1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + pf->vfs.num_msix_per - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & 110 GLINT_VECT2FUNC_IS_PF_M) | 111 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 112 GLINT_VECT2FUNC_PF_NUM_M)); 113 wr32(hw, GLINT_VECT2FUNC(v), reg); 114 } 115 116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 118 else 119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 120 121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 123 else 124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 125 } 126 127 /** 128 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 129 * @pf: pointer to the PF structure 130 * 131 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 132 * the pf->sriov_base_vector. 133 * 134 * Returns 0 on success, and -EINVAL on error. 135 */ 136 static int ice_sriov_free_msix_res(struct ice_pf *pf) 137 { 138 if (!pf) 139 return -EINVAL; 140 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 mutex_lock(&vfs->table_lock); 174 175 ice_eswitch_release(pf); 176 177 ice_for_each_vf(pf, bkt, vf) { 178 mutex_lock(&vf->cfg_lock); 179 180 ice_dis_vf_qs(vf); 181 182 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 183 /* disable VF qp mappings and set VF disable state */ 184 ice_dis_vf_mappings(vf); 185 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 186 ice_free_vf_res(vf); 187 } 188 189 if (!pci_vfs_assigned(pf->pdev)) { 190 u32 reg_idx, bit_idx; 191 192 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 193 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 194 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 195 } 196 197 /* clear malicious info since the VF is getting released */ 198 list_del(&vf->mbx_info.list_entry); 199 200 mutex_unlock(&vf->cfg_lock); 201 } 202 203 if (ice_sriov_free_msix_res(pf)) 204 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 205 206 vfs->num_qps_per = 0; 207 ice_free_vf_entries(pf); 208 209 mutex_unlock(&vfs->table_lock); 210 211 clear_bit(ICE_VF_DIS, pf->state); 212 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 213 } 214 215 /** 216 * ice_vf_vsi_setup - Set up a VF VSI 217 * @vf: VF to setup VSI for 218 * 219 * Returns pointer to the successfully allocated VSI struct on success, 220 * otherwise returns NULL on failure. 221 */ 222 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 223 { 224 struct ice_vsi_cfg_params params = {}; 225 struct ice_pf *pf = vf->pf; 226 struct ice_vsi *vsi; 227 228 params.type = ICE_VSI_VF; 229 params.pi = ice_vf_get_port_info(vf); 230 params.vf = vf; 231 params.flags = ICE_VSI_FLAG_INIT; 232 233 vsi = ice_vsi_setup(pf, ¶ms); 234 235 if (!vsi) { 236 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 237 ice_vf_invalidate_vsi(vf); 238 return NULL; 239 } 240 241 vf->lan_vsi_idx = vsi->idx; 242 vf->lan_vsi_num = vsi->vsi_num; 243 244 return vsi; 245 } 246 247 /** 248 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space 249 * @pf: pointer to PF structure 250 * @vf: pointer to VF that the first MSIX vector index is being calculated for 251 * 252 * This returns the first MSIX vector index in PF space that is used by this VF. 253 * This index is used when accessing PF relative registers such as 254 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 255 * This will always be the OICR index in the AVF driver so any functionality 256 * using vf->first_vector_idx for queue configuration will have to increment by 257 * 1 to avoid meddling with the OICR index. 258 */ 259 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) 260 { 261 return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per; 262 } 263 264 /** 265 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 266 * @vf: VF to enable MSIX mappings for 267 * 268 * Some of the registers need to be indexed/configured using hardware global 269 * device values and other registers need 0-based values, which represent PF 270 * based values. 