3887 {
3888 	struct ice_fltr_list_entry f_list_entry;
3889 	struct ice_fltr_info f_info;
3890 	struct ice_hw *hw = pi->hw;
3891 	u16 hw_vsi_id;
3892 	int status;
3893 
3894 	if (!ice_is_vsi_valid(hw, vsi_handle))
3895 		return -EINVAL;
3896 
3897 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3898 
3899 	memset(&f_info, 0, sizeof(f_info));
3900 
3901 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3902 	f_info.flag = direction;
3903 	f_info.fltr_act = ICE_FWD_TO_VSI;
3904 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3905 	f_info.vsi_handle = vsi_handle;
3906 
3907 	if (f_info.flag & ICE_FLTR_RX) {
3908 		f_info.src = hw->port_info->lport;
3909 		f_info.src_id = ICE_SRC_ID_LPORT;
3910 	} else if (f_info.flag & ICE_FLTR_TX) {
3911 		f_info.src_id = ICE_SRC_ID_VSI;
3912 		f_info.src = hw_vsi_id;
3913 	}
3914 	f_list_entry.fltr_info = f_info;
3915 
3916 	if (set)
3917 		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3918 					       &f_list_entry);
3919 	else
3920 		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3921 						  &f_list_entry);
3922 
3923 	return status;
3924 }
3925 
3926 /**
3927  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3928  * @fm_entry: filter entry to inspect
3929  * @vsi_handle: VSI handle to compare with filter info
3930  */
3931 static bool
3932 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3933 {
3934 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3935 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3936 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3937 		 fm_entry->vsi_list_info &&
3938 		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3939 }
3940 
3941 /**
3942  * ice_check_if_dflt_vsi - check if VSI is default VSI
3943  * @pi: pointer to the port_info structure
3944  * @vsi_handle: vsi handle to check for in filter list
3945  * @rule_exists: indicates if there are any VSI's in the rule list
3946  *
3947  * checks if the VSI is in a default VSI list, and also indicates
3948  * if the default VSI list is empty
3949  */
3950 bool
3951 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3952 		      bool *rule_exists)
3953 {
3954 	struct ice_fltr_mgmt_list_entry *fm_entry;
3955 	struct ice_sw_recipe *recp_list;
3956 	struct list_head *rule_head;
3957 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3958 	bool ret = false;
3959 
3960 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3961 	rule_lock = &recp_list->filt_rule_lock;
3962 	rule_head = &recp_list->filt_rules;
3963 
3964 	mutex_lock(rule_lock);
3965 
3966 	if (rule_exists && !list_empty(rule_head))
3967 		*rule_exists = true;
3968 
3969 	list_for_each_entry(fm_entry, rule_head, list_entry) {
3970 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3971 			ret = true;
3972 			break;
3973 		}
3974 	}
3975 
3976 	mutex_unlock(rule_lock);
3977 
3978 	return ret;
3979 }
3980 
3981 /**
3982  * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
3983  * @hw: pointer to the hardware structure
3984  * @recp_id: lookup type for which the specified rule needs to be searched
3985  * @f_info: rule information
3986  *
3987  * Helper function to search for a unicast rule entry - this is to be used
3988  * to remove unicast MAC filter that is not shared with other VSIs on the
3989  * PF switch.
3990  *
3991  * Returns pointer to entry storing the rule if found
3992  */
3993 static struct ice_fltr_mgmt_list_entry *
3994 ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id,
3995 			  struct ice_fltr_info *f_info)
3996 {
3997 	struct ice_switch_info *sw = hw->switch_info;
3998 	struct ice_fltr_mgmt_list_entry *list_itr;
3999 	struct list_head *list_head;
4000 
4001 	list_head = &sw->recp_list[recp_id].filt_rules;
4002 	list_for_each_entry(list_itr, list_head, list_entry) {
4003 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
4004 			    sizeof(f_info->l_data)) &&
4005 		    f_info->fwd_id.hw_vsi_id ==
4006 		    list_itr->fltr_info.fwd_id.hw_vsi_id &&
4007 		    f_info->flag == list_itr->fltr_info.flag)
4008 			return list_itr;
4009 	}
4010 	return NULL;
4011 }
4012 
4013 /**
4014  * ice_remove_mac - remove a MAC address based filter rule
4015  * @hw: pointer to the hardware structure
4016  * @m_list: list of MAC addresses and forwarding information
4017  *
4018  * This function removes either a MAC filter rule or a specific VSI from a
4019  * VSI list for a multicast MAC address.
4020  *
4021  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4022  * be aware that this call will only work if all the entries passed into m_list
4023  * were added previously. It will not attempt to do a partial remove of entries
4024  * that were found.
4025  */
4026 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4027 {
4028 	struct ice_fltr_list_entry *list_itr, *tmp;
4029 	struct mutex *rule_lock; /* Lock to protect filter rule list */
4030 
4031 	if (!m_list)
4032 		return -EINVAL;
4033 
4034 	rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
4035 	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4036 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4037 		u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
4038 		u16 vsi_handle;
4039 
4040 		if (l_type != ICE_SW_LKUP_MAC)
4041 			return -EINVAL;
4042 
4043 		vsi_handle = list_itr->fltr_info.vsi_handle;
4044 		if (!ice_is_vsi_valid(hw, vsi_handle))
4045 			return -EINVAL;
4046 
4047 		list_itr->fltr_info.fwd_id.hw_vsi_id =
4048 					ice_get_hw_vsi_num(hw, vsi_handle);
4049 		if (is_unicast_ether_addr(add) && !hw->ucast_shared) {
4050 			/* Don't remove the unicast address that belongs to
4051 			 * another VSI on the switch, since it is not being
4052 			 * shared...
4053 			 */
4054 			mutex_lock(rule_lock);
4055 			if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC,
4056 						       &list_itr->fltr_info)) {
4057 				mutex_unlock(rule_lock);
4058 				return -ENOENT;
4059 			}
4060 			mutex_unlock(rule_lock);
4061 		}
4062 		list_itr->status = ice_remove_rule_internal(hw,
4063 							    ICE_SW_LKUP_MAC,
4064 							    list_itr);
4065 		if (list_itr->status)
4066 			return list_itr->status;
4067 	}
4068 	return 0;
4069 }
4070 
4071 /**
4072  * ice_remove_vlan - Remove VLAN based filter rule
4073  * @hw: pointer to the hardware structure
4074  * @v_list: list of VLAN entries and forwarding information
4075  */
4076 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4077 {
4078 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4079 
4080 	if (!v_list || !hw)
4081 		return -EINVAL;
4082 
4083 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4084 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4085 
4086 		if (l_type != ICE_SW_LKUP_VLAN)
4087 			return -EINVAL;
4088 		v_list_itr->status = ice_remove_rule_internal(hw,
4089 							      ICE_SW_LKUP_VLAN,
4090 							      v_list_itr);
4091 		if (v_list_itr->status)
4092 			return v_list_itr->status;
4093 	}
4094 	return 0;
4095 }
4096 
4097 /**
4098  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4099  * @hw: pointer to the hardware structure
4100  * @vsi_handle: VSI handle to remove filters from
4101  * @vsi_list_head: pointer to the list to add entry to
4102  * @fi: pointer to fltr_info of filter entry to copy & add
4103  *
4104  * Helper function, used when creating a list of filters to remove from
4105  * a specific VSI. The entry added to vsi_list_head is a COPY of the
4106  * original filter entry, with the exception of fltr_info.fltr_act and
4107  * fltr_info.fwd_id fields. These are set such that later logic can
4108  * extract which VSI to remove the fltr from, and pass on that information.
4109  */
4110 static int
4111 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4112 			       struct list_head *vsi_list_head,
4113 			       struct ice_fltr_info *fi)
4114 {
4115 	struct ice_fltr_list_entry *tmp;
4116 
4117 	/* this memory is freed up in the caller function
4118 	 * once filters for this VSI are removed
4119 	 */
4120 	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4121 	if (!tmp)
4122 		return -ENOMEM;
4123 
4124 	tmp->fltr_info = *fi;
4125 
4126 	/* Overwrite these fields to indicate which VSI to remove filter from,
4127 	 * so find and remove logic can extract the information from the
4128 	 * list entries. Note that original entries will still have proper
4129 	 * values.
4130 	 */
4131 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4132 	tmp->fltr_info.vsi_handle = vsi_handle;
4133 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4134 
4135 	list_add(&tmp->list_entry, vsi_list_head);
4136 
4137 	return 0;
4138 }
4139 
4140 /**
4141  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4142  * @hw: pointer to the hardware structure
4143  * @vsi_handle: VSI handle to remove filters from
4144  * @lkup_list_head: pointer to the list that has certain lookup type filters
4145  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4146  *
4147  * Locates all filters in lkup_list_head that are used by the given VSI,
4148  * and adds COPIES of those entries to vsi_list_head (intended to be used
4149  * to remove the listed filters).
4150  * Note that this means all entries in vsi_list_head must be explicitly
4151  * deallocated by the caller when done with list.
4152  */
4153 static int
4154 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4155 			 struct list_head *lkup_list_head,
4156 			 struct list_head *vsi_list_head)
4157 {
4158 	struct ice_fltr_mgmt_list_entry *fm_entry;
4159 	int status = 0;
4160 
4161 	/* check to make sure VSI ID is valid and within boundary */
4162 	if (!ice_is_vsi_valid(hw, vsi_handle))
4163 		return -EINVAL;
4164 
4165 	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4166 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4167 			continue;
4168 
4169 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4170 							vsi_list_head,
4171 							&fm_entry->fltr_info);
4172 		if (status)
4173 			return status;
4174 	}
4175 	return status;
4176 }
4177 
4178 /**
4179  * ice_determine_promisc_mask
4180  * @fi: filter info to parse
4181  *
4182  * Helper function to determine which ICE_PROMISC_ mask corresponds
4183  * to given filter into.
4184  */
4185 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4186 {
4187 	u16 vid = fi->l_data.mac_vlan.vlan_id;
4188 	u8 *macaddr = fi->l_data.mac.mac_addr;
4189 	bool is_tx_fltr = false;
4190 	u8 promisc_mask = 0;
4191 
4192 	if (fi->flag == ICE_FLTR_TX)
4193 		is_tx_fltr = true;
4194 
4195 	if (is_broadcast_ether_addr(macaddr))
4196 		promisc_mask |= is_tx_fltr ?
4197 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4198 	else if (is_multicast_ether_addr(macaddr))
4199 		promisc_mask |= is_tx_fltr ?
4200 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4201 	else if (is_unicast_ether_addr(macaddr))
4202 		promisc_mask |= is_tx_fltr ?
4203 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4204 	if (vid)
4205 		promisc_mask |= is_tx_fltr ?
