1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_switch.h" 5 6 #define ICE_ETH_DA_OFFSET 0 7 #define ICE_ETH_ETHTYPE_OFFSET 12 8 #define ICE_ETH_VLAN_TCI_OFFSET 14 9 #define ICE_MAX_VLAN_ID 0xFFF 10 11 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 12 * struct to configure any switch filter rules. 13 * {DA (6 bytes), SA(6 bytes), 14 * Ether type (2 bytes for header without VLAN tag) OR 15 * VLAN tag (4 bytes for header with VLAN tag) } 16 * 17 * Word on Hardcoded values 18 * byte 0 = 0x2: to identify it as locally administered DA MAC 19 * byte 6 = 0x2: to identify it as locally administered SA MAC 20 * byte 12 = 0x81 & byte 13 = 0x00: 21 * In case of VLAN filter first two bytes defines ether type (0x8100) 22 * and remaining two bytes are placeholder for programming a given VLAN ID 23 * In case of Ether type filter it is treated as header without VLAN tag 24 * and byte 12 and 13 is used to program a given Ether type instead 25 */ 26 #define DUMMY_ETH_HDR_LEN 16 27 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 28 0x2, 0, 0, 0, 0, 0, 29 0x81, 0, 0, 0}; 30 31 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \ 32 (sizeof(struct ice_aqc_sw_rules_elem) - \ 33 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 34 sizeof(struct ice_sw_rule_lkup_rx_tx) + DUMMY_ETH_HDR_LEN - 1) 35 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \ 36 (sizeof(struct ice_aqc_sw_rules_elem) - \ 37 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 38 sizeof(struct ice_sw_rule_lkup_rx_tx) - 1) 39 #define ICE_SW_RULE_LG_ACT_SIZE(n) \ 40 (sizeof(struct ice_aqc_sw_rules_elem) - \ 41 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 42 sizeof(struct ice_sw_rule_lg_act) - \ 43 sizeof(((struct ice_sw_rule_lg_act *)0)->act) + \ 44 ((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act))) 45 #define ICE_SW_RULE_VSI_LIST_SIZE(n) \ 46 (sizeof(struct ice_aqc_sw_rules_elem) - \ 47 sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ 48 sizeof(struct ice_sw_rule_vsi_list) - \ 49 sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi) + \ 50 ((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi))) 51 52 /** 53 * ice_aq_alloc_free_res - command to allocate/free resources 54 * @hw: pointer to the HW struct 55 * @num_entries: number of resource entries in buffer 56 * @buf: Indirect buffer to hold data parameters and response 57 * @buf_size: size of buffer for indirect commands 58 * @opc: pass in the command opcode 59 * @cd: pointer to command details structure or NULL 60 * 61 * Helper function to allocate/free resources using the admin queue commands 62 */ 63 static enum ice_status 64 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries, 65 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, 66 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 67 { 68 struct ice_aqc_alloc_free_res_cmd *cmd; 69 struct ice_aq_desc desc; 70 71 cmd = &desc.params.sw_res_ctrl; 72 73 if (!buf) 74 return ICE_ERR_PARAM; 75 76 if (buf_size < (num_entries * sizeof(buf->elem[0]))) 77 return ICE_ERR_PARAM; 78 79 ice_fill_dflt_direct_cmd_desc(&desc, opc); 80 81 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 82 83 cmd->num_entries = cpu_to_le16(num_entries); 84 85 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 86 } 87 88 /** 89 * ice_init_def_sw_recp - initialize the recipe book keeping tables 90 * @hw: pointer to the HW struct 91 * 92 * Allocate memory for the entire recipe table and initialize the structures/ 93 * entries corresponding to basic recipes. 94 */ 95 enum ice_status ice_init_def_sw_recp(struct ice_hw *hw) 96 { 97 struct ice_sw_recipe *recps; 98 u8 i; 99 100 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 101 sizeof(*recps), GFP_KERNEL); 102 if (!recps) 103 return ICE_ERR_NO_MEMORY; 104 105 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 106 recps[i].root_rid = i; 107 INIT_LIST_HEAD(&recps[i].filt_rules); 108 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 109 mutex_init(&recps[i].filt_rule_lock); 110 } 111 112 hw->switch_info->recp_list = recps; 113 114 return 0; 115 } 116 117 /** 118 * ice_aq_get_sw_cfg - get switch configuration 119 * @hw: pointer to the hardware structure 120 * @buf: pointer to the result buffer 121 * @buf_size: length of the buffer available for response 122 * @req_desc: pointer to requested descriptor 123 * @num_elems: pointer to number of elements 124 * @cd: pointer to command details structure or NULL 125 * 126 * Get switch configuration (0x0200) to be placed in 'buff'. 127 * This admin command returns information such as initial VSI/port number 128 * and switch ID it belongs to. 129 * 130 * NOTE: *req_desc is both an input/output parameter. 131 * The caller of this function first calls this function with *request_desc set 132 * to 0. If the response from f/w has *req_desc set to 0, all the switch 133 * configuration information has been returned; if non-zero (meaning not all 134 * the information was returned), the caller should call this function again 135 * with *req_desc set to the previous value returned by f/w to get the 136 * next block of switch configuration information. 137 * 138 * *num_elems is output only parameter. This reflects the number of elements 139 * in response buffer. The caller of this function to use *num_elems while 140 * parsing the response buffer. 141 */ 142 static enum ice_status 143 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp *buf, 144 u16 buf_size, u16 *req_desc, u16 *num_elems, 145 struct ice_sq_cd *cd) 146 { 147 struct ice_aqc_get_sw_cfg *cmd; 148 enum ice_status status; 149 struct ice_aq_desc desc; 150 151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 152 cmd = &desc.params.get_sw_conf; 153 cmd->element = cpu_to_le16(*req_desc); 154 155 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 156 if (!status) { 157 *req_desc = le16_to_cpu(cmd->element); 158 *num_elems = le16_to_cpu(cmd->num_elems); 159 } 160 161 return status; 162 } 163 164 /** 165 * ice_aq_add_vsi 166 * @hw: pointer to the HW struct 167 * @vsi_ctx: pointer to a VSI context struct 168 * @cd: pointer to command details structure or NULL 169 * 170 * Add a VSI context to the hardware (0x0210) 171 */ 172 static enum ice_status 173 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 174 struct ice_sq_cd *cd) 175 { 176 struct ice_aqc_add_update_free_vsi_resp *res; 177 struct ice_aqc_add_get_update_free_vsi *cmd; 178 struct ice_aq_desc desc; 179 enum ice_status status; 180 181 cmd = &desc.params.vsi_cmd; 182 res = &desc.params.add_update_free_vsi_res; 183 184 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 185 186 if (!vsi_ctx->alloc_from_pool) 187 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 188 ICE_AQ_VSI_IS_VALID); 189 cmd->vf_id = vsi_ctx->vf_num; 190 191 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 192 193 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 194 195 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 196 sizeof(vsi_ctx->info), cd); 197 198 if (!status) { 199 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 200 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 201 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 202 } 203 204 return status; 205 } 206 207 /** 208 * ice_aq_free_vsi 209 * @hw: pointer to the HW struct 210 * @vsi_ctx: pointer to a VSI context struct 211 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 212 * @cd: pointer to command details structure or NULL 213 * 214 * Free VSI context info from hardware (0x0213) 215 */ 216 static enum ice_status 217 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 218 bool keep_vsi_alloc, struct ice_sq_cd *cd) 219 { 220 struct ice_aqc_add_update_free_vsi_resp *resp; 221 struct ice_aqc_add_get_update_free_vsi *cmd; 222 struct ice_aq_desc desc; 223 enum ice_status status; 224 225 cmd = &desc.params.vsi_cmd; 226 resp = &desc.params.add_update_free_vsi_res; 227 228 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 229 230 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 231 if (keep_vsi_alloc) 232 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 233 234 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 235 if (!status) { 236 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 237 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 238 } 239 240 return status; 241 } 242 243 /** 244 * ice_aq_update_vsi 245 * @hw: pointer to the HW struct 246 * @vsi_ctx: pointer to a VSI context struct 247 * @cd: pointer to command details structure or NULL 248 * 249 * Update VSI context in the hardware (0x0211) 250 */ 251 static enum ice_status 252 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 253 struct ice_sq_cd *cd) 254 { 255 struct ice_aqc_add_update_free_vsi_resp *resp; 256 struct ice_aqc_add_get_update_free_vsi *cmd; 257 struct ice_aq_desc desc; 258 enum ice_status status; 259 260 cmd = &desc.params.vsi_cmd; 261 resp = &desc.params.add_update_free_vsi_res; 262 263 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 264 265 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 266 267 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 268 269 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 270 sizeof(vsi_ctx->info), cd); 271 272 if (!status) { 273 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 274 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 275 } 276 277 return status; 278 } 279 280 /** 281 * ice_is_vsi_valid - check whether the VSI is valid or not 282 * @hw: pointer to the HW struct 283 * @vsi_handle: VSI handle 284 * 285 * check whether the VSI is valid or not 286 */ 287 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 288 { 289 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 290 } 291 292 /** 293 * ice_get_hw_vsi_num - return the HW VSI number 294 * @hw: pointer to the HW struct 295 * @vsi_handle: VSI handle 296 * 297 * return the HW VSI number 298 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 299 */ 300 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 301 { 302 return hw->vsi_ctx[vsi_handle]->vsi_num; 303 } 304 305 /** 306 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 307 * @hw: pointer to the HW struct 308 * @vsi_handle: VSI handle 309 * 310 * return the VSI context entry for a given VSI handle 311 */ 312 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 313 { 314 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 315 } 316 317 /** 318 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 319 * @hw: pointer to the HW struct 320 * @vsi_handle: VSI handle 321 * @vsi: VSI context pointer 322 * 323 * save the VSI context entry for a given VSI handle 324 */ 325 static void 326 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 327 { 328 hw->vsi_ctx[vsi_handle] = vsi; 329 } 330 331 /** 332 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 333 * @hw: pointer to the HW struct 334 * @vsi_handle: VSI handle 335 */ 336 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 337 { 338 struct ice_vsi_ctx *vsi; 339 u8 i; 340 341 vsi = ice_get_vsi_ctx(hw, vsi_handle); 342 if (!vsi) 343 return; 344 ice_for_each_traffic_class(i) { 345 if (vsi->lan_q_ctx[i]) { 346 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 347 vsi->lan_q_ctx[i] = NULL; 348 } 349 } 350 } 351 352 /** 353 * ice_clear_vsi_ctx - clear the VSI context entry 354 * @hw: pointer to the HW struct 355 * @vsi_handle: VSI handle 356 * 357 * clear the VSI context entry 358 */ 359 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 360 { 361 struct ice_vsi_ctx *vsi; 362 363 vsi = ice_get_vsi_ctx(hw, vsi_handle); 364 if (vsi) { 365 ice_clear_vsi_q_ctx(hw, vsi_handle); 366 devm_kfree(ice_hw_to_dev(hw), vsi); 367 hw->vsi_ctx[vsi_handle] = NULL; 368 } 369 } 370 371 /** 372 * ice_clear_all_vsi_ctx - clear all the VSI context entries 373 * @hw: pointer to the HW struct 374 */ 375 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 376 { 377 u16 i; 378 379 for (i = 0; i < ICE_MAX_VSI; i++) 380 ice_clear_vsi_ctx(hw, i); 381 } 382 383 /** 384 * ice_add_vsi - add VSI context to the hardware and VSI handle list 385 * @hw: pointer to the HW struct 386 * @vsi_handle: unique VSI handle provided by drivers 387 * @vsi_ctx: pointer to a VSI context struct 388 * @cd: pointer to command details structure or NULL 389 * 390 * Add a VSI context to the hardware also add it into the VSI handle list. 391 * If this function gets called after reset for existing VSIs then update 392 * with the new HW VSI number in the corresponding VSI handle list entry. 