1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_lib.h" 5 #include "ice_switch.h" 6 7 #define ICE_ETH_DA_OFFSET 0 8 #define ICE_ETH_ETHTYPE_OFFSET 12 9 #define ICE_ETH_VLAN_TCI_OFFSET 14 10 #define ICE_MAX_VLAN_ID 0xFFF 11 #define ICE_IPV6_ETHER_ID 0x86DD 12 13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 14 * struct to configure any switch filter rules. 15 * {DA (6 bytes), SA(6 bytes), 16 * Ether type (2 bytes for header without VLAN tag) OR 17 * VLAN tag (4 bytes for header with VLAN tag) } 18 * 19 * Word on Hardcoded values 20 * byte 0 = 0x2: to identify it as locally administered DA MAC 21 * byte 6 = 0x2: to identify it as locally administered SA MAC 22 * byte 12 = 0x81 & byte 13 = 0x00: 23 * In case of VLAN filter first two bytes defines ether type (0x8100) 24 * and remaining two bytes are placeholder for programming a given VLAN ID 25 * In case of Ether type filter it is treated as header without VLAN tag 26 * and byte 12 and 13 is used to program a given Ether type instead 27 */ 28 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 29 0x2, 0, 0, 0, 0, 0, 30 0x81, 0, 0, 0}; 31 32 enum { 33 ICE_PKT_OUTER_IPV6 = BIT(0), 34 ICE_PKT_TUN_GTPC = BIT(1), 35 ICE_PKT_TUN_GTPU = BIT(2), 36 ICE_PKT_TUN_NVGRE = BIT(3), 37 ICE_PKT_TUN_UDP = BIT(4), 38 ICE_PKT_INNER_IPV6 = BIT(5), 39 ICE_PKT_INNER_TCP = BIT(6), 40 ICE_PKT_INNER_UDP = BIT(7), 41 ICE_PKT_GTP_NOPAY = BIT(8), 42 ICE_PKT_KMALLOC = BIT(9), 43 ICE_PKT_PPPOE = BIT(10), 44 ICE_PKT_L2TPV3 = BIT(11), 45 }; 46 47 struct ice_dummy_pkt_offsets { 48 enum ice_protocol_type type; 49 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */ 50 }; 51 52 struct ice_dummy_pkt_profile { 53 const struct ice_dummy_pkt_offsets *offsets; 54 const u8 *pkt; 55 u32 match; 56 u16 pkt_len; 57 u16 offsets_len; 58 }; 59 60 #define ICE_DECLARE_PKT_OFFSETS(type) \ 61 static const struct ice_dummy_pkt_offsets \ 62 ice_dummy_##type##_packet_offsets[] 63 64 #define ICE_DECLARE_PKT_TEMPLATE(type) \ 65 static const u8 ice_dummy_##type##_packet[] 66 67 #define ICE_PKT_PROFILE(type, m) { \ 68 .match = (m), \ 69 .pkt = ice_dummy_##type##_packet, \ 70 .pkt_len = sizeof(ice_dummy_##type##_packet), \ 71 .offsets = ice_dummy_##type##_packet_offsets, \ 72 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \ 73 } 74 75 ICE_DECLARE_PKT_OFFSETS(vlan) = { 76 { ICE_VLAN_OFOS, 12 }, 77 }; 78 79 ICE_DECLARE_PKT_TEMPLATE(vlan) = { 80 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */ 81 }; 82 83 ICE_DECLARE_PKT_OFFSETS(qinq) = { 84 { ICE_VLAN_EX, 12 }, 85 { ICE_VLAN_IN, 16 }, 86 }; 87 88 ICE_DECLARE_PKT_TEMPLATE(qinq) = { 89 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */ 90 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */ 91 }; 92 93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = { 94 { ICE_MAC_OFOS, 0 }, 95 { ICE_ETYPE_OL, 12 }, 96 { ICE_IPV4_OFOS, 14 }, 97 { ICE_NVGRE, 34 }, 98 { ICE_MAC_IL, 42 }, 99 { ICE_ETYPE_IL, 54 }, 100 { ICE_IPV4_IL, 56 }, 101 { ICE_TCP_IL, 76 }, 102 { ICE_PROTOCOL_LAST, 0 }, 103 }; 104 105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = { 106 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 107 0x00, 0x00, 0x00, 0x00, 108 0x00, 0x00, 0x00, 0x00, 109 110 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 111 112 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 113 0x00, 0x00, 0x00, 0x00, 114 0x00, 0x2F, 0x00, 0x00, 115 0x00, 0x00, 0x00, 0x00, 116 0x00, 0x00, 0x00, 0x00, 117 118 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 119 0x00, 0x00, 0x00, 0x00, 120 121 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 122 0x00, 0x00, 0x00, 0x00, 123 0x00, 0x00, 0x00, 0x00, 124 125 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 126 127 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 128 0x00, 0x00, 0x00, 0x00, 129 0x00, 0x06, 0x00, 0x00, 130 0x00, 0x00, 0x00, 0x00, 131 0x00, 0x00, 0x00, 0x00, 132 133 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */ 134 0x00, 0x00, 0x00, 0x00, 135 0x00, 0x00, 0x00, 0x00, 136 0x50, 0x02, 0x20, 0x00, 137 0x00, 0x00, 0x00, 0x00 138 }; 139 140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = { 141 { ICE_MAC_OFOS, 0 }, 142 { ICE_ETYPE_OL, 12 }, 143 { ICE_IPV4_OFOS, 14 }, 144 { ICE_NVGRE, 34 }, 145 { ICE_MAC_IL, 42 }, 146 { ICE_ETYPE_IL, 54 }, 147 { ICE_IPV4_IL, 56 }, 148 { ICE_UDP_ILOS, 76 }, 149 { ICE_PROTOCOL_LAST, 0 }, 150 }; 151 152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = { 153 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 154 0x00, 0x00, 0x00, 0x00, 155 0x00, 0x00, 0x00, 0x00, 156 157 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 158 159 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 160 0x00, 0x00, 0x00, 0x00, 161 0x00, 0x2F, 0x00, 0x00, 162 0x00, 0x00, 0x00, 0x00, 163 0x00, 0x00, 0x00, 0x00, 164 165 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 166 0x00, 0x00, 0x00, 0x00, 167 168 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 169 0x00, 0x00, 0x00, 0x00, 170 0x00, 0x00, 0x00, 0x00, 171 172 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 173 174 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 175 0x00, 0x00, 0x00, 0x00, 176 0x00, 0x11, 0x00, 0x00, 177 0x00, 0x00, 0x00, 0x00, 178 0x00, 0x00, 0x00, 0x00, 179 180 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */ 181 0x00, 0x08, 0x00, 0x00, 182 }; 183 184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = { 185 { ICE_MAC_OFOS, 0 }, 186 { ICE_ETYPE_OL, 12 }, 187 { ICE_IPV4_OFOS, 14 }, 188 { ICE_UDP_OF, 34 }, 189 { ICE_VXLAN, 42 }, 190 { ICE_GENEVE, 42 }, 191 { ICE_VXLAN_GPE, 42 }, 192 { ICE_MAC_IL, 50 }, 193 { ICE_ETYPE_IL, 62 }, 194 { ICE_IPV4_IL, 64 }, 195 { ICE_TCP_IL, 84 }, 196 { ICE_PROTOCOL_LAST, 0 }, 197 }; 198 199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = { 200 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 201 0x00, 0x00, 0x00, 0x00, 202 0x00, 0x00, 0x00, 0x00, 203 204 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 205 206 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 207 0x00, 0x01, 0x00, 0x00, 208 0x40, 0x11, 0x00, 0x00, 209 0x00, 0x00, 0x00, 0x00, 210 0x00, 0x00, 0x00, 0x00, 211 212 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 213 0x00, 0x46, 0x00, 0x00, 214 215 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 216 0x00, 0x00, 0x00, 0x00, 217 218 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 219 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 221 222 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 223 224 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */ 225 0x00, 0x01, 0x00, 0x00, 226 0x40, 0x06, 0x00, 0x00, 227 0x00, 0x00, 0x00, 0x00, 228 0x00, 0x00, 0x00, 0x00, 229 230 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */ 231 0x00, 0x00, 0x00, 0x00, 232 0x00, 0x00, 0x00, 0x00, 233 0x50, 0x02, 0x20, 0x00, 234 0x00, 0x00, 0x00, 0x00 235 }; 236 237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = { 238 { ICE_MAC_OFOS, 0 }, 239 { ICE_ETYPE_OL, 12 }, 240 { ICE_IPV4_OFOS, 14 }, 241 { ICE_UDP_OF, 34 }, 242 { ICE_VXLAN, 42 }, 243 { ICE_GENEVE, 42 }, 244 { ICE_VXLAN_GPE, 42 }, 245 { ICE_MAC_IL, 50 }, 246 { ICE_ETYPE_IL, 62 }, 247 { ICE_IPV4_IL, 64 }, 248 { ICE_UDP_ILOS, 84 }, 249 { ICE_PROTOCOL_LAST, 0 }, 250 }; 251 252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = { 253 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 254 0x00, 0x00, 0x00, 0x00, 255 0x00, 0x00, 0x00, 0x00, 256 257 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 258 259 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */ 260 0x00, 0x01, 0x00, 0x00, 261 0x00, 0x11, 0x00, 0x00, 262 0x00, 0x00, 0x00, 0x00, 263 0x00, 0x00, 0x00, 0x00, 264 265 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 266 0x00, 0x3a, 0x00, 0x00, 267 268 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 269 0x00, 0x00, 0x00, 0x00, 270 271 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 272 0x00, 0x00, 0x00, 0x00, 273 0x00, 0x00, 0x00, 0x00, 274 275 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 276 277 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */ 278 0x00, 0x01, 0x00, 0x00, 279 0x00, 0x11, 0x00, 0x00, 280 0x00, 0x00, 0x00, 0x00, 281 0x00, 0x00, 0x00, 0x00, 282 283 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */ 284 0x00, 0x08, 0x00, 0x00, 285 }; 286 287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = { 288 { ICE_MAC_OFOS, 0 }, 289 { ICE_ETYPE_OL, 12 }, 290 { ICE_IPV4_OFOS, 14 }, 291 { ICE_NVGRE, 34 }, 292 { ICE_MAC_IL, 42 }, 293 { ICE_ETYPE_IL, 54 }, 294 { ICE_IPV6_IL, 56 }, 295 { ICE_TCP_IL, 96 }, 296 { ICE_PROTOCOL_LAST, 0 }, 297 }; 298 299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = { 300 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 301 0x00, 0x00, 0x00, 0x00, 302 0x00, 0x00, 0x00, 0x00, 303 304 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 305 306 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */ 307 0x00, 0x00, 0x00, 0x00, 308 0x00, 0x2F, 0x00, 0x00, 309 0x00, 0x00, 0x00, 0x00, 310 0x00, 0x00, 0x00, 0x00, 311 312 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 313 0x00, 0x00, 0x00, 0x00, 314 315 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 316 0x00, 0x00, 0x00, 0x00, 317 0x00, 0x00, 0x00, 0x00, 318 319 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 320 321 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 322 0x00, 0x08, 0x06, 0x40, 323 0x00, 0x00, 0x00, 0x00, 324 0x00, 0x00, 0x00, 0x00, 325 0x00, 0x00, 0x00, 0x00, 326 0x00, 0x00, 0x00, 0x00, 327 0x00, 0x00, 0x00, 0x00, 328 0x00, 0x00, 0x00, 0x00, 329 0x00, 0x00, 0x00, 0x00, 330 0x00, 0x00, 0x00, 0x00, 331 332 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */ 333 0x00, 0x00, 0x00, 0x00, 334 0x00, 0x00, 0x00, 0x00, 335 0x50, 0x02, 0x20, 0x00, 336 0x00, 0x00, 0x00, 0x00 337 }; 338 339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = { 340 { ICE_MAC_OFOS, 0 }, 341 { ICE_ETYPE_OL, 12 }, 342 { ICE_IPV4_OFOS, 14 }, 343 { ICE_NVGRE, 34 }, 344 { ICE_MAC_IL, 42 }, 345 { ICE_ETYPE_IL, 54 }, 346 { ICE_IPV6_IL, 56 }, 347 { ICE_UDP_ILOS, 96 }, 348 { ICE_PROTOCOL_LAST, 0 }, 349 }; 350 351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = { 352 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 353 0x00, 0x00, 0x00, 0x00, 354 0x00, 0x00, 0x00, 0x00, 355 356 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 357 358 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 359 0x00, 0x00, 0x00, 0x00, 360 0x00, 0x2F, 0x00, 0x00, 361 0x00, 0x00, 0x00, 0x00, 362 0x00, 0x00, 0x00, 0x00, 363 364 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 365 0x00, 0x00, 0x00, 0x00, 366 367 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 368 0x00, 0x00, 0x00, 0x00, 369 0x00, 0x00, 0x00, 0x00, 370 371 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 372 373 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 374 0x00, 0x08, 0x11, 0x40, 375 0x00, 0x00, 0x00, 0x00, 376 0x00, 0x00, 0x00, 0x00, 377 0x00, 0x00, 0x00, 0x00, 378 0x00, 0x00, 0x00, 0x00, 379 0x00, 0x00, 0x00, 0x00, 380 0x00, 0x00, 0x00, 0x00, 381 0x00, 0x00, 0x00, 0x00, 382 0x00, 0x00, 0x00, 0x00, 383 384 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */ 385 0x00, 0x08, 0x00, 0x00, 386 }; 387 388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = { 389 { ICE_MAC_OFOS, 0 }, 390 { ICE_ETYPE_OL, 12 }, 391 { ICE_IPV4_OFOS, 14 }, 392 { ICE_UDP_OF, 34 }, 393 { ICE_VXLAN, 42 }, 394 { ICE_GENEVE, 42 }, 395 { ICE_VXLAN_GPE, 42 }, 396 { ICE_MAC_IL, 50 }, 397 { ICE_ETYPE_IL, 62 }, 398 { ICE_IPV6_IL, 64 }, 399 { ICE_TCP_IL, 104 }, 400 { ICE_PROTOCOL_LAST, 0 }, 401 }; 402 403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = { 404 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 405 0x00, 0x00, 0x00, 0x00, 406 0x00, 0x00, 0x00, 0x00, 407 408 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 409 410 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */ 411 0x00, 0x01, 0x00, 0x00, 412 0x40, 0x11, 0x00, 0x00, 413 0x00, 0x00, 0x00, 0x00, 414 0x00, 0x00, 0x00, 0x00, 415 416 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 417 0x00, 0x5a, 0x00, 0x00, 418 419 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 420 0x00, 0x00, 0x00, 0x00, 421 422 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 423 0x00, 0x00, 0x00, 0x00, 424 0x00, 0x00, 0x00, 0x00, 425 426 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 427 428 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 429 0x00, 0x08, 0x06, 0x40, 430 0x00, 0x00, 0x00, 0x00, 431 0x00, 0x00, 0x00, 0x00, 432 0x00, 0x00, 0x00, 0x00, 433 0x00, 0x00, 0x00, 0x00, 434 0x00, 0x00, 0x00, 0x00, 435 0x00, 0x00, 0x00, 0x00, 436 0x00, 0x00, 0x00, 0x00, 437 0x00, 0x00, 0x00, 0x00, 438 439 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */ 440 0x00, 0x00, 0x00, 0x00, 441 0x00, 0x00, 0x00, 0x00, 442 0x50, 0x02, 0x20, 0x00, 443 0x00, 0x00, 0x00, 0x00 444 }; 445 446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = { 447 { ICE_MAC_OFOS, 0 }, 448 { ICE_ETYPE_OL, 12 }, 449 { ICE_IPV4_OFOS, 14 }, 450 { ICE_UDP_OF, 34 }, 451 { ICE_VXLAN, 42 }, 452 { ICE_GENEVE, 42 }, 453 { ICE_VXLAN_GPE, 42 }, 454 { ICE_MAC_IL, 50 }, 455 { ICE_ETYPE_IL, 62 }, 456 { ICE_IPV6_IL, 64 }, 457 { ICE_UDP_ILOS, 104 }, 458 { ICE_PROTOCOL_LAST, 0 }, 459 }; 460 461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = { 462 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 463 0x00, 0x00, 0x00, 0x00, 464 0x00, 0x00, 0x00, 0x00, 465 466 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 467 468 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */ 469 0x00, 0x01, 0x00, 0x00, 470 0x00, 0x11, 0x00, 0x00, 471 0x00, 0x00, 0x00, 0x00, 472 0x00, 0x00, 0x00, 0x00, 473 474 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 475 0x00, 0x4e, 0x00, 0x00, 476 477 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 478 0x00, 0x00, 0x00, 0x00, 479 480 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 481 0x00, 0x00, 0x00, 0x00, 482 0x00, 0x00, 0x00, 0x00, 483 484 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 485 486 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 487 0x00, 0x08, 0x11, 0x40, 488 0x00, 0x00, 0x00, 0x00, 489 0x00, 0x00, 0x00, 0x00, 490 0x00, 0x00, 0x00, 0x00, 491 0x00, 0x00, 0x00, 0x00, 492 0x00, 0x00, 0x00, 0x00, 493 0x00, 0x00, 0x00, 0x00, 494 0x00, 0x00, 0x00, 0x00, 495 0x00, 0x00, 0x00, 0x00, 496 497 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */ 498 0x00, 0x08, 0x00, 0x00, 499 }; 500 501 /* offset info for MAC + IPv4 + UDP dummy packet */ 502 ICE_DECLARE_PKT_OFFSETS(udp) = { 503 { ICE_MAC_OFOS, 0 }, 504 { ICE_ETYPE_OL, 12 }, 505 { ICE_IPV4_OFOS, 14 }, 506 { ICE_UDP_ILOS, 34 }, 507 { ICE_PROTOCOL_LAST, 0 }, 508 }; 509 510 /* Dummy packet for MAC + IPv4 + UDP */ 511 ICE_DECLARE_PKT_TEMPLATE(udp) = { 512 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 513 0x00, 0x00, 0x00, 0x00, 514 0x00, 0x00, 0x00, 0x00, 515 516 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 517 518 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */ 519 0x00, 0x01, 0x00, 0x00, 520 0x00, 0x11, 0x00, 0x00, 521 0x00, 0x00, 0x00, 0x00, 522 0x00, 0x00, 0x00, 0x00, 523 524 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */ 525 0x00, 0x08, 0x00, 0x00, 526 527 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 528 }; 529 530 /* offset info for MAC + IPv4 + TCP dummy packet */ 531 ICE_DECLARE_PKT_OFFSETS(tcp) = { 532 { ICE_MAC_OFOS, 0 }, 533 { ICE_ETYPE_OL, 12 }, 534 { ICE_IPV4_OFOS, 14 }, 535 { ICE_TCP_IL, 34 }, 536 { ICE_PROTOCOL_LAST, 0 }, 537 }; 538 539 /* Dummy packet for MAC + IPv4 + TCP */ 540 ICE_DECLARE_PKT_TEMPLATE(tcp) = { 541 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 542 0x00, 0x00, 0x00, 0x00, 543 0x00, 0x00, 0x00, 0x00, 544 545 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 546 547 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */ 548 0x00, 0x01, 0x00, 0x00, 549 0x00, 0x06, 0x00, 0x00, 550 0x00, 0x00, 0x00, 0x00, 551 0x00, 0x00, 0x00, 0x00, 552 553 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */ 554 0x00, 0x00, 0x00, 0x00, 555 0x00, 0x00, 0x00, 0x00, 556 0x50, 0x00, 0x00, 0x00, 557 0x00, 0x00, 0x00, 0x00, 558 559 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 560 }; 561 562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = { 563 { ICE_MAC_OFOS, 0 }, 564 { ICE_ETYPE_OL, 12 }, 565 { ICE_IPV6_OFOS, 14 }, 566 { ICE_TCP_IL, 54 }, 567 { ICE_PROTOCOL_LAST, 0 }, 568 }; 569 570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = { 571 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 572 0x00, 0x00, 0x00, 0x00, 573 0x00, 0x00, 0x00, 0x00, 574 575 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 576 577 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 578 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 579 0x00, 0x00, 0x00, 0x00, 580 0x00, 0x00, 0x00, 0x00, 581 0x00, 0x00, 0x00, 0x00, 582 0x00, 0x00, 0x00, 0x00, 583 0x00, 0x00, 0x00, 0x00, 584 0x00, 0x00, 0x00, 0x00, 585 0x00, 0x00, 0x00, 0x00, 586 0x00, 0x00, 0x00, 0x00, 587 588 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */ 589 0x00, 0x00, 0x00, 0x00, 590 0x00, 0x00, 0x00, 0x00, 591 0x50, 0x00, 0x00, 0x00, 592 0x00, 0x00, 0x00, 0x00, 593 594 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 595 }; 596 597 /* IPv6 + UDP */ 598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = { 599 { ICE_MAC_OFOS, 0 }, 600 { ICE_ETYPE_OL, 12 }, 601 { ICE_IPV6_OFOS, 14 }, 602 { ICE_UDP_ILOS, 54 }, 603 { ICE_PROTOCOL_LAST, 0 }, 604 }; 605 606 /* IPv6 + UDP dummy packet */ 607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = { 608 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 609 0x00, 0x00, 0x00, 0x00, 610 0x00, 0x00, 0x00, 0x00, 611 612 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 613 614 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 615 0x00, 0x10, 0x11, 0x00, /* Next header UDP */ 616 0x00, 0x00, 0x00, 0x00, 617 0x00, 0x00, 0x00, 0x00, 618 0x00, 0x00, 0x00, 0x00, 619 0x00, 0x00, 0x00, 0x00, 620 0x00, 0x00, 0x00, 0x00, 621 0x00, 0x00, 0x00, 0x00, 622 0x00, 0x00, 0x00, 0x00, 623 0x00, 0x00, 0x00, 0x00, 624 625 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */ 626 0x00, 0x10, 0x00, 0x00, 627 628 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */ 629 0x00, 0x00, 0x00, 0x00, 630 631 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 632 }; 633 634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = { 636 { ICE_MAC_OFOS, 0 }, 637 { ICE_IPV4_OFOS, 14 }, 638 { ICE_UDP_OF, 34 }, 639 { ICE_GTP, 42 }, 640 { ICE_IPV4_IL, 62 }, 641 { ICE_TCP_IL, 82 }, 642 { ICE_PROTOCOL_LAST, 0 }, 643 }; 644 645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = { 646 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 647 0x00, 0x00, 0x00, 0x00, 648 0x00, 0x00, 0x00, 0x00, 649 0x08, 0x00, 650 651 0x45, 0x00, 0x00, 0x58, /* IP 14 */ 652 0x00, 0x00, 0x00, 0x00, 653 0x00, 0x11, 0x00, 0x00, 654 0x00, 0x00, 0x00, 0x00, 655 0x00, 0x00, 0x00, 0x00, 656 657 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 658 0x00, 0x44, 0x00, 0x00, 659 660 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */ 661 0x00, 0x00, 0x00, 0x00, 662 0x00, 0x00, 0x00, 0x85, 663 664 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 665 0x00, 0x00, 0x00, 0x00, 666 667 0x45, 0x00, 0x00, 0x28, /* IP 62 */ 668 0x00, 0x00, 0x00, 0x00, 669 0x00, 0x06, 0x00, 0x00, 670 0x00, 0x00, 0x00, 0x00, 671 0x00, 0x00, 0x00, 0x00, 672 673 0x00, 0x00, 0x00, 0x00, /* TCP 82 */ 674 0x00, 0x00, 0x00, 0x00, 675 0x00, 0x00, 0x00, 0x00, 676 0x50, 0x00, 0x00, 0x00, 677 0x00, 0x00, 0x00, 0x00, 678 679 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 680 }; 681 682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */ 683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = { 684 { ICE_MAC_OFOS, 0 }, 685 { ICE_IPV4_OFOS, 14 }, 686 { ICE_UDP_OF, 34 }, 687 { ICE_GTP, 42 }, 688 { ICE_IPV4_IL, 62 }, 689 { ICE_UDP_ILOS, 82 }, 690 { ICE_PROTOCOL_LAST, 0 }, 691 }; 692 693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = { 694 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 695 0x00, 0x00, 0x00, 0x00, 696 0x00, 0x00, 0x00, 0x00, 697 0x08, 0x00, 698 699 0x45, 0x00, 0x00, 0x4c, /* IP 14 */ 700 0x00, 0x00, 0x00, 0x00, 701 0x00, 0x11, 0x00, 0x00, 702 0x00, 0x00, 0x00, 0x00, 703 0x00, 0x00, 0x00, 0x00, 704 705 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 706 0x00, 0x38, 0x00, 0x00, 707 708 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */ 709 0x00, 0x00, 0x00, 0x00, 710 0x00, 0x00, 0x00, 0x85, 711 712 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 713 0x00, 0x00, 0x00, 0x00, 714 715 0x45, 0x00, 0x00, 0x1c, /* IP 62 */ 716 0x00, 0x00, 0x00, 0x00, 717 0x00, 0x11, 0x00, 0x00, 718 0x00, 0x00, 0x00, 0x00, 719 0x00, 0x00, 0x00, 0x00, 720 721 0x00, 0x00, 0x00, 0x00, /* UDP 82 */ 722 0x00, 0x08, 0x00, 0x00, 723 724 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 725 }; 726 727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = { 729 { ICE_MAC_OFOS, 0 }, 730 { ICE_IPV4_OFOS, 14 }, 731 { ICE_UDP_OF, 34 }, 732 { ICE_GTP, 42 }, 733 { ICE_IPV6_IL, 62 }, 734 { ICE_TCP_IL, 102 }, 735 { ICE_PROTOCOL_LAST, 0 }, 736 }; 737 738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = { 739 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 740 0x00, 0x00, 0x00, 0x00, 741 0x00, 0x00, 0x00, 0x00, 742 0x08, 0x00, 743 744 0x45, 0x00, 0x00, 0x6c, /* IP 14 */ 745 0x00, 0x00, 0x00, 0x00, 746 0x00, 0x11, 0x00, 0x00, 747 0x00, 0x00, 0x00, 0x00, 748 0x00, 0x00, 0x00, 0x00, 749 750 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 751 0x00, 0x58, 0x00, 0x00, 752 753 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */ 754 0x00, 0x00, 0x00, 0x00, 755 0x00, 0x00, 0x00, 0x85, 756 757 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 758 0x00, 0x00, 0x00, 0x00, 759 760 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 761 0x00, 0x14, 0x06, 0x00, 762 0x00, 0x00, 0x00, 0x00, 763 0x00, 0x00, 0x00, 0x00, 764 0x00, 0x00, 0x00, 0x00, 765 0x00, 0x00, 0x00, 0x00, 766 0x00, 0x00, 0x00, 0x00, 767 0x00, 0x00, 0x00, 0x00, 768 0x00, 0x00, 0x00, 0x00, 769 0x00, 0x00, 0x00, 0x00, 770 771 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 772 0x00, 0x00, 0x00, 0x00, 773 0x00, 0x00, 0x00, 0x00, 774 0x50, 0x00, 0x00, 0x00, 775 0x00, 0x00, 0x00, 0x00, 776 777 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 778 }; 779 780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = { 781 { ICE_MAC_OFOS, 0 }, 782 { ICE_IPV4_OFOS, 14 }, 783 { ICE_UDP_OF, 34 }, 784 { ICE_GTP, 42 }, 785 { ICE_IPV6_IL, 62 }, 786 { ICE_UDP_ILOS, 102 }, 787 { ICE_PROTOCOL_LAST, 0 }, 788 }; 789 790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = { 791 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 792 0x00, 0x00, 0x00, 0x00, 793 0x00, 0x00, 0x00, 0x00, 794 0x08, 0x00, 795 796 0x45, 0x00, 0x00, 0x60, /* IP 14 */ 797 0x00, 0x00, 0x00, 0x00, 798 0x00, 0x11, 0x00, 0x00, 799 0x00, 0x00, 0x00, 0x00, 800 0x00, 0x00, 0x00, 0x00, 801 802 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 803 0x00, 0x4c, 0x00, 0x00, 804 805 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */ 806 0x00, 0x00, 0x00, 0x00, 807 0x00, 0x00, 0x00, 0x85, 808 809 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 810 0x00, 0x00, 0x00, 0x00, 811 812 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 813 0x00, 0x08, 0x11, 0x00, 814 0x00, 0x00, 0x00, 0x00, 815 0x00, 0x00, 0x00, 0x00, 816 0x00, 0x00, 0x00, 0x00, 817 0x00, 0x00, 0x00, 0x00, 818 0x00, 0x00, 0x00, 0x00, 819 0x00, 0x00, 0x00, 0x00, 820 0x00, 0x00, 0x00, 0x00, 821 0x00, 0x00, 0x00, 0x00, 822 823 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 824 0x00, 0x08, 0x00, 0x00, 825 826 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 827 }; 828 829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = { 830 { ICE_MAC_OFOS, 0 }, 831 { ICE_IPV6_OFOS, 14 }, 832 { ICE_UDP_OF, 54 }, 833 { ICE_GTP, 62 }, 834 { ICE_IPV4_IL, 82 }, 835 { ICE_TCP_IL, 102 }, 836 { ICE_PROTOCOL_LAST, 0 }, 837 }; 838 839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = { 840 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 841 0x00, 0x00, 0x00, 0x00, 842 0x00, 0x00, 0x00, 0x00, 843 0x86, 0xdd, 844 845 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 846 0x00, 0x44, 0x11, 0x00, 847 0x00, 0x00, 0x00, 0x00, 848 0x00, 0x00, 0x00, 0x00, 849 0x00, 0x00, 0x00, 0x00, 850 0x00, 0x00, 0x00, 0x00, 851 0x00, 0x00, 0x00, 0x00, 852 0x00, 0x00, 0x00, 0x00, 853 0x00, 0x00, 0x00, 0x00, 854 0x00, 0x00, 0x00, 0x00, 855 856 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 857 0x00, 0x44, 0x00, 0x00, 858 859 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */ 860 0x00, 0x00, 0x00, 0x00, 861 0x00, 0x00, 0x00, 0x85, 862 863 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 864 0x00, 0x00, 0x00, 0x00, 865 866 0x45, 0x00, 0x00, 0x28, /* IP 82 */ 867 0x00, 0x00, 0x00, 0x00, 868 0x00, 0x06, 0x00, 0x00, 869 0x00, 0x00, 0x00, 0x00, 870 0x00, 0x00, 0x00, 0x00, 871 872 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 873 0x00, 0x00, 0x00, 0x00, 874 0x00, 0x00, 0x00, 0x00, 875 0x50, 0x00, 0x00, 0x00, 876 0x00, 0x00, 0x00, 0x00, 877 878 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 879 }; 880 881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = { 882 { ICE_MAC_OFOS, 0 }, 883 { ICE_IPV6_OFOS, 14 }, 884 { ICE_UDP_OF, 54 }, 885 { ICE_GTP, 62 }, 886 { ICE_IPV4_IL, 82 }, 887 { ICE_UDP_ILOS, 102 }, 888 { ICE_PROTOCOL_LAST, 0 }, 889 }; 890 891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = { 892 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 893 0x00, 0x00, 0x00, 0x00, 894 0x00, 0x00, 0x00, 0x00, 895 0x86, 0xdd, 896 897 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 898 0x00, 0x38, 0x11, 0x00, 899 0x00, 0x00, 0x00, 0x00, 900 0x00, 0x00, 0x00, 0x00, 901 0x00, 0x00, 0x00, 0x00, 902 0x00, 0x00, 0x00, 0x00, 903 0x00, 0x00, 0x00, 0x00, 904 0x00, 0x00, 0x00, 0x00, 905 0x00, 0x00, 0x00, 0x00, 906 0x00, 0x00, 0x00, 0x00, 907 908 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 909 0x00, 0x38, 0x00, 0x00, 910 911 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */ 912 0x00, 0x00, 0x00, 0x00, 913 0x00, 0x00, 0x00, 0x85, 914 915 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 916 0x00, 0x00, 0x00, 0x00, 917 918 0x45, 0x00, 0x00, 0x1c, /* IP 82 */ 919 0x00, 0x00, 0x00, 0x00, 920 0x00, 0x11, 0x00, 0x00, 921 0x00, 0x00, 0x00, 0x00, 922 0x00, 0x00, 0x00, 0x00, 923 924 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 925 0x00, 0x08, 0x00, 0x00, 926 927 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 928 }; 929 930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = { 931 { ICE_MAC_OFOS, 0 }, 932 { ICE_IPV6_OFOS, 14 }, 933 { ICE_UDP_OF, 54 }, 934 { ICE_GTP, 62 }, 935 { ICE_IPV6_IL, 82 }, 936 { ICE_TCP_IL, 122 }, 937 { ICE_PROTOCOL_LAST, 0 }, 938 }; 939 940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = { 941 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 942 0x00, 0x00, 0x00, 0x00, 943 0x00, 0x00, 0x00, 0x00, 944 0x86, 0xdd, 945 946 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 947 0x00, 0x58, 0x11, 0x00, 948 0x00, 0x00, 0x00, 0x00, 949 0x00, 0x00, 0x00, 0x00, 950 0x00, 0x00, 0x00, 0x00, 951 0x00, 0x00, 0x00, 0x00, 952 0x00, 0x00, 0x00, 0x00, 953 0x00, 0x00, 0x00, 0x00, 954 0x00, 0x00, 0x00, 0x00, 955 0x00, 0x00, 0x00, 0x00, 956 957 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 958 0x00, 0x58, 0x00, 0x00, 959 960 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */ 961 0x00, 0x00, 0x00, 0x00, 962 0x00, 0x00, 0x00, 0x85, 963 964 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 965 0x00, 0x00, 0x00, 0x00, 966 967 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 968 0x00, 0x14, 0x06, 0x00, 969 0x00, 0x00, 0x00, 0x00, 970 0x00, 0x00, 0x00, 0x00, 971 0x00, 0x00, 0x00, 0x00, 972 0x00, 0x00, 0x00, 0x00, 973 0x00, 0x00, 0x00, 0x00, 974 0x00, 0x00, 0x00, 0x00, 975 0x00, 0x00, 0x00, 0x00, 976 0x00, 0x00, 0x00, 0x00, 977 978 0x00, 0x00, 0x00, 0x00, /* TCP 122 */ 979 0x00, 0x00, 0x00, 0x00, 980 0x00, 0x00, 0x00, 0x00, 981 0x50, 0x00, 0x00, 0x00, 982 0x00, 0x00, 0x00, 0x00, 983 984 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 985 }; 986 987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = { 988 { ICE_MAC_OFOS, 0 }, 989 { ICE_IPV6_OFOS, 14 }, 990 { ICE_UDP_OF, 54 }, 991 { ICE_GTP, 62 }, 992 { ICE_IPV6_IL, 82 }, 993 { ICE_UDP_ILOS, 122 }, 994 { ICE_PROTOCOL_LAST, 0 }, 995 }; 996 997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = { 998 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 999 0x00, 0x00, 0x00, 0x00, 1000 0x00, 0x00, 0x00, 0x00, 1001 0x86, 0xdd, 1002 1003 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 1004 0x00, 0x4c, 0x11, 0x00, 1005 0x00, 0x00, 0x00, 0x00, 1006 0x00, 0x00, 0x00, 0x00, 1007 0x00, 0x00, 0x00, 0x00, 1008 0x00, 0x00, 0x00, 0x00, 1009 0x00, 0x00, 0x00, 0x00, 1010 0x00, 0x00, 0x00, 0x00, 1011 0x00, 0x00, 0x00, 0x00, 1012 0x00, 0x00, 0x00, 0x00, 1013 1014 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 1015 0x00, 0x4c, 0x00, 0x00, 1016 1017 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */ 1018 0x00, 0x00, 0x00, 0x00, 1019 0x00, 0x00, 0x00, 0x85, 1020 1021 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 1022 0x00, 0x00, 0x00, 0x00, 1023 1024 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 1025 0x00, 0x08, 0x11, 0x00, 1026 0x00, 0x00, 0x00, 0x00, 1027 0x00, 0x00, 0x00, 0x00, 1028 0x00, 0x00, 0x00, 0x00, 1029 0x00, 0x00, 0x00, 0x00, 1030 0x00, 0x00, 0x00, 0x00, 1031 0x00, 0x00, 0x00, 0x00, 1032 0x00, 0x00, 0x00, 0x00, 1033 0x00, 0x00, 0x00, 0x00, 1034 1035 0x00, 0x00, 0x00, 0x00, /* UDP 122 */ 1036 0x00, 0x08, 0x00, 0x00, 1037 1038 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 1039 }; 1040 1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = { 1042 { ICE_MAC_OFOS, 0 }, 1043 { ICE_IPV4_OFOS, 14 }, 1044 { ICE_UDP_OF, 34 }, 1045 { ICE_GTP_NO_PAY, 42 }, 1046 { ICE_PROTOCOL_LAST, 0 }, 1047 }; 1048 1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = { 1050 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1051 0x00, 0x00, 0x00, 0x00, 1052 0x00, 0x00, 0x00, 0x00, 1053 0x08, 0x00, 1054 1055 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */ 1056 0x00, 0x00, 0x40, 0x00, 1057 0x40, 0x11, 0x00, 0x00, 1058 0x00, 0x00, 0x00, 0x00, 1059 0x00, 0x00, 0x00, 0x00, 1060 1061 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */ 1062 0x00, 0x00, 0x00, 0x00, 1063 1064 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */ 1065 0x00, 0x00, 0x00, 0x00, 1066 0x00, 0x00, 0x00, 0x85, 1067 1068 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */ 1069 0x00, 0x00, 0x00, 0x00, 1070 1071 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */ 1072 0x00, 0x00, 0x40, 0x00, 1073 0x40, 0x00, 0x00, 0x00, 1074 0x00, 0x00, 0x00, 0x00, 1075 0x00, 0x00, 0x00, 0x00, 1076 0x00, 0x00, 1077 }; 1078 1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = { 1080 { ICE_MAC_OFOS, 0 }, 1081 { ICE_IPV6_OFOS, 14 }, 1082 { ICE_UDP_OF, 54 }, 1083 { ICE_GTP_NO_PAY, 62 }, 1084 { ICE_PROTOCOL_LAST, 0 }, 1085 }; 1086 1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = { 1088 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1089 0x00, 0x00, 0x00, 0x00, 1090 0x00, 0x00, 0x00, 0x00, 1091 0x86, 0xdd, 1092 1093 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */ 1094 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/ 1095 0x00, 0x00, 0x00, 0x00, 1096 0x00, 0x00, 0x00, 0x00, 1097 0x00, 0x00, 0x00, 0x00, 1098 0x00, 0x00, 0x00, 0x00, 1099 0x00, 0x00, 0x00, 0x00, 1100 0x00, 0x00, 0x00, 0x00, 1101 0x00, 0x00, 0x00, 0x00, 1102 0x00, 0x00, 0x00, 0x00, 1103 1104 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */ 1105 0x00, 0x00, 0x00, 0x00, 1106 1107 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */ 1108 0x00, 0x00, 0x00, 0x00, 1109 1110 0x00, 0x00, 1111 }; 1112 1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = { 1114 { ICE_MAC_OFOS, 0 }, 1115 { ICE_ETYPE_OL, 12 }, 1116 { ICE_PPPOE, 14 }, 1117 { ICE_IPV4_OFOS, 22 }, 1118 { ICE_TCP_IL, 42 }, 1119 { ICE_PROTOCOL_LAST, 0 }, 1120 }; 1121 1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = { 1123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1124 0x00, 0x00, 0x00, 0x00, 1125 0x00, 0x00, 0x00, 0x00, 1126 1127 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1128 1129 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1130 0x00, 0x16, 1131 1132 0x00, 0x21, /* PPP Link Layer 20 */ 1133 1134 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */ 1135 0x00, 0x01, 0x00, 0x00, 1136 0x00, 0x06, 0x00, 0x00, 1137 0x00, 0x00, 0x00, 0x00, 1138 0x00, 0x00, 0x00, 0x00, 1139 1140 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */ 1141 0x00, 0x00, 0x00, 0x00, 1142 0x00, 0x00, 0x00, 0x00, 1143 0x50, 0x00, 0x00, 0x00, 1144 0x00, 0x00, 0x00, 0x00, 1145 1146 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1147 }; 1148 1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = { 1150 { ICE_MAC_OFOS, 0 }, 1151 { ICE_ETYPE_OL, 12 }, 1152 { ICE_PPPOE, 14 }, 1153 { ICE_IPV4_OFOS, 22 }, 1154 { ICE_UDP_ILOS, 42 }, 1155 { ICE_PROTOCOL_LAST, 0 }, 1156 }; 1157 1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = { 1159 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1160 0x00, 0x00, 0x00, 0x00, 1161 0x00, 0x00, 0x00, 0x00, 1162 1163 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1164 1165 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1166 0x00, 0x16, 1167 1168 0x00, 0x21, /* PPP Link Layer 20 */ 1169 1170 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */ 1171 0x00, 0x01, 0x00, 0x00, 1172 0x00, 0x11, 0x00, 0x00, 1173 0x00, 0x00, 0x00, 0x00, 1174 0x00, 0x00, 0x00, 0x00, 1175 1176 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */ 1177 0x00, 0x08, 0x00, 0x00, 1178 1179 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1180 }; 1181 1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = { 1183 { ICE_MAC_OFOS, 0 }, 1184 { ICE_ETYPE_OL, 12 }, 1185 { ICE_PPPOE, 14 }, 1186 { ICE_IPV6_OFOS, 22 }, 1187 { ICE_TCP_IL, 62 }, 1188 { ICE_PROTOCOL_LAST, 0 }, 1189 }; 1190 1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = { 1192 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1193 0x00, 0x00, 0x00, 0x00, 1194 0x00, 0x00, 0x00, 0x00, 1195 1196 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1197 1198 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1199 0x00, 0x2a, 1200 1201 0x00, 0x57, /* PPP Link Layer 20 */ 1202 1203 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1204 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 1205 0x00, 0x00, 0x00, 0x00, 1206 0x00, 0x00, 0x00, 0x00, 1207 0x00, 0x00, 0x00, 0x00, 1208 0x00, 0x00, 0x00, 0x00, 1209 0x00, 0x00, 0x00, 0x00, 1210 0x00, 0x00, 0x00, 0x00, 1211 0x00, 0x00, 0x00, 0x00, 1212 0x00, 0x00, 0x00, 0x00, 1213 1214 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */ 1215 0x00, 0x00, 0x00, 0x00, 1216 0x00, 0x00, 0x00, 0x00, 1217 0x50, 0x00, 0x00, 0x00, 1218 0x00, 0x00, 0x00, 0x00, 1219 1220 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1221 }; 1222 1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = { 1224 { ICE_MAC_OFOS, 0 }, 1225 { ICE_ETYPE_OL, 12 }, 1226 { ICE_PPPOE, 14 }, 1227 { ICE_IPV6_OFOS, 22 }, 1228 { ICE_UDP_ILOS, 62 }, 1229 { ICE_PROTOCOL_LAST, 0 }, 1230 }; 1231 1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = { 1233 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1234 0x00, 0x00, 0x00, 0x00, 1235 0x00, 0x00, 0x00, 0x00, 1236 1237 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1238 1239 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1240 0x00, 0x2a, 1241 1242 0x00, 0x57, /* PPP Link Layer 20 */ 1243 1244 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1245 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/ 1246 0x00, 0x00, 0x00, 0x00, 1247 0x00, 0x00, 0x00, 0x00, 1248 0x00, 0x00, 0x00, 0x00, 1249 0x00, 0x00, 0x00, 0x00, 1250 0x00, 0x00, 0x00, 0x00, 1251 0x00, 0x00, 0x00, 0x00, 1252 0x00, 0x00, 0x00, 0x00, 1253 0x00, 0x00, 0x00, 0x00, 1254 1255 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */ 1256 0x00, 0x08, 0x00, 0x00, 1257 1258 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1259 }; 1260 1261 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = { 1262 { ICE_MAC_OFOS, 0 }, 1263 { ICE_ETYPE_OL, 12 }, 1264 { ICE_IPV4_OFOS, 14 }, 1265 { ICE_L2TPV3, 34 }, 1266 { ICE_PROTOCOL_LAST, 0 }, 1267 }; 1268 1269 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = { 1270 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1271 0x00, 0x00, 0x00, 0x00, 1272 0x00, 0x00, 0x00, 0x00, 1273 1274 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 1275 1276 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */ 1277 0x00, 0x00, 0x40, 0x00, 1278 0x40, 0x73, 0x00, 0x00, 1279 0x00, 0x00, 0x00, 0x00, 1280 0x00, 0x00, 0x00, 0x00, 1281 1282 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */ 1283 0x00, 0x00, 0x00, 0x00, 1284 0x00, 0x00, 0x00, 0x00, 1285 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1286 }; 1287 1288 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = { 1289 { ICE_MAC_OFOS, 0 }, 1290 { ICE_ETYPE_OL, 12 }, 1291 { ICE_IPV6_OFOS, 14 }, 1292 { ICE_L2TPV3, 54 }, 1293 { ICE_PROTOCOL_LAST, 0 }, 1294 }; 1295 1296 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = { 1297 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1298 0x00, 0x00, 0x00, 0x00, 1299 0x00, 0x00, 0x00, 0x00, 1300 1301 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 1302 1303 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */ 1304 0x00, 0x0c, 0x73, 0x40, 1305 0x00, 0x00, 0x00, 0x00, 1306 0x00, 0x00, 0x00, 0x00, 1307 0x00, 0x00, 0x00, 0x00, 1308 0x00, 0x00, 0x00, 0x00, 1309 0x00, 0x00, 0x00, 0x00, 1310 0x00, 0x00, 0x00, 0x00, 1311 0x00, 0x00, 0x00, 0x00, 1312 0x00, 0x00, 0x00, 0x00, 1313 1314 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */ 1315 0x00, 0x00, 0x00, 0x00, 1316 0x00, 0x00, 0x00, 0x00, 1317 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1318 }; 1319 1320 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = { 1321 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 | 1322 ICE_PKT_GTP_NOPAY), 1323 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1324 ICE_PKT_OUTER_IPV6 | 1325 ICE_PKT_INNER_IPV6 | 1326 ICE_PKT_INNER_UDP), 1327 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1328 ICE_PKT_OUTER_IPV6 | 1329 ICE_PKT_INNER_IPV6), 1330 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1331 ICE_PKT_OUTER_IPV6 | 1332 ICE_PKT_INNER_UDP), 1333 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU | 1334 ICE_PKT_OUTER_IPV6), 1335 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY), 1336 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1337 ICE_PKT_INNER_IPV6 | 1338 ICE_PKT_INNER_UDP), 1339 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1340 ICE_PKT_INNER_IPV6), 1341 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1342 ICE_PKT_INNER_UDP), 1343 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU), 1344 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6), 1345 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC), 1346 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 | 1347 ICE_PKT_INNER_UDP), 1348 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6), 1349 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP), 1350 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE), 1351 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 | 1352 ICE_PKT_INNER_TCP), 1353 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP), 1354 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6), 1355 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE), 1356 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP | 1357 ICE_PKT_INNER_IPV6 | 1358 ICE_PKT_INNER_TCP), 1359 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6), 1360 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3), 1361 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP), 1362 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP | 1363 ICE_PKT_INNER_IPV6), 1364 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP), 1365 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP), 1366 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP), 1367 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6), 1368 ICE_PKT_PROFILE(tcp, 0), 1369 }; 1370 1371 /* this is a recipe to profile association bitmap */ 1372 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES], 1373 ICE_MAX_NUM_PROFILES); 1374 1375 /* this is a profile to recipe association bitmap */ 1376 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES], 1377 ICE_MAX_NUM_RECIPES); 1378 1379 /** 1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables 1381 * @hw: pointer to the HW struct 1382 * 1383 * Allocate memory for the entire recipe table and initialize the structures/ 1384 * entries corresponding to basic recipes. 1385 */ 1386 int ice_init_def_sw_recp(struct ice_hw *hw) 1387 { 1388 struct ice_sw_recipe *recps; 1389 u8 i; 1390 1391 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 1392 sizeof(*recps), GFP_KERNEL); 1393 if (!recps) 1394 return -ENOMEM; 1395 1396 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 1397 recps[i].root_rid = i; 1398 INIT_LIST_HEAD(&recps[i].filt_rules); 1399 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 1400 INIT_LIST_HEAD(&recps[i].rg_list); 1401 mutex_init(&recps[i].filt_rule_lock); 1402 } 1403 1404 hw->switch_info->recp_list = recps; 1405 1406 return 0; 1407 } 1408 1409 /** 1410 * ice_aq_get_sw_cfg - get switch configuration 1411 * @hw: pointer to the hardware structure 1412 * @buf: pointer to the result buffer 1413 * @buf_size: length of the buffer available for response 1414 * @req_desc: pointer to requested descriptor 1415 * @num_elems: pointer to number of elements 1416 * @cd: pointer to command details structure or NULL 1417 * 1418 * Get switch configuration (0x0200) to be placed in buf. 1419 * This admin command returns information such as initial VSI/port number 1420 * and switch ID it belongs to. 1421 * 1422 * NOTE: *req_desc is both an input/output parameter. 1423 * The caller of this function first calls this function with *request_desc set 1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch 1425 * configuration information has been returned; if non-zero (meaning not all 1426 * the information was returned), the caller should call this function again 1427 * with *req_desc set to the previous value returned by f/w to get the 1428 * next block of switch configuration information. 1429 * 1430 * *num_elems is output only parameter. This reflects the number of elements 1431 * in response buffer. The caller of this function to use *num_elems while 1432 * parsing the response buffer. 1433 */ 1434 static int 1435 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, 1436 u16 buf_size, u16 *req_desc, u16 *num_elems, 1437 struct ice_sq_cd *cd) 1438 { 1439 struct ice_aqc_get_sw_cfg *cmd; 1440 struct ice_aq_desc desc; 1441 int status; 1442 1443 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 1444 cmd = &desc.params.get_sw_conf; 1445 cmd->element = cpu_to_le16(*req_desc); 1446 1447 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1448 if (!status) { 1449 *req_desc = le16_to_cpu(cmd->element); 1450 *num_elems = le16_to_cpu(cmd->num_elems); 1451 } 1452 1453 return status; 1454 } 1455 1456 /** 1457 * ice_aq_add_vsi 1458 * @hw: pointer to the HW struct 1459 * @vsi_ctx: pointer to a VSI context struct 1460 * @cd: pointer to command details structure or NULL 1461 * 1462 * Add a VSI context to the hardware (0x0210) 1463 */ 1464 static int 1465 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1466 struct ice_sq_cd *cd) 1467 { 1468 struct ice_aqc_add_update_free_vsi_resp *res; 1469 struct ice_aqc_add_get_update_free_vsi *cmd; 1470 struct ice_aq_desc desc; 1471 int status; 1472 1473 cmd = &desc.params.vsi_cmd; 1474 res = &desc.params.add_update_free_vsi_res; 1475 1476 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 1477 1478 if (!vsi_ctx->alloc_from_pool) 1479 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 1480 ICE_AQ_VSI_IS_VALID); 1481 cmd->vf_id = vsi_ctx->vf_num; 1482 1483 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 1484 1485 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1486 1487 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1488 sizeof(vsi_ctx->info), cd); 1489 1490 if (!status) { 1491 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 1492 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 1493 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 1494 } 1495 1496 return status; 1497 } 1498 1499 /** 1500 * ice_aq_free_vsi 1501 * @hw: pointer to the HW struct 1502 * @vsi_ctx: pointer to a VSI context struct 1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1504 * @cd: pointer to command details structure or NULL 1505 * 1506 * Free VSI context info from hardware (0x0213) 1507 */ 1508 static int 1509 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1510 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1511 { 1512 struct ice_aqc_add_update_free_vsi_resp *resp; 1513 struct ice_aqc_add_get_update_free_vsi *cmd; 1514 struct ice_aq_desc desc; 1515 int status; 1516 1517 cmd = &desc.params.vsi_cmd; 1518 resp = &desc.params.add_update_free_vsi_res; 1519 1520 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 1521 1522 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1523 if (keep_vsi_alloc) 1524 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 1525 1526 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1527 if (!status) { 1528 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1529 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1530 } 1531 1532 return status; 1533 } 1534 1535 /** 1536 * ice_aq_update_vsi 1537 * @hw: pointer to the HW struct 1538 * @vsi_ctx: pointer to a VSI context struct 1539 * @cd: pointer to command details structure or NULL 1540 * 1541 * Update VSI context in the hardware (0x0211) 1542 */ 1543 static int 1544 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1545 struct ice_sq_cd *cd) 1546 { 1547 struct ice_aqc_add_update_free_vsi_resp *resp; 1548 struct ice_aqc_add_get_update_free_vsi *cmd; 1549 struct ice_aq_desc desc; 1550 int status; 1551 1552 cmd = &desc.params.vsi_cmd; 1553 resp = &desc.params.add_update_free_vsi_res; 1554 1555 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 1556 1557 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1558 1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1560 1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1562 sizeof(vsi_ctx->info), cd); 1563 1564 if (!status) { 1565 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1566 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1567 } 1568 1569 return status; 1570 } 1571 1572 /** 1573 * ice_is_vsi_valid - check whether the VSI is valid or not 1574 * @hw: pointer to the HW struct 1575 * @vsi_handle: VSI handle 1576 * 1577 * check whether the VSI is valid or not 1578 */ 1579 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 1580 { 1581 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 1582 } 1583 1584 /** 1585 * ice_get_hw_vsi_num - return the HW VSI number 1586 * @hw: pointer to the HW struct 1587 * @vsi_handle: VSI handle 1588 * 1589 * return the HW VSI number 1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 1591 */ 1592 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 1593 { 1594 return hw->vsi_ctx[vsi_handle]->vsi_num; 1595 } 1596 1597 /** 1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 1599 * @hw: pointer to the HW struct 1600 * @vsi_handle: VSI handle 1601 * 1602 * return the VSI context entry for a given VSI handle 1603 */ 1604 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1605 { 1606 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 1607 } 1608 1609 /** 1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 1611 * @hw: pointer to the HW struct 1612 * @vsi_handle: VSI handle 1613 * @vsi: VSI context pointer 1614 * 1615 * save the VSI context entry for a given VSI handle 1616 */ 1617 static void 1618 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 1619 { 1620 hw->vsi_ctx[vsi_handle] = vsi; 1621 } 1622 1623 /** 1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 1625 * @hw: pointer to the HW struct 1626 * @vsi_handle: VSI handle 1627 */ 1628 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 1629 { 1630 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle); 1631 u8 i; 1632 1633 if (!vsi) 1634 return; 1635 ice_for_each_traffic_class(i) { 1636 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 1637 vsi->lan_q_ctx[i] = NULL; 1638 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]); 1639 vsi->rdma_q_ctx[i] = NULL; 1640 } 1641 } 1642 1643 /** 1644 * ice_clear_vsi_ctx - clear the VSI context entry 1645 * @hw: pointer to the HW struct 1646 * @vsi_handle: VSI handle 1647 * 1648 * clear the VSI context entry 1649 */ 1650 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1651 { 1652 struct ice_vsi_ctx *vsi; 1653 1654 vsi = ice_get_vsi_ctx(hw, vsi_handle); 1655 if (vsi) { 1656 ice_clear_vsi_q_ctx(hw, vsi_handle); 1657 devm_kfree(ice_hw_to_dev(hw), vsi); 1658 hw->vsi_ctx[vsi_handle] = NULL; 1659 } 1660 } 1661 1662 /** 1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries 1664 * @hw: pointer to the HW struct 1665 */ 1666 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 1667 { 1668 u16 i; 1669 1670 for (i = 0; i < ICE_MAX_VSI; i++) 1671 ice_clear_vsi_ctx(hw, i); 1672 } 1673 1674 /** 1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list 1676 * @hw: pointer to the HW struct 1677 * @vsi_handle: unique VSI handle provided by drivers 1678 * @vsi_ctx: pointer to a VSI context struct 1679 * @cd: pointer to command details structure or NULL 1680 * 1681 * Add a VSI context to the hardware also add it into the VSI handle list. 1682 * If this function gets called after reset for existing VSIs then update 1683 * with the new HW VSI number in the corresponding VSI handle list entry. 