1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 
7 #define ICE_ETH_DA_OFFSET		0
8 #define ICE_ETH_ETHTYPE_OFFSET		12
9 #define ICE_ETH_VLAN_TCI_OFFSET		14
10 #define ICE_MAX_VLAN_ID			0xFFF
11 #define ICE_IPV6_ETHER_ID		0x86DD
12 
13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14  * struct to configure any switch filter rules.
15  * {DA (6 bytes), SA(6 bytes),
16  * Ether type (2 bytes for header without VLAN tag) OR
17  * VLAN tag (4 bytes for header with VLAN tag) }
18  *
19  * Word on Hardcoded values
20  * byte 0 = 0x2: to identify it as locally administered DA MAC
21  * byte 6 = 0x2: to identify it as locally administered SA MAC
22  * byte 12 = 0x81 & byte 13 = 0x00:
23  *      In case of VLAN filter first two bytes defines ether type (0x8100)
24  *      and remaining two bytes are placeholder for programming a given VLAN ID
25  *      In case of Ether type filter it is treated as header without VLAN tag
26  *      and byte 12 and 13 is used to program a given Ether type instead
27  */
28 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
29 							0x2, 0, 0, 0, 0, 0,
30 							0x81, 0, 0, 0};
31 
32 enum {
33 	ICE_PKT_OUTER_IPV6	= BIT(0),
34 	ICE_PKT_TUN_GTPC	= BIT(1),
35 	ICE_PKT_TUN_GTPU	= BIT(2),
36 	ICE_PKT_TUN_NVGRE	= BIT(3),
37 	ICE_PKT_TUN_UDP		= BIT(4),
38 	ICE_PKT_INNER_IPV6	= BIT(5),
39 	ICE_PKT_INNER_TCP	= BIT(6),
40 	ICE_PKT_INNER_UDP	= BIT(7),
41 	ICE_PKT_GTP_NOPAY	= BIT(8),
42 	ICE_PKT_KMALLOC		= BIT(9),
43 	ICE_PKT_PPPOE		= BIT(10),
44 	ICE_PKT_L2TPV3		= BIT(11),
45 };
46 
47 struct ice_dummy_pkt_offsets {
48 	enum ice_protocol_type type;
49 	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50 };
51 
52 struct ice_dummy_pkt_profile {
53 	const struct ice_dummy_pkt_offsets *offsets;
54 	const u8 *pkt;
55 	u32 match;
56 	u16 pkt_len;
57 	u16 offsets_len;
58 };
59 
60 #define ICE_DECLARE_PKT_OFFSETS(type)					\
61 	static const struct ice_dummy_pkt_offsets			\
62 	ice_dummy_##type##_packet_offsets[]
63 
64 #define ICE_DECLARE_PKT_TEMPLATE(type)					\
65 	static const u8 ice_dummy_##type##_packet[]
66 
67 #define ICE_PKT_PROFILE(type, m) {					\
68 	.match		= (m),						\
69 	.pkt		= ice_dummy_##type##_packet,			\
70 	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
71 	.offsets	= ice_dummy_##type##_packet_offsets,		\
72 	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
73 }
74 
75 ICE_DECLARE_PKT_OFFSETS(vlan) = {
76 	{ ICE_VLAN_OFOS,        12 },
77 };
78 
79 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81 };
82 
83 ICE_DECLARE_PKT_OFFSETS(qinq) = {
84 	{ ICE_VLAN_EX,          12 },
85 	{ ICE_VLAN_IN,          16 },
86 };
87 
88 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89 	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91 };
92 
93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94 	{ ICE_MAC_OFOS,		0 },
95 	{ ICE_ETYPE_OL,		12 },
96 	{ ICE_IPV4_OFOS,	14 },
97 	{ ICE_NVGRE,		34 },
98 	{ ICE_MAC_IL,		42 },
99 	{ ICE_ETYPE_IL,		54 },
100 	{ ICE_IPV4_IL,		56 },
101 	{ ICE_TCP_IL,		76 },
102 	{ ICE_PROTOCOL_LAST,	0 },
103 };
104 
105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
107 	0x00, 0x00, 0x00, 0x00,
108 	0x00, 0x00, 0x00, 0x00,
109 
110 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
111 
112 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
113 	0x00, 0x00, 0x00, 0x00,
114 	0x00, 0x2F, 0x00, 0x00,
115 	0x00, 0x00, 0x00, 0x00,
116 	0x00, 0x00, 0x00, 0x00,
117 
118 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
119 	0x00, 0x00, 0x00, 0x00,
120 
121 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
122 	0x00, 0x00, 0x00, 0x00,
123 	0x00, 0x00, 0x00, 0x00,
124 
125 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
126 
127 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
128 	0x00, 0x00, 0x00, 0x00,
129 	0x00, 0x06, 0x00, 0x00,
130 	0x00, 0x00, 0x00, 0x00,
131 	0x00, 0x00, 0x00, 0x00,
132 
133 	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
134 	0x00, 0x00, 0x00, 0x00,
135 	0x00, 0x00, 0x00, 0x00,
136 	0x50, 0x02, 0x20, 0x00,
137 	0x00, 0x00, 0x00, 0x00
138 };
139 
140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141 	{ ICE_MAC_OFOS,		0 },
142 	{ ICE_ETYPE_OL,		12 },
143 	{ ICE_IPV4_OFOS,	14 },
144 	{ ICE_NVGRE,		34 },
145 	{ ICE_MAC_IL,		42 },
146 	{ ICE_ETYPE_IL,		54 },
147 	{ ICE_IPV4_IL,		56 },
148 	{ ICE_UDP_ILOS,		76 },
149 	{ ICE_PROTOCOL_LAST,	0 },
150 };
151 
152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
154 	0x00, 0x00, 0x00, 0x00,
155 	0x00, 0x00, 0x00, 0x00,
156 
157 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
158 
159 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
160 	0x00, 0x00, 0x00, 0x00,
161 	0x00, 0x2F, 0x00, 0x00,
162 	0x00, 0x00, 0x00, 0x00,
163 	0x00, 0x00, 0x00, 0x00,
164 
165 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
166 	0x00, 0x00, 0x00, 0x00,
167 
168 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
169 	0x00, 0x00, 0x00, 0x00,
170 	0x00, 0x00, 0x00, 0x00,
171 
172 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
173 
174 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
175 	0x00, 0x00, 0x00, 0x00,
176 	0x00, 0x11, 0x00, 0x00,
177 	0x00, 0x00, 0x00, 0x00,
178 	0x00, 0x00, 0x00, 0x00,
179 
180 	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
181 	0x00, 0x08, 0x00, 0x00,
182 };
183 
184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185 	{ ICE_MAC_OFOS,		0 },
186 	{ ICE_ETYPE_OL,		12 },
187 	{ ICE_IPV4_OFOS,	14 },
188 	{ ICE_UDP_OF,		34 },
189 	{ ICE_VXLAN,		42 },
190 	{ ICE_GENEVE,		42 },
191 	{ ICE_VXLAN_GPE,	42 },
192 	{ ICE_MAC_IL,		50 },
193 	{ ICE_ETYPE_IL,		62 },
194 	{ ICE_IPV4_IL,		64 },
195 	{ ICE_TCP_IL,		84 },
196 	{ ICE_PROTOCOL_LAST,	0 },
197 };
198 
199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
201 	0x00, 0x00, 0x00, 0x00,
202 	0x00, 0x00, 0x00, 0x00,
203 
204 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
205 
206 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207 	0x00, 0x01, 0x00, 0x00,
208 	0x40, 0x11, 0x00, 0x00,
209 	0x00, 0x00, 0x00, 0x00,
210 	0x00, 0x00, 0x00, 0x00,
211 
212 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213 	0x00, 0x46, 0x00, 0x00,
214 
215 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216 	0x00, 0x00, 0x00, 0x00,
217 
218 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219 	0x00, 0x00, 0x00, 0x00,
220 	0x00, 0x00, 0x00, 0x00,
221 
222 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
223 
224 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225 	0x00, 0x01, 0x00, 0x00,
226 	0x40, 0x06, 0x00, 0x00,
227 	0x00, 0x00, 0x00, 0x00,
228 	0x00, 0x00, 0x00, 0x00,
229 
230 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231 	0x00, 0x00, 0x00, 0x00,
232 	0x00, 0x00, 0x00, 0x00,
233 	0x50, 0x02, 0x20, 0x00,
234 	0x00, 0x00, 0x00, 0x00
235 };
236 
237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238 	{ ICE_MAC_OFOS,		0 },
239 	{ ICE_ETYPE_OL,		12 },
240 	{ ICE_IPV4_OFOS,	14 },
241 	{ ICE_UDP_OF,		34 },
242 	{ ICE_VXLAN,		42 },
243 	{ ICE_GENEVE,		42 },
244 	{ ICE_VXLAN_GPE,	42 },
245 	{ ICE_MAC_IL,		50 },
246 	{ ICE_ETYPE_IL,		62 },
247 	{ ICE_IPV4_IL,		64 },
248 	{ ICE_UDP_ILOS,		84 },
249 	{ ICE_PROTOCOL_LAST,	0 },
250 };
251 
252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
254 	0x00, 0x00, 0x00, 0x00,
255 	0x00, 0x00, 0x00, 0x00,
256 
257 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
258 
259 	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260 	0x00, 0x01, 0x00, 0x00,
261 	0x00, 0x11, 0x00, 0x00,
262 	0x00, 0x00, 0x00, 0x00,
263 	0x00, 0x00, 0x00, 0x00,
264 
265 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266 	0x00, 0x3a, 0x00, 0x00,
267 
268 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269 	0x00, 0x00, 0x00, 0x00,
270 
271 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272 	0x00, 0x00, 0x00, 0x00,
273 	0x00, 0x00, 0x00, 0x00,
274 
275 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
276 
277 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278 	0x00, 0x01, 0x00, 0x00,
279 	0x00, 0x11, 0x00, 0x00,
280 	0x00, 0x00, 0x00, 0x00,
281 	0x00, 0x00, 0x00, 0x00,
282 
283 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284 	0x00, 0x08, 0x00, 0x00,
285 };
286 
287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288 	{ ICE_MAC_OFOS,		0 },
289 	{ ICE_ETYPE_OL,		12 },
290 	{ ICE_IPV4_OFOS,	14 },
291 	{ ICE_NVGRE,		34 },
292 	{ ICE_MAC_IL,		42 },
293 	{ ICE_ETYPE_IL,		54 },
294 	{ ICE_IPV6_IL,		56 },
295 	{ ICE_TCP_IL,		96 },
296 	{ ICE_PROTOCOL_LAST,	0 },
297 };
298 
299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301 	0x00, 0x00, 0x00, 0x00,
302 	0x00, 0x00, 0x00, 0x00,
303 
304 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
305 
306 	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307 	0x00, 0x00, 0x00, 0x00,
308 	0x00, 0x2F, 0x00, 0x00,
309 	0x00, 0x00, 0x00, 0x00,
310 	0x00, 0x00, 0x00, 0x00,
311 
312 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313 	0x00, 0x00, 0x00, 0x00,
314 
315 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316 	0x00, 0x00, 0x00, 0x00,
317 	0x00, 0x00, 0x00, 0x00,
318 
319 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
320 
321 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322 	0x00, 0x08, 0x06, 0x40,
323 	0x00, 0x00, 0x00, 0x00,
324 	0x00, 0x00, 0x00, 0x00,
325 	0x00, 0x00, 0x00, 0x00,
326 	0x00, 0x00, 0x00, 0x00,
327 	0x00, 0x00, 0x00, 0x00,
328 	0x00, 0x00, 0x00, 0x00,
329 	0x00, 0x00, 0x00, 0x00,
330 	0x00, 0x00, 0x00, 0x00,
331 
332 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333 	0x00, 0x00, 0x00, 0x00,
334 	0x00, 0x00, 0x00, 0x00,
335 	0x50, 0x02, 0x20, 0x00,
336 	0x00, 0x00, 0x00, 0x00
337 };
338 
339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340 	{ ICE_MAC_OFOS,		0 },
341 	{ ICE_ETYPE_OL,		12 },
342 	{ ICE_IPV4_OFOS,	14 },
343 	{ ICE_NVGRE,		34 },
344 	{ ICE_MAC_IL,		42 },
345 	{ ICE_ETYPE_IL,		54 },
346 	{ ICE_IPV6_IL,		56 },
347 	{ ICE_UDP_ILOS,		96 },
348 	{ ICE_PROTOCOL_LAST,	0 },
349 };
350 
351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353 	0x00, 0x00, 0x00, 0x00,
354 	0x00, 0x00, 0x00, 0x00,
355 
356 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
357 
358 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359 	0x00, 0x00, 0x00, 0x00,
360 	0x00, 0x2F, 0x00, 0x00,
361 	0x00, 0x00, 0x00, 0x00,
362 	0x00, 0x00, 0x00, 0x00,
363 
364 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365 	0x00, 0x00, 0x00, 0x00,
366 
367 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368 	0x00, 0x00, 0x00, 0x00,
369 	0x00, 0x00, 0x00, 0x00,
370 
371 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
372 
373 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374 	0x00, 0x08, 0x11, 0x40,
375 	0x00, 0x00, 0x00, 0x00,
376 	0x00, 0x00, 0x00, 0x00,
377 	0x00, 0x00, 0x00, 0x00,
378 	0x00, 0x00, 0x00, 0x00,
379 	0x00, 0x00, 0x00, 0x00,
380 	0x00, 0x00, 0x00, 0x00,
381 	0x00, 0x00, 0x00, 0x00,
382 	0x00, 0x00, 0x00, 0x00,
383 
384 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385 	0x00, 0x08, 0x00, 0x00,
386 };
387 
388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389 	{ ICE_MAC_OFOS,		0 },
390 	{ ICE_ETYPE_OL,		12 },
391 	{ ICE_IPV4_OFOS,	14 },
392 	{ ICE_UDP_OF,		34 },
393 	{ ICE_VXLAN,		42 },
394 	{ ICE_GENEVE,		42 },
395 	{ ICE_VXLAN_GPE,	42 },
396 	{ ICE_MAC_IL,		50 },
397 	{ ICE_ETYPE_IL,		62 },
398 	{ ICE_IPV6_IL,		64 },
399 	{ ICE_TCP_IL,		104 },
400 	{ ICE_PROTOCOL_LAST,	0 },
401 };
402 
403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
405 	0x00, 0x00, 0x00, 0x00,
406 	0x00, 0x00, 0x00, 0x00,
407 
408 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
409 
410 	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411 	0x00, 0x01, 0x00, 0x00,
412 	0x40, 0x11, 0x00, 0x00,
413 	0x00, 0x00, 0x00, 0x00,
414 	0x00, 0x00, 0x00, 0x00,
415 
416 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417 	0x00, 0x5a, 0x00, 0x00,
418 
419 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420 	0x00, 0x00, 0x00, 0x00,
421 
422 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423 	0x00, 0x00, 0x00, 0x00,
424 	0x00, 0x00, 0x00, 0x00,
425 
426 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
427 
428 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429 	0x00, 0x08, 0x06, 0x40,
430 	0x00, 0x00, 0x00, 0x00,
431 	0x00, 0x00, 0x00, 0x00,
432 	0x00, 0x00, 0x00, 0x00,
433 	0x00, 0x00, 0x00, 0x00,
434 	0x00, 0x00, 0x00, 0x00,
435 	0x00, 0x00, 0x00, 0x00,
436 	0x00, 0x00, 0x00, 0x00,
437 	0x00, 0x00, 0x00, 0x00,
438 
439 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440 	0x00, 0x00, 0x00, 0x00,
441 	0x00, 0x00, 0x00, 0x00,
442 	0x50, 0x02, 0x20, 0x00,
443 	0x00, 0x00, 0x00, 0x00
444 };
445 
446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447 	{ ICE_MAC_OFOS,		0 },
448 	{ ICE_ETYPE_OL,		12 },
449 	{ ICE_IPV4_OFOS,	14 },
450 	{ ICE_UDP_OF,		34 },
451 	{ ICE_VXLAN,		42 },
452 	{ ICE_GENEVE,		42 },
453 	{ ICE_VXLAN_GPE,	42 },
454 	{ ICE_MAC_IL,		50 },
455 	{ ICE_ETYPE_IL,		62 },
456 	{ ICE_IPV6_IL,		64 },
457 	{ ICE_UDP_ILOS,		104 },
458 	{ ICE_PROTOCOL_LAST,	0 },
459 };
460 
461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
463 	0x00, 0x00, 0x00, 0x00,
464 	0x00, 0x00, 0x00, 0x00,
465 
466 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
467 
468 	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469 	0x00, 0x01, 0x00, 0x00,
470 	0x00, 0x11, 0x00, 0x00,
471 	0x00, 0x00, 0x00, 0x00,
472 	0x00, 0x00, 0x00, 0x00,
473 
474 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475 	0x00, 0x4e, 0x00, 0x00,
476 
477 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478 	0x00, 0x00, 0x00, 0x00,
479 
480 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481 	0x00, 0x00, 0x00, 0x00,
482 	0x00, 0x00, 0x00, 0x00,
483 
484 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
485 
486 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487 	0x00, 0x08, 0x11, 0x40,
488 	0x00, 0x00, 0x00, 0x00,
489 	0x00, 0x00, 0x00, 0x00,
490 	0x00, 0x00, 0x00, 0x00,
491 	0x00, 0x00, 0x00, 0x00,
492 	0x00, 0x00, 0x00, 0x00,
493 	0x00, 0x00, 0x00, 0x00,
494 	0x00, 0x00, 0x00, 0x00,
495 	0x00, 0x00, 0x00, 0x00,
496 
497 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498 	0x00, 0x08, 0x00, 0x00,
499 };
500 
501 /* offset info for MAC + IPv4 + UDP dummy packet */
502 ICE_DECLARE_PKT_OFFSETS(udp) = {
503 	{ ICE_MAC_OFOS,		0 },
504 	{ ICE_ETYPE_OL,		12 },
505 	{ ICE_IPV4_OFOS,	14 },
506 	{ ICE_UDP_ILOS,		34 },
507 	{ ICE_PROTOCOL_LAST,	0 },
508 };
509 
510 /* Dummy packet for MAC + IPv4 + UDP */
511 ICE_DECLARE_PKT_TEMPLATE(udp) = {
512 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513 	0x00, 0x00, 0x00, 0x00,
514 	0x00, 0x00, 0x00, 0x00,
515 
516 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
517 
518 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519 	0x00, 0x01, 0x00, 0x00,
520 	0x00, 0x11, 0x00, 0x00,
521 	0x00, 0x00, 0x00, 0x00,
522 	0x00, 0x00, 0x00, 0x00,
523 
524 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525 	0x00, 0x08, 0x00, 0x00,
526 
527 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
528 };
529 
530 /* offset info for MAC + IPv4 + TCP dummy packet */
531 ICE_DECLARE_PKT_OFFSETS(tcp) = {
532 	{ ICE_MAC_OFOS,		0 },
533 	{ ICE_ETYPE_OL,		12 },
534 	{ ICE_IPV4_OFOS,	14 },
535 	{ ICE_TCP_IL,		34 },
536 	{ ICE_PROTOCOL_LAST,	0 },
537 };
538 
539 /* Dummy packet for MAC + IPv4 + TCP */
540 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542 	0x00, 0x00, 0x00, 0x00,
543 	0x00, 0x00, 0x00, 0x00,
544 
545 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
546 
547 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548 	0x00, 0x01, 0x00, 0x00,
549 	0x00, 0x06, 0x00, 0x00,
550 	0x00, 0x00, 0x00, 0x00,
551 	0x00, 0x00, 0x00, 0x00,
552 
553 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554 	0x00, 0x00, 0x00, 0x00,
555 	0x00, 0x00, 0x00, 0x00,
556 	0x50, 0x00, 0x00, 0x00,
557 	0x00, 0x00, 0x00, 0x00,
558 
559 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
560 };
561 
562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563 	{ ICE_MAC_OFOS,		0 },
564 	{ ICE_ETYPE_OL,		12 },
565 	{ ICE_IPV6_OFOS,	14 },
566 	{ ICE_TCP_IL,		54 },
567 	{ ICE_PROTOCOL_LAST,	0 },
568 };
569 
570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572 	0x00, 0x00, 0x00, 0x00,
573 	0x00, 0x00, 0x00, 0x00,
574 
575 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
576 
577 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579 	0x00, 0x00, 0x00, 0x00,
580 	0x00, 0x00, 0x00, 0x00,
581 	0x00, 0x00, 0x00, 0x00,
582 	0x00, 0x00, 0x00, 0x00,
583 	0x00, 0x00, 0x00, 0x00,
584 	0x00, 0x00, 0x00, 0x00,
585 	0x00, 0x00, 0x00, 0x00,
586 	0x00, 0x00, 0x00, 0x00,
587 
588 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589 	0x00, 0x00, 0x00, 0x00,
590 	0x00, 0x00, 0x00, 0x00,
591 	0x50, 0x00, 0x00, 0x00,
592 	0x00, 0x00, 0x00, 0x00,
593 
594 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
595 };
596 
597 /* IPv6 + UDP */
598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599 	{ ICE_MAC_OFOS,		0 },
600 	{ ICE_ETYPE_OL,		12 },
601 	{ ICE_IPV6_OFOS,	14 },
602 	{ ICE_UDP_ILOS,		54 },
603 	{ ICE_PROTOCOL_LAST,	0 },
604 };
605 
606 /* IPv6 + UDP dummy packet */
607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609 	0x00, 0x00, 0x00, 0x00,
610 	0x00, 0x00, 0x00, 0x00,
611 
612 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
613 
614 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616 	0x00, 0x00, 0x00, 0x00,
617 	0x00, 0x00, 0x00, 0x00,
618 	0x00, 0x00, 0x00, 0x00,
619 	0x00, 0x00, 0x00, 0x00,
620 	0x00, 0x00, 0x00, 0x00,
621 	0x00, 0x00, 0x00, 0x00,
622 	0x00, 0x00, 0x00, 0x00,
623 	0x00, 0x00, 0x00, 0x00,
624 
625 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626 	0x00, 0x10, 0x00, 0x00,
627 
628 	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629 	0x00, 0x00, 0x00, 0x00,
630 
631 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
632 };
633 
634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636 	{ ICE_MAC_OFOS,		0 },
637 	{ ICE_IPV4_OFOS,	14 },
638 	{ ICE_UDP_OF,		34 },
639 	{ ICE_GTP,		42 },
640 	{ ICE_IPV4_IL,		62 },
641 	{ ICE_TCP_IL,		82 },
642 	{ ICE_PROTOCOL_LAST,	0 },
643 };
644 
645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647 	0x00, 0x00, 0x00, 0x00,
648 	0x00, 0x00, 0x00, 0x00,
649 	0x08, 0x00,
650 
651 	0x45, 0x00, 0x00, 0x58, /* IP 14 */
652 	0x00, 0x00, 0x00, 0x00,
653 	0x00, 0x11, 0x00, 0x00,
654 	0x00, 0x00, 0x00, 0x00,
655 	0x00, 0x00, 0x00, 0x00,
656 
657 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658 	0x00, 0x44, 0x00, 0x00,
659 
660 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661 	0x00, 0x00, 0x00, 0x00,
662 	0x00, 0x00, 0x00, 0x85,
663 
664 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665 	0x00, 0x00, 0x00, 0x00,
666 
667 	0x45, 0x00, 0x00, 0x28, /* IP 62 */
668 	0x00, 0x00, 0x00, 0x00,
669 	0x00, 0x06, 0x00, 0x00,
670 	0x00, 0x00, 0x00, 0x00,
671 	0x00, 0x00, 0x00, 0x00,
672 
673 	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674 	0x00, 0x00, 0x00, 0x00,
675 	0x00, 0x00, 0x00, 0x00,
676 	0x50, 0x00, 0x00, 0x00,
677 	0x00, 0x00, 0x00, 0x00,
678 
679 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
680 };
681 
682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684 	{ ICE_MAC_OFOS,		0 },
685 	{ ICE_IPV4_OFOS,	14 },
686 	{ ICE_UDP_OF,		34 },
687 	{ ICE_GTP,		42 },
688 	{ ICE_IPV4_IL,		62 },
689 	{ ICE_UDP_ILOS,		82 },
690 	{ ICE_PROTOCOL_LAST,	0 },
691 };
692 
693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695 	0x00, 0x00, 0x00, 0x00,
696 	0x00, 0x00, 0x00, 0x00,
697 	0x08, 0x00,
698 
699 	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700 	0x00, 0x00, 0x00, 0x00,
701 	0x00, 0x11, 0x00, 0x00,
702 	0x00, 0x00, 0x00, 0x00,
703 	0x00, 0x00, 0x00, 0x00,
704 
705 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706 	0x00, 0x38, 0x00, 0x00,
707 
708 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709 	0x00, 0x00, 0x00, 0x00,
710 	0x00, 0x00, 0x00, 0x85,
711 
712 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713 	0x00, 0x00, 0x00, 0x00,
714 
715 	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716 	0x00, 0x00, 0x00, 0x00,
717 	0x00, 0x11, 0x00, 0x00,
718 	0x00, 0x00, 0x00, 0x00,
719 	0x00, 0x00, 0x00, 0x00,
720 
721 	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722 	0x00, 0x08, 0x00, 0x00,
723 
724 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
725 };
726 
727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729 	{ ICE_MAC_OFOS,		0 },
730 	{ ICE_IPV4_OFOS,	14 },
731 	{ ICE_UDP_OF,		34 },
732 	{ ICE_GTP,		42 },
733 	{ ICE_IPV6_IL,		62 },
734 	{ ICE_TCP_IL,		102 },
735 	{ ICE_PROTOCOL_LAST,	0 },
736 };
737 
738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740 	0x00, 0x00, 0x00, 0x00,
741 	0x00, 0x00, 0x00, 0x00,