393 */ 394 enum ice_status 395 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 396 struct ice_sq_cd *cd) 397 { 398 struct ice_vsi_ctx *tmp_vsi_ctx; 399 enum ice_status status; 400 401 if (vsi_handle >= ICE_MAX_VSI) 402 return ICE_ERR_PARAM; 403 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 404 if (status) 405 return status; 406 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 407 if (!tmp_vsi_ctx) { 408 /* Create a new VSI context */ 409 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 410 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 411 if (!tmp_vsi_ctx) { 412 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 413 return ICE_ERR_NO_MEMORY; 414 } 415 *tmp_vsi_ctx = *vsi_ctx; 416 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 417 } else { 418 /* update with new HW VSI num */ 419 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 420 } 421 422 return 0; 423 } 424 425 /** 426 * ice_free_vsi- free VSI context from hardware and VSI handle list 427 * @hw: pointer to the HW struct 428 * @vsi_handle: unique VSI handle 429 * @vsi_ctx: pointer to a VSI context struct 430 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 431 * @cd: pointer to command details structure or NULL 432 * 433 * Free VSI context info from hardware as well as from VSI handle list 434 */ 435 enum ice_status 436 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 437 bool keep_vsi_alloc, struct ice_sq_cd *cd) 438 { 439 enum ice_status status; 440 441 if (!ice_is_vsi_valid(hw, vsi_handle)) 442 return ICE_ERR_PARAM; 443 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 444 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 445 if (!status) 446 ice_clear_vsi_ctx(hw, vsi_handle); 447 return status; 448 } 449 450 /** 451 * ice_update_vsi 452 * @hw: pointer to the HW struct 453 * @vsi_handle: unique VSI handle 454 * @vsi_ctx: pointer to a VSI context struct 455 * @cd: pointer to command details structure or NULL 456 * 457 * Update VSI context in the hardware 458 */ 459 enum ice_status 460 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 461 struct ice_sq_cd *cd) 462 { 463 if (!ice_is_vsi_valid(hw, vsi_handle)) 464 return ICE_ERR_PARAM; 465 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 466 return ice_aq_update_vsi(hw, vsi_ctx, cd); 467 } 468 469 /** 470 * ice_aq_alloc_free_vsi_list 471 * @hw: pointer to the HW struct 472 * @vsi_list_id: VSI list ID returned or used for lookup 473 * @lkup_type: switch rule filter lookup type 474 * @opc: switch rules population command type - pass in the command opcode 475 * 476 * allocates or free a VSI list resource 477 */ 478 static enum ice_status 479 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 480 enum ice_sw_lkup_type lkup_type, 481 enum ice_adminq_opc opc) 482 { 483 struct ice_aqc_alloc_free_res_elem *sw_buf; 484 struct ice_aqc_res_elem *vsi_ele; 485 enum ice_status status; 486 u16 buf_len; 487 488 buf_len = sizeof(*sw_buf); 489 sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL); 490 if (!sw_buf) 491 return ICE_ERR_NO_MEMORY; 492 sw_buf->num_elems = cpu_to_le16(1); 493 494 if (lkup_type == ICE_SW_LKUP_MAC || 495 lkup_type == ICE_SW_LKUP_MAC_VLAN || 496 lkup_type == ICE_SW_LKUP_ETHERTYPE || 497 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 498 lkup_type == ICE_SW_LKUP_PROMISC || 499 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) { 500 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 501 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 502 sw_buf->res_type = 503 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 504 } else { 505 status = ICE_ERR_PARAM; 506 goto ice_aq_alloc_free_vsi_list_exit; 507 } 508 509 if (opc == ice_aqc_opc_free_res) 510 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 511 512 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); 513 if (status) 514 goto ice_aq_alloc_free_vsi_list_exit; 515 516 if (opc == ice_aqc_opc_alloc_res) { 517 vsi_ele = &sw_buf->elem[0]; 518 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 519 } 520 521 ice_aq_alloc_free_vsi_list_exit: 522 devm_kfree(ice_hw_to_dev(hw), sw_buf); 523 return status; 524 } 525 526 /** 527 * ice_aq_sw_rules - add/update/remove switch rules 528 * @hw: pointer to the HW struct 529 * @rule_list: pointer to switch rule population list 530 * @rule_list_sz: total size of the rule list in bytes 531 * @num_rules: number of switch rules in the rule_list 532 * @opc: switch rules population command type - pass in the command opcode 533 * @cd: pointer to command details structure or NULL 534 * 535 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 536 */ 537 static enum ice_status 538 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 539 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 540 { 541 struct ice_aq_desc desc; 542 543 if (opc != ice_aqc_opc_add_sw_rules && 544 opc != ice_aqc_opc_update_sw_rules && 545 opc != ice_aqc_opc_remove_sw_rules) 546 return ICE_ERR_PARAM; 547 548 ice_fill_dflt_direct_cmd_desc(&desc, opc); 549 550 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 551 desc.params.sw_rules.num_rules_fltr_entry_index = 552 cpu_to_le16(num_rules); 553 return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 554 } 555 556 /* ice_init_port_info - Initialize port_info with switch configuration data 557 * @pi: pointer to port_info 558 * @vsi_port_num: VSI number or port number 559 * @type: Type of switch element (port or VSI) 560 * @swid: switch ID of the switch the element is attached to 561 * @pf_vf_num: PF or VF number 562 * @is_vf: true if the element is a VF, false otherwise 563 */ 564 static void 565 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 566 u16 swid, u16 pf_vf_num, bool is_vf) 567 { 568 switch (type) { 569 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 570 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 571 pi->sw_id = swid; 572 pi->pf_vf_num = pf_vf_num; 573 pi->is_vf = is_vf; 574 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 575 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 576 break; 577 default: 578 ice_debug(pi->hw, ICE_DBG_SW, 579 "incorrect VSI/port type received\n"); 580 break; 581 } 582 } 583 584 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 585 * @hw: pointer to the hardware structure 586 */ 587 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw) 588 { 589 struct ice_aqc_get_sw_cfg_resp *rbuf; 590 enum ice_status status; 591 u16 req_desc = 0; 592 u16 num_elems; 593 u16 i; 594 595 rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN, 596 GFP_KERNEL); 597 598 if (!rbuf) 599 return ICE_ERR_NO_MEMORY; 600 601 /* Multiple calls to ice_aq_get_sw_cfg may be required 602 * to get all the switch configuration information. The need 603 * for additional calls is indicated by ice_aq_get_sw_cfg 604 * writing a non-zero value in req_desc 605 */ 606 do { 607 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 608 &req_desc, &num_elems, NULL); 609 610 if (status) 611 break; 612 613 for (i = 0; i < num_elems; i++) { 614 struct ice_aqc_get_sw_cfg_resp_elem *ele; 615 u16 pf_vf_num, swid, vsi_port_num; 616 bool is_vf = false; 617 u8 type; 618 619 ele = rbuf[i].elements; 620 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 621 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 622 623 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 624 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 625 626 swid = le16_to_cpu(ele->swid); 627 628 if (le16_to_cpu(ele->pf_vf_num) & 629 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 630 is_vf = true; 631 632 type = le16_to_cpu(ele->vsi_port_num) >> 633 ICE_AQC_GET_SW_CONF_RESP_TYPE_S; 634 635 if (type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 636 /* FW VSI is not needed. Just continue. */ 637 continue; 638 } 639 640 ice_init_port_info(hw->port_info, vsi_port_num, 641 type, swid, pf_vf_num, is_vf); 642 } 643 } while (req_desc && !status); 644 645 devm_kfree(ice_hw_to_dev(hw), (void *)rbuf); 646 return status; 647 } 648 649 /** 650 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 651 * @hw: pointer to the hardware structure 652 * @fi: filter info structure to fill/update 653 * 654 * This helper function populates the lb_en and lan_en elements of the provided 655 * ice_fltr_info struct using the switch's type and characteristics of the 656 * switch rule being configured. 657 */ 658 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 659 { 660 fi->lb_en = false; 661 fi->lan_en = false; 662 if ((fi->flag & ICE_FLTR_TX) && 663 (fi->fltr_act == ICE_FWD_TO_VSI || 664 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 665 fi->fltr_act == ICE_FWD_TO_Q || 666 fi->fltr_act == ICE_FWD_TO_QGRP)) { 667 /* Setting LB for prune actions will result in replicated 668 * packets to the internal switch that will be dropped. 669 */ 670 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 671 fi->lb_en = true; 672 673 /* Set lan_en to TRUE if 674 * 1. The switch is a VEB AND 675 * 2 676 * 2.1 The lookup is a directional lookup like ethertype, 677 * promiscuous, ethertype-MAC, promiscuous-VLAN 678 * and default-port OR 679 * 2.2 The lookup is VLAN, OR 680 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 681 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 682 * 683 * OR 684 * 685 * The switch is a VEPA. 686 * 687 * In all other cases, the LAN enable has to be set to false. 