1684 */ 1685 int 1686 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1687 struct ice_sq_cd *cd) 1688 { 1689 struct ice_vsi_ctx *tmp_vsi_ctx; 1690 int status; 1691 1692 if (vsi_handle >= ICE_MAX_VSI) 1693 return -EINVAL; 1694 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 1695 if (status) 1696 return status; 1697 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1698 if (!tmp_vsi_ctx) { 1699 /* Create a new VSI context */ 1700 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 1701 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 1702 if (!tmp_vsi_ctx) { 1703 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 1704 return -ENOMEM; 1705 } 1706 *tmp_vsi_ctx = *vsi_ctx; 1707 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 1708 } else { 1709 /* update with new HW VSI num */ 1710 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 1711 } 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ice_free_vsi- free VSI context from hardware and VSI handle list 1718 * @hw: pointer to the HW struct 1719 * @vsi_handle: unique VSI handle 1720 * @vsi_ctx: pointer to a VSI context struct 1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1722 * @cd: pointer to command details structure or NULL 1723 * 1724 * Free VSI context info from hardware as well as from VSI handle list 1725 */ 1726 int 1727 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1728 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1729 { 1730 int status; 1731 1732 if (!ice_is_vsi_valid(hw, vsi_handle)) 1733 return -EINVAL; 1734 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1735 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 1736 if (!status) 1737 ice_clear_vsi_ctx(hw, vsi_handle); 1738 return status; 1739 } 1740 1741 /** 1742 * ice_update_vsi 1743 * @hw: pointer to the HW struct 1744 * @vsi_handle: unique VSI handle 1745 * @vsi_ctx: pointer to a VSI context struct 1746 * @cd: pointer to command details structure or NULL 1747 * 1748 * Update VSI context in the hardware 1749 */ 1750 int 1751 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1752 struct ice_sq_cd *cd) 1753 { 1754 if (!ice_is_vsi_valid(hw, vsi_handle)) 1755 return -EINVAL; 1756 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1757 return ice_aq_update_vsi(hw, vsi_ctx, cd); 1758 } 1759 1760 /** 1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI 1762 * @hw: pointer to HW struct 1763 * @vsi_handle: VSI SW index 1764 * @enable: boolean for enable/disable 1765 */ 1766 int 1767 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable) 1768 { 1769 struct ice_vsi_ctx *ctx, *cached_ctx; 1770 int status; 1771 1772 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1773 if (!cached_ctx) 1774 return -ENOENT; 1775 1776 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1777 if (!ctx) 1778 return -ENOMEM; 1779 1780 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss; 1781 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc; 1782 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags; 1783 1784 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1785 1786 if (enable) 1787 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1788 else 1789 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1790 1791 status = ice_update_vsi(hw, vsi_handle, ctx, NULL); 1792 if (!status) { 1793 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags; 1794 cached_ctx->info.valid_sections |= ctx->info.valid_sections; 1795 } 1796 1797 kfree(ctx); 1798 return status; 1799 } 1800 1801 /** 1802 * ice_aq_alloc_free_vsi_list 1803 * @hw: pointer to the HW struct 1804 * @vsi_list_id: VSI list ID returned or used for lookup 1805 * @lkup_type: switch rule filter lookup type 1806 * @opc: switch rules population command type - pass in the command opcode 1807 * 1808 * allocates or free a VSI list resource 1809 */ 1810 static int 1811 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 1812 enum ice_sw_lkup_type lkup_type, 1813 enum ice_adminq_opc opc) 1814 { 1815 struct ice_aqc_alloc_free_res_elem *sw_buf; 1816 struct ice_aqc_res_elem *vsi_ele; 1817 u16 buf_len; 1818 int status; 1819 1820 buf_len = struct_size(sw_buf, elem, 1); 1821 sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL); 1822 if (!sw_buf) 1823 return -ENOMEM; 1824 sw_buf->num_elems = cpu_to_le16(1); 1825 1826 if (lkup_type == ICE_SW_LKUP_MAC || 1827 lkup_type == ICE_SW_LKUP_MAC_VLAN || 1828 lkup_type == ICE_SW_LKUP_ETHERTYPE || 1829 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1830 lkup_type == ICE_SW_LKUP_PROMISC || 1831 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 1832 lkup_type == ICE_SW_LKUP_DFLT) { 1833 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 1834 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 1835 if (opc == ice_aqc_opc_alloc_res) 1836 sw_buf->res_type = 1837 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE | 1838 ICE_AQC_RES_TYPE_FLAG_SHARED); 1839 else 1840 sw_buf->res_type = 1841 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 1842 } else { 1843 status = -EINVAL; 1844 goto ice_aq_alloc_free_vsi_list_exit; 1845 } 1846 1847 if (opc == ice_aqc_opc_free_res) 1848 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 1849 1850 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc); 1851 if (status) 1852 goto ice_aq_alloc_free_vsi_list_exit; 1853 1854 if (opc == ice_aqc_opc_alloc_res) { 1855 vsi_ele = &sw_buf->elem[0]; 1856 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 1857 } 1858 1859 ice_aq_alloc_free_vsi_list_exit: 1860 devm_kfree(ice_hw_to_dev(hw), sw_buf); 1861 return status; 1862 } 1863 1864 /** 1865 * ice_aq_sw_rules - add/update/remove switch rules 1866 * @hw: pointer to the HW struct 1867 * @rule_list: pointer to switch rule population list 1868 * @rule_list_sz: total size of the rule list in bytes 1869 * @num_rules: number of switch rules in the rule_list 1870 * @opc: switch rules population command type - pass in the command opcode 1871 * @cd: pointer to command details structure or NULL 1872 * 1873 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 1874 */ 1875 int 1876 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 1877 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1878 { 1879 struct ice_aq_desc desc; 1880 int status; 1881 1882 if (opc != ice_aqc_opc_add_sw_rules && 1883 opc != ice_aqc_opc_update_sw_rules && 1884 opc != ice_aqc_opc_remove_sw_rules) 1885 return -EINVAL; 1886 1887 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1888 1889 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1890 desc.params.sw_rules.num_rules_fltr_entry_index = 1891 cpu_to_le16(num_rules); 1892 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 1893 if (opc != ice_aqc_opc_add_sw_rules && 1894 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) 1895 status = -ENOENT; 1896 1897 return status; 1898 } 1899 1900 /** 1901 * ice_aq_add_recipe - add switch recipe 1902 * @hw: pointer to the HW struct 1903 * @s_recipe_list: pointer to switch rule population list 1904 * @num_recipes: number of switch recipes in the list 1905 * @cd: pointer to command details structure or NULL 1906 * 1907 * Add(0x0290) 1908 */ 1909 int 1910 ice_aq_add_recipe(struct ice_hw *hw, 1911 struct ice_aqc_recipe_data_elem *s_recipe_list, 1912 u16 num_recipes, struct ice_sq_cd *cd) 1913 { 1914 struct ice_aqc_add_get_recipe *cmd; 1915 struct ice_aq_desc desc; 1916 u16 buf_size; 1917 1918 cmd = &desc.params.add_get_recipe; 1919 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe); 1920 1921 cmd->num_sub_recipes = cpu_to_le16(num_recipes); 1922 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1923 1924 buf_size = num_recipes * sizeof(*s_recipe_list); 1925 1926 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 1927 } 1928 1929 /** 1930 * ice_aq_get_recipe - get switch recipe 1931 * @hw: pointer to the HW struct 1932 * @s_recipe_list: pointer to switch rule population list 1933 * @num_recipes: pointer to the number of recipes (input and output) 1934 * @recipe_root: root recipe number of recipe(s) to retrieve 1935 * @cd: pointer to command details structure or NULL 1936 * 1937 * Get(0x0292) 1938 * 1939 * On input, *num_recipes should equal the number of entries in s_recipe_list. 1940 * On output, *num_recipes will equal the number of entries returned in 1941 * s_recipe_list. 1942 * 1943 * The caller must supply enough space in s_recipe_list to hold all possible 1944 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES. 1945 */ 1946 int 1947 ice_aq_get_recipe(struct ice_hw *hw, 1948 struct ice_aqc_recipe_data_elem *s_recipe_list, 1949 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd) 1950 { 1951 struct ice_aqc_add_get_recipe *cmd; 1952 struct ice_aq_desc desc; 1953 u16 buf_size; 1954 int status; 1955 1956 if (*num_recipes != ICE_MAX_NUM_RECIPES) 1957 return -EINVAL; 1958 1959 cmd = &desc.params.add_get_recipe; 1960 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe); 1961 1962 cmd->return_index = cpu_to_le16(recipe_root); 1963 cmd->num_sub_recipes = 0; 1964 1965 buf_size = *num_recipes * sizeof(*s_recipe_list); 1966 1967 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 1968 *num_recipes = le16_to_cpu(cmd->num_sub_recipes); 1969 1970 return status; 1971 } 1972 1973 /** 1974 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx 1975 * @hw: pointer to the HW struct 1976 * @params: parameters used to update the default recipe 1977 * 1978 * This function only supports updating default recipes and it only supports 1979 * updating a single recipe based on the lkup_idx at a time. 1980 * 1981 * This is done as a read-modify-write operation. First, get the current recipe 1982 * contents based on the recipe's ID. Then modify the field vector index and 1983 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update 1984 * the pre-existing recipe with the modifications. 1985 */ 1986 int 1987 ice_update_recipe_lkup_idx(struct ice_hw *hw, 1988 struct ice_update_recipe_lkup_idx_params *params) 1989 { 1990 struct ice_aqc_recipe_data_elem *rcp_list; 1991 u16 num_recps = ICE_MAX_NUM_RECIPES; 1992 int status; 1993 1994 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL); 1995 if (!rcp_list) 1996 return -ENOMEM; 1997 1998 /* read current recipe list from firmware */ 1999 rcp_list->recipe_indx = params->rid; 2000 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL); 2001 if (status) { 2002 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n", 2003 params->rid, status); 2004 goto error_out; 2005 } 2006 2007 /* only modify existing recipe's lkup_idx and mask if valid, while 2008 * leaving all other fields the same, then update the recipe firmware 2009 */ 2010 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx; 2011 if (params->mask_valid) 2012 rcp_list->content.mask[params->lkup_idx] = 2013 cpu_to_le16(params->mask); 2014 2015 if (params->ignore_valid) 2016 rcp_list->content.lkup_indx[params->lkup_idx] |= 2017 ICE_AQ_RECIPE_LKUP_IGNORE; 2018 2019 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL); 2020 if (status) 2021 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n", 2022 params->rid, params->lkup_idx, params->fv_idx, 2023 params->mask, params->mask_valid ? "true" : "false", 2024 status); 2025 2026 error_out: 2027 kfree(rcp_list); 2028 return status; 2029 } 2030 2031 /** 2032 * ice_aq_map_recipe_to_profile - Map recipe to packet profile 2033 * @hw: pointer to the HW struct 2034 * @profile_id: package profile ID to associate the recipe with 2035 * @r_bitmap: Recipe bitmap filled in and need to be returned as response 2036 * @cd: pointer to command details structure or NULL 2037 * Recipe to profile association (0x0291) 2038 */ 2039 int 2040 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, 2041 struct ice_sq_cd *cd) 2042 { 2043 struct ice_aqc_recipe_to_profile *cmd; 2044 struct ice_aq_desc desc; 2045 2046 cmd = &desc.params.recipe_to_profile; 2047 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile); 2048 cmd->profile_id = cpu_to_le16(profile_id); 2049 /* Set the recipe ID bit in the bitmask to let the device know which 2050 * profile we are associating the recipe to 2051 */ 2052 memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc)); 2053 2054 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2055 } 2056 2057 /** 2058 * ice_aq_get_recipe_to_profile - Map recipe to packet profile 2059 * @hw: pointer to the HW struct 2060 * @profile_id: package profile ID to associate the recipe with 2061 * @r_bitmap: Recipe bitmap filled in and need to be returned as response 2062 * @cd: pointer to command details structure or NULL 2063 * Associate profile ID with given recipe (0x0293) 2064 */ 2065 int 2066 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, 2067 struct ice_sq_cd *cd) 2068 { 2069 struct ice_aqc_recipe_to_profile *cmd; 2070 struct ice_aq_desc desc; 2071 int status; 2072 2073 cmd = &desc.params.recipe_to_profile; 2074 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile); 2075 cmd->profile_id = cpu_to_le16(profile_id); 2076 2077 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2078 if (!status) 2079 memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc)); 2080 2081 return status; 2082 } 2083 2084 /** 2085 * ice_alloc_recipe - add recipe resource 2086 * @hw: pointer to the hardware structure 2087 * @rid: recipe ID returned as response to AQ call 2088 */ 2089 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid) 2090 { 2091 struct ice_aqc_alloc_free_res_elem *sw_buf; 2092 u16 buf_len; 2093 int status; 2094 2095 buf_len = struct_size(sw_buf, elem, 1); 2096 sw_buf = kzalloc(buf_len, GFP_KERNEL); 2097 if (!sw_buf) 2098 return -ENOMEM; 2099 2100 sw_buf->num_elems = cpu_to_le16(1); 2101 sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE << 2102 ICE_AQC_RES_TYPE_S) | 2103 ICE_AQC_RES_TYPE_FLAG_SHARED); 2104 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, 2105 ice_aqc_opc_alloc_res); 2106 if (!status) 2107 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp); 2108 kfree(sw_buf); 2109 2110 return status; 2111 } 2112 2113 /** 2114 * ice_get_recp_to_prof_map - updates recipe to profile mapping 2115 * @hw: pointer to hardware structure 2116 * 2117 * This function is used to populate recipe_to_profile matrix where index to 2118 * this array is the recipe ID and the element is the mapping of which profiles 2119 * is this recipe mapped to. 2120 */ 2121 static void ice_get_recp_to_prof_map(struct ice_hw *hw) 2122 { 2123 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 2124 u16 i; 2125 2126 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) { 2127 u16 j; 2128 2129 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES); 2130 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES); 2131 if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL)) 2132 continue; 2133 bitmap_copy(profile_to_recipe[i], r_bitmap, 2134 ICE_MAX_NUM_RECIPES); 2135 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES) 2136 set_bit(i, recipe_to_profile[j]); 2137 } 2138 } 2139 2140 /** 2141 * ice_collect_result_idx - copy result index values 2142 * @buf: buffer that contains the result index 2143 * @recp: the recipe struct to copy data into 2144 */ 2145 static void 2146 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf, 2147 struct ice_sw_recipe *recp) 2148 { 2149 if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN) 2150 set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, 2151 recp->res_idxs); 2152 } 2153 2154 /** 2155 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries 2156 * @hw: pointer to hardware structure 2157 * @recps: struct that we need to populate 2158 * @rid: recipe ID that we are populating 2159 * @refresh_required: true if we should get recipe to profile mapping from FW 2160 * 2161 * This function is used to populate all the necessary entries into our 2162 * bookkeeping so that we have a current list of all the recipes that are 2163 * programmed in the firmware. 2164 */ 2165 static int 2166 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid, 2167 bool *refresh_required) 2168 { 2169 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS); 2170 struct ice_aqc_recipe_data_elem *tmp; 2171 u16 num_recps = ICE_MAX_NUM_RECIPES; 2172 struct ice_prot_lkup_ext *lkup_exts; 2173 u8 fv_word_idx = 0; 2174 u16 sub_recps; 2175 int status; 2176 2177 bitmap_zero(result_bm, ICE_MAX_FV_WORDS); 2178 2179 /* we need a buffer big enough to accommodate all the recipes */ 2180 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); 2181 if (!tmp) 2182 return -ENOMEM; 2183 2184 tmp[0].recipe_indx = rid; 2185 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL); 2186 /* non-zero status meaning recipe doesn't exist */ 2187 if (status) 2188 goto err_unroll; 2189 2190 /* Get recipe to profile map so that we can get the fv from lkups that 2191 * we read for a recipe from FW. Since we want to minimize the number of 2192 * times we make this FW call, just make one call and cache the copy 2193 * until a new recipe is added. This operation is only required the 2194 * first time to get the changes from FW. Then to search existing 2195 * entries we don't need to update the cache again until another recipe 2196 * gets added. 2197 */ 2198 if (*refresh_required) { 2199 ice_get_recp_to_prof_map(hw); 2200 *refresh_required = false; 2201 } 2202 2203 /* Start populating all the entries for recps[rid] based on lkups from 2204 * firmware. Note that we are only creating the root recipe in our 2205 * database. 2206 */ 2207 lkup_exts = &recps[rid].lkup_exts; 2208 2209 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) { 2210 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps]; 2211 struct ice_recp_grp_entry *rg_entry; 2212 u8 i, prof, idx, prot = 0; 2213 bool is_root; 2214 u16 off = 0; 2215 2216 rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry), 2217 GFP_KERNEL); 2218 if (!rg_entry) { 2219 status = -ENOMEM; 2220 goto err_unroll; 2221 } 2222 2223 idx = root_bufs.recipe_indx; 2224 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT; 2225 2226 /* Mark all result indices in this chain */ 2227 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) 2228 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, 2229 result_bm); 2230 2231 /* get the first profile that is associated with rid */ 2232 prof = find_first_bit(recipe_to_profile[idx], 2233 ICE_MAX_NUM_PROFILES); 2234 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) { 2235 u8 lkup_indx = root_bufs.content.lkup_indx[i + 1]; 2236 2237 rg_entry->fv_idx[i] = lkup_indx; 2238 rg_entry->fv_mask[i] = 2239 le16_to_cpu(root_bufs.content.mask[i + 1]); 2240 2241 /* If the recipe is a chained recipe then all its 2242 * child recipe's result will have a result index. 2243 * To fill fv_words we should not use those result 2244 * index, we only need the protocol ids and offsets. 2245 * We will skip all the fv_idx which stores result 2246 * index in them. We also need to skip any fv_idx which 2247 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a 2248 * valid offset value. 2249 */ 2250 if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) || 2251 rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE || 2252 rg_entry->fv_idx[i] == 0) 2253 continue; 2254 2255 ice_find_prot_off(hw, ICE_BLK_SW, prof, 2256 rg_entry->fv_idx[i], &prot, &off); 2257 lkup_exts->fv_words[fv_word_idx].prot_id = prot; 2258 lkup_exts->fv_words[fv_word_idx].off = off; 2259 lkup_exts->field_mask[fv_word_idx] = 2260 rg_entry->fv_mask[i]; 2261 fv_word_idx++; 2262 } 2263 /* populate rg_list with the data from the child entry of this 2264 * recipe 2265 */ 2266 list_add(&rg_entry->l_entry, &recps[rid].rg_list); 2267 2268 /* Propagate some data to the recipe database */ 2269 recps[idx].is_root = !!is_root; 2270 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2271 recps[idx].need_pass_l2 = root_bufs.content.act_ctrl & 2272 ICE_AQ_RECIPE_ACT_NEED_PASS_L2; 2273 recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl & 2274 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2; 2275 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS); 2276 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) { 2277 recps[idx].chain_idx = root_bufs.content.result_indx & 2278 ~ICE_AQ_RECIPE_RESULT_EN; 2279 set_bit(recps[idx].chain_idx, recps[idx].res_idxs); 2280 } else { 2281 recps[idx].chain_idx = ICE_INVAL_CHAIN_IND; 2282 } 2283 2284 if (!is_root) 2285 continue; 2286 2287 /* Only do the following for root recipes entries */ 2288 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap, 2289 sizeof(recps[idx].r_bitmap)); 2290 recps[idx].root_rid = root_bufs.content.rid & 2291 ~ICE_AQ_RECIPE_ID_IS_ROOT; 2292 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2293 } 2294 2295 /* Complete initialization of the root recipe entry */ 2296 lkup_exts->n_val_words = fv_word_idx; 2297 recps[rid].big_recp = (num_recps > 1); 2298 recps[rid].n_grp_count = (u8)num_recps; 2299 recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp, 2300 recps[rid].n_grp_count * sizeof(*recps[rid].root_buf), 2301 GFP_KERNEL); 2302 if (!recps[rid].root_buf) { 2303 status = -ENOMEM; 2304 goto err_unroll; 2305 } 2306 2307 /* Copy result indexes */ 2308 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS); 2309 recps[rid].recp_created = true; 2310 2311 err_unroll: 2312 kfree(tmp); 2313 return status; 2314 } 2315 2316 /* ice_init_port_info - Initialize port_info with switch configuration data 2317 * @pi: pointer to port_info 2318 * @vsi_port_num: VSI number or port number 2319 * @type: Type of switch element (port or VSI) 2320 * @swid: switch ID of the switch the element is attached to 2321 * @pf_vf_num: PF or VF number 2322 * @is_vf: true if the element is a VF, false otherwise 2323 */ 2324 static void 2325 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 2326 u16 swid, u16 pf_vf_num, bool is_vf) 2327 { 2328 switch (type) { 2329 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 2330 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 2331 pi->sw_id = swid; 2332 pi->pf_vf_num = pf_vf_num; 2333 pi->is_vf = is_vf; 2334 break; 2335 default: 2336 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); 2337 break; 2338 } 2339 } 2340 2341 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 2342 * @hw: pointer to the hardware structure 2343 */ 2344 int ice_get_initial_sw_cfg(struct ice_hw *hw) 2345 { 2346 struct ice_aqc_get_sw_cfg_resp_elem *rbuf; 2347 u16 req_desc = 0; 2348 u16 num_elems; 2349 int status; 2350 u16 i; 2351 2352 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL); 2353 if (!rbuf) 2354 return -ENOMEM; 2355 2356 /* Multiple calls to ice_aq_get_sw_cfg may be required 2357 * to get all the switch configuration information. The need 2358 * for additional calls is indicated by ice_aq_get_sw_cfg 2359 * writing a non-zero value in req_desc 2360 */ 2361 do { 2362 struct ice_aqc_get_sw_cfg_resp_elem *ele; 2363 2364 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 2365 &req_desc, &num_elems, NULL); 2366 2367 if (status) 2368 break; 2369 2370 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { 2371 u16 pf_vf_num, swid, vsi_port_num; 2372 bool is_vf = false; 2373 u8 res_type; 2374 2375 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 2376 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 2377 2378 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 2379 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 2380 2381 swid = le16_to_cpu(ele->swid); 2382 2383 if (le16_to_cpu(ele->pf_vf_num) & 2384 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 2385 is_vf = true; 2386 2387 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >> 2388 ICE_AQC_GET_SW_CONF_RESP_TYPE_S); 2389 2390 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 2391 /* FW VSI is not needed. Just continue. */ 2392 continue; 2393 } 2394 2395 ice_init_port_info(hw->port_info, vsi_port_num, 2396 res_type, swid, pf_vf_num, is_vf); 2397 } 2398 } while (req_desc && !status); 2399 2400 kfree(rbuf); 2401 return status; 2402 } 2403 2404 /** 2405 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 2406 * @hw: pointer to the hardware structure 2407 * @fi: filter info structure to fill/update 2408 * 2409 * This helper function populates the lb_en and lan_en elements of the provided 2410 * ice_fltr_info struct using the switch's type and characteristics of the 2411 * switch rule being configured. 2412 */ 2413 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 2414 { 2415 fi->lb_en = false; 2416 fi->lan_en = false; 2417 if ((fi->flag & ICE_FLTR_TX) && 2418 (fi->fltr_act == ICE_FWD_TO_VSI || 2419 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 2420 fi->fltr_act == ICE_FWD_TO_Q || 2421 fi->fltr_act == ICE_FWD_TO_QGRP)) { 2422 /* Setting LB for prune actions will result in replicated 2423 * packets to the internal switch that will be dropped. 2424 */ 2425 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 2426 fi->lb_en = true; 2427 2428 /* Set lan_en to TRUE if 2429 * 1. The switch is a VEB AND 2430 * 2 2431 * 2.1 The lookup is a directional lookup like ethertype, 2432 * promiscuous, ethertype-MAC, promiscuous-VLAN 2433 * and default-port OR 2434 * 2.2 The lookup is VLAN, OR 2435 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 2436 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 2437 * 2438 * OR 2439 * 2440 * The switch is a VEPA. 2441 * 2442 * In all other cases, the LAN enable has to be set to false. 2443 */ 2444 if (hw->evb_veb) { 2445 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 2446 fi->lkup_type == ICE_SW_LKUP_PROMISC || 2447 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2448 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2449 fi->lkup_type == ICE_SW_LKUP_DFLT || 2450 fi->lkup_type == ICE_SW_LKUP_VLAN || 2451 (fi->lkup_type == ICE_SW_LKUP_MAC && 2452 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 2453 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 2454 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 2455 fi->lan_en = true; 2456 } else { 2457 fi->lan_en = true; 2458 } 2459 } 2460 } 2461 2462 /** 2463 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer 2464 * @eth_hdr: pointer to buffer to populate 2465 */ 2466 void ice_fill_eth_hdr(u8 *eth_hdr) 2467 { 2468 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN); 2469 } 2470 2471 /** 2472 * ice_fill_sw_rule - Helper function to fill switch rule structure 2473 * @hw: pointer to the hardware structure 2474 * @f_info: entry containing packet forwarding information 2475 * @s_rule: switch rule structure to be filled in based on mac_entry 2476 * @opc: switch rules population command type - pass in the command opcode 2477 */ 2478 static void 2479 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 2480 struct ice_sw_rule_lkup_rx_tx *s_rule, 2481 enum ice_adminq_opc opc) 2482 { 2483 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 2484 u16 vlan_tpid = ETH_P_8021Q; 2485 void *daddr = NULL; 2486 u16 eth_hdr_sz; 2487 u8 *eth_hdr; 2488 u32 act = 0; 2489 __be16 *off; 2490 u8 q_rgn; 2491 2492 if (opc == ice_aqc_opc_remove_sw_rules) { 2493 s_rule->act = 0; 2494 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 2495 s_rule->hdr_len = 0; 2496 return; 2497 } 2498 2499 eth_hdr_sz = sizeof(dummy_eth_header); 2500 eth_hdr = s_rule->hdr_data; 2501 2502 /* initialize the ether header with a dummy header */ 2503 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 2504 ice_fill_sw_info(hw, f_info); 2505 2506 switch (f_info->fltr_act) { 2507 case ICE_FWD_TO_VSI: 2508 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & 2509 ICE_SINGLE_ACT_VSI_ID_M; 2510 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2511 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2512 ICE_SINGLE_ACT_VALID_BIT; 2513 break; 2514 case ICE_FWD_TO_VSI_LIST: 2515 act |= ICE_SINGLE_ACT_VSI_LIST; 2516 act |= (f_info->fwd_id.vsi_list_id << 2517 ICE_SINGLE_ACT_VSI_LIST_ID_S) & 2518 ICE_SINGLE_ACT_VSI_LIST_ID_M; 2519 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2520 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2521 ICE_SINGLE_ACT_VALID_BIT; 2522 break; 2523 case ICE_FWD_TO_Q: 2524 act |= ICE_SINGLE_ACT_TO_Q; 2525 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 2526 ICE_SINGLE_ACT_Q_INDEX_M; 2527 break; 2528 case ICE_DROP_PACKET: 2529 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 2530 ICE_SINGLE_ACT_VALID_BIT; 2531 break; 2532 case ICE_FWD_TO_QGRP: 2533 q_rgn = f_info->qgrp_size > 0 ? 2534 (u8)ilog2(f_info->qgrp_size) : 0; 2535 act |= ICE_SINGLE_ACT_TO_Q; 2536 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 2537 ICE_SINGLE_ACT_Q_INDEX_M; 2538 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 2539 ICE_SINGLE_ACT_Q_REGION_M; 2540 break; 2541 default: 2542 return; 2543 } 2544 2545 if (f_info->lb_en) 2546 act |= ICE_SINGLE_ACT_LB_ENABLE; 2547 if (f_info->lan_en) 2548 act |= ICE_SINGLE_ACT_LAN_ENABLE; 2549 2550 switch (f_info->lkup_type) { 2551 case ICE_SW_LKUP_MAC: 2552 daddr = f_info->l_data.mac.mac_addr; 2553 break; 2554 case ICE_SW_LKUP_VLAN: 2555 vlan_id = f_info->l_data.vlan.vlan_id; 2556 if (f_info->l_data.vlan.tpid_valid) 2557 vlan_tpid = f_info->l_data.vlan.tpid; 2558 if (f_info->fltr_act == ICE_FWD_TO_VSI || 2559 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 2560 act |= ICE_SINGLE_ACT_PRUNE; 2561 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 2562 } 2563 break; 2564 case ICE_SW_LKUP_ETHERTYPE_MAC: 2565 daddr = f_info->l_data.ethertype_mac.mac_addr; 2566 fallthrough; 2567 case ICE_SW_LKUP_ETHERTYPE: 2568 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2569 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 2570 break; 2571 case ICE_SW_LKUP_MAC_VLAN: 2572 daddr = f_info->l_data.mac_vlan.mac_addr; 2573 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2574 break; 2575 case ICE_SW_LKUP_PROMISC_VLAN: 2576 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2577 fallthrough; 2578 case ICE_SW_LKUP_PROMISC: 2579 daddr = f_info->l_data.mac_vlan.mac_addr; 2580 break; 2581 default: 2582 break; 2583 } 2584 2585 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ? 