742 	0x08, 0x00,
743 
744 	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745 	0x00, 0x00, 0x00, 0x00,
746 	0x00, 0x11, 0x00, 0x00,
747 	0x00, 0x00, 0x00, 0x00,
748 	0x00, 0x00, 0x00, 0x00,
749 
750 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751 	0x00, 0x58, 0x00, 0x00,
752 
753 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754 	0x00, 0x00, 0x00, 0x00,
755 	0x00, 0x00, 0x00, 0x85,
756 
757 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758 	0x00, 0x00, 0x00, 0x00,
759 
760 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761 	0x00, 0x14, 0x06, 0x00,
762 	0x00, 0x00, 0x00, 0x00,
763 	0x00, 0x00, 0x00, 0x00,
764 	0x00, 0x00, 0x00, 0x00,
765 	0x00, 0x00, 0x00, 0x00,
766 	0x00, 0x00, 0x00, 0x00,
767 	0x00, 0x00, 0x00, 0x00,
768 	0x00, 0x00, 0x00, 0x00,
769 	0x00, 0x00, 0x00, 0x00,
770 
771 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772 	0x00, 0x00, 0x00, 0x00,
773 	0x00, 0x00, 0x00, 0x00,
774 	0x50, 0x00, 0x00, 0x00,
775 	0x00, 0x00, 0x00, 0x00,
776 
777 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
778 };
779 
780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781 	{ ICE_MAC_OFOS,		0 },
782 	{ ICE_IPV4_OFOS,	14 },
783 	{ ICE_UDP_OF,		34 },
784 	{ ICE_GTP,		42 },
785 	{ ICE_IPV6_IL,		62 },
786 	{ ICE_UDP_ILOS,		102 },
787 	{ ICE_PROTOCOL_LAST,	0 },
788 };
789 
790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792 	0x00, 0x00, 0x00, 0x00,
793 	0x00, 0x00, 0x00, 0x00,
794 	0x08, 0x00,
795 
796 	0x45, 0x00, 0x00, 0x60, /* IP 14 */
797 	0x00, 0x00, 0x00, 0x00,
798 	0x00, 0x11, 0x00, 0x00,
799 	0x00, 0x00, 0x00, 0x00,
800 	0x00, 0x00, 0x00, 0x00,
801 
802 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803 	0x00, 0x4c, 0x00, 0x00,
804 
805 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806 	0x00, 0x00, 0x00, 0x00,
807 	0x00, 0x00, 0x00, 0x85,
808 
809 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810 	0x00, 0x00, 0x00, 0x00,
811 
812 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813 	0x00, 0x08, 0x11, 0x00,
814 	0x00, 0x00, 0x00, 0x00,
815 	0x00, 0x00, 0x00, 0x00,
816 	0x00, 0x00, 0x00, 0x00,
817 	0x00, 0x00, 0x00, 0x00,
818 	0x00, 0x00, 0x00, 0x00,
819 	0x00, 0x00, 0x00, 0x00,
820 	0x00, 0x00, 0x00, 0x00,
821 	0x00, 0x00, 0x00, 0x00,
822 
823 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824 	0x00, 0x08, 0x00, 0x00,
825 
826 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
827 };
828 
829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830 	{ ICE_MAC_OFOS,		0 },
831 	{ ICE_IPV6_OFOS,	14 },
832 	{ ICE_UDP_OF,		54 },
833 	{ ICE_GTP,		62 },
834 	{ ICE_IPV4_IL,		82 },
835 	{ ICE_TCP_IL,		102 },
836 	{ ICE_PROTOCOL_LAST,	0 },
837 };
838 
839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841 	0x00, 0x00, 0x00, 0x00,
842 	0x00, 0x00, 0x00, 0x00,
843 	0x86, 0xdd,
844 
845 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846 	0x00, 0x44, 0x11, 0x00,
847 	0x00, 0x00, 0x00, 0x00,
848 	0x00, 0x00, 0x00, 0x00,
849 	0x00, 0x00, 0x00, 0x00,
850 	0x00, 0x00, 0x00, 0x00,
851 	0x00, 0x00, 0x00, 0x00,
852 	0x00, 0x00, 0x00, 0x00,
853 	0x00, 0x00, 0x00, 0x00,
854 	0x00, 0x00, 0x00, 0x00,
855 
856 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857 	0x00, 0x44, 0x00, 0x00,
858 
859 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860 	0x00, 0x00, 0x00, 0x00,
861 	0x00, 0x00, 0x00, 0x85,
862 
863 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864 	0x00, 0x00, 0x00, 0x00,
865 
866 	0x45, 0x00, 0x00, 0x28, /* IP 82 */
867 	0x00, 0x00, 0x00, 0x00,
868 	0x00, 0x06, 0x00, 0x00,
869 	0x00, 0x00, 0x00, 0x00,
870 	0x00, 0x00, 0x00, 0x00,
871 
872 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873 	0x00, 0x00, 0x00, 0x00,
874 	0x00, 0x00, 0x00, 0x00,
875 	0x50, 0x00, 0x00, 0x00,
876 	0x00, 0x00, 0x00, 0x00,
877 
878 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
879 };
880 
881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882 	{ ICE_MAC_OFOS,		0 },
883 	{ ICE_IPV6_OFOS,	14 },
884 	{ ICE_UDP_OF,		54 },
885 	{ ICE_GTP,		62 },
886 	{ ICE_IPV4_IL,		82 },
887 	{ ICE_UDP_ILOS,		102 },
888 	{ ICE_PROTOCOL_LAST,	0 },
889 };
890 
891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893 	0x00, 0x00, 0x00, 0x00,
894 	0x00, 0x00, 0x00, 0x00,
895 	0x86, 0xdd,
896 
897 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898 	0x00, 0x38, 0x11, 0x00,
899 	0x00, 0x00, 0x00, 0x00,
900 	0x00, 0x00, 0x00, 0x00,
901 	0x00, 0x00, 0x00, 0x00,
902 	0x00, 0x00, 0x00, 0x00,
903 	0x00, 0x00, 0x00, 0x00,
904 	0x00, 0x00, 0x00, 0x00,
905 	0x00, 0x00, 0x00, 0x00,
906 	0x00, 0x00, 0x00, 0x00,
907 
908 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909 	0x00, 0x38, 0x00, 0x00,
910 
911 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912 	0x00, 0x00, 0x00, 0x00,
913 	0x00, 0x00, 0x00, 0x85,
914 
915 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916 	0x00, 0x00, 0x00, 0x00,
917 
918 	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919 	0x00, 0x00, 0x00, 0x00,
920 	0x00, 0x11, 0x00, 0x00,
921 	0x00, 0x00, 0x00, 0x00,
922 	0x00, 0x00, 0x00, 0x00,
923 
924 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925 	0x00, 0x08, 0x00, 0x00,
926 
927 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
928 };
929 
930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931 	{ ICE_MAC_OFOS,		0 },
932 	{ ICE_IPV6_OFOS,	14 },
933 	{ ICE_UDP_OF,		54 },
934 	{ ICE_GTP,		62 },
935 	{ ICE_IPV6_IL,		82 },
936 	{ ICE_TCP_IL,		122 },
937 	{ ICE_PROTOCOL_LAST,	0 },
938 };
939 
940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942 	0x00, 0x00, 0x00, 0x00,
943 	0x00, 0x00, 0x00, 0x00,
944 	0x86, 0xdd,
945 
946 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947 	0x00, 0x58, 0x11, 0x00,
948 	0x00, 0x00, 0x00, 0x00,
949 	0x00, 0x00, 0x00, 0x00,
950 	0x00, 0x00, 0x00, 0x00,
951 	0x00, 0x00, 0x00, 0x00,
952 	0x00, 0x00, 0x00, 0x00,
953 	0x00, 0x00, 0x00, 0x00,
954 	0x00, 0x00, 0x00, 0x00,
955 	0x00, 0x00, 0x00, 0x00,
956 
957 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958 	0x00, 0x58, 0x00, 0x00,
959 
960 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961 	0x00, 0x00, 0x00, 0x00,
962 	0x00, 0x00, 0x00, 0x85,
963 
964 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965 	0x00, 0x00, 0x00, 0x00,
966 
967 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968 	0x00, 0x14, 0x06, 0x00,
969 	0x00, 0x00, 0x00, 0x00,
970 	0x00, 0x00, 0x00, 0x00,
971 	0x00, 0x00, 0x00, 0x00,
972 	0x00, 0x00, 0x00, 0x00,
973 	0x00, 0x00, 0x00, 0x00,
974 	0x00, 0x00, 0x00, 0x00,
975 	0x00, 0x00, 0x00, 0x00,
976 	0x00, 0x00, 0x00, 0x00,
977 
978 	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979 	0x00, 0x00, 0x00, 0x00,
980 	0x00, 0x00, 0x00, 0x00,
981 	0x50, 0x00, 0x00, 0x00,
982 	0x00, 0x00, 0x00, 0x00,
983 
984 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
985 };
986 
987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988 	{ ICE_MAC_OFOS,		0 },
989 	{ ICE_IPV6_OFOS,	14 },
990 	{ ICE_UDP_OF,		54 },
991 	{ ICE_GTP,		62 },
992 	{ ICE_IPV6_IL,		82 },
993 	{ ICE_UDP_ILOS,		122 },
994 	{ ICE_PROTOCOL_LAST,	0 },
995 };
996 
997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999 	0x00, 0x00, 0x00, 0x00,
1000 	0x00, 0x00, 0x00, 0x00,
1001 	0x86, 0xdd,
1002 
1003 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004 	0x00, 0x4c, 0x11, 0x00,
1005 	0x00, 0x00, 0x00, 0x00,
1006 	0x00, 0x00, 0x00, 0x00,
1007 	0x00, 0x00, 0x00, 0x00,
1008 	0x00, 0x00, 0x00, 0x00,
1009 	0x00, 0x00, 0x00, 0x00,
1010 	0x00, 0x00, 0x00, 0x00,
1011 	0x00, 0x00, 0x00, 0x00,
1012 	0x00, 0x00, 0x00, 0x00,
1013 
1014 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015 	0x00, 0x4c, 0x00, 0x00,
1016 
1017 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018 	0x00, 0x00, 0x00, 0x00,
1019 	0x00, 0x00, 0x00, 0x85,
1020 
1021 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022 	0x00, 0x00, 0x00, 0x00,
1023 
1024 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025 	0x00, 0x08, 0x11, 0x00,
1026 	0x00, 0x00, 0x00, 0x00,
1027 	0x00, 0x00, 0x00, 0x00,
1028 	0x00, 0x00, 0x00, 0x00,
1029 	0x00, 0x00, 0x00, 0x00,
1030 	0x00, 0x00, 0x00, 0x00,
1031 	0x00, 0x00, 0x00, 0x00,
1032 	0x00, 0x00, 0x00, 0x00,
1033 	0x00, 0x00, 0x00, 0x00,
1034 
1035 	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036 	0x00, 0x08, 0x00, 0x00,
1037 
1038 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039 };
1040 
1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042 	{ ICE_MAC_OFOS,		0 },
1043 	{ ICE_IPV4_OFOS,	14 },
1044 	{ ICE_UDP_OF,		34 },
1045 	{ ICE_GTP_NO_PAY,	42 },
1046 	{ ICE_PROTOCOL_LAST,	0 },
1047 };
1048 
1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051 	0x00, 0x00, 0x00, 0x00,
1052 	0x00, 0x00, 0x00, 0x00,
1053 	0x08, 0x00,
1054 
1055 	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056 	0x00, 0x00, 0x40, 0x00,
1057 	0x40, 0x11, 0x00, 0x00,
1058 	0x00, 0x00, 0x00, 0x00,
1059 	0x00, 0x00, 0x00, 0x00,
1060 
1061 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062 	0x00, 0x00, 0x00, 0x00,
1063 
1064 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065 	0x00, 0x00, 0x00, 0x00,
1066 	0x00, 0x00, 0x00, 0x85,
1067 
1068 	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069 	0x00, 0x00, 0x00, 0x00,
1070 
1071 	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072 	0x00, 0x00, 0x40, 0x00,
1073 	0x40, 0x00, 0x00, 0x00,
1074 	0x00, 0x00, 0x00, 0x00,
1075 	0x00, 0x00, 0x00, 0x00,
1076 	0x00, 0x00,
1077 };
1078 
1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080 	{ ICE_MAC_OFOS,		0 },
1081 	{ ICE_IPV6_OFOS,	14 },
1082 	{ ICE_UDP_OF,		54 },
1083 	{ ICE_GTP_NO_PAY,	62 },
1084 	{ ICE_PROTOCOL_LAST,	0 },
1085 };
1086 
1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089 	0x00, 0x00, 0x00, 0x00,
1090 	0x00, 0x00, 0x00, 0x00,
1091 	0x86, 0xdd,
1092 
1093 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094 	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095 	0x00, 0x00, 0x00, 0x00,
1096 	0x00, 0x00, 0x00, 0x00,
1097 	0x00, 0x00, 0x00, 0x00,
1098 	0x00, 0x00, 0x00, 0x00,
1099 	0x00, 0x00, 0x00, 0x00,
1100 	0x00, 0x00, 0x00, 0x00,
1101 	0x00, 0x00, 0x00, 0x00,
1102 	0x00, 0x00, 0x00, 0x00,
1103 
1104 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105 	0x00, 0x00, 0x00, 0x00,
1106 
1107 	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108 	0x00, 0x00, 0x00, 0x00,
1109 
1110 	0x00, 0x00,
1111 };
1112 
1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114 	{ ICE_MAC_OFOS,		0 },
1115 	{ ICE_ETYPE_OL,		12 },
1116 	{ ICE_PPPOE,		14 },
1117 	{ ICE_IPV4_OFOS,	22 },
1118 	{ ICE_TCP_IL,		42 },
1119 	{ ICE_PROTOCOL_LAST,	0 },
1120 };
1121 
1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124 	0x00, 0x00, 0x00, 0x00,
1125 	0x00, 0x00, 0x00, 0x00,
1126 
1127 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128 
1129 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130 	0x00, 0x16,
1131 
1132 	0x00, 0x21,		/* PPP Link Layer 20 */
1133 
1134 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135 	0x00, 0x01, 0x00, 0x00,
1136 	0x00, 0x06, 0x00, 0x00,
1137 	0x00, 0x00, 0x00, 0x00,
1138 	0x00, 0x00, 0x00, 0x00,
1139 
1140 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141 	0x00, 0x00, 0x00, 0x00,
1142 	0x00, 0x00, 0x00, 0x00,
1143 	0x50, 0x00, 0x00, 0x00,
1144 	0x00, 0x00, 0x00, 0x00,
1145 
1146 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147 };
1148 
1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150 	{ ICE_MAC_OFOS,		0 },
1151 	{ ICE_ETYPE_OL,		12 },
1152 	{ ICE_PPPOE,		14 },
1153 	{ ICE_IPV4_OFOS,	22 },
1154 	{ ICE_UDP_ILOS,		42 },
1155 	{ ICE_PROTOCOL_LAST,	0 },
1156 };
1157 
1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160 	0x00, 0x00, 0x00, 0x00,
1161 	0x00, 0x00, 0x00, 0x00,
1162 
1163 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164 
1165 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166 	0x00, 0x16,
1167 
1168 	0x00, 0x21,		/* PPP Link Layer 20 */
1169 
1170 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171 	0x00, 0x01, 0x00, 0x00,
1172 	0x00, 0x11, 0x00, 0x00,
1173 	0x00, 0x00, 0x00, 0x00,
1174 	0x00, 0x00, 0x00, 0x00,
1175 
1176 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177 	0x00, 0x08, 0x00, 0x00,
1178 
1179 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180 };
1181 
1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183 	{ ICE_MAC_OFOS,		0 },
1184 	{ ICE_ETYPE_OL,		12 },
1185 	{ ICE_PPPOE,		14 },
1186 	{ ICE_IPV6_OFOS,	22 },
1187 	{ ICE_TCP_IL,		62 },
1188 	{ ICE_PROTOCOL_LAST,	0 },
1189 };
1190 
1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193 	0x00, 0x00, 0x00, 0x00,
1194 	0x00, 0x00, 0x00, 0x00,
1195 
1196 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197 
1198 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199 	0x00, 0x2a,
1200 
1201 	0x00, 0x57,		/* PPP Link Layer 20 */
1202 
1203 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205 	0x00, 0x00, 0x00, 0x00,
1206 	0x00, 0x00, 0x00, 0x00,
1207 	0x00, 0x00, 0x00, 0x00,
1208 	0x00, 0x00, 0x00, 0x00,
1209 	0x00, 0x00, 0x00, 0x00,
1210 	0x00, 0x00, 0x00, 0x00,
1211 	0x00, 0x00, 0x00, 0x00,
1212 	0x00, 0x00, 0x00, 0x00,
1213 
1214 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215 	0x00, 0x00, 0x00, 0x00,
1216 	0x00, 0x00, 0x00, 0x00,
1217 	0x50, 0x00, 0x00, 0x00,
1218 	0x00, 0x00, 0x00, 0x00,
1219 
1220 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221 };
1222 
1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224 	{ ICE_MAC_OFOS,		0 },
1225 	{ ICE_ETYPE_OL,		12 },
1226 	{ ICE_PPPOE,		14 },
1227 	{ ICE_IPV6_OFOS,	22 },
1228 	{ ICE_UDP_ILOS,		62 },
1229 	{ ICE_PROTOCOL_LAST,	0 },
1230 };
1231 
1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234 	0x00, 0x00, 0x00, 0x00,
1235 	0x00, 0x00, 0x00, 0x00,
1236 
1237 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238 
1239 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240 	0x00, 0x2a,
1241 
1242 	0x00, 0x57,		/* PPP Link Layer 20 */
1243 
1244 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245 	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246 	0x00, 0x00, 0x00, 0x00,
1247 	0x00, 0x00, 0x00, 0x00,
1248 	0x00, 0x00, 0x00, 0x00,
1249 	0x00, 0x00, 0x00, 0x00,
1250 	0x00, 0x00, 0x00, 0x00,
1251 	0x00, 0x00, 0x00, 0x00,
1252 	0x00, 0x00, 0x00, 0x00,
1253 	0x00, 0x00, 0x00, 0x00,
1254 
1255 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256 	0x00, 0x08, 0x00, 0x00,
1257 
1258 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259 };
1260 
1261 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262 	{ ICE_MAC_OFOS,		0 },
1263 	{ ICE_ETYPE_OL,		12 },
1264 	{ ICE_IPV4_OFOS,	14 },
1265 	{ ICE_L2TPV3,		34 },
1266 	{ ICE_PROTOCOL_LAST,	0 },
1267 };
1268 
1269 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271 	0x00, 0x00, 0x00, 0x00,
1272 	0x00, 0x00, 0x00, 0x00,
1273 
1274 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275 
1276 	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277 	0x00, 0x00, 0x40, 0x00,
1278 	0x40, 0x73, 0x00, 0x00,
1279 	0x00, 0x00, 0x00, 0x00,
1280 	0x00, 0x00, 0x00, 0x00,
1281 
1282 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283 	0x00, 0x00, 0x00, 0x00,
1284 	0x00, 0x00, 0x00, 0x00,
1285 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286 };
1287 
1288 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289 	{ ICE_MAC_OFOS,		0 },
1290 	{ ICE_ETYPE_OL,		12 },
1291 	{ ICE_IPV6_OFOS,	14 },
1292 	{ ICE_L2TPV3,		54 },
1293 	{ ICE_PROTOCOL_LAST,	0 },
1294 };
1295 
1296 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298 	0x00, 0x00, 0x00, 0x00,
1299 	0x00, 0x00, 0x00, 0x00,
1300 
1301 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302 
1303 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304 	0x00, 0x0c, 0x73, 0x40,
1305 	0x00, 0x00, 0x00, 0x00,
1306 	0x00, 0x00, 0x00, 0x00,
1307 	0x00, 0x00, 0x00, 0x00,
1308 	0x00, 0x00, 0x00, 0x00,
1309 	0x00, 0x00, 0x00, 0x00,
1310 	0x00, 0x00, 0x00, 0x00,
1311 	0x00, 0x00, 0x00, 0x00,
1312 	0x00, 0x00, 0x00, 0x00,
1313 
1314 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315 	0x00, 0x00, 0x00, 0x00,
1316 	0x00, 0x00, 0x00, 0x00,
1317 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318 };
1319 
1320 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322 				  ICE_PKT_GTP_NOPAY),
1323 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324 					    ICE_PKT_OUTER_IPV6 |
1325 					    ICE_PKT_INNER_IPV6 |
1326 					    ICE_PKT_INNER_UDP),
1327 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328 					    ICE_PKT_OUTER_IPV6 |
1329 					    ICE_PKT_INNER_IPV6),
1330 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331 					    ICE_PKT_OUTER_IPV6 |
1332 					    ICE_PKT_INNER_UDP),
1333 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334 					    ICE_PKT_OUTER_IPV6),
1335 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337 					    ICE_PKT_INNER_IPV6 |
1338 					    ICE_PKT_INNER_UDP),
1339 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340 					    ICE_PKT_INNER_IPV6),
1341 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342 					    ICE_PKT_INNER_UDP),
1343 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346 	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347 					ICE_PKT_INNER_UDP),
1348 	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349 	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350 	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351 	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352 				      ICE_PKT_INNER_TCP),
1353 	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354 	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355 	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356 	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357 					  ICE_PKT_INNER_IPV6 |
1358 					  ICE_PKT_INNER_TCP),
1359 	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360 	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361 	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362 	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363 					  ICE_PKT_INNER_IPV6),
1364 	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365 	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366 	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367 	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368 	ICE_PKT_PROFILE(tcp, 0),
1369 };
1370 
1371 /* this is a recipe to profile association bitmap */
1372 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373 			  ICE_MAX_NUM_PROFILES);
1374 
1375 /* this is a profile to recipe association bitmap */
1376 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377 			  ICE_MAX_NUM_RECIPES);
1378 
1379 /**
1380  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381  * @hw: pointer to the HW struct
1382  *
1383  * Allocate memory for the entire recipe table and initialize the structures/
1384  * entries corresponding to basic recipes.
1385  */
1386 int ice_init_def_sw_recp(struct ice_hw *hw)
1387 {
1388 	struct ice_sw_recipe *recps;
1389 	u8 i;
1390 
1391 	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392 			     sizeof(*recps), GFP_KERNEL);
1393 	if (!recps)
1394 		return -ENOMEM;
1395 
1396 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397 		recps[i].root_rid = i;
1398 		INIT_LIST_HEAD(&recps[i].filt_rules);
1399 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400 		INIT_LIST_HEAD(&recps[i].rg_list);
1401 		mutex_init(&recps[i].filt_rule_lock);
1402 	}
1403 
1404 	hw->switch_info->recp_list = recps;
1405 
1406 	return 0;
1407 }
1408 
1409 /**
1410  * ice_aq_get_sw_cfg - get switch configuration
1411  * @hw: pointer to the hardware structure
1412  * @buf: pointer to the result buffer
1413  * @buf_size: length of the buffer available for response
1414  * @req_desc: pointer to requested descriptor
1415  * @num_elems: pointer to number of elements
1416  * @cd: pointer to command details structure or NULL
1417  *
1418  * Get switch configuration (0x0200) to be placed in buf.
1419  * This admin command returns information such as initial VSI/port number
1420  * and switch ID it belongs to.
1421  *
1422  * NOTE: *req_desc is both an input/output parameter.
1423  * The caller of this function first calls this function with *request_desc set
1424  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425  * configuration information has been returned; if non-zero (meaning not all
1426  * the information was returned), the caller should call this function again
1427  * with *req_desc set to the previous value returned by f/w to get the
1428  * next block of switch configuration information.
1429  *
1430  * *num_elems is output only parameter. This reflects the number of elements
1431  * in response buffer. The caller of this function to use *num_elems while
1432  * parsing the response buffer.