4206 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4207 
4208 	return promisc_mask;
4209 }
4210 
4211 /**
4212  * ice_remove_promisc - Remove promisc based filter rules
4213  * @hw: pointer to the hardware structure
4214  * @recp_id: recipe ID for which the rule needs to removed
4215  * @v_list: list of promisc entries
4216  */
4217 static int
4218 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4219 {
4220 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4221 
4222 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4223 		v_list_itr->status =
4224 			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4225 		if (v_list_itr->status)
4226 			return v_list_itr->status;
4227 	}
4228 	return 0;
4229 }
4230 
4231 /**
4232  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4233  * @hw: pointer to the hardware structure
4234  * @vsi_handle: VSI handle to clear mode
4235  * @promisc_mask: mask of promiscuous config bits to clear
4236  * @vid: VLAN ID to clear VLAN promiscuous
4237  */
4238 int
4239 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4240 		      u16 vid)
4241 {
4242 	struct ice_switch_info *sw = hw->switch_info;
4243 	struct ice_fltr_list_entry *fm_entry, *tmp;
4244 	struct list_head remove_list_head;
4245 	struct ice_fltr_mgmt_list_entry *itr;
4246 	struct list_head *rule_head;
4247 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4248 	int status = 0;
4249 	u8 recipe_id;
4250 
4251 	if (!ice_is_vsi_valid(hw, vsi_handle))
4252 		return -EINVAL;
4253 
4254 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4255 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4256 	else
4257 		recipe_id = ICE_SW_LKUP_PROMISC;
4258 
4259 	rule_head = &sw->recp_list[recipe_id].filt_rules;
4260 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4261 
4262 	INIT_LIST_HEAD(&remove_list_head);
4263 
4264 	mutex_lock(rule_lock);
4265 	list_for_each_entry(itr, rule_head, list_entry) {
4266 		struct ice_fltr_info *fltr_info;
4267 		u8 fltr_promisc_mask = 0;
4268 
4269 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4270 			continue;
4271 		fltr_info = &itr->fltr_info;
4272 
4273 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4274 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4275 			continue;
4276 
4277 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4278 
4279 		/* Skip if filter is not completely specified by given mask */
4280 		if (fltr_promisc_mask & ~promisc_mask)
4281 			continue;
4282 
4283 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4284 							&remove_list_head,
4285 							fltr_info);
4286 		if (status) {
4287 			mutex_unlock(rule_lock);
4288 			goto free_fltr_list;
4289 		}
4290 	}
4291 	mutex_unlock(rule_lock);
4292 
4293 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4294 
4295 free_fltr_list:
4296 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4297 		list_del(&fm_entry->list_entry);
4298 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4299 	}
4300 
4301 	return status;
4302 }
4303 
4304 /**
4305  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4306  * @hw: pointer to the hardware structure
4307  * @vsi_handle: VSI handle to configure
4308  * @promisc_mask: mask of promiscuous config bits
4309  * @vid: VLAN ID to set VLAN promiscuous
4310  */
4311 int
4312 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4313 {
4314 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4315 	struct ice_fltr_list_entry f_list_entry;
4316 	struct ice_fltr_info new_fltr;
4317 	bool is_tx_fltr;
4318 	int status = 0;
4319 	u16 hw_vsi_id;
4320 	int pkt_type;
4321 	u8 recipe_id;
4322 
4323 	if (!ice_is_vsi_valid(hw, vsi_handle))
4324 		return -EINVAL;
4325 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4326 
4327 	memset(&new_fltr, 0, sizeof(new_fltr));
4328 
4329 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4330 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4331 		new_fltr.l_data.mac_vlan.vlan_id = vid;
4332 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4333 	} else {
4334 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4335 		recipe_id = ICE_SW_LKUP_PROMISC;
4336 	}
4337 
4338 	/* Separate filters must be set for each direction/packet type
4339 	 * combination, so we will loop over the mask value, store the
4340 	 * individual type, and clear it out in the input mask as it
4341 	 * is found.
4342 	 */
4343 	while (promisc_mask) {
4344 		u8 *mac_addr;
4345 
4346 		pkt_type = 0;
4347 		is_tx_fltr = false;
4348 
4349 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4350 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4351 			pkt_type = UCAST_FLTR;
4352 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4353 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4354 			pkt_type = UCAST_FLTR;
4355 			is_tx_fltr = true;
4356 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4357 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4358 			pkt_type = MCAST_FLTR;
4359 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4360 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4361 			pkt_type = MCAST_FLTR;
4362 			is_tx_fltr = true;
4363 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4364 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4365 			pkt_type = BCAST_FLTR;
4366 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4367 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4368 			pkt_type = BCAST_FLTR;
4369 			is_tx_fltr = true;
4370 		}
4371 
4372 		/* Check for VLAN promiscuous flag */
4373 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4374 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4375 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4376 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4377 			is_tx_fltr = true;
4378 		}
4379 
4380 		/* Set filter DA based on packet type */
4381 		mac_addr = new_fltr.l_data.mac.mac_addr;
4382 		if (pkt_type == BCAST_FLTR) {
4383 			eth_broadcast_addr(mac_addr);
4384 		} else if (pkt_type == MCAST_FLTR ||
4385 			   pkt_type == UCAST_FLTR) {
4386 			/* Use the dummy ether header DA */
4387 			ether_addr_copy(mac_addr, dummy_eth_header);
4388 			if (pkt_type == MCAST_FLTR)
4389 				mac_addr[0] |= 0x1;	/* Set multicast bit */
4390 		}
4391 
4392 		/* Need to reset this to zero for all iterations */
4393 		new_fltr.flag = 0;
4394 		if (is_tx_fltr) {
4395 			new_fltr.flag |= ICE_FLTR_TX;
4396 			new_fltr.src = hw_vsi_id;
4397 		} else {
4398 			new_fltr.flag |= ICE_FLTR_RX;
4399 			new_fltr.src = hw->port_info->lport;
4400 		}
4401 
4402 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4403 		new_fltr.vsi_handle = vsi_handle;
4404 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4405 		f_list_entry.fltr_info = new_fltr;
4406 
4407 		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4408 		if (status)
4409 			goto set_promisc_exit;
4410 	}
4411 
4412 set_promisc_exit:
4413 	return status;
4414 }
4415 
4416 /**
4417  * ice_set_vlan_vsi_promisc
4418  * @hw: pointer to the hardware structure
4419  * @vsi_handle: VSI handle to configure
4420  * @promisc_mask: mask of promiscuous config bits
4421  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4422  *
4423  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4424  */
4425 int
4426 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4427 			 bool rm_vlan_promisc)
4428 {
4429 	struct ice_switch_info *sw = hw->switch_info;
4430 	struct ice_fltr_list_entry *list_itr, *tmp;
4431 	struct list_head vsi_list_head;
4432 	struct list_head *vlan_head;
4433 	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4434 	u16 vlan_id;
4435 	int status;
4436 
4437 	INIT_LIST_HEAD(&vsi_list_head);
4438 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4439 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4440 	mutex_lock(vlan_lock);
4441 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4442 					  &vsi_list_head);
4443 	mutex_unlock(vlan_lock);
4444 	if (status)
4445 		goto free_fltr_list;
4446 
4447 	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4448 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4449 		if (rm_vlan_promisc)
4450 			status = ice_clear_vsi_promisc(hw, vsi_handle,
4451 						       promisc_mask, vlan_id);
4452 		else
4453 			status = ice_set_vsi_promisc(hw, vsi_handle,
4454 						     promisc_mask, vlan_id);
4455 		if (status)
4456 			break;
4457 	}
4458 
4459 free_fltr_list:
4460 	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4461 		list_del(&list_itr->list_entry);
4462 		devm_kfree(ice_hw_to_dev(hw), list_itr);
4463 	}
4464 	return status;
4465 }
4466 
4467 /**
4468  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4469  * @hw: pointer to the hardware structure
4470  * @vsi_handle: VSI handle to remove filters from
4471  * @lkup: switch rule filter lookup type
4472  */
4473 static void
4474 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4475 			 enum ice_sw_lkup_type lkup)
4476 {
4477 	struct ice_switch_info *sw = hw->switch_info;
4478 	struct ice_fltr_list_entry *fm_entry;
4479 	struct list_head remove_list_head;
4480 	struct list_head *rule_head;
4481 	struct ice_fltr_list_entry *tmp;
4482 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4483 	int status;
4484 
4485 	INIT_LIST_HEAD(&remove_list_head);
4486 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4487 	rule_head = &sw->recp_list[lkup].filt_rules;
4488 	mutex_lock(rule_lock);
4489 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4490 					  &remove_list_head);
4491 	mutex_unlock(rule_lock);
4492 	if (status)
4493 		goto free_fltr_list;
4494 
4495 	switch (lkup) {
4496 	case ICE_SW_LKUP_MAC:
4497 		ice_remove_mac(hw, &remove_list_head);
4498 		break;
4499 	case ICE_SW_LKUP_VLAN:
4500 		ice_remove_vlan(hw, &remove_list_head);
4501 		break;
4502 	case ICE_SW_LKUP_PROMISC:
4503 	case ICE_SW_LKUP_PROMISC_VLAN:
4504 		ice_remove_promisc(hw, lkup, &remove_list_head);
4505 		break;
4506 	case ICE_SW_LKUP_MAC_VLAN:
4507 	case ICE_SW_LKUP_ETHERTYPE:
4508 	case ICE_SW_LKUP_ETHERTYPE_MAC:
4509 	case ICE_SW_LKUP_DFLT:
4510 	case ICE_SW_LKUP_LAST:
4511 	default:
4512 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4513 		break;
4514 	}
4515 
4516 free_fltr_list:
4517 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4518 		list_del(&fm_entry->list_entry);
4519 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4520 	}
4521 }
4522 
4523 /**
4524  * ice_remove_vsi_fltr - Remove all filters for a VSI
4525  * @hw: pointer to the hardware structure
4526  * @vsi_handle: VSI handle to remove filters from
4527  */
4528 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4529 {
4530 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4531 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4532 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4533 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4534 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4535 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4536 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4537 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4538 }
4539 
4540 /**
4541  * ice_alloc_res_cntr - allocating resource counter
4542  * @hw: pointer to the hardware structure
4543  * @type: type of resource
4544  * @alloc_shared: if set it is shared else dedicated
4545  * @num_items: number of entries requested for FD resource type
4546  * @counter_id: counter index returned by AQ call
4547  */
4548 int
4549 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4550 		   u16 *counter_id)
4551 {
4552 	struct ice_aqc_alloc_free_res_elem *buf;
4553 	u16 buf_len;
4554 	int status;
4555 
4556 	/* Allocate resource */
4557 	buf_len = struct_size(buf, elem, 1);
4558 	buf = kzalloc(buf_len, GFP_KERNEL);
4559 	if (!buf)
4560 		return -ENOMEM;
4561 
4562 	buf->num_elems = cpu_to_le16(num_items);
4563 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4564 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4565 
4566 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4567 				       ice_aqc_opc_alloc_res, NULL);
4568 	if (status)
4569 		goto exit;
4570 
4571 	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4572 
4573 exit:
4574 	kfree(buf);
4575 	return status;
4576 }
4577 
4578 /**
4579  * ice_free_res_cntr - free resource counter
4580  * @hw: pointer to the hardware structure
4581  * @type: type of resource
4582  * @alloc_shared: if set it is shared else dedicated
4583  * @num_items: number of entries to be freed for FD resource type
4584  * @counter_id: counter ID resource which needs to be freed
4585  */
4586 int
4587 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4588 		  u16 counter_id)
4589 {
4590 	struct ice_aqc_alloc_free_res_elem *buf;
4591 	u16 buf_len;
4592 	int status;
4593 
4594 	/* Free resource */
4595 	buf_len = struct_size(buf, elem, 1);
4596 	buf = kzalloc(buf_len, GFP_KERNEL);
4597 	if (!buf)
4598 		return -ENOMEM;
4599 
4600 	buf->num_elems = cpu_to_le16(num_items);
4601 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4602 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4603 	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4604 
4605 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4606 				       ice_aqc_opc_free_res, NULL);
4607 	if (status)
4608 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4609 
4610 	kfree(buf);
4611 	return status;
4612 }
4613 
4614 /* This is mapping table entry that maps every word within a given protocol
4615  * structure to the real byte offset as per the specification of that
4616  * protocol header.
4617  * for example dst address is 3 words in ethertype header and corresponding
4618  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4619  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4620  * matching entry describing its field. This needs to be updated if new
4621  * structure is added to that union.