2586 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 2587 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 2588 2589 /* Recipe set depending on lookup type */ 2590 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type); 2591 s_rule->src = cpu_to_le16(f_info->src); 2592 s_rule->act = cpu_to_le32(act); 2593 2594 if (daddr) 2595 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 2596 2597 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 2598 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 2599 *off = cpu_to_be16(vlan_id); 2600 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2601 *off = cpu_to_be16(vlan_tpid); 2602 } 2603 2604 /* Create the switch rule with the final dummy Ethernet header */ 2605 if (opc != ice_aqc_opc_update_sw_rules) 2606 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz); 2607 } 2608 2609 /** 2610 * ice_add_marker_act 2611 * @hw: pointer to the hardware structure 2612 * @m_ent: the management entry for which sw marker needs to be added 2613 * @sw_marker: sw marker to tag the Rx descriptor with 2614 * @l_id: large action resource ID 2615 * 2616 * Create a large action to hold software marker and update the switch rule 2617 * entry pointed by m_ent with newly created large action 2618 */ 2619 static int 2620 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 2621 u16 sw_marker, u16 l_id) 2622 { 2623 struct ice_sw_rule_lkup_rx_tx *rx_tx; 2624 struct ice_sw_rule_lg_act *lg_act; 2625 /* For software marker we need 3 large actions 2626 * 1. FWD action: FWD TO VSI or VSI LIST 2627 * 2. GENERIC VALUE action to hold the profile ID 2628 * 3. GENERIC VALUE action to hold the software marker ID 2629 */ 2630 const u16 num_lg_acts = 3; 2631 u16 lg_act_size; 2632 u16 rules_size; 2633 int status; 2634 u32 act; 2635 u16 id; 2636 2637 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 2638 return -EINVAL; 2639 2640 /* Create two back-to-back switch rules and submit them to the HW using 2641 * one memory buffer: 2642 * 1. Large Action 2643 * 2. Look up Tx Rx 2644 */ 2645 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts); 2646 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx); 2647 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 2648 if (!lg_act) 2649 return -ENOMEM; 2650 2651 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size); 2652 2653 /* Fill in the first switch rule i.e. large action */ 2654 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 2655 lg_act->index = cpu_to_le16(l_id); 2656 lg_act->size = cpu_to_le16(num_lg_acts); 2657 2658 /* First action VSI forwarding or VSI list forwarding depending on how 2659 * many VSIs 2660 */ 2661 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 2662 m_ent->fltr_info.fwd_id.hw_vsi_id; 2663 2664 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 2665 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; 2666 if (m_ent->vsi_count > 1) 2667 act |= ICE_LG_ACT_VSI_LIST; 2668 lg_act->act[0] = cpu_to_le32(act); 2669 2670 /* Second action descriptor type */ 2671 act = ICE_LG_ACT_GENERIC; 2672 2673 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; 2674 lg_act->act[1] = cpu_to_le32(act); 2675 2676 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << 2677 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; 2678 2679 /* Third action Marker value */ 2680 act |= ICE_LG_ACT_GENERIC; 2681 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & 2682 ICE_LG_ACT_GENERIC_VALUE_M; 2683 2684 lg_act->act[2] = cpu_to_le32(act); 2685 2686 /* call the fill switch rule to fill the lookup Tx Rx structure */ 2687 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 2688 ice_aqc_opc_update_sw_rules); 2689 2690 /* Update the action to point to the large action ID */ 2691 rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR | 2692 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & 2693 ICE_SINGLE_ACT_PTR_VAL_M)); 2694 2695 /* Use the filter rule ID of the previously created rule with single 2696 * act. Once the update happens, hardware will treat this as large 2697 * action 2698 */ 2699 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 2700 2701 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 2702 ice_aqc_opc_update_sw_rules, NULL); 2703 if (!status) { 2704 m_ent->lg_act_idx = l_id; 2705 m_ent->sw_marker_id = sw_marker; 2706 } 2707 2708 devm_kfree(ice_hw_to_dev(hw), lg_act); 2709 return status; 2710 } 2711 2712 /** 2713 * ice_create_vsi_list_map 2714 * @hw: pointer to the hardware structure 2715 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 2716 * @num_vsi: number of VSI handles in the array 2717 * @vsi_list_id: VSI list ID generated as part of allocate resource 2718 * 2719 * Helper function to create a new entry of VSI list ID to VSI mapping 2720 * using the given VSI list ID 2721 */ 2722 static struct ice_vsi_list_map_info * 2723 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2724 u16 vsi_list_id) 2725 { 2726 struct ice_switch_info *sw = hw->switch_info; 2727 struct ice_vsi_list_map_info *v_map; 2728 int i; 2729 2730 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL); 2731 if (!v_map) 2732 return NULL; 2733 2734 v_map->vsi_list_id = vsi_list_id; 2735 v_map->ref_cnt = 1; 2736 for (i = 0; i < num_vsi; i++) 2737 set_bit(vsi_handle_arr[i], v_map->vsi_map); 2738 2739 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 2740 return v_map; 2741 } 2742 2743 /** 2744 * ice_update_vsi_list_rule 2745 * @hw: pointer to the hardware structure 2746 * @vsi_handle_arr: array of VSI handles to form a VSI list 2747 * @num_vsi: number of VSI handles in the array 2748 * @vsi_list_id: VSI list ID generated as part of allocate resource 2749 * @remove: Boolean value to indicate if this is a remove action 2750 * @opc: switch rules population command type - pass in the command opcode 2751 * @lkup_type: lookup type of the filter 2752 * 2753 * Call AQ command to add a new switch rule or update existing switch rule 2754 * using the given VSI list ID 2755 */ 2756 static int 2757 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2758 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 2759 enum ice_sw_lkup_type lkup_type) 2760 { 2761 struct ice_sw_rule_vsi_list *s_rule; 2762 u16 s_rule_size; 2763 u16 rule_type; 2764 int status; 2765 int i; 2766 2767 if (!num_vsi) 2768 return -EINVAL; 2769 2770 if (lkup_type == ICE_SW_LKUP_MAC || 2771 lkup_type == ICE_SW_LKUP_MAC_VLAN || 2772 lkup_type == ICE_SW_LKUP_ETHERTYPE || 2773 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2774 lkup_type == ICE_SW_LKUP_PROMISC || 2775 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2776 lkup_type == ICE_SW_LKUP_DFLT) 2777 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 2778 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 2779 else if (lkup_type == ICE_SW_LKUP_VLAN) 2780 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 2781 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 2782 else 2783 return -EINVAL; 2784 2785 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi); 2786 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2787 if (!s_rule) 2788 return -ENOMEM; 2789 for (i = 0; i < num_vsi; i++) { 2790 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 2791 status = -EINVAL; 2792 goto exit; 2793 } 2794 /* AQ call requires hw_vsi_id(s) */ 2795 s_rule->vsi[i] = 2796 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 2797 } 2798 2799 s_rule->hdr.type = cpu_to_le16(rule_type); 2800 s_rule->number_vsi = cpu_to_le16(num_vsi); 2801 s_rule->index = cpu_to_le16(vsi_list_id); 2802 2803 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 2804 2805 exit: 2806 devm_kfree(ice_hw_to_dev(hw), s_rule); 2807 return status; 2808 } 2809 2810 /** 2811 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 2812 * @hw: pointer to the HW struct 2813 * @vsi_handle_arr: array of VSI handles to form a VSI list 2814 * @num_vsi: number of VSI handles in the array 2815 * @vsi_list_id: stores the ID of the VSI list to be created 2816 * @lkup_type: switch rule filter's lookup type 2817 */ 2818 static int 2819 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2820 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 2821 { 2822 int status; 2823 2824 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 2825 ice_aqc_opc_alloc_res); 2826 if (status) 2827 return status; 2828 2829 /* Update the newly created VSI list to include the specified VSIs */ 2830 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 2831 *vsi_list_id, false, 2832 ice_aqc_opc_add_sw_rules, lkup_type); 2833 } 2834 2835 /** 2836 * ice_create_pkt_fwd_rule 2837 * @hw: pointer to the hardware structure 2838 * @f_entry: entry containing packet forwarding information 2839 * 2840 * Create switch rule with given filter information and add an entry 2841 * to the corresponding filter management list to track this switch rule 2842 * and VSI mapping 2843 */ 2844 static int 2845 ice_create_pkt_fwd_rule(struct ice_hw *hw, 2846 struct ice_fltr_list_entry *f_entry) 2847 { 2848 struct ice_fltr_mgmt_list_entry *fm_entry; 2849 struct ice_sw_rule_lkup_rx_tx *s_rule; 2850 enum ice_sw_lkup_type l_type; 2851 struct ice_sw_recipe *recp; 2852 int status; 2853 2854 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 2855 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 2856 GFP_KERNEL); 2857 if (!s_rule) 2858 return -ENOMEM; 2859 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 2860 GFP_KERNEL); 2861 if (!fm_entry) { 2862 status = -ENOMEM; 2863 goto ice_create_pkt_fwd_rule_exit; 2864 } 2865 2866 fm_entry->fltr_info = f_entry->fltr_info; 2867 2868 /* Initialize all the fields for the management entry */ 2869 fm_entry->vsi_count = 1; 2870 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 2871 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 2872 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 2873 2874 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 2875 ice_aqc_opc_add_sw_rules); 2876 2877 status = ice_aq_sw_rules(hw, s_rule, 2878 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 2879 ice_aqc_opc_add_sw_rules, NULL); 2880 if (status) { 2881 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2882 goto ice_create_pkt_fwd_rule_exit; 2883 } 2884 2885 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 2886 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 2887 2888 /* The book keeping entries will get removed when base driver 2889 * calls remove filter AQ command 2890 */ 2891 l_type = fm_entry->fltr_info.lkup_type; 2892 recp = &hw->switch_info->recp_list[l_type]; 2893 list_add(&fm_entry->list_entry, &recp->filt_rules); 2894 2895 ice_create_pkt_fwd_rule_exit: 2896 devm_kfree(ice_hw_to_dev(hw), s_rule); 2897 return status; 2898 } 2899 2900 /** 2901 * ice_update_pkt_fwd_rule 2902 * @hw: pointer to the hardware structure 2903 * @f_info: filter information for switch rule 2904 * 2905 * Call AQ command to update a previously created switch rule with a 2906 * VSI list ID 2907 */ 2908 static int 2909 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 2910 { 2911 struct ice_sw_rule_lkup_rx_tx *s_rule; 2912 int status; 2913 2914 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 2915 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 2916 GFP_KERNEL); 2917 if (!s_rule) 2918 return -ENOMEM; 2919 2920 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 2921 2922 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 2923 2924 /* Update switch rule with new rule set to forward VSI list */ 2925 status = ice_aq_sw_rules(hw, s_rule, 2926 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 2927 ice_aqc_opc_update_sw_rules, NULL); 2928 2929 devm_kfree(ice_hw_to_dev(hw), s_rule); 2930 return status; 2931 } 2932 2933 /** 2934 * ice_update_sw_rule_bridge_mode 2935 * @hw: pointer to the HW struct 2936 * 2937 * Updates unicast switch filter rules based on VEB/VEPA mode 2938 */ 2939 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 2940 { 2941 struct ice_switch_info *sw = hw->switch_info; 2942 struct ice_fltr_mgmt_list_entry *fm_entry; 2943 struct list_head *rule_head; 2944 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2945 int status = 0; 2946 2947 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 2948 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 2949 2950 mutex_lock(rule_lock); 2951 list_for_each_entry(fm_entry, rule_head, list_entry) { 2952 struct ice_fltr_info *fi = &fm_entry->fltr_info; 2953 u8 *addr = fi->l_data.mac.mac_addr; 2954 2955 /* Update unicast Tx rules to reflect the selected 2956 * VEB/VEPA mode 2957 */ 2958 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 2959 (fi->fltr_act == ICE_FWD_TO_VSI || 2960 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 2961 fi->fltr_act == ICE_FWD_TO_Q || 2962 fi->fltr_act == ICE_FWD_TO_QGRP)) { 2963 status = ice_update_pkt_fwd_rule(hw, fi); 2964 if (status) 2965 break; 2966 } 2967 } 2968 2969 mutex_unlock(rule_lock); 2970 2971 return status; 2972 } 2973 2974 /** 2975 * ice_add_update_vsi_list 2976 * @hw: pointer to the hardware structure 2977 * @m_entry: pointer to current filter management list entry 2978 * @cur_fltr: filter information from the book keeping entry 2979 * @new_fltr: filter information with the new VSI to be added 2980 * 2981 * Call AQ command to add or update previously created VSI list with new VSI. 2982 * 2983 * Helper function to do book keeping associated with adding filter information 2984 * The algorithm to do the book keeping is described below : 2985 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 2986 * if only one VSI has been added till now 2987 * Allocate a new VSI list and add two VSIs 2988 * to this list using switch rule command 2989 * Update the previously created switch rule with the 2990 * newly created VSI list ID 2991 * if a VSI list was previously created 2992 * Add the new VSI to the previously created VSI list set 2993 * using the update switch rule command 2994 */ 2995 static int 2996 ice_add_update_vsi_list(struct ice_hw *hw, 2997 struct ice_fltr_mgmt_list_entry *m_entry, 2998 struct ice_fltr_info *cur_fltr, 2999 struct ice_fltr_info *new_fltr) 3000 { 3001 u16 vsi_list_id = 0; 3002 int status = 0; 3003 3004 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 3005 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 3006 return -EOPNOTSUPP; 3007 3008 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 3009 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 3010 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 3011 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 3012 return -EOPNOTSUPP; 3013 3014 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 3015 /* Only one entry existed in the mapping and it was not already 3016 * a part of a VSI list. So, create a VSI list with the old and 3017 * new VSIs. 3018 */ 3019 struct ice_fltr_info tmp_fltr; 3020 u16 vsi_handle_arr[2]; 3021 3022 /* A rule already exists with the new VSI being added */ 3023 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 3024 return -EEXIST; 3025 3026 vsi_handle_arr[0] = cur_fltr->vsi_handle; 3027 vsi_handle_arr[1] = new_fltr->vsi_handle; 3028 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3029 &vsi_list_id, 3030 new_fltr->lkup_type); 3031 if (status) 3032 return status; 3033 3034 tmp_fltr = *new_fltr; 3035 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 3036 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3037 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3038 /* Update the previous switch rule of "MAC forward to VSI" to 3039 * "MAC fwd to VSI list" 3040 */ 3041 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3042 if (status) 3043 return status; 3044 3045 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 3046 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3047 m_entry->vsi_list_info = 3048 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3049 vsi_list_id); 3050 3051 if (!m_entry->vsi_list_info) 3052 return -ENOMEM; 3053 3054 /* If this entry was large action then the large action needs 3055 * to be updated to point to FWD to VSI list 3056 */ 3057 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 3058 status = 3059 ice_add_marker_act(hw, m_entry, 3060 m_entry->sw_marker_id, 3061 m_entry->lg_act_idx); 3062 } else { 3063 u16 vsi_handle = new_fltr->vsi_handle; 3064 enum ice_adminq_opc opcode; 3065 3066 if (!m_entry->vsi_list_info) 3067 return -EIO; 3068 3069 /* A rule already exists with the new VSI being added */ 3070 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 3071 return 0; 3072 3073 /* Update the previously created VSI list set with 3074 * the new VSI ID passed in 3075 */ 3076 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 3077 opcode = ice_aqc_opc_update_sw_rules; 3078 3079 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 3080 vsi_list_id, false, opcode, 3081 new_fltr->lkup_type); 3082 /* update VSI list mapping info with new VSI ID */ 3083 if (!status) 3084 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 3085 } 3086 if (!status) 3087 m_entry->vsi_count++; 3088 return status; 3089 } 3090 3091 /** 3092 * ice_find_rule_entry - Search a rule entry 3093 * @hw: pointer to the hardware structure 3094 * @recp_id: lookup type for which the specified rule needs to be searched 3095 * @f_info: rule information 3096 * 3097 * Helper function to search for a given rule entry 3098 * Returns pointer to entry storing the rule if found 3099 */ 3100 static struct ice_fltr_mgmt_list_entry * 3101 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 3102 { 3103 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 3104 struct ice_switch_info *sw = hw->switch_info; 3105 struct list_head *list_head; 3106 3107 list_head = &sw->recp_list[recp_id].filt_rules; 3108 list_for_each_entry(list_itr, list_head, list_entry) { 3109 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 3110 sizeof(f_info->l_data)) && 3111 f_info->flag == list_itr->fltr_info.flag) { 3112 ret = list_itr; 3113 break; 3114 } 3115 } 3116 return ret; 3117 } 3118 3119 /** 3120 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 3121 * @hw: pointer to the hardware structure 3122 * @recp_id: lookup type for which VSI lists needs to be searched 3123 * @vsi_handle: VSI handle to be found in VSI list 3124 * @vsi_list_id: VSI list ID found containing vsi_handle 3125 * 3126 * Helper function to search a VSI list with single entry containing given VSI 3127 * handle element. This can be extended further to search VSI list with more 3128 * than 1 vsi_count. Returns pointer to VSI list entry if found. 3129 */ 3130 struct ice_vsi_list_map_info * 3131 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 3132 u16 *vsi_list_id) 3133 { 3134 struct ice_vsi_list_map_info *map_info = NULL; 3135 struct ice_switch_info *sw = hw->switch_info; 3136 struct ice_fltr_mgmt_list_entry *list_itr; 3137 struct list_head *list_head; 3138 3139 list_head = &sw->recp_list[recp_id].filt_rules; 3140 list_for_each_entry(list_itr, list_head, list_entry) { 3141 if (list_itr->vsi_list_info) { 3142 map_info = list_itr->vsi_list_info; 3143 if (test_bit(vsi_handle, map_info->vsi_map)) { 3144 *vsi_list_id = map_info->vsi_list_id; 3145 return map_info; 3146 } 3147 } 3148 } 3149 return NULL; 3150 } 3151 3152 /** 3153 * ice_add_rule_internal - add rule for a given lookup type 3154 * @hw: pointer to the hardware structure 3155 * @recp_id: lookup type (recipe ID) for which rule has to be added 3156 * @f_entry: structure containing MAC forwarding information 3157 * 3158 * Adds or updates the rule lists for a given recipe 3159 */ 3160 static int 3161 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 3162 struct ice_fltr_list_entry *f_entry) 3163 { 3164 struct ice_switch_info *sw = hw->switch_info; 3165 struct ice_fltr_info *new_fltr, *cur_fltr; 3166 struct ice_fltr_mgmt_list_entry *m_entry; 3167 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3168 int status = 0; 3169 3170 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3171 return -EINVAL; 3172 f_entry->fltr_info.fwd_id.hw_vsi_id = 3173 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3174 3175 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3176 3177 mutex_lock(rule_lock); 3178 new_fltr = &f_entry->fltr_info; 3179 if (new_fltr->flag & ICE_FLTR_RX) 3180 new_fltr->src = hw->port_info->lport; 3181 else if (new_fltr->flag & ICE_FLTR_TX) 3182 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 3183 3184 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 3185 if (!m_entry) { 3186 mutex_unlock(rule_lock); 3187 return ice_create_pkt_fwd_rule(hw, f_entry); 3188 } 3189 3190 cur_fltr = &m_entry->fltr_info; 3191 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 3192 mutex_unlock(rule_lock); 3193 3194 return status; 3195 } 3196 3197 /** 3198 * ice_remove_vsi_list_rule 3199 * @hw: pointer to the hardware structure 3200 * @vsi_list_id: VSI list ID generated as part of allocate resource 3201 * @lkup_type: switch rule filter lookup type 3202 * 3203 * The VSI list should be emptied before this function is called to remove the 3204 * VSI list. 3205 */ 3206 static int 3207 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 3208 enum ice_sw_lkup_type lkup_type) 3209 { 3210 struct ice_sw_rule_vsi_list *s_rule; 3211 u16 s_rule_size; 3212 int status; 3213 3214 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0); 3215 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 3216 if (!s_rule) 3217 return -ENOMEM; 3218 3219 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 3220 s_rule->index = cpu_to_le16(vsi_list_id); 3221 3222 /* Free the vsi_list resource that we allocated. It is assumed that the 3223 * list is empty at this point. 3224 */ 3225 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 3226 ice_aqc_opc_free_res); 3227 3228 devm_kfree(ice_hw_to_dev(hw), s_rule); 3229 return status; 3230 } 3231 3232 /** 3233 * ice_rem_update_vsi_list 3234 * @hw: pointer to the hardware structure 3235 * @vsi_handle: VSI handle of the VSI to remove 3236 * @fm_list: filter management entry for which the VSI list management needs to 3237 * be done 3238 */ 3239 static int 3240 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 3241 struct ice_fltr_mgmt_list_entry *fm_list) 3242 { 3243 enum ice_sw_lkup_type lkup_type; 3244 u16 vsi_list_id; 3245 int status = 0; 3246 3247 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 3248 fm_list->vsi_count == 0) 3249 return -EINVAL; 3250 3251 /* A rule with the VSI being removed does not exist */ 3252 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 3253 return -ENOENT; 3254 3255 lkup_type = fm_list->fltr_info.lkup_type; 3256 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 3257 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 3258 ice_aqc_opc_update_sw_rules, 3259 lkup_type); 3260 if (status) 3261 return status; 3262 3263 fm_list->vsi_count--; 3264 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 3265 3266 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 3267 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 3268 struct ice_vsi_list_map_info *vsi_list_info = 3269 fm_list->vsi_list_info; 3270 u16 rem_vsi_handle; 3271 3272 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 3273 ICE_MAX_VSI); 3274 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 3275 return -EIO; 3276 3277 /* Make sure VSI list is empty before removing it below */ 3278 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 3279 vsi_list_id, true, 3280 ice_aqc_opc_update_sw_rules, 3281 lkup_type); 3282 if (status) 3283 return status; 3284 3285 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 3286 tmp_fltr_info.fwd_id.hw_vsi_id = 3287 ice_get_hw_vsi_num(hw, rem_vsi_handle); 3288 tmp_fltr_info.vsi_handle = rem_vsi_handle; 3289 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 3290 if (status) { 3291 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 3292 tmp_fltr_info.fwd_id.hw_vsi_id, status); 3293 return status; 3294 } 3295 3296 fm_list->fltr_info = tmp_fltr_info; 3297 } 3298 3299 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 3300 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 3301 struct ice_vsi_list_map_info *vsi_list_info = 3302 fm_list->vsi_list_info; 3303 3304 /* Remove the VSI list since it is no longer used */ 3305 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 3306 if (status) { 3307 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 3308 vsi_list_id, status); 3309 return status; 3310 } 3311 3312 list_del(&vsi_list_info->list_entry); 3313 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 3314 fm_list->vsi_list_info = NULL; 3315 } 3316 3317 return status; 3318 } 3319 3320 /** 3321 * ice_remove_rule_internal - Remove a filter rule of a given type 3322 * @hw: pointer to the hardware structure 3323 * @recp_id: recipe ID for which the rule needs to removed 3324 * @f_entry: rule entry containing filter information 3325 */ 3326 static int 3327 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 3328 struct ice_fltr_list_entry *f_entry) 3329 { 3330 struct ice_switch_info *sw = hw->switch_info; 3331 struct ice_fltr_mgmt_list_entry *list_elem; 3332 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3333 bool remove_rule = false; 3334 u16 vsi_handle; 3335 int status = 0; 3336 3337 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3338 return -EINVAL; 3339 f_entry->fltr_info.fwd_id.hw_vsi_id = 3340 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3341 3342 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3343 mutex_lock(rule_lock); 3344 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 3345 if (!list_elem) { 3346 status = -ENOENT; 3347 goto exit; 3348 } 3349 3350 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 3351 remove_rule = true; 3352 } else if (!list_elem->vsi_list_info) { 3353 status = -ENOENT; 3354 goto exit; 3355 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 3356 /* a ref_cnt > 1 indicates that the vsi_list is being 3357 * shared by multiple rules. Decrement the ref_cnt and 3358 * remove this rule, but do not modify the list, as it 3359 * is in-use by other rules. 