1433  */
1434 static int
1435 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437 		  struct ice_sq_cd *cd)
1438 {
1439 	struct ice_aqc_get_sw_cfg *cmd;
1440 	struct ice_aq_desc desc;
1441 	int status;
1442 
1443 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444 	cmd = &desc.params.get_sw_conf;
1445 	cmd->element = cpu_to_le16(*req_desc);
1446 
1447 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448 	if (!status) {
1449 		*req_desc = le16_to_cpu(cmd->element);
1450 		*num_elems = le16_to_cpu(cmd->num_elems);
1451 	}
1452 
1453 	return status;
1454 }
1455 
1456 /**
1457  * ice_aq_add_vsi
1458  * @hw: pointer to the HW struct
1459  * @vsi_ctx: pointer to a VSI context struct
1460  * @cd: pointer to command details structure or NULL
1461  *
1462  * Add a VSI context to the hardware (0x0210)
1463  */
1464 static int
1465 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466 	       struct ice_sq_cd *cd)
1467 {
1468 	struct ice_aqc_add_update_free_vsi_resp *res;
1469 	struct ice_aqc_add_get_update_free_vsi *cmd;
1470 	struct ice_aq_desc desc;
1471 	int status;
1472 
1473 	cmd = &desc.params.vsi_cmd;
1474 	res = &desc.params.add_update_free_vsi_res;
1475 
1476 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477 
1478 	if (!vsi_ctx->alloc_from_pool)
1479 		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480 					   ICE_AQ_VSI_IS_VALID);
1481 	cmd->vf_id = vsi_ctx->vf_num;
1482 
1483 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484 
1485 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486 
1487 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488 				 sizeof(vsi_ctx->info), cd);
1489 
1490 	if (!status) {
1491 		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492 		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493 		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494 	}
1495 
1496 	return status;
1497 }
1498 
1499 /**
1500  * ice_aq_free_vsi
1501  * @hw: pointer to the HW struct
1502  * @vsi_ctx: pointer to a VSI context struct
1503  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504  * @cd: pointer to command details structure or NULL
1505  *
1506  * Free VSI context info from hardware (0x0213)
1507  */
1508 static int
1509 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511 {
1512 	struct ice_aqc_add_update_free_vsi_resp *resp;
1513 	struct ice_aqc_add_get_update_free_vsi *cmd;
1514 	struct ice_aq_desc desc;
1515 	int status;
1516 
1517 	cmd = &desc.params.vsi_cmd;
1518 	resp = &desc.params.add_update_free_vsi_res;
1519 
1520 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521 
1522 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523 	if (keep_vsi_alloc)
1524 		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525 
1526 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527 	if (!status) {
1528 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530 	}
1531 
1532 	return status;
1533 }
1534 
1535 /**
1536  * ice_aq_update_vsi
1537  * @hw: pointer to the HW struct
1538  * @vsi_ctx: pointer to a VSI context struct
1539  * @cd: pointer to command details structure or NULL
1540  *
1541  * Update VSI context in the hardware (0x0211)
1542  */
1543 static int
1544 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545 		  struct ice_sq_cd *cd)
1546 {
1547 	struct ice_aqc_add_update_free_vsi_resp *resp;
1548 	struct ice_aqc_add_get_update_free_vsi *cmd;
1549 	struct ice_aq_desc desc;
1550 	int status;
1551 
1552 	cmd = &desc.params.vsi_cmd;
1553 	resp = &desc.params.add_update_free_vsi_res;
1554 
1555 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556 
1557 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558 
1559 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560 
1561 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 				 sizeof(vsi_ctx->info), cd);
1563 
1564 	if (!status) {
1565 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567 	}
1568 
1569 	return status;
1570 }
1571 
1572 /**
1573  * ice_is_vsi_valid - check whether the VSI is valid or not
1574  * @hw: pointer to the HW struct
1575  * @vsi_handle: VSI handle
1576  *
1577  * check whether the VSI is valid or not
1578  */
1579 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580 {
1581 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582 }
1583 
1584 /**
1585  * ice_get_hw_vsi_num - return the HW VSI number
1586  * @hw: pointer to the HW struct
1587  * @vsi_handle: VSI handle
1588  *
1589  * return the HW VSI number
1590  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591  */
1592 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593 {
1594 	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595 }
1596 
1597 /**
1598  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599  * @hw: pointer to the HW struct
1600  * @vsi_handle: VSI handle
1601  *
1602  * return the VSI context entry for a given VSI handle
1603  */
1604 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605 {
1606 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607 }
1608 
1609 /**
1610  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611  * @hw: pointer to the HW struct
1612  * @vsi_handle: VSI handle
1613  * @vsi: VSI context pointer
1614  *
1615  * save the VSI context entry for a given VSI handle
1616  */
1617 static void
1618 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619 {
1620 	hw->vsi_ctx[vsi_handle] = vsi;
1621 }
1622 
1623 /**
1624  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625  * @hw: pointer to the HW struct
1626  * @vsi_handle: VSI handle
1627  */
1628 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629 {
1630 	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631 	u8 i;
1632 
1633 	if (!vsi)
1634 		return;
1635 	ice_for_each_traffic_class(i) {
1636 		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637 		vsi->lan_q_ctx[i] = NULL;
1638 		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639 		vsi->rdma_q_ctx[i] = NULL;
1640 	}
1641 }
1642 
1643 /**
1644  * ice_clear_vsi_ctx - clear the VSI context entry
1645  * @hw: pointer to the HW struct
1646  * @vsi_handle: VSI handle
1647  *
1648  * clear the VSI context entry
1649  */
1650 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651 {
1652 	struct ice_vsi_ctx *vsi;
1653 
1654 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655 	if (vsi) {
1656 		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657 		devm_kfree(ice_hw_to_dev(hw), vsi);
1658 		hw->vsi_ctx[vsi_handle] = NULL;
1659 	}
1660 }
1661 
1662 /**
1663  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664  * @hw: pointer to the HW struct
1665  */
1666 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667 {
1668 	u16 i;
1669 
1670 	for (i = 0; i < ICE_MAX_VSI; i++)
1671 		ice_clear_vsi_ctx(hw, i);
1672 }
1673 
1674 /**
1675  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676  * @hw: pointer to the HW struct
1677  * @vsi_handle: unique VSI handle provided by drivers
1678  * @vsi_ctx: pointer to a VSI context struct
1679  * @cd: pointer to command details structure or NULL
1680  *
1681  * Add a VSI context to the hardware also add it into the VSI handle list.
1682  * If this function gets called after reset for existing VSIs then update
1683  * with the new HW VSI number in the corresponding VSI handle list entry.
1684  */
1685 int
1686 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687 	    struct ice_sq_cd *cd)
1688 {
1689 	struct ice_vsi_ctx *tmp_vsi_ctx;
1690 	int status;
1691 
1692 	if (vsi_handle >= ICE_MAX_VSI)
1693 		return -EINVAL;
1694 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695 	if (status)
1696 		return status;
1697 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698 	if (!tmp_vsi_ctx) {
1699 		/* Create a new VSI context */
1700 		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701 					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702 		if (!tmp_vsi_ctx) {
1703 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704 			return -ENOMEM;
1705 		}
1706 		*tmp_vsi_ctx = *vsi_ctx;
1707 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708 	} else {
1709 		/* update with new HW VSI num */
1710 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * ice_free_vsi- free VSI context from hardware and VSI handle list
1718  * @hw: pointer to the HW struct
1719  * @vsi_handle: unique VSI handle
1720  * @vsi_ctx: pointer to a VSI context struct
1721  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722  * @cd: pointer to command details structure or NULL
1723  *
1724  * Free VSI context info from hardware as well as from VSI handle list
1725  */
1726 int
1727 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729 {
1730 	int status;
1731 
1732 	if (!ice_is_vsi_valid(hw, vsi_handle))
1733 		return -EINVAL;
1734 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736 	if (!status)
1737 		ice_clear_vsi_ctx(hw, vsi_handle);
1738 	return status;
1739 }
1740 
1741 /**
1742  * ice_update_vsi
1743  * @hw: pointer to the HW struct
1744  * @vsi_handle: unique VSI handle
1745  * @vsi_ctx: pointer to a VSI context struct
1746  * @cd: pointer to command details structure or NULL
1747  *
1748  * Update VSI context in the hardware
1749  */
1750 int
1751 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752 	       struct ice_sq_cd *cd)
1753 {
1754 	if (!ice_is_vsi_valid(hw, vsi_handle))
1755 		return -EINVAL;
1756 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758 }
1759 
1760 /**
1761  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762  * @hw: pointer to HW struct
1763  * @vsi_handle: VSI SW index
1764  * @enable: boolean for enable/disable
1765  */
1766 int
1767 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768 {
1769 	struct ice_vsi_ctx *ctx, *cached_ctx;
1770 	int status;
1771 
1772 	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773 	if (!cached_ctx)
1774 		return -ENOENT;
1775 
1776 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777 	if (!ctx)
1778 		return -ENOMEM;
1779 
1780 	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781 	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782 	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783 
1784 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785 
1786 	if (enable)
1787 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788 	else
1789 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790 
1791 	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792 	if (!status) {
1793 		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794 		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795 	}
1796 
1797 	kfree(ctx);
1798 	return status;
1799 }
1800 
1801 /**
1802  * ice_aq_alloc_free_vsi_list
1803  * @hw: pointer to the HW struct
1804  * @vsi_list_id: VSI list ID returned or used for lookup
1805  * @lkup_type: switch rule filter lookup type
1806  * @opc: switch rules population command type - pass in the command opcode
1807  *
1808  * allocates or free a VSI list resource
1809  */
1810 static int
1811 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812 			   enum ice_sw_lkup_type lkup_type,
1813 			   enum ice_adminq_opc opc)
1814 {
1815 	struct ice_aqc_alloc_free_res_elem *sw_buf;
1816 	struct ice_aqc_res_elem *vsi_ele;
1817 	u16 buf_len;
1818 	int status;
1819 
1820 	buf_len = struct_size(sw_buf, elem, 1);
1821 	sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
1822 	if (!sw_buf)
1823 		return -ENOMEM;
1824 	sw_buf->num_elems = cpu_to_le16(1);
1825 
1826 	if (lkup_type == ICE_SW_LKUP_MAC ||
1827 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1828 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1829 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1830 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1831 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1832 	    lkup_type == ICE_SW_LKUP_DFLT ||
1833 	    lkup_type == ICE_SW_LKUP_LAST) {
1834 		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1835 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1836 		if (opc == ice_aqc_opc_alloc_res)
1837 			sw_buf->res_type =
1838 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1839 					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1840 		else
1841 			sw_buf->res_type =
1842 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1843 	} else {
1844 		status = -EINVAL;
1845 		goto ice_aq_alloc_free_vsi_list_exit;
1846 	}
1847 
1848 	if (opc == ice_aqc_opc_free_res)
1849 		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1850 
1851 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1852 	if (status)
1853 		goto ice_aq_alloc_free_vsi_list_exit;
1854 
1855 	if (opc == ice_aqc_opc_alloc_res) {
1856 		vsi_ele = &sw_buf->elem[0];
1857 		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1858 	}
1859 
1860 ice_aq_alloc_free_vsi_list_exit:
1861 	devm_kfree(ice_hw_to_dev(hw), sw_buf);
1862 	return status;
1863 }
1864 
1865 /**
1866  * ice_aq_sw_rules - add/update/remove switch rules
1867  * @hw: pointer to the HW struct
1868  * @rule_list: pointer to switch rule population list
1869  * @rule_list_sz: total size of the rule list in bytes
1870  * @num_rules: number of switch rules in the rule_list
1871  * @opc: switch rules population command type - pass in the command opcode
1872  * @cd: pointer to command details structure or NULL
1873  *
1874  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1875  */
1876 int
1877 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1878 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1879 {
1880 	struct ice_aq_desc desc;
1881 	int status;
1882 
1883 	if (opc != ice_aqc_opc_add_sw_rules &&
1884 	    opc != ice_aqc_opc_update_sw_rules &&
1885 	    opc != ice_aqc_opc_remove_sw_rules)
1886 		return -EINVAL;
1887 
1888 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1889 
1890 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1891 	desc.params.sw_rules.num_rules_fltr_entry_index =
1892 		cpu_to_le16(num_rules);
1893 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1894 	if (opc != ice_aqc_opc_add_sw_rules &&
1895 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1896 		status = -ENOENT;
1897 
1898 	return status;
1899 }
1900 
1901 /**
1902  * ice_aq_add_recipe - add switch recipe
1903  * @hw: pointer to the HW struct
1904  * @s_recipe_list: pointer to switch rule population list
1905  * @num_recipes: number of switch recipes in the list
1906  * @cd: pointer to command details structure or NULL
1907  *
1908  * Add(0x0290)
1909  */
1910 int
1911 ice_aq_add_recipe(struct ice_hw *hw,
1912 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1913 		  u16 num_recipes, struct ice_sq_cd *cd)
1914 {
1915 	struct ice_aqc_add_get_recipe *cmd;
1916 	struct ice_aq_desc desc;
1917 	u16 buf_size;
1918 
1919 	cmd = &desc.params.add_get_recipe;
1920 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1921 
1922 	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1923 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1924 
1925 	buf_size = num_recipes * sizeof(*s_recipe_list);
1926 
1927 	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1928 }
1929 
1930 /**
1931  * ice_aq_get_recipe - get switch recipe
1932  * @hw: pointer to the HW struct
1933  * @s_recipe_list: pointer to switch rule population list
1934  * @num_recipes: pointer to the number of recipes (input and output)
1935  * @recipe_root: root recipe number of recipe(s) to retrieve
1936  * @cd: pointer to command details structure or NULL
1937  *
1938  * Get(0x0292)
1939  *
1940  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1941  * On output, *num_recipes will equal the number of entries returned in
1942  * s_recipe_list.
1943  *
1944  * The caller must supply enough space in s_recipe_list to hold all possible
1945  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1946  */
1947 int
1948 ice_aq_get_recipe(struct ice_hw *hw,
1949 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1950 		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1951 {
1952 	struct ice_aqc_add_get_recipe *cmd;
1953 	struct ice_aq_desc desc;
1954 	u16 buf_size;
1955 	int status;
1956 
1957 	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1958 		return -EINVAL;
1959 
1960 	cmd = &desc.params.add_get_recipe;
1961 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1962 
1963 	cmd->return_index = cpu_to_le16(recipe_root);
1964 	cmd->num_sub_recipes = 0;
1965 
1966 	buf_size = *num_recipes * sizeof(*s_recipe_list);
1967 
1968 	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1969 	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1970 
1971 	return status;
1972 }
1973 
1974 /**
1975  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1976  * @hw: pointer to the HW struct
1977  * @params: parameters used to update the default recipe
1978  *
1979  * This function only supports updating default recipes and it only supports
1980  * updating a single recipe based on the lkup_idx at a time.
1981  *
1982  * This is done as a read-modify-write operation. First, get the current recipe
1983  * contents based on the recipe's ID. Then modify the field vector index and
1984  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1985  * the pre-existing recipe with the modifications.
1986  */
1987 int
1988 ice_update_recipe_lkup_idx(struct ice_hw *hw,
1989 			   struct ice_update_recipe_lkup_idx_params *params)
1990 {
1991 	struct ice_aqc_recipe_data_elem *rcp_list;
1992 	u16 num_recps = ICE_MAX_NUM_RECIPES;
1993 	int status;
1994 
1995 	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1996 	if (!rcp_list)
1997 		return -ENOMEM;
1998 
1999 	/* read current recipe list from firmware */
2000 	rcp_list->recipe_indx = params->rid;
2001 	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2002 	if (status) {
2003 		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2004 			  params->rid, status);
2005 		goto error_out;
2006 	}
2007 
2008 	/* only modify existing recipe's lkup_idx and mask if valid, while
2009 	 * leaving all other fields the same, then update the recipe firmware
2010 	 */
2011 	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2012 	if (params->mask_valid)
2013 		rcp_list->content.mask[params->lkup_idx] =
2014 			cpu_to_le16(params->mask);
2015 
2016 	if (params->ignore_valid)
2017 		rcp_list->content.lkup_indx[params->lkup_idx] |=
2018 			ICE_AQ_RECIPE_LKUP_IGNORE;
2019 
2020 	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2021 	if (status)
2022 		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2023 			  params->rid, params->lkup_idx, params->fv_idx,
2024 			  params->mask, params->mask_valid ? "true" : "false",
2025 			  status);
2026 
2027 error_out:
2028 	kfree(rcp_list);
2029 	return status;
2030 }
2031 
2032 /**
2033  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2034  * @hw: pointer to the HW struct
2035  * @profile_id: package profile ID to associate the recipe with
2036  * @r_assoc: Recipe bitmap filled in and need to be returned as response
2037  * @cd: pointer to command details structure or NULL
2038  * Recipe to profile association (0x0291)
2039  */
2040 int
2041 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2042 			     struct ice_sq_cd *cd)
2043 {
2044 	struct ice_aqc_recipe_to_profile *cmd;
2045 	struct ice_aq_desc desc;
2046 
2047 	cmd = &desc.params.recipe_to_profile;
2048 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2049 	cmd->profile_id = cpu_to_le16(profile_id);
2050 	/* Set the recipe ID bit in the bitmask to let the device know which
2051 	 * profile we are associating the recipe to
2052 	 */
2053 	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2054 
2055 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2056 }
2057 
2058 /**
2059  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2060  * @hw: pointer to the HW struct
2061  * @profile_id: package profile ID to associate the recipe with
2062  * @r_assoc: Recipe bitmap filled in and need to be returned as response
2063  * @cd: pointer to command details structure or NULL
2064  * Associate profile ID with given recipe (0x0293)
2065  */
2066 int
2067 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2068 			     struct ice_sq_cd *cd)
2069 {
2070 	struct ice_aqc_recipe_to_profile *cmd;
2071 	struct ice_aq_desc desc;
2072 	int status;
2073 
2074 	cmd = &desc.params.recipe_to_profile;
2075 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2076 	cmd->profile_id = cpu_to_le16(profile_id);
2077 
2078 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2079 	if (!status)
2080 		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2081 
2082 	return status;
2083 }
2084 
2085 /**
2086  * ice_alloc_recipe - add recipe resource
2087  * @hw: pointer to the hardware structure
2088  * @rid: recipe ID returned as response to AQ call
2089  */
2090 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2091 {
2092 	struct ice_aqc_alloc_free_res_elem *sw_buf;
2093 	u16 buf_len;
2094 	int status;
2095 
2096 	buf_len = struct_size(sw_buf, elem, 1);
2097 	sw_buf = kzalloc(buf_len, GFP_KERNEL);
2098 	if (!sw_buf)
2099 		return -ENOMEM;
2100 
2101 	sw_buf->num_elems = cpu_to_le16(1);
2102 	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2103 					ICE_AQC_RES_TYPE_S) |
2104 					ICE_AQC_RES_TYPE_FLAG_SHARED);
2105 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2106 				       ice_aqc_opc_alloc_res);
2107 	if (!status)
2108 		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2109 	kfree(sw_buf);
2110 
2111 	return status;
2112 }
2113 
2114 /**
2115  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2116  * @hw: pointer to hardware structure
2117  *
2118  * This function is used to populate recipe_to_profile matrix where index to
2119  * this array is the recipe ID and the element is the mapping of which profiles
2120  * is this recipe mapped to.
2121  */
2122 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2123 {
2124 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2125 	u64 recp_assoc;
2126 	u16 i;
2127 
2128 	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2129 		u16 j;
2130 
2131 		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2132 		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2133 		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2134 			continue;
2135 		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2136 		bitmap_copy(profile_to_recipe[i], r_bitmap,
2137 			    ICE_MAX_NUM_RECIPES);
2138 		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2139 			set_bit(i, recipe_to_profile[j]);
2140 	}
2141 }
2142 
2143 /**
2144  * ice_collect_result_idx - copy result index values
2145  * @buf: buffer that contains the result index
2146  * @recp: the recipe struct to copy data into
2147  */
2148 static void
2149 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2150 		       struct ice_sw_recipe *recp)
2151 {
2152 	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2153 		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2154 			recp->res_idxs);
2155 }
2156 
2157 /**
2158  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2159  * @hw: pointer to hardware structure
2160  * @recps: struct that we need to populate
2161  * @rid: recipe ID that we are populating
2162  * @refresh_required: true if we should get recipe to profile mapping from FW
2163  *
2164  * This function is used to populate all the necessary entries into our
2165  * bookkeeping so that we have a current list of all the recipes that are
2166  * programmed in the firmware.
2167  */
2168 static int
2169 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2170 		    bool *refresh_required)
2171 {
2172 	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2173 	struct ice_aqc_recipe_data_elem *tmp;
2174 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2175 	struct ice_prot_lkup_ext *lkup_exts;
2176 	u8 fv_word_idx = 0;
2177 	u16 sub_recps;
2178 	int status;
2179 
2180 	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2181 
2182 	/* we need a buffer big enough to accommodate all the recipes */
2183 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2184 	if (!tmp)
2185 		return -ENOMEM;
2186 
2187 	tmp[0].recipe_indx = rid;
2188 	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2189 	/* non-zero status meaning recipe doesn't exist */
2190 	if (status)
2191 		goto err_unroll;
2192 
2193 	/* Get recipe to profile map so that we can get the fv from lkups that
2194 	 * we read for a recipe from FW. Since we want to minimize the number of
2195 	 * times we make this FW call, just make one call and cache the copy
2196 	 * until a new recipe is added. This operation is only required the
2197 	 * first time to get the changes from FW. Then to search existing
2198 	 * entries we don't need to update the cache again until another recipe
2199 	 * gets added.
2200 	 */
2201 	if (*refresh_required) {
2202 		ice_get_recp_to_prof_map(hw);
2203 		*refresh_required = false;
2204 	}
2205 
2206 	/* Start populating all the entries for recps[rid] based on lkups from
2207 	 * firmware. Note that we are only creating the root recipe in our
2208 	 * database.
2209 	 */
2210 	lkup_exts = &recps[rid].lkup_exts;
2211 
2212 	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2213 		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2214 		struct ice_recp_grp_entry *rg_entry;
2215 		u8 i, prof, idx, prot = 0;
2216 		bool is_root;
2217 		u16 off = 0;
2218 
2219 		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2220 					GFP_KERNEL);
2221 		if (!rg_entry) {
2222 			status = -ENOMEM;
2223 			goto err_unroll;
2224 		}
2225 
2226 		idx = root_bufs.recipe_indx;
2227 		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2228 
2229 		/* Mark all result indices in this chain */
2230 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2231 			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2232 				result_bm);
2233 
2234 		/* get the first profile that is associated with rid */
2235 		prof = find_first_bit(recipe_to_profile[idx],
2236 				      ICE_MAX_NUM_PROFILES);
2237 		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2238 			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2239 
2240 			rg_entry->fv_idx[i] = lkup_indx;
2241 			rg_entry->fv_mask[i] =
2242 				le16_to_cpu(root_bufs.content.mask[i + 1]);
2243 
2244 			/* If the recipe is a chained recipe then all its
2245 			 * child recipe's result will have a result index.
2246 			 * To fill fv_words we should not use those result
2247 			 * index, we only need the protocol ids and offsets.
2248 			 * We will skip all the fv_idx which stores result
2249 			 * index in them. We also need to skip any fv_idx which
2250 			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2251 			 * valid offset value.
2252 			 */
2253 			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2254 			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2255 			    rg_entry->fv_idx[i] == 0)
2256 				continue;
2257 
2258 			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2259 					  rg_entry->fv_idx[i], &prot, &off);
2260 			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2261 			lkup_exts->fv_words[fv_word_idx].off = off;
2262 			lkup_exts->field_mask[fv_word_idx] =
2263 				rg_entry->fv_mask[i];
2264 			fv_word_idx++;
2265 		}
2266 		/* populate rg_list with the data from the child entry of this
2267 		 * recipe
2268 		 */
2269 		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2270 
2271 		/* Propagate some data to the recipe database */
2272 		recps[idx].is_root = !!is_root;
2273 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2274 		recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2275 					     ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2276 		recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2277 					      ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2278 		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2279 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2280 			recps[idx].chain_idx = root_bufs.content.result_indx &
2281 				~ICE_AQ_RECIPE_RESULT_EN;
2282 			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2283 		} else {
2284 			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2285 		}
2286 
2287 		if (!is_root)
2288 			continue;
2289 
2290 		/* Only do the following for root recipes entries */
2291 		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2292 		       sizeof(recps[idx].r_bitmap));
2293 		recps[idx].root_rid = root_bufs.content.rid &
2294 			~ICE_AQ_RECIPE_ID_IS_ROOT;
2295 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2296 	}
2297 
2298 	/* Complete initialization of the root recipe entry */
2299 	lkup_exts->n_val_words = fv_word_idx;
2300 	recps[rid].big_recp = (num_recps > 1);
2301 	recps[rid].n_grp_count = (u8)num_recps;
2302 	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2303 					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2304 					   GFP_KERNEL);
2305 	if (!recps[rid].root_buf) {
2306 		status = -ENOMEM;
2307 		goto err_unroll;
2308 	}
2309 
2310 	/* Copy result indexes */
2311 	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2312 	recps[rid].recp_created = true;
2313 
2314 err_unroll:
2315 	kfree(tmp);
2316 	return status;
2317 }
2318 
2319 /* ice_init_port_info - Initialize port_info with switch configuration data
2320  * @pi: pointer to port_info
2321  * @vsi_port_num: VSI number or port number
2322  * @type: Type of switch element (port or VSI)
2323  * @swid: switch ID of the switch the element is attached to
2324  * @pf_vf_num: PF or VF number
2325  * @is_vf: true if the element is a VF, false otherwise
2326  */
2327 static void
2328 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2329 		   u16 swid, u16 pf_vf_num, bool is_vf)
2330 {
2331 	switch (type) {
2332 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2333 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2334 		pi->sw_id = swid;
2335 		pi->pf_vf_num = pf_vf_num;
2336 		pi->is_vf = is_vf;
2337 		break;
2338 	default:
2339 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2340 		break;
2341 	}
2342 }
2343 
2344 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2345  * @hw: pointer to the hardware structure
2346  */
2347 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2348 {
2349 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2350 	u16 req_desc = 0;
2351 	u16 num_elems;
2352 	int status;
2353 	u16 i;
2354 
2355 	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2356 	if (!rbuf)
2357 		return -ENOMEM;
2358 
2359 	/* Multiple calls to ice_aq_get_sw_cfg may be required
2360 	 * to get all the switch configuration information. The need
2361 	 * for additional calls is indicated by ice_aq_get_sw_cfg
2362 	 * writing a non-zero value in req_desc
2363 	 */
2364 	do {
2365 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2366 
2367 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2368 					   &req_desc, &num_elems, NULL);
2369 
2370 		if (status)
2371 			break;
2372 
2373 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2374 			u16 pf_vf_num, swid, vsi_port_num;
2375 			bool is_vf = false;
2376 			u8 res_type;
2377 
2378 			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2379 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2380 
2381 			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2382 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2383 
2384 			swid = le16_to_cpu(ele->swid);
2385 
2386 			if (le16_to_cpu(ele->pf_vf_num) &
2387 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2388 				is_vf = true;
2389 
2390 			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2391 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2392 
2393 			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2394 				/* FW VSI is not needed. Just continue. */
2395 				continue;
2396 			}
2397 
2398 			ice_init_port_info(hw->port_info, vsi_port_num,
2399 					   res_type, swid, pf_vf_num, is_vf);
2400 		}
2401 	} while (req_desc && !status);
2402 
2403 	kfree(rbuf);
2404 	return status;
2405 }
2406 
2407 /**
2408  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2409  * @hw: pointer to the hardware structure
2410  * @fi: filter info structure to fill/update
2411  *
2412  * This helper function populates the lb_en and lan_en elements of the provided
2413  * ice_fltr_info struct using the switch's type and characteristics of the
2414  * switch rule being configured.
2415  */
2416 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2417 {
2418 	fi->lb_en = false;
2419 	fi->lan_en = false;
2420 	if ((fi->flag & ICE_FLTR_TX) &&
2421 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2422 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2423 	     fi->fltr_act == ICE_FWD_TO_Q ||
2424 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2425 		/* Setting LB for prune actions will result in replicated
2426 		 * packets to the internal switch that will be dropped.
2427 		 */
2428 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2429 			fi->lb_en = true;
2430 
2431 		/* Set lan_en to TRUE if
2432 		 * 1. The switch is a VEB AND
2433 		 * 2
2434 		 * 2.1 The lookup is a directional lookup like ethertype,
2435 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2436 		 * and default-port OR
2437 		 * 2.2 The lookup is VLAN, OR
2438 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2439 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2440 		 *
2441 		 * OR
2442 		 *
2443 		 * The switch is a VEPA.