271 */ 272 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 273 { 274 int device_based_first_msix, device_based_last_msix; 275 int pf_based_first_msix, pf_based_last_msix, v; 276 struct ice_pf *pf = vf->pf; 277 int device_based_vf_id; 278 struct ice_hw *hw; 279 u32 reg; 280 281 hw = &pf->hw; 282 pf_based_first_msix = vf->first_vector_idx; 283 pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1; 284 285 device_based_first_msix = pf_based_first_msix + 286 pf->hw.func_caps.common_cap.msix_vector_first_id; 287 device_based_last_msix = 288 (device_based_first_msix + pf->vfs.num_msix_per) - 1; 289 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 290 291 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & 292 VPINT_ALLOC_FIRST_M) | 293 ((device_based_last_msix << VPINT_ALLOC_LAST_S) & 294 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); 295 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 296 297 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) 298 & VPINT_ALLOC_PCI_FIRST_M) | 299 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & 300 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); 301 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 302 303 /* map the interrupts to its functions */ 304 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 305 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & 306 GLINT_VECT2FUNC_VF_NUM_M) | 307 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 308 GLINT_VECT2FUNC_PF_NUM_M)); 309 wr32(hw, GLINT_VECT2FUNC(v), reg); 310 } 311 312 /* Map mailbox interrupt to VF MSI-X vector 0 */ 313 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 314 } 315 316 /** 317 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 318 * @vf: VF to enable the mappings for 319 * @max_txq: max Tx queues allowed on the VF's VSI 320 * @max_rxq: max Rx queues allowed on the VF's VSI 321 */ 322 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 323 { 324 struct device *dev = ice_pf_to_dev(vf->pf); 325 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 326 struct ice_hw *hw = &vf->pf->hw; 327 u32 reg; 328 329 if (WARN_ON(!vsi)) 330 return; 331 332 /* set regardless of mapping mode */ 333 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 334 335 /* VF Tx queues allocation */ 336 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 337 /* set the VF PF Tx queue range 338 * VFNUMQ value should be set to (number of queues - 1). A value 339 * of 0 means 1 queue and a value of 255 means 256 queues 340 */ 341 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & 342 VPLAN_TX_QBASE_VFFIRSTQ_M) | 343 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & 344 VPLAN_TX_QBASE_VFNUMQ_M)); 345 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 346 } else { 347 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 348 } 349 350 /* set regardless of mapping mode */ 351 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 352 353 /* VF Rx queues allocation */ 354 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 355 /* set the VF PF Rx queue range 356 * VFNUMQ value should be set to (number of queues - 1). A value 357 * of 0 means 1 queue and a value of 255 means 256 queues 358 */ 359 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & 360 VPLAN_RX_QBASE_VFFIRSTQ_M) | 361 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & 362 VPLAN_RX_QBASE_VFNUMQ_M)); 363 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 364 } else { 365 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 366 } 367 } 368 369 /** 370 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 371 * @vf: pointer to the VF structure 372 */ 373 static void ice_ena_vf_mappings(struct ice_vf *vf) 374 { 375 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 376 377 if (WARN_ON(!vsi)) 378 return; 379 380 ice_ena_vf_msix_mappings(vf); 381 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 382 } 383 384 /** 385 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 386 * @vf: VF to calculate the register index for 387 * @q_vector: a q_vector associated to the VF 388 */ 389 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 390 { 391 struct ice_pf *pf; 392 393 if (!vf || !q_vector) 394 return -EINVAL; 395 396 pf = vf->pf; 397 398 /* always add one to account for the OICR being the first MSIX */ 399 return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id + 400 q_vector->v_idx + 1; 401 } 402 403 /** 404 * ice_sriov_set_msix_res - Set any used MSIX resources 405 * @pf: pointer to PF structure 406 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 407 * 408 * This function allows SR-IOV resources to be taken from the end of the PF's 409 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 410 * just set the pf->sriov_base_vector and return success. 411 * 412 * If there are not enough resources available, return an error. This should 413 * always be caught by ice_set_per_vf_res(). 