3360 */ 3361 list_elem->vsi_list_info->ref_cnt--; 3362 remove_rule = true; 3363 } else { 3364 /* a ref_cnt of 1 indicates the vsi_list is only used 3365 * by one rule. However, the original removal request is only 3366 * for a single VSI. Update the vsi_list first, and only 3367 * remove the rule if there are no further VSIs in this list. 3368 */ 3369 vsi_handle = f_entry->fltr_info.vsi_handle; 3370 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 3371 if (status) 3372 goto exit; 3373 /* if VSI count goes to zero after updating the VSI list */ 3374 if (list_elem->vsi_count == 0) 3375 remove_rule = true; 3376 } 3377 3378 if (remove_rule) { 3379 /* Remove the lookup rule */ 3380 struct ice_sw_rule_lkup_rx_tx *s_rule; 3381 3382 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 3383 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3384 GFP_KERNEL); 3385 if (!s_rule) { 3386 status = -ENOMEM; 3387 goto exit; 3388 } 3389 3390 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 3391 ice_aqc_opc_remove_sw_rules); 3392 3393 status = ice_aq_sw_rules(hw, s_rule, 3394 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3395 1, ice_aqc_opc_remove_sw_rules, NULL); 3396 3397 /* Remove a book keeping from the list */ 3398 devm_kfree(ice_hw_to_dev(hw), s_rule); 3399 3400 if (status) 3401 goto exit; 3402 3403 list_del(&list_elem->list_entry); 3404 devm_kfree(ice_hw_to_dev(hw), list_elem); 3405 } 3406 exit: 3407 mutex_unlock(rule_lock); 3408 return status; 3409 } 3410 3411 /** 3412 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI 3413 * @hw: pointer to the hardware structure 3414 * @vlan_id: VLAN ID 3415 * @vsi_handle: check MAC filter for this VSI 3416 */ 3417 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle) 3418 { 3419 struct ice_fltr_mgmt_list_entry *entry; 3420 struct list_head *rule_head; 3421 struct ice_switch_info *sw; 3422 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3423 u16 hw_vsi_id; 3424 3425 if (vlan_id > ICE_MAX_VLAN_ID) 3426 return false; 3427 3428 if (!ice_is_vsi_valid(hw, vsi_handle)) 3429 return false; 3430 3431 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3432 sw = hw->switch_info; 3433 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 3434 if (!rule_head) 3435 return false; 3436 3437 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3438 mutex_lock(rule_lock); 3439 list_for_each_entry(entry, rule_head, list_entry) { 3440 struct ice_fltr_info *f_info = &entry->fltr_info; 3441 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id; 3442 struct ice_vsi_list_map_info *map_info; 3443 3444 if (entry_vlan_id > ICE_MAX_VLAN_ID) 3445 continue; 3446 3447 if (f_info->flag != ICE_FLTR_TX || 3448 f_info->src_id != ICE_SRC_ID_VSI || 3449 f_info->lkup_type != ICE_SW_LKUP_VLAN) 3450 continue; 3451 3452 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */ 3453 if (f_info->fltr_act != ICE_FWD_TO_VSI && 3454 f_info->fltr_act != ICE_FWD_TO_VSI_LIST) 3455 continue; 3456 3457 if (f_info->fltr_act == ICE_FWD_TO_VSI) { 3458 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id) 3459 continue; 3460 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 3461 /* If filter_action is FWD_TO_VSI_LIST, make sure 3462 * that VSI being checked is part of VSI list 3463 */ 3464 if (entry->vsi_count == 1 && 3465 entry->vsi_list_info) { 3466 map_info = entry->vsi_list_info; 3467 if (!test_bit(vsi_handle, map_info->vsi_map)) 3468 continue; 3469 } 3470 } 3471 3472 if (vlan_id == entry_vlan_id) { 3473 mutex_unlock(rule_lock); 3474 return true; 3475 } 3476 } 3477 mutex_unlock(rule_lock); 3478 3479 return false; 3480 } 3481 3482 /** 3483 * ice_add_mac - Add a MAC address based filter rule 3484 * @hw: pointer to the hardware structure 3485 * @m_list: list of MAC addresses and forwarding information 3486 */ 3487 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 3488 { 3489 struct ice_fltr_list_entry *m_list_itr; 3490 int status = 0; 3491 3492 if (!m_list || !hw) 3493 return -EINVAL; 3494 3495 list_for_each_entry(m_list_itr, m_list, list_entry) { 3496 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 3497 u16 vsi_handle; 3498 u16 hw_vsi_id; 3499 3500 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 3501 vsi_handle = m_list_itr->fltr_info.vsi_handle; 3502 if (!ice_is_vsi_valid(hw, vsi_handle)) 3503 return -EINVAL; 3504 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3505 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 3506 /* update the src in case it is VSI num */ 3507 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 3508 return -EINVAL; 3509 m_list_itr->fltr_info.src = hw_vsi_id; 3510 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 3511 is_zero_ether_addr(add)) 3512 return -EINVAL; 3513 3514 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 3515 m_list_itr); 3516 if (m_list_itr->status) 3517 return m_list_itr->status; 3518 } 3519 3520 return status; 3521 } 3522 3523 /** 3524 * ice_add_vlan_internal - Add one VLAN based filter rule 3525 * @hw: pointer to the hardware structure 3526 * @f_entry: filter entry containing one VLAN information 3527 */ 3528 static int 3529 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 3530 { 3531 struct ice_switch_info *sw = hw->switch_info; 3532 struct ice_fltr_mgmt_list_entry *v_list_itr; 3533 struct ice_fltr_info *new_fltr, *cur_fltr; 3534 enum ice_sw_lkup_type lkup_type; 3535 u16 vsi_list_id = 0, vsi_handle; 3536 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3537 int status = 0; 3538 3539 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3540 return -EINVAL; 3541 3542 f_entry->fltr_info.fwd_id.hw_vsi_id = 3543 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3544 new_fltr = &f_entry->fltr_info; 3545 3546 /* VLAN ID should only be 12 bits */ 3547 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 3548 return -EINVAL; 3549 3550 if (new_fltr->src_id != ICE_SRC_ID_VSI) 3551 return -EINVAL; 3552 3553 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 3554 lkup_type = new_fltr->lkup_type; 3555 vsi_handle = new_fltr->vsi_handle; 3556 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3557 mutex_lock(rule_lock); 3558 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 3559 if (!v_list_itr) { 3560 struct ice_vsi_list_map_info *map_info = NULL; 3561 3562 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 3563 /* All VLAN pruning rules use a VSI list. Check if 3564 * there is already a VSI list containing VSI that we 3565 * want to add. If found, use the same vsi_list_id for 3566 * this new VLAN rule or else create a new list. 3567 */ 3568 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 3569 vsi_handle, 3570 &vsi_list_id); 3571 if (!map_info) { 3572 status = ice_create_vsi_list_rule(hw, 3573 &vsi_handle, 3574 1, 3575 &vsi_list_id, 3576 lkup_type); 3577 if (status) 3578 goto exit; 3579 } 3580 /* Convert the action to forwarding to a VSI list. */ 3581 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3582 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 3583 } 3584 3585 status = ice_create_pkt_fwd_rule(hw, f_entry); 3586 if (!status) { 3587 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 3588 new_fltr); 3589 if (!v_list_itr) { 3590 status = -ENOENT; 3591 goto exit; 3592 } 3593 /* reuse VSI list for new rule and increment ref_cnt */ 3594 if (map_info) { 3595 v_list_itr->vsi_list_info = map_info; 3596 map_info->ref_cnt++; 3597 } else { 3598 v_list_itr->vsi_list_info = 3599 ice_create_vsi_list_map(hw, &vsi_handle, 3600 1, vsi_list_id); 3601 } 3602 } 3603 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 3604 /* Update existing VSI list to add new VSI ID only if it used 3605 * by one VLAN rule. 3606 */ 3607 cur_fltr = &v_list_itr->fltr_info; 3608 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 3609 new_fltr); 3610 } else { 3611 /* If VLAN rule exists and VSI list being used by this rule is 3612 * referenced by more than 1 VLAN rule. Then create a new VSI 3613 * list appending previous VSI with new VSI and update existing 3614 * VLAN rule to point to new VSI list ID 3615 */ 3616 struct ice_fltr_info tmp_fltr; 3617 u16 vsi_handle_arr[2]; 3618 u16 cur_handle; 3619 3620 /* Current implementation only supports reusing VSI list with 3621 * one VSI count. We should never hit below condition 3622 */ 3623 if (v_list_itr->vsi_count > 1 && 3624 v_list_itr->vsi_list_info->ref_cnt > 1) { 3625 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 3626 status = -EIO; 3627 goto exit; 3628 } 3629 3630 cur_handle = 3631 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 3632 ICE_MAX_VSI); 3633 3634 /* A rule already exists with the new VSI being added */ 3635 if (cur_handle == vsi_handle) { 3636 status = -EEXIST; 3637 goto exit; 3638 } 3639 3640 vsi_handle_arr[0] = cur_handle; 3641 vsi_handle_arr[1] = vsi_handle; 3642 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3643 &vsi_list_id, lkup_type); 3644 if (status) 3645 goto exit; 3646 3647 tmp_fltr = v_list_itr->fltr_info; 3648 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 3649 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3650 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3651 /* Update the previous switch rule to a new VSI list which 3652 * includes current VSI that is requested 3653 */ 3654 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3655 if (status) 3656 goto exit; 3657 3658 /* before overriding VSI list map info. decrement ref_cnt of 3659 * previous VSI list 3660 */ 3661 v_list_itr->vsi_list_info->ref_cnt--; 3662 3663 /* now update to newly created list */ 3664 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 3665 v_list_itr->vsi_list_info = 3666 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3667 vsi_list_id); 3668 v_list_itr->vsi_count++; 3669 } 3670 3671 exit: 3672 mutex_unlock(rule_lock); 3673 return status; 3674 } 3675 3676 /** 3677 * ice_add_vlan - Add VLAN based filter rule 3678 * @hw: pointer to the hardware structure 3679 * @v_list: list of VLAN entries and forwarding information 3680 */ 3681 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 3682 { 3683 struct ice_fltr_list_entry *v_list_itr; 3684 3685 if (!v_list || !hw) 3686 return -EINVAL; 3687 3688 list_for_each_entry(v_list_itr, v_list, list_entry) { 3689 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 3690 return -EINVAL; 3691 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 3692 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 3693 if (v_list_itr->status) 3694 return v_list_itr->status; 3695 } 3696 return 0; 3697 } 3698 3699 /** 3700 * ice_add_eth_mac - Add ethertype and MAC based filter rule 3701 * @hw: pointer to the hardware structure 3702 * @em_list: list of ether type MAC filter, MAC is optional 3703 * 3704 * This function requires the caller to populate the entries in 3705 * the filter list with the necessary fields (including flags to 3706 * indicate Tx or Rx rules). 3707 */ 3708 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3709 { 3710 struct ice_fltr_list_entry *em_list_itr; 3711 3712 if (!em_list || !hw) 3713 return -EINVAL; 3714 3715 list_for_each_entry(em_list_itr, em_list, list_entry) { 3716 enum ice_sw_lkup_type l_type = 3717 em_list_itr->fltr_info.lkup_type; 3718 3719 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3720 l_type != ICE_SW_LKUP_ETHERTYPE) 3721 return -EINVAL; 3722 3723 em_list_itr->status = ice_add_rule_internal(hw, l_type, 3724 em_list_itr); 3725 if (em_list_itr->status) 3726 return em_list_itr->status; 3727 } 3728 return 0; 3729 } 3730 3731 /** 3732 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 3733 * @hw: pointer to the hardware structure 3734 * @em_list: list of ethertype or ethertype MAC entries 3735 */ 3736 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3737 { 3738 struct ice_fltr_list_entry *em_list_itr, *tmp; 3739 3740 if (!em_list || !hw) 3741 return -EINVAL; 3742 3743 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 3744 enum ice_sw_lkup_type l_type = 3745 em_list_itr->fltr_info.lkup_type; 3746 3747 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3748 l_type != ICE_SW_LKUP_ETHERTYPE) 3749 return -EINVAL; 3750 3751 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 3752 em_list_itr); 3753 if (em_list_itr->status) 3754 return em_list_itr->status; 3755 } 3756 return 0; 3757 } 3758 3759 /** 3760 * ice_rem_sw_rule_info 3761 * @hw: pointer to the hardware structure 3762 * @rule_head: pointer to the switch list structure that we want to delete 3763 */ 3764 static void 3765 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3766 { 3767 if (!list_empty(rule_head)) { 3768 struct ice_fltr_mgmt_list_entry *entry; 3769 struct ice_fltr_mgmt_list_entry *tmp; 3770 3771 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 3772 list_del(&entry->list_entry); 3773 devm_kfree(ice_hw_to_dev(hw), entry); 3774 } 3775 } 3776 } 3777 3778 /** 3779 * ice_rem_adv_rule_info 3780 * @hw: pointer to the hardware structure 3781 * @rule_head: pointer to the switch list structure that we want to delete 3782 */ 3783 static void 3784 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3785 { 3786 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 3787 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 3788 3789 if (list_empty(rule_head)) 3790 return; 3791 3792 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) { 3793 list_del(&lst_itr->list_entry); 3794 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 3795 devm_kfree(ice_hw_to_dev(hw), lst_itr); 3796 } 3797 } 3798 3799 /** 3800 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 3801 * @pi: pointer to the port_info structure 3802 * @vsi_handle: VSI handle to set as default 3803 * @set: true to add the above mentioned switch rule, false to remove it 3804 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 3805 * 3806 * add filter rule to set/unset given VSI as default VSI for the switch 3807 * (represented by swid) 3808 */ 3809 int 3810 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set, 3811 u8 direction) 3812 { 3813 struct ice_fltr_list_entry f_list_entry; 3814 struct ice_fltr_info f_info; 3815 struct ice_hw *hw = pi->hw; 3816 u16 hw_vsi_id; 3817 int status; 3818 3819 if (!ice_is_vsi_valid(hw, vsi_handle)) 3820 return -EINVAL; 3821 3822 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3823 3824 memset(&f_info, 0, sizeof(f_info)); 3825 3826 f_info.lkup_type = ICE_SW_LKUP_DFLT; 3827 f_info.flag = direction; 3828 f_info.fltr_act = ICE_FWD_TO_VSI; 3829 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 3830 f_info.vsi_handle = vsi_handle; 3831 3832 if (f_info.flag & ICE_FLTR_RX) { 3833 f_info.src = hw->port_info->lport; 3834 f_info.src_id = ICE_SRC_ID_LPORT; 3835 } else if (f_info.flag & ICE_FLTR_TX) { 3836 f_info.src_id = ICE_SRC_ID_VSI; 3837 f_info.src = hw_vsi_id; 3838 } 3839 f_list_entry.fltr_info = f_info; 3840 3841 if (set) 3842 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT, 3843 &f_list_entry); 3844 else 3845 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT, 3846 &f_list_entry); 3847 3848 return status; 3849 } 3850 3851 /** 3852 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 3853 * @fm_entry: filter entry to inspect 3854 * @vsi_handle: VSI handle to compare with filter info 3855 */ 3856 static bool 3857 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 3858 { 3859 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 3860 fm_entry->fltr_info.vsi_handle == vsi_handle) || 3861 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 3862 fm_entry->vsi_list_info && 3863 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 3864 } 3865 3866 /** 3867 * ice_check_if_dflt_vsi - check if VSI is default VSI 3868 * @pi: pointer to the port_info structure 3869 * @vsi_handle: vsi handle to check for in filter list 3870 * @rule_exists: indicates if there are any VSI's in the rule list 3871 * 3872 * checks if the VSI is in a default VSI list, and also indicates 3873 * if the default VSI list is empty 3874 */ 3875 bool 3876 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, 3877 bool *rule_exists) 3878 { 3879 struct ice_fltr_mgmt_list_entry *fm_entry; 3880 struct ice_sw_recipe *recp_list; 3881 struct list_head *rule_head; 3882 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3883 bool ret = false; 3884 3885 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT]; 3886 rule_lock = &recp_list->filt_rule_lock; 3887 rule_head = &recp_list->filt_rules; 3888 3889 mutex_lock(rule_lock); 3890 3891 if (rule_exists && !list_empty(rule_head)) 3892 *rule_exists = true; 3893 3894 list_for_each_entry(fm_entry, rule_head, list_entry) { 3895 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) { 3896 ret = true; 3897 break; 3898 } 3899 } 3900 3901 mutex_unlock(rule_lock); 3902 3903 return ret; 3904 } 3905 3906 /** 3907 * ice_remove_mac - remove a MAC address based filter rule 3908 * @hw: pointer to the hardware structure 3909 * @m_list: list of MAC addresses and forwarding information 3910 * 3911 * This function removes either a MAC filter rule or a specific VSI from a 3912 * VSI list for a multicast MAC address. 3913 * 3914 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should 3915 * be aware that this call will only work if all the entries passed into m_list 3916 * were added previously. It will not attempt to do a partial remove of entries 3917 * that were found. 3918 */ 3919 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 3920 { 3921 struct ice_fltr_list_entry *list_itr, *tmp; 3922 3923 if (!m_list) 3924 return -EINVAL; 3925 3926 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 3927 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 3928 u16 vsi_handle; 3929 3930 if (l_type != ICE_SW_LKUP_MAC) 3931 return -EINVAL; 3932 3933 vsi_handle = list_itr->fltr_info.vsi_handle; 3934 if (!ice_is_vsi_valid(hw, vsi_handle)) 3935 return -EINVAL; 3936 3937 list_itr->fltr_info.fwd_id.hw_vsi_id = 3938 ice_get_hw_vsi_num(hw, vsi_handle); 3939 3940 list_itr->status = ice_remove_rule_internal(hw, 3941 ICE_SW_LKUP_MAC, 3942 list_itr); 3943 if (list_itr->status) 3944 return list_itr->status; 3945 } 3946 return 0; 3947 } 3948 3949 /** 3950 * ice_remove_vlan - Remove VLAN based filter rule 3951 * @hw: pointer to the hardware structure 3952 * @v_list: list of VLAN entries and forwarding information 3953 */ 3954 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 3955 { 3956 struct ice_fltr_list_entry *v_list_itr, *tmp; 3957 3958 if (!v_list || !hw) 3959 return -EINVAL; 3960 3961 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 3962 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 3963 3964 if (l_type != ICE_SW_LKUP_VLAN) 3965 return -EINVAL; 3966 v_list_itr->status = ice_remove_rule_internal(hw, 3967 ICE_SW_LKUP_VLAN, 3968 v_list_itr); 3969 if (v_list_itr->status) 3970 return v_list_itr->status; 3971 } 3972 return 0; 3973 } 3974 3975 /** 3976 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 3977 * @hw: pointer to the hardware structure 3978 * @vsi_handle: VSI handle to remove filters from 3979 * @vsi_list_head: pointer to the list to add entry to 3980 * @fi: pointer to fltr_info of filter entry to copy & add 3981 * 3982 * Helper function, used when creating a list of filters to remove from 3983 * a specific VSI. The entry added to vsi_list_head is a COPY of the 3984 * original filter entry, with the exception of fltr_info.fltr_act and 3985 * fltr_info.fwd_id fields. These are set such that later logic can 3986 * extract which VSI to remove the fltr from, and pass on that information. 3987 */ 3988 static int 3989 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 3990 struct list_head *vsi_list_head, 3991 struct ice_fltr_info *fi) 3992 { 3993 struct ice_fltr_list_entry *tmp; 3994 3995 /* this memory is freed up in the caller function 3996 * once filters for this VSI are removed 3997 */ 3998 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 3999 if (!tmp) 4000 return -ENOMEM; 4001 4002 tmp->fltr_info = *fi; 4003 4004 /* Overwrite these fields to indicate which VSI to remove filter from, 4005 * so find and remove logic can extract the information from the 4006 * list entries. Note that original entries will still have proper 4007 * values. 4008 */ 4009 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 4010 tmp->fltr_info.vsi_handle = vsi_handle; 4011 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4012 4013 list_add(&tmp->list_entry, vsi_list_head); 4014 4015 return 0; 4016 } 4017 4018 /** 4019 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 4020 * @hw: pointer to the hardware structure 4021 * @vsi_handle: VSI handle to remove filters from 4022 * @lkup_list_head: pointer to the list that has certain lookup type filters 4023 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 4024 * 4025 * Locates all filters in lkup_list_head that are used by the given VSI, 4026 * and adds COPIES of those entries to vsi_list_head (intended to be used 4027 * to remove the listed filters). 4028 * Note that this means all entries in vsi_list_head must be explicitly 4029 * deallocated by the caller when done with list. 4030 */ 4031 static int 4032 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 4033 struct list_head *lkup_list_head, 4034 struct list_head *vsi_list_head) 4035 { 4036 struct ice_fltr_mgmt_list_entry *fm_entry; 4037 int status = 0; 4038 4039 /* check to make sure VSI ID is valid and within boundary */ 4040 if (!ice_is_vsi_valid(hw, vsi_handle)) 4041 return -EINVAL; 4042 4043 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 4044 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) 4045 continue; 4046 4047 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4048 vsi_list_head, 4049 &fm_entry->fltr_info); 4050 if (status) 4051 return status; 4052 } 4053 return status; 4054 } 4055 4056 /** 4057 * ice_determine_promisc_mask 4058 * @fi: filter info to parse 4059 * 4060 * Helper function to determine which ICE_PROMISC_ mask corresponds 4061 * to given filter into. 4062 */ 4063 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 4064 { 4065 u16 vid = fi->l_data.mac_vlan.vlan_id; 4066 u8 *macaddr = fi->l_data.mac.mac_addr; 4067 bool is_tx_fltr = false; 4068 u8 promisc_mask = 0; 4069 4070 if (fi->flag == ICE_FLTR_TX) 4071 is_tx_fltr = true; 4072 4073 if (is_broadcast_ether_addr(macaddr)) 4074 promisc_mask |= is_tx_fltr ? 4075 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 4076 else if (is_multicast_ether_addr(macaddr)) 4077 promisc_mask |= is_tx_fltr ? 4078 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 4079 else if (is_unicast_ether_addr(macaddr)) 4080 promisc_mask |= is_tx_fltr ? 4081 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 4082 if (vid) 4083 promisc_mask |= is_tx_fltr ? 4084 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 4085 4086 return promisc_mask; 4087 } 4088 4089 /** 4090 * ice_remove_promisc - Remove promisc based filter rules 4091 * @hw: pointer to the hardware structure 4092 * @recp_id: recipe ID for which the rule needs to removed 4093 * @v_list: list of promisc entries 4094 */ 4095 static int 4096 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list) 4097 { 4098 struct ice_fltr_list_entry *v_list_itr, *tmp; 4099 4100 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 4101 v_list_itr->status = 4102 ice_remove_rule_internal(hw, recp_id, v_list_itr); 4103 if (v_list_itr->status) 4104 return v_list_itr->status; 4105 } 4106 return 0; 4107 } 4108 4109 /** 4110 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 4111 * @hw: pointer to the hardware structure 4112 * @vsi_handle: VSI handle to clear mode 4113 * @promisc_mask: mask of promiscuous config bits to clear 4114 * @vid: VLAN ID to clear VLAN promiscuous 4115 */ 4116 int 4117 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4118 u16 vid) 4119 { 4120 struct ice_switch_info *sw = hw->switch_info; 4121 struct ice_fltr_list_entry *fm_entry, *tmp; 4122 struct list_head remove_list_head; 4123 struct ice_fltr_mgmt_list_entry *itr; 4124 struct list_head *rule_head; 4125 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4126 int status = 0; 4127 u8 recipe_id; 4128 4129 if (!ice_is_vsi_valid(hw, vsi_handle)) 4130 return -EINVAL; 4131 4132 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 4133 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4134 else 4135 recipe_id = ICE_SW_LKUP_PROMISC; 4136 4137 rule_head = &sw->recp_list[recipe_id].filt_rules; 4138 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 4139 4140 INIT_LIST_HEAD(&remove_list_head); 4141 4142 mutex_lock(rule_lock); 4143 list_for_each_entry(itr, rule_head, list_entry) { 4144 struct ice_fltr_info *fltr_info; 4145 u8 fltr_promisc_mask = 0; 4146 4147 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 4148 continue; 4149 fltr_info = &itr->fltr_info; 4150 4151 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 4152 vid != fltr_info->l_data.mac_vlan.vlan_id) 4153 continue; 4154 4155 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 4156 4157 /* Skip if filter is not completely specified by given mask */ 4158 if (fltr_promisc_mask & ~promisc_mask) 4159 continue; 4160 4161 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4162 &remove_list_head, 4163 fltr_info); 4164 if (status) { 4165 mutex_unlock(rule_lock); 4166 goto free_fltr_list; 4167 } 4168 } 4169 mutex_unlock(rule_lock); 4170 4171 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 4172 4173 free_fltr_list: 4174 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4175 list_del(&fm_entry->list_entry); 4176 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4177 } 4178 4179 return status; 4180 } 4181 4182 /** 4183 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 4184 * @hw: pointer to the hardware structure 4185 * @vsi_handle: VSI handle to configure 4186 * @promisc_mask: mask of promiscuous config bits 4187 * @vid: VLAN ID to set VLAN promiscuous 4188 */ 4189 int 4190 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 4191 { 4192 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 4193 struct ice_fltr_list_entry f_list_entry; 4194 struct ice_fltr_info new_fltr; 4195 bool is_tx_fltr; 4196 int status = 0; 4197 u16 hw_vsi_id; 4198 int pkt_type; 4199 u8 recipe_id; 4200 4201 if (!ice_is_vsi_valid(hw, vsi_handle)) 4202 return -EINVAL; 4203 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4204 4205 memset(&new_fltr, 0, sizeof(new_fltr)); 4206 4207 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 4208 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 4209 new_fltr.l_data.mac_vlan.vlan_id = vid; 4210 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4211 } else { 4212 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 4213 recipe_id = ICE_SW_LKUP_PROMISC; 4214 } 4215 4216 /* Separate filters must be set for each direction/packet type 4217 * combination, so we will loop over the mask value, store the 4218 * individual type, and clear it out in the input mask as it 4219 * is found. 