2444 		 *
2445 		 * In all other cases, the LAN enable has to be set to false.
2446 		 */
2447 		if (hw->evb_veb) {
2448 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2449 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2450 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2451 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2452 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2453 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2454 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2455 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2456 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2457 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2458 				fi->lan_en = true;
2459 		} else {
2460 			fi->lan_en = true;
2461 		}
2462 	}
2463 }
2464 
2465 /**
2466  * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2467  * @eth_hdr: pointer to buffer to populate
2468  */
2469 void ice_fill_eth_hdr(u8 *eth_hdr)
2470 {
2471 	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2472 }
2473 
2474 /**
2475  * ice_fill_sw_rule - Helper function to fill switch rule structure
2476  * @hw: pointer to the hardware structure
2477  * @f_info: entry containing packet forwarding information
2478  * @s_rule: switch rule structure to be filled in based on mac_entry
2479  * @opc: switch rules population command type - pass in the command opcode
2480  */
2481 static void
2482 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2483 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2484 		 enum ice_adminq_opc opc)
2485 {
2486 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2487 	u16 vlan_tpid = ETH_P_8021Q;
2488 	void *daddr = NULL;
2489 	u16 eth_hdr_sz;
2490 	u8 *eth_hdr;
2491 	u32 act = 0;
2492 	__be16 *off;
2493 	u8 q_rgn;
2494 
2495 	if (opc == ice_aqc_opc_remove_sw_rules) {
2496 		s_rule->act = 0;
2497 		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2498 		s_rule->hdr_len = 0;
2499 		return;
2500 	}
2501 
2502 	eth_hdr_sz = sizeof(dummy_eth_header);
2503 	eth_hdr = s_rule->hdr_data;
2504 
2505 	/* initialize the ether header with a dummy header */
2506 	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2507 	ice_fill_sw_info(hw, f_info);
2508 
2509 	switch (f_info->fltr_act) {
2510 	case ICE_FWD_TO_VSI:
2511 		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2512 			ICE_SINGLE_ACT_VSI_ID_M;
2513 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2514 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2515 				ICE_SINGLE_ACT_VALID_BIT;
2516 		break;
2517 	case ICE_FWD_TO_VSI_LIST:
2518 		act |= ICE_SINGLE_ACT_VSI_LIST;
2519 		act |= (f_info->fwd_id.vsi_list_id <<
2520 			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2521 			ICE_SINGLE_ACT_VSI_LIST_ID_M;
2522 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2523 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2524 				ICE_SINGLE_ACT_VALID_BIT;
2525 		break;
2526 	case ICE_FWD_TO_Q:
2527 		act |= ICE_SINGLE_ACT_TO_Q;
2528 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2529 			ICE_SINGLE_ACT_Q_INDEX_M;
2530 		break;
2531 	case ICE_DROP_PACKET:
2532 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2533 			ICE_SINGLE_ACT_VALID_BIT;
2534 		break;
2535 	case ICE_FWD_TO_QGRP:
2536 		q_rgn = f_info->qgrp_size > 0 ?
2537 			(u8)ilog2(f_info->qgrp_size) : 0;
2538 		act |= ICE_SINGLE_ACT_TO_Q;
2539 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2540 			ICE_SINGLE_ACT_Q_INDEX_M;
2541 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2542 			ICE_SINGLE_ACT_Q_REGION_M;
2543 		break;
2544 	default:
2545 		return;
2546 	}
2547 
2548 	if (f_info->lb_en)
2549 		act |= ICE_SINGLE_ACT_LB_ENABLE;
2550 	if (f_info->lan_en)
2551 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2552 
2553 	switch (f_info->lkup_type) {
2554 	case ICE_SW_LKUP_MAC:
2555 		daddr = f_info->l_data.mac.mac_addr;
2556 		break;
2557 	case ICE_SW_LKUP_VLAN:
2558 		vlan_id = f_info->l_data.vlan.vlan_id;
2559 		if (f_info->l_data.vlan.tpid_valid)
2560 			vlan_tpid = f_info->l_data.vlan.tpid;
2561 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2562 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2563 			act |= ICE_SINGLE_ACT_PRUNE;
2564 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2565 		}
2566 		break;
2567 	case ICE_SW_LKUP_ETHERTYPE_MAC:
2568 		daddr = f_info->l_data.ethertype_mac.mac_addr;
2569 		fallthrough;
2570 	case ICE_SW_LKUP_ETHERTYPE:
2571 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2572 		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2573 		break;
2574 	case ICE_SW_LKUP_MAC_VLAN:
2575 		daddr = f_info->l_data.mac_vlan.mac_addr;
2576 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2577 		break;
2578 	case ICE_SW_LKUP_PROMISC_VLAN:
2579 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2580 		fallthrough;
2581 	case ICE_SW_LKUP_PROMISC:
2582 		daddr = f_info->l_data.mac_vlan.mac_addr;
2583 		break;
2584 	default:
2585 		break;
2586 	}
2587 
2588 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2589 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2590 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2591 
2592 	/* Recipe set depending on lookup type */
2593 	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2594 	s_rule->src = cpu_to_le16(f_info->src);
2595 	s_rule->act = cpu_to_le32(act);
2596 
2597 	if (daddr)
2598 		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2599 
2600 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2601 		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2602 		*off = cpu_to_be16(vlan_id);
2603 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2604 		*off = cpu_to_be16(vlan_tpid);
2605 	}
2606 
2607 	/* Create the switch rule with the final dummy Ethernet header */
2608 	if (opc != ice_aqc_opc_update_sw_rules)
2609 		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2610 }
2611 
2612 /**
2613  * ice_add_marker_act
2614  * @hw: pointer to the hardware structure
2615  * @m_ent: the management entry for which sw marker needs to be added
2616  * @sw_marker: sw marker to tag the Rx descriptor with
2617  * @l_id: large action resource ID
2618  *
2619  * Create a large action to hold software marker and update the switch rule
2620  * entry pointed by m_ent with newly created large action
2621  */
2622 static int
2623 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2624 		   u16 sw_marker, u16 l_id)
2625 {
2626 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2627 	struct ice_sw_rule_lg_act *lg_act;
2628 	/* For software marker we need 3 large actions
2629 	 * 1. FWD action: FWD TO VSI or VSI LIST
2630 	 * 2. GENERIC VALUE action to hold the profile ID
2631 	 * 3. GENERIC VALUE action to hold the software marker ID
2632 	 */
2633 	const u16 num_lg_acts = 3;
2634 	u16 lg_act_size;
2635 	u16 rules_size;
2636 	int status;
2637 	u32 act;
2638 	u16 id;
2639 
2640 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2641 		return -EINVAL;
2642 
2643 	/* Create two back-to-back switch rules and submit them to the HW using
2644 	 * one memory buffer:
2645 	 *    1. Large Action
2646 	 *    2. Look up Tx Rx
2647 	 */
2648 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2649 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2650 	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2651 	if (!lg_act)
2652 		return -ENOMEM;
2653 
2654 	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2655 
2656 	/* Fill in the first switch rule i.e. large action */
2657 	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2658 	lg_act->index = cpu_to_le16(l_id);
2659 	lg_act->size = cpu_to_le16(num_lg_acts);
2660 
2661 	/* First action VSI forwarding or VSI list forwarding depending on how
2662 	 * many VSIs
2663 	 */
2664 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2665 		m_ent->fltr_info.fwd_id.hw_vsi_id;
2666 
2667 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2668 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2669 	if (m_ent->vsi_count > 1)
2670 		act |= ICE_LG_ACT_VSI_LIST;
2671 	lg_act->act[0] = cpu_to_le32(act);
2672 
2673 	/* Second action descriptor type */
2674 	act = ICE_LG_ACT_GENERIC;
2675 
2676 	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2677 	lg_act->act[1] = cpu_to_le32(act);
2678 
2679 	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2680 	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2681 
2682 	/* Third action Marker value */
2683 	act |= ICE_LG_ACT_GENERIC;
2684 	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2685 		ICE_LG_ACT_GENERIC_VALUE_M;
2686 
2687 	lg_act->act[2] = cpu_to_le32(act);
2688 
2689 	/* call the fill switch rule to fill the lookup Tx Rx structure */
2690 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2691 			 ice_aqc_opc_update_sw_rules);
2692 
2693 	/* Update the action to point to the large action ID */
2694 	rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2695 				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2696 				  ICE_SINGLE_ACT_PTR_VAL_M));
2697 
2698 	/* Use the filter rule ID of the previously created rule with single
2699 	 * act. Once the update happens, hardware will treat this as large
2700 	 * action
2701 	 */
2702 	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2703 
2704 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2705 				 ice_aqc_opc_update_sw_rules, NULL);
2706 	if (!status) {
2707 		m_ent->lg_act_idx = l_id;
2708 		m_ent->sw_marker_id = sw_marker;
2709 	}
2710 
2711 	devm_kfree(ice_hw_to_dev(hw), lg_act);
2712 	return status;
2713 }
2714 
2715 /**
2716  * ice_create_vsi_list_map
2717  * @hw: pointer to the hardware structure
2718  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2719  * @num_vsi: number of VSI handles in the array
2720  * @vsi_list_id: VSI list ID generated as part of allocate resource
2721  *
2722  * Helper function to create a new entry of VSI list ID to VSI mapping
2723  * using the given VSI list ID
2724  */
2725 static struct ice_vsi_list_map_info *
2726 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2727 			u16 vsi_list_id)
2728 {
2729 	struct ice_switch_info *sw = hw->switch_info;
2730 	struct ice_vsi_list_map_info *v_map;
2731 	int i;
2732 
2733 	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2734 	if (!v_map)
2735 		return NULL;
2736 
2737 	v_map->vsi_list_id = vsi_list_id;
2738 	v_map->ref_cnt = 1;
2739 	for (i = 0; i < num_vsi; i++)
2740 		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2741 
2742 	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2743 	return v_map;
2744 }
2745 
2746 /**
2747  * ice_update_vsi_list_rule
2748  * @hw: pointer to the hardware structure
2749  * @vsi_handle_arr: array of VSI handles to form a VSI list
2750  * @num_vsi: number of VSI handles in the array
2751  * @vsi_list_id: VSI list ID generated as part of allocate resource
2752  * @remove: Boolean value to indicate if this is a remove action
2753  * @opc: switch rules population command type - pass in the command opcode
2754  * @lkup_type: lookup type of the filter
2755  *
2756  * Call AQ command to add a new switch rule or update existing switch rule
2757  * using the given VSI list ID
2758  */
2759 static int
2760 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2761 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2762 			 enum ice_sw_lkup_type lkup_type)
2763 {
2764 	struct ice_sw_rule_vsi_list *s_rule;
2765 	u16 s_rule_size;
2766 	u16 rule_type;
2767 	int status;
2768 	int i;
2769 
2770 	if (!num_vsi)
2771 		return -EINVAL;
2772 
2773 	if (lkup_type == ICE_SW_LKUP_MAC ||
2774 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2775 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2776 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2777 	    lkup_type == ICE_SW_LKUP_PROMISC ||
2778 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2779 	    lkup_type == ICE_SW_LKUP_DFLT ||
2780 	    lkup_type == ICE_SW_LKUP_LAST)
2781 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2782 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2783 	else if (lkup_type == ICE_SW_LKUP_VLAN)
2784 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2785 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2786 	else
2787 		return -EINVAL;
2788 
2789 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2790 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2791 	if (!s_rule)
2792 		return -ENOMEM;
2793 	for (i = 0; i < num_vsi; i++) {
2794 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2795 			status = -EINVAL;
2796 			goto exit;
2797 		}
2798 		/* AQ call requires hw_vsi_id(s) */
2799 		s_rule->vsi[i] =
2800 			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2801 	}
2802 
2803 	s_rule->hdr.type = cpu_to_le16(rule_type);
2804 	s_rule->number_vsi = cpu_to_le16(num_vsi);
2805 	s_rule->index = cpu_to_le16(vsi_list_id);
2806 
2807 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2808 
2809 exit:
2810 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2811 	return status;
2812 }
2813 
2814 /**
2815  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2816  * @hw: pointer to the HW struct
2817  * @vsi_handle_arr: array of VSI handles to form a VSI list
2818  * @num_vsi: number of VSI handles in the array
2819  * @vsi_list_id: stores the ID of the VSI list to be created
2820  * @lkup_type: switch rule filter's lookup type
2821  */
2822 static int
2823 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2824 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2825 {
2826 	int status;
2827 
2828 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2829 					    ice_aqc_opc_alloc_res);
2830 	if (status)
2831 		return status;
2832 
2833 	/* Update the newly created VSI list to include the specified VSIs */
2834 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2835 					*vsi_list_id, false,
2836 					ice_aqc_opc_add_sw_rules, lkup_type);
2837 }
2838 
2839 /**
2840  * ice_create_pkt_fwd_rule
2841  * @hw: pointer to the hardware structure
2842  * @f_entry: entry containing packet forwarding information
2843  *
2844  * Create switch rule with given filter information and add an entry
2845  * to the corresponding filter management list to track this switch rule
2846  * and VSI mapping
2847  */
2848 static int
2849 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2850 			struct ice_fltr_list_entry *f_entry)
2851 {
2852 	struct ice_fltr_mgmt_list_entry *fm_entry;
2853 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2854 	enum ice_sw_lkup_type l_type;
2855 	struct ice_sw_recipe *recp;
2856 	int status;
2857 
2858 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2859 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2860 			      GFP_KERNEL);
2861 	if (!s_rule)
2862 		return -ENOMEM;
2863 	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2864 				GFP_KERNEL);
2865 	if (!fm_entry) {
2866 		status = -ENOMEM;
2867 		goto ice_create_pkt_fwd_rule_exit;
2868 	}
2869 
2870 	fm_entry->fltr_info = f_entry->fltr_info;
2871 
2872 	/* Initialize all the fields for the management entry */
2873 	fm_entry->vsi_count = 1;
2874 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2875 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2876 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2877 
2878 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2879 			 ice_aqc_opc_add_sw_rules);
2880 
2881 	status = ice_aq_sw_rules(hw, s_rule,
2882 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2883 				 ice_aqc_opc_add_sw_rules, NULL);
2884 	if (status) {
2885 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2886 		goto ice_create_pkt_fwd_rule_exit;
2887 	}
2888 
2889 	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2890 	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2891 
2892 	/* The book keeping entries will get removed when base driver
2893 	 * calls remove filter AQ command
2894 	 */
2895 	l_type = fm_entry->fltr_info.lkup_type;
2896 	recp = &hw->switch_info->recp_list[l_type];
2897 	list_add(&fm_entry->list_entry, &recp->filt_rules);
2898 
2899 ice_create_pkt_fwd_rule_exit:
2900 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2901 	return status;
2902 }
2903 
2904 /**
2905  * ice_update_pkt_fwd_rule
2906  * @hw: pointer to the hardware structure
2907  * @f_info: filter information for switch rule
2908  *
2909  * Call AQ command to update a previously created switch rule with a
2910  * VSI list ID
2911  */
2912 static int
2913 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2914 {
2915 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2916 	int status;
2917 
2918 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2919 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2920 			      GFP_KERNEL);
2921 	if (!s_rule)
2922 		return -ENOMEM;
2923 
2924 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2925 
2926 	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2927 
2928 	/* Update switch rule with new rule set to forward VSI list */
2929 	status = ice_aq_sw_rules(hw, s_rule,
2930 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2931 				 ice_aqc_opc_update_sw_rules, NULL);
2932 
2933 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2934 	return status;
2935 }
2936 
2937 /**
2938  * ice_update_sw_rule_bridge_mode
2939  * @hw: pointer to the HW struct
2940  *
2941  * Updates unicast switch filter rules based on VEB/VEPA mode
2942  */
2943 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2944 {
2945 	struct ice_switch_info *sw = hw->switch_info;
2946 	struct ice_fltr_mgmt_list_entry *fm_entry;
2947 	struct list_head *rule_head;
2948 	struct mutex *rule_lock; /* Lock to protect filter rule list */
2949 	int status = 0;
2950 
2951 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2952 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2953 
2954 	mutex_lock(rule_lock);
2955 	list_for_each_entry(fm_entry, rule_head, list_entry) {
2956 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2957 		u8 *addr = fi->l_data.mac.mac_addr;
2958 
2959 		/* Update unicast Tx rules to reflect the selected
2960 		 * VEB/VEPA mode
2961 		 */
2962 		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2963 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2964 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2965 		     fi->fltr_act == ICE_FWD_TO_Q ||
2966 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2967 			status = ice_update_pkt_fwd_rule(hw, fi);
2968 			if (status)
2969 				break;
2970 		}
2971 	}
2972 
2973 	mutex_unlock(rule_lock);
2974 
2975 	return status;
2976 }
2977 
2978 /**
2979  * ice_add_update_vsi_list
2980  * @hw: pointer to the hardware structure
2981  * @m_entry: pointer to current filter management list entry
2982  * @cur_fltr: filter information from the book keeping entry
2983  * @new_fltr: filter information with the new VSI to be added
2984  *
2985  * Call AQ command to add or update previously created VSI list with new VSI.
2986  *
2987  * Helper function to do book keeping associated with adding filter information
2988  * The algorithm to do the book keeping is described below :
2989  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2990  *	if only one VSI has been added till now
2991  *		Allocate a new VSI list and add two VSIs
2992  *		to this list using switch rule command
2993  *		Update the previously created switch rule with the
2994  *		newly created VSI list ID
2995  *	if a VSI list was previously created
2996  *		Add the new VSI to the previously created VSI list set
2997  *		using the update switch rule command
2998  */
2999 static int
3000 ice_add_update_vsi_list(struct ice_hw *hw,
3001 			struct ice_fltr_mgmt_list_entry *m_entry,
3002 			struct ice_fltr_info *cur_fltr,
3003 			struct ice_fltr_info *new_fltr)
3004 {
3005 	u16 vsi_list_id = 0;
3006 	int status = 0;
3007 
3008 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3009 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3010 		return -EOPNOTSUPP;
3011 
3012 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3013 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3014 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3015 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3016 		return -EOPNOTSUPP;
3017 
3018 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3019 		/* Only one entry existed in the mapping and it was not already
3020 		 * a part of a VSI list. So, create a VSI list with the old and
3021 		 * new VSIs.
3022 		 */
3023 		struct ice_fltr_info tmp_fltr;
3024 		u16 vsi_handle_arr[2];
3025 
3026 		/* A rule already exists with the new VSI being added */
3027 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3028 			return -EEXIST;
3029 
3030 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3031 		vsi_handle_arr[1] = new_fltr->vsi_handle;
3032 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3033 						  &vsi_list_id,
3034 						  new_fltr->lkup_type);
3035 		if (status)
3036 			return status;
3037 
3038 		tmp_fltr = *new_fltr;
3039 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3040 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3041 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3042 		/* Update the previous switch rule of "MAC forward to VSI" to
3043 		 * "MAC fwd to VSI list"
3044 		 */
3045 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3046 		if (status)
3047 			return status;
3048 
3049 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3050 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3051 		m_entry->vsi_list_info =
3052 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3053 						vsi_list_id);
3054 
3055 		if (!m_entry->vsi_list_info)
3056 			return -ENOMEM;
3057 
3058 		/* If this entry was large action then the large action needs
3059 		 * to be updated to point to FWD to VSI list
3060 		 */
3061 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3062 			status =
3063 			    ice_add_marker_act(hw, m_entry,
3064 					       m_entry->sw_marker_id,
3065 					       m_entry->lg_act_idx);
3066 	} else {
3067 		u16 vsi_handle = new_fltr->vsi_handle;
3068 		enum ice_adminq_opc opcode;
3069 
3070 		if (!m_entry->vsi_list_info)
3071 			return -EIO;
3072 
3073 		/* A rule already exists with the new VSI being added */
3074 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3075 			return -EEXIST;
3076 
3077 		/* Update the previously created VSI list set with
3078 		 * the new VSI ID passed in
3079 		 */
3080 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3081 		opcode = ice_aqc_opc_update_sw_rules;
3082 
3083 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3084 						  vsi_list_id, false, opcode,
3085 						  new_fltr->lkup_type);
3086 		/* update VSI list mapping info with new VSI ID */
3087 		if (!status)
3088 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3089 	}
3090 	if (!status)
3091 		m_entry->vsi_count++;
3092 	return status;
3093 }
3094 
3095 /**
3096  * ice_find_rule_entry - Search a rule entry
3097  * @hw: pointer to the hardware structure
3098  * @recp_id: lookup type for which the specified rule needs to be searched
3099  * @f_info: rule information
3100  *
3101  * Helper function to search for a given rule entry
3102  * Returns pointer to entry storing the rule if found
3103  */
3104 static struct ice_fltr_mgmt_list_entry *
3105 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3106 {
3107 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3108 	struct ice_switch_info *sw = hw->switch_info;
3109 	struct list_head *list_head;
3110 
3111 	list_head = &sw->recp_list[recp_id].filt_rules;
3112 	list_for_each_entry(list_itr, list_head, list_entry) {
3113 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3114 			    sizeof(f_info->l_data)) &&
3115 		    f_info->flag == list_itr->fltr_info.flag) {
3116 			ret = list_itr;
3117 			break;
3118 		}
3119 	}
3120 	return ret;
3121 }
3122 
3123 /**
3124  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3125  * @hw: pointer to the hardware structure
3126  * @recp_id: lookup type for which VSI lists needs to be searched
3127  * @vsi_handle: VSI handle to be found in VSI list
3128  * @vsi_list_id: VSI list ID found containing vsi_handle
3129  *
3130  * Helper function to search a VSI list with single entry containing given VSI
3131  * handle element. This can be extended further to search VSI list with more
3132  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3133  */
3134 struct ice_vsi_list_map_info *
3135 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3136 			u16 *vsi_list_id)
3137 {
3138 	struct ice_vsi_list_map_info *map_info = NULL;
3139 	struct ice_switch_info *sw = hw->switch_info;
3140 	struct ice_fltr_mgmt_list_entry *list_itr;
3141 	struct list_head *list_head;
3142 
3143 	list_head = &sw->recp_list[recp_id].filt_rules;
3144 	list_for_each_entry(list_itr, list_head, list_entry) {
3145 		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3146 			map_info = list_itr->vsi_list_info;
3147 			if (test_bit(vsi_handle, map_info->vsi_map)) {
3148 				*vsi_list_id = map_info->vsi_list_id;
3149 				return map_info;
3150 			}
3151 		}
3152 	}
3153 	return NULL;
3154 }
3155 
3156 /**
3157  * ice_add_rule_internal - add rule for a given lookup type
3158  * @hw: pointer to the hardware structure
3159  * @recp_id: lookup type (recipe ID) for which rule has to be added
3160  * @f_entry: structure containing MAC forwarding information
3161  *
3162  * Adds or updates the rule lists for a given recipe
3163  */
3164 static int
3165 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3166 		      struct ice_fltr_list_entry *f_entry)
3167 {
3168 	struct ice_switch_info *sw = hw->switch_info;
3169 	struct ice_fltr_info *new_fltr, *cur_fltr;
3170 	struct ice_fltr_mgmt_list_entry *m_entry;
3171 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3172 	int status = 0;
3173 
3174 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3175 		return -EINVAL;
3176 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3177 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3178 
3179 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3180 
3181 	mutex_lock(rule_lock);
3182 	new_fltr = &f_entry->fltr_info;
3183 	if (new_fltr->flag & ICE_FLTR_RX)
3184 		new_fltr->src = hw->port_info->lport;
3185 	else if (new_fltr->flag & ICE_FLTR_TX)
3186 		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3187 
3188 	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3189 	if (!m_entry) {
3190 		mutex_unlock(rule_lock);
3191 		return ice_create_pkt_fwd_rule(hw, f_entry);
3192 	}
3193 
3194 	cur_fltr = &m_entry->fltr_info;
3195 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3196 	mutex_unlock(rule_lock);
3197 
3198 	return status;
3199 }
3200 
3201 /**
3202  * ice_remove_vsi_list_rule
3203  * @hw: pointer to the hardware structure
3204  * @vsi_list_id: VSI list ID generated as part of allocate resource
3205  * @lkup_type: switch rule filter lookup type
3206  *
3207  * The VSI list should be emptied before this function is called to remove the
3208  * VSI list.
3209  */
3210 static int
3211 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3212 			 enum ice_sw_lkup_type lkup_type)
3213 {
3214 	struct ice_sw_rule_vsi_list *s_rule;
3215 	u16 s_rule_size;
3216 	int status;
3217 
3218 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3219 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3220 	if (!s_rule)
3221 		return -ENOMEM;
3222 
3223 	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3224 	s_rule->index = cpu_to_le16(vsi_list_id);
3225 
3226 	/* Free the vsi_list resource that we allocated. It is assumed that the
3227 	 * list is empty at this point.