4622  */
4623 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4624 	{ ICE_MAC_OFOS,		{ 0, 2, 4, 6, 8, 10, 12 } },
4625 	{ ICE_MAC_IL,		{ 0, 2, 4, 6, 8, 10, 12 } },
4626 	{ ICE_ETYPE_OL,		{ 0 } },
4627 	{ ICE_ETYPE_IL,		{ 0 } },
4628 	{ ICE_VLAN_OFOS,	{ 2, 0 } },
4629 	{ ICE_IPV4_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4630 	{ ICE_IPV4_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4631 	{ ICE_IPV6_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4632 				 26, 28, 30, 32, 34, 36, 38 } },
4633 	{ ICE_IPV6_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4634 				 26, 28, 30, 32, 34, 36, 38 } },
4635 	{ ICE_TCP_IL,		{ 0, 2 } },
4636 	{ ICE_UDP_OF,		{ 0, 2 } },
4637 	{ ICE_UDP_ILOS,		{ 0, 2 } },
4638 	{ ICE_VXLAN,		{ 8, 10, 12, 14 } },
4639 	{ ICE_GENEVE,		{ 8, 10, 12, 14 } },
4640 	{ ICE_NVGRE,		{ 0, 2, 4, 6 } },
4641 	{ ICE_GTP,		{ 8, 10, 12, 14, 16, 18, 20, 22 } },
4642 	{ ICE_GTP_NO_PAY,	{ 8, 10, 12, 14 } },
4643 	{ ICE_PPPOE,		{ 0, 2, 4, 6 } },
4644 	{ ICE_VLAN_EX,          { 2, 0 } },
4645 	{ ICE_VLAN_IN,          { 2, 0 } },
4646 };
4647 
4648 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4649 	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4650 	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4651 	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4652 	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4653 	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4654 	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4655 	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4656 	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4657 	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4658 	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4659 	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4660 	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4661 	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4662 	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4663 	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4664 	{ ICE_GTP,		ICE_UDP_OF_HW },
4665 	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4666 	{ ICE_PPPOE,		ICE_PPPOE_HW },
4667 	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4668 	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4669 };
4670 
4671 /**
4672  * ice_find_recp - find a recipe
4673  * @hw: pointer to the hardware structure
4674  * @lkup_exts: extension sequence to match
4675  * @tun_type: type of recipe tunnel
4676  *
4677  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4678  */
4679 static u16
4680 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4681 	      enum ice_sw_tunnel_type tun_type)
4682 {
4683 	bool refresh_required = true;
4684 	struct ice_sw_recipe *recp;
4685 	u8 i;
4686 
4687 	/* Walk through existing recipes to find a match */
4688 	recp = hw->switch_info->recp_list;
4689 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4690 		/* If recipe was not created for this ID, in SW bookkeeping,
4691 		 * check if FW has an entry for this recipe. If the FW has an
4692 		 * entry update it in our SW bookkeeping and continue with the
4693 		 * matching.
4694 		 */
4695 		if (!recp[i].recp_created)
4696 			if (ice_get_recp_frm_fw(hw,
4697 						hw->switch_info->recp_list, i,
4698 						&refresh_required))
4699 				continue;
4700 
4701 		/* Skip inverse action recipes */
4702 		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4703 		    ICE_AQ_RECIPE_ACT_INV_ACT)
4704 			continue;
4705 
4706 		/* if number of words we are looking for match */
4707 		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4708 			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4709 			struct ice_fv_word *be = lkup_exts->fv_words;
4710 			u16 *cr = recp[i].lkup_exts.field_mask;
4711 			u16 *de = lkup_exts->field_mask;
4712 			bool found = true;
4713 			u8 pe, qr;
4714 
4715 			/* ar, cr, and qr are related to the recipe words, while
4716 			 * be, de, and pe are related to the lookup words
4717 			 */
4718 			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4719 				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4720 				     qr++) {
4721 					if (ar[qr].off == be[pe].off &&
4722 					    ar[qr].prot_id == be[pe].prot_id &&
4723 					    cr[qr] == de[pe])
4724 						/* Found the "pe"th word in the
4725 						 * given recipe
4726 						 */
4727 						break;
4728 				}
4729 				/* After walking through all the words in the
4730 				 * "i"th recipe if "p"th word was not found then
4731 				 * this recipe is not what we are looking for.
4732 				 * So break out from this loop and try the next
4733 				 * recipe
4734 				 */
4735 				if (qr >= recp[i].lkup_exts.n_val_words) {
4736 					found = false;
4737 					break;
4738 				}
4739 			}
4740 			/* If for "i"th recipe the found was never set to false
4741 			 * then it means we found our match
4742 			 * Also tun type of recipe needs to be checked
4743 			 */
4744 			if (found && recp[i].tun_type == tun_type)
4745 				return i; /* Return the recipe ID */
4746 		}
4747 	}
4748 	return ICE_MAX_NUM_RECIPES;
4749 }
4750 
4751 /**
4752  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4753  *
4754  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4755  * supported protocol array record for outer vlan has to be modified to
4756  * reflect the value proper for DVM.
4757  */
4758 void ice_change_proto_id_to_dvm(void)
4759 {
4760 	u8 i;
4761 
4762 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4763 		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4764 		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4765 			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4766 }
4767 
4768 /**
4769  * ice_prot_type_to_id - get protocol ID from protocol type
4770  * @type: protocol type
4771  * @id: pointer to variable that will receive the ID
4772  *
4773  * Returns true if found, false otherwise
4774  */
4775 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4776 {
4777 	u8 i;
4778 
4779 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4780 		if (ice_prot_id_tbl[i].type == type) {
4781 			*id = ice_prot_id_tbl[i].protocol_id;
4782 			return true;
4783 		}
4784 	return false;
4785 }
4786 
4787 /**
4788  * ice_fill_valid_words - count valid words
4789  * @rule: advanced rule with lookup information
4790  * @lkup_exts: byte offset extractions of the words that are valid
4791  *
4792  * calculate valid words in a lookup rule using mask value
4793  */
4794 static u8
4795 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4796 		     struct ice_prot_lkup_ext *lkup_exts)
4797 {
4798 	u8 j, word, prot_id, ret_val;
4799 
4800 	if (!ice_prot_type_to_id(rule->type, &prot_id))
4801 		return 0;
4802 
4803 	word = lkup_exts->n_val_words;
4804 
4805 	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4806 		if (((u16 *)&rule->m_u)[j] &&
4807 		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4808 			/* No more space to accommodate */
4809 			if (word >= ICE_MAX_CHAIN_WORDS)
4810 				return 0;
4811 			lkup_exts->fv_words[word].off =
4812 				ice_prot_ext[rule->type].offs[j];
4813 			lkup_exts->fv_words[word].prot_id =
4814 				ice_prot_id_tbl[rule->type].protocol_id;
4815 			lkup_exts->field_mask[word] =
4816 				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4817 			word++;
4818 		}
4819 
4820 	ret_val = word - lkup_exts->n_val_words;
4821 	lkup_exts->n_val_words = word;
4822 
4823 	return ret_val;
4824 }
4825 
4826 /**
4827  * ice_create_first_fit_recp_def - Create a recipe grouping
4828  * @hw: pointer to the hardware structure
4829  * @lkup_exts: an array of protocol header extractions
4830  * @rg_list: pointer to a list that stores new recipe groups
4831  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4832  *
4833  * Using first fit algorithm, take all the words that are still not done
4834  * and start grouping them in 4-word groups. Each group makes up one
4835  * recipe.
4836  */
4837 static int
4838 ice_create_first_fit_recp_def(struct ice_hw *hw,
4839 			      struct ice_prot_lkup_ext *lkup_exts,
4840 			      struct list_head *rg_list,
4841 			      u8 *recp_cnt)
4842 {
4843 	struct ice_pref_recipe_group *grp = NULL;
4844 	u8 j;
4845 
4846 	*recp_cnt = 0;
4847 
4848 	/* Walk through every word in the rule to check if it is not done. If so
4849 	 * then this word needs to be part of a new recipe.
4850 	 */
4851 	for (j = 0; j < lkup_exts->n_val_words; j++)
4852 		if (!test_bit(j, lkup_exts->done)) {
4853 			if (!grp ||
4854 			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4855 				struct ice_recp_grp_entry *entry;
4856 
4857 				entry = devm_kzalloc(ice_hw_to_dev(hw),
4858 						     sizeof(*entry),
4859 						     GFP_KERNEL);
4860 				if (!entry)
4861 					return -ENOMEM;
4862 				list_add(&entry->l_entry, rg_list);
4863 				grp = &entry->r_group;
4864 				(*recp_cnt)++;
4865 			}
4866 
4867 			grp->pairs[grp->n_val_pairs].prot_id =
4868 				lkup_exts->fv_words[j].prot_id;
4869 			grp->pairs[grp->n_val_pairs].off =
4870 				lkup_exts->fv_words[j].off;
4871 			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4872 			grp->n_val_pairs++;
4873 		}
4874 
4875 	return 0;
4876 }
4877 
4878 /**
4879  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4880  * @hw: pointer to the hardware structure
4881  * @fv_list: field vector with the extraction sequence information
4882  * @rg_list: recipe groupings with protocol-offset pairs
4883  *
4884  * Helper function to fill in the field vector indices for protocol-offset
4885  * pairs. These indexes are then ultimately programmed into a recipe.
4886  */
4887 static int
4888 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4889 		       struct list_head *rg_list)
4890 {
4891 	struct ice_sw_fv_list_entry *fv;
4892 	struct ice_recp_grp_entry *rg;
4893 	struct ice_fv_word *fv_ext;
4894 
4895 	if (list_empty(fv_list))
4896 		return 0;
4897 
4898 	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4899 			      list_entry);
4900 	fv_ext = fv->fv_ptr->ew;
4901 
4902 	list_for_each_entry(rg, rg_list, l_entry) {
4903 		u8 i;
4904 
4905 		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4906 			struct ice_fv_word *pr;
4907 			bool found = false;
4908 			u16 mask;
4909 			u8 j;
4910 
4911 			pr = &rg->r_group.pairs[i];
4912 			mask = rg->r_group.mask[i];
4913 
4914 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4915 				if (fv_ext[j].prot_id == pr->prot_id &&
4916 				    fv_ext[j].off == pr->off) {
4917 					found = true;
4918 
4919 					/* Store index of field vector */
4920 					rg->fv_idx[i] = j;
4921 					rg->fv_mask[i] = mask;
4922 					break;
4923 				}
4924 
4925 			/* Protocol/offset could not be found, caller gave an
4926 			 * invalid pair
4927 			 */
4928 			if (!found)
4929 				return -EINVAL;
4930 		}
4931 	}
4932 
4933 	return 0;
4934 }
4935 
4936 /**
4937  * ice_find_free_recp_res_idx - find free result indexes for recipe
4938  * @hw: pointer to hardware structure
4939  * @profiles: bitmap of profiles that will be associated with the new recipe
4940  * @free_idx: pointer to variable to receive the free index bitmap
4941  *
4942  * The algorithm used here is:
4943  *	1. When creating a new recipe, create a set P which contains all
4944  *	   Profiles that will be associated with our new recipe
4945  *
4946  *	2. For each Profile p in set P:
4947  *	    a. Add all recipes associated with Profile p into set R
4948  *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4949  *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4950  *		i. Or just assume they all have the same possible indexes:
4951  *			44, 45, 46, 47
4952  *			i.e., PossibleIndexes = 0x0000F00000000000
4953  *
4954  *	3. For each Recipe r in set R:
4955  *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4956  *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4957  *
4958  *	FreeIndexes will contain the bits indicating the indexes free for use,
4959  *      then the code needs to update the recipe[r].used_result_idx_bits to
4960  *      indicate which indexes were selected for use by this recipe.
4961  */
4962 static u16
4963 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4964 			   unsigned long *free_idx)
4965 {
4966 	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4967 	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4968 	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4969 	u16 bit;
4970 
4971 	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4972 	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4973 
4974 	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4975 
4976 	/* For each profile we are going to associate the recipe with, add the
4977 	 * recipes that are associated with that profile. This will give us
4978 	 * the set of recipes that our recipe may collide with. Also, determine
4979 	 * what possible result indexes are usable given this set of profiles.