688 */ 689 if (hw->evb_veb) { 690 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 691 fi->lkup_type == ICE_SW_LKUP_PROMISC || 692 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 693 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 694 fi->lkup_type == ICE_SW_LKUP_DFLT || 695 fi->lkup_type == ICE_SW_LKUP_VLAN || 696 (fi->lkup_type == ICE_SW_LKUP_MAC && 697 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 698 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 699 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 700 fi->lan_en = true; 701 } else { 702 fi->lan_en = true; 703 } 704 } 705 } 706 707 /** 708 * ice_fill_sw_rule - Helper function to fill switch rule structure 709 * @hw: pointer to the hardware structure 710 * @f_info: entry containing packet forwarding information 711 * @s_rule: switch rule structure to be filled in based on mac_entry 712 * @opc: switch rules population command type - pass in the command opcode 713 */ 714 static void 715 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 716 struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc) 717 { 718 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 719 void *daddr = NULL; 720 u16 eth_hdr_sz; 721 u8 *eth_hdr; 722 u32 act = 0; 723 __be16 *off; 724 u8 q_rgn; 725 726 if (opc == ice_aqc_opc_remove_sw_rules) { 727 s_rule->pdata.lkup_tx_rx.act = 0; 728 s_rule->pdata.lkup_tx_rx.index = 729 cpu_to_le16(f_info->fltr_rule_id); 730 s_rule->pdata.lkup_tx_rx.hdr_len = 0; 731 return; 732 } 733 734 eth_hdr_sz = sizeof(dummy_eth_header); 735 eth_hdr = s_rule->pdata.lkup_tx_rx.hdr; 736 737 /* initialize the ether header with a dummy header */ 738 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 739 ice_fill_sw_info(hw, f_info); 740 741 switch (f_info->fltr_act) { 742 case ICE_FWD_TO_VSI: 743 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & 744 ICE_SINGLE_ACT_VSI_ID_M; 745 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 746 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 747 ICE_SINGLE_ACT_VALID_BIT; 748 break; 749 case ICE_FWD_TO_VSI_LIST: 750 act |= ICE_SINGLE_ACT_VSI_LIST; 751 act |= (f_info->fwd_id.vsi_list_id << 752 ICE_SINGLE_ACT_VSI_LIST_ID_S) & 753 ICE_SINGLE_ACT_VSI_LIST_ID_M; 754 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 755 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 756 ICE_SINGLE_ACT_VALID_BIT; 757 break; 758 case ICE_FWD_TO_Q: 759 act |= ICE_SINGLE_ACT_TO_Q; 760 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 761 ICE_SINGLE_ACT_Q_INDEX_M; 762 break; 763 case ICE_DROP_PACKET: 764 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 765 ICE_SINGLE_ACT_VALID_BIT; 766 break; 767 case ICE_FWD_TO_QGRP: 768 q_rgn = f_info->qgrp_size > 0 ? 769 (u8)ilog2(f_info->qgrp_size) : 0; 770 act |= ICE_SINGLE_ACT_TO_Q; 771 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 772 ICE_SINGLE_ACT_Q_INDEX_M; 773 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 774 ICE_SINGLE_ACT_Q_REGION_M; 775 break; 776 default: 777 return; 778 } 779 780 if (f_info->lb_en) 781 act |= ICE_SINGLE_ACT_LB_ENABLE; 782 if (f_info->lan_en) 783 act |= ICE_SINGLE_ACT_LAN_ENABLE; 784 785 switch (f_info->lkup_type) { 786 case ICE_SW_LKUP_MAC: 787 daddr = f_info->l_data.mac.mac_addr; 788 break; 789 case ICE_SW_LKUP_VLAN: 790 vlan_id = f_info->l_data.vlan.vlan_id; 791 if (f_info->fltr_act == ICE_FWD_TO_VSI || 792 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 793 act |= ICE_SINGLE_ACT_PRUNE; 794 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 795 } 796 break; 797 case ICE_SW_LKUP_ETHERTYPE_MAC: 798 daddr = f_info->l_data.ethertype_mac.mac_addr; 799 /* fall-through */ 800 case ICE_SW_LKUP_ETHERTYPE: 801 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 802 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 803 break; 804 case ICE_SW_LKUP_MAC_VLAN: 805 daddr = f_info->l_data.mac_vlan.mac_addr; 806 vlan_id = f_info->l_data.mac_vlan.vlan_id; 807 break; 808 case ICE_SW_LKUP_PROMISC_VLAN: 809 vlan_id = f_info->l_data.mac_vlan.vlan_id; 810 /* fall-through */ 811 case ICE_SW_LKUP_PROMISC: 812 daddr = f_info->l_data.mac_vlan.mac_addr; 813 break; 814 default: 815 break; 816 } 817 818 s_rule->type = (f_info->flag & ICE_FLTR_RX) ? 819 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 820 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 821 822 /* Recipe set depending on lookup type */ 823 s_rule->pdata.lkup_tx_rx.recipe_id = cpu_to_le16(f_info->lkup_type); 824 s_rule->pdata.lkup_tx_rx.src = cpu_to_le16(f_info->src); 825 s_rule->pdata.lkup_tx_rx.act = cpu_to_le32(act); 826 827 if (daddr) 828 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 829 830 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 831 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 832 *off = cpu_to_be16(vlan_id); 833 } 834 835 /* Create the switch rule with the final dummy Ethernet header */ 836 if (opc != ice_aqc_opc_update_sw_rules) 837 s_rule->pdata.lkup_tx_rx.hdr_len = cpu_to_le16(eth_hdr_sz); 838 } 839 840 /** 841 * ice_add_marker_act 842 * @hw: pointer to the hardware structure 843 * @m_ent: the management entry for which sw marker needs to be added 844 * @sw_marker: sw marker to tag the Rx descriptor with 845 * @l_id: large action resource ID 846 * 847 * Create a large action to hold software marker and update the switch rule 848 * entry pointed by m_ent with newly created large action 849 */ 850 static enum ice_status 851 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 852 u16 sw_marker, u16 l_id) 853 { 854 struct ice_aqc_sw_rules_elem *lg_act, *rx_tx; 855 /* For software marker we need 3 large actions 856 * 1. FWD action: FWD TO VSI or VSI LIST 857 * 2. GENERIC VALUE action to hold the profile ID 858 * 3. GENERIC VALUE action to hold the software marker ID 859 */ 860 const u16 num_lg_acts = 3; 861 enum ice_status status; 862 u16 lg_act_size; 863 u16 rules_size; 864 u32 act; 865 u16 id; 866 867 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 868 return ICE_ERR_PARAM; 869 870 /* Create two back-to-back switch rules and submit them to the HW using 871 * one memory buffer: 872 * 1. Large Action 873 * 2. Look up Tx Rx 874 */ 875 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts); 876 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 877 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 878 if (!lg_act) 879 return ICE_ERR_NO_MEMORY; 880 881 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); 882 883 /* Fill in the first switch rule i.e. large action */ 884 lg_act->type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 885 lg_act->pdata.lg_act.index = cpu_to_le16(l_id); 886 lg_act->pdata.lg_act.size = cpu_to_le16(num_lg_acts); 887 888 /* First action VSI forwarding or VSI list forwarding depending on how 889 * many VSIs 890 */ 891 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 892 m_ent->fltr_info.fwd_id.hw_vsi_id; 893 894 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 895 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & 896 ICE_LG_ACT_VSI_LIST_ID_M; 897 if (m_ent->vsi_count > 1) 898 act |= ICE_LG_ACT_VSI_LIST; 899 lg_act->pdata.lg_act.act[0] = cpu_to_le32(act); 900 901 /* Second action descriptor type */ 902 act = ICE_LG_ACT_GENERIC; 903 904 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; 905 lg_act->pdata.lg_act.act[1] = cpu_to_le32(act); 906 907 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << 908 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; 909 910 /* Third action Marker value */ 911 act |= ICE_LG_ACT_GENERIC; 912 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & 913 ICE_LG_ACT_GENERIC_VALUE_M; 914 915 lg_act->pdata.lg_act.act[2] = cpu_to_le32(act); 916 917 /* call the fill switch rule to fill the lookup Tx Rx structure */ 918 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 919 ice_aqc_opc_update_sw_rules); 920 921 /* Update the action to point to the large action ID */ 922 rx_tx->pdata.lkup_tx_rx.act = 923 cpu_to_le32(ICE_SINGLE_ACT_PTR | 924 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & 925 ICE_SINGLE_ACT_PTR_VAL_M)); 926 927 /* Use the filter rule ID of the previously created rule with single 928 * act. Once the update happens, hardware will treat this as large 929 * action 930 */ 931 rx_tx->pdata.lkup_tx_rx.index = 932 cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 933 934 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 935 ice_aqc_opc_update_sw_rules, NULL); 936 if (!status) { 937 m_ent->lg_act_idx = l_id; 938 m_ent->sw_marker_id = sw_marker; 939 } 940 941 devm_kfree(ice_hw_to_dev(hw), lg_act); 942 return status; 943 } 944 945 /** 946 * ice_create_vsi_list_map 947 * @hw: pointer to the hardware structure 948 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 949 * @num_vsi: number of VSI handles in the array 950 * @vsi_list_id: VSI list ID generated as part of allocate resource 951 * 952 * Helper function to create a new entry of VSI list ID to VSI mapping 953 * using the given VSI list ID 954 */ 955 static struct ice_vsi_list_map_info * 956 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 957 u16 vsi_list_id) 958 { 959 struct ice_switch_info *sw = hw->switch_info; 960 struct ice_vsi_list_map_info *v_map; 961 int i; 962 963 v_map = devm_kcalloc(ice_hw_to_dev(hw), 1, sizeof(*v_map), GFP_KERNEL); 964 if (!v_map) 965 return NULL; 966 967 v_map->vsi_list_id = vsi_list_id; 968 v_map->ref_cnt = 1; 969 for (i = 0; i < num_vsi; i++) 970 set_bit(vsi_handle_arr[i], v_map->vsi_map); 971 972 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 973 return v_map; 974 } 975 976 /** 977 * ice_update_vsi_list_rule 978 * @hw: pointer to the hardware structure 979 * @vsi_handle_arr: array of VSI handles to form a VSI list 980 * @num_vsi: number of VSI handles in the array 981 * @vsi_list_id: VSI list ID generated as part of allocate resource 982 * @remove: Boolean value to indicate if this is a remove action 983 * @opc: switch rules population command type - pass in the command opcode 984 * @lkup_type: lookup type of the filter 985 * 986 * Call AQ command to add a new switch rule or update existing switch rule 987 * using the given VSI list ID 988 */ 989 static enum ice_status 990 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 991 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 992 enum ice_sw_lkup_type lkup_type) 993 { 994 struct ice_aqc_sw_rules_elem *s_rule; 995 enum ice_status status; 996 u16 s_rule_size; 997 u16 type; 998 int i; 999 1000 if (!num_vsi) 1001 return ICE_ERR_PARAM; 1002 1003 if (lkup_type == ICE_SW_LKUP_MAC || 1004 lkup_type == ICE_SW_LKUP_MAC_VLAN || 1005 lkup_type == ICE_SW_LKUP_ETHERTYPE || 1006 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1007 lkup_type == ICE_SW_LKUP_PROMISC || 1008 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) 1009 type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 1010 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 1011 else if (lkup_type == ICE_SW_LKUP_VLAN) 1012 type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 1013 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 1014 else 1015 return ICE_ERR_PARAM; 1016 1017 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi); 1018 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 1019 if (!s_rule) 1020 return ICE_ERR_NO_MEMORY; 1021 for (i = 0; i < num_vsi; i++) { 1022 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 1023 status = ICE_ERR_PARAM; 1024 goto exit; 1025 } 1026 /* AQ call requires hw_vsi_id(s) */ 1027 s_rule->pdata.vsi_list.vsi[i] = 1028 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 1029 } 1030 1031 s_rule->type = cpu_to_le16(type); 1032 s_rule->pdata.vsi_list.number_vsi = cpu_to_le16(num_vsi); 1033 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 1034 1035 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 1036 1037 exit: 1038 devm_kfree(ice_hw_to_dev(hw), s_rule); 1039 return status; 1040 } 1041 1042 /** 1043 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 1044 * @hw: pointer to the HW struct 1045 * @vsi_handle_arr: array of VSI handles to form a VSI list 1046 * @num_vsi: number of VSI handles in the array 1047 * @vsi_list_id: stores the ID of the VSI list to be created 1048 * @lkup_type: switch rule filter's lookup type 1049 */ 1050 static enum ice_status 1051 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 1052 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 1053 { 1054 enum ice_status status; 1055 1056 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 1057 ice_aqc_opc_alloc_res); 1058 if (status) 1059 return status; 1060 1061 /* Update the newly created VSI list to include the specified VSIs */ 1062 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 1063 *vsi_list_id, false, 1064 ice_aqc_opc_add_sw_rules, lkup_type); 1065 } 1066 1067 /** 1068 * ice_create_pkt_fwd_rule 1069 * @hw: pointer to the hardware structure 1070 * @f_entry: entry containing packet forwarding information 1071 * 1072 * Create