3228 	 */
3229 	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3230 					    ice_aqc_opc_free_res);
3231 
3232 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3233 	return status;
3234 }
3235 
3236 /**
3237  * ice_rem_update_vsi_list
3238  * @hw: pointer to the hardware structure
3239  * @vsi_handle: VSI handle of the VSI to remove
3240  * @fm_list: filter management entry for which the VSI list management needs to
3241  *           be done
3242  */
3243 static int
3244 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3245 			struct ice_fltr_mgmt_list_entry *fm_list)
3246 {
3247 	enum ice_sw_lkup_type lkup_type;
3248 	u16 vsi_list_id;
3249 	int status = 0;
3250 
3251 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3252 	    fm_list->vsi_count == 0)
3253 		return -EINVAL;
3254 
3255 	/* A rule with the VSI being removed does not exist */
3256 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3257 		return -ENOENT;
3258 
3259 	lkup_type = fm_list->fltr_info.lkup_type;
3260 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3261 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3262 					  ice_aqc_opc_update_sw_rules,
3263 					  lkup_type);
3264 	if (status)
3265 		return status;
3266 
3267 	fm_list->vsi_count--;
3268 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3269 
3270 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3271 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3272 		struct ice_vsi_list_map_info *vsi_list_info =
3273 			fm_list->vsi_list_info;
3274 		u16 rem_vsi_handle;
3275 
3276 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3277 						ICE_MAX_VSI);
3278 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3279 			return -EIO;
3280 
3281 		/* Make sure VSI list is empty before removing it below */
3282 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3283 						  vsi_list_id, true,
3284 						  ice_aqc_opc_update_sw_rules,
3285 						  lkup_type);
3286 		if (status)
3287 			return status;
3288 
3289 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3290 		tmp_fltr_info.fwd_id.hw_vsi_id =
3291 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3292 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3293 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3294 		if (status) {
3295 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3296 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3297 			return status;
3298 		}
3299 
3300 		fm_list->fltr_info = tmp_fltr_info;
3301 	}
3302 
3303 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3304 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3305 		struct ice_vsi_list_map_info *vsi_list_info =
3306 			fm_list->vsi_list_info;
3307 
3308 		/* Remove the VSI list since it is no longer used */
3309 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3310 		if (status) {
3311 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3312 				  vsi_list_id, status);
3313 			return status;
3314 		}
3315 
3316 		list_del(&vsi_list_info->list_entry);
3317 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3318 		fm_list->vsi_list_info = NULL;
3319 	}
3320 
3321 	return status;
3322 }
3323 
3324 /**
3325  * ice_remove_rule_internal - Remove a filter rule of a given type
3326  * @hw: pointer to the hardware structure
3327  * @recp_id: recipe ID for which the rule needs to removed
3328  * @f_entry: rule entry containing filter information
3329  */
3330 static int
3331 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3332 			 struct ice_fltr_list_entry *f_entry)
3333 {
3334 	struct ice_switch_info *sw = hw->switch_info;
3335 	struct ice_fltr_mgmt_list_entry *list_elem;
3336 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3337 	bool remove_rule = false;
3338 	u16 vsi_handle;
3339 	int status = 0;
3340 
3341 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3342 		return -EINVAL;
3343 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3344 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3345 
3346 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3347 	mutex_lock(rule_lock);
3348 	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3349 	if (!list_elem) {
3350 		status = -ENOENT;
3351 		goto exit;
3352 	}
3353 
3354 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3355 		remove_rule = true;
3356 	} else if (!list_elem->vsi_list_info) {
3357 		status = -ENOENT;
3358 		goto exit;
3359 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3360 		/* a ref_cnt > 1 indicates that the vsi_list is being
3361 		 * shared by multiple rules. Decrement the ref_cnt and
3362 		 * remove this rule, but do not modify the list, as it
3363 		 * is in-use by other rules.
3364 		 */
3365 		list_elem->vsi_list_info->ref_cnt--;
3366 		remove_rule = true;
3367 	} else {
3368 		/* a ref_cnt of 1 indicates the vsi_list is only used
3369 		 * by one rule. However, the original removal request is only
3370 		 * for a single VSI. Update the vsi_list first, and only
3371 		 * remove the rule if there are no further VSIs in this list.
3372 		 */
3373 		vsi_handle = f_entry->fltr_info.vsi_handle;
3374 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3375 		if (status)
3376 			goto exit;
3377 		/* if VSI count goes to zero after updating the VSI list */
3378 		if (list_elem->vsi_count == 0)
3379 			remove_rule = true;
3380 	}
3381 
3382 	if (remove_rule) {
3383 		/* Remove the lookup rule */
3384 		struct ice_sw_rule_lkup_rx_tx *s_rule;
3385 
3386 		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3387 				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3388 				      GFP_KERNEL);
3389 		if (!s_rule) {
3390 			status = -ENOMEM;
3391 			goto exit;
3392 		}
3393 
3394 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3395 				 ice_aqc_opc_remove_sw_rules);
3396 
3397 		status = ice_aq_sw_rules(hw, s_rule,
3398 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3399 					 1, ice_aqc_opc_remove_sw_rules, NULL);
3400 
3401 		/* Remove a book keeping from the list */
3402 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3403 
3404 		if (status)
3405 			goto exit;
3406 
3407 		list_del(&list_elem->list_entry);
3408 		devm_kfree(ice_hw_to_dev(hw), list_elem);
3409 	}
3410 exit:
3411 	mutex_unlock(rule_lock);
3412 	return status;
3413 }
3414 
3415 /**
3416  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3417  * @hw: pointer to the hardware structure
3418  * @vlan_id: VLAN ID
3419  * @vsi_handle: check MAC filter for this VSI
3420  */
3421 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3422 {
3423 	struct ice_fltr_mgmt_list_entry *entry;
3424 	struct list_head *rule_head;
3425 	struct ice_switch_info *sw;
3426 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3427 	u16 hw_vsi_id;
3428 
3429 	if (vlan_id > ICE_MAX_VLAN_ID)
3430 		return false;
3431 
3432 	if (!ice_is_vsi_valid(hw, vsi_handle))
3433 		return false;
3434 
3435 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3436 	sw = hw->switch_info;
3437 	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3438 	if (!rule_head)
3439 		return false;
3440 
3441 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3442 	mutex_lock(rule_lock);
3443 	list_for_each_entry(entry, rule_head, list_entry) {
3444 		struct ice_fltr_info *f_info = &entry->fltr_info;
3445 		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3446 		struct ice_vsi_list_map_info *map_info;
3447 
3448 		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3449 			continue;
3450 
3451 		if (f_info->flag != ICE_FLTR_TX ||
3452 		    f_info->src_id != ICE_SRC_ID_VSI ||
3453 		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3454 			continue;
3455 
3456 		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3457 		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3458 		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3459 			continue;
3460 
3461 		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3462 			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3463 				continue;
3464 		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3465 			/* If filter_action is FWD_TO_VSI_LIST, make sure
3466 			 * that VSI being checked is part of VSI list
3467 			 */
3468 			if (entry->vsi_count == 1 &&
3469 			    entry->vsi_list_info) {
3470 				map_info = entry->vsi_list_info;
3471 				if (!test_bit(vsi_handle, map_info->vsi_map))
3472 					continue;
3473 			}
3474 		}
3475 
3476 		if (vlan_id == entry_vlan_id) {
3477 			mutex_unlock(rule_lock);
3478 			return true;
3479 		}
3480 	}
3481 	mutex_unlock(rule_lock);
3482 
3483 	return false;
3484 }
3485 
3486 /**
3487  * ice_add_mac - Add a MAC address based filter rule
3488  * @hw: pointer to the hardware structure
3489  * @m_list: list of MAC addresses and forwarding information
3490  */
3491 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3492 {
3493 	struct ice_fltr_list_entry *m_list_itr;
3494 	int status = 0;
3495 
3496 	if (!m_list || !hw)
3497 		return -EINVAL;
3498 
3499 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3500 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3501 		u16 vsi_handle;
3502 		u16 hw_vsi_id;
3503 
3504 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3505 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3506 		if (!ice_is_vsi_valid(hw, vsi_handle))
3507 			return -EINVAL;
3508 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3509 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3510 		/* update the src in case it is VSI num */
3511 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3512 			return -EINVAL;
3513 		m_list_itr->fltr_info.src = hw_vsi_id;
3514 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3515 		    is_zero_ether_addr(add))
3516 			return -EINVAL;
3517 
3518 		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3519 							   m_list_itr);
3520 		if (m_list_itr->status)
3521 			return m_list_itr->status;
3522 	}
3523 
3524 	return status;
3525 }
3526 
3527 /**
3528  * ice_add_vlan_internal - Add one VLAN based filter rule
3529  * @hw: pointer to the hardware structure
3530  * @f_entry: filter entry containing one VLAN information
3531  */
3532 static int
3533 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3534 {
3535 	struct ice_switch_info *sw = hw->switch_info;
3536 	struct ice_fltr_mgmt_list_entry *v_list_itr;
3537 	struct ice_fltr_info *new_fltr, *cur_fltr;
3538 	enum ice_sw_lkup_type lkup_type;
3539 	u16 vsi_list_id = 0, vsi_handle;
3540 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3541 	int status = 0;
3542 
3543 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3544 		return -EINVAL;
3545 
3546 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3547 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3548 	new_fltr = &f_entry->fltr_info;
3549 
3550 	/* VLAN ID should only be 12 bits */
3551 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3552 		return -EINVAL;
3553 
3554 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3555 		return -EINVAL;
3556 
3557 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3558 	lkup_type = new_fltr->lkup_type;
3559 	vsi_handle = new_fltr->vsi_handle;
3560 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3561 	mutex_lock(rule_lock);
3562 	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3563 	if (!v_list_itr) {
3564 		struct ice_vsi_list_map_info *map_info = NULL;
3565 
3566 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3567 			/* All VLAN pruning rules use a VSI list. Check if
3568 			 * there is already a VSI list containing VSI that we
3569 			 * want to add. If found, use the same vsi_list_id for
3570 			 * this new VLAN rule or else create a new list.
3571 			 */
3572 			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3573 							   vsi_handle,
3574 							   &vsi_list_id);
3575 			if (!map_info) {
3576 				status = ice_create_vsi_list_rule(hw,
3577 								  &vsi_handle,
3578 								  1,
3579 								  &vsi_list_id,
3580 								  lkup_type);
3581 				if (status)
3582 					goto exit;
3583 			}
3584 			/* Convert the action to forwarding to a VSI list. */
3585 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3586 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3587 		}
3588 
3589 		status = ice_create_pkt_fwd_rule(hw, f_entry);
3590 		if (!status) {
3591 			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3592 							 new_fltr);
3593 			if (!v_list_itr) {
3594 				status = -ENOENT;
3595 				goto exit;
3596 			}
3597 			/* reuse VSI list for new rule and increment ref_cnt */
3598 			if (map_info) {
3599 				v_list_itr->vsi_list_info = map_info;
3600 				map_info->ref_cnt++;
3601 			} else {
3602 				v_list_itr->vsi_list_info =
3603 					ice_create_vsi_list_map(hw, &vsi_handle,
3604 								1, vsi_list_id);
3605 			}
3606 		}
3607 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3608 		/* Update existing VSI list to add new VSI ID only if it used
3609 		 * by one VLAN rule.
3610 		 */
3611 		cur_fltr = &v_list_itr->fltr_info;
3612 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3613 						 new_fltr);
3614 	} else {
3615 		/* If VLAN rule exists and VSI list being used by this rule is
3616 		 * referenced by more than 1 VLAN rule. Then create a new VSI
3617 		 * list appending previous VSI with new VSI and update existing
3618 		 * VLAN rule to point to new VSI list ID
3619 		 */
3620 		struct ice_fltr_info tmp_fltr;
3621 		u16 vsi_handle_arr[2];
3622 		u16 cur_handle;
3623 
3624 		/* Current implementation only supports reusing VSI list with
3625 		 * one VSI count. We should never hit below condition
3626 		 */
3627 		if (v_list_itr->vsi_count > 1 &&
3628 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3629 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3630 			status = -EIO;
3631 			goto exit;
3632 		}
3633 
3634 		cur_handle =
3635 			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3636 				       ICE_MAX_VSI);
3637 
3638 		/* A rule already exists with the new VSI being added */
3639 		if (cur_handle == vsi_handle) {
3640 			status = -EEXIST;
3641 			goto exit;
3642 		}
3643 
3644 		vsi_handle_arr[0] = cur_handle;
3645 		vsi_handle_arr[1] = vsi_handle;
3646 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3647 						  &vsi_list_id, lkup_type);
3648 		if (status)
3649 			goto exit;
3650 
3651 		tmp_fltr = v_list_itr->fltr_info;
3652 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3653 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3654 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3655 		/* Update the previous switch rule to a new VSI list which
3656 		 * includes current VSI that is requested
3657 		 */
3658 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3659 		if (status)
3660 			goto exit;
3661 
3662 		/* before overriding VSI list map info. decrement ref_cnt of
3663 		 * previous VSI list
3664 		 */
3665 		v_list_itr->vsi_list_info->ref_cnt--;
3666 
3667 		/* now update to newly created list */
3668 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3669 		v_list_itr->vsi_list_info =
3670 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3671 						vsi_list_id);
3672 		v_list_itr->vsi_count++;
3673 	}
3674 
3675 exit:
3676 	mutex_unlock(rule_lock);
3677 	return status;
3678 }
3679 
3680 /**
3681  * ice_add_vlan - Add VLAN based filter rule
3682  * @hw: pointer to the hardware structure
3683  * @v_list: list of VLAN entries and forwarding information
3684  */
3685 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3686 {
3687 	struct ice_fltr_list_entry *v_list_itr;
3688 
3689 	if (!v_list || !hw)
3690 		return -EINVAL;
3691 
3692 	list_for_each_entry(v_list_itr, v_list, list_entry) {
3693 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3694 			return -EINVAL;
3695 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3696 		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3697 		if (v_list_itr->status)
3698 			return v_list_itr->status;
3699 	}
3700 	return 0;
3701 }
3702 
3703 /**
3704  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3705  * @hw: pointer to the hardware structure
3706  * @em_list: list of ether type MAC filter, MAC is optional
3707  *
3708  * This function requires the caller to populate the entries in
3709  * the filter list with the necessary fields (including flags to
3710  * indicate Tx or Rx rules).
3711  */
3712 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3713 {
3714 	struct ice_fltr_list_entry *em_list_itr;
3715 
3716 	if (!em_list || !hw)
3717 		return -EINVAL;
3718 
3719 	list_for_each_entry(em_list_itr, em_list, list_entry) {
3720 		enum ice_sw_lkup_type l_type =
3721 			em_list_itr->fltr_info.lkup_type;
3722 
3723 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3724 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3725 			return -EINVAL;
3726 
3727 		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3728 							    em_list_itr);
3729 		if (em_list_itr->status)
3730 			return em_list_itr->status;
3731 	}
3732 	return 0;
3733 }
3734 
3735 /**
3736  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3737  * @hw: pointer to the hardware structure
3738  * @em_list: list of ethertype or ethertype MAC entries
3739  */
3740 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3741 {
3742 	struct ice_fltr_list_entry *em_list_itr, *tmp;
3743 
3744 	if (!em_list || !hw)
3745 		return -EINVAL;
3746 
3747 	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3748 		enum ice_sw_lkup_type l_type =
3749 			em_list_itr->fltr_info.lkup_type;
3750 
3751 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3752 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3753 			return -EINVAL;
3754 
3755 		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3756 							       em_list_itr);
3757 		if (em_list_itr->status)
3758 			return em_list_itr->status;
3759 	}
3760 	return 0;
3761 }
3762 
3763 /**
3764  * ice_rem_sw_rule_info
3765  * @hw: pointer to the hardware structure
3766  * @rule_head: pointer to the switch list structure that we want to delete
3767  */
3768 static void
3769 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3770 {
3771 	if (!list_empty(rule_head)) {
3772 		struct ice_fltr_mgmt_list_entry *entry;
3773 		struct ice_fltr_mgmt_list_entry *tmp;
3774 
3775 		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3776 			list_del(&entry->list_entry);
3777 			devm_kfree(ice_hw_to_dev(hw), entry);
3778 		}
3779 	}
3780 }
3781 
3782 /**
3783  * ice_rem_adv_rule_info
3784  * @hw: pointer to the hardware structure
3785  * @rule_head: pointer to the switch list structure that we want to delete
3786  */
3787 static void
3788 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3789 {
3790 	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3791 	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3792 
3793 	if (list_empty(rule_head))
3794 		return;
3795 
3796 	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3797 		list_del(&lst_itr->list_entry);
3798 		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3799 		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3800 	}
3801 }
3802 
3803 /**
3804  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3805  * @pi: pointer to the port_info structure
3806  * @vsi_handle: VSI handle to set as default
3807  * @set: true to add the above mentioned switch rule, false to remove it
3808  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3809  *
3810  * add filter rule to set/unset given VSI as default VSI for the switch
3811  * (represented by swid)
3812  */
3813 int
3814 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3815 		 u8 direction)
3816 {
3817 	struct ice_fltr_list_entry f_list_entry;
3818 	struct ice_fltr_info f_info;
3819 	struct ice_hw *hw = pi->hw;
3820 	u16 hw_vsi_id;
3821 	int status;
3822 
3823 	if (!ice_is_vsi_valid(hw, vsi_handle))
3824 		return -EINVAL;
3825 
3826 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3827 
3828 	memset(&f_info, 0, sizeof(f_info));
3829 
3830 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3831 	f_info.flag = direction;
3832 	f_info.fltr_act = ICE_FWD_TO_VSI;
3833 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3834 	f_info.vsi_handle = vsi_handle;
3835 
3836 	if (f_info.flag & ICE_FLTR_RX) {
3837 		f_info.src = hw->port_info->lport;
3838 		f_info.src_id = ICE_SRC_ID_LPORT;
3839 	} else if (f_info.flag & ICE_FLTR_TX) {
3840 		f_info.src_id = ICE_SRC_ID_VSI;
3841 		f_info.src = hw_vsi_id;
3842 	}
3843 	f_list_entry.fltr_info = f_info;
3844 
3845 	if (set)
3846 		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3847 					       &f_list_entry);
3848 	else
3849 		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3850 						  &f_list_entry);
3851 
3852 	return status;
3853 }
3854 
3855 /**
3856  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3857  * @fm_entry: filter entry to inspect
3858  * @vsi_handle: VSI handle to compare with filter info
3859  */
3860 static bool
3861 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3862 {
3863 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3864 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3865 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3866 		 fm_entry->vsi_list_info &&
3867 		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3868 }
3869 
3870 /**
3871  * ice_check_if_dflt_vsi - check if VSI is default VSI
3872  * @pi: pointer to the port_info structure
3873  * @vsi_handle: vsi handle to check for in filter list
3874  * @rule_exists: indicates if there are any VSI's in the rule list
3875  *
3876  * checks if the VSI is in a default VSI list, and also indicates
3877  * if the default VSI list is empty
3878  */
3879 bool
3880 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3881 		      bool *rule_exists)
3882 {
3883 	struct ice_fltr_mgmt_list_entry *fm_entry;
3884 	struct ice_sw_recipe *recp_list;
3885 	struct list_head *rule_head;
3886 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3887 	bool ret = false;
3888 
3889 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3890 	rule_lock = &recp_list->filt_rule_lock;
3891 	rule_head = &recp_list->filt_rules;
3892 
3893 	mutex_lock(rule_lock);
3894 
3895 	if (rule_exists && !list_empty(rule_head))
3896 		*rule_exists = true;
3897 
3898 	list_for_each_entry(fm_entry, rule_head, list_entry) {
3899 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3900 			ret = true;
3901 			break;
3902 		}
3903 	}
3904 
3905 	mutex_unlock(rule_lock);
3906 
3907 	return ret;
3908 }
3909 
3910 /**
3911  * ice_remove_mac - remove a MAC address based filter rule
3912  * @hw: pointer to the hardware structure
3913  * @m_list: list of MAC addresses and forwarding information
3914  *
3915  * This function removes either a MAC filter rule or a specific VSI from a
3916  * VSI list for a multicast MAC address.
3917  *
3918  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3919  * be aware that this call will only work if all the entries passed into m_list
3920  * were added previously. It will not attempt to do a partial remove of entries
3921  * that were found.
3922  */
3923 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3924 {
3925 	struct ice_fltr_list_entry *list_itr, *tmp;
3926 
3927 	if (!m_list)
3928 		return -EINVAL;
3929 
3930 	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3931 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3932 		u16 vsi_handle;
3933 
3934 		if (l_type != ICE_SW_LKUP_MAC)
3935 			return -EINVAL;
3936 
3937 		vsi_handle = list_itr->fltr_info.vsi_handle;
3938 		if (!ice_is_vsi_valid(hw, vsi_handle))
3939 			return -EINVAL;
3940 
3941 		list_itr->fltr_info.fwd_id.hw_vsi_id =
3942 					ice_get_hw_vsi_num(hw, vsi_handle);
3943 
3944 		list_itr->status = ice_remove_rule_internal(hw,
3945 							    ICE_SW_LKUP_MAC,
3946 							    list_itr);
3947 		if (list_itr->status)
3948 			return list_itr->status;
3949 	}
3950 	return 0;
3951 }
3952 
3953 /**
3954  * ice_remove_vlan - Remove VLAN based filter rule
3955  * @hw: pointer to the hardware structure
3956  * @v_list: list of VLAN entries and forwarding information
3957  */
3958 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3959 {
3960 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3961 
3962 	if (!v_list || !hw)
3963 		return -EINVAL;
3964 
3965 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3966 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3967 
3968 		if (l_type != ICE_SW_LKUP_VLAN)
3969 			return -EINVAL;
3970 		v_list_itr->status = ice_remove_rule_internal(hw,
3971 							      ICE_SW_LKUP_VLAN,
3972 							      v_list_itr);
3973 		if (v_list_itr->status)
3974 			return v_list_itr->status;
3975 	}
3976 	return 0;
3977 }
3978 
3979 /**
3980  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3981  * @hw: pointer to the hardware structure
3982  * @vsi_handle: VSI handle to remove filters from
3983  * @vsi_list_head: pointer to the list to add entry to
3984  * @fi: pointer to fltr_info of filter entry to copy & add
3985  *
3986  * Helper function, used when creating a list of filters to remove from
3987  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3988  * original filter entry, with the exception of fltr_info.fltr_act and
3989  * fltr_info.fwd_id fields. These are set such that later logic can
3990  * extract which VSI to remove the fltr from, and pass on that information.
3991  */
3992 static int
3993 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3994 			       struct list_head *vsi_list_head,
3995 			       struct ice_fltr_info *fi)
3996 {
3997 	struct ice_fltr_list_entry *tmp;
3998 
3999 	/* this memory is freed up in the caller function
4000 	 * once filters for this VSI are removed
4001 	 */
4002 	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4003 	if (!tmp)
4004 		return -ENOMEM;
4005 
4006 	tmp->fltr_info = *fi;
4007 
4008 	/* Overwrite these fields to indicate which VSI to remove filter from,
4009 	 * so find and remove logic can extract the information from the
4010 	 * list entries. Note that original entries will still have proper
4011 	 * values.
4012 	 */
4013 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4014 	tmp->fltr_info.vsi_handle = vsi_handle;
4015 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4016 
4017 	list_add(&tmp->list_entry, vsi_list_head);
4018 
4019 	return 0;
4020 }
4021 
4022 /**
4023  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4024  * @hw: pointer to the hardware structure
4025  * @vsi_handle: VSI handle to remove filters from
4026  * @lkup_list_head: pointer to the list that has certain lookup type filters
4027  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4028  *
4029  * Locates all filters in lkup_list_head that are used by the given VSI,
4030  * and adds COPIES of those entries to vsi_list_head (intended to be used
4031  * to remove the listed filters).
4032  * Note that this means all entries in vsi_list_head must be explicitly
4033  * deallocated by the caller when done with list.
4034  */
4035 static int
4036 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4037 			 struct list_head *lkup_list_head,
4038 			 struct list_head *vsi_list_head)
4039 {
4040 	struct ice_fltr_mgmt_list_entry *fm_entry;
4041 	int status = 0;
4042 
4043 	/* check to make sure VSI ID is valid and within boundary */
4044 	if (!ice_is_vsi_valid(hw, vsi_handle))
4045 		return -EINVAL;
4046 
4047 	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4048 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4049 			continue;
4050 
4051 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4052 							vsi_list_head,
4053 							&fm_entry->fltr_info);
4054 		if (status)
4055 			return status;
4056 	}
4057 	return status;
4058 }
4059 
4060 /**
4061  * ice_determine_promisc_mask
4062  * @fi: filter info to parse
4063  *
4064  * Helper function to determine which ICE_PROMISC_ mask corresponds
4065  * to given filter into.
4066  */
4067 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4068 {
4069 	u16 vid = fi->l_data.mac_vlan.vlan_id;
4070 	u8 *macaddr = fi->l_data.mac.mac_addr;
4071 	bool is_tx_fltr = false;
4072 	u8 promisc_mask = 0;
4073 
4074 	if (fi->flag == ICE_FLTR_TX)
4075 		is_tx_fltr = true;
4076 
4077 	if (is_broadcast_ether_addr(macaddr))
4078 		promisc_mask |= is_tx_fltr ?
4079 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4080 	else if (is_multicast_ether_addr(macaddr))
4081 		promisc_mask |= is_tx_fltr ?
4082 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4083 	else if (is_unicast_ether_addr(macaddr))
4084 		promisc_mask |= is_tx_fltr ?
4085 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4086 	if (vid)
4087 		promisc_mask |= is_tx_fltr ?