4980 	 */
4981 	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4982 		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4983 			  ICE_MAX_NUM_RECIPES);
4984 		bitmap_and(possible_idx, possible_idx,
4985 			   hw->switch_info->prof_res_bm[bit],
4986 			   ICE_MAX_FV_WORDS);
4987 	}
4988 
4989 	/* For each recipe that our new recipe may collide with, determine
4990 	 * which indexes have been used.
4991 	 */
4992 	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4993 		bitmap_or(used_idx, used_idx,
4994 			  hw->switch_info->recp_list[bit].res_idxs,
4995 			  ICE_MAX_FV_WORDS);
4996 
4997 	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4998 
4999 	/* return number of free indexes */
5000 	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
5001 }
5002 
5003 /**
5004  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5005  * @hw: pointer to hardware structure
5006  * @rm: recipe management list entry
5007  * @profiles: bitmap of profiles that will be associated.
5008  */
5009 static int
5010 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5011 		  unsigned long *profiles)
5012 {
5013 	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5014 	struct ice_aqc_recipe_data_elem *tmp;
5015 	struct ice_aqc_recipe_data_elem *buf;
5016 	struct ice_recp_grp_entry *entry;
5017 	u16 free_res_idx;
5018 	u16 recipe_count;
5019 	u8 chain_idx;
5020 	u8 recps = 0;
5021 	int status;
5022 
5023 	/* When more than one recipe are required, another recipe is needed to
5024 	 * chain them together. Matching a tunnel metadata ID takes up one of
5025 	 * the match fields in the chaining recipe reducing the number of
5026 	 * chained recipes by one.
5027 	 */
5028 	 /* check number of free result indices */
5029 	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5030 	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5031 
5032 	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5033 		  free_res_idx, rm->n_grp_count);
5034 
5035 	if (rm->n_grp_count > 1) {
5036 		if (rm->n_grp_count > free_res_idx)
5037 			return -ENOSPC;
5038 
5039 		rm->n_grp_count++;
5040 	}
5041 
5042 	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
5043 		return -ENOSPC;
5044 
5045 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
5046 	if (!tmp)
5047 		return -ENOMEM;
5048 
5049 	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
5050 			   GFP_KERNEL);
5051 	if (!buf) {
5052 		status = -ENOMEM;
5053 		goto err_mem;
5054 	}
5055 
5056 	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5057 	recipe_count = ICE_MAX_NUM_RECIPES;
5058 	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
5059 				   NULL);
5060 	if (status || recipe_count == 0)
5061 		goto err_unroll;
5062 
5063 	/* Allocate the recipe resources, and configure them according to the
5064 	 * match fields from protocol headers and extracted field vectors.
5065 	 */
5066 	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5067 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5068 		u8 i;
5069 
5070 		status = ice_alloc_recipe(hw, &entry->rid);
5071 		if (status)
5072 			goto err_unroll;
5073 
5074 		/* Clear the result index of the located recipe, as this will be
5075 		 * updated, if needed, later in the recipe creation process.
5076 		 */
5077 		tmp[0].content.result_indx = 0;
5078 
5079 		buf[recps] = tmp[0];
5080 		buf[recps].recipe_indx = (u8)entry->rid;
5081 		/* if the recipe is a non-root recipe RID should be programmed
5082 		 * as 0 for the rules to be applied correctly.
5083 		 */
5084 		buf[recps].content.rid = 0;
5085 		memset(&buf[recps].content.lkup_indx, 0,
5086 		       sizeof(buf[recps].content.lkup_indx));
5087 
5088 		/* All recipes use look-up index 0 to match switch ID. */
5089 		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5090 		buf[recps].content.mask[0] =
5091 			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5092 		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
5093 		 * to be 0
5094 		 */
5095 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5096 			buf[recps].content.lkup_indx[i] = 0x80;
5097 			buf[recps].content.mask[i] = 0;
5098 		}
5099 
5100 		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5101 			buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
5102 			buf[recps].content.mask[i + 1] =
5103 				cpu_to_le16(entry->fv_mask[i]);
5104 		}
5105 
5106 		if (rm->n_grp_count > 1) {
5107 			/* Checks to see if there really is a valid result index
5108 			 * that can be used.
5109 			 */
5110 			if (chain_idx >= ICE_MAX_FV_WORDS) {
5111 				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5112 				status = -ENOSPC;
5113 				goto err_unroll;
5114 			}
5115 
5116 			entry->chain_idx = chain_idx;
5117 			buf[recps].content.result_indx =
5118 				ICE_AQ_RECIPE_RESULT_EN |
5119 				((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
5120 				 ICE_AQ_RECIPE_RESULT_DATA_M);
5121 			clear_bit(chain_idx, result_idx_bm);
5122 			chain_idx = find_first_bit(result_idx_bm,
5123 						   ICE_MAX_FV_WORDS);
5124 		}
5125 
5126 		/* fill recipe dependencies */
5127 		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5128 			    ICE_MAX_NUM_RECIPES);
5129 		set_bit(buf[recps].recipe_indx,
5130 			(unsigned long *)buf[recps].recipe_bitmap);
5131 		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5132 		recps++;
5133 	}
5134 
5135 	if (rm->n_grp_count == 1) {
5136 		rm->root_rid = buf[0].recipe_indx;
5137 		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5138 		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5139 		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5140 			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5141 			       sizeof(buf[0].recipe_bitmap));
5142 		} else {
5143 			status = -EINVAL;
5144 			goto err_unroll;
5145 		}
5146 		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5147 		 * the recipe which is getting created if specified
5148 		 * by user. Usually any advanced switch filter, which results
5149 		 * into new extraction sequence, ended up creating a new recipe
5150 		 * of type ROOT and usually recipes are associated with profiles
5151 		 * Switch rule referreing newly created recipe, needs to have
5152 		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5153 		 * evaluation will not happen correctly. In other words, if
5154 		 * switch rule to be evaluated on priority basis, then recipe
5155 		 * needs to have priority, otherwise it will be evaluated last.
5156 		 */
5157 		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5158 	} else {
5159 		struct ice_recp_grp_entry *last_chain_entry;
5160 		u16 rid, i;
5161 
5162 		/* Allocate the last recipe that will chain the outcomes of the
5163 		 * other recipes together
5164 		 */
5165 		status = ice_alloc_recipe(hw, &rid);
5166 		if (status)
5167 			goto err_unroll;
5168 
5169 		buf[recps].recipe_indx = (u8)rid;
5170 		buf[recps].content.rid = (u8)rid;
5171 		buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5172 		/* the new entry created should also be part of rg_list to
5173 		 * make sure we have complete recipe
5174 		 */
5175 		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5176 						sizeof(*last_chain_entry),
5177 						GFP_KERNEL);
5178 		if (!last_chain_entry) {
5179 			status = -ENOMEM;
5180 			goto err_unroll;
5181 		}
5182 		last_chain_entry->rid = rid;
5183 		memset(&buf[recps].content.lkup_indx, 0,
5184 		       sizeof(buf[recps].content.lkup_indx));
5185 		/* All recipes use look-up index 0 to match switch ID. */
5186 		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5187 		buf[recps].content.mask[0] =
5188 			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5189 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5190 			buf[recps].content.lkup_indx[i] =
5191 				ICE_AQ_RECIPE_LKUP_IGNORE;
5192 			buf[recps].content.mask[i] = 0;
5193 		}
5194 
5195 		i = 1;
5196 		/* update r_bitmap with the recp that is used for chaining */
5197 		set_bit(rid, rm->r_bitmap);
5198 		/* this is the recipe that chains all the other recipes so it
5199 		 * should not have a chaining ID to indicate the same
5200 		 */
5201 		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5202 		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5203 			last_chain_entry->fv_idx[i] = entry->chain_idx;
5204 			buf[recps].content.lkup_indx[i] = entry->chain_idx;
5205 			buf[recps].content.mask[i++] = cpu_to_le16(0xFFFF);
5206 			set_bit(entry->rid, rm->r_bitmap);
5207 		}
5208 		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5209 		if (sizeof(buf[recps].recipe_bitmap) >=
5210 		    sizeof(rm->r_bitmap)) {
5211 			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5212 			       sizeof(buf[recps].recipe_bitmap));
5213 		} else {
5214 			status = -EINVAL;
5215 			goto err_unroll;
5216 		}
5217 		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5218 
5219 		recps++;
5220 		rm->root_rid = (u8)rid;
5221 	}
5222 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5223 	if (status)
5224 		goto err_unroll;
5225 
5226 	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5227 	ice_release_change_lock(hw);
5228 	if (status)
5229 		goto err_unroll;
5230 
5231 	/* Every recipe that just got created add it to the recipe
5232 	 * book keeping list
5233 	 */
5234 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5235 		struct ice_switch_info *sw = hw->switch_info;
5236 		bool is_root, idx_found = false;
5237 		struct ice_sw_recipe *recp;
5238 		u16 idx, buf_idx = 0;
5239 
5240 		/* find buffer index for copying some data */
5241 		for (idx = 0; idx < rm->n_grp_count; idx++)
5242 			if (buf[idx].recipe_indx == entry->rid) {
5243 				buf_idx = idx;
5244 				idx_found = true;
5245 			}
5246 
5247 		if (!idx_found) {
5248 			status = -EIO;
5249 			goto err_unroll;
5250 		}
5251 
5252 		recp = &sw->recp_list[entry->rid];
5253 		is_root = (rm->root_rid == entry->rid);
5254 		recp->is_root = is_root;
5255 
5256 		recp->root_rid = entry->rid;
5257 		recp->big_recp = (is_root && rm->n_grp_count > 1);
5258 
5259 		memcpy(&recp->ext_words, entry->r_group.pairs,
5260 		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5261 
5262 		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5263 		       sizeof(recp->r_bitmap));
5264 
5265 		/* Copy non-result fv index values and masks to recipe. This
5266 		 * call will also update the result recipe bitmask.
5267 		 */
5268 		ice_collect_result_idx(&buf[buf_idx], recp);
5269 
5270 		/* for non-root recipes, also copy to the root, this allows
5271 		 * easier matching of a complete chained recipe
5272 		 */
5273 		if (!is_root)
5274 			ice_collect_result_idx(&buf[buf_idx],
5275 					       &sw->recp_list[rm->root_rid]);
5276 
5277 		recp->n_ext_words = entry->r_group.n_val_pairs;
5278 		recp->chain_idx = entry->chain_idx;
5279 		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5280 		recp->n_grp_count = rm->n_grp_count;
5281 		recp->tun_type = rm->tun_type;
5282 		recp->recp_created = true;
5283 	}
5284 	rm->root_buf = buf;
5285 	kfree(tmp);
5286 	return status;
5287 
5288 err_unroll:
5289 err_mem:
5290 	kfree(tmp);
5291 	devm_kfree(ice_hw_to_dev(hw), buf);
5292 	return status;
5293 }
5294 
5295 /**
5296  * ice_create_recipe_group - creates recipe group
5297  * @hw: pointer to hardware structure
5298  * @rm: recipe management list entry
5299  * @lkup_exts: lookup elements
5300  */
5301 static int
5302 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5303 			struct ice_prot_lkup_ext *lkup_exts)
5304 {
5305 	u8 recp_count = 0;
5306 	int status;
5307 
5308 	rm->n_grp_count = 0;
5309 
5310 	/* Create recipes for words that are marked not done by packing them
5311 	 * as best fit.