switch rule with given filter information and add an entry 1073 * to the corresponding filter management list to track this switch rule 1074 * and VSI mapping 1075 */ 1076 static enum ice_status 1077 ice_create_pkt_fwd_rule(struct ice_hw *hw, 1078 struct ice_fltr_list_entry *f_entry) 1079 { 1080 struct ice_fltr_mgmt_list_entry *fm_entry; 1081 struct ice_aqc_sw_rules_elem *s_rule; 1082 enum ice_sw_lkup_type l_type; 1083 struct ice_sw_recipe *recp; 1084 enum ice_status status; 1085 1086 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1087 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1088 if (!s_rule) 1089 return ICE_ERR_NO_MEMORY; 1090 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 1091 GFP_KERNEL); 1092 if (!fm_entry) { 1093 status = ICE_ERR_NO_MEMORY; 1094 goto ice_create_pkt_fwd_rule_exit; 1095 } 1096 1097 fm_entry->fltr_info = f_entry->fltr_info; 1098 1099 /* Initialize all the fields for the management entry */ 1100 fm_entry->vsi_count = 1; 1101 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 1102 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 1103 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 1104 1105 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 1106 ice_aqc_opc_add_sw_rules); 1107 1108 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1109 ice_aqc_opc_add_sw_rules, NULL); 1110 if (status) { 1111 devm_kfree(ice_hw_to_dev(hw), fm_entry); 1112 goto ice_create_pkt_fwd_rule_exit; 1113 } 1114 1115 f_entry->fltr_info.fltr_rule_id = 1116 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1117 fm_entry->fltr_info.fltr_rule_id = 1118 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1119 1120 /* The book keeping entries will get removed when base driver 1121 * calls remove filter AQ command 1122 */ 1123 l_type = fm_entry->fltr_info.lkup_type; 1124 recp = &hw->switch_info->recp_list[l_type]; 1125 list_add(&fm_entry->list_entry, &recp->filt_rules); 1126 1127 ice_create_pkt_fwd_rule_exit: 1128 devm_kfree(ice_hw_to_dev(hw), s_rule); 1129 return status; 1130 } 1131 1132 /** 1133 * ice_update_pkt_fwd_rule 1134 * @hw: pointer to the hardware structure 1135 * @f_info: filter information for switch rule 1136 * 1137 * Call AQ command to update a previously created switch rule with a 1138 * VSI list ID 1139 */ 1140 static enum ice_status 1141 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 1142 { 1143 struct ice_aqc_sw_rules_elem *s_rule; 1144 enum ice_status status; 1145 1146 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1147 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1148 if (!s_rule) 1149 return ICE_ERR_NO_MEMORY; 1150 1151 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 1152 1153 s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(f_info->fltr_rule_id); 1154 1155 /* Update switch rule with new rule set to forward VSI list */ 1156 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1157 ice_aqc_opc_update_sw_rules, NULL); 1158 1159 devm_kfree(ice_hw_to_dev(hw), s_rule); 1160 return status; 1161 } 1162 1163 /** 1164 * ice_update_sw_rule_bridge_mode 1165 * @hw: pointer to the HW struct 1166 * 1167 * Updates unicast switch filter rules based on VEB/VEPA mode 1168 */ 1169 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 1170 { 1171 struct ice_switch_info *sw = hw->switch_info; 1172 struct ice_fltr_mgmt_list_entry *fm_entry; 1173 enum ice_status status = 0; 1174 struct list_head *rule_head; 1175 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1176 1177 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1178 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1179 1180 mutex_lock(rule_lock); 1181 list_for_each_entry(fm_entry, rule_head, list_entry) { 1182 struct ice_fltr_info *fi = &fm_entry->fltr_info; 1183 u8 *addr = fi->l_data.mac.mac_addr; 1184 1185 /* Update unicast Tx rules to reflect the selected 1186 * VEB/VEPA mode 1187 */ 1188 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 1189 (fi->fltr_act == ICE_FWD_TO_VSI || 1190 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 1191 fi->fltr_act == ICE_FWD_TO_Q || 1192 fi->fltr_act == ICE_FWD_TO_QGRP)) { 1193 status = ice_update_pkt_fwd_rule(hw, fi); 1194 if (status) 1195 break; 1196 } 1197 } 1198 1199 mutex_unlock(rule_lock); 1200 1201 return status; 1202 } 1203 1204 /** 1205 * ice_add_update_vsi_list 1206 * @hw: pointer to the hardware structure 1207 * @m_entry: pointer to current filter management list entry 1208 * @cur_fltr: filter information from the book keeping entry 1209 * @new_fltr: filter information with the new VSI to be added 1210 * 1211 * Call AQ command to add or update previously created VSI list with new VSI. 1212 * 1213 * Helper function to do book keeping associated with adding filter information 1214 * The algorithm to do the book keeping is described below : 1215 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 1216 * if only one VSI has been added till now 1217 * Allocate a new VSI list and add two VSIs 1218 * to this list using switch rule command 1219 * Update the previously created switch rule with the 1220 * newly created VSI list ID 1221 * if a VSI list was previously created 1222 * Add the new VSI to the previously created VSI list set 1223 * using the update switch rule command 1224 */ 1225 static enum ice_status 1226 ice_add_update_vsi_list(struct ice_hw *hw, 1227 struct ice_fltr_mgmt_list_entry *m_entry, 1228 struct ice_fltr_info *cur_fltr, 1229 struct ice_fltr_info *new_fltr) 1230 { 1231 enum ice_status status = 0; 1232 u16 vsi_list_id = 0; 1233 1234 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 1235 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 1236 return ICE_ERR_NOT_IMPL; 1237 1238 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 1239 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 1240 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 1241 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 1242 return ICE_ERR_NOT_IMPL; 1243 1244 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 1245 /* Only one entry existed in the mapping and it was not already 1246 * a part of a VSI list. So, create a VSI list with the old and 1247 * new VSIs. 1248 */ 1249 struct ice_fltr_info tmp_fltr; 1250 u16 vsi_handle_arr[2]; 1251 1252 /* A rule already exists with the new VSI being added */ 1253 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 1254 return ICE_ERR_ALREADY_EXISTS; 1255 1256 vsi_handle_arr[0] = cur_fltr->vsi_handle; 1257 vsi_handle_arr[1] = new_fltr->vsi_handle; 1258 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1259 &vsi_list_id, 1260 new_fltr->lkup_type); 1261 if (status) 1262 return status; 1263 1264 tmp_fltr = *new_fltr; 1265 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 1266 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1267 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1268 /* Update the previous switch rule of "MAC forward to VSI" to 1269 * "MAC fwd to VSI list" 1270 */ 1271 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1272 if (status) 1273 return status; 1274 1275 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 1276 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1277 m_entry->vsi_list_info = 1278 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1279 vsi_list_id); 1280 1281 /* If this entry was large action then the large action needs 1282 * to be updated to point to FWD to VSI list 1283 */ 1284 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 1285 status = 1286 ice_add_marker_act(hw, m_entry, 1287 m_entry->sw_marker_id, 1288 m_entry->lg_act_idx); 1289 } else { 1290 u16 vsi_handle = new_fltr->vsi_handle; 1291 enum ice_adminq_opc opcode; 1292 1293 if (!m_entry->vsi_list_info) 1294 return ICE_ERR_CFG; 1295 1296 /* A rule already exists with the new VSI being added */ 1297 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 1298 return 0; 1299 1300 /* Update the previously created VSI list set with 1301 * the new VSI ID passed in 1302 */ 1303 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 1304 opcode = ice_aqc_opc_update_sw_rules; 1305 1306 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 1307 vsi_list_id, false, opcode, 1308 new_fltr->lkup_type); 1309 /* update VSI list mapping info with new VSI ID */ 1310 if (!status) 1311 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 1312 } 1313 if (!status) 1314 m_entry->vsi_count++; 1315 return status; 1316 } 1317 1318 /** 1319 * ice_find_rule_entry - Search a rule entry 1320 * @hw: pointer to the hardware structure 1321 * @recp_id: lookup type for which the specified rule needs to be searched 1322 * @f_info: rule information 1323 * 1324 * Helper function to search for a given rule entry 1325 * Returns pointer to entry storing the rule if found 1326 */ 1327 static struct ice_fltr_mgmt_list_entry * 1328 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 1329 { 1330 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 1331 struct ice_switch_info *sw = hw->switch_info; 1332 struct list_head *list_head; 1333 1334 list_head = &sw->recp_list[recp_id].filt_rules; 1335 list_for_each_entry(list_itr, list_head, list_entry) { 1336 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 1337 sizeof(f_info->l_data)) && 1338 f_info->flag == list_itr->fltr_info.flag) { 1339 ret = list_itr; 1340 break; 1341 } 1342 } 1343 return ret; 1344 } 1345 1346 /** 1347 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 1348 * @hw: pointer to the hardware structure 1349 * @recp_id: lookup type for which VSI lists needs to be searched 1350 * @vsi_handle: VSI handle to be found in VSI list 1351 * @vsi_list_id: VSI list ID found containing vsi_handle 1352 * 1353 * Helper function to search a VSI list with single entry containing given VSI 1354 * handle element. This can be extended further to search VSI list with more 1355 * than 1 vsi_count. Returns pointer to VSI list entry if found. 1356 */ 1357 static struct ice_vsi_list_map_info * 1358 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 1359 u16 *vsi_list_id) 1360 { 1361 struct ice_vsi_list_map_info *map_info = NULL; 1362 struct ice_switch_info *sw = hw->switch_info; 1363 struct ice_fltr_mgmt_list_entry *list_itr; 1364 struct list_head *list_head; 1365 1366 list_head = &sw->recp_list[recp_id].filt_rules; 1367 list_for_each_entry(list_itr, list_head, list_entry) { 1368 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) { 1369 map_info = list_itr->vsi_list_info; 1370 if (test_bit(vsi_handle, map_info->vsi_map)) { 1371 *vsi_list_id = map_info->vsi_list_id; 1372 return map_info; 1373 } 1374 } 1375 } 1376 return NULL; 1377 } 1378 1379 /** 1380 * ice_add_rule_internal - add rule for a given lookup type 1381 * @hw: pointer to the hardware structure 1382 * @recp_id: lookup type (recipe ID) for which rule has to be added 1383 * @f_entry: structure containing MAC forwarding information 1384 * 1385 * Adds or updates the rule lists for a given recipe 1386 */ 1387 static enum ice_status 1388 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 1389 struct ice_fltr_list_entry *f_entry) 1390 { 1391 struct ice_switch_info *sw = hw->switch_info; 1392 struct ice_fltr_info *new_fltr, *cur_fltr; 1393 struct ice_fltr_mgmt_list_entry *m_entry; 1394 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1395 enum ice_status status = 0; 1396 1397 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1398 return ICE_ERR_PARAM; 1399 f_entry->fltr_info.fwd_id.hw_vsi_id = 1400 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1401 1402 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1403 1404 mutex_lock(rule_lock); 1405 new_fltr = &f_entry->fltr_info; 1406 if (new_fltr->flag & ICE_FLTR_RX) 1407 new_fltr->src = hw->port_info->lport; 1408 else if (new_fltr->flag & ICE_FLTR_TX) 1409 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 1410 1411 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 1412 if (!m_entry) { 1413 mutex_unlock(rule_lock); 1414 return ice_create_pkt_fwd_rule(hw, f_entry); 1415 } 1416 1417 cur_fltr = &m_entry->fltr_info; 1418 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 1419 mutex_unlock(rule_lock); 1420 1421 return status; 1422 } 1423 1424 /** 1425 * ice_remove_vsi_list_rule 1426 * @hw: pointer to the hardware structure 1427 * @vsi_list_id: VSI list ID generated as part of allocate resource 1428 * @lkup_type: switch rule filter lookup type 1429 * 1430 * The VSI list should be emptied before this function is called to remove the 1431 * VSI list. 1432 */ 1433 static enum ice_status 1434 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 1435 enum ice_sw_lkup_type lkup_type) 1436 { 1437 struct ice_aqc_sw_rules_elem *s_rule; 1438 enum ice_status status; 1439 u16 s_rule_size; 1440 1441 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0); 1442 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 1443 if (!s_rule) 1444 return ICE_ERR_NO_MEMORY; 1445 1446 s_rule->type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 1447 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 1448 1449 /* Free the vsi_list resource that we allocated. It is assumed that the 1450 * list is empty at this point. 