4220 */ 4221 while (promisc_mask) { 4222 u8 *mac_addr; 4223 4224 pkt_type = 0; 4225 is_tx_fltr = false; 4226 4227 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 4228 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 4229 pkt_type = UCAST_FLTR; 4230 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 4231 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 4232 pkt_type = UCAST_FLTR; 4233 is_tx_fltr = true; 4234 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 4235 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 4236 pkt_type = MCAST_FLTR; 4237 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 4238 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 4239 pkt_type = MCAST_FLTR; 4240 is_tx_fltr = true; 4241 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 4242 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 4243 pkt_type = BCAST_FLTR; 4244 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 4245 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 4246 pkt_type = BCAST_FLTR; 4247 is_tx_fltr = true; 4248 } 4249 4250 /* Check for VLAN promiscuous flag */ 4251 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 4252 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 4253 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 4254 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 4255 is_tx_fltr = true; 4256 } 4257 4258 /* Set filter DA based on packet type */ 4259 mac_addr = new_fltr.l_data.mac.mac_addr; 4260 if (pkt_type == BCAST_FLTR) { 4261 eth_broadcast_addr(mac_addr); 4262 } else if (pkt_type == MCAST_FLTR || 4263 pkt_type == UCAST_FLTR) { 4264 /* Use the dummy ether header DA */ 4265 ether_addr_copy(mac_addr, dummy_eth_header); 4266 if (pkt_type == MCAST_FLTR) 4267 mac_addr[0] |= 0x1; /* Set multicast bit */ 4268 } 4269 4270 /* Need to reset this to zero for all iterations */ 4271 new_fltr.flag = 0; 4272 if (is_tx_fltr) { 4273 new_fltr.flag |= ICE_FLTR_TX; 4274 new_fltr.src = hw_vsi_id; 4275 } else { 4276 new_fltr.flag |= ICE_FLTR_RX; 4277 new_fltr.src = hw->port_info->lport; 4278 } 4279 4280 new_fltr.fltr_act = ICE_FWD_TO_VSI; 4281 new_fltr.vsi_handle = vsi_handle; 4282 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 4283 f_list_entry.fltr_info = new_fltr; 4284 4285 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 4286 if (status) 4287 goto set_promisc_exit; 4288 } 4289 4290 set_promisc_exit: 4291 return status; 4292 } 4293 4294 /** 4295 * ice_set_vlan_vsi_promisc 4296 * @hw: pointer to the hardware structure 4297 * @vsi_handle: VSI handle to configure 4298 * @promisc_mask: mask of promiscuous config bits 4299 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 4300 * 4301 * Configure VSI with all associated VLANs to given promiscuous mode(s) 4302 */ 4303 int 4304 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4305 bool rm_vlan_promisc) 4306 { 4307 struct ice_switch_info *sw = hw->switch_info; 4308 struct ice_fltr_list_entry *list_itr, *tmp; 4309 struct list_head vsi_list_head; 4310 struct list_head *vlan_head; 4311 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 4312 u16 vlan_id; 4313 int status; 4314 4315 INIT_LIST_HEAD(&vsi_list_head); 4316 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 4317 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 4318 mutex_lock(vlan_lock); 4319 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 4320 &vsi_list_head); 4321 mutex_unlock(vlan_lock); 4322 if (status) 4323 goto free_fltr_list; 4324 4325 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 4326 /* Avoid enabling or disabling VLAN zero twice when in double 4327 * VLAN mode 4328 */ 4329 if (ice_is_dvm_ena(hw) && 4330 list_itr->fltr_info.l_data.vlan.tpid == 0) 4331 continue; 4332 4333 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 4334 if (rm_vlan_promisc) 4335 status = ice_clear_vsi_promisc(hw, vsi_handle, 4336 promisc_mask, vlan_id); 4337 else 4338 status = ice_set_vsi_promisc(hw, vsi_handle, 4339 promisc_mask, vlan_id); 4340 if (status && status != -EEXIST) 4341 break; 4342 } 4343 4344 free_fltr_list: 4345 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 4346 list_del(&list_itr->list_entry); 4347 devm_kfree(ice_hw_to_dev(hw), list_itr); 4348 } 4349 return status; 4350 } 4351 4352 /** 4353 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 4354 * @hw: pointer to the hardware structure 4355 * @vsi_handle: VSI handle to remove filters from 4356 * @lkup: switch rule filter lookup type 4357 */ 4358 static void 4359 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 4360 enum ice_sw_lkup_type lkup) 4361 { 4362 struct ice_switch_info *sw = hw->switch_info; 4363 struct ice_fltr_list_entry *fm_entry; 4364 struct list_head remove_list_head; 4365 struct list_head *rule_head; 4366 struct ice_fltr_list_entry *tmp; 4367 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4368 int status; 4369 4370 INIT_LIST_HEAD(&remove_list_head); 4371 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 4372 rule_head = &sw->recp_list[lkup].filt_rules; 4373 mutex_lock(rule_lock); 4374 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 4375 &remove_list_head); 4376 mutex_unlock(rule_lock); 4377 if (status) 4378 goto free_fltr_list; 4379 4380 switch (lkup) { 4381 case ICE_SW_LKUP_MAC: 4382 ice_remove_mac(hw, &remove_list_head); 4383 break; 4384 case ICE_SW_LKUP_VLAN: 4385 ice_remove_vlan(hw, &remove_list_head); 4386 break; 4387 case ICE_SW_LKUP_PROMISC: 4388 case ICE_SW_LKUP_PROMISC_VLAN: 4389 ice_remove_promisc(hw, lkup, &remove_list_head); 4390 break; 4391 case ICE_SW_LKUP_MAC_VLAN: 4392 case ICE_SW_LKUP_ETHERTYPE: 4393 case ICE_SW_LKUP_ETHERTYPE_MAC: 4394 case ICE_SW_LKUP_DFLT: 4395 case ICE_SW_LKUP_LAST: 4396 default: 4397 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 4398 break; 4399 } 4400 4401 free_fltr_list: 4402 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4403 list_del(&fm_entry->list_entry); 4404 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4405 } 4406 } 4407 4408 /** 4409 * ice_remove_vsi_fltr - Remove all filters for a VSI 4410 * @hw: pointer to the hardware structure 4411 * @vsi_handle: VSI handle to remove filters from 4412 */ 4413 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 4414 { 4415 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 4416 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 4417 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 4418 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 4419 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 4420 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 4421 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 4422 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 4423 } 4424 4425 /** 4426 * ice_alloc_res_cntr - allocating resource counter 4427 * @hw: pointer to the hardware structure 4428 * @type: type of resource 4429 * @alloc_shared: if set it is shared else dedicated 4430 * @num_items: number of entries requested for FD resource type 4431 * @counter_id: counter index returned by AQ call 4432 */ 4433 int 4434 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4435 u16 *counter_id) 4436 { 4437 struct ice_aqc_alloc_free_res_elem *buf; 4438 u16 buf_len; 4439 int status; 4440 4441 /* Allocate resource */ 4442 buf_len = struct_size(buf, elem, 1); 4443 buf = kzalloc(buf_len, GFP_KERNEL); 4444 if (!buf) 4445 return -ENOMEM; 4446 4447 buf->num_elems = cpu_to_le16(num_items); 4448 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4449 ICE_AQC_RES_TYPE_M) | alloc_shared); 4450 4451 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res); 4452 if (status) 4453 goto exit; 4454 4455 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp); 4456 4457 exit: 4458 kfree(buf); 4459 return status; 4460 } 4461 4462 /** 4463 * ice_free_res_cntr - free resource counter 4464 * @hw: pointer to the hardware structure 4465 * @type: type of resource 4466 * @alloc_shared: if set it is shared else dedicated 4467 * @num_items: number of entries to be freed for FD resource type 4468 * @counter_id: counter ID resource which needs to be freed 4469 */ 4470 int 4471 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4472 u16 counter_id) 4473 { 4474 struct ice_aqc_alloc_free_res_elem *buf; 4475 u16 buf_len; 4476 int status; 4477 4478 /* Free resource */ 4479 buf_len = struct_size(buf, elem, 1); 4480 buf = kzalloc(buf_len, GFP_KERNEL); 4481 if (!buf) 4482 return -ENOMEM; 4483 4484 buf->num_elems = cpu_to_le16(num_items); 4485 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4486 ICE_AQC_RES_TYPE_M) | alloc_shared); 4487 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id); 4488 4489 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res); 4490 if (status) 4491 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n"); 4492 4493 kfree(buf); 4494 return status; 4495 } 4496 4497 #define ICE_PROTOCOL_ENTRY(id, ...) { \ 4498 .prot_type = id, \ 4499 .offs = {__VA_ARGS__}, \ 4500 } 4501 4502 /** 4503 * ice_share_res - set a resource as shared or dedicated 4504 * @hw: hw struct of original owner of resource 4505 * @type: resource type 4506 * @shared: is the resource being set to shared 4507 * @res_id: resource id (descriptor) 4508 */ 4509 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id) 4510 { 4511 struct ice_aqc_alloc_free_res_elem *buf; 4512 u16 buf_len; 4513 int status; 4514 4515 buf_len = struct_size(buf, elem, 1); 4516 buf = kzalloc(buf_len, GFP_KERNEL); 4517 if (!buf) 4518 return -ENOMEM; 4519 4520 buf->num_elems = cpu_to_le16(1); 4521 if (shared) 4522 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4523 ICE_AQC_RES_TYPE_M) | 4524 ICE_AQC_RES_TYPE_FLAG_SHARED); 4525 else 4526 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4527 ICE_AQC_RES_TYPE_M) & 4528 ~ICE_AQC_RES_TYPE_FLAG_SHARED); 4529 4530 buf->elem[0].e.sw_resp = cpu_to_le16(res_id); 4531 status = ice_aq_alloc_free_res(hw, buf, buf_len, 4532 ice_aqc_opc_share_res); 4533 if (status) 4534 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n", 4535 type, res_id, shared ? "SHARED" : "DEDICATED"); 4536 4537 kfree(buf); 4538 return status; 4539 } 4540 4541 /* This is mapping table entry that maps every word within a given protocol 4542 * structure to the real byte offset as per the specification of that 4543 * protocol header. 4544 * for example dst address is 3 words in ethertype header and corresponding 4545 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8 4546 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a 4547 * matching entry describing its field. This needs to be updated if new 4548 * structure is added to that union. 4549 */ 4550 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = { 4551 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12), 4552 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12), 4553 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0), 4554 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0), 4555 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0), 4556 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4557 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4558 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 4559 20, 22, 24, 26, 28, 30, 32, 34, 36, 38), 4560 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 4561 22, 24, 26, 28, 30, 32, 34, 36, 38), 4562 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2), 4563 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2), 4564 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2), 4565 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14), 4566 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14), 4567 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6), 4568 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22), 4569 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14), 4570 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6), 4571 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10), 4572 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0), 4573 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0), 4574 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA, 4575 ICE_SOURCE_PORT_MDID_OFFSET, 4576 ICE_PTYPE_MDID_OFFSET, 4577 ICE_PACKET_LENGTH_MDID_OFFSET, 4578 ICE_SOURCE_VSI_MDID_OFFSET, 4579 ICE_PKT_VLAN_MDID_OFFSET, 4580 ICE_PKT_TUNNEL_MDID_OFFSET, 4581 ICE_PKT_TCP_MDID_OFFSET, 4582 ICE_PKT_ERROR_MDID_OFFSET), 4583 }; 4584 4585 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = { 4586 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW }, 4587 { ICE_MAC_IL, ICE_MAC_IL_HW }, 4588 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW }, 4589 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW }, 4590 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW }, 4591 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW }, 4592 { ICE_IPV4_IL, ICE_IPV4_IL_HW }, 4593 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW }, 4594 { ICE_IPV6_IL, ICE_IPV6_IL_HW }, 4595 { ICE_TCP_IL, ICE_TCP_IL_HW }, 4596 { ICE_UDP_OF, ICE_UDP_OF_HW }, 4597 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW }, 4598 { ICE_VXLAN, ICE_UDP_OF_HW }, 4599 { ICE_GENEVE, ICE_UDP_OF_HW }, 4600 { ICE_NVGRE, ICE_GRE_OF_HW }, 4601 { ICE_GTP, ICE_UDP_OF_HW }, 4602 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW }, 4603 { ICE_PPPOE, ICE_PPPOE_HW }, 4604 { ICE_L2TPV3, ICE_L2TPV3_HW }, 4605 { ICE_VLAN_EX, ICE_VLAN_OF_HW }, 4606 { ICE_VLAN_IN, ICE_VLAN_OL_HW }, 4607 { ICE_HW_METADATA, ICE_META_DATA_ID_HW }, 4608 }; 4609 4610 /** 4611 * ice_find_recp - find a recipe 4612 * @hw: pointer to the hardware structure 4613 * @lkup_exts: extension sequence to match 4614 * @rinfo: information regarding the rule e.g. priority and action info 4615 * 4616 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found. 4617 */ 4618 static u16 4619 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts, 4620 const struct ice_adv_rule_info *rinfo) 4621 { 4622 bool refresh_required = true; 4623 struct ice_sw_recipe *recp; 4624 u8 i; 4625 4626 /* Walk through existing recipes to find a match */ 4627 recp = hw->switch_info->recp_list; 4628 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 4629 /* If recipe was not created for this ID, in SW bookkeeping, 4630 * check if FW has an entry for this recipe. If the FW has an 4631 * entry update it in our SW bookkeeping and continue with the 4632 * matching. 4633 */ 4634 if (!recp[i].recp_created) 4635 if (ice_get_recp_frm_fw(hw, 4636 hw->switch_info->recp_list, i, 4637 &refresh_required)) 4638 continue; 4639 4640 /* Skip inverse action recipes */ 4641 if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl & 4642 ICE_AQ_RECIPE_ACT_INV_ACT) 4643 continue; 4644 4645 /* if number of words we are looking for match */ 4646 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) { 4647 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words; 4648 struct ice_fv_word *be = lkup_exts->fv_words; 4649 u16 *cr = recp[i].lkup_exts.field_mask; 4650 u16 *de = lkup_exts->field_mask; 4651 bool found = true; 4652 u8 pe, qr; 4653 4654 /* ar, cr, and qr are related to the recipe words, while 4655 * be, de, and pe are related to the lookup words 4656 */ 4657 for (pe = 0; pe < lkup_exts->n_val_words; pe++) { 4658 for (qr = 0; qr < recp[i].lkup_exts.n_val_words; 4659 qr++) { 4660 if (ar[qr].off == be[pe].off && 4661 ar[qr].prot_id == be[pe].prot_id && 4662 cr[qr] == de[pe]) 4663 /* Found the "pe"th word in the 4664 * given recipe 4665 */ 4666 break; 4667 } 4668 /* After walking through all the words in the 4669 * "i"th recipe if "p"th word was not found then 4670 * this recipe is not what we are looking for. 4671 * So break out from this loop and try the next 4672 * recipe 4673 */ 4674 if (qr >= recp[i].lkup_exts.n_val_words) { 4675 found = false; 4676 break; 4677 } 4678 } 4679 /* If for "i"th recipe the found was never set to false 4680 * then it means we found our match 4681 * Also tun type and *_pass_l2 of recipe needs to be 4682 * checked 4683 */ 4684 if (found && recp[i].tun_type == rinfo->tun_type && 4685 recp[i].need_pass_l2 == rinfo->need_pass_l2 && 4686 recp[i].allow_pass_l2 == rinfo->allow_pass_l2) 4687 return i; /* Return the recipe ID */ 4688 } 4689 } 4690 return ICE_MAX_NUM_RECIPES; 4691 } 4692 4693 /** 4694 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl 4695 * 4696 * As protocol id for outer vlan is different in dvm and svm, if dvm is 4697 * supported protocol array record for outer vlan has to be modified to 4698 * reflect the value proper for DVM. 4699 */ 4700 void ice_change_proto_id_to_dvm(void) 4701 { 4702 u8 i; 4703 4704 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4705 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS && 4706 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW) 4707 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW; 4708 } 4709 4710 /** 4711 * ice_prot_type_to_id - get protocol ID from protocol type 4712 * @type: protocol type 4713 * @id: pointer to variable that will receive the ID 4714 * 4715 * Returns true if found, false otherwise 4716 */ 4717 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id) 4718 { 4719 u8 i; 4720 4721 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4722 if (ice_prot_id_tbl[i].type == type) { 4723 *id = ice_prot_id_tbl[i].protocol_id; 4724 return true; 4725 } 4726 return false; 4727 } 4728 4729 /** 4730 * ice_fill_valid_words - count valid words 4731 * @rule: advanced rule with lookup information 4732 * @lkup_exts: byte offset extractions of the words that are valid 4733 * 4734 * calculate valid words in a lookup rule using mask value 4735 */ 4736 static u8 4737 ice_fill_valid_words(struct ice_adv_lkup_elem *rule, 4738 struct ice_prot_lkup_ext *lkup_exts) 4739 { 4740 u8 j, word, prot_id, ret_val; 4741 4742 if (!ice_prot_type_to_id(rule->type, &prot_id)) 4743 return 0; 4744 4745 word = lkup_exts->n_val_words; 4746 4747 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++) 4748 if (((u16 *)&rule->m_u)[j] && 4749 rule->type < ARRAY_SIZE(ice_prot_ext)) { 4750 /* No more space to accommodate */ 4751 if (word >= ICE_MAX_CHAIN_WORDS) 4752 return 0; 4753 lkup_exts->fv_words[word].off = 4754 ice_prot_ext[rule->type].offs[j]; 4755 lkup_exts->fv_words[word].prot_id = 4756 ice_prot_id_tbl[rule->type].protocol_id; 4757 lkup_exts->field_mask[word] = 4758 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]); 4759 word++; 4760 } 4761 4762 ret_val = word - lkup_exts->n_val_words; 4763 lkup_exts->n_val_words = word; 4764 4765 return ret_val; 4766 } 4767 4768 /** 4769 * ice_create_first_fit_recp_def - Create a recipe grouping 4770 * @hw: pointer to the hardware structure 4771 * @lkup_exts: an array of protocol header extractions 4772 * @rg_list: pointer to a list that stores new recipe groups 4773 * @recp_cnt: pointer to a variable that stores returned number of recipe groups 4774 * 4775 * Using first fit algorithm, take all the words that are still not done 4776 * and start grouping them in 4-word groups. Each group makes up one 4777 * recipe. 4778 */ 4779 static int 4780 ice_create_first_fit_recp_def(struct ice_hw *hw, 4781 struct ice_prot_lkup_ext *lkup_exts, 4782 struct list_head *rg_list, 4783 u8 *recp_cnt) 4784 { 4785 struct ice_pref_recipe_group *grp = NULL; 4786 u8 j; 4787 4788 *recp_cnt = 0; 4789 4790 /* Walk through every word in the rule to check if it is not done. If so 4791 * then this word needs to be part of a new recipe. 4792 */ 4793 for (j = 0; j < lkup_exts->n_val_words; j++) 4794 if (!test_bit(j, lkup_exts->done)) { 4795 if (!grp || 4796 grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) { 4797 struct ice_recp_grp_entry *entry; 4798 4799 entry = devm_kzalloc(ice_hw_to_dev(hw), 4800 sizeof(*entry), 4801 GFP_KERNEL); 4802 if (!entry) 4803 return -ENOMEM; 4804 list_add(&entry->l_entry, rg_list); 4805 grp = &entry->r_group; 4806 (*recp_cnt)++; 4807 } 4808 4809 grp->pairs[grp->n_val_pairs].prot_id = 4810 lkup_exts->fv_words[j].prot_id; 4811 grp->pairs[grp->n_val_pairs].off = 4812 lkup_exts->fv_words[j].off; 4813 grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j]; 4814 grp->n_val_pairs++; 4815 } 4816 4817 return 0; 4818 } 4819 4820 /** 4821 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group 4822 * @hw: pointer to the hardware structure 4823 * @fv_list: field vector with the extraction sequence information 4824 * @rg_list: recipe groupings with protocol-offset pairs 4825 * 4826 * Helper function to fill in the field vector indices for protocol-offset 4827 * pairs. These indexes are then ultimately programmed into a recipe. 4828 */ 4829 static int 4830 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list, 4831 struct list_head *rg_list) 4832 { 4833 struct ice_sw_fv_list_entry *fv; 4834 struct ice_recp_grp_entry *rg; 4835 struct ice_fv_word *fv_ext; 4836 4837 if (list_empty(fv_list)) 4838 return 0; 4839 4840 fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry, 4841 list_entry); 4842 fv_ext = fv->fv_ptr->ew; 4843 4844 list_for_each_entry(rg, rg_list, l_entry) { 4845 u8 i; 4846 4847 for (i = 0; i < rg->r_group.n_val_pairs; i++) { 4848 struct ice_fv_word *pr; 4849 bool found = false; 4850 u16 mask; 4851 u8 j; 4852 4853 pr = &rg->r_group.pairs[i]; 4854 mask = rg->r_group.mask[i]; 4855 4856 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 4857 if (fv_ext[j].prot_id == pr->prot_id && 4858 fv_ext[j].off == pr->off) { 4859 found = true; 4860 4861 /* Store index of field vector */ 4862 rg->fv_idx[i] = j; 4863 rg->fv_mask[i] = mask; 4864 break; 4865 } 4866 4867 /* Protocol/offset could not be found, caller gave an 4868 * invalid pair 4869 */ 4870 if (!found) 4871 return -EINVAL; 4872 } 4873 } 4874 4875 return 0; 4876 } 4877 4878 /** 4879 * ice_find_free_recp_res_idx - find free result indexes for recipe 4880 * @hw: pointer to hardware structure 4881 * @profiles: bitmap of profiles that will be associated with the new recipe 4882 * @free_idx: pointer to variable to receive the free index bitmap 4883 * 4884 * The algorithm used here is: 4885 * 1. When creating a new recipe, create a set P which contains all 4886 * Profiles that will be associated with our new recipe 4887 * 4888 * 2. For each Profile p in set P: 4889 * a. Add all recipes associated with Profile p into set R 4890 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes 4891 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF] 4892 * i. Or just assume they all have the same possible indexes: 4893 * 44, 45, 46, 47 4894 * i.e., PossibleIndexes = 0x0000F00000000000 4895 * 4896 * 3. For each Recipe r in set R: 4897 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes 4898 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes 4899 * 4900 * FreeIndexes will contain the bits indicating the indexes free for use, 4901 * then the code needs to update the recipe[r].used_result_idx_bits to 4902 * indicate which indexes were selected for use by this recipe. 4903 */ 4904 static u16 4905 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles, 4906 unsigned long *free_idx) 4907 { 4908 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS); 4909 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES); 4910 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS); 4911 u16 bit; 4912 4913 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES); 4914 bitmap_zero(used_idx, ICE_MAX_FV_WORDS); 4915 4916 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS); 4917 4918 /* For each profile we are going to associate the recipe with, add the 4919 * recipes that are associated with that profile. This will give us 4920 * the set of recipes that our recipe may collide with. Also, determine 4921 * what possible result indexes are usable given this set of profiles. 4922 */ 4923 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) { 4924 bitmap_or(recipes, recipes, profile_to_recipe[bit], 4925 ICE_MAX_NUM_RECIPES); 4926 bitmap_and(possible_idx, possible_idx, 4927 hw->switch_info->prof_res_bm[bit], 4928 ICE_MAX_FV_WORDS); 4929 } 4930 4931 /* For each recipe that our new recipe may collide with, determine 4932 * which indexes have been used. 4933 */ 4934 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES) 4935 bitmap_or(used_idx, used_idx, 4936 hw->switch_info->recp_list[bit].res_idxs, 4937 ICE_MAX_FV_WORDS); 4938 4939 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS); 4940 4941 /* return number of free indexes */ 4942 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS); 4943 } 4944 4945 /** 4946 * ice_add_sw_recipe - function to call AQ calls to create switch recipe 4947 * @hw: pointer to hardware structure 4948 * @rm: recipe management list entry 4949 * @profiles: bitmap of profiles that will be associated. 4950 */ 4951 static int 4952 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm, 4953 unsigned long *profiles) 4954 { 4955 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS); 4956 struct ice_aqc_recipe_content *content; 4957 struct ice_aqc_recipe_data_elem *tmp; 4958 struct ice_aqc_recipe_data_elem *buf; 4959 struct ice_recp_grp_entry *entry; 4960 u16 free_res_idx; 4961 u16 recipe_count; 4962 u8 chain_idx; 4963 u8 recps = 0; 4964 int status; 4965 4966 /* When more than one recipe are required, another recipe is needed to 4967 * chain them together. Matching a tunnel metadata ID takes up one of 4968 * the match fields in the chaining recipe reducing the number of 4969 * chained recipes by one. 4970 */ 4971 /* check number of free result indices */ 4972 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS); 4973 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm); 4974 4975 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n", 4976 free_res_idx, rm->n_grp_count); 4977 4978 if (rm->n_grp_count > 1) { 4979 if (rm->n_grp_count > free_res_idx) 4980 return -ENOSPC; 4981 4982 rm->n_grp_count++; 4983 } 4984 4985 if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE) 4986 return -ENOSPC; 4987 4988 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); 4989 if (!tmp) 4990 return -ENOMEM; 4991 4992 buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf), 4993 GFP_KERNEL); 4994 if (!buf) { 4995 status = -ENOMEM; 4996 goto err_mem; 4997 } 4998 4999 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES); 5000 recipe_count = ICE_MAX_NUM_RECIPES; 5001 status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC, 5002 NULL); 5003 if (status || recipe_count == 0) 5004 goto err_unroll; 5005 5006 /* Allocate the recipe resources, and configure them according to the 5007 * match fields from protocol headers and extracted field vectors. 