5312 	 */
5313 	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5314 					       &rm->rg_list, &recp_count);
5315 	if (!status) {
5316 		rm->n_grp_count += recp_count;
5317 		rm->n_ext_words = lkup_exts->n_val_words;
5318 		memcpy(&rm->ext_words, lkup_exts->fv_words,
5319 		       sizeof(rm->ext_words));
5320 		memcpy(rm->word_masks, lkup_exts->field_mask,
5321 		       sizeof(rm->word_masks));
5322 	}
5323 
5324 	return status;
5325 }
5326 
5327 /**
5328  * ice_tun_type_match_word - determine if tun type needs a match mask
5329  * @tun_type: tunnel type
5330  * @mask: mask to be used for the tunnel
5331  */
5332 static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask)
5333 {
5334 	switch (tun_type) {
5335 	case ICE_SW_TUN_GENEVE:
5336 	case ICE_SW_TUN_VXLAN:
5337 	case ICE_SW_TUN_NVGRE:
5338 	case ICE_SW_TUN_GTPU:
5339 	case ICE_SW_TUN_GTPC:
5340 		*mask = ICE_TUN_FLAG_MASK;
5341 		return true;
5342 
5343 	default:
5344 		*mask = 0;
5345 		return false;
5346 	}
5347 }
5348 
5349 /**
5350  * ice_add_special_words - Add words that are not protocols, such as metadata
5351  * @rinfo: other information regarding the rule e.g. priority and action info
5352  * @lkup_exts: lookup word structure
5353  * @dvm_ena: is double VLAN mode enabled
5354  */
5355 static int
5356 ice_add_special_words(struct ice_adv_rule_info *rinfo,
5357 		      struct ice_prot_lkup_ext *lkup_exts, bool dvm_ena)
5358 {
5359 	u16 mask;
5360 
5361 	/* If this is a tunneled packet, then add recipe index to match the
5362 	 * tunnel bit in the packet metadata flags.
5363 	 */
5364 	if (ice_tun_type_match_word(rinfo->tun_type, &mask)) {
5365 		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5366 			u8 word = lkup_exts->n_val_words++;
5367 
5368 			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5369 			lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF;
5370 			lkup_exts->field_mask[word] = mask;
5371 		} else {
5372 			return -ENOSPC;
5373 		}
5374 	}
5375 
5376 	if (rinfo->vlan_type != 0 && dvm_ena) {
5377 		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5378 			u8 word = lkup_exts->n_val_words++;
5379 
5380 			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5381 			lkup_exts->fv_words[word].off = ICE_VLAN_FLAG_MDID_OFF;
5382 			lkup_exts->field_mask[word] =
5383 					ICE_PKT_FLAGS_0_TO_15_VLAN_FLAGS_MASK;
5384 		} else {
5385 			return -ENOSPC;
5386 		}
5387 	}
5388 
5389 	return 0;
5390 }
5391 
5392 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5393  * @hw: pointer to hardware structure
5394  * @rinfo: other information regarding the rule e.g. priority and action info
5395  * @bm: pointer to memory for returning the bitmap of field vectors
5396  */
5397 static void
5398 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5399 			 unsigned long *bm)
5400 {
5401 	enum ice_prof_type prof_type;
5402 
5403 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5404 
5405 	switch (rinfo->tun_type) {
5406 	case ICE_NON_TUN:
5407 		prof_type = ICE_PROF_NON_TUN;
5408 		break;
5409 	case ICE_ALL_TUNNELS:
5410 		prof_type = ICE_PROF_TUN_ALL;
5411 		break;
5412 	case ICE_SW_TUN_GENEVE:
5413 	case ICE_SW_TUN_VXLAN:
5414 		prof_type = ICE_PROF_TUN_UDP;
5415 		break;
5416 	case ICE_SW_TUN_NVGRE:
5417 		prof_type = ICE_PROF_TUN_GRE;
5418 		break;
5419 	case ICE_SW_TUN_GTPU:
5420 		prof_type = ICE_PROF_TUN_GTPU;
5421 		break;
5422 	case ICE_SW_TUN_GTPC:
5423 		prof_type = ICE_PROF_TUN_GTPC;
5424 		break;
5425 	case ICE_SW_TUN_AND_NON_TUN:
5426 	default:
5427 		prof_type = ICE_PROF_ALL;
5428 		break;
5429 	}
5430 
5431 	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5432 }
5433 
5434 /**
5435  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5436  * @hw: pointer to hardware structure
5437  * @lkups: lookup elements or match criteria for the advanced recipe, one
5438  *  structure per protocol header
5439  * @lkups_cnt: number of protocols
5440  * @rinfo: other information regarding the rule e.g. priority and action info
5441  * @rid: return the recipe ID of the recipe created
5442  */
5443 static int
5444 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5445 		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5446 {
5447 	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5448 	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5449 	struct ice_prot_lkup_ext *lkup_exts;
5450 	struct ice_recp_grp_entry *r_entry;
5451 	struct ice_sw_fv_list_entry *fvit;
5452 	struct ice_recp_grp_entry *r_tmp;
5453 	struct ice_sw_fv_list_entry *tmp;
5454 	struct ice_sw_recipe *rm;
5455 	int status = 0;
5456 	u8 i;
5457 
5458 	if (!lkups_cnt)
5459 		return -EINVAL;
5460 
5461 	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5462 	if (!lkup_exts)
5463 		return -ENOMEM;
5464 
5465 	/* Determine the number of words to be matched and if it exceeds a
5466 	 * recipe's restrictions
5467 	 */
5468 	for (i = 0; i < lkups_cnt; i++) {
5469 		u16 count;
5470 
5471 		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5472 			status = -EIO;
5473 			goto err_free_lkup_exts;
5474 		}
5475 
5476 		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5477 		if (!count) {
5478 			status = -EIO;
5479 			goto err_free_lkup_exts;
5480 		}
5481 	}
5482 
5483 	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5484 	if (!rm) {
5485 		status = -ENOMEM;
5486 		goto err_free_lkup_exts;
5487 	}
5488 
5489 	/* Get field vectors that contain fields extracted from all the protocol
5490 	 * headers being programmed.
5491 	 */
5492 	INIT_LIST_HEAD(&rm->fv_list);
5493 	INIT_LIST_HEAD(&rm->rg_list);
5494 
5495 	/* Get bitmap of field vectors (profiles) that are compatible with the
5496 	 * rule request; only these will be searched in the subsequent call to
5497 	 * ice_get_sw_fv_list.
5498 	 */
5499 	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5500 
5501 	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5502 	if (status)
5503 		goto err_unroll;
5504 
5505 	/* Create any special protocol/offset pairs, such as looking at tunnel
5506 	 * bits by extracting metadata
5507 	 */
5508 	status = ice_add_special_words(rinfo, lkup_exts, ice_is_dvm_ena(hw));
5509 	if (status)
5510 		goto err_free_lkup_exts;
5511 
5512 	/* Group match words into recipes using preferred recipe grouping
5513 	 * criteria.
5514 	 */
5515 	status = ice_create_recipe_group(hw, rm, lkup_exts);
5516 	if (status)
5517 		goto err_unroll;
5518 
5519 	/* set the recipe priority if specified */
5520 	rm->priority = (u8)rinfo->priority;
5521 
5522 	/* Find offsets from the field vector. Pick the first one for all the
5523 	 * recipes.
5524 	 */
5525 	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5526 	if (status)
5527 		goto err_unroll;
5528 
5529 	/* get bitmap of all profiles the recipe will be associated with */
5530 	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5531 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5532 		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5533 		set_bit((u16)fvit->profile_id, profiles);
5534 	}
5535 
5536 	/* Look for a recipe which matches our requested fv / mask list */
5537 	*rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type);
5538 	if (*rid < ICE_MAX_NUM_RECIPES)
5539 		/* Success if found a recipe that match the existing criteria */
5540 		goto err_unroll;
5541 
5542 	rm->tun_type = rinfo->tun_type;
5543 	/* Recipe we need does not exist, add a recipe */
5544 	status = ice_add_sw_recipe(hw, rm, profiles);
5545 	if (status)
5546 		goto err_unroll;
5547 
5548 	/* Associate all the recipes created with all the profiles in the
5549 	 * common field vector.
5550 	 */
5551 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5552 		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5553 		u16 j;
5554 
5555 		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5556 						      (u8 *)r_bitmap, NULL);
5557 		if (status)
5558 			goto err_unroll;
5559 
5560 		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5561 			  ICE_MAX_NUM_RECIPES);
5562 		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5563 		if (status)
5564 			goto err_unroll;
5565 
5566 		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5567 						      (u8 *)r_bitmap,
5568 						      NULL);
5569 		ice_release_change_lock(hw);
5570 
5571 		if (status)
5572 			goto err_unroll;
5573 
5574 		/* Update profile to recipe bitmap array */
5575 		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5576 			    ICE_MAX_NUM_RECIPES);
5577 
5578 		/* Update recipe to profile bitmap array */
5579 		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5580 			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5581 	}
5582 
5583 	*rid = rm->root_rid;
5584 	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5585 	       sizeof(*lkup_exts));
5586 err_unroll:
5587 	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5588 		list_del(&r_entry->l_entry);
5589 		devm_kfree(ice_hw_to_dev(hw), r_entry);
5590 	}
5591 
5592 	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5593 		list_del(&fvit->list_entry);
5594 		devm_kfree(ice_hw_to_dev(hw), fvit);
5595 	}
5596 
5597 	if (rm->root_buf)
5598 		devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5599 
5600 	kfree(rm);
5601 
5602 err_free_lkup_exts:
5603 	kfree(lkup_exts);
5604 
5605 	return status;
5606 }
5607 
5608 /**
5609  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5610  *
5611  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5612  * @num_vlan: number of VLAN tags
5613  */
5614 static struct ice_dummy_pkt_profile *
5615 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5616 			  u32 num_vlan)
5617 {
5618 	struct ice_dummy_pkt_profile *profile;
5619 	struct ice_dummy_pkt_offsets *offsets;
5620 	u32 buf_len, off, etype_off, i;
5621 	u8 *pkt;
5622 
5623 	if (num_vlan < 1 || num_vlan > 2)
5624 		return ERR_PTR(-EINVAL);
5625 
5626 	off = num_vlan * VLAN_HLEN;
5627 
5628 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5629 		  dummy_pkt->offsets_len;
5630 	offsets = kzalloc(buf_len, GFP_KERNEL);
5631 	if (!offsets)
5632 		return ERR_PTR(-ENOMEM);
5633 
5634 	offsets[0] = dummy_pkt->offsets[0];
5635 	if (num_vlan == 2) {
5636 		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5637 		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5638 	} else if (num_vlan == 1) {
5639 		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5640 	}
5641 
5642 	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5643 		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5644 		offsets[i + num_vlan].offset =
5645 			dummy_pkt->offsets[i].offset + off;
5646 	}
5647 	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5648 
5649 	etype_off = dummy_pkt->offsets[1].offset;
5650 
5651 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5652 		  dummy_pkt->pkt_len;
5653 	pkt = kzalloc(buf_len, GFP_KERNEL);
5654 	if (!pkt) {
5655 		kfree(offsets);
5656 		return ERR_PTR(-ENOMEM);