4088 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4089 
4090 	return promisc_mask;
4091 }
4092 
4093 /**
4094  * ice_remove_promisc - Remove promisc based filter rules
4095  * @hw: pointer to the hardware structure
4096  * @recp_id: recipe ID for which the rule needs to removed
4097  * @v_list: list of promisc entries
4098  */
4099 static int
4100 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4101 {
4102 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4103 
4104 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4105 		v_list_itr->status =
4106 			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4107 		if (v_list_itr->status)
4108 			return v_list_itr->status;
4109 	}
4110 	return 0;
4111 }
4112 
4113 /**
4114  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4115  * @hw: pointer to the hardware structure
4116  * @vsi_handle: VSI handle to clear mode
4117  * @promisc_mask: mask of promiscuous config bits to clear
4118  * @vid: VLAN ID to clear VLAN promiscuous
4119  */
4120 int
4121 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4122 		      u16 vid)
4123 {
4124 	struct ice_switch_info *sw = hw->switch_info;
4125 	struct ice_fltr_list_entry *fm_entry, *tmp;
4126 	struct list_head remove_list_head;
4127 	struct ice_fltr_mgmt_list_entry *itr;
4128 	struct list_head *rule_head;
4129 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4130 	int status = 0;
4131 	u8 recipe_id;
4132 
4133 	if (!ice_is_vsi_valid(hw, vsi_handle))
4134 		return -EINVAL;
4135 
4136 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4137 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4138 	else
4139 		recipe_id = ICE_SW_LKUP_PROMISC;
4140 
4141 	rule_head = &sw->recp_list[recipe_id].filt_rules;
4142 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4143 
4144 	INIT_LIST_HEAD(&remove_list_head);
4145 
4146 	mutex_lock(rule_lock);
4147 	list_for_each_entry(itr, rule_head, list_entry) {
4148 		struct ice_fltr_info *fltr_info;
4149 		u8 fltr_promisc_mask = 0;
4150 
4151 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4152 			continue;
4153 		fltr_info = &itr->fltr_info;
4154 
4155 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4156 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4157 			continue;
4158 
4159 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4160 
4161 		/* Skip if filter is not completely specified by given mask */
4162 		if (fltr_promisc_mask & ~promisc_mask)
4163 			continue;
4164 
4165 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4166 							&remove_list_head,
4167 							fltr_info);
4168 		if (status) {
4169 			mutex_unlock(rule_lock);
4170 			goto free_fltr_list;
4171 		}
4172 	}
4173 	mutex_unlock(rule_lock);
4174 
4175 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4176 
4177 free_fltr_list:
4178 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4179 		list_del(&fm_entry->list_entry);
4180 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4181 	}
4182 
4183 	return status;
4184 }
4185 
4186 /**
4187  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4188  * @hw: pointer to the hardware structure
4189  * @vsi_handle: VSI handle to configure
4190  * @promisc_mask: mask of promiscuous config bits
4191  * @vid: VLAN ID to set VLAN promiscuous
4192  */
4193 int
4194 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4195 {
4196 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4197 	struct ice_fltr_list_entry f_list_entry;
4198 	struct ice_fltr_info new_fltr;
4199 	bool is_tx_fltr;
4200 	int status = 0;
4201 	u16 hw_vsi_id;
4202 	int pkt_type;
4203 	u8 recipe_id;
4204 
4205 	if (!ice_is_vsi_valid(hw, vsi_handle))
4206 		return -EINVAL;
4207 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4208 
4209 	memset(&new_fltr, 0, sizeof(new_fltr));
4210 
4211 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4212 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4213 		new_fltr.l_data.mac_vlan.vlan_id = vid;
4214 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4215 	} else {
4216 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4217 		recipe_id = ICE_SW_LKUP_PROMISC;
4218 	}
4219 
4220 	/* Separate filters must be set for each direction/packet type
4221 	 * combination, so we will loop over the mask value, store the
4222 	 * individual type, and clear it out in the input mask as it
4223 	 * is found.
4224 	 */
4225 	while (promisc_mask) {
4226 		u8 *mac_addr;
4227 
4228 		pkt_type = 0;
4229 		is_tx_fltr = false;
4230 
4231 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4232 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4233 			pkt_type = UCAST_FLTR;
4234 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4235 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4236 			pkt_type = UCAST_FLTR;
4237 			is_tx_fltr = true;
4238 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4239 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4240 			pkt_type = MCAST_FLTR;
4241 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4242 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4243 			pkt_type = MCAST_FLTR;
4244 			is_tx_fltr = true;
4245 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4246 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4247 			pkt_type = BCAST_FLTR;
4248 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4249 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4250 			pkt_type = BCAST_FLTR;
4251 			is_tx_fltr = true;
4252 		}
4253 
4254 		/* Check for VLAN promiscuous flag */
4255 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4256 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4257 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4258 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4259 			is_tx_fltr = true;
4260 		}
4261 
4262 		/* Set filter DA based on packet type */
4263 		mac_addr = new_fltr.l_data.mac.mac_addr;
4264 		if (pkt_type == BCAST_FLTR) {
4265 			eth_broadcast_addr(mac_addr);
4266 		} else if (pkt_type == MCAST_FLTR ||
4267 			   pkt_type == UCAST_FLTR) {
4268 			/* Use the dummy ether header DA */
4269 			ether_addr_copy(mac_addr, dummy_eth_header);
4270 			if (pkt_type == MCAST_FLTR)
4271 				mac_addr[0] |= 0x1;	/* Set multicast bit */
4272 		}
4273 
4274 		/* Need to reset this to zero for all iterations */
4275 		new_fltr.flag = 0;
4276 		if (is_tx_fltr) {
4277 			new_fltr.flag |= ICE_FLTR_TX;
4278 			new_fltr.src = hw_vsi_id;
4279 		} else {
4280 			new_fltr.flag |= ICE_FLTR_RX;
4281 			new_fltr.src = hw->port_info->lport;
4282 		}
4283 
4284 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4285 		new_fltr.vsi_handle = vsi_handle;
4286 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4287 		f_list_entry.fltr_info = new_fltr;
4288 
4289 		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4290 		if (status)
4291 			goto set_promisc_exit;
4292 	}
4293 
4294 set_promisc_exit:
4295 	return status;
4296 }
4297 
4298 /**
4299  * ice_set_vlan_vsi_promisc
4300  * @hw: pointer to the hardware structure
4301  * @vsi_handle: VSI handle to configure
4302  * @promisc_mask: mask of promiscuous config bits
4303  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4304  *
4305  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4306  */
4307 int
4308 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4309 			 bool rm_vlan_promisc)
4310 {
4311 	struct ice_switch_info *sw = hw->switch_info;
4312 	struct ice_fltr_list_entry *list_itr, *tmp;
4313 	struct list_head vsi_list_head;
4314 	struct list_head *vlan_head;
4315 	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4316 	u16 vlan_id;
4317 	int status;
4318 
4319 	INIT_LIST_HEAD(&vsi_list_head);
4320 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4321 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4322 	mutex_lock(vlan_lock);
4323 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4324 					  &vsi_list_head);
4325 	mutex_unlock(vlan_lock);
4326 	if (status)
4327 		goto free_fltr_list;
4328 
4329 	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4330 		/* Avoid enabling or disabling VLAN zero twice when in double
4331 		 * VLAN mode
4332 		 */
4333 		if (ice_is_dvm_ena(hw) &&
4334 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4335 			continue;
4336 
4337 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4338 		if (rm_vlan_promisc)
4339 			status = ice_clear_vsi_promisc(hw, vsi_handle,
4340 						       promisc_mask, vlan_id);
4341 		else
4342 			status = ice_set_vsi_promisc(hw, vsi_handle,
4343 						     promisc_mask, vlan_id);
4344 		if (status && status != -EEXIST)
4345 			break;
4346 	}
4347 
4348 free_fltr_list:
4349 	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4350 		list_del(&list_itr->list_entry);
4351 		devm_kfree(ice_hw_to_dev(hw), list_itr);
4352 	}
4353 	return status;
4354 }
4355 
4356 /**
4357  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4358  * @hw: pointer to the hardware structure
4359  * @vsi_handle: VSI handle to remove filters from
4360  * @lkup: switch rule filter lookup type
4361  */
4362 static void
4363 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4364 			 enum ice_sw_lkup_type lkup)
4365 {
4366 	struct ice_switch_info *sw = hw->switch_info;
4367 	struct ice_fltr_list_entry *fm_entry;
4368 	struct list_head remove_list_head;
4369 	struct list_head *rule_head;
4370 	struct ice_fltr_list_entry *tmp;
4371 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4372 	int status;
4373 
4374 	INIT_LIST_HEAD(&remove_list_head);
4375 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4376 	rule_head = &sw->recp_list[lkup].filt_rules;
4377 	mutex_lock(rule_lock);
4378 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4379 					  &remove_list_head);
4380 	mutex_unlock(rule_lock);
4381 	if (status)
4382 		goto free_fltr_list;
4383 
4384 	switch (lkup) {
4385 	case ICE_SW_LKUP_MAC:
4386 		ice_remove_mac(hw, &remove_list_head);
4387 		break;
4388 	case ICE_SW_LKUP_VLAN:
4389 		ice_remove_vlan(hw, &remove_list_head);
4390 		break;
4391 	case ICE_SW_LKUP_PROMISC:
4392 	case ICE_SW_LKUP_PROMISC_VLAN:
4393 		ice_remove_promisc(hw, lkup, &remove_list_head);
4394 		break;
4395 	case ICE_SW_LKUP_MAC_VLAN:
4396 	case ICE_SW_LKUP_ETHERTYPE:
4397 	case ICE_SW_LKUP_ETHERTYPE_MAC:
4398 	case ICE_SW_LKUP_DFLT:
4399 	case ICE_SW_LKUP_LAST:
4400 	default:
4401 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4402 		break;
4403 	}
4404 
4405 free_fltr_list:
4406 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4407 		list_del(&fm_entry->list_entry);
4408 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4409 	}
4410 }
4411 
4412 /**
4413  * ice_remove_vsi_fltr - Remove all filters for a VSI
4414  * @hw: pointer to the hardware structure
4415  * @vsi_handle: VSI handle to remove filters from
4416  */
4417 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4418 {
4419 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4420 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4421 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4422 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4423 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4424 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4425 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4426 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4427 }
4428 
4429 /**
4430  * ice_alloc_res_cntr - allocating resource counter
4431  * @hw: pointer to the hardware structure
4432  * @type: type of resource
4433  * @alloc_shared: if set it is shared else dedicated
4434  * @num_items: number of entries requested for FD resource type
4435  * @counter_id: counter index returned by AQ call
4436  */
4437 int
4438 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4439 		   u16 *counter_id)
4440 {
4441 	struct ice_aqc_alloc_free_res_elem *buf;
4442 	u16 buf_len;
4443 	int status;
4444 
4445 	/* Allocate resource */
4446 	buf_len = struct_size(buf, elem, 1);
4447 	buf = kzalloc(buf_len, GFP_KERNEL);
4448 	if (!buf)
4449 		return -ENOMEM;
4450 
4451 	buf->num_elems = cpu_to_le16(num_items);
4452 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4453 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4454 
4455 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4456 	if (status)
4457 		goto exit;
4458 
4459 	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4460 
4461 exit:
4462 	kfree(buf);
4463 	return status;
4464 }
4465 
4466 /**
4467  * ice_free_res_cntr - free resource counter
4468  * @hw: pointer to the hardware structure
4469  * @type: type of resource
4470  * @alloc_shared: if set it is shared else dedicated
4471  * @num_items: number of entries to be freed for FD resource type
4472  * @counter_id: counter ID resource which needs to be freed
4473  */
4474 int
4475 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4476 		  u16 counter_id)
4477 {
4478 	struct ice_aqc_alloc_free_res_elem *buf;
4479 	u16 buf_len;
4480 	int status;
4481 
4482 	/* Free resource */
4483 	buf_len = struct_size(buf, elem, 1);
4484 	buf = kzalloc(buf_len, GFP_KERNEL);
4485 	if (!buf)
4486 		return -ENOMEM;
4487 
4488 	buf->num_elems = cpu_to_le16(num_items);
4489 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4490 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4491 	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4492 
4493 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4494 	if (status)
4495 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4496 
4497 	kfree(buf);
4498 	return status;
4499 }
4500 
4501 #define ICE_PROTOCOL_ENTRY(id, ...) {		\
4502 	.prot_type	= id,			\
4503 	.offs		= {__VA_ARGS__},	\
4504 }
4505 
4506 /**
4507  * ice_share_res - set a resource as shared or dedicated
4508  * @hw: hw struct of original owner of resource
4509  * @type: resource type
4510  * @shared: is the resource being set to shared
4511  * @res_id: resource id (descriptor)
4512  */
4513 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4514 {
4515 	struct ice_aqc_alloc_free_res_elem *buf;
4516 	u16 buf_len;
4517 	int status;
4518 
4519 	buf_len = struct_size(buf, elem, 1);
4520 	buf = kzalloc(buf_len, GFP_KERNEL);
4521 	if (!buf)
4522 		return -ENOMEM;
4523 
4524 	buf->num_elems = cpu_to_le16(1);
4525 	if (shared)
4526 		buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4527 					     ICE_AQC_RES_TYPE_M) |
4528 					    ICE_AQC_RES_TYPE_FLAG_SHARED);
4529 	else
4530 		buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4531 					     ICE_AQC_RES_TYPE_M) &
4532 					    ~ICE_AQC_RES_TYPE_FLAG_SHARED);
4533 
4534 	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4535 	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4536 				       ice_aqc_opc_share_res);
4537 	if (status)
4538 		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4539 			  type, res_id, shared ? "SHARED" : "DEDICATED");
4540 
4541 	kfree(buf);
4542 	return status;
4543 }
4544 
4545 /* This is mapping table entry that maps every word within a given protocol
4546  * structure to the real byte offset as per the specification of that
4547  * protocol header.
4548  * for example dst address is 3 words in ethertype header and corresponding
4549  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4550  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4551  * matching entry describing its field. This needs to be updated if new
4552  * structure is added to that union.
4553  */
4554 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4555 	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4556 	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4557 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4558 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4559 	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4560 	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4561 	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4562 	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4563 			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4564 	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4565 			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4566 	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4567 	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4568 	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4569 	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4570 	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4571 	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4572 	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4573 	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4574 	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4575 	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4576 	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4577 	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4578 	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4579 			   ICE_SOURCE_PORT_MDID_OFFSET,
4580 			   ICE_PTYPE_MDID_OFFSET,
4581 			   ICE_PACKET_LENGTH_MDID_OFFSET,
4582 			   ICE_SOURCE_VSI_MDID_OFFSET,
4583 			   ICE_PKT_VLAN_MDID_OFFSET,
4584 			   ICE_PKT_TUNNEL_MDID_OFFSET,
4585 			   ICE_PKT_TCP_MDID_OFFSET,
4586 			   ICE_PKT_ERROR_MDID_OFFSET),
4587 };
4588 
4589 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4590 	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4591 	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4592 	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4593 	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4594 	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4595 	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4596 	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4597 	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4598 	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4599 	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4600 	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4601 	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4602 	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4603 	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4604 	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4605 	{ ICE_GTP,		ICE_UDP_OF_HW },
4606 	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4607 	{ ICE_PPPOE,		ICE_PPPOE_HW },
4608 	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4609 	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4610 	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4611 	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4612 };
4613 
4614 /**
4615  * ice_find_recp - find a recipe
4616  * @hw: pointer to the hardware structure
4617  * @lkup_exts: extension sequence to match
4618  * @rinfo: information regarding the rule e.g. priority and action info
4619  *
4620  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4621  */
4622 static u16
4623 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4624 	      const struct ice_adv_rule_info *rinfo)
4625 {
4626 	bool refresh_required = true;
4627 	struct ice_sw_recipe *recp;
4628 	u8 i;
4629 
4630 	/* Walk through existing recipes to find a match */
4631 	recp = hw->switch_info->recp_list;
4632 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4633 		/* If recipe was not created for this ID, in SW bookkeeping,
4634 		 * check if FW has an entry for this recipe. If the FW has an
4635 		 * entry update it in our SW bookkeeping and continue with the
4636 		 * matching.
4637 		 */
4638 		if (!recp[i].recp_created)
4639 			if (ice_get_recp_frm_fw(hw,
4640 						hw->switch_info->recp_list, i,
4641 						&refresh_required))
4642 				continue;
4643 
4644 		/* Skip inverse action recipes */
4645 		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4646 		    ICE_AQ_RECIPE_ACT_INV_ACT)
4647 			continue;
4648 
4649 		/* if number of words we are looking for match */
4650 		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4651 			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4652 			struct ice_fv_word *be = lkup_exts->fv_words;
4653 			u16 *cr = recp[i].lkup_exts.field_mask;
4654 			u16 *de = lkup_exts->field_mask;
4655 			bool found = true;
4656 			u8 pe, qr;
4657 
4658 			/* ar, cr, and qr are related to the recipe words, while
4659 			 * be, de, and pe are related to the lookup words
4660 			 */
4661 			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4662 				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4663 				     qr++) {
4664 					if (ar[qr].off == be[pe].off &&
4665 					    ar[qr].prot_id == be[pe].prot_id &&
4666 					    cr[qr] == de[pe])
4667 						/* Found the "pe"th word in the
4668 						 * given recipe
4669 						 */
4670 						break;
4671 				}
4672 				/* After walking through all the words in the
4673 				 * "i"th recipe if "p"th word was not found then
4674 				 * this recipe is not what we are looking for.
4675 				 * So break out from this loop and try the next
4676 				 * recipe
4677 				 */
4678 				if (qr >= recp[i].lkup_exts.n_val_words) {
4679 					found = false;
4680 					break;
4681 				}
4682 			}
4683 			/* If for "i"th recipe the found was never set to false
4684 			 * then it means we found our match
4685 			 * Also tun type and *_pass_l2 of recipe needs to be
4686 			 * checked
4687 			 */
4688 			if (found && recp[i].tun_type == rinfo->tun_type &&
4689 			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4690 			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4691 				return i; /* Return the recipe ID */
4692 		}
4693 	}
4694 	return ICE_MAX_NUM_RECIPES;
4695 }
4696 
4697 /**
4698  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4699  *
4700  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4701  * supported protocol array record for outer vlan has to be modified to
4702  * reflect the value proper for DVM.
4703  */
4704 void ice_change_proto_id_to_dvm(void)
4705 {
4706 	u8 i;
4707 
4708 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4709 		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4710 		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4711 			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4712 }
4713 
4714 /**
4715  * ice_prot_type_to_id - get protocol ID from protocol type
4716  * @type: protocol type
4717  * @id: pointer to variable that will receive the ID
4718  *
4719  * Returns true if found, false otherwise
4720  */
4721 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4722 {
4723 	u8 i;
4724 
4725 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4726 		if (ice_prot_id_tbl[i].type == type) {
4727 			*id = ice_prot_id_tbl[i].protocol_id;
4728 			return true;
4729 		}
4730 	return false;
4731 }
4732 
4733 /**
4734  * ice_fill_valid_words - count valid words
4735  * @rule: advanced rule with lookup information
4736  * @lkup_exts: byte offset extractions of the words that are valid
4737  *
4738  * calculate valid words in a lookup rule using mask value
4739  */
4740 static u8
4741 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4742 		     struct ice_prot_lkup_ext *lkup_exts)
4743 {
4744 	u8 j, word, prot_id, ret_val;
4745 
4746 	if (!ice_prot_type_to_id(rule->type, &prot_id))
4747 		return 0;
4748 
4749 	word = lkup_exts->n_val_words;
4750 
4751 	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4752 		if (((u16 *)&rule->m_u)[j] &&
4753 		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4754 			/* No more space to accommodate */
4755 			if (word >= ICE_MAX_CHAIN_WORDS)
4756 				return 0;
4757 			lkup_exts->fv_words[word].off =
4758 				ice_prot_ext[rule->type].offs[j];
4759 			lkup_exts->fv_words[word].prot_id =
4760 				ice_prot_id_tbl[rule->type].protocol_id;
4761 			lkup_exts->field_mask[word] =
4762 				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4763 			word++;
4764 		}
4765 
4766 	ret_val = word - lkup_exts->n_val_words;
4767 	lkup_exts->n_val_words = word;
4768 
4769 	return ret_val;
4770 }
4771 
4772 /**
4773  * ice_create_first_fit_recp_def - Create a recipe grouping
4774  * @hw: pointer to the hardware structure
4775  * @lkup_exts: an array of protocol header extractions
4776  * @rg_list: pointer to a list that stores new recipe groups
4777  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4778  *
4779  * Using first fit algorithm, take all the words that are still not done
4780  * and start grouping them in 4-word groups. Each group makes up one
4781  * recipe.
4782  */
4783 static int
4784 ice_create_first_fit_recp_def(struct ice_hw *hw,
4785 			      struct ice_prot_lkup_ext *lkup_exts,
4786 			      struct list_head *rg_list,
4787 			      u8 *recp_cnt)
4788 {
4789 	struct ice_pref_recipe_group *grp = NULL;
4790 	u8 j;
4791 
4792 	*recp_cnt = 0;
4793 
4794 	/* Walk through every word in the rule to check if it is not done. If so
4795 	 * then this word needs to be part of a new recipe.
4796 	 */
4797 	for (j = 0; j < lkup_exts->n_val_words; j++)
4798 		if (!test_bit(j, lkup_exts->done)) {
4799 			if (!grp ||
4800 			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4801 				struct ice_recp_grp_entry *entry;
4802 
4803 				entry = devm_kzalloc(ice_hw_to_dev(hw),
4804 						     sizeof(*entry),
4805 						     GFP_KERNEL);
4806 				if (!entry)
4807 					return -ENOMEM;
4808 				list_add(&entry->l_entry, rg_list);
4809 				grp = &entry->r_group;
4810 				(*recp_cnt)++;
4811 			}
4812 
4813 			grp->pairs[grp->n_val_pairs].prot_id =
4814 				lkup_exts->fv_words[j].prot_id;
4815 			grp->pairs[grp->n_val_pairs].off =
4816 				lkup_exts->fv_words[j].off;
4817 			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4818 			grp->n_val_pairs++;
4819 		}
4820 
4821 	return 0;
4822 }
4823 
4824 /**
4825  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4826  * @hw: pointer to the hardware structure
4827  * @fv_list: field vector with the extraction sequence information
4828  * @rg_list: recipe groupings with protocol-offset pairs
4829  *
4830  * Helper function to fill in the field vector indices for protocol-offset
4831  * pairs. These indexes are then ultimately programmed into a recipe.
4832  */
4833 static int
4834 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4835 		       struct list_head *rg_list)
4836 {
4837 	struct ice_sw_fv_list_entry *fv;
4838 	struct ice_recp_grp_entry *rg;
4839 	struct ice_fv_word *fv_ext;
4840 
4841 	if (list_empty(fv_list))
4842 		return 0;
4843 
4844 	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4845 			      list_entry);
4846 	fv_ext = fv->fv_ptr->ew;
4847 
4848 	list_for_each_entry(rg, rg_list, l_entry) {
4849 		u8 i;
4850 
4851 		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4852 			struct ice_fv_word *pr;
4853 			bool found = false;
4854 			u16 mask;
4855 			u8 j;
4856 
4857 			pr = &rg->r_group.pairs[i];
4858 			mask = rg->r_group.mask[i];
4859 
4860 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4861 				if (fv_ext[j].prot_id == pr->prot_id &&
4862 				    fv_ext[j].off == pr->off) {
4863 					found = true;
4864 
4865 					/* Store index of field vector */
4866 					rg->fv_idx[i] = j;
4867 					rg->fv_mask[i] = mask;
4868 					break;
4869 				}
4870 
4871 			/* Protocol/offset could not be found, caller gave an
4872 			 * invalid pair
4873 			 */
4874 			if (!found)
4875 				return -EINVAL;
4876 		}
4877 	}
4878 
4879 	return 0;
4880 }
4881 
4882 /**
4883  * ice_find_free_recp_res_idx - find free result indexes for recipe
4884  * @hw: pointer to hardware structure
4885  * @profiles: bitmap of profiles that will be associated with the new recipe
4886  * @free_idx: pointer to variable to receive the free index bitmap
4887  *
4888  * The algorithm used here is:
4889  *	1. When creating a new recipe, create a set P which contains all
4890  *	   Profiles that will be associated with our new recipe
4891  *
4892  *	2. For each Profile p in set P:
4893  *	    a. Add all recipes associated with Profile p into set R
4894  *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4895  *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4896  *		i. Or just assume they all have the same possible indexes:
4897  *			44, 45, 46, 47
4898  *			i.e., PossibleIndexes = 0x0000F00000000000
4899  *
4900  *	3. For each Recipe r in set R:
4901  *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4902  *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4903  *
4904  *	FreeIndexes will contain the bits indicating the indexes free for use,
4905  *      then the code needs to update the recipe[r].used_result_idx_bits to
4906  *      indicate which indexes were selected for use by this recipe.
4907  */
4908 static u16
4909 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4910 			   unsigned long *free_idx)
4911 {
4912 	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4913 	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4914 	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4915 	u16 bit;
4916 
4917 	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4918 	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4919 
4920 	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4921 
4922 	/* For each profile we are going to associate the recipe with, add the
4923 	 * recipes that are associated with that profile. This will give us
4924 	 * the set of recipes that our recipe may collide with. Also, determine
4925 	 * what possible result indexes are usable given this set of profiles.
4926 	 */
4927 	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4928 		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4929 			  ICE_MAX_NUM_RECIPES);
4930 		bitmap_and(possible_idx, possible_idx,
4931 			   hw->switch_info->prof_res_bm[bit],
4932 			   ICE_MAX_FV_WORDS);
4933 	}
4934 
4935 	/* For each recipe that our new recipe may collide with, determine
4936 	 * which indexes have been used.
4937 	 */
4938 	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4939 		bitmap_or(used_idx, used_idx,
4940 			  hw->switch_info->recp_list[bit].res_idxs,
4941 			  ICE_MAX_FV_WORDS);
4942 
4943 	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4944 
4945 	/* return number of free indexes */
4946 	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4947 }
4948 
4949 /**
4950  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4951  * @hw: pointer to hardware structure
4952  * @rm: recipe management list entry
4953  * @profiles: bitmap of profiles that will be associated.
4954  */
4955 static int
4956 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4957 		  unsigned long *profiles)
4958 {
4959 	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4960 	struct ice_aqc_recipe_content *content;
4961 	struct ice_aqc_recipe_data_elem *tmp;
4962 	struct ice_aqc_recipe_data_elem *buf;
4963 	struct ice_recp_grp_entry *entry;
4964 	u16 free_res_idx;
4965 	u16 recipe_count;
4966 	u8 chain_idx;
4967 	u8 recps = 0;
4968 	int status;
4969 
4970 	/* When more than one recipe are required, another recipe is needed to
4971 	 * chain them together. Matching a tunnel metadata ID takes up one of
4972 	 * the match fields in the chaining recipe reducing the number of
4973 	 * chained recipes by one.
4974 	 */
4975 	 /* check number of free result indices */
4976 	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4977 	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4978 
4979 	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4980 		  free_res_idx, rm->n_grp_count);
4981 
4982 	if (rm->n_grp_count > 1) {
4983 		if (rm->n_grp_count > free_res_idx)
4984 			return -ENOSPC;
4985 
4986 		rm->n_grp_count++;
4987 	}
4988 
4989 	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4990 		return -ENOSPC;
4991 
4992 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4993 	if (!tmp)
4994 		return -ENOMEM;
4995 
4996 	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4997 			   GFP_KERNEL);
4998 	if (!buf) {
4999 		status = -ENOMEM;
5000 		goto err_mem;
5001 	}
5002 
5003 	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5004 	recipe_count = ICE_MAX_NUM_RECIPES;
5005 	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
5006 				   NULL);
5007 	if (status || recipe_count == 0)
5008 		goto err_unroll;
5009 
5010 	/* Allocate the recipe resources, and configure them according to the
5011 	 * match fields from protocol headers and extracted field vectors.