414 * 415 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 416 * in the PF's space available for SR-IOV. 417 */ 418 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 419 { 420 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 421 int vectors_used = ice_get_max_used_msix_vector(pf); 422 int sriov_base_vector; 423 424 sriov_base_vector = total_vectors - num_msix_needed; 425 426 /* make sure we only grab irq_tracker entries from the list end and 427 * that we have enough available MSIX vectors 428 */ 429 if (sriov_base_vector < vectors_used) 430 return -EINVAL; 431 432 pf->sriov_base_vector = sriov_base_vector; 433 434 return 0; 435 } 436 437 /** 438 * ice_set_per_vf_res - check if vectors and queues are available 439 * @pf: pointer to the PF structure 440 * @num_vfs: the number of SR-IOV VFs being configured 441 * 442 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 443 * get more vectors and can enable more queues per VF. Note that this does not 444 * grab any vectors from the SW pool already allocated. Also note, that all 445 * vector counts include one for each VF's miscellaneous interrupt vector 446 * (i.e. OICR). 447 * 448 * Minimum VFs - 2 vectors, 1 queue pair 449 * Small VFs - 5 vectors, 4 queue pairs 450 * Medium VFs - 17 vectors, 16 queue pairs 451 * 452 * Second, determine number of queue pairs per VF by starting with a pre-defined 453 * maximum each VF supports. If this is not possible, then we adjust based on 454 * queue pairs available on the device. 455 * 456 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 457 * by each VF during VF initialization and reset. 458 */ 459 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 460 { 461 int vectors_used = ice_get_max_used_msix_vector(pf); 462 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 463 int msix_avail_per_vf, msix_avail_for_sriov; 464 struct device *dev = ice_pf_to_dev(pf); 465 int err; 466 467 lockdep_assert_held(&pf->vfs.table_lock); 468 469 if (!num_vfs) 470 return -EINVAL; 471 472 /* determine MSI-X resources per VF */ 473 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 474 vectors_used; 475 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 476 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 477 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 478 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 479 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 480 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 481 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 482 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 483 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 484 } else { 485 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 486 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 487 num_vfs); 488 return -ENOSPC; 489 } 490 491 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 492 ICE_MAX_RSS_QS_PER_VF); 493 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 494 if (!avail_qs) 495 num_txq = 0; 496 else if (num_txq > avail_qs) 497 num_txq = rounddown_pow_of_two(avail_qs); 498 499 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 500 ICE_MAX_RSS_QS_PER_VF); 501 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 502 if (!avail_qs) 503 num_rxq = 0; 504 else if (num_rxq > avail_qs) 505 num_rxq = rounddown_pow_of_two(avail_qs); 506 507 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 508 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 509 ICE_MIN_QS_PER_VF, num_vfs); 510 return -ENOSPC; 511 } 512 513 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 514 if (err) { 515 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 516 num_vfs, err); 517 return err; 518 } 519 520 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 521 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 522 pf->vfs.num_msix_per = num_msix_per_vf; 523 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 524 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 525 526 return 0; 527 } 528 529 /** 530 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 531 * @vf: VF to initialize/setup the VSI for 532 * 533 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 534 * VF VSI's broadcast filter and is only used during initial VF creation. 