5657 	}
5658 
5659 	memcpy(pkt, dummy_pkt->pkt, etype_off);
5660 	memcpy(pkt + etype_off,
5661 	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5662 	       off);
5663 	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5664 	       dummy_pkt->pkt_len - etype_off);
5665 
5666 	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5667 	if (!profile) {
5668 		kfree(offsets);
5669 		kfree(pkt);
5670 		return ERR_PTR(-ENOMEM);
5671 	}
5672 
5673 	profile->offsets = offsets;
5674 	profile->pkt = pkt;
5675 	profile->pkt_len = buf_len;
5676 	profile->match |= ICE_PKT_KMALLOC;
5677 
5678 	return profile;
5679 }
5680 
5681 /**
5682  * ice_find_dummy_packet - find dummy packet
5683  *
5684  * @lkups: lookup elements or match criteria for the advanced recipe, one
5685  *	   structure per protocol header
5686  * @lkups_cnt: number of protocols
5687  * @tun_type: tunnel type
5688  *
5689  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5690  */
5691 static const struct ice_dummy_pkt_profile *
5692 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5693 		      enum ice_sw_tunnel_type tun_type)
5694 {
5695 	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5696 	u32 match = 0, vlan_count = 0;
5697 	u16 i;
5698 
5699 	switch (tun_type) {
5700 	case ICE_SW_TUN_GTPC:
5701 		match |= ICE_PKT_TUN_GTPC;
5702 		break;
5703 	case ICE_SW_TUN_GTPU:
5704 		match |= ICE_PKT_TUN_GTPU;
5705 		break;
5706 	case ICE_SW_TUN_NVGRE:
5707 		match |= ICE_PKT_TUN_NVGRE;
5708 		break;
5709 	case ICE_SW_TUN_GENEVE:
5710 	case ICE_SW_TUN_VXLAN:
5711 		match |= ICE_PKT_TUN_UDP;
5712 		break;
5713 	default:
5714 		break;
5715 	}
5716 
5717 	for (i = 0; i < lkups_cnt; i++) {
5718 		if (lkups[i].type == ICE_UDP_ILOS)
5719 			match |= ICE_PKT_INNER_UDP;
5720 		else if (lkups[i].type == ICE_TCP_IL)
5721 			match |= ICE_PKT_INNER_TCP;
5722 		else if (lkups[i].type == ICE_IPV6_OFOS)
5723 			match |= ICE_PKT_OUTER_IPV6;
5724 		else if (lkups[i].type == ICE_VLAN_OFOS ||
5725 			 lkups[i].type == ICE_VLAN_EX)
5726 			vlan_count++;
5727 		else if (lkups[i].type == ICE_VLAN_IN)
5728 			vlan_count++;
5729 		else if (lkups[i].type == ICE_ETYPE_OL &&
5730 			 lkups[i].h_u.ethertype.ethtype_id ==
5731 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5732 			 lkups[i].m_u.ethertype.ethtype_id ==
5733 				cpu_to_be16(0xFFFF))
5734 			match |= ICE_PKT_OUTER_IPV6;
5735 		else if (lkups[i].type == ICE_ETYPE_IL &&
5736 			 lkups[i].h_u.ethertype.ethtype_id ==
5737 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5738 			 lkups[i].m_u.ethertype.ethtype_id ==
5739 				cpu_to_be16(0xFFFF))
5740 			match |= ICE_PKT_INNER_IPV6;
5741 		else if (lkups[i].type == ICE_IPV6_IL)
5742 			match |= ICE_PKT_INNER_IPV6;
5743 		else if (lkups[i].type == ICE_GTP_NO_PAY)
5744 			match |= ICE_PKT_GTP_NOPAY;
5745 		else if (lkups[i].type == ICE_PPPOE) {
5746 			match |= ICE_PKT_PPPOE;
5747 			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5748 			    htons(PPP_IPV6))
5749 				match |= ICE_PKT_OUTER_IPV6;
5750 		}
5751 	}
5752 
5753 	while (ret->match && (match & ret->match) != ret->match)
5754 		ret++;
5755 
5756 	if (vlan_count != 0)
5757 		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5758 
5759 	return ret;
5760 }
5761 
5762 /**
5763  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5764  *
5765  * @lkups: lookup elements or match criteria for the advanced recipe, one
5766  *	   structure per protocol header
5767  * @lkups_cnt: number of protocols
5768  * @s_rule: stores rule information from the match criteria
5769  * @profile: dummy packet profile (the template, its size and header offsets)
5770  */
5771 static int
5772 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5773 			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5774 			  const struct ice_dummy_pkt_profile *profile)
5775 {
5776 	u8 *pkt;
5777 	u16 i;
5778 
5779 	/* Start with a packet with a pre-defined/dummy content. Then, fill
5780 	 * in the header values to be looked up or matched.
5781 	 */
5782 	pkt = s_rule->hdr_data;
5783 
5784 	memcpy(pkt, profile->pkt, profile->pkt_len);
5785 
5786 	for (i = 0; i < lkups_cnt; i++) {
5787 		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5788 		enum ice_protocol_type type;
5789 		u16 offset = 0, len = 0, j;
5790 		bool found = false;
5791 
5792 		/* find the start of this layer; it should be found since this
5793 		 * was already checked when search for the dummy packet
5794 		 */
5795 		type = lkups[i].type;
5796 		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5797 			if (type == offsets[j].type) {
5798 				offset = offsets[j].offset;
5799 				found = true;
5800 				break;
5801 			}
5802 		}
5803 		/* this should never happen in a correct calling sequence */
5804 		if (!found)
5805 			return -EINVAL;
5806 
5807 		switch (lkups[i].type) {
5808 		case ICE_MAC_OFOS:
5809 		case ICE_MAC_IL:
5810 			len = sizeof(struct ice_ether_hdr);
5811 			break;
5812 		case ICE_ETYPE_OL:
5813 		case ICE_ETYPE_IL:
5814 			len = sizeof(struct ice_ethtype_hdr);
5815 			break;
5816 		case ICE_VLAN_OFOS:
5817 		case ICE_VLAN_EX:
5818 		case ICE_VLAN_IN:
5819 			len = sizeof(struct ice_vlan_hdr);
5820 			break;
5821 		case ICE_IPV4_OFOS:
5822 		case ICE_IPV4_IL:
5823 			len = sizeof(struct ice_ipv4_hdr);
5824 			break;
5825 		case ICE_IPV6_OFOS:
5826 		case ICE_IPV6_IL:
5827 			len = sizeof(struct ice_ipv6_hdr);
5828 			break;
5829 		case ICE_TCP_IL:
5830 		case ICE_UDP_OF:
5831 		case ICE_UDP_ILOS:
5832 			len = sizeof(struct ice_l4_hdr);
5833 			break;
5834 		case ICE_SCTP_IL:
5835 			len = sizeof(struct ice_sctp_hdr);
5836 			break;
5837 		case ICE_NVGRE:
5838 			len = sizeof(struct ice_nvgre_hdr);
5839 			break;
5840 		case ICE_VXLAN:
5841 		case ICE_GENEVE:
5842 			len = sizeof(struct ice_udp_tnl_hdr);
5843 			break;
5844 		case ICE_GTP_NO_PAY:
5845 		case ICE_GTP:
5846 			len = sizeof(struct ice_udp_gtp_hdr);
5847 			break;
5848 		case ICE_PPPOE:
5849 			len = sizeof(struct ice_pppoe_hdr);
5850 			break;
5851 		default:
5852 			return -EINVAL;
5853 		}
5854 
5855 		/* the length should be a word multiple */
5856 		if (len % ICE_BYTES_PER_WORD)
5857 			return -EIO;
5858 
5859 		/* We have the offset to the header start, the length, the
5860 		 * caller's header values and mask. Use this information to
5861 		 * copy the data into the dummy packet appropriately based on
5862 		 * the mask. Note that we need to only write the bits as
5863 		 * indicated by the mask to make sure we don't improperly write
5864 		 * over any significant packet data.
5865 		 */
5866 		for (j = 0; j < len / sizeof(u16); j++) {
5867 			u16 *ptr = (u16 *)(pkt + offset);
5868 			u16 mask = lkups[i].m_raw[j];
5869 
5870 			if (!mask)
5871 				continue;
5872 
5873 			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5874 		}
5875 	}
5876 
5877 	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5878 
5879 	return 0;
5880 }
5881 
5882 /**
5883  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5884  * @hw: pointer to the hardware structure
5885  * @tun_type: tunnel type
5886  * @pkt: dummy packet to fill in
5887  * @offsets: offset info for the dummy packet
5888  */
5889 static int
5890 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5891 			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5892 {
5893 	u16 open_port, i;
5894 
5895 	switch (tun_type) {
5896 	case ICE_SW_TUN_VXLAN:
5897 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5898 			return -EIO;
5899 		break;
5900 	case ICE_SW_TUN_GENEVE:
5901 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5902 			return -EIO;
5903 		break;
5904 	default:
5905 		/* Nothing needs to be done for this tunnel type */
5906 		return 0;
5907 	}
5908 
5909 	/* Find the outer UDP protocol header and insert the port number */
5910 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5911 		if (offsets[i].type == ICE_UDP_OF) {
5912 			struct ice_l4_hdr *hdr;
5913 			u16 offset;
5914 
5915 			offset = offsets[i].offset;
5916 			hdr = (struct ice_l4_hdr *)&pkt[offset];
5917 			hdr->dst_port = cpu_to_be16(open_port);
5918 
5919 			return 0;
5920 		}
5921 	}
5922 
5923 	return -EIO;
5924 }
5925 
5926 /**
5927  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5928  * @vlan_type: VLAN tag type
5929  * @pkt: dummy packet to fill in
5930  * @offsets: offset info for the dummy packet
5931  */
5932 static int
5933 ice_fill_adv_packet_vlan(u16 vlan_type, u8 *pkt,
5934 			 const struct ice_dummy_pkt_offsets *offsets)
5935 {
5936 	u16 i;
5937 
5938 	/* Find VLAN header and insert VLAN TPID */
5939 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5940 		if (offsets[i].type == ICE_VLAN_OFOS ||
5941 		    offsets[i].type == ICE_VLAN_EX) {
5942 			struct ice_vlan_hdr *hdr;
5943 			u16 offset;
5944 
5945 			offset = offsets[i].offset;
5946 			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5947 			hdr->type = cpu_to_be16(vlan_type);
5948 
5949 			return 0;
5950 		}
5951 	}
5952 
5953 	return -EIO;
5954 }
5955 
5956 /**
5957  * ice_find_adv_rule_entry - Search a rule entry
5958  * @hw: pointer to the hardware structure
5959  * @lkups: lookup elements or match criteria for the advanced recipe, one
5960  *	   structure per protocol header
5961  * @lkups_cnt: number of protocols
5962  * @recp_id: recipe ID for which we are finding the rule
5963  * @rinfo: other information regarding the rule e.g. priority and action info
5964  *
5965  * Helper function to search for a given advance rule entry
5966  * Returns pointer to entry storing the rule if found
5967  */
5968 static struct ice_adv_fltr_mgmt_list_entry *
5969 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5970 			u16 lkups_cnt, u16 recp_id,
5971 			struct ice_adv_rule_info *rinfo)
5972 {
5973 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5974 	struct ice_switch_info *sw = hw->switch_info;
5975 	int i;
5976 
5977 	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5978 			    list_entry) {
5979 		bool lkups_matched = true;
5980 
5981 		if (lkups_cnt != list_itr->lkups_cnt)
5982 			continue;
5983 		for (i = 0; i < list_itr->lkups_cnt; i++)
5984 			if (memcmp(&list_itr->lkups[i], &lkups[i],
5985 				   sizeof(*lkups))) {
5986 				lkups_matched = false;
5987 				break;
5988 			}
5989 		if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5990 		    rinfo->tun_type == list_itr->rule_info.tun_type &&
5991 		    rinfo->vlan_type == list_itr->rule_info.vlan_type &&
5992 		    lkups_matched)
5993 			return list_itr;
5994 	}
5995 	return NULL;
5996 }
5997 
5998 /**
5999  * ice_adv_add_update_vsi_list
6000  * @hw: pointer to the hardware structure
6001  * @m_entry: pointer to current adv filter management list entry
6002  * @cur_fltr: filter information from the book keeping entry
6003  * @new_fltr: filter information with the new VSI to be added
6004  *
6005  * Call AQ command to add or update previously created VSI list with new VSI.