5008 */ 5009 chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS); 5010 list_for_each_entry(entry, &rm->rg_list, l_entry) { 5011 u8 i; 5012 5013 status = ice_alloc_recipe(hw, &entry->rid); 5014 if (status) 5015 goto err_unroll; 5016 5017 content = &buf[recps].content; 5018 5019 /* Clear the result index of the located recipe, as this will be 5020 * updated, if needed, later in the recipe creation process. 5021 */ 5022 tmp[0].content.result_indx = 0; 5023 5024 buf[recps] = tmp[0]; 5025 buf[recps].recipe_indx = (u8)entry->rid; 5026 /* if the recipe is a non-root recipe RID should be programmed 5027 * as 0 for the rules to be applied correctly. 5028 */ 5029 content->rid = 0; 5030 memset(&content->lkup_indx, 0, 5031 sizeof(content->lkup_indx)); 5032 5033 /* All recipes use look-up index 0 to match switch ID. */ 5034 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; 5035 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); 5036 /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask 5037 * to be 0 5038 */ 5039 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { 5040 content->lkup_indx[i] = 0x80; 5041 content->mask[i] = 0; 5042 } 5043 5044 for (i = 0; i < entry->r_group.n_val_pairs; i++) { 5045 content->lkup_indx[i + 1] = entry->fv_idx[i]; 5046 content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]); 5047 } 5048 5049 if (rm->n_grp_count > 1) { 5050 /* Checks to see if there really is a valid result index 5051 * that can be used. 5052 */ 5053 if (chain_idx >= ICE_MAX_FV_WORDS) { 5054 ice_debug(hw, ICE_DBG_SW, "No chain index available\n"); 5055 status = -ENOSPC; 5056 goto err_unroll; 5057 } 5058 5059 entry->chain_idx = chain_idx; 5060 content->result_indx = 5061 ICE_AQ_RECIPE_RESULT_EN | 5062 ((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) & 5063 ICE_AQ_RECIPE_RESULT_DATA_M); 5064 clear_bit(chain_idx, result_idx_bm); 5065 chain_idx = find_first_bit(result_idx_bm, 5066 ICE_MAX_FV_WORDS); 5067 } 5068 5069 /* fill recipe dependencies */ 5070 bitmap_zero((unsigned long *)buf[recps].recipe_bitmap, 5071 ICE_MAX_NUM_RECIPES); 5072 set_bit(buf[recps].recipe_indx, 5073 (unsigned long *)buf[recps].recipe_bitmap); 5074 content->act_ctrl_fwd_priority = rm->priority; 5075 5076 if (rm->need_pass_l2) 5077 content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2; 5078 5079 if (rm->allow_pass_l2) 5080 content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2; 5081 recps++; 5082 } 5083 5084 if (rm->n_grp_count == 1) { 5085 rm->root_rid = buf[0].recipe_indx; 5086 set_bit(buf[0].recipe_indx, rm->r_bitmap); 5087 buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT; 5088 if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) { 5089 memcpy(buf[0].recipe_bitmap, rm->r_bitmap, 5090 sizeof(buf[0].recipe_bitmap)); 5091 } else { 5092 status = -EINVAL; 5093 goto err_unroll; 5094 } 5095 /* Applicable only for ROOT_RECIPE, set the fwd_priority for 5096 * the recipe which is getting created if specified 5097 * by user. Usually any advanced switch filter, which results 5098 * into new extraction sequence, ended up creating a new recipe 5099 * of type ROOT and usually recipes are associated with profiles 5100 * Switch rule referreing newly created recipe, needs to have 5101 * either/or 'fwd' or 'join' priority, otherwise switch rule 5102 * evaluation will not happen correctly. In other words, if 5103 * switch rule to be evaluated on priority basis, then recipe 5104 * needs to have priority, otherwise it will be evaluated last. 5105 */ 5106 buf[0].content.act_ctrl_fwd_priority = rm->priority; 5107 } else { 5108 struct ice_recp_grp_entry *last_chain_entry; 5109 u16 rid, i; 5110 5111 /* Allocate the last recipe that will chain the outcomes of the 5112 * other recipes together 5113 */ 5114 status = ice_alloc_recipe(hw, &rid); 5115 if (status) 5116 goto err_unroll; 5117 5118 content = &buf[recps].content; 5119 5120 buf[recps].recipe_indx = (u8)rid; 5121 content->rid = (u8)rid; 5122 content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT; 5123 /* the new entry created should also be part of rg_list to 5124 * make sure we have complete recipe 5125 */ 5126 last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw), 5127 sizeof(*last_chain_entry), 5128 GFP_KERNEL); 5129 if (!last_chain_entry) { 5130 status = -ENOMEM; 5131 goto err_unroll; 5132 } 5133 last_chain_entry->rid = rid; 5134 memset(&content->lkup_indx, 0, sizeof(content->lkup_indx)); 5135 /* All recipes use look-up index 0 to match switch ID. */ 5136 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; 5137 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); 5138 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { 5139 content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE; 5140 content->mask[i] = 0; 5141 } 5142 5143 i = 1; 5144 /* update r_bitmap with the recp that is used for chaining */ 5145 set_bit(rid, rm->r_bitmap); 5146 /* this is the recipe that chains all the other recipes so it 5147 * should not have a chaining ID to indicate the same 5148 */ 5149 last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND; 5150 list_for_each_entry(entry, &rm->rg_list, l_entry) { 5151 last_chain_entry->fv_idx[i] = entry->chain_idx; 5152 content->lkup_indx[i] = entry->chain_idx; 5153 content->mask[i++] = cpu_to_le16(0xFFFF); 5154 set_bit(entry->rid, rm->r_bitmap); 5155 } 5156 list_add(&last_chain_entry->l_entry, &rm->rg_list); 5157 if (sizeof(buf[recps].recipe_bitmap) >= 5158 sizeof(rm->r_bitmap)) { 5159 memcpy(buf[recps].recipe_bitmap, rm->r_bitmap, 5160 sizeof(buf[recps].recipe_bitmap)); 5161 } else { 5162 status = -EINVAL; 5163 goto err_unroll; 5164 } 5165 content->act_ctrl_fwd_priority = rm->priority; 5166 5167 recps++; 5168 rm->root_rid = (u8)rid; 5169 } 5170 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5171 if (status) 5172 goto err_unroll; 5173 5174 status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL); 5175 ice_release_change_lock(hw); 5176 if (status) 5177 goto err_unroll; 5178 5179 /* Every recipe that just got created add it to the recipe 5180 * book keeping list 5181 */ 5182 list_for_each_entry(entry, &rm->rg_list, l_entry) { 5183 struct ice_switch_info *sw = hw->switch_info; 5184 bool is_root, idx_found = false; 5185 struct ice_sw_recipe *recp; 5186 u16 idx, buf_idx = 0; 5187 5188 /* find buffer index for copying some data */ 5189 for (idx = 0; idx < rm->n_grp_count; idx++) 5190 if (buf[idx].recipe_indx == entry->rid) { 5191 buf_idx = idx; 5192 idx_found = true; 5193 } 5194 5195 if (!idx_found) { 5196 status = -EIO; 5197 goto err_unroll; 5198 } 5199 5200 recp = &sw->recp_list[entry->rid]; 5201 is_root = (rm->root_rid == entry->rid); 5202 recp->is_root = is_root; 5203 5204 recp->root_rid = entry->rid; 5205 recp->big_recp = (is_root && rm->n_grp_count > 1); 5206 5207 memcpy(&recp->ext_words, entry->r_group.pairs, 5208 entry->r_group.n_val_pairs * sizeof(struct ice_fv_word)); 5209 5210 memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap, 5211 sizeof(recp->r_bitmap)); 5212 5213 /* Copy non-result fv index values and masks to recipe. This 5214 * call will also update the result recipe bitmask. 5215 */ 5216 ice_collect_result_idx(&buf[buf_idx], recp); 5217 5218 /* for non-root recipes, also copy to the root, this allows 5219 * easier matching of a complete chained recipe 5220 */ 5221 if (!is_root) 5222 ice_collect_result_idx(&buf[buf_idx], 5223 &sw->recp_list[rm->root_rid]); 5224 5225 recp->n_ext_words = entry->r_group.n_val_pairs; 5226 recp->chain_idx = entry->chain_idx; 5227 recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority; 5228 recp->n_grp_count = rm->n_grp_count; 5229 recp->tun_type = rm->tun_type; 5230 recp->need_pass_l2 = rm->need_pass_l2; 5231 recp->allow_pass_l2 = rm->allow_pass_l2; 5232 recp->recp_created = true; 5233 } 5234 rm->root_buf = buf; 5235 kfree(tmp); 5236 return status; 5237 5238 err_unroll: 5239 err_mem: 5240 kfree(tmp); 5241 devm_kfree(ice_hw_to_dev(hw), buf); 5242 return status; 5243 } 5244 5245 /** 5246 * ice_create_recipe_group - creates recipe group 5247 * @hw: pointer to hardware structure 5248 * @rm: recipe management list entry 5249 * @lkup_exts: lookup elements 5250 */ 5251 static int 5252 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm, 5253 struct ice_prot_lkup_ext *lkup_exts) 5254 { 5255 u8 recp_count = 0; 5256 int status; 5257 5258 rm->n_grp_count = 0; 5259 5260 /* Create recipes for words that are marked not done by packing them 5261 * as best fit. 5262 */ 5263 status = ice_create_first_fit_recp_def(hw, lkup_exts, 5264 &rm->rg_list, &recp_count); 5265 if (!status) { 5266 rm->n_grp_count += recp_count; 5267 rm->n_ext_words = lkup_exts->n_val_words; 5268 memcpy(&rm->ext_words, lkup_exts->fv_words, 5269 sizeof(rm->ext_words)); 5270 memcpy(rm->word_masks, lkup_exts->field_mask, 5271 sizeof(rm->word_masks)); 5272 } 5273 5274 return status; 5275 } 5276 5277 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule 5278 * @hw: pointer to hardware structure 5279 * @rinfo: other information regarding the rule e.g. priority and action info 5280 * @bm: pointer to memory for returning the bitmap of field vectors 5281 */ 5282 static void 5283 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo, 5284 unsigned long *bm) 5285 { 5286 enum ice_prof_type prof_type; 5287 5288 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 5289 5290 switch (rinfo->tun_type) { 5291 case ICE_NON_TUN: 5292 prof_type = ICE_PROF_NON_TUN; 5293 break; 5294 case ICE_ALL_TUNNELS: 5295 prof_type = ICE_PROF_TUN_ALL; 5296 break; 5297 case ICE_SW_TUN_GENEVE: 5298 case ICE_SW_TUN_VXLAN: 5299 prof_type = ICE_PROF_TUN_UDP; 5300 break; 5301 case ICE_SW_TUN_NVGRE: 5302 prof_type = ICE_PROF_TUN_GRE; 5303 break; 5304 case ICE_SW_TUN_GTPU: 5305 prof_type = ICE_PROF_TUN_GTPU; 5306 break; 5307 case ICE_SW_TUN_GTPC: 5308 prof_type = ICE_PROF_TUN_GTPC; 5309 break; 5310 case ICE_SW_TUN_AND_NON_TUN: 5311 default: 5312 prof_type = ICE_PROF_ALL; 5313 break; 5314 } 5315 5316 ice_get_sw_fv_bitmap(hw, prof_type, bm); 5317 } 5318 5319 /** 5320 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default 5321 * @hw: pointer to hardware structure 5322 * @lkups: lookup elements or match criteria for the advanced recipe, one 5323 * structure per protocol header 5324 * @lkups_cnt: number of protocols 5325 * @rinfo: other information regarding the rule e.g. priority and action info 5326 * @rid: return the recipe ID of the recipe created 5327 */ 5328 static int 5329 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5330 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid) 5331 { 5332 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES); 5333 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES); 5334 struct ice_prot_lkup_ext *lkup_exts; 5335 struct ice_recp_grp_entry *r_entry; 5336 struct ice_sw_fv_list_entry *fvit; 5337 struct ice_recp_grp_entry *r_tmp; 5338 struct ice_sw_fv_list_entry *tmp; 5339 struct ice_sw_recipe *rm; 5340 int status = 0; 5341 u8 i; 5342 5343 if (!lkups_cnt) 5344 return -EINVAL; 5345 5346 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL); 5347 if (!lkup_exts) 5348 return -ENOMEM; 5349 5350 /* Determine the number of words to be matched and if it exceeds a 5351 * recipe's restrictions 5352 */ 5353 for (i = 0; i < lkups_cnt; i++) { 5354 u16 count; 5355 5356 if (lkups[i].type >= ICE_PROTOCOL_LAST) { 5357 status = -EIO; 5358 goto err_free_lkup_exts; 5359 } 5360 5361 count = ice_fill_valid_words(&lkups[i], lkup_exts); 5362 if (!count) { 5363 status = -EIO; 5364 goto err_free_lkup_exts; 5365 } 5366 } 5367 5368 rm = kzalloc(sizeof(*rm), GFP_KERNEL); 5369 if (!rm) { 5370 status = -ENOMEM; 5371 goto err_free_lkup_exts; 5372 } 5373 5374 /* Get field vectors that contain fields extracted from all the protocol 5375 * headers being programmed. 5376 */ 5377 INIT_LIST_HEAD(&rm->fv_list); 5378 INIT_LIST_HEAD(&rm->rg_list); 5379 5380 /* Get bitmap of field vectors (profiles) that are compatible with the 5381 * rule request; only these will be searched in the subsequent call to 5382 * ice_get_sw_fv_list. 5383 */ 5384 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap); 5385 5386 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list); 5387 if (status) 5388 goto err_unroll; 5389 5390 /* Group match words into recipes using preferred recipe grouping 5391 * criteria. 5392 */ 5393 status = ice_create_recipe_group(hw, rm, lkup_exts); 5394 if (status) 5395 goto err_unroll; 5396 5397 /* set the recipe priority if specified */ 5398 rm->priority = (u8)rinfo->priority; 5399 5400 rm->need_pass_l2 = rinfo->need_pass_l2; 5401 rm->allow_pass_l2 = rinfo->allow_pass_l2; 5402 5403 /* Find offsets from the field vector. Pick the first one for all the 5404 * recipes. 5405 */ 5406 status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list); 5407 if (status) 5408 goto err_unroll; 5409 5410 /* get bitmap of all profiles the recipe will be associated with */ 5411 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES); 5412 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5413 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id); 5414 set_bit((u16)fvit->profile_id, profiles); 5415 } 5416 5417 /* Look for a recipe which matches our requested fv / mask list */ 5418 *rid = ice_find_recp(hw, lkup_exts, rinfo); 5419 if (*rid < ICE_MAX_NUM_RECIPES) 5420 /* Success if found a recipe that match the existing criteria */ 5421 goto err_unroll; 5422 5423 rm->tun_type = rinfo->tun_type; 5424 /* Recipe we need does not exist, add a recipe */ 5425 status = ice_add_sw_recipe(hw, rm, profiles); 5426 if (status) 5427 goto err_unroll; 5428 5429 /* Associate all the recipes created with all the profiles in the 5430 * common field vector. 5431 */ 5432 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5433 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 5434 u16 j; 5435 5436 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id, 5437 (u8 *)r_bitmap, NULL); 5438 if (status) 5439 goto err_unroll; 5440 5441 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap, 5442 ICE_MAX_NUM_RECIPES); 5443 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5444 if (status) 5445 goto err_unroll; 5446 5447 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id, 5448 (u8 *)r_bitmap, 5449 NULL); 5450 ice_release_change_lock(hw); 5451 5452 if (status) 5453 goto err_unroll; 5454 5455 /* Update profile to recipe bitmap array */ 5456 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap, 5457 ICE_MAX_NUM_RECIPES); 5458 5459 /* Update recipe to profile bitmap array */ 5460 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES) 5461 set_bit((u16)fvit->profile_id, recipe_to_profile[j]); 5462 } 5463 5464 *rid = rm->root_rid; 5465 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts, 5466 sizeof(*lkup_exts)); 5467 err_unroll: 5468 list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) { 5469 list_del(&r_entry->l_entry); 5470 devm_kfree(ice_hw_to_dev(hw), r_entry); 5471 } 5472 5473 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) { 5474 list_del(&fvit->list_entry); 5475 devm_kfree(ice_hw_to_dev(hw), fvit); 5476 } 5477 5478 devm_kfree(ice_hw_to_dev(hw), rm->root_buf); 5479 kfree(rm); 5480 5481 err_free_lkup_exts: 5482 kfree(lkup_exts); 5483 5484 return status; 5485 } 5486 5487 /** 5488 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt 5489 * 5490 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added 5491 * @num_vlan: number of VLAN tags 5492 */ 5493 static struct ice_dummy_pkt_profile * 5494 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt, 5495 u32 num_vlan) 5496 { 5497 struct ice_dummy_pkt_profile *profile; 5498 struct ice_dummy_pkt_offsets *offsets; 5499 u32 buf_len, off, etype_off, i; 5500 u8 *pkt; 5501 5502 if (num_vlan < 1 || num_vlan > 2) 5503 return ERR_PTR(-EINVAL); 5504 5505 off = num_vlan * VLAN_HLEN; 5506 5507 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) + 5508 dummy_pkt->offsets_len; 5509 offsets = kzalloc(buf_len, GFP_KERNEL); 5510 if (!offsets) 5511 return ERR_PTR(-ENOMEM); 5512 5513 offsets[0] = dummy_pkt->offsets[0]; 5514 if (num_vlan == 2) { 5515 offsets[1] = ice_dummy_qinq_packet_offsets[0]; 5516 offsets[2] = ice_dummy_qinq_packet_offsets[1]; 5517 } else if (num_vlan == 1) { 5518 offsets[1] = ice_dummy_vlan_packet_offsets[0]; 5519 } 5520 5521 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5522 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type; 5523 offsets[i + num_vlan].offset = 5524 dummy_pkt->offsets[i].offset + off; 5525 } 5526 offsets[i + num_vlan] = dummy_pkt->offsets[i]; 5527 5528 etype_off = dummy_pkt->offsets[1].offset; 5529 5530 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) + 5531 dummy_pkt->pkt_len; 5532 pkt = kzalloc(buf_len, GFP_KERNEL); 5533 if (!pkt) { 5534 kfree(offsets); 5535 return ERR_PTR(-ENOMEM); 5536 } 5537 5538 memcpy(pkt, dummy_pkt->pkt, etype_off); 5539 memcpy(pkt + etype_off, 5540 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet, 5541 off); 5542 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off, 5543 dummy_pkt->pkt_len - etype_off); 5544 5545 profile = kzalloc(sizeof(*profile), GFP_KERNEL); 5546 if (!profile) { 5547 kfree(offsets); 5548 kfree(pkt); 5549 return ERR_PTR(-ENOMEM); 5550 } 5551 5552 profile->offsets = offsets; 5553 profile->pkt = pkt; 5554 profile->pkt_len = buf_len; 5555 profile->match |= ICE_PKT_KMALLOC; 5556 5557 return profile; 5558 } 5559 5560 /** 5561 * ice_find_dummy_packet - find dummy packet 5562 * 5563 * @lkups: lookup elements or match criteria for the advanced recipe, one 5564 * structure per protocol header 5565 * @lkups_cnt: number of protocols 5566 * @tun_type: tunnel type 5567 * 5568 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params. 5569 */ 5570 static const struct ice_dummy_pkt_profile * 5571 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5572 enum ice_sw_tunnel_type tun_type) 5573 { 5574 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles; 5575 u32 match = 0, vlan_count = 0; 5576 u16 i; 5577 5578 switch (tun_type) { 5579 case ICE_SW_TUN_GTPC: 5580 match |= ICE_PKT_TUN_GTPC; 5581 break; 5582 case ICE_SW_TUN_GTPU: 5583 match |= ICE_PKT_TUN_GTPU; 5584 break; 5585 case ICE_SW_TUN_NVGRE: 5586 match |= ICE_PKT_TUN_NVGRE; 5587 break; 5588 case ICE_SW_TUN_GENEVE: 5589 case ICE_SW_TUN_VXLAN: 5590 match |= ICE_PKT_TUN_UDP; 5591 break; 5592 default: 5593 break; 5594 } 5595 5596 for (i = 0; i < lkups_cnt; i++) { 5597 if (lkups[i].type == ICE_UDP_ILOS) 5598 match |= ICE_PKT_INNER_UDP; 5599 else if (lkups[i].type == ICE_TCP_IL) 5600 match |= ICE_PKT_INNER_TCP; 5601 else if (lkups[i].type == ICE_IPV6_OFOS) 5602 match |= ICE_PKT_OUTER_IPV6; 5603 else if (lkups[i].type == ICE_VLAN_OFOS || 5604 lkups[i].type == ICE_VLAN_EX) 5605 vlan_count++; 5606 else if (lkups[i].type == ICE_VLAN_IN) 5607 vlan_count++; 5608 else if (lkups[i].type == ICE_ETYPE_OL && 5609 lkups[i].h_u.ethertype.ethtype_id == 5610 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5611 lkups[i].m_u.ethertype.ethtype_id == 5612 cpu_to_be16(0xFFFF)) 5613 match |= ICE_PKT_OUTER_IPV6; 5614 else if (lkups[i].type == ICE_ETYPE_IL && 5615 lkups[i].h_u.ethertype.ethtype_id == 5616 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5617 lkups[i].m_u.ethertype.ethtype_id == 5618 cpu_to_be16(0xFFFF)) 5619 match |= ICE_PKT_INNER_IPV6; 5620 else if (lkups[i].type == ICE_IPV6_IL) 5621 match |= ICE_PKT_INNER_IPV6; 5622 else if (lkups[i].type == ICE_GTP_NO_PAY) 5623 match |= ICE_PKT_GTP_NOPAY; 5624 else if (lkups[i].type == ICE_PPPOE) { 5625 match |= ICE_PKT_PPPOE; 5626 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id == 5627 htons(PPP_IPV6)) 5628 match |= ICE_PKT_OUTER_IPV6; 5629 } else if (lkups[i].type == ICE_L2TPV3) 5630 match |= ICE_PKT_L2TPV3; 5631 } 5632 5633 while (ret->match && (match & ret->match) != ret->match) 5634 ret++; 5635 5636 if (vlan_count != 0) 5637 ret = ice_dummy_packet_add_vlan(ret, vlan_count); 5638 5639 return ret; 5640 } 5641 5642 /** 5643 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria 5644 * 5645 * @lkups: lookup elements or match criteria for the advanced recipe, one 5646 * structure per protocol header 5647 * @lkups_cnt: number of protocols 5648 * @s_rule: stores rule information from the match criteria 5649 * @profile: dummy packet profile (the template, its size and header offsets) 5650 */ 5651 static int 5652 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5653 struct ice_sw_rule_lkup_rx_tx *s_rule, 5654 const struct ice_dummy_pkt_profile *profile) 5655 { 5656 u8 *pkt; 5657 u16 i; 5658 5659 /* Start with a packet with a pre-defined/dummy content. Then, fill 5660 * in the header values to be looked up or matched. 5661 */ 5662 pkt = s_rule->hdr_data; 5663 5664 memcpy(pkt, profile->pkt, profile->pkt_len); 5665 5666 for (i = 0; i < lkups_cnt; i++) { 5667 const struct ice_dummy_pkt_offsets *offsets = profile->offsets; 5668 enum ice_protocol_type type; 5669 u16 offset = 0, len = 0, j; 5670 bool found = false; 5671 5672 /* find the start of this layer; it should be found since this 5673 * was already checked when search for the dummy packet 5674 */ 5675 type = lkups[i].type; 5676 /* metadata isn't present in the packet */ 5677 if (type == ICE_HW_METADATA) 5678 continue; 5679 5680 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) { 5681 if (type == offsets[j].type) { 5682 offset = offsets[j].offset; 5683 found = true; 5684 break; 5685 } 5686 } 5687 /* this should never happen in a correct calling sequence */ 5688 if (!found) 5689 return -EINVAL; 5690 5691 switch (lkups[i].type) { 5692 case ICE_MAC_OFOS: 5693 case ICE_MAC_IL: 5694 len = sizeof(struct ice_ether_hdr); 5695 break; 5696 case ICE_ETYPE_OL: 5697 case ICE_ETYPE_IL: 5698 len = sizeof(struct ice_ethtype_hdr); 5699 break; 5700 case ICE_VLAN_OFOS: 5701 case ICE_VLAN_EX: 5702 case ICE_VLAN_IN: 5703 len = sizeof(struct ice_vlan_hdr); 5704 break; 5705 case ICE_IPV4_OFOS: 5706 case ICE_IPV4_IL: 5707 len = sizeof(struct ice_ipv4_hdr); 5708 break; 5709 case ICE_IPV6_OFOS: 5710 case ICE_IPV6_IL: 5711 len = sizeof(struct ice_ipv6_hdr); 5712 break; 5713 case ICE_TCP_IL: 5714 case ICE_UDP_OF: 5715 case ICE_UDP_ILOS: 5716 len = sizeof(struct ice_l4_hdr); 5717 break; 5718 case ICE_SCTP_IL: 5719 len = sizeof(struct ice_sctp_hdr); 5720 break; 5721 case ICE_NVGRE: 5722 len = sizeof(struct ice_nvgre_hdr); 5723 break; 5724 case ICE_VXLAN: 5725 case ICE_GENEVE: 5726 len = sizeof(struct ice_udp_tnl_hdr); 5727 break; 5728 case ICE_GTP_NO_PAY: 5729 case ICE_GTP: 5730 len = sizeof(struct ice_udp_gtp_hdr); 5731 break; 5732 case ICE_PPPOE: 5733 len = sizeof(struct ice_pppoe_hdr); 5734 break; 5735 case ICE_L2TPV3: 5736 len = sizeof(struct ice_l2tpv3_sess_hdr); 5737 break; 5738 default: 5739 return -EINVAL; 5740 } 5741 5742 /* the length should be a word multiple */ 5743 if (len % ICE_BYTES_PER_WORD) 5744 return -EIO; 5745 5746 /* We have the offset to the header start, the length, the 5747 * caller's header values and mask. Use this information to 5748 * copy the data into the dummy packet appropriately based on 5749 * the mask. Note that we need to only write the bits as 5750 * indicated by the mask to make sure we don't improperly write 5751 * over any significant packet data. 5752 */ 5753 for (j = 0; j < len / sizeof(u16); j++) { 5754 u16 *ptr = (u16 *)(pkt + offset); 5755 u16 mask = lkups[i].m_raw[j]; 5756 5757 if (!mask) 5758 continue; 5759 5760 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask); 5761 } 5762 } 5763 5764 s_rule->hdr_len = cpu_to_le16(profile->pkt_len); 5765 5766 return 0; 5767 } 5768 5769 /** 5770 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port 5771 * @hw: pointer to the hardware structure 5772 * @tun_type: tunnel type 5773 * @pkt: dummy packet to fill in 5774 * @offsets: offset info for the dummy packet 5775 */ 5776 static int 5777 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type, 5778 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets) 5779 { 5780 u16 open_port, i; 5781 5782 switch (tun_type) { 5783 case ICE_SW_TUN_VXLAN: 5784 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN)) 5785 return -EIO; 5786 break; 5787 case ICE_SW_TUN_GENEVE: 5788 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE)) 5789 return -EIO; 5790 break; 5791 default: 5792 /* Nothing needs to be done for this tunnel type */ 5793 return 0; 5794 } 5795 5796 /* Find the outer UDP protocol header and insert the port number */ 5797 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5798 if (offsets[i].type == ICE_UDP_OF) { 5799 struct ice_l4_hdr *hdr; 5800 u16 offset; 5801 5802 offset = offsets[i].offset; 5803 hdr = (struct ice_l4_hdr *)&pkt[offset]; 5804 hdr->dst_port = cpu_to_be16(open_port); 5805 5806 return 0; 5807 } 5808 } 5809 5810 return -EIO; 5811 } 5812 5813 /** 5814 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type 5815 * @hw: pointer to hw structure 5816 * @vlan_type: VLAN tag type 5817 * @pkt: dummy packet to fill in 5818 * @offsets: offset info for the dummy packet 5819 */ 5820 static int 5821 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt, 5822 const struct ice_dummy_pkt_offsets *offsets) 5823 { 5824 u16 i; 5825 5826 /* Check if there is something to do */ 5827 if (!vlan_type || !ice_is_dvm_ena(hw)) 5828 return 0; 5829 5830 /* Find VLAN header and insert VLAN TPID */ 5831 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5832 if (offsets[i].type == ICE_VLAN_OFOS || 5833 offsets[i].type == ICE_VLAN_EX) { 5834 struct ice_vlan_hdr *hdr; 5835 u16 offset; 5836 5837 offset = offsets[i].offset; 5838 hdr = (struct ice_vlan_hdr *)&pkt[offset]; 5839 hdr->type = cpu_to_be16(vlan_type); 5840 5841 return 0; 5842 } 5843 } 5844 5845 return -EIO; 5846 } 5847 5848 static bool ice_rules_equal(const struct ice_adv_rule_info *first, 5849 const struct ice_adv_rule_info *second) 5850 { 5851 return first->sw_act.flag == second->sw_act.flag && 5852 first->tun_type == second->tun_type && 5853 first->vlan_type == second->vlan_type && 5854 first->src_vsi == second->src_vsi && 5855 first->need_pass_l2 == second->need_pass_l2 && 5856 first->allow_pass_l2 == second->allow_pass_l2; 5857 } 5858 5859 /** 5860 * ice_find_adv_rule_entry - Search a rule entry 5861 * @hw: pointer to the hardware structure 5862 * @lkups: lookup elements or match criteria for the