1451 */ 1452 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 1453 ice_aqc_opc_free_res); 1454 1455 devm_kfree(ice_hw_to_dev(hw), s_rule); 1456 return status; 1457 } 1458 1459 /** 1460 * ice_rem_update_vsi_list 1461 * @hw: pointer to the hardware structure 1462 * @vsi_handle: VSI handle of the VSI to remove 1463 * @fm_list: filter management entry for which the VSI list management needs to 1464 * be done 1465 */ 1466 static enum ice_status 1467 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 1468 struct ice_fltr_mgmt_list_entry *fm_list) 1469 { 1470 enum ice_sw_lkup_type lkup_type; 1471 enum ice_status status = 0; 1472 u16 vsi_list_id; 1473 1474 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 1475 fm_list->vsi_count == 0) 1476 return ICE_ERR_PARAM; 1477 1478 /* A rule with the VSI being removed does not exist */ 1479 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 1480 return ICE_ERR_DOES_NOT_EXIST; 1481 1482 lkup_type = fm_list->fltr_info.lkup_type; 1483 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 1484 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 1485 ice_aqc_opc_update_sw_rules, 1486 lkup_type); 1487 if (status) 1488 return status; 1489 1490 fm_list->vsi_count--; 1491 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 1492 1493 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 1494 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 1495 struct ice_vsi_list_map_info *vsi_list_info = 1496 fm_list->vsi_list_info; 1497 u16 rem_vsi_handle; 1498 1499 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 1500 ICE_MAX_VSI); 1501 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 1502 return ICE_ERR_OUT_OF_RANGE; 1503 1504 /* Make sure VSI list is empty before removing it below */ 1505 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 1506 vsi_list_id, true, 1507 ice_aqc_opc_update_sw_rules, 1508 lkup_type); 1509 if (status) 1510 return status; 1511 1512 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 1513 tmp_fltr_info.fwd_id.hw_vsi_id = 1514 ice_get_hw_vsi_num(hw, rem_vsi_handle); 1515 tmp_fltr_info.vsi_handle = rem_vsi_handle; 1516 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 1517 if (status) { 1518 ice_debug(hw, ICE_DBG_SW, 1519 "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 1520 tmp_fltr_info.fwd_id.hw_vsi_id, status); 1521 return status; 1522 } 1523 1524 fm_list->fltr_info = tmp_fltr_info; 1525 } 1526 1527 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 1528 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 1529 struct ice_vsi_list_map_info *vsi_list_info = 1530 fm_list->vsi_list_info; 1531 1532 /* Remove the VSI list since it is no longer used */ 1533 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 1534 if (status) { 1535 ice_debug(hw, ICE_DBG_SW, 1536 "Failed to remove VSI list %d, error %d\n", 1537 vsi_list_id, status); 1538 return status; 1539 } 1540 1541 list_del(&vsi_list_info->list_entry); 1542 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 1543 fm_list->vsi_list_info = NULL; 1544 } 1545 1546 return status; 1547 } 1548 1549 /** 1550 * ice_remove_rule_internal - Remove a filter rule of a given type 1551 * @hw: pointer to the hardware structure 1552 * @recp_id: recipe ID for which the rule needs to removed 1553 * @f_entry: rule entry containing filter information 1554 */ 1555 static enum ice_status 1556 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 1557 struct ice_fltr_list_entry *f_entry) 1558 { 1559 struct ice_switch_info *sw = hw->switch_info; 1560 struct ice_fltr_mgmt_list_entry *list_elem; 1561 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1562 enum ice_status status = 0; 1563 bool remove_rule = false; 1564 u16 vsi_handle; 1565 1566 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1567 return ICE_ERR_PARAM; 1568 f_entry->fltr_info.fwd_id.hw_vsi_id = 1569 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1570 1571 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1572 mutex_lock(rule_lock); 1573 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 1574 if (!list_elem) { 1575 status = ICE_ERR_DOES_NOT_EXIST; 1576 goto exit; 1577 } 1578 1579 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 1580 remove_rule = true; 1581 } else if (!list_elem->vsi_list_info) { 1582 status = ICE_ERR_DOES_NOT_EXIST; 1583 goto exit; 1584 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 1585 /* a ref_cnt > 1 indicates that the vsi_list is being 1586 * shared by multiple rules. Decrement the ref_cnt and 1587 * remove this rule, but do not modify the list, as it 1588 * is in-use by other rules. 1589 */ 1590 list_elem->vsi_list_info->ref_cnt--; 1591 remove_rule = true; 1592 } else { 1593 /* a ref_cnt of 1 indicates the vsi_list is only used 1594 * by one rule. However, the original removal request is only 1595 * for a single VSI. Update the vsi_list first, and only 1596 * remove the rule if there are no further VSIs in this list. 1597 */ 1598 vsi_handle = f_entry->fltr_info.vsi_handle; 1599 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 1600 if (status) 1601 goto exit; 1602 /* if VSI count goes to zero after updating the VSI list */ 1603 if (list_elem->vsi_count == 0) 1604 remove_rule = true; 1605 } 1606 1607 if (remove_rule) { 1608 /* Remove the lookup rule */ 1609 struct ice_aqc_sw_rules_elem *s_rule; 1610 1611 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1612 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1613 GFP_KERNEL); 1614 if (!s_rule) { 1615 status = ICE_ERR_NO_MEMORY; 1616 goto exit; 1617 } 1618 1619 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 1620 ice_aqc_opc_remove_sw_rules); 1621 1622 status = ice_aq_sw_rules(hw, s_rule, 1623 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1, 1624 ice_aqc_opc_remove_sw_rules, NULL); 1625 1626 /* Remove a book keeping from the list */ 1627 devm_kfree(ice_hw_to_dev(hw), s_rule); 1628 1629 if (status) 1630 goto exit; 1631 1632 list_del(&list_elem->list_entry); 1633 devm_kfree(ice_hw_to_dev(hw), list_elem); 1634 } 1635 exit: 1636 mutex_unlock(rule_lock); 1637 return status; 1638 } 1639 1640 /** 1641 * ice_add_mac - Add a MAC address based filter rule 1642 * @hw: pointer to the hardware structure 1643 * @m_list: list of MAC addresses and forwarding information 1644 * 1645 * IMPORTANT: When the ucast_shared flag is set to false and m_list has 1646 * multiple unicast addresses, the function assumes that all the 1647 * addresses are unique in a given add_mac call. It doesn't 1648 * check for duplicates in this case, removing duplicates from a given 1649 * list should be taken care of in the caller of this function. 1650 */ 1651 enum ice_status 1652 ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 1653 { 1654 struct ice_aqc_sw_rules_elem *s_rule, *r_iter; 1655 struct ice_fltr_list_entry *m_list_itr; 1656 struct list_head *rule_head; 1657 u16 elem_sent, total_elem_left; 1658 struct ice_switch_info *sw; 1659 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1660 enum ice_status status = 0; 1661 u16 num_unicast = 0; 1662 u16 s_rule_size; 1663 1664 if (!m_list || !hw) 1665 return ICE_ERR_PARAM; 1666 1667 s_rule = NULL; 1668 sw = hw->switch_info; 1669 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1670 list_for_each_entry(m_list_itr, m_list, list_entry) { 1671 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 1672 u16 vsi_handle; 1673 u16 hw_vsi_id; 1674 1675 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 1676 vsi_handle = m_list_itr->fltr_info.vsi_handle; 1677 if (!ice_is_vsi_valid(hw, vsi_handle)) 1678 return ICE_ERR_PARAM; 1679 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 1680 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 1681 /* update the src in case it is VSI num */ 1682 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 1683 return ICE_ERR_PARAM; 1684 m_list_itr->fltr_info.src = hw_vsi_id; 1685 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 1686 is_zero_ether_addr(add)) 1687 return ICE_ERR_PARAM; 1688 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 1689 /* Don't overwrite the unicast address */ 1690 mutex_lock(rule_lock); 1691 if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, 1692 &m_list_itr->fltr_info)) { 1693 mutex_unlock(rule_lock); 1694 return ICE_ERR_ALREADY_EXISTS; 1695 } 1696 mutex_unlock(rule_lock); 1697 num_unicast++; 1698 } else if (is_multicast_ether_addr(add) || 1699 (is_unicast_ether_addr(add) && hw->ucast_shared)) { 1700 m_list_itr->status = 1701 ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 1702 m_list_itr); 1703 if (m_list_itr->status) 1704 return m_list_itr->status; 1705 } 1706 } 1707 1708 mutex_lock(rule_lock); 1709 /* Exit if no suitable entries were found for adding bulk switch rule */ 1710 if (!num_unicast) { 1711 status = 0; 1712 goto ice_add_mac_exit; 1713 } 1714 1715 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1716 1717 /* Allocate switch rule buffer for the bulk update for unicast */ 1718 s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 1719 s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size, 1720 GFP_KERNEL); 1721 if (!s_rule) { 1722 status = ICE_ERR_NO_MEMORY; 1723 goto ice_add_mac_exit; 1724 } 1725 1726 r_iter = s_rule; 1727 list_for_each_entry(m_list_itr, m_list, list_entry) { 1728 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1729 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1730 1731 if (is_unicast_ether_addr(mac_addr)) { 1732 ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, 1733 ice_aqc_opc_add_sw_rules); 1734 r_iter = (struct ice_aqc_sw_rules_elem *) 1735 ((u8 *)r_iter + s_rule_size); 1736 } 1737 } 1738 1739 /* Call AQ bulk switch rule update for all unicast addresses */ 1740 r_iter = s_rule; 1741 /* Call AQ switch rule in AQ_MAX chunk */ 1742 for (total_elem_left = num_unicast; total_elem_left > 0; 1743 total_elem_left -= elem_sent) { 1744 struct ice_aqc_sw_rules_elem *entry = r_iter; 1745 1746 elem_sent = min(total_elem_left, 1747 (u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size)); 1748 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, 