6006  *
6007  * Helper function to do book keeping associated with adding filter information
6008  * The algorithm to do the booking keeping is described below :
6009  * When a VSI needs to subscribe to a given advanced filter
6010  *	if only one VSI has been added till now
6011  *		Allocate a new VSI list and add two VSIs
6012  *		to this list using switch rule command
6013  *		Update the previously created switch rule with the
6014  *		newly created VSI list ID
6015  *	if a VSI list was previously created
6016  *		Add the new VSI to the previously created VSI list set
6017  *		using the update switch rule command
6018  */
6019 static int
6020 ice_adv_add_update_vsi_list(struct ice_hw *hw,
6021 			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
6022 			    struct ice_adv_rule_info *cur_fltr,
6023 			    struct ice_adv_rule_info *new_fltr)
6024 {
6025 	u16 vsi_list_id = 0;
6026 	int status;
6027 
6028 	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
6029 	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6030 	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
6031 		return -EOPNOTSUPP;
6032 
6033 	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
6034 	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
6035 	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6036 	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
6037 		return -EOPNOTSUPP;
6038 
6039 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
6040 		 /* Only one entry existed in the mapping and it was not already
6041 		  * a part of a VSI list. So, create a VSI list with the old and
6042 		  * new VSIs.
6043 		  */
6044 		struct ice_fltr_info tmp_fltr;
6045 		u16 vsi_handle_arr[2];
6046 
6047 		/* A rule already exists with the new VSI being added */
6048 		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
6049 		    new_fltr->sw_act.fwd_id.hw_vsi_id)
6050 			return -EEXIST;
6051 
6052 		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
6053 		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
6054 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
6055 						  &vsi_list_id,
6056 						  ICE_SW_LKUP_LAST);
6057 		if (status)
6058 			return status;
6059 
6060 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6061 		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
6062 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
6063 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
6064 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
6065 		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
6066 
6067 		/* Update the previous switch rule of "forward to VSI" to
6068 		 * "fwd to VSI list"
6069 		 */
6070 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6071 		if (status)
6072 			return status;
6073 
6074 		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
6075 		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
6076 		m_entry->vsi_list_info =
6077 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
6078 						vsi_list_id);
6079 	} else {
6080 		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
6081 
6082 		if (!m_entry->vsi_list_info)
6083 			return -EIO;
6084 
6085 		/* A rule already exists with the new VSI being added */
6086 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
6087 			return 0;
6088 
6089 		/* Update the previously created VSI list set with
6090 		 * the new VSI ID passed in
6091 		 */
6092 		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
6093 
6094 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
6095 						  vsi_list_id, false,
6096 						  ice_aqc_opc_update_sw_rules,
6097 						  ICE_SW_LKUP_LAST);
6098 		/* update VSI list mapping info with new VSI ID */
6099 		if (!status)
6100 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
6101 	}
6102 	if (!status)
6103 		m_entry->vsi_count++;
6104 	return status;
6105 }
6106 
6107 /**
6108  * ice_add_adv_rule - helper function to create an advanced switch rule
6109  * @hw: pointer to the hardware structure
6110  * @lkups: information on the words that needs to be looked up. All words
6111  * together makes one recipe
6112  * @lkups_cnt: num of entries in the lkups array
6113  * @rinfo: other information related to the rule that needs to be programmed
6114  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6115  *               ignored is case of error.
6116  *
6117  * This function can program only 1 rule at a time. The lkups is used to
6118  * describe the all the words that forms the "lookup" portion of the recipe.
6119  * These words can span multiple protocols. Callers to this function need to
6120  * pass in a list of protocol headers with lookup information along and mask
6121  * that determines which words are valid from the given protocol header.
6122  * rinfo describes other information related to this rule such as forwarding
6123  * IDs, priority of this rule, etc.
6124  */
6125 int
6126 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6127 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6128 		 struct ice_rule_query_data *added_entry)
6129 {
6130 	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6131 	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6132 	const struct ice_dummy_pkt_profile *profile;
6133 	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6134 	struct list_head *rule_head;
6135 	struct ice_switch_info *sw;
6136 	u16 word_cnt;
6137 	u32 act = 0;
6138 	int status;
6139 	u8 q_rgn;
6140 
6141 	/* Initialize profile to result index bitmap */
6142 	if (!hw->switch_info->prof_res_bm_init) {
6143 		hw->switch_info->prof_res_bm_init = 1;
6144 		ice_init_prof_result_bm(hw);
6145 	}
6146 
6147 	if (!lkups_cnt)
6148 		return -EINVAL;
6149 
6150 	/* get # of words we need to match */
6151 	word_cnt = 0;
6152 	for (i = 0; i < lkups_cnt; i++) {
6153 		u16 j;
6154 
6155 		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6156 			if (lkups[i].m_raw[j])
6157 				word_cnt++;
6158 	}
6159 
6160 	if (!word_cnt)
6161 		return -EINVAL;
6162 
6163 	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6164 		return -ENOSPC;
6165 
6166 	/* locate a dummy packet */
6167 	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6168 	if (IS_ERR(profile))
6169 		return PTR_ERR(profile);
6170 
6171 	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6172 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6173 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6174 	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET)) {
6175 		status = -EIO;
6176 		goto free_pkt_profile;
6177 	}
6178 
6179 	vsi_handle = rinfo->sw_act.vsi_handle;
6180 	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6181 		status =  -EINVAL;
6182 		goto free_pkt_profile;
6183 	}
6184 
6185 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6186 		rinfo->sw_act.fwd_id.hw_vsi_id =
6187 			ice_get_hw_vsi_num(hw, vsi_handle);
6188 	if (rinfo->sw_act.flag & ICE_FLTR_TX)
6189 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6190 
6191 	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6192 	if (status)
6193 		goto free_pkt_profile;
6194 	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6195 	if (m_entry) {
6196 		/* we have to add VSI to VSI_LIST and increment vsi_count.
6197 		 * Also Update VSI list so that we can change forwarding rule
6198 		 * if the rule already exists, we will check if it exists with
6199 		 * same vsi_id, if not then add it to the VSI list if it already
6200 		 * exists if not then create a VSI list and add the existing VSI
6201 		 * ID and the new VSI ID to the list
6202 		 * We will add that VSI to the list
6203 		 */
6204 		status = ice_adv_add_update_vsi_list(hw, m_entry,
6205 						     &m_entry->rule_info,
6206 						     rinfo);
6207 		if (added_entry) {
6208 			added_entry->rid = rid;
6209 			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6210 			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6211 		}
6212 		goto free_pkt_profile;
6213 	}
6214 	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6215 	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6216 	if (!s_rule) {
6217 		status = -ENOMEM;
6218 		goto free_pkt_profile;
6219 	}
6220 	if (!rinfo->flags_info.act_valid) {
6221 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
6222 		act |= ICE_SINGLE_ACT_LB_ENABLE;
6223 	} else {
6224 		act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6225 						ICE_SINGLE_ACT_LB_ENABLE);
6226 	}
6227 
6228 	switch (rinfo->sw_act.fltr_act) {
6229 	case ICE_FWD_TO_VSI:
6230 		act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6231 			ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6232 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6233 		break;
6234 	case ICE_FWD_TO_Q:
6235 		act |= ICE_SINGLE_ACT_TO_Q;
6236 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6237 		       ICE_SINGLE_ACT_Q_INDEX_M;
6238 		break;
6239 	case ICE_FWD_TO_QGRP:
6240 		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6241 			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6242 		act |= ICE_SINGLE_ACT_TO_Q;
6243 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6244 		       ICE_SINGLE_ACT_Q_INDEX_M;
6245 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6246 		       ICE_SINGLE_ACT_Q_REGION_M;
6247 		break;
6248 	case ICE_DROP_PACKET:
6249 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6250 		       ICE_SINGLE_ACT_VALID_BIT;
6251 		break;
6252 	default:
6253 		status = -EIO;
6254 		goto err_ice_add_adv_rule;
6255 	}
6256 
6257 	/* set the rule LOOKUP type based on caller specified 'Rx'
6258 	 * instead of hardcoding it to be either LOOKUP_TX/RX
6259 	 *
6260 	 * for 'Rx' set the source to be the port number
6261 	 * for 'Tx' set the source to be the source HW VSI number (determined
6262 	 * by caller)
6263 	 */
6264 	if (rinfo->rx) {
6265 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6266 		s_rule->src = cpu_to_le16(hw->port_info->lport);
6267 	} else {
6268 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6269 		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6270 	}
6271 
6272 	s_rule->recipe_id = cpu_to_le16(rid);
6273 	s_rule->act = cpu_to_le32(act);
6274 
6275 	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6276 	if (status)
6277 		goto err_ice_add_adv_rule;
6278 
6279 	if (rinfo->tun_type != ICE_NON_TUN &&
6280 	    rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
6281 		status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
6282 						 s_rule->hdr_data,
6283 						 profile->offsets);
6284 		if (status)
6285 			goto err_ice_add_adv_rule;
6286 	}
6287 
6288 	if (rinfo->vlan_type != 0 && ice_is_dvm_ena(hw)) {
6289 		status = ice_fill_adv_packet_vlan(rinfo->vlan_type,
6290 						  s_rule->hdr_data,
6291 						  profile->offsets);
6292 		if (status)
6293 			goto err_ice_add_adv_rule;
6294 	}
6295 
6296 	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6297 				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6298 				 NULL);
6299 	if (status)
6300 		goto err_ice_add_adv_rule;
6301 	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6302 				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6303 				GFP_KERNEL);
6304 	if (!adv_fltr) {
6305 		status = -ENOMEM;
6306 		goto err_ice_add_adv_rule;
6307 	}
6308 
6309 	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6310 				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6311 	if (!adv_fltr->lkups) {
6312 		status = -ENOMEM;
6313 		goto err_ice_add_adv_rule;
6314 	}
6315 
6316 	adv_fltr->lkups_cnt = lkups_cnt;
6317 	adv_fltr->rule_info = *rinfo;
6318 	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6319 	sw = hw->switch_info;
6320 	sw->recp_list[rid].adv_rule = true;
6321 	rule_head = &sw->recp_list[rid].filt_rules;
6322 
6323 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6324 		adv_fltr->vsi_count = 1;
6325 
6326 	/* Add rule entry to book keeping list */
6327 	list_add(&adv_fltr->list_entry, rule_head);
6328 	if (added_entry) {
6329 		added_entry->rid = rid;
6330 		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6331 		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6332 	}
6333 err_ice_add_adv_rule:
6334 	if (status && adv_fltr) {
6335 		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6336 		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6337 	}
6338 
6339 	kfree(s_rule);
6340 
6341 free_pkt_profile:
6342 	if (profile->match & ICE_PKT_KMALLOC) {
6343 		kfree(profile->offsets);
6344 		kfree(profile->pkt);
6345 		kfree(profile);
6346 	}
6347 
6348 	return status;
6349 }
6350 
6351 /**
6352  * ice_replay_vsi_fltr - Replay filters for requested VSI
6353  * @hw: pointer to the hardware structure
6354  * @vsi_handle: driver VSI handle
6355  * @recp_id: Recipe ID for which rules need to be replayed
6356  * @list_head: list for which filters need to be replayed
6357  *
6358  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6359  * It is required to pass valid VSI handle.