535 */ 536 static int ice_init_vf_vsi_res(struct ice_vf *vf) 537 { 538 struct ice_pf *pf = vf->pf; 539 struct ice_vsi *vsi; 540 int err; 541 542 vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); 543 544 vsi = ice_vf_vsi_setup(vf); 545 if (!vsi) 546 return -ENOMEM; 547 548 err = ice_vf_init_host_cfg(vf, vsi); 549 if (err) 550 goto release_vsi; 551 552 return 0; 553 554 release_vsi: 555 ice_vf_vsi_release(vf); 556 return err; 557 } 558 559 /** 560 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 561 * @pf: PF the VFs are associated with 562 */ 563 static int ice_start_vfs(struct ice_pf *pf) 564 { 565 struct ice_hw *hw = &pf->hw; 566 unsigned int bkt, it_cnt; 567 struct ice_vf *vf; 568 int retval; 569 570 lockdep_assert_held(&pf->vfs.table_lock); 571 572 it_cnt = 0; 573 ice_for_each_vf(pf, bkt, vf) { 574 vf->vf_ops->clear_reset_trigger(vf); 575 576 retval = ice_init_vf_vsi_res(vf); 577 if (retval) { 578 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 579 vf->vf_id, retval); 580 goto teardown; 581 } 582 583 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 584 ice_ena_vf_mappings(vf); 585 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 586 it_cnt++; 587 } 588 589 ice_flush(hw); 590 return 0; 591 592 teardown: 593 ice_for_each_vf(pf, bkt, vf) { 594 if (it_cnt == 0) 595 break; 596 597 ice_dis_vf_mappings(vf); 598 ice_vf_vsi_release(vf); 599 it_cnt--; 600 } 601 602 return retval; 603 } 604 605 /** 606 * ice_sriov_free_vf - Free VF memory after all references are dropped 607 * @vf: pointer to VF to free 608 * 609 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 610 * structure has been dropped. 611 */ 612 static void ice_sriov_free_vf(struct ice_vf *vf) 613 { 614 mutex_destroy(&vf->cfg_lock); 615 616 kfree_rcu(vf, rcu); 617 } 618 619 /** 620 * ice_sriov_clear_reset_state - clears VF Reset status register 621 * @vf: the vf to configure 622 */ 623 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 624 { 625 struct ice_hw *hw = &vf->pf->hw; 626 627 /* Clear the reset status register so that VF immediately sees that 628 * the device is resetting, even if hardware hasn't yet gotten around 629 * to clearing VFGEN_RSTAT for us. 630 */ 631 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 632 } 633 634 /** 635 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 636 * @vf: the vf to configure 637 */ 638 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 639 { 640 struct ice_pf *pf = vf->pf; 641 642 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 643 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 644 } 645 646 /** 647 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 648 * @vf: pointer to VF structure 649 * @is_vflr: true if reset occurred due to VFLR 650 * 651 * Trigger and cleanup after a VF reset for a SR-IOV VF. 652 */ 653 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 654 { 655 struct ice_pf *pf = vf->pf; 656 u32 reg, reg_idx, bit_idx; 657 unsigned int vf_abs_id, i; 658 struct device *dev; 659 struct ice_hw *hw; 660 661 dev = ice_pf_to_dev(pf); 662 hw = &pf->hw; 663 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 664 665 /* In the case of a VFLR, HW has already reset the VF and we just need 666 * to clean up. Otherwise we must first trigger the reset using the 667 * VFRTRIG register. 668 */ 669 if (!is_vflr) { 670 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 671 reg |= VPGEN_VFRTRIG_VFSWR_M; 672 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 673 } 674 675 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 676 reg_idx = (vf_abs_id) / 32; 677 bit_idx = (vf_abs_id) % 32; 678 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 679 ice_flush(hw); 680 681 wr32(hw, PF_PCI_CIAA, 682 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 683 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 684 reg = rd32(hw, PF_PCI_CIAD); 685 /* no transactions pending so stop polling */ 686 if ((reg & VF_TRANS_PENDING_M) == 0) 687 break; 688 689 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 690 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 691 } 692 } 693 694 /** 695 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 696 * @vf: pointer to VF structure 697 * 698 * Returns true when reset is successful, else returns false 699 */ 700 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 701 { 702 struct ice_pf *pf = vf->pf; 703 unsigned int i; 704 u32 reg; 705 706 for (i = 0; i < 10; i++) { 707 /* VF reset requires driver to first reset the VF and then 708 * poll the status register to make sure that the reset 709 * completed successfully. 710 */ 711 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 712 if (reg & VPGEN_VFRSTAT_VFRD_M) 713 return true; 714 715 /* only sleep if the reset is not done */ 716 usleep_range(10, 20); 717 } 718 return false; 719 } 720 721 /** 722 * ice_sriov_clear_reset_trigger - enable VF to access hardware 723 * @vf: VF to enabled hardware access for 724 */ 725 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 726 { 727 struct ice_hw *hw = &vf->pf->hw; 728 u32 reg; 729 730 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 731 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 732 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 733 ice_flush(hw); 734 } 735 736 /** 737 * ice_sriov_create_vsi - Create a new VSI for a VF 738 * @vf: VF to create the VSI for 739 * 740 * This is called by ice_vf_recreate_vsi to create the new VSI after the old 741 * VSI has been released. 