5012 	 */
5013 	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5014 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5015 		u8 i;
5016 
5017 		status = ice_alloc_recipe(hw, &entry->rid);
5018 		if (status)
5019 			goto err_unroll;
5020 
5021 		content = &buf[recps].content;
5022 
5023 		/* Clear the result index of the located recipe, as this will be
5024 		 * updated, if needed, later in the recipe creation process.
5025 		 */
5026 		tmp[0].content.result_indx = 0;
5027 
5028 		buf[recps] = tmp[0];
5029 		buf[recps].recipe_indx = (u8)entry->rid;
5030 		/* if the recipe is a non-root recipe RID should be programmed
5031 		 * as 0 for the rules to be applied correctly.
5032 		 */
5033 		content->rid = 0;
5034 		memset(&content->lkup_indx, 0,
5035 		       sizeof(content->lkup_indx));
5036 
5037 		/* All recipes use look-up index 0 to match switch ID. */
5038 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5039 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5040 		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
5041 		 * to be 0
5042 		 */
5043 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5044 			content->lkup_indx[i] = 0x80;
5045 			content->mask[i] = 0;
5046 		}
5047 
5048 		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5049 			content->lkup_indx[i + 1] = entry->fv_idx[i];
5050 			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5051 		}
5052 
5053 		if (rm->n_grp_count > 1) {
5054 			/* Checks to see if there really is a valid result index
5055 			 * that can be used.
5056 			 */
5057 			if (chain_idx >= ICE_MAX_FV_WORDS) {
5058 				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5059 				status = -ENOSPC;
5060 				goto err_unroll;
5061 			}
5062 
5063 			entry->chain_idx = chain_idx;
5064 			content->result_indx =
5065 				ICE_AQ_RECIPE_RESULT_EN |
5066 				((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
5067 				 ICE_AQ_RECIPE_RESULT_DATA_M);
5068 			clear_bit(chain_idx, result_idx_bm);
5069 			chain_idx = find_first_bit(result_idx_bm,
5070 						   ICE_MAX_FV_WORDS);
5071 		}
5072 
5073 		/* fill recipe dependencies */
5074 		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5075 			    ICE_MAX_NUM_RECIPES);
5076 		set_bit(buf[recps].recipe_indx,
5077 			(unsigned long *)buf[recps].recipe_bitmap);
5078 		content->act_ctrl_fwd_priority = rm->priority;
5079 
5080 		if (rm->need_pass_l2)
5081 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5082 
5083 		if (rm->allow_pass_l2)
5084 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5085 		recps++;
5086 	}
5087 
5088 	if (rm->n_grp_count == 1) {
5089 		rm->root_rid = buf[0].recipe_indx;
5090 		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5091 		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5092 		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5093 			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5094 			       sizeof(buf[0].recipe_bitmap));
5095 		} else {
5096 			status = -EINVAL;
5097 			goto err_unroll;
5098 		}
5099 		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5100 		 * the recipe which is getting created if specified
5101 		 * by user. Usually any advanced switch filter, which results
5102 		 * into new extraction sequence, ended up creating a new recipe
5103 		 * of type ROOT and usually recipes are associated with profiles
5104 		 * Switch rule referreing newly created recipe, needs to have
5105 		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5106 		 * evaluation will not happen correctly. In other words, if
5107 		 * switch rule to be evaluated on priority basis, then recipe
5108 		 * needs to have priority, otherwise it will be evaluated last.
5109 		 */
5110 		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5111 	} else {
5112 		struct ice_recp_grp_entry *last_chain_entry;
5113 		u16 rid, i;
5114 
5115 		/* Allocate the last recipe that will chain the outcomes of the
5116 		 * other recipes together
5117 		 */
5118 		status = ice_alloc_recipe(hw, &rid);
5119 		if (status)
5120 			goto err_unroll;
5121 
5122 		content = &buf[recps].content;
5123 
5124 		buf[recps].recipe_indx = (u8)rid;
5125 		content->rid = (u8)rid;
5126 		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5127 		/* the new entry created should also be part of rg_list to
5128 		 * make sure we have complete recipe
5129 		 */
5130 		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5131 						sizeof(*last_chain_entry),
5132 						GFP_KERNEL);
5133 		if (!last_chain_entry) {
5134 			status = -ENOMEM;
5135 			goto err_unroll;
5136 		}
5137 		last_chain_entry->rid = rid;
5138 		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5139 		/* All recipes use look-up index 0 to match switch ID. */
5140 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5141 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5142 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5143 			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5144 			content->mask[i] = 0;
5145 		}
5146 
5147 		i = 1;
5148 		/* update r_bitmap with the recp that is used for chaining */
5149 		set_bit(rid, rm->r_bitmap);
5150 		/* this is the recipe that chains all the other recipes so it
5151 		 * should not have a chaining ID to indicate the same
5152 		 */
5153 		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5154 		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5155 			last_chain_entry->fv_idx[i] = entry->chain_idx;
5156 			content->lkup_indx[i] = entry->chain_idx;
5157 			content->mask[i++] = cpu_to_le16(0xFFFF);
5158 			set_bit(entry->rid, rm->r_bitmap);
5159 		}
5160 		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5161 		if (sizeof(buf[recps].recipe_bitmap) >=
5162 		    sizeof(rm->r_bitmap)) {
5163 			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5164 			       sizeof(buf[recps].recipe_bitmap));
5165 		} else {
5166 			status = -EINVAL;
5167 			goto err_unroll;
5168 		}
5169 		content->act_ctrl_fwd_priority = rm->priority;
5170 
5171 		recps++;
5172 		rm->root_rid = (u8)rid;
5173 	}
5174 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5175 	if (status)
5176 		goto err_unroll;
5177 
5178 	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5179 	ice_release_change_lock(hw);
5180 	if (status)
5181 		goto err_unroll;
5182 
5183 	/* Every recipe that just got created add it to the recipe
5184 	 * book keeping list
5185 	 */
5186 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5187 		struct ice_switch_info *sw = hw->switch_info;
5188 		bool is_root, idx_found = false;
5189 		struct ice_sw_recipe *recp;
5190 		u16 idx, buf_idx = 0;
5191 
5192 		/* find buffer index for copying some data */
5193 		for (idx = 0; idx < rm->n_grp_count; idx++)
5194 			if (buf[idx].recipe_indx == entry->rid) {
5195 				buf_idx = idx;
5196 				idx_found = true;
5197 			}
5198 
5199 		if (!idx_found) {
5200 			status = -EIO;
5201 			goto err_unroll;
5202 		}
5203 
5204 		recp = &sw->recp_list[entry->rid];
5205 		is_root = (rm->root_rid == entry->rid);
5206 		recp->is_root = is_root;
5207 
5208 		recp->root_rid = entry->rid;
5209 		recp->big_recp = (is_root && rm->n_grp_count > 1);
5210 
5211 		memcpy(&recp->ext_words, entry->r_group.pairs,
5212 		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5213 
5214 		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5215 		       sizeof(recp->r_bitmap));
5216 
5217 		/* Copy non-result fv index values and masks to recipe. This
5218 		 * call will also update the result recipe bitmask.
5219 		 */
5220 		ice_collect_result_idx(&buf[buf_idx], recp);
5221 
5222 		/* for non-root recipes, also copy to the root, this allows
5223 		 * easier matching of a complete chained recipe
5224 		 */
5225 		if (!is_root)
5226 			ice_collect_result_idx(&buf[buf_idx],
5227 					       &sw->recp_list[rm->root_rid]);
5228 
5229 		recp->n_ext_words = entry->r_group.n_val_pairs;
5230 		recp->chain_idx = entry->chain_idx;
5231 		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5232 		recp->n_grp_count = rm->n_grp_count;
5233 		recp->tun_type = rm->tun_type;
5234 		recp->need_pass_l2 = rm->need_pass_l2;
5235 		recp->allow_pass_l2 = rm->allow_pass_l2;
5236 		recp->recp_created = true;
5237 	}
5238 	rm->root_buf = buf;
5239 	kfree(tmp);
5240 	return status;
5241 
5242 err_unroll:
5243 err_mem:
5244 	kfree(tmp);
5245 	devm_kfree(ice_hw_to_dev(hw), buf);
5246 	return status;
5247 }
5248 
5249 /**
5250  * ice_create_recipe_group - creates recipe group
5251  * @hw: pointer to hardware structure
5252  * @rm: recipe management list entry
5253  * @lkup_exts: lookup elements
5254  */
5255 static int
5256 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5257 			struct ice_prot_lkup_ext *lkup_exts)
5258 {
5259 	u8 recp_count = 0;
5260 	int status;
5261 
5262 	rm->n_grp_count = 0;
5263 
5264 	/* Create recipes for words that are marked not done by packing them
5265 	 * as best fit.
5266 	 */
5267 	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5268 					       &rm->rg_list, &recp_count);
5269 	if (!status) {
5270 		rm->n_grp_count += recp_count;
5271 		rm->n_ext_words = lkup_exts->n_val_words;
5272 		memcpy(&rm->ext_words, lkup_exts->fv_words,
5273 		       sizeof(rm->ext_words));
5274 		memcpy(rm->word_masks, lkup_exts->field_mask,
5275 		       sizeof(rm->word_masks));
5276 	}
5277 
5278 	return status;
5279 }
5280 
5281 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5282  * @hw: pointer to hardware structure
5283  * @rinfo: other information regarding the rule e.g. priority and action info
5284  * @bm: pointer to memory for returning the bitmap of field vectors
5285  */
5286 static void
5287 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5288 			 unsigned long *bm)
5289 {
5290 	enum ice_prof_type prof_type;
5291 
5292 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5293 
5294 	switch (rinfo->tun_type) {
5295 	case ICE_NON_TUN:
5296 		prof_type = ICE_PROF_NON_TUN;
5297 		break;
5298 	case ICE_ALL_TUNNELS:
5299 		prof_type = ICE_PROF_TUN_ALL;
5300 		break;
5301 	case ICE_SW_TUN_GENEVE:
5302 	case ICE_SW_TUN_VXLAN:
5303 		prof_type = ICE_PROF_TUN_UDP;
5304 		break;
5305 	case ICE_SW_TUN_NVGRE:
5306 		prof_type = ICE_PROF_TUN_GRE;
5307 		break;
5308 	case ICE_SW_TUN_GTPU:
5309 		prof_type = ICE_PROF_TUN_GTPU;
5310 		break;
5311 	case ICE_SW_TUN_GTPC:
5312 		prof_type = ICE_PROF_TUN_GTPC;
5313 		break;
5314 	case ICE_SW_TUN_AND_NON_TUN:
5315 	default:
5316 		prof_type = ICE_PROF_ALL;
5317 		break;
5318 	}
5319 
5320 	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5321 }
5322 
5323 /**
5324  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5325  * @hw: pointer to hardware structure
5326  * @lkups: lookup elements or match criteria for the advanced recipe, one
5327  *  structure per protocol header
5328  * @lkups_cnt: number of protocols
5329  * @rinfo: other information regarding the rule e.g. priority and action info
5330  * @rid: return the recipe ID of the recipe created
5331  */
5332 static int
5333 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5334 		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5335 {
5336 	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5337 	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5338 	struct ice_prot_lkup_ext *lkup_exts;
5339 	struct ice_recp_grp_entry *r_entry;
5340 	struct ice_sw_fv_list_entry *fvit;
5341 	struct ice_recp_grp_entry *r_tmp;
5342 	struct ice_sw_fv_list_entry *tmp;
5343 	struct ice_sw_recipe *rm;
5344 	int status = 0;
5345 	u8 i;
5346 
5347 	if (!lkups_cnt)
5348 		return -EINVAL;
5349 
5350 	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5351 	if (!lkup_exts)
5352 		return -ENOMEM;
5353 
5354 	/* Determine the number of words to be matched and if it exceeds a
5355 	 * recipe's restrictions
5356 	 */
5357 	for (i = 0; i < lkups_cnt; i++) {
5358 		u16 count;
5359 
5360 		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5361 			status = -EIO;
5362 			goto err_free_lkup_exts;
5363 		}
5364 
5365 		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5366 		if (!count) {
5367 			status = -EIO;
5368 			goto err_free_lkup_exts;
5369 		}
5370 	}
5371 
5372 	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5373 	if (!rm) {
5374 		status = -ENOMEM;
5375 		goto err_free_lkup_exts;
5376 	}
5377 
5378 	/* Get field vectors that contain fields extracted from all the protocol
5379 	 * headers being programmed.
5380 	 */
5381 	INIT_LIST_HEAD(&rm->fv_list);
5382 	INIT_LIST_HEAD(&rm->rg_list);
5383 
5384 	/* Get bitmap of field vectors (profiles) that are compatible with the
5385 	 * rule request; only these will be searched in the subsequent call to
5386 	 * ice_get_sw_fv_list.
5387 	 */
5388 	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5389 
5390 	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5391 	if (status)
5392 		goto err_unroll;
5393 
5394 	/* Group match words into recipes using preferred recipe grouping
5395 	 * criteria.
5396 	 */
5397 	status = ice_create_recipe_group(hw, rm, lkup_exts);
5398 	if (status)
5399 		goto err_unroll;
5400 
5401 	/* set the recipe priority if specified */
5402 	rm->priority = (u8)rinfo->priority;
5403 
5404 	rm->need_pass_l2 = rinfo->need_pass_l2;
5405 	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5406 
5407 	/* Find offsets from the field vector. Pick the first one for all the
5408 	 * recipes.
5409 	 */
5410 	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5411 	if (status)
5412 		goto err_unroll;
5413 
5414 	/* get bitmap of all profiles the recipe will be associated with */
5415 	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5416 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5417 		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5418 		set_bit((u16)fvit->profile_id, profiles);
5419 	}
5420 
5421 	/* Look for a recipe which matches our requested fv / mask list */
5422 	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5423 	if (*rid < ICE_MAX_NUM_RECIPES)
5424 		/* Success if found a recipe that match the existing criteria */
5425 		goto err_unroll;
5426 
5427 	rm->tun_type = rinfo->tun_type;
5428 	/* Recipe we need does not exist, add a recipe */
5429 	status = ice_add_sw_recipe(hw, rm, profiles);
5430 	if (status)
5431 		goto err_unroll;
5432 
5433 	/* Associate all the recipes created with all the profiles in the
5434 	 * common field vector.
5435 	 */
5436 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5437 		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5438 		u64 recp_assoc;
5439 		u16 j;
5440 
5441 		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5442 						      &recp_assoc, NULL);
5443 		if (status)
5444 			goto err_unroll;
5445 
5446 		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5447 		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5448 			  ICE_MAX_NUM_RECIPES);
5449 		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5450 		if (status)
5451 			goto err_unroll;
5452 
5453 		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5454 		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5455 						      recp_assoc, NULL);
5456 		ice_release_change_lock(hw);
5457 
5458 		if (status)
5459 			goto err_unroll;
5460 
5461 		/* Update profile to recipe bitmap array */
5462 		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5463 			    ICE_MAX_NUM_RECIPES);
5464 
5465 		/* Update recipe to profile bitmap array */
5466 		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5467 			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5468 	}
5469 
5470 	*rid = rm->root_rid;
5471 	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5472 	       sizeof(*lkup_exts));
5473 err_unroll:
5474 	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5475 		list_del(&r_entry->l_entry);
5476 		devm_kfree(ice_hw_to_dev(hw), r_entry);
5477 	}
5478 
5479 	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5480 		list_del(&fvit->list_entry);
5481 		devm_kfree(ice_hw_to_dev(hw), fvit);
5482 	}
5483 
5484 	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5485 	kfree(rm);
5486 
5487 err_free_lkup_exts:
5488 	kfree(lkup_exts);
5489 
5490 	return status;
5491 }
5492 
5493 /**
5494  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5495  *
5496  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5497  * @num_vlan: number of VLAN tags
5498  */
5499 static struct ice_dummy_pkt_profile *
5500 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5501 			  u32 num_vlan)
5502 {
5503 	struct ice_dummy_pkt_profile *profile;
5504 	struct ice_dummy_pkt_offsets *offsets;
5505 	u32 buf_len, off, etype_off, i;
5506 	u8 *pkt;
5507 
5508 	if (num_vlan < 1 || num_vlan > 2)
5509 		return ERR_PTR(-EINVAL);
5510 
5511 	off = num_vlan * VLAN_HLEN;
5512 
5513 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5514 		  dummy_pkt->offsets_len;
5515 	offsets = kzalloc(buf_len, GFP_KERNEL);
5516 	if (!offsets)
5517 		return ERR_PTR(-ENOMEM);
5518 
5519 	offsets[0] = dummy_pkt->offsets[0];
5520 	if (num_vlan == 2) {
5521 		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5522 		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5523 	} else if (num_vlan == 1) {
5524 		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5525 	}
5526 
5527 	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5528 		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5529 		offsets[i + num_vlan].offset =
5530 			dummy_pkt->offsets[i].offset + off;
5531 	}
5532 	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5533 
5534 	etype_off = dummy_pkt->offsets[1].offset;
5535 
5536 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5537 		  dummy_pkt->pkt_len;
5538 	pkt = kzalloc(buf_len, GFP_KERNEL);
5539 	if (!pkt) {
5540 		kfree(offsets);
5541 		return ERR_PTR(-ENOMEM);
5542 	}
5543 
5544 	memcpy(pkt, dummy_pkt->pkt, etype_off);
5545 	memcpy(pkt + etype_off,
5546 	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5547 	       off);
5548 	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5549 	       dummy_pkt->pkt_len - etype_off);
5550 
5551 	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5552 	if (!profile) {
5553 		kfree(offsets);
5554 		kfree(pkt);
5555 		return ERR_PTR(-ENOMEM);
5556 	}
5557 
5558 	profile->offsets = offsets;
5559 	profile->pkt = pkt;
5560 	profile->pkt_len = buf_len;
5561 	profile->match |= ICE_PKT_KMALLOC;
5562 
5563 	return profile;
5564 }
5565 
5566 /**
5567  * ice_find_dummy_packet - find dummy packet
5568  *
5569  * @lkups: lookup elements or match criteria for the advanced recipe, one
5570  *	   structure per protocol header
5571  * @lkups_cnt: number of protocols
5572  * @tun_type: tunnel type
5573  *
5574  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5575  */
5576 static const struct ice_dummy_pkt_profile *
5577 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5578 		      enum ice_sw_tunnel_type tun_type)
5579 {
5580 	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5581 	u32 match = 0, vlan_count = 0;
5582 	u16 i;
5583 
5584 	switch (tun_type) {
5585 	case ICE_SW_TUN_GTPC:
5586 		match |= ICE_PKT_TUN_GTPC;
5587 		break;
5588 	case ICE_SW_TUN_GTPU:
5589 		match |= ICE_PKT_TUN_GTPU;
5590 		break;
5591 	case ICE_SW_TUN_NVGRE:
5592 		match |= ICE_PKT_TUN_NVGRE;
5593 		break;
5594 	case ICE_SW_TUN_GENEVE:
5595 	case ICE_SW_TUN_VXLAN:
5596 		match |= ICE_PKT_TUN_UDP;
5597 		break;
5598 	default:
5599 		break;
5600 	}
5601 
5602 	for (i = 0; i < lkups_cnt; i++) {
5603 		if (lkups[i].type == ICE_UDP_ILOS)
5604 			match |= ICE_PKT_INNER_UDP;
5605 		else if (lkups[i].type == ICE_TCP_IL)
5606 			match |= ICE_PKT_INNER_TCP;
5607 		else if (lkups[i].type == ICE_IPV6_OFOS)
5608 			match |= ICE_PKT_OUTER_IPV6;
5609 		else if (lkups[i].type == ICE_VLAN_OFOS ||
5610 			 lkups[i].type == ICE_VLAN_EX)
5611 			vlan_count++;
5612 		else if (lkups[i].type == ICE_VLAN_IN)
5613 			vlan_count++;
5614 		else if (lkups[i].type == ICE_ETYPE_OL &&
5615 			 lkups[i].h_u.ethertype.ethtype_id ==
5616 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5617 			 lkups[i].m_u.ethertype.ethtype_id ==
5618 				cpu_to_be16(0xFFFF))
5619 			match |= ICE_PKT_OUTER_IPV6;
5620 		else if (lkups[i].type == ICE_ETYPE_IL &&
5621 			 lkups[i].h_u.ethertype.ethtype_id ==
5622 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5623 			 lkups[i].m_u.ethertype.ethtype_id ==
5624 				cpu_to_be16(0xFFFF))
5625 			match |= ICE_PKT_INNER_IPV6;
5626 		else if (lkups[i].type == ICE_IPV6_IL)
5627 			match |= ICE_PKT_INNER_IPV6;
5628 		else if (lkups[i].type == ICE_GTP_NO_PAY)
5629 			match |= ICE_PKT_GTP_NOPAY;
5630 		else if (lkups[i].type == ICE_PPPOE) {
5631 			match |= ICE_PKT_PPPOE;
5632 			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5633 			    htons(PPP_IPV6))
5634 				match |= ICE_PKT_OUTER_IPV6;
5635 		} else if (lkups[i].type == ICE_L2TPV3)
5636 			match |= ICE_PKT_L2TPV3;
5637 	}
5638 
5639 	while (ret->match && (match & ret->match) != ret->match)
5640 		ret++;
5641 
5642 	if (vlan_count != 0)
5643 		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5644 
5645 	return ret;
5646 }
5647 
5648 /**
5649  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5650  *
5651  * @lkups: lookup elements or match criteria for the advanced recipe, one
5652  *	   structure per protocol header
5653  * @lkups_cnt: number of protocols
5654  * @s_rule: stores rule information from the match criteria
5655  * @profile: dummy packet profile (the template, its size and header offsets)
5656  */
5657 static int
5658 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5659 			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5660 			  const struct ice_dummy_pkt_profile *profile)
5661 {
5662 	u8 *pkt;
5663 	u16 i;
5664 
5665 	/* Start with a packet with a pre-defined/dummy content. Then, fill
5666 	 * in the header values to be looked up or matched.
5667 	 */
5668 	pkt = s_rule->hdr_data;
5669 
5670 	memcpy(pkt, profile->pkt, profile->pkt_len);
5671 
5672 	for (i = 0; i < lkups_cnt; i++) {
5673 		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5674 		enum ice_protocol_type type;
5675 		u16 offset = 0, len = 0, j;
5676 		bool found = false;
5677 
5678 		/* find the start of this layer; it should be found since this
5679 		 * was already checked when search for the dummy packet
5680 		 */
5681 		type = lkups[i].type;
5682 		/* metadata isn't present in the packet */
5683 		if (type == ICE_HW_METADATA)
5684 			continue;
5685 
5686 		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5687 			if (type == offsets[j].type) {
5688 				offset = offsets[j].offset;
5689 				found = true;
5690 				break;
5691 			}
5692 		}
5693 		/* this should never happen in a correct calling sequence */
5694 		if (!found)
5695 			return -EINVAL;
5696 
5697 		switch (lkups[i].type) {
5698 		case ICE_MAC_OFOS:
5699 		case ICE_MAC_IL:
5700 			len = sizeof(struct ice_ether_hdr);
5701 			break;
5702 		case ICE_ETYPE_OL:
5703 		case ICE_ETYPE_IL:
5704 			len = sizeof(struct ice_ethtype_hdr);
5705 			break;
5706 		case ICE_VLAN_OFOS:
5707 		case ICE_VLAN_EX:
5708 		case ICE_VLAN_IN:
5709 			len = sizeof(struct ice_vlan_hdr);
5710 			break;
5711 		case ICE_IPV4_OFOS:
5712 		case ICE_IPV4_IL:
5713 			len = sizeof(struct ice_ipv4_hdr);
5714 			break;
5715 		case ICE_IPV6_OFOS:
5716 		case ICE_IPV6_IL:
5717 			len = sizeof(struct ice_ipv6_hdr);
5718 			break;
5719 		case ICE_TCP_IL:
5720 		case ICE_UDP_OF:
5721 		case ICE_UDP_ILOS:
5722 			len = sizeof(struct ice_l4_hdr);
5723 			break;
5724 		case ICE_SCTP_IL:
5725 			len = sizeof(struct ice_sctp_hdr);
5726 			break;
5727 		case ICE_NVGRE:
5728 			len = sizeof(struct ice_nvgre_hdr);
5729 			break;
5730 		case ICE_VXLAN:
5731 		case ICE_GENEVE:
5732 			len = sizeof(struct ice_udp_tnl_hdr);
5733 			break;
5734 		case ICE_GTP_NO_PAY:
5735 		case ICE_GTP:
5736 			len = sizeof(struct ice_udp_gtp_hdr);
5737 			break;
5738 		case ICE_PPPOE:
5739 			len = sizeof(struct ice_pppoe_hdr);
5740 			break;
5741 		case ICE_L2TPV3:
5742 			len = sizeof(struct ice_l2tpv3_sess_hdr);
5743 			break;
5744 		default:
5745 			return -EINVAL;
5746 		}
5747 
5748 		/* the length should be a word multiple */
5749 		if (len % ICE_BYTES_PER_WORD)
5750 			return -EIO;
5751 
5752 		/* We have the offset to the header start, the length, the
5753 		 * caller's header values and mask. Use this information to
5754 		 * copy the data into the dummy packet appropriately based on
5755 		 * the mask. Note that we need to only write the bits as
5756 		 * indicated by the mask to make sure we don't improperly write
5757 		 * over any significant packet data.