1749 elem_sent, ice_aqc_opc_add_sw_rules, 1750 NULL); 1751 if (status) 1752 goto ice_add_mac_exit; 1753 r_iter = (struct ice_aqc_sw_rules_elem *) 1754 ((u8 *)r_iter + (elem_sent * s_rule_size)); 1755 } 1756 1757 /* Fill up rule ID based on the value returned from FW */ 1758 r_iter = s_rule; 1759 list_for_each_entry(m_list_itr, m_list, list_entry) { 1760 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1761 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1762 struct ice_fltr_mgmt_list_entry *fm_entry; 1763 1764 if (is_unicast_ether_addr(mac_addr)) { 1765 f_info->fltr_rule_id = 1766 le16_to_cpu(r_iter->pdata.lkup_tx_rx.index); 1767 f_info->fltr_act = ICE_FWD_TO_VSI; 1768 /* Create an entry to track this MAC address */ 1769 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), 1770 sizeof(*fm_entry), GFP_KERNEL); 1771 if (!fm_entry) { 1772 status = ICE_ERR_NO_MEMORY; 1773 goto ice_add_mac_exit; 1774 } 1775 fm_entry->fltr_info = *f_info; 1776 fm_entry->vsi_count = 1; 1777 /* The book keeping entries will get removed when 1778 * base driver calls remove filter AQ command 1779 */ 1780 1781 list_add(&fm_entry->list_entry, rule_head); 1782 r_iter = (struct ice_aqc_sw_rules_elem *) 1783 ((u8 *)r_iter + s_rule_size); 1784 } 1785 } 1786 1787 ice_add_mac_exit: 1788 mutex_unlock(rule_lock); 1789 if (s_rule) 1790 devm_kfree(ice_hw_to_dev(hw), s_rule); 1791 return status; 1792 } 1793 1794 /** 1795 * ice_add_vlan_internal - Add one VLAN based filter rule 1796 * @hw: pointer to the hardware structure 1797 * @f_entry: filter entry containing one VLAN information 1798 */ 1799 static enum ice_status 1800 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 1801 { 1802 struct ice_switch_info *sw = hw->switch_info; 1803 struct ice_fltr_mgmt_list_entry *v_list_itr; 1804 struct ice_fltr_info *new_fltr, *cur_fltr; 1805 enum ice_sw_lkup_type lkup_type; 1806 u16 vsi_list_id = 0, vsi_handle; 1807 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1808 enum ice_status status = 0; 1809 1810 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1811 return ICE_ERR_PARAM; 1812 1813 f_entry->fltr_info.fwd_id.hw_vsi_id = 1814 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1815 new_fltr = &f_entry->fltr_info; 1816 1817 /* VLAN ID should only be 12 bits */ 1818 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 1819 return ICE_ERR_PARAM; 1820 1821 if (new_fltr->src_id != ICE_SRC_ID_VSI) 1822 return ICE_ERR_PARAM; 1823 1824 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 1825 lkup_type = new_fltr->lkup_type; 1826 vsi_handle = new_fltr->vsi_handle; 1827 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 1828 mutex_lock(rule_lock); 1829 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 1830 if (!v_list_itr) { 1831 struct ice_vsi_list_map_info *map_info = NULL; 1832 1833 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 1834 /* All VLAN pruning rules use a VSI list. Check if 1835 * there is already a VSI list containing VSI that we 1836 * want to add. If found, use the same vsi_list_id for 1837 * this new VLAN rule or else create a new list. 1838 */ 1839 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 1840 vsi_handle, 1841 &vsi_list_id); 1842 if (!map_info) { 1843 status = ice_create_vsi_list_rule(hw, 1844 &vsi_handle, 1845 1, 1846 &vsi_list_id, 1847 lkup_type); 1848 if (status) 1849 goto exit; 1850 } 1851 /* Convert the action to forwarding to a VSI list. */ 1852 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1853 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 1854 } 1855 1856 status = ice_create_pkt_fwd_rule(hw, f_entry); 1857 if (!status) { 1858 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 1859 new_fltr); 1860 if (!v_list_itr) { 1861 status = ICE_ERR_DOES_NOT_EXIST; 1862 goto exit; 1863 } 1864 /* reuse VSI list for new rule and increment ref_cnt */ 1865 if (map_info) { 1866 v_list_itr->vsi_list_info = map_info; 1867 map_info->ref_cnt++; 1868 } else { 1869 v_list_itr->vsi_list_info = 1870 ice_create_vsi_list_map(hw, &vsi_handle, 1871 1, vsi_list_id); 1872 } 1873 } 1874 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 1875 /* Update existing VSI list to add new VSI ID only if it used 1876 * by one VLAN rule. 1877 */ 1878 cur_fltr = &v_list_itr->fltr_info; 1879 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 1880 new_fltr); 1881 } else { 1882 /* If VLAN rule exists and VSI list being used by this rule is 1883 * referenced by more than 1 VLAN rule. Then create a new VSI 1884 * list appending previous VSI with new VSI and update existing 1885 * VLAN rule to point to new VSI list ID 1886 */ 1887 struct ice_fltr_info tmp_fltr; 1888 u16 vsi_handle_arr[2]; 1889 u16 cur_handle; 1890 1891 /* Current implementation only supports reusing VSI list with 1892 * one VSI count. We should never hit below condition 1893 */ 1894 if (v_list_itr->vsi_count > 1 && 1895 v_list_itr->vsi_list_info->ref_cnt > 1) { 1896 ice_debug(hw, ICE_DBG_SW, 1897 "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 1898 status = ICE_ERR_CFG; 1899 goto exit; 1900 } 1901 1902 cur_handle = 1903 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 1904 ICE_MAX_VSI); 1905 1906 /* A rule already exists with the new VSI being added */ 1907 if (cur_handle == vsi_handle) { 1908 status = ICE_ERR_ALREADY_EXISTS; 1909 goto exit; 1910 } 1911 1912 vsi_handle_arr[0] = cur_handle; 1913 vsi_handle_arr[1] = vsi_handle; 1914 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1915 &vsi_list_id, lkup_type); 1916 if (status) 1917 goto exit; 1918 1919 tmp_fltr = v_list_itr->fltr_info; 1920 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 1921 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1922 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1923 /* Update the previous switch rule to a new VSI list which 1924 * includes current VSI that is requested 1925 */ 1926 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1927 if (status) 1928 goto exit; 1929 1930 /* before overriding VSI list map info. decrement ref_cnt of 1931 * previous VSI list 1932 */ 1933 v_list_itr->vsi_list_info->ref_cnt--; 1934 1935 /* now update to newly created list */ 1936 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 1937 v_list_itr->vsi_list_info = 1938 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1939 vsi_list_id); 1940 v_list_itr->vsi_count++; 1941 } 1942 1943 exit: 1944 mutex_unlock(rule_lock); 1945 return status; 1946 } 1947 1948 /** 1949 * ice_add_vlan - Add VLAN based filter rule 1950 * @hw: pointer to the hardware structure 1951 * @v_list: list of VLAN entries and forwarding information 1952 */ 1953 enum ice_status 1954 ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 1955 { 1956 struct ice_fltr_list_entry *v_list_itr; 1957 1958 if (!v_list || !hw) 1959 return ICE_ERR_PARAM; 1960 1961 list_for_each_entry(v_list_itr, v_list, list_entry) { 1962 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 1963 return ICE_ERR_PARAM; 1964 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 1965 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 1966 if (v_list_itr->status) 1967 return v_list_itr->status; 1968 } 1969 return 0; 1970 } 1971 1972 /** 1973 * ice_add_eth_mac - Add ethertype and MAC based filter rule 1974 * @hw: pointer to the hardware structure 1975 * @em_list: list of ether type MAC filter, MAC is optional 1976 * 1977 * This function requires the caller to populate the entries in 1978 * the filter list with the necessary fields (including flags to 1979 * indicate Tx or Rx rules). 1980 */ 1981 enum ice_status 1982 ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 1983 { 1984 struct ice_fltr_list_entry *em_list_itr; 1985 1986 if (!em_list || !hw) 1987 return ICE_ERR_PARAM; 1988 1989 list_for_each_entry(em_list_itr, em_list, list_entry) { 1990 enum ice_sw_lkup_type l_type = 1991 em_list_itr->fltr_info.lkup_type; 1992 1993 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 1994 l_type != ICE_SW_LKUP_ETHERTYPE) 1995 return ICE_ERR_PARAM; 1996 1997 em_list_itr->status = ice_add_rule_internal(hw, l_type, 1998 em_list_itr); 1999 if (em_list_itr->status) 2000 return em_list_itr->status; 2001 } 2002 return 0; 2003 } 2004 2005 /** 2006 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 2007 * @hw: pointer to the hardware structure 2008 * @em_list: list of ethertype or ethertype MAC entries 2009 */ 2010 enum ice_status 2011 ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 2012 { 2013 struct ice_fltr_list_entry *em_list_itr, *tmp; 2014 2015 if (!em_list || !hw) 2016 return ICE_ERR_PARAM; 2017 2018 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 2019 enum ice_sw_lkup_type l_type = 2020 em_list_itr->fltr_info.lkup_type; 2021 2022 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 2023 l_type != ICE_SW_LKUP_ETHERTYPE) 2024 return ICE_ERR_PARAM; 2025 2026 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 2027 em_list_itr); 2028 if (em_list_itr->status) 2029 return em_list_itr->status; 2030 } 2031 return 0; 2032 } 2033 2034 /** 2035 * ice_rem_sw_rule_info 2036 * @hw: pointer to the hardware structure 2037 * @rule_head: pointer to the switch list structure that we want to delete 2038 */ 2039 static void 2040 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 2041 { 2042 if (!list_empty(rule_head)) { 2043 struct ice_fltr_mgmt_list_entry *entry; 2044 struct ice_fltr_mgmt_list_entry *tmp; 2045 2046 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 2047 list_del(&entry->list_entry); 2048 devm_kfree(ice_hw_to_dev(hw), entry); 2049 } 2050 } 2051 } 2052 2053 /** 2054 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 2055 * @hw: pointer to the hardware structure 2056 * @vsi_handle: VSI handle to set as default 2057 * @set: true to add the above mentioned switch rule, false to remove it 2058 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 2059 * 2060 * add filter rule to set/unset given VSI as default VSI for the switch 2061 * (represented by swid) 2062 */ 2063 enum ice_status 2064 ice_cfg_dflt_vsi(struct ice_hw *hw, u16 vsi_handle, bool set, u8 direction) 2065 { 2066 struct ice_aqc_sw_rules_elem *s_rule; 2067 struct ice_fltr_info f_info; 2068 enum ice_adminq_opc opcode; 2069 enum ice_status status; 2070 u16 s_rule_size; 2071 u16 hw_vsi_id; 2072 2073 if (!ice_is_vsi_valid(hw, vsi_handle)) 2074 return ICE_ERR_PARAM; 2075 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2076 2077 s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE : 2078 ICE_SW_RULE_RX_TX_NO_HDR_SIZE; 2079 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2080 if (!s_rule) 2081 return ICE_ERR_NO_MEMORY; 2082 2083 memset(&f_info, 0, sizeof(f_info)); 2084 2085 f_info.lkup_type = ICE_SW_LKUP_DFLT; 2086 f_info.flag = direction; 2087 f_info.fltr_act = ICE_FWD_TO_VSI; 2088 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 2089 2090 if (f_info.flag & ICE_FLTR_RX) { 2091 f_info.src = hw->port_info->lport; 2092 f_info.src_id = ICE_SRC_ID_LPORT; 2093 if (!set) 2094 f_info.fltr_rule_id = 2095 hw->port_info->dflt_rx_vsi_rule_id; 2096 } else if (f_info.flag & ICE_FLTR_TX) { 2097 f_info.src_id = ICE_SRC_ID_VSI; 2098 f_info.src = hw_vsi_id; 2099 if (!set) 2100 f_info.fltr_rule_id = 2101 hw->port_info->dflt_tx_vsi_rule_id; 2102 } 2103 2104 if (set) 2105 opcode = ice_aqc_opc_add_sw_rules; 2106 else 2107 opcode = ice_aqc_opc_remove_sw_rules; 2108 2109 ice_fill_sw_rule(hw, &f_info, s_rule, opcode); 2110 2111 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL); 2112 if (status || !