742 */ 743 static int ice_sriov_create_vsi(struct ice_vf *vf) 744 { 745 struct ice_vsi *vsi; 746 747 vsi = ice_vf_vsi_setup(vf); 748 if (!vsi) 749 return -ENOMEM; 750 751 return 0; 752 } 753 754 /** 755 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 756 * @vf: VF to perform tasks on 757 */ 758 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 759 { 760 ice_ena_vf_mappings(vf); 761 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 762 } 763 764 static const struct ice_vf_ops ice_sriov_vf_ops = { 765 .reset_type = ICE_VF_RESET, 766 .free = ice_sriov_free_vf, 767 .clear_reset_state = ice_sriov_clear_reset_state, 768 .clear_mbx_register = ice_sriov_clear_mbx_register, 769 .trigger_reset_register = ice_sriov_trigger_reset_register, 770 .poll_reset_status = ice_sriov_poll_reset_status, 771 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 772 .irq_close = NULL, 773 .create_vsi = ice_sriov_create_vsi, 774 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 775 }; 776 777 /** 778 * ice_create_vf_entries - Allocate and insert VF entries 779 * @pf: pointer to the PF structure 780 * @num_vfs: the number of VFs to allocate 781 * 782 * Allocate new VF entries and insert them into the hash table. Set some 783 * basic default fields for initializing the new VFs. 784 * 785 * After this function exits, the hash table will have num_vfs entries 786 * inserted. 787 * 788 * Returns 0 on success or an integer error code on failure. 789 */ 790 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 791 { 792 struct ice_vfs *vfs = &pf->vfs; 793 struct ice_vf *vf; 794 u16 vf_id; 795 int err; 796 797 lockdep_assert_held(&vfs->table_lock); 798 799 for (vf_id = 0; vf_id < num_vfs; vf_id++) { 800 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 801 if (!vf) { 802 err = -ENOMEM; 803 goto err_free_entries; 804 } 805 kref_init(&vf->refcnt); 806 807 vf->pf = pf; 808 vf->vf_id = vf_id; 809 810 /* set sriov vf ops for VFs created during SRIOV flow */ 811 vf->vf_ops = &ice_sriov_vf_ops; 812 813 ice_initialize_vf_entry(vf); 814 815 vf->vf_sw_id = pf->first_sw; 816 817 hash_add_rcu(vfs->table, &vf->entry, vf_id); 818 } 819 820 return 0; 821 822 err_free_entries: 823 ice_free_vf_entries(pf); 824 return err; 825 } 826 827 /** 828 * ice_ena_vfs - enable VFs so they are ready to be used 829 * @pf: pointer to the PF structure 830 * @num_vfs: number of VFs to enable 831 */ 832 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 833 { 834 struct device *dev = ice_pf_to_dev(pf); 835 struct ice_hw *hw = &pf->hw; 836 int ret; 837 838 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 839 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 840 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 841 set_bit(ICE_OICR_INTR_DIS, pf->state); 842 ice_flush(hw); 843 844 ret = pci_enable_sriov(pf->pdev, num_vfs); 845 if (ret) 846 goto err_unroll_intr; 847 848 mutex_lock(&pf->vfs.table_lock); 849 850 ret = ice_set_per_vf_res(pf, num_vfs); 851 if (ret) { 852 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 853 num_vfs, ret); 854 goto err_unroll_sriov; 855 } 856 857 ret = ice_create_vf_entries(pf, num_vfs); 858 if (ret) { 859 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 860 num_vfs); 861 goto err_unroll_sriov; 862 } 863 864 ret = ice_start_vfs(pf); 865 if (ret) { 866 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 867 ret = -EAGAIN; 868 goto err_unroll_vf_entries; 869 } 870 871 clear_bit(ICE_VF_DIS, pf->state); 872 873 ret = ice_eswitch_configure(pf); 874 if (ret) { 875 dev_err(dev, "Failed to configure eswitch, err %d\n", ret); 876 goto err_unroll_sriov; 877 } 878 879 /* rearm global interrupts */ 880 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 881 ice_irq_dynamic_ena(hw, NULL, NULL); 882 883 mutex_unlock(&pf->vfs.table_lock); 884 885 return 0; 886 887 err_unroll_vf_entries: 888 ice_free_vf_entries(pf); 889 err_unroll_sriov: 890 mutex_unlock(&pf->vfs.table_lock); 891 pci_disable_sriov(pf->pdev); 892 err_unroll_intr: 893 /* rearm interrupts here */ 894 ice_irq_dynamic_ena(hw, NULL, NULL); 895 clear_bit(ICE_OICR_INTR_DIS, pf->state); 896 return ret; 897 } 898 899 /** 900 * ice_pci_sriov_ena - Enable or change number of VFs 901 * @pf: pointer to the PF structure 902 * @num_vfs: number of VFs to allocate 903 * 904 * Returns 0 on success and negative