5758 		 */
5759 		for (j = 0; j < len / sizeof(u16); j++) {
5760 			u16 *ptr = (u16 *)(pkt + offset);
5761 			u16 mask = lkups[i].m_raw[j];
5762 
5763 			if (!mask)
5764 				continue;
5765 
5766 			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5767 		}
5768 	}
5769 
5770 	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5771 
5772 	return 0;
5773 }
5774 
5775 /**
5776  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5777  * @hw: pointer to the hardware structure
5778  * @tun_type: tunnel type
5779  * @pkt: dummy packet to fill in
5780  * @offsets: offset info for the dummy packet
5781  */
5782 static int
5783 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5784 			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5785 {
5786 	u16 open_port, i;
5787 
5788 	switch (tun_type) {
5789 	case ICE_SW_TUN_VXLAN:
5790 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5791 			return -EIO;
5792 		break;
5793 	case ICE_SW_TUN_GENEVE:
5794 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5795 			return -EIO;
5796 		break;
5797 	default:
5798 		/* Nothing needs to be done for this tunnel type */
5799 		return 0;
5800 	}
5801 
5802 	/* Find the outer UDP protocol header and insert the port number */
5803 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5804 		if (offsets[i].type == ICE_UDP_OF) {
5805 			struct ice_l4_hdr *hdr;
5806 			u16 offset;
5807 
5808 			offset = offsets[i].offset;
5809 			hdr = (struct ice_l4_hdr *)&pkt[offset];
5810 			hdr->dst_port = cpu_to_be16(open_port);
5811 
5812 			return 0;
5813 		}
5814 	}
5815 
5816 	return -EIO;
5817 }
5818 
5819 /**
5820  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5821  * @hw: pointer to hw structure
5822  * @vlan_type: VLAN tag type
5823  * @pkt: dummy packet to fill in
5824  * @offsets: offset info for the dummy packet
5825  */
5826 static int
5827 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5828 			 const struct ice_dummy_pkt_offsets *offsets)
5829 {
5830 	u16 i;
5831 
5832 	/* Check if there is something to do */
5833 	if (!vlan_type || !ice_is_dvm_ena(hw))
5834 		return 0;
5835 
5836 	/* Find VLAN header and insert VLAN TPID */
5837 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5838 		if (offsets[i].type == ICE_VLAN_OFOS ||
5839 		    offsets[i].type == ICE_VLAN_EX) {
5840 			struct ice_vlan_hdr *hdr;
5841 			u16 offset;
5842 
5843 			offset = offsets[i].offset;
5844 			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5845 			hdr->type = cpu_to_be16(vlan_type);
5846 
5847 			return 0;
5848 		}
5849 	}
5850 
5851 	return -EIO;
5852 }
5853 
5854 static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5855 			    const struct ice_adv_rule_info *second)
5856 {
5857 	return first->sw_act.flag == second->sw_act.flag &&
5858 	       first->tun_type == second->tun_type &&
5859 	       first->vlan_type == second->vlan_type &&
5860 	       first->src_vsi == second->src_vsi &&
5861 	       first->need_pass_l2 == second->need_pass_l2 &&
5862 	       first->allow_pass_l2 == second->allow_pass_l2;
5863 }
5864 
5865 /**
5866  * ice_find_adv_rule_entry - Search a rule entry
5867  * @hw: pointer to the hardware structure
5868  * @lkups: lookup elements or match criteria for the advanced recipe, one
5869  *	   structure per protocol header
5870  * @lkups_cnt: number of protocols
5871  * @recp_id: recipe ID for which we are finding the rule
5872  * @rinfo: other information regarding the rule e.g. priority and action info
5873  *
5874  * Helper function to search for a given advance rule entry
5875  * Returns pointer to entry storing the rule if found
5876  */
5877 static struct ice_adv_fltr_mgmt_list_entry *
5878 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5879 			u16 lkups_cnt, u16 recp_id,
5880 			struct ice_adv_rule_info *rinfo)
5881 {
5882 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5883 	struct ice_switch_info *sw = hw->switch_info;
5884 	int i;
5885 
5886 	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5887 			    list_entry) {
5888 		bool lkups_matched = true;
5889 
5890 		if (lkups_cnt != list_itr->lkups_cnt)
5891 			continue;
5892 		for (i = 0; i < list_itr->lkups_cnt; i++)
5893 			if (memcmp(&list_itr->lkups[i], &lkups[i],
5894 				   sizeof(*lkups))) {
5895 				lkups_matched = false;
5896 				break;
5897 			}
5898 		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5899 		    lkups_matched)
5900 			return list_itr;
5901 	}
5902 	return NULL;
5903 }
5904 
5905 /**
5906  * ice_adv_add_update_vsi_list
5907  * @hw: pointer to the hardware structure
5908  * @m_entry: pointer to current adv filter management list entry
5909  * @cur_fltr: filter information from the book keeping entry
5910  * @new_fltr: filter information with the new VSI to be added
5911  *
5912  * Call AQ command to add or update previously created VSI list with new VSI.
5913  *
5914  * Helper function to do book keeping associated with adding filter information
5915  * The algorithm to do the booking keeping is described below :
5916  * When a VSI needs to subscribe to a given advanced filter
5917  *	if only one VSI has been added till now
5918  *		Allocate a new VSI list and add two VSIs
5919  *		to this list using switch rule command
5920  *		Update the previously created switch rule with the
5921  *		newly created VSI list ID
5922  *	if a VSI list was previously created
5923  *		Add the new VSI to the previously created VSI list set
5924  *		using the update switch rule command
5925  */
5926 static int
5927 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5928 			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5929 			    struct ice_adv_rule_info *cur_fltr,
5930 			    struct ice_adv_rule_info *new_fltr)
5931 {
5932 	u16 vsi_list_id = 0;
5933 	int status;
5934 
5935 	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5936 	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5937 	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5938 		return -EOPNOTSUPP;
5939 
5940 	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5941 	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5942 	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5943 	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5944 		return -EOPNOTSUPP;
5945 
5946 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5947 		 /* Only one entry existed in the mapping and it was not already
5948 		  * a part of a VSI list. So, create a VSI list with the old and
5949 		  * new VSIs.
5950 		  */
5951 		struct ice_fltr_info tmp_fltr;
5952 		u16 vsi_handle_arr[2];
5953 
5954 		/* A rule already exists with the new VSI being added */
5955 		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5956 		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5957 			return -EEXIST;
5958 
5959 		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5960 		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5961 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5962 						  &vsi_list_id,
5963 						  ICE_SW_LKUP_LAST);
5964 		if (status)
5965 			return status;
5966 
5967 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5968 		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5969 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5970 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5971 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5972 		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5973 
5974 		/* Update the previous switch rule of "forward to VSI" to
5975 		 * "fwd to VSI list"
5976 		 */
5977 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5978 		if (status)
5979 			return status;
5980 
5981 		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5982 		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5983 		m_entry->vsi_list_info =
5984 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5985 						vsi_list_id);
5986 	} else {
5987 		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5988 
5989 		if (!m_entry->vsi_list_info)
5990 			return -EIO;
5991 
5992 		/* A rule already exists with the new VSI being added */
5993 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5994 			return 0;
5995 
5996 		/* Update the previously created VSI list set with
5997 		 * the new VSI ID passed in
5998 		 */
5999 		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
6000 
6001 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
6002 						  vsi_list_id, false,
6003 						  ice_aqc_opc_update_sw_rules,
6004 						  ICE_SW_LKUP_LAST);
6005 		/* update VSI list mapping info with new VSI ID */
6006 		if (!status)
6007 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
6008 	}
6009 	if (!status)
6010 		m_entry->vsi_count++;
6011 	return status;
6012 }
6013 
6014 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6015 {
6016 	lkup->type = ICE_HW_METADATA;
6017 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6018 		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6019 }
6020 
6021 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6022 {
6023 	lkup->type = ICE_HW_METADATA;
6024 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6025 		cpu_to_be16(ICE_PKT_FROM_NETWORK);
6026 }
6027 
6028 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6029 {
6030 	lkup->type = ICE_HW_METADATA;
6031 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6032 		cpu_to_be16(ICE_PKT_VLAN_MASK);
6033 }
6034 
6035 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6036 {
6037 	lkup->type = ICE_HW_METADATA;
6038 	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6039 }
6040 
6041 /**
6042  * ice_add_adv_rule - helper function to create an advanced switch rule
6043  * @hw: pointer to the hardware structure
6044  * @lkups: information on the words that needs to be looked up. All words
6045  * together makes one recipe
6046  * @lkups_cnt: num of entries in the lkups array
6047  * @rinfo: other information related to the rule that needs to be programmed
6048  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6049  *               ignored is case of error.
6050  *
6051  * This function can program only 1 rule at a time. The lkups is used to
6052  * describe the all the words that forms the "lookup" portion of the recipe.
6053  * These words can span multiple protocols. Callers to this function need to
6054  * pass in a list of protocol headers with lookup information along and mask
6055  * that determines which words are valid from the given protocol header.
6056  * rinfo describes other information related to this rule such as forwarding
6057  * IDs, priority of this rule, etc.
6058  */
6059 int
6060 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6061 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6062 		 struct ice_rule_query_data *added_entry)
6063 {
6064 	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6065 	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6066 	const struct ice_dummy_pkt_profile *profile;
6067 	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6068 	struct list_head *rule_head;
6069 	struct ice_switch_info *sw;
6070 	u16 word_cnt;
6071 	u32 act = 0;
6072 	int status;
6073 	u8 q_rgn;
6074 
6075 	/* Initialize profile to result index bitmap */
6076 	if (!hw->switch_info->prof_res_bm_init) {
6077 		hw->switch_info->prof_res_bm_init = 1;
6078 		ice_init_prof_result_bm(hw);
6079 	}
6080 
6081 	if (!lkups_cnt)
6082 		return -EINVAL;
6083 
6084 	/* get # of words we need to match */
6085 	word_cnt = 0;
6086 	for (i = 0; i < lkups_cnt; i++) {
6087 		u16 j;
6088 
6089 		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6090 			if (lkups[i].m_raw[j])
6091 				word_cnt++;
6092 	}
6093 
6094 	if (!word_cnt)
6095 		return -EINVAL;
6096 
6097 	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6098 		return -ENOSPC;
6099 
6100 	/* locate a dummy packet */
6101 	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6102 	if (IS_ERR(profile))
6103 		return PTR_ERR(profile);
6104 
6105 	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6106 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6107 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6108 	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6109 	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6110 		status = -EIO;
6111 		goto free_pkt_profile;
6112 	}
6113 
6114 	vsi_handle = rinfo->sw_act.vsi_handle;
6115 	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6116 		status =  -EINVAL;
6117 		goto free_pkt_profile;
6118 	}
6119 
6120 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6121 	    rinfo->sw_act.fltr_act == ICE_NOP)
6122 		rinfo->sw_act.fwd_id.hw_vsi_id =
6123 			ice_get_hw_vsi_num(hw, vsi_handle);
6124 
6125 	if (rinfo->src_vsi)
6126 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6127 	else
6128 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6129 
6130 	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6131 	if (status)
6132 		goto free_pkt_profile;
6133 	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6134 	if (m_entry) {
6135 		/* we have to add VSI to VSI_LIST and increment vsi_count.
6136 		 * Also Update VSI list so that we can change forwarding rule
6137 		 * if the rule already exists, we will check if it exists with
6138 		 * same vsi_id, if not then add it to the VSI list if it already
6139 		 * exists if not then create a VSI list and add the existing VSI
6140 		 * ID and the new VSI ID to the list
6141 		 * We will add that VSI to the list
6142 		 */
6143 		status = ice_adv_add_update_vsi_list(hw, m_entry,
6144 						     &m_entry->rule_info,
6145 						     rinfo);
6146 		if (added_entry) {
6147 			added_entry->rid = rid;
6148 			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6149 			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6150 		}
6151 		goto free_pkt_profile;
6152 	}
6153 	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6154 	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6155 	if (!s_rule) {
6156 		status = -ENOMEM;
6157 		goto free_pkt_profile;
6158 	}
6159 	if (!rinfo->flags_info.act_valid) {
6160 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
6161 		act |= ICE_SINGLE_ACT_LB_ENABLE;
6162 	} else {
6163 		act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6164 						ICE_SINGLE_ACT_LB_ENABLE);
6165 	}
6166 
6167 	switch (rinfo->sw_act.fltr_act) {
6168 	case ICE_FWD_TO_VSI:
6169 		act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6170 			ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6171 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6172 		break;
6173 	case ICE_FWD_TO_Q:
6174 		act |= ICE_SINGLE_ACT_TO_Q;
6175 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6176 		       ICE_SINGLE_ACT_Q_INDEX_M;
6177 		break;
6178 	case ICE_FWD_TO_QGRP:
6179 		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6180 			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6181 		act |= ICE_SINGLE_ACT_TO_Q;
6182 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6183 		       ICE_SINGLE_ACT_Q_INDEX_M;
6184 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6185 		       ICE_SINGLE_ACT_Q_REGION_M;
6186 		break;
6187 	case ICE_DROP_PACKET:
6188 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6189 		       ICE_SINGLE_ACT_VALID_BIT;
6190 		break;
6191 	case ICE_NOP:
6192 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6193 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6194 		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6195 		break;
6196 	default:
6197 		status = -EIO;
6198 		goto err_ice_add_adv_rule;
6199 	}
6200 
6201 	/* If there is no matching criteria for direction there
6202 	 * is only one difference between Rx and Tx:
6203 	 * - get switch id base on VSI number from source field (Tx)
6204 	 * - get switch id base on port number (Rx)
6205 	 *
6206 	 * If matching on direction metadata is chose rule direction is
6207 	 * extracted from type value set here.
6208 	 */
6209 	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6210 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6211 		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6212 	} else {
6213 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6214 		s_rule->src = cpu_to_le16(hw->port_info->lport);
6215 	}
6216 
6217 	s_rule->recipe_id = cpu_to_le16(rid);
6218 	s_rule->act = cpu_to_le32(act);
6219 
6220 	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6221 	if (status)
6222 		goto err_ice_add_adv_rule;
6223 
6224 	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6225 					 profile->offsets);
6226 	if (status)
6227 		goto err_ice_add_adv_rule;
6228 
6229 	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6230 					  s_rule->hdr_data,
6231 					  profile->offsets);
6232 	if (status)
6233 		goto err_ice_add_adv_rule;
6234 
6235 	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6236 				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6237 				 NULL);
6238 	if (status)
6239 		goto err_ice_add_adv_rule;
6240 	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6241 				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6242 				GFP_KERNEL);
6243 	if (!adv_fltr) {
6244 		status = -ENOMEM;
6245 		goto err_ice_add_adv_rule;
6246 	}
6247 
6248 	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6249 				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6250 	if (!adv_fltr->lkups) {
6251 		status = -ENOMEM;
6252 		goto err_ice_add_adv_rule;
6253 	}
6254 
6255 	adv_fltr->lkups_cnt = lkups_cnt;
6256 	adv_fltr->rule_info = *rinfo;
6257 	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6258 	sw = hw->switch_info;
6259 	sw->recp_list[rid].adv_rule = true;
6260 	rule_head = &sw->recp_list[rid].filt_rules;
6261 
6262 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6263 		adv_fltr->vsi_count = 1;
6264 
6265 	/* Add rule entry to book keeping list */
6266 	list_add(&adv_fltr->list_entry, rule_head);
6267 	if (added_entry) {
6268 		added_entry->rid = rid;
6269 		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6270 		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6271 	}
6272 err_ice_add_adv_rule:
6273 	if (status && adv_fltr) {
6274 		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6275 		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6276 	}
6277 
6278 	kfree(s_rule);
6279 
6280 free_pkt_profile:
6281 	if (profile->match & ICE_PKT_KMALLOC) {
6282 		kfree(profile->offsets);
6283 		kfree(profile->pkt);
6284 		kfree(profile);
6285 	}
6286 
6287 	return status;
6288 }
6289 
6290 /**
6291  * ice_replay_vsi_fltr - Replay filters for requested VSI
6292  * @hw: pointer to the hardware structure
6293  * @vsi_handle: driver VSI handle
6294  * @recp_id: Recipe ID for which rules need to be replayed
6295  * @list_head: list for which filters need to be replayed
6296  *
6297  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6298  * It is required to pass valid VSI handle.
6299  */
6300 static int
6301 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6302 		    struct list_head *list_head)
6303 {
6304 	struct ice_fltr_mgmt_list_entry *itr;
6305 	int status = 0;
6306 	u16 hw_vsi_id;
6307 
6308 	if (list_empty(list_head))
6309 		return status;
6310 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6311 
6312 	list_for_each_entry(itr, list_head, list_entry) {
6313 		struct ice_fltr_list_entry f_entry;
6314 
6315 		f_entry.fltr_info = itr->fltr_info;
6316 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6317 		    itr->fltr_info.vsi_handle == vsi_handle) {
6318 			/* update the src in case it is VSI num */
6319 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6320 				f_entry.fltr_info.src = hw_vsi_id;
6321 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6322 			if (status)
6323 				goto end;
6324 			continue;
6325 		}
6326 		if (!itr->vsi_list_info ||
6327 		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6328 			continue;
6329 		/* Clearing it so that the logic can add it back */
6330 		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6331 		f_entry.fltr_info.vsi_handle = vsi_handle;
6332 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6333 		/* update the src in case it is VSI num */
6334 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6335 			f_entry.fltr_info.src = hw_vsi_id;
6336 		if (recp_id == ICE_SW_LKUP_VLAN)
6337 			status = ice_add_vlan_internal(hw, &f_entry);
6338 		else
6339 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6340 		if (status)
6341 			goto end;
6342 	}
6343 end:
6344 	return status;
6345 }
6346 
6347 /**
6348  * ice_adv_rem_update_vsi_list
6349  * @hw: pointer to the hardware structure
6350  * @vsi_handle: VSI handle of the VSI to remove
6351  * @fm_list: filter management entry for which the VSI list management needs to
6352  *	     be done
6353  */
6354 static int
6355 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6356 			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6357 {
6358 	struct ice_vsi_list_map_info *vsi_list_info;
6359 	enum ice_sw_lkup_type lkup_type;
6360 	u16 vsi_list_id;
6361 	int status;
6362 
6363 	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6364 	    fm_list->vsi_count == 0)
6365 		return -EINVAL;
6366 
6367 	/* A rule with the VSI being removed does not exist */
6368 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6369 		return -ENOENT;
6370 
6371 	lkup_type = ICE_SW_LKUP_LAST;
6372 	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6373 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6374 					  ice_aqc_opc_update_sw_rules,
6375 					  lkup_type);
6376 	if (status)
6377 		return status;
6378 
6379 	fm_list->vsi_count--;
6380 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6381 	vsi_list_info = fm_list->vsi_list_info;
6382 	if (fm_list->vsi_count == 1) {
6383 		struct ice_fltr_info tmp_fltr;
6384 		u16 rem_vsi_handle;
6385 
6386 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6387 						ICE_MAX_VSI);
6388 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6389 			return -EIO;
6390 
6391 		/* Make sure VSI list is empty before removing it below */
6392 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6393 						  vsi_list_id, true,
6394 						  ice_aqc_opc_update_sw_rules,
6395 						  lkup_type);
6396 		if (status)
6397 			return status;
6398 
6399 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6400 		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6401 		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6402 		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6403 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6404 		tmp_fltr.fwd_id.hw_vsi_id =
6405 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6406 		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6407 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6408 		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6409 
6410 		/* Update the previous switch rule of "MAC forward to VSI" to
6411 		 * "MAC fwd to VSI list"
6412 		 */
6413 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6414 		if (status) {
6415 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6416 				  tmp_fltr.fwd_id.hw_vsi_id, status);
6417 			return status;
6418 		}
6419 		fm_list->vsi_list_info->ref_cnt--;
6420 
6421 		/* Remove the VSI list since it is no longer used */
6422 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6423 		if (status) {
6424 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6425 				  vsi_list_id, status);
6426 			return status;
6427 		}
6428 
6429 		list_del(&vsi_list_info->list_entry);
6430 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6431 		fm_list->vsi_list_info = NULL;
6432 	}
6433 
6434 	return status;
6435 }
6436 
6437 /**
6438  * ice_rem_adv_rule - removes existing advanced switch rule
6439  * @hw: pointer to the hardware structure
6440  * @lkups: information on the words that needs to be looked up. All words
6441  *         together makes one recipe
6442  * @lkups_cnt: num of entries in the lkups array
6443  * @rinfo: Its the pointer to the rule information for the rule
6444  *
6445  * This function can be used to remove 1 rule at a time. The lkups is
6446  * used to describe all the words that forms the "lookup" portion of the
6447  * rule. These words can span multiple protocols. Callers to this function
6448  * need to pass in a list of protocol headers with lookup information along
6449  * and mask that determines which words are valid from the given protocol
6450  * header. rinfo describes other information related to this rule such as
6451  * forwarding IDs, priority of this rule, etc.
6452  */
6453 static int
6454 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6455 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6456 {
6457 	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6458 	struct ice_prot_lkup_ext lkup_exts;
6459 	bool remove_rule = false;
6460 	struct mutex *rule_lock; /* Lock to protect filter rule list */
6461 	u16 i, rid, vsi_handle;
6462 	int status = 0;
6463 
6464 	memset(&lkup_exts, 0, sizeof(lkup_exts));
6465 	for (i = 0; i < lkups_cnt; i++) {
6466 		u16 count;
6467 
6468 		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6469 			return -EIO;
6470 
6471 		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6472 		if (!count)
6473 			return -EIO;
6474 	}
6475 
6476 	rid = ice_find_recp(hw, &lkup_exts, rinfo);
6477 	/* If did not find a recipe that match the existing criteria */
6478 	if (rid == ICE_MAX_NUM_RECIPES)
6479 		return -EINVAL;
6480 
6481 	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6482 	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6483 	/* the rule is already removed */
6484 	if (!list_elem)
6485 		return 0;
6486 	mutex_lock(rule_lock);
6487 	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6488 		remove_rule = true;
6489 	} else if (list_elem->vsi_count > 1) {
6490 		remove_rule = false;
6491 		vsi_handle = rinfo->sw_act.vsi_handle;
6492 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6493 	} else {
6494 		vsi_handle = rinfo->sw_act.vsi_handle;
6495 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6496 		if (status) {
6497 			mutex_unlock(rule_lock);
6498 			return status;
6499 		}
6500 		if (list_elem->vsi_count == 0)
6501 			remove_rule = true;
6502 	}
6503 	mutex_unlock(rule_lock);
6504 	if (remove_rule) {
6505 		struct ice_sw_rule_lkup_rx_tx *s_rule;
6506 		u16 rule_buf_sz;
6507 
6508 		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6509 		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6510 		if (!s_rule)
6511 			return -ENOMEM;
6512 		s_rule->act = 0;
6513 		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6514 		s_rule->hdr_len = 0;
6515 		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6516 					 rule_buf_sz, 1,
6517 					 ice_aqc_opc_remove_sw_rules, NULL);
6518 		if (!status || status == -ENOENT) {
6519 			struct ice_switch_info *sw = hw->switch_info;
6520 
6521 			mutex_lock(rule_lock);
6522 			list_del(&list_elem->list_entry);
6523 			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6524 			devm_kfree(ice_hw_to_dev(hw), list_elem);
6525 			mutex_unlock(rule_lock);
6526 			if (list_empty(&sw->recp_list[rid].filt_rules))
6527 				sw->recp_list[rid].adv_rule = false;
6528 		}
6529 		kfree(s_rule);
6530 	}
6531 	return status;
6532 }
6533 
6534 /**
6535  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6536  * @hw: pointer to the hardware structure
6537  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6538  *
6539  * This function is used to remove 1 rule at a time. The removal is based on
6540  * the remove_entry parameter. This function will remove rule for a given
6541  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6542  */
6543 int
6544 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6545 		       struct ice_rule_query_data *remove_entry)
6546 {
6547 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6548 	struct list_head *list_head;
6549 	struct ice_adv_rule_info rinfo;
6550 	struct ice_switch_info *sw;
6551 
6552 	sw = hw->switch_info;
6553 	if (!sw->recp_list[remove_entry->rid].recp_created)
6554 		return -EINVAL;
6555 	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6556 	list_for_each_entry(list_itr, list_head, list_entry) {
6557 		if (list_itr->rule_info.fltr_rule_id ==
6558 		    remove_entry->rule_id) {
6559 			rinfo = list_itr->rule_info;
6560 			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6561 			return ice_rem_adv_rule(hw, list_itr->lkups,
6562 						list_itr->lkups_cnt, &rinfo);
6563 		}
6564 	}
6565 	/* either list is empty or unable to find rule */
6566 	return -ENOENT;
6567 }
6568 
6569 /**
6570  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6571  * @hw: pointer to the hardware structure
6572  * @vsi_handle: driver VSI handle
6573  * @list_head: list for which filters need to be replayed
6574  *
6575  * Replay the advanced rule for the given VSI.
6576  */
6577 static int
6578 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6579 			struct list_head *list_head)
6580 {
6581 	struct ice_rule_query_data added_entry = { 0 };
6582 	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6583 	int status = 0;
6584 
6585 	if (list_empty(list_head))
6586 		return status;
6587 	list_for_each_entry(adv_fltr, list_head, list_entry) {
6588 		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6589 		u16 lk_cnt = adv_fltr->lkups_cnt;
6590 
6591 		if (vsi_handle != rinfo->sw_act.vsi_handle)
6592 			continue;
6593 		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6594 					  &added_entry);
6595 		if (status)
6596 			break;
6597 	}
6598 	return status;
6599 }
6600 
6601 /**
6602  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6603  * @hw: pointer to the hardware structure
6604  * @vsi_handle: driver VSI handle
6605  *
6606  * Replays filters for requested VSI via vsi_handle.
6607  */
6608 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6609 {
6610 	struct ice_switch_info *sw = hw->switch_info;
6611 	int status;
6612 	u8 i;
6613 
6614 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6615 		struct list_head *head;
6616 
6617 		head = &sw->recp_list[i].filt_replay_rules;
6618 		if (!sw->recp_list[i].adv_rule)
6619 			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6620 		else
6621 			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6622 		if (status)
6623 			return status;
6624 	}
6625 	return status;
6626 }
6627 
6628 /**
6629  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6630  * @hw: pointer to the HW struct
6631  *
6632  * Deletes the filter replay rules.
6633  */
6634 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6635 {
6636 	struct ice_switch_info *sw = hw->switch_info;
6637 	u8 i;
6638 
6639 	if (!sw)
6640 		return;
6641 
6642 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6643 		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6644 			struct list_head *l_head;
6645 
6646 			l_head = &sw->recp_list[i].filt_replay_rules;
6647 			if (!sw->recp_list[i].adv_rule)
6648 				ice_rem_sw_rule_info(hw, l_head);
6649 			else
6650 				ice_rem_adv_rule_info(hw, l_head);
6651 		}
6652 	}
6653 }
6654