(f_info.flag & ICE_FLTR_TX_RX)) 2113 goto out; 2114 if (set) { 2115 u16 index = le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 2116 2117 if (f_info.flag & ICE_FLTR_TX) { 2118 hw->port_info->dflt_tx_vsi_num = hw_vsi_id; 2119 hw->port_info->dflt_tx_vsi_rule_id = index; 2120 } else if (f_info.flag & ICE_FLTR_RX) { 2121 hw->port_info->dflt_rx_vsi_num = hw_vsi_id; 2122 hw->port_info->dflt_rx_vsi_rule_id = index; 2123 } 2124 } else { 2125 if (f_info.flag & ICE_FLTR_TX) { 2126 hw->port_info->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 2127 hw->port_info->dflt_tx_vsi_rule_id = ICE_INVAL_ACT; 2128 } else if (f_info.flag & ICE_FLTR_RX) { 2129 hw->port_info->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 2130 hw->port_info->dflt_rx_vsi_rule_id = ICE_INVAL_ACT; 2131 } 2132 } 2133 2134 out: 2135 devm_kfree(ice_hw_to_dev(hw), s_rule); 2136 return status; 2137 } 2138 2139 /** 2140 * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry 2141 * @hw: pointer to the hardware structure 2142 * @recp_id: lookup type for which the specified rule needs to be searched 2143 * @f_info: rule information 2144 * 2145 * Helper function to search for a unicast rule entry - this is to be used 2146 * to remove unicast MAC filter that is not shared with other VSIs on the 2147 * PF switch. 2148 * 2149 * Returns pointer to entry storing the rule if found 2150 */ 2151 static struct ice_fltr_mgmt_list_entry * 2152 ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id, 2153 struct ice_fltr_info *f_info) 2154 { 2155 struct ice_switch_info *sw = hw->switch_info; 2156 struct ice_fltr_mgmt_list_entry *list_itr; 2157 struct list_head *list_head; 2158 2159 list_head = &sw->recp_list[recp_id].filt_rules; 2160 list_for_each_entry(list_itr, list_head, list_entry) { 2161 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 2162 sizeof(f_info->l_data)) && 2163 f_info->fwd_id.hw_vsi_id == 2164 list_itr->fltr_info.fwd_id.hw_vsi_id && 2165 f_info->flag == list_itr->fltr_info.flag) 2166 return list_itr; 2167 } 2168 return NULL; 2169 } 2170 2171 /** 2172 * ice_remove_mac - remove a MAC address based filter rule 2173 * @hw: pointer to the hardware structure 2174 * @m_list: list of MAC addresses and forwarding information 2175 * 2176 * This function removes either a MAC filter rule or a specific VSI from a 2177 * VSI list for a multicast MAC address. 2178 * 2179 * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by 2180 * ice_add_mac. Caller should be aware that this call will only work if all 2181 * the entries passed into m_list were added previously. It will not attempt to 2182 * do a partial remove of entries that were found. 2183 */ 2184 enum ice_status 2185 ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 2186 { 2187 struct ice_fltr_list_entry *list_itr, *tmp; 2188 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2189 2190 if (!m_list) 2191 return ICE_ERR_PARAM; 2192 2193 rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 2194 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 2195 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 2196 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0]; 2197 u16 vsi_handle; 2198 2199 if (l_type != ICE_SW_LKUP_MAC) 2200 return ICE_ERR_PARAM; 2201 2202 vsi_handle = list_itr->fltr_info.vsi_handle; 2203 if (!ice_is_vsi_valid(hw, vsi_handle)) 2204 return ICE_ERR_PARAM; 2205 2206 list_itr->fltr_info.fwd_id.hw_vsi_id = 2207 ice_get_hw_vsi_num(hw, vsi_handle); 2208 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 2209 /* Don't remove the unicast address that belongs to 2210 * another VSI on the switch, since it is not being 2211 * shared... 2212 */ 2213 mutex_lock(rule_lock); 2214 if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC, 2215 &list_itr->fltr_info)) { 2216 mutex_unlock(rule_lock); 2217 return ICE_ERR_DOES_NOT_EXIST; 2218 } 2219 mutex_unlock(rule_lock); 2220 } 2221 list_itr->status = ice_remove_rule_internal(hw, 2222 ICE_SW_LKUP_MAC, 2223 list_itr); 2224 if (list_itr->status) 2225 return list_itr->status; 2226 } 2227 return 0; 2228 } 2229 2230 /** 2231 * ice_remove_vlan - Remove VLAN based filter rule 2232 * @hw: pointer to the hardware structure 2233 * @v_list: list of VLAN entries and forwarding information 2234 */ 2235 enum ice_status 2236 ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 2237 { 2238 struct ice_fltr_list_entry *v_list_itr, *tmp; 2239 2240 if (!v_list || !hw) 2241 return ICE_ERR_PARAM; 2242 2243 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2244 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 2245 2246 if (l_type != ICE_SW_LKUP_VLAN) 2247 return ICE_ERR_PARAM; 2248 v_list_itr->status = ice_remove_rule_internal(hw, 2249 ICE_SW_LKUP_VLAN, 2250 v_list_itr); 2251 if (v_list_itr->status) 2252 return v_list_itr->status; 2253 } 2254 return 0; 2255 } 2256 2257 /** 2258 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 2259 * @fm_entry: filter entry to inspect 2260 * @vsi_handle: VSI handle to compare with filter info 2261 */ 2262 static bool 2263 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 2264 { 2265 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 2266 fm_entry->fltr_info.vsi_handle == vsi_handle) || 2267 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 2268 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 2269 } 2270 2271 /** 2272 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 2273 * @hw: pointer to the hardware structure 2274 * @vsi_handle: VSI handle to remove filters from 2275 * @vsi_list_head: pointer to the list to add entry to 2276 * @fi: pointer to fltr_info of filter entry to copy & add 2277 * 2278 * Helper function, used when creating a list of filters to remove from 2279 * a specific VSI. The entry added to vsi_list_head is a COPY of the 2280 * original filter entry, with the exception of fltr_info.fltr_act and 2281 * fltr_info.fwd_id fields. These are set such that later logic can 2282 * extract which VSI to remove the fltr from, and pass on that information. 2283 */ 2284 static enum ice_status 2285 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2286 struct list_head *vsi_list_head, 2287 struct ice_fltr_info *fi) 2288 { 2289 struct ice_fltr_list_entry *tmp; 2290 2291 /* this memory is freed up in the caller function 2292 * once filters for this VSI are removed 2293 */ 2294 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 2295 if (!tmp) 2296 return ICE_ERR_NO_MEMORY; 2297 2298 tmp->fltr_info = *fi; 2299 2300 /* Overwrite these fields to indicate which VSI to remove filter from, 2301 * so find and remove logic can extract the information from the 2302 * list entries. Note that original entries will still have proper 2303 * values. 2304 */ 2305 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 2306 tmp->fltr_info.vsi_handle = vsi_handle; 2307 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2308 2309 list_add(&tmp->list_entry, vsi_list_head); 2310 2311 return 0; 2312 } 2313 2314 /** 2315 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 2316 * @hw: pointer to the hardware structure 2317 * @vsi_handle: VSI handle to remove filters from 2318 * @lkup_list_head: pointer to the list that has certain lookup type filters 2319 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 2320 * 2321 * Locates all filters in lkup_list_head that are used by the given VSI, 2322 * and adds COPIES of those entries to vsi_list_head (intended to be used 2323 * to remove the listed filters). 2324 * Note that this means all entries in vsi_list_head must be explicitly 2325 * deallocated by the caller when done with list. 2326 */ 2327 static enum ice_status 2328 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2329 struct list_head *lkup_list_head, 2330 struct list_head *vsi_list_head) 2331 { 2332 struct ice_fltr_mgmt_list_entry *fm_entry; 2333 enum ice_status status = 0; 2334 2335 /* check to make sure VSI ID is valid and within boundary */ 2336 if (!ice_is_vsi_valid(hw, vsi_handle)) 2337 return ICE_ERR_PARAM; 2338 2339 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 2340 struct ice_fltr_info *fi; 2341 2342 fi = &fm_entry->fltr_info; 2343 if (!fi || !ice_vsi_uses_fltr(fm_entry, vsi_handle)) 2344 continue; 2345 2346 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2347 vsi_list_head, fi); 2348 if (status) 2349 return status; 2350 } 2351 return status; 2352 } 2353 2354 /** 2355 * ice_determine_promisc_mask 2356 * @fi: filter info to parse 2357 * 2358 * Helper function to determine which ICE_PROMISC_ mask corresponds 2359 * to given filter into. 2360 */ 2361 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 2362 { 2363 u16 vid = fi->l_data.mac_vlan.vlan_id; 2364 u8 *macaddr = fi->l_data.mac.mac_addr; 2365 bool is_tx_fltr = false; 2366 u8 promisc_mask = 0; 2367 2368 if (fi->flag == ICE_FLTR_TX) 2369 is_tx_fltr = true; 2370 2371 if (is_broadcast_ether_addr(macaddr)) 2372 promisc_mask |= is_tx_fltr ? 2373 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 2374 else if (is_multicast_ether_addr(macaddr)) 2375 promisc_mask |= is_tx_fltr ? 2376 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 2377 else if (is_unicast_ether_addr(macaddr)) 2378 promisc_mask |= is_tx_fltr ? 2379 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 2380 if (vid) 2381 promisc_mask |= is_tx_fltr ? 2382 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 2383 2384 return promisc_mask; 2385 } 2386 2387 /** 2388 * ice_remove_promisc - Remove promisc based filter rules 2389 * @hw: pointer to the hardware structure 2390 * @recp_id: recipe ID for which the rule needs to removed 2391 * @v_list: list of promisc entries 2392 */ 2393 static enum ice_status 2394 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, 2395 struct list_head *v_list) 2396 { 2397 struct ice_fltr_list_entry *v_list_itr, *tmp; 2398 2399 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2400 v_list_itr->status = 2401 ice_remove_rule_internal(hw, recp_id, v_list_itr); 2402 if (v_list_itr->status) 2403 return v_list_itr->status; 2404 } 2405 return 0; 2406 } 2407 2408 /** 2409 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 2410 * @hw: pointer to the hardware structure 2411 * @vsi_handle: VSI handle to clear mode 2412 * @promisc_mask: mask of promiscuous config bits to clear 2413 * @vid: VLAN ID to clear VLAN promiscuous 2414 */ 2415 enum ice_status 2416 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2417 u16 vid) 2418 { 2419 struct ice_switch_info *sw = hw->switch_info; 2420 struct ice_fltr_list_entry *fm_entry, *tmp; 2421 struct list_head remove_list_head; 2422 struct ice_fltr_mgmt_list_entry *itr; 2423 struct list_head *rule_head; 2424 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2425 enum ice_status status = 0; 2426 u8 recipe_id; 2427 2428 if (!ice_is_vsi_valid(hw, vsi_handle)) 2429 return ICE_ERR_PARAM; 2430 2431 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 2432 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2433 else 2434 recipe_id = ICE_SW_LKUP_PROMISC; 2435 2436 rule_head = &sw->recp_list[recipe_id].filt_rules; 2437 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 2438 2439 INIT_LIST_HEAD(&remove_list_head); 2440 2441 mutex_lock(rule_lock); 2442 list_for_each_entry(itr, rule_head, list_entry) { 2443 struct ice_fltr_info *fltr_info; 2444 u8 fltr_promisc_mask = 0; 2445 2446 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 2447 continue; 2448 fltr_info = &itr->fltr_info; 2449 2450 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 2451 vid != fltr_info->l_data.mac_vlan.vlan_id) 2452 continue; 2453 2454 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 2455 2456 /* Skip if filter is not completely specified by given mask */ 2457 if (fltr_promisc_mask & ~promisc_mask) 