6360  */
6361 static int
6362 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6363 		    struct list_head *list_head)
6364 {
6365 	struct ice_fltr_mgmt_list_entry *itr;
6366 	int status = 0;
6367 	u16 hw_vsi_id;
6368 
6369 	if (list_empty(list_head))
6370 		return status;
6371 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6372 
6373 	list_for_each_entry(itr, list_head, list_entry) {
6374 		struct ice_fltr_list_entry f_entry;
6375 
6376 		f_entry.fltr_info = itr->fltr_info;
6377 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6378 		    itr->fltr_info.vsi_handle == vsi_handle) {
6379 			/* update the src in case it is VSI num */
6380 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6381 				f_entry.fltr_info.src = hw_vsi_id;
6382 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6383 			if (status)
6384 				goto end;
6385 			continue;
6386 		}
6387 		if (!itr->vsi_list_info ||
6388 		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6389 			continue;
6390 		/* Clearing it so that the logic can add it back */
6391 		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6392 		f_entry.fltr_info.vsi_handle = vsi_handle;
6393 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6394 		/* update the src in case it is VSI num */
6395 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6396 			f_entry.fltr_info.src = hw_vsi_id;
6397 		if (recp_id == ICE_SW_LKUP_VLAN)
6398 			status = ice_add_vlan_internal(hw, &f_entry);
6399 		else
6400 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6401 		if (status)
6402 			goto end;
6403 	}
6404 end:
6405 	return status;
6406 }
6407 
6408 /**
6409  * ice_adv_rem_update_vsi_list
6410  * @hw: pointer to the hardware structure
6411  * @vsi_handle: VSI handle of the VSI to remove
6412  * @fm_list: filter management entry for which the VSI list management needs to
6413  *	     be done
6414  */
6415 static int
6416 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6417 			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6418 {
6419 	struct ice_vsi_list_map_info *vsi_list_info;
6420 	enum ice_sw_lkup_type lkup_type;
6421 	u16 vsi_list_id;
6422 	int status;
6423 
6424 	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6425 	    fm_list->vsi_count == 0)
6426 		return -EINVAL;
6427 
6428 	/* A rule with the VSI being removed does not exist */
6429 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6430 		return -ENOENT;
6431 
6432 	lkup_type = ICE_SW_LKUP_LAST;
6433 	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6434 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6435 					  ice_aqc_opc_update_sw_rules,
6436 					  lkup_type);
6437 	if (status)
6438 		return status;
6439 
6440 	fm_list->vsi_count--;
6441 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6442 	vsi_list_info = fm_list->vsi_list_info;
6443 	if (fm_list->vsi_count == 1) {
6444 		struct ice_fltr_info tmp_fltr;
6445 		u16 rem_vsi_handle;
6446 
6447 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6448 						ICE_MAX_VSI);
6449 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6450 			return -EIO;
6451 
6452 		/* Make sure VSI list is empty before removing it below */
6453 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6454 						  vsi_list_id, true,
6455 						  ice_aqc_opc_update_sw_rules,
6456 						  lkup_type);
6457 		if (status)
6458 			return status;
6459 
6460 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6461 		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6462 		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6463 		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6464 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6465 		tmp_fltr.fwd_id.hw_vsi_id =
6466 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6467 		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6468 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6469 		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6470 
6471 		/* Update the previous switch rule of "MAC forward to VSI" to
6472 		 * "MAC fwd to VSI list"
6473 		 */
6474 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6475 		if (status) {
6476 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6477 				  tmp_fltr.fwd_id.hw_vsi_id, status);
6478 			return status;
6479 		}
6480 		fm_list->vsi_list_info->ref_cnt--;
6481 
6482 		/* Remove the VSI list since it is no longer used */
6483 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6484 		if (status) {
6485 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6486 				  vsi_list_id, status);
6487 			return status;
6488 		}
6489 
6490 		list_del(&vsi_list_info->list_entry);
6491 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6492 		fm_list->vsi_list_info = NULL;
6493 	}
6494 
6495 	return status;
6496 }
6497 
6498 /**
6499  * ice_rem_adv_rule - removes existing advanced switch rule
6500  * @hw: pointer to the hardware structure
6501  * @lkups: information on the words that needs to be looked up. All words
6502  *         together makes one recipe
6503  * @lkups_cnt: num of entries in the lkups array
6504  * @rinfo: Its the pointer to the rule information for the rule
6505  *
6506  * This function can be used to remove 1 rule at a time. The lkups is
6507  * used to describe all the words that forms the "lookup" portion of the
6508  * rule. These words can span multiple protocols. Callers to this function
6509  * need to pass in a list of protocol headers with lookup information along
6510  * and mask that determines which words are valid from the given protocol
6511  * header. rinfo describes other information related to this rule such as
6512  * forwarding IDs, priority of this rule, etc.
6513  */
6514 static int
6515 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6516 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6517 {
6518 	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6519 	struct ice_prot_lkup_ext lkup_exts;
6520 	bool remove_rule = false;
6521 	struct mutex *rule_lock; /* Lock to protect filter rule list */
6522 	u16 i, rid, vsi_handle;
6523 	int status = 0;
6524 
6525 	memset(&lkup_exts, 0, sizeof(lkup_exts));
6526 	for (i = 0; i < lkups_cnt; i++) {
6527 		u16 count;
6528 
6529 		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6530 			return -EIO;
6531 
6532 		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6533 		if (!count)
6534 			return -EIO;
6535 	}
6536 
6537 	/* Create any special protocol/offset pairs, such as looking at tunnel
6538 	 * bits by extracting metadata
6539 	 */
6540 	status = ice_add_special_words(rinfo, &lkup_exts, ice_is_dvm_ena(hw));
6541 	if (status)
6542 		return status;
6543 
6544 	rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type);
6545 	/* If did not find a recipe that match the existing criteria */
6546 	if (rid == ICE_MAX_NUM_RECIPES)
6547 		return -EINVAL;
6548 
6549 	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6550 	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6551 	/* the rule is already removed */
6552 	if (!list_elem)
6553 		return 0;
6554 	mutex_lock(rule_lock);
6555 	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6556 		remove_rule = true;
6557 	} else if (list_elem->vsi_count > 1) {
6558 		remove_rule = false;
6559 		vsi_handle = rinfo->sw_act.vsi_handle;
6560 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6561 	} else {
6562 		vsi_handle = rinfo->sw_act.vsi_handle;
6563 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6564 		if (status) {
6565 			mutex_unlock(rule_lock);
6566 			return status;
6567 		}
6568 		if (list_elem->vsi_count == 0)
6569 			remove_rule = true;
6570 	}
6571 	mutex_unlock(rule_lock);
6572 	if (remove_rule) {
6573 		struct ice_sw_rule_lkup_rx_tx *s_rule;
6574 		u16 rule_buf_sz;
6575 
6576 		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6577 		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6578 		if (!s_rule)
6579 			return -ENOMEM;
6580 		s_rule->act = 0;
6581 		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6582 		s_rule->hdr_len = 0;
6583 		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6584 					 rule_buf_sz, 1,
6585 					 ice_aqc_opc_remove_sw_rules, NULL);
6586 		if (!status || status == -ENOENT) {
6587 			struct ice_switch_info *sw = hw->switch_info;
6588 
6589 			mutex_lock(rule_lock);
6590 			list_del(&list_elem->list_entry);
6591 			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6592 			devm_kfree(ice_hw_to_dev(hw), list_elem);
6593 			mutex_unlock(rule_lock);
6594 			if (list_empty(&sw->recp_list[rid].filt_rules))
6595 				sw->recp_list[rid].adv_rule = false;
6596 		}
6597 		kfree(s_rule);
6598 	}
6599 	return status;
6600 }
6601 
6602 /**
6603  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6604  * @hw: pointer to the hardware structure
6605  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6606  *
6607  * This function is used to remove 1 rule at a time. The removal is based on
6608  * the remove_entry parameter. This function will remove rule for a given
6609  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6610  */
6611 int
6612 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6613 		       struct ice_rule_query_data *remove_entry)
6614 {
6615 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6616 	struct list_head *list_head;
6617 	struct ice_adv_rule_info rinfo;
6618 	struct ice_switch_info *sw;
6619 
6620 	sw = hw->switch_info;
6621 	if (!sw->recp_list[remove_entry->rid].recp_created)
6622 		return -EINVAL;
6623 	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6624 	list_for_each_entry(list_itr, list_head, list_entry) {
6625 		if (list_itr->rule_info.fltr_rule_id ==
6626 		    remove_entry->rule_id) {
6627 			rinfo = list_itr->rule_info;
6628 			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6629 			return ice_rem_adv_rule(hw, list_itr->lkups,
6630 						list_itr->lkups_cnt, &rinfo);
6631 		}
6632 	}
6633 	/* either list is empty or unable to find rule */
6634 	return -ENOENT;
6635 }
6636 
6637 /**
6638  * ice_rem_adv_rule_for_vsi - removes existing advanced switch rules for a
6639  *                            given VSI handle
6640  * @hw: pointer to the hardware structure
6641  * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
6642  *
6643  * This function is used to remove all the rules for a given VSI and as soon
6644  * as removing a rule fails, it will return immediately with the error code,
6645  * else it will return success.
6646  */
6647 int ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
6648 {
6649 	struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry;
6650 	struct ice_vsi_list_map_info *map_info;
6651 	struct ice_adv_rule_info rinfo;
6652 	struct list_head *list_head;
6653 	struct ice_switch_info *sw;
6654 	int status;
6655 	u8 rid;
6656 
6657 	sw = hw->switch_info;
6658 	for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
6659 		if (!sw->recp_list[rid].recp_created)
6660 			continue;
6661 		if (!sw->recp_list[rid].adv_rule)
6662 			continue;
6663 
6664 		list_head = &sw->recp_list[rid].filt_rules;
6665 		list_for_each_entry_safe(list_itr, tmp_entry, list_head,
6666 					 list_entry) {
6667 			rinfo = list_itr->rule_info;
6668 
6669 			if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) {
6670 				map_info = list_itr->vsi_list_info;
6671 				if (!map_info)
6672 					continue;
6673 
6674 				if (!test_bit(vsi_handle, map_info->vsi_map))
6675 					continue;
6676 			} else if (rinfo.sw_act.vsi_handle != vsi_handle) {
6677 				continue;
6678 			}
6679 
6680 			rinfo.sw_act.vsi_handle = vsi_handle;
6681 			status = ice_rem_adv_rule(hw, list_itr->lkups,
6682 						  list_itr->lkups_cnt, &rinfo);
6683 			if (status)
6684 				return status;
6685 		}
6686 	}
6687 	return 0;
6688 }
6689 
6690 /**
6691  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6692  * @hw: pointer to the hardware structure
6693  * @vsi_handle: driver VSI handle
6694  * @list_head: list for which filters need to be replayed
6695  *
6696  * Replay the advanced rule for the given VSI.
6697  */
6698 static int
6699 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6700 			struct list_head *list_head)
6701 {
6702 	struct ice_rule_query_data added_entry = { 0 };
6703 	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6704 	int status = 0;
6705 
6706 	if (list_empty(list_head))
6707 		return status;
6708 	list_for_each_entry(adv_fltr, list_head, list_entry) {
6709 		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6710 		u16 lk_cnt = adv_fltr->lkups_cnt;
6711 
6712 		if (vsi_handle != rinfo->sw_act.vsi_handle)
6713 			continue;
6714 		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6715 					  &added_entry);
6716 		if (status)
6717 			break;
6718 	}
6719 	return status;
6720 }
6721 
6722 /**
6723  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6724  * @hw: pointer to the hardware structure
6725  * @vsi_handle: driver VSI handle
6726  *
6727  * Replays filters for requested VSI via vsi_handle.
6728  */
6729 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6730 {
6731 	struct ice_switch_info *sw = hw->switch_info;
6732 	int status;
6733 	u8 i;
6734 
6735 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6736 		struct list_head *head;
6737 
6738 		head = &sw->recp_list[i].filt_replay_rules;
6739 		if (!sw->recp_list[i].adv_rule)
6740 			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6741 		else
6742 			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6743 		if (status)
6744 			return status;
6745 	}
6746 	return status;
6747 }
6748 
6749 /**
6750  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6751  * @hw: pointer to the HW struct
6752  *
6753  * Deletes the filter replay rules.
6754  */
6755 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6756 {
6757 	struct ice_switch_info *sw = hw->switch_info;
6758 	u8 i;
6759 
6760 	if (!sw)
6761 		return;
6762 
6763 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6764 		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6765 			struct list_head *l_head;
6766 
6767 			l_head = &sw->recp_list[i].filt_replay_rules;
6768 			if (!sw->recp_list[i].adv_rule)
6769 				ice_rem_sw_rule_info(hw, l_head);
6770 			else
6771 				ice_rem_adv_rule_info(hw, l_head);
6772 		}
6773 	}
6774 }
6775