advanced recipe, one 5863 * structure per protocol header 5864 * @lkups_cnt: number of protocols 5865 * @recp_id: recipe ID for which we are finding the rule 5866 * @rinfo: other information regarding the rule e.g. priority and action info 5867 * 5868 * Helper function to search for a given advance rule entry 5869 * Returns pointer to entry storing the rule if found 5870 */ 5871 static struct ice_adv_fltr_mgmt_list_entry * 5872 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5873 u16 lkups_cnt, u16 recp_id, 5874 struct ice_adv_rule_info *rinfo) 5875 { 5876 struct ice_adv_fltr_mgmt_list_entry *list_itr; 5877 struct ice_switch_info *sw = hw->switch_info; 5878 int i; 5879 5880 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules, 5881 list_entry) { 5882 bool lkups_matched = true; 5883 5884 if (lkups_cnt != list_itr->lkups_cnt) 5885 continue; 5886 for (i = 0; i < list_itr->lkups_cnt; i++) 5887 if (memcmp(&list_itr->lkups[i], &lkups[i], 5888 sizeof(*lkups))) { 5889 lkups_matched = false; 5890 break; 5891 } 5892 if (ice_rules_equal(rinfo, &list_itr->rule_info) && 5893 lkups_matched) 5894 return list_itr; 5895 } 5896 return NULL; 5897 } 5898 5899 /** 5900 * ice_adv_add_update_vsi_list 5901 * @hw: pointer to the hardware structure 5902 * @m_entry: pointer to current adv filter management list entry 5903 * @cur_fltr: filter information from the book keeping entry 5904 * @new_fltr: filter information with the new VSI to be added 5905 * 5906 * Call AQ command to add or update previously created VSI list with new VSI. 5907 * 5908 * Helper function to do book keeping associated with adding filter information 5909 * The algorithm to do the booking keeping is described below : 5910 * When a VSI needs to subscribe to a given advanced filter 5911 * if only one VSI has been added till now 5912 * Allocate a new VSI list and add two VSIs 5913 * to this list using switch rule command 5914 * Update the previously created switch rule with the 5915 * newly created VSI list ID 5916 * if a VSI list was previously created 5917 * Add the new VSI to the previously created VSI list set 5918 * using the update switch rule command 5919 */ 5920 static int 5921 ice_adv_add_update_vsi_list(struct ice_hw *hw, 5922 struct ice_adv_fltr_mgmt_list_entry *m_entry, 5923 struct ice_adv_rule_info *cur_fltr, 5924 struct ice_adv_rule_info *new_fltr) 5925 { 5926 u16 vsi_list_id = 0; 5927 int status; 5928 5929 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5930 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP || 5931 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET) 5932 return -EOPNOTSUPP; 5933 5934 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5935 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) && 5936 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI || 5937 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST)) 5938 return -EOPNOTSUPP; 5939 5940 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 5941 /* Only one entry existed in the mapping and it was not already 5942 * a part of a VSI list. So, create a VSI list with the old and 5943 * new VSIs. 5944 */ 5945 struct ice_fltr_info tmp_fltr; 5946 u16 vsi_handle_arr[2]; 5947 5948 /* A rule already exists with the new VSI being added */ 5949 if (cur_fltr->sw_act.fwd_id.hw_vsi_id == 5950 new_fltr->sw_act.fwd_id.hw_vsi_id) 5951 return -EEXIST; 5952 5953 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle; 5954 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle; 5955 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 5956 &vsi_list_id, 5957 ICE_SW_LKUP_LAST); 5958 if (status) 5959 return status; 5960 5961 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 5962 tmp_fltr.flag = m_entry->rule_info.sw_act.flag; 5963 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 5964 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 5965 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 5966 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST; 5967 5968 /* Update the previous switch rule of "forward to VSI" to 5969 * "fwd to VSI list" 5970 */ 5971 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 5972 if (status) 5973 return status; 5974 5975 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id; 5976 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST; 5977 m_entry->vsi_list_info = 5978 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 5979 vsi_list_id); 5980 } else { 5981 u16 vsi_handle = new_fltr->sw_act.vsi_handle; 5982 5983 if (!m_entry->vsi_list_info) 5984 return -EIO; 5985 5986 /* A rule already exists with the new VSI being added */ 5987 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 5988 return 0; 5989 5990 /* Update the previously created VSI list set with 5991 * the new VSI ID passed in 5992 */ 5993 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id; 5994 5995 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 5996 vsi_list_id, false, 5997 ice_aqc_opc_update_sw_rules, 5998 ICE_SW_LKUP_LAST); 5999 /* update VSI list mapping info with new VSI ID */ 6000 if (!status) 6001 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 6002 } 6003 if (!status) 6004 m_entry->vsi_count++; 6005 return status; 6006 } 6007 6008 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup) 6009 { 6010 lkup->type = ICE_HW_METADATA; 6011 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |= 6012 cpu_to_be16(ICE_PKT_TUNNEL_MASK); 6013 } 6014 6015 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup) 6016 { 6017 lkup->type = ICE_HW_METADATA; 6018 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 6019 cpu_to_be16(ICE_PKT_FROM_NETWORK); 6020 } 6021 6022 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup) 6023 { 6024 lkup->type = ICE_HW_METADATA; 6025 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 6026 cpu_to_be16(ICE_PKT_VLAN_MASK); 6027 } 6028 6029 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup) 6030 { 6031 lkup->type = ICE_HW_METADATA; 6032 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK); 6033 } 6034 6035 /** 6036 * ice_add_adv_rule - helper function to create an advanced switch rule 6037 * @hw: pointer to the hardware structure 6038 * @lkups: information on the words that needs to be looked up. All words 6039 * together makes one recipe 6040 * @lkups_cnt: num of entries in the lkups array 6041 * @rinfo: other information related to the rule that needs to be programmed 6042 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be 6043 * ignored is case of error. 6044 * 6045 * This function can program only 1 rule at a time. The lkups is used to 6046 * describe the all the words that forms the "lookup" portion of the recipe. 6047 * These words can span multiple protocols. Callers to this function need to 6048 * pass in a list of protocol headers with lookup information along and mask 6049 * that determines which words are valid from the given protocol header. 6050 * rinfo describes other information related to this rule such as forwarding 6051 * IDs, priority of this rule, etc. 6052 */ 6053 int 6054 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6055 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, 6056 struct ice_rule_query_data *added_entry) 6057 { 6058 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL; 6059 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL; 6060 const struct ice_dummy_pkt_profile *profile; 6061 u16 rid = 0, i, rule_buf_sz, vsi_handle; 6062 struct list_head *rule_head; 6063 struct ice_switch_info *sw; 6064 u16 word_cnt; 6065 u32 act = 0; 6066 int status; 6067 u8 q_rgn; 6068 6069 /* Initialize profile to result index bitmap */ 6070 if (!hw->switch_info->prof_res_bm_init) { 6071 hw->switch_info->prof_res_bm_init = 1; 6072 ice_init_prof_result_bm(hw); 6073 } 6074 6075 if (!lkups_cnt) 6076 return -EINVAL; 6077 6078 /* get # of words we need to match */ 6079 word_cnt = 0; 6080 for (i = 0; i < lkups_cnt; i++) { 6081 u16 j; 6082 6083 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++) 6084 if (lkups[i].m_raw[j]) 6085 word_cnt++; 6086 } 6087 6088 if (!word_cnt) 6089 return -EINVAL; 6090 6091 if (word_cnt > ICE_MAX_CHAIN_WORDS) 6092 return -ENOSPC; 6093 6094 /* locate a dummy packet */ 6095 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type); 6096 if (IS_ERR(profile)) 6097 return PTR_ERR(profile); 6098 6099 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6100 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q || 6101 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP || 6102 rinfo->sw_act.fltr_act == ICE_DROP_PACKET || 6103 rinfo->sw_act.fltr_act == ICE_NOP)) { 6104 status = -EIO; 6105 goto free_pkt_profile; 6106 } 6107 6108 vsi_handle = rinfo->sw_act.vsi_handle; 6109 if (!ice_is_vsi_valid(hw, vsi_handle)) { 6110 status = -EINVAL; 6111 goto free_pkt_profile; 6112 } 6113 6114 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6115 rinfo->sw_act.fltr_act == ICE_NOP) 6116 rinfo->sw_act.fwd_id.hw_vsi_id = 6117 ice_get_hw_vsi_num(hw, vsi_handle); 6118 6119 if (rinfo->src_vsi) 6120 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi); 6121 else 6122 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle); 6123 6124 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid); 6125 if (status) 6126 goto free_pkt_profile; 6127 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6128 if (m_entry) { 6129 /* we have to add VSI to VSI_LIST and increment vsi_count. 6130 * Also Update VSI list so that we can change forwarding rule 6131 * if the rule already exists, we will check if it exists with 6132 * same vsi_id, if not then add it to the VSI list if it already 6133 * exists if not then create a VSI list and add the existing VSI 6134 * ID and the new VSI ID to the list 6135 * We will add that VSI to the list 6136 */ 6137 status = ice_adv_add_update_vsi_list(hw, m_entry, 6138 &m_entry->rule_info, 6139 rinfo); 6140 if (added_entry) { 6141 added_entry->rid = rid; 6142 added_entry->rule_id = m_entry->rule_info.fltr_rule_id; 6143 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6144 } 6145 goto free_pkt_profile; 6146 } 6147 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len); 6148 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6149 if (!s_rule) { 6150 status = -ENOMEM; 6151 goto free_pkt_profile; 6152 } 6153 if (!rinfo->flags_info.act_valid) { 6154 act |= ICE_SINGLE_ACT_LAN_ENABLE; 6155 act |= ICE_SINGLE_ACT_LB_ENABLE; 6156 } else { 6157 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE | 6158 ICE_SINGLE_ACT_LB_ENABLE); 6159 } 6160 6161 switch (rinfo->sw_act.fltr_act) { 6162 case ICE_FWD_TO_VSI: 6163 act |= (rinfo->sw_act.fwd_id.hw_vsi_id << 6164 ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M; 6165 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; 6166 break; 6167 case ICE_FWD_TO_Q: 6168 act |= ICE_SINGLE_ACT_TO_Q; 6169 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 6170 ICE_SINGLE_ACT_Q_INDEX_M; 6171 break; 6172 case ICE_FWD_TO_QGRP: 6173 q_rgn = rinfo->sw_act.qgrp_size > 0 ? 6174 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0; 6175 act |= ICE_SINGLE_ACT_TO_Q; 6176 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 6177 ICE_SINGLE_ACT_Q_INDEX_M; 6178 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 6179 ICE_SINGLE_ACT_Q_REGION_M; 6180 break; 6181 case ICE_DROP_PACKET: 6182 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 6183 ICE_SINGLE_ACT_VALID_BIT; 6184 break; 6185 case ICE_NOP: 6186 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6187 rinfo->sw_act.fwd_id.hw_vsi_id); 6188 act &= ~ICE_SINGLE_ACT_VALID_BIT; 6189 break; 6190 default: 6191 status = -EIO; 6192 goto err_ice_add_adv_rule; 6193 } 6194 6195 /* If there is no matching criteria for direction there 6196 * is only one difference between Rx and Tx: 6197 * - get switch id base on VSI number from source field (Tx) 6198 * - get switch id base on port number (Rx) 6199 * 6200 * If matching on direction metadata is chose rule direction is 6201 * extracted from type value set here. 6202 */ 6203 if (rinfo->sw_act.flag & ICE_FLTR_TX) { 6204 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 6205 s_rule->src = cpu_to_le16(rinfo->sw_act.src); 6206 } else { 6207 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX); 6208 s_rule->src = cpu_to_le16(hw->port_info->lport); 6209 } 6210 6211 s_rule->recipe_id = cpu_to_le16(rid); 6212 s_rule->act = cpu_to_le32(act); 6213 6214 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile); 6215 if (status) 6216 goto err_ice_add_adv_rule; 6217 6218 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data, 6219 profile->offsets); 6220 if (status) 6221 goto err_ice_add_adv_rule; 6222 6223 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type, 6224 s_rule->hdr_data, 6225 profile->offsets); 6226 if (status) 6227 goto err_ice_add_adv_rule; 6228 6229 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6230 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules, 6231 NULL); 6232 if (status) 6233 goto err_ice_add_adv_rule; 6234 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw), 6235 sizeof(struct ice_adv_fltr_mgmt_list_entry), 6236 GFP_KERNEL); 6237 if (!adv_fltr) { 6238 status = -ENOMEM; 6239 goto err_ice_add_adv_rule; 6240 } 6241 6242 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups, 6243 lkups_cnt * sizeof(*lkups), GFP_KERNEL); 6244 if (!adv_fltr->lkups) { 6245 status = -ENOMEM; 6246 goto err_ice_add_adv_rule; 6247 } 6248 6249 adv_fltr->lkups_cnt = lkups_cnt; 6250 adv_fltr->rule_info = *rinfo; 6251 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index); 6252 sw = hw->switch_info; 6253 sw->recp_list[rid].adv_rule = true; 6254 rule_head = &sw->recp_list[rid].filt_rules; 6255 6256 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) 6257 adv_fltr->vsi_count = 1; 6258 6259 /* Add rule entry to book keeping list */ 6260 list_add(&adv_fltr->list_entry, rule_head); 6261 if (added_entry) { 6262 added_entry->rid = rid; 6263 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id; 6264 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6265 } 6266 err_ice_add_adv_rule: 6267 if (status && adv_fltr) { 6268 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups); 6269 devm_kfree(ice_hw_to_dev(hw), adv_fltr); 6270 } 6271 6272 kfree(s_rule); 6273 6274 free_pkt_profile: 6275 if (profile->match & ICE_PKT_KMALLOC) { 6276 kfree(profile->offsets); 6277 kfree(profile->pkt); 6278 kfree(profile); 6279 } 6280 6281 return status; 6282 } 6283 6284 /** 6285 * ice_replay_vsi_fltr - Replay filters for requested VSI 6286 * @hw: pointer to the hardware structure 6287 * @vsi_handle: driver VSI handle 6288 * @recp_id: Recipe ID for which rules need to be replayed 6289 * @list_head: list for which filters need to be replayed 6290 * 6291 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 6292 * It is required to pass valid VSI handle. 6293 */ 6294 static int 6295 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 6296 struct list_head *list_head) 6297 { 6298 struct ice_fltr_mgmt_list_entry *itr; 6299 int status = 0; 6300 u16 hw_vsi_id; 6301 6302 if (list_empty(list_head)) 6303 return status; 6304 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 6305 6306 list_for_each_entry(itr, list_head, list_entry) { 6307 struct ice_fltr_list_entry f_entry; 6308 6309 f_entry.fltr_info = itr->fltr_info; 6310 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 6311 itr->fltr_info.vsi_handle == vsi_handle) { 6312 /* update the src in case it is VSI num */ 6313 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6314 f_entry.fltr_info.src = hw_vsi_id; 6315 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6316 if (status) 6317 goto end; 6318 continue; 6319 } 6320 if (!itr->vsi_list_info || 6321 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 6322 continue; 6323 /* Clearing it so that the logic can add it back */ 6324 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 6325 f_entry.fltr_info.vsi_handle = vsi_handle; 6326 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 6327 /* update the src in case it is VSI num */ 6328 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6329 f_entry.fltr_info.src = hw_vsi_id; 6330 if (recp_id == ICE_SW_LKUP_VLAN) 6331 status = ice_add_vlan_internal(hw, &f_entry); 6332 else 6333 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6334 if (status) 6335 goto end; 6336 } 6337 end: 6338 return status; 6339 } 6340 6341 /** 6342 * ice_adv_rem_update_vsi_list 6343 * @hw: pointer to the hardware structure 6344 * @vsi_handle: VSI handle of the VSI to remove 6345 * @fm_list: filter management entry for which the VSI list management needs to 6346 * be done 6347 */ 6348 static int 6349 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 6350 struct ice_adv_fltr_mgmt_list_entry *fm_list) 6351 { 6352 struct ice_vsi_list_map_info *vsi_list_info; 6353 enum ice_sw_lkup_type lkup_type; 6354 u16 vsi_list_id; 6355 int status; 6356 6357 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST || 6358 fm_list->vsi_count == 0) 6359 return -EINVAL; 6360 6361 /* A rule with the VSI being removed does not exist */ 6362 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 6363 return -ENOENT; 6364 6365 lkup_type = ICE_SW_LKUP_LAST; 6366 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id; 6367 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 6368 ice_aqc_opc_update_sw_rules, 6369 lkup_type); 6370 if (status) 6371 return status; 6372 6373 fm_list->vsi_count--; 6374 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 6375 vsi_list_info = fm_list->vsi_list_info; 6376 if (fm_list->vsi_count == 1) { 6377 struct ice_fltr_info tmp_fltr; 6378 u16 rem_vsi_handle; 6379 6380 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 6381 ICE_MAX_VSI); 6382 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 6383 return -EIO; 6384 6385 /* Make sure VSI list is empty before removing it below */ 6386 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 6387 vsi_list_id, true, 6388 ice_aqc_opc_update_sw_rules, 6389 lkup_type); 6390 if (status) 6391 return status; 6392 6393 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 6394 tmp_fltr.flag = fm_list->rule_info.sw_act.flag; 6395 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id; 6396 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI; 6397 tmp_fltr.fltr_act = ICE_FWD_TO_VSI; 6398 tmp_fltr.fwd_id.hw_vsi_id = 6399 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6400 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id = 6401 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6402 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle; 6403 6404 /* Update the previous switch rule of "MAC forward to VSI" to 6405 * "MAC fwd to VSI list" 6406 */ 6407 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 6408 if (status) { 6409 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 6410 tmp_fltr.fwd_id.hw_vsi_id, status); 6411 return status; 6412 } 6413 fm_list->vsi_list_info->ref_cnt--; 6414 6415 /* Remove the VSI list since it is no longer used */ 6416 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 6417 if (status) { 6418 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 6419 vsi_list_id, status); 6420 return status; 6421 } 6422 6423 list_del(&vsi_list_info->list_entry); 6424 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 6425 fm_list->vsi_list_info = NULL; 6426 } 6427 6428 return status; 6429 } 6430 6431 /** 6432 * ice_rem_adv_rule - removes existing advanced switch rule 6433 * @hw: pointer to the hardware structure 6434 * @lkups: information on the words that needs to be looked up. All words 6435 * together makes one recipe 6436 * @lkups_cnt: num of entries in the lkups array 6437 * @rinfo: Its the pointer to the rule information for the rule 6438 * 6439 * This function can be used to remove 1 rule at a time. The lkups is 6440 * used to describe all the words that forms the "lookup" portion of the 6441 * rule. These words can span multiple protocols. Callers to this function 6442 * need to pass in a list of protocol headers with lookup information along 6443 * and mask that determines which words are valid from the given protocol 6444 * header. rinfo describes other information related to this rule such as 6445 * forwarding IDs, priority of this rule, etc. 6446 */ 6447 static int 6448 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6449 u16 lkups_cnt, struct ice_adv_rule_info *rinfo) 6450 { 6451 struct ice_adv_fltr_mgmt_list_entry *list_elem; 6452 struct ice_prot_lkup_ext lkup_exts; 6453 bool remove_rule = false; 6454 struct mutex *rule_lock; /* Lock to protect filter rule list */ 6455 u16 i, rid, vsi_handle; 6456 int status = 0; 6457 6458 memset(&lkup_exts, 0, sizeof(lkup_exts)); 6459 for (i = 0; i < lkups_cnt; i++) { 6460 u16 count; 6461 6462 if (lkups[i].type >= ICE_PROTOCOL_LAST) 6463 return -EIO; 6464 6465 count = ice_fill_valid_words(&lkups[i], &lkup_exts); 6466 if (!count) 6467 return -EIO; 6468 } 6469 6470 rid = ice_find_recp(hw, &lkup_exts, rinfo); 6471 /* If did not find a recipe that match the existing criteria */ 6472 if (rid == ICE_MAX_NUM_RECIPES) 6473 return -EINVAL; 6474 6475 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock; 6476 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6477 /* the rule is already removed */ 6478 if (!list_elem) 6479 return 0; 6480 mutex_lock(rule_lock); 6481 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) { 6482 remove_rule = true; 6483 } else if (list_elem->vsi_count > 1) { 6484 remove_rule = false; 6485 vsi_handle = rinfo->sw_act.vsi_handle; 6486 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6487 } else { 6488 vsi_handle = rinfo->sw_act.vsi_handle; 6489 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6490 if (status) { 6491 mutex_unlock(rule_lock); 6492 return status; 6493 } 6494 if (list_elem->vsi_count == 0) 6495 remove_rule = true; 6496 } 6497 mutex_unlock(rule_lock); 6498 if (remove_rule) { 6499 struct ice_sw_rule_lkup_rx_tx *s_rule; 6500 u16 rule_buf_sz; 6501 6502 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule); 6503 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6504 if (!s_rule) 6505 return -ENOMEM; 6506 s_rule->act = 0; 6507 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id); 6508 s_rule->hdr_len = 0; 6509 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6510 rule_buf_sz, 1, 6511 ice_aqc_opc_remove_sw_rules, NULL); 6512 if (!status || status == -ENOENT) { 6513 struct ice_switch_info *sw = hw->switch_info; 6514 6515 mutex_lock(rule_lock); 6516 list_del(&list_elem->list_entry); 6517 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups); 6518 devm_kfree(ice_hw_to_dev(hw), list_elem); 6519 mutex_unlock(rule_lock); 6520 if (list_empty(&sw->recp_list[rid].filt_rules)) 6521 sw->recp_list[rid].adv_rule = false; 6522 } 6523 kfree(s_rule); 6524 } 6525 return status; 6526 } 6527 6528 /** 6529 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID 6530 * @hw: pointer to the hardware structure 6531 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID 6532 * 6533 * This function is used to remove 1 rule at a time. The removal is based on 6534 * the remove_entry parameter. This function will remove rule for a given 6535 * vsi_handle with a given rule_id which is passed as parameter in remove_entry 6536 */ 6537 int 6538 ice_rem_adv_rule_by_id(struct ice_hw *hw, 6539 struct ice_rule_query_data *remove_entry) 6540 { 6541 struct ice_adv_fltr_mgmt_list_entry *list_itr; 6542 struct list_head *list_head; 6543 struct ice_adv_rule_info rinfo; 6544 struct ice_switch_info *sw; 6545 6546 sw = hw->switch_info; 6547 if (!sw->recp_list[remove_entry->rid].recp_created) 6548 return -EINVAL; 6549 list_head = &sw->recp_list[remove_entry->rid].filt_rules; 6550 list_for_each_entry(list_itr, list_head, list_entry) { 6551 if (list_itr->rule_info.fltr_rule_id == 6552 remove_entry->rule_id) { 6553 rinfo = list_itr->rule_info; 6554 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle; 6555 return ice_rem_adv_rule(hw, list_itr->lkups, 6556 list_itr->lkups_cnt, &rinfo); 6557 } 6558 } 6559 /* either list is empty or unable to find rule */ 6560 return -ENOENT; 6561 } 6562 6563 /** 6564 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI 6565 * @hw: pointer to the hardware structure 6566 * @vsi_handle: driver VSI handle 6567 * @list_head: list for which filters need to be replayed 6568 * 6569 * Replay the advanced rule for the given VSI. 6570 */ 6571 static int 6572 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle, 6573 struct list_head *list_head) 6574 { 6575 struct ice_rule_query_data added_entry = { 0 }; 6576 struct ice_adv_fltr_mgmt_list_entry *adv_fltr; 6577 int status = 0; 6578 6579 if (list_empty(list_head)) 6580 return status; 6581 list_for_each_entry(adv_fltr, list_head, list_entry) { 6582 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info; 6583 u16 lk_cnt = adv_fltr->lkups_cnt; 6584 6585 if (vsi_handle != rinfo->sw_act.vsi_handle) 6586 continue; 6587 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo, 6588 &added_entry); 6589 if (status) 6590 break; 6591 } 6592 return status; 6593 } 6594 6595 /** 6596 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 6597 * @hw: pointer to the hardware structure 6598 * @vsi_handle: driver VSI handle 6599 * 6600 * Replays filters for requested VSI via vsi_handle. 6601 */ 6602 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 6603 { 6604 struct ice_switch_info *sw = hw->switch_info; 6605 int status; 6606 u8 i; 6607 6608 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6609 struct list_head *head; 6610 6611 head = &sw->recp_list[i].filt_replay_rules; 6612 if (!sw->recp_list[i].adv_rule) 6613 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 6614 else 6615 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head); 6616 if (status) 6617 return status; 6618 } 6619 return status; 6620 } 6621 6622 /** 6623 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 6624 * @hw: pointer to the HW struct 6625 * 6626 * Deletes the filter replay rules. 6627 */ 6628 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 6629 { 6630 struct ice_switch_info *sw = hw->switch_info; 6631 u8 i; 6632 6633 if (!sw) 6634 return; 6635 6636 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6637 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 6638 struct list_head *l_head; 6639 6640 l_head = &sw->recp_list[i].filt_replay_rules; 6641 if (!sw->recp_list[i].adv_rule) 6642 ice_rem_sw_rule_info(hw, l_head); 6643 else 6644 ice_rem_adv_rule_info(hw, l_head); 6645 } 6646 } 6647 } 6648