2458 continue; 2459 2460 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2461 &remove_list_head, 2462 fltr_info); 2463 if (status) { 2464 mutex_unlock(rule_lock); 2465 goto free_fltr_list; 2466 } 2467 } 2468 mutex_unlock(rule_lock); 2469 2470 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 2471 2472 free_fltr_list: 2473 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2474 list_del(&fm_entry->list_entry); 2475 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2476 } 2477 2478 return status; 2479 } 2480 2481 /** 2482 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 2483 * @hw: pointer to the hardware structure 2484 * @vsi_handle: VSI handle to configure 2485 * @promisc_mask: mask of promiscuous config bits 2486 * @vid: VLAN ID to set VLAN promiscuous 2487 */ 2488 enum ice_status 2489 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 2490 { 2491 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 2492 struct ice_fltr_list_entry f_list_entry; 2493 struct ice_fltr_info new_fltr; 2494 enum ice_status status = 0; 2495 bool is_tx_fltr; 2496 u16 hw_vsi_id; 2497 int pkt_type; 2498 u8 recipe_id; 2499 2500 if (!ice_is_vsi_valid(hw, vsi_handle)) 2501 return ICE_ERR_PARAM; 2502 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2503 2504 memset(&new_fltr, 0, sizeof(new_fltr)); 2505 2506 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 2507 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 2508 new_fltr.l_data.mac_vlan.vlan_id = vid; 2509 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2510 } else { 2511 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 2512 recipe_id = ICE_SW_LKUP_PROMISC; 2513 } 2514 2515 /* Separate filters must be set for each direction/packet type 2516 * combination, so we will loop over the mask value, store the 2517 * individual type, and clear it out in the input mask as it 2518 * is found. 2519 */ 2520 while (promisc_mask) { 2521 u8 *mac_addr; 2522 2523 pkt_type = 0; 2524 is_tx_fltr = false; 2525 2526 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 2527 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 2528 pkt_type = UCAST_FLTR; 2529 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 2530 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 2531 pkt_type = UCAST_FLTR; 2532 is_tx_fltr = true; 2533 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 2534 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 2535 pkt_type = MCAST_FLTR; 2536 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 2537 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 2538 pkt_type = MCAST_FLTR; 2539 is_tx_fltr = true; 2540 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 2541 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 2542 pkt_type = BCAST_FLTR; 2543 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 2544 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 2545 pkt_type = BCAST_FLTR; 2546 is_tx_fltr = true; 2547 } 2548 2549 /* Check for VLAN promiscuous flag */ 2550 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 2551 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 2552 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 2553 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 2554 is_tx_fltr = true; 2555 } 2556 2557 /* Set filter DA based on packet type */ 2558 mac_addr = new_fltr.l_data.mac.mac_addr; 2559 if (pkt_type == BCAST_FLTR) { 2560 eth_broadcast_addr(mac_addr); 2561 } else if (pkt_type == MCAST_FLTR || 2562 pkt_type == UCAST_FLTR) { 2563 /* Use the dummy ether header DA */ 2564 ether_addr_copy(mac_addr, dummy_eth_header); 2565 if (pkt_type == MCAST_FLTR) 2566 mac_addr[0] |= 0x1; /* Set multicast bit */ 2567 } 2568 2569 /* Need to reset this to zero for all iterations */ 2570 new_fltr.flag = 0; 2571 if (is_tx_fltr) { 2572 new_fltr.flag |= ICE_FLTR_TX; 2573 new_fltr.src = hw_vsi_id; 2574 } else { 2575 new_fltr.flag |= ICE_FLTR_RX; 2576 new_fltr.src = hw->port_info->lport; 2577 } 2578 2579 new_fltr.fltr_act = ICE_FWD_TO_VSI; 2580 new_fltr.vsi_handle = vsi_handle; 2581 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 2582 f_list_entry.fltr_info = new_fltr; 2583 2584 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 2585 if (status) 2586 goto set_promisc_exit; 2587 } 2588 2589 set_promisc_exit: 2590 return status; 2591 } 2592 2593 /** 2594 * ice_set_vlan_vsi_promisc 2595 * @hw: pointer to the hardware structure 2596 * @vsi_handle: VSI handle to configure 2597 * @promisc_mask: mask of promiscuous config bits 2598 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 2599 * 2600 * Configure VSI with all associated VLANs to given promiscuous mode(s) 2601 */ 2602 enum ice_status 2603 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2604 bool rm_vlan_promisc) 2605 { 2606 struct ice_switch_info *sw = hw->switch_info; 2607 struct ice_fltr_list_entry *list_itr, *tmp; 2608 struct list_head vsi_list_head; 2609 struct list_head *vlan_head; 2610 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 2611 enum ice_status status; 2612 u16 vlan_id; 2613 2614 INIT_LIST_HEAD(&vsi_list_head); 2615 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 2616 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 2617 mutex_lock(vlan_lock); 2618 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 2619 &vsi_list_head); 2620 mutex_unlock(vlan_lock); 2621 if (status) 2622 goto free_fltr_list; 2623 2624 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 2625 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 2626 if (rm_vlan_promisc) 2627 status = ice_clear_vsi_promisc(hw, vsi_handle, 2628 promisc_mask, vlan_id); 2629 else 2630 status = ice_set_vsi_promisc(hw, vsi_handle, 2631 promisc_mask, vlan_id); 2632 if (status) 2633 break; 2634 } 2635 2636 free_fltr_list: 2637 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 2638 list_del(&list_itr->list_entry); 2639 devm_kfree(ice_hw_to_dev(hw), list_itr); 2640 } 2641 return status; 2642 } 2643 2644 /** 2645 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 2646 * @hw: pointer to the hardware structure 2647 * @vsi_handle: VSI handle to remove filters from 2648 * @lkup: switch rule filter lookup type 2649 */ 2650 static void 2651 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 2652 enum ice_sw_lkup_type lkup) 2653 { 2654 struct ice_switch_info *sw = hw->switch_info; 2655 struct ice_fltr_list_entry *fm_entry; 2656 struct list_head remove_list_head; 2657 struct list_head *rule_head; 2658 struct ice_fltr_list_entry *tmp; 2659 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2660 enum ice_status status; 2661 2662 INIT_LIST_HEAD(&remove_list_head); 2663 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 2664 rule_head = &sw->recp_list[lkup].filt_rules; 2665 mutex_lock(rule_lock); 2666 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 2667 &remove_list_head); 2668 mutex_unlock(rule_lock); 2669 if (status) 2670 return; 2671 2672 switch (lkup) { 2673 case ICE_SW_LKUP_MAC: 2674 ice_remove_mac(hw, &remove_list_head); 2675 break; 2676 case ICE_SW_LKUP_VLAN: 2677 ice_remove_vlan(hw, &remove_list_head); 2678 break; 2679 case ICE_SW_LKUP_PROMISC: 2680 case ICE_SW_LKUP_PROMISC_VLAN: 2681 ice_remove_promisc(hw, lkup, &remove_list_head); 2682 break; 2683 case ICE_SW_LKUP_MAC_VLAN: 2684 case ICE_SW_LKUP_ETHERTYPE: 2685 case ICE_SW_LKUP_ETHERTYPE_MAC: 2686 case ICE_SW_LKUP_DFLT: 2687 case ICE_SW_LKUP_LAST: 2688 default: 2689 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 2690 break; 2691 } 2692 2693 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2694 list_del(&fm_entry->list_entry); 2695 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2696 } 2697 } 2698 2699 /** 2700 * ice_remove_vsi_fltr - Remove all filters for a VSI 2701 * @hw: pointer to the hardware structure 2702 * @vsi_handle: VSI handle to remove filters from 2703 */ 2704 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 2705 { 2706 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 2707 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 2708 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 2709 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 2710 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 2711 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 2712 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 2713 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 2714 } 2715 2716 /** 2717 * ice_replay_vsi_fltr - Replay filters for requested VSI 2718 * @hw: pointer to the hardware structure 2719 * @vsi_handle: driver VSI handle 2720 * @recp_id: Recipe ID for which rules need to be replayed 2721 * @list_head: list for which filters need to be replayed 2722 * 2723 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 2724 * It is required to pass valid VSI handle. 2725 */ 2726 static enum ice_status 2727 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 2728 struct list_head *list_head) 2729 { 2730 struct ice_fltr_mgmt_list_entry *itr; 2731 enum ice_status status = 0; 2732 u16 hw_vsi_id; 2733 2734 if (list_empty(list_head)) 2735 return status; 2736 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2737 2738 list_for_each_entry(itr, list_head, list_entry) { 2739 struct ice_fltr_list_entry f_entry; 2740 2741 f_entry.fltr_info = itr->fltr_info; 2742 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 2743 itr->fltr_info.vsi_handle == vsi_handle) { 2744 /* update the src in case it is VSI num */ 2745 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2746 f_entry.fltr_info.src = hw_vsi_id; 2747 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2748 if (status) 2749 goto end; 2750 continue; 2751 } 2752 if (!itr->vsi_list_info || 2753 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 2754 continue; 2755 /* Clearing it so that the logic can add it back */ 2756 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 2757 f_entry.fltr_info.vsi_handle = vsi_handle; 2758 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 2759 /* update the src in case it is VSI num */ 2760 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2761 f_entry.fltr_info.src = hw_vsi_id; 2762 if (recp_id == ICE_SW_LKUP_VLAN) 2763 status = ice_add_vlan_internal(hw, &f_entry); 2764 else 2765 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2766 if (status) 2767 goto end; 2768 } 2769 end: 2770 return status; 2771 } 2772 2773 /** 2774 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 2775 * @hw: pointer to the hardware structure 2776 * @vsi_handle: driver VSI handle 2777 * 2778 * Replays filters for requested VSI via vsi_handle. 2779 */ 2780 enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 2781 { 2782 struct ice_switch_info *sw = hw->switch_info; 2783 enum ice_status status = 0; 2784 u8 i; 2785 2786 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2787 struct list_head *head; 2788 2789 head = &sw->recp_list[i].filt_replay_rules; 2790 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 2791 if (status) 2792 return status; 2793 } 2794 return status; 2795 } 2796 2797 /** 2798 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 2799 * @hw: pointer to the HW struct 2800 * 2801 * Deletes the filter replay rules. 2802 */ 2803 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 2804 { 2805 struct ice_switch_info *sw = hw->switch_info; 2806 u8 i; 2807 2808 if (!sw) 2809 return; 2810 2811 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2812 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 2813 struct list_head *l_head; 2814 2815 l_head = &sw->recp_list[i].filt_replay_rules; 2816 ice_rem_sw_rule_info(hw, l_head); 2817 } 2818 } 2819 } 2820