on failure 905 */ 906 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 907 { 908 int pre_existing_vfs = pci_num_vf(pf->pdev); 909 struct device *dev = ice_pf_to_dev(pf); 910 int err; 911 912 if (pre_existing_vfs && pre_existing_vfs != num_vfs) 913 ice_free_vfs(pf); 914 else if (pre_existing_vfs && pre_existing_vfs == num_vfs) 915 return 0; 916 917 if (num_vfs > pf->vfs.num_supported) { 918 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 919 num_vfs, pf->vfs.num_supported); 920 return -EOPNOTSUPP; 921 } 922 923 dev_info(dev, "Enabling %d VFs\n", num_vfs); 924 err = ice_ena_vfs(pf, num_vfs); 925 if (err) { 926 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 927 return err; 928 } 929 930 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 931 return 0; 932 } 933 934 /** 935 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 936 * @pf: PF to enabled SR-IOV on 937 */ 938 static int ice_check_sriov_allowed(struct ice_pf *pf) 939 { 940 struct device *dev = ice_pf_to_dev(pf); 941 942 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 943 dev_err(dev, "This device is not capable of SR-IOV\n"); 944 return -EOPNOTSUPP; 945 } 946 947 if (ice_is_safe_mode(pf)) { 948 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 949 return -EOPNOTSUPP; 950 } 951 952 if (!ice_pf_state_is_nominal(pf)) { 953 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 954 return -EBUSY; 955 } 956 957 return 0; 958 } 959 960 /** 961 * ice_sriov_configure - Enable or change number of VFs via sysfs 962 * @pdev: pointer to a pci_dev structure 963 * @num_vfs: number of VFs to allocate or 0 to free VFs 964 * 965 * This function is called when the user updates the number of VFs in sysfs. On 966 * success return whatever num_vfs was set to by the caller. Return negative on 967 * failure. 968 */ 969 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 970 { 971 struct ice_pf *pf = pci_get_drvdata(pdev); 972 struct device *dev = ice_pf_to_dev(pf); 973 int err; 974 975 err = ice_check_sriov_allowed(pf); 976 if (err) 977 return err; 978 979 if (!num_vfs) { 980 if (!pci_vfs_assigned(pdev)) { 981 ice_free_vfs(pf); 982 return 0; 983 } 984 985 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 986 return -EBUSY; 987 } 988 989 err = ice_pci_sriov_ena(pf, num_vfs); 990 if (err) 991 return err; 992 993 return num_vfs; 994 } 995 996 /** 997 * ice_process_vflr_event - Free VF resources via IRQ calls 998 * @pf: pointer to the PF structure 999 * 1000 * called from the VFLR IRQ handler to 1001 * free up VF resources and state variables 1002 */ 1003 void ice_process_vflr_event(struct ice_pf *pf) 1004 { 1005 struct ice_hw *hw = &pf->hw; 1006 struct ice_vf *vf; 1007 unsigned int bkt; 1008 u32 reg; 1009 1010 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1011 !ice_has_vfs(pf)) 1012 return; 1013 1014 mutex_lock(&pf->vfs.table_lock); 1015 ice_for_each_vf(pf, bkt, vf) { 1016 u32 reg_idx, bit_idx; 1017 1018 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1019 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1020 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1021 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1022 if (reg & BIT(bit_idx)) 1023 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1024 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1025 } 1026 mutex_unlock(&pf->vfs.table_lock); 1027 } 1028 1029 /** 1030 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1031 * @pf: PF used to index all VFs 1032 * @pfq: queue index relative to the PF's function space 1033 * 1034 * If no VF is found who owns the pfq then return NULL, otherwise return a 1035 * pointer to the VF who owns the pfq 1036 * 1037 * If this function returns non-NULL, it acquires a reference count of the VF 1038 * structure. The caller is responsible for calling ice_put_vf() to drop this 1039 * reference. 1040 */ 1041 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1042 { 1043 struct ice_vf *vf; 1044 unsigned int bkt; 1045 1046 rcu_read_lock(); 1047 ice_for_each_vf_rcu(pf, bkt, vf) { 1048 struct ice_vsi *vsi; 1049 u16 rxq_idx; 1050 1051 vsi = ice_get_vf_vsi(vf); 1052 if (!vsi) 1053 continue; 1054 1055 ice_for_each_rxq(vsi, rxq_idx) 1056 if (vsi->rxq_map[rxq_idx] == pfq) { 1057 struct ice_vf *found; 1058 1059 if (kref_get_unless_zero(&vf->refcnt)) 1060 found = vf; 1061 else 1062 found = NULL; 1063 rcu_read_unlock(); 1064 return found; 1065 } 1066 } 1067 rcu_read_unlock(); 1068 1069 return NULL; 1070 } 1071 1072 /** 1073 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1074 * @pf: PF used for conversion 1075 * @globalq: global queue index used to convert to PF space queue index 1076 */ 1077 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1078 { 1079 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1080 } 1081 1082 /** 1083 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1084 * @pf: PF that the LAN overflow event happened on 1085 * @event: structure holding the event information for the LAN overflow event 1086 * 1087 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1088 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1089 * reset on the offending VF. 1090 */ 1091 void 1092 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1093 { 1094 u32 gldcb_rtctq, queue; 1095 struct ice_vf *vf; 1096 1097 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1098 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1099 1100 /* event returns device global Rx queue number */ 1101 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> 1102 GLDCB_RTCTQ_RXQNUM_S; 1103 1104 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1105 if (!vf) 1106 return; 1107 1108 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1109 ice_put_vf(vf); 1110 } 1111 1112 /** 1113 * ice_set_vf_spoofchk 1114 * @netdev: network interface device structure 1115 * @vf_id: VF identifier 1116 * @ena: flag to enable or disable feature 1117 * 1118 * Enable or disable VF spoof checking 1119 */ 1120 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1121 { 1122 struct ice_netdev_priv *np = netdev_priv(netdev); 1123 struct ice_pf *pf = np->vsi->back; 1124 struct ice_vsi *vf_vsi; 1125 struct device *dev; 1126 struct ice_vf *vf; 1127 int ret; 1128 1129 dev = ice_pf_to_dev(pf); 1130 1131 vf = ice_get_vf_by_id(pf, vf_id); 1132 if (!vf) 1133 return -EINVAL; 1134 1135 ret = ice_check_vf_ready_for_reset(vf); 1136 if (ret) 1137 goto out_put_vf; 1138 1139 vf_vsi = ice_get_vf_vsi(vf); 1140 if (!vf_vsi) { 1141 netdev_err(netdev, "VSI %d for VF %d is null\n", 1142 vf->lan_vsi_idx, vf->vf_id); 1143 ret = -EINVAL; 1144 goto out_put_vf; 1145 } 1146 1147 if (vf_vsi->type != ICE_VSI_VF) { 1148 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1149 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1150 ret = -ENODEV; 1151 goto out_put_vf; 1152 } 1153 1154 if (ena == vf->spoofchk) { 1155 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1156 ret = 0; 1157 goto out_put_vf; 1158 } 1159 1160 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1161 if (ret) 1162 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1163 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1164 else 1165 vf->spoofchk = ena; 1166 1167 out_put_vf: 1168 ice_put_vf(vf); 1169 return ret; 1170 } 1171 1172 /** 1173 * ice_get_vf_cfg 1174 * @netdev: network interface device structure 1175 * @vf_id: VF identifier 1176 * @ivi: VF configuration structure 1177 * 1178 * return VF configuration 1179 */ 1180 int 1181 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1182 { 1183 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1184 struct ice_vf *vf; 1185 int ret; 1186 1187 vf = ice_get_vf_by_id(pf, vf_id); 1188 if (!vf) 1189 return -EINVAL; 1190 1191 ret = ice_check_vf_ready_for_cfg(vf); 1192 if (ret) 1193 goto out_put_vf; 1194 1195 ivi->vf = vf_id; 1196 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1197 1198 /* VF configuration for VLAN and applicable QoS */ 1199 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1200 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1201 if (ice_vf_is_port_vlan_ena(vf)) 1202 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1203 1204 ivi->trusted = vf->trusted; 1205 ivi->spoofchk = vf->spoofchk; 1206 if (!vf->link_forced) 1207 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1208 else if (vf->link_up) 1209 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1210 else 1211 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1212 ivi->max_tx_rate = vf->max_tx_rate; 1213 ivi->min_tx_rate = vf->min_tx_rate; 1214 1215 out_put_vf: 1216 ice_put_vf(vf); 1217 return ret; 1218 } 1219 1220 /** 1221 * ice_set_vf_mac 1222 * @netdev: network interface device structure 1223 * @vf_id: VF identifier 1224 * @mac: MAC address 1225 * 1226 * program VF MAC address 1227 */ 1228 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1229 { 1230 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1231 struct ice_vf *vf; 1232 int ret; 1233 1234 if (is_multicast_ether_addr(mac)) { 1235 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1236 return -EINVAL; 1237 } 1238 1239 vf = ice_get_vf_by_id(pf, vf_id); 1240 if (!vf) 1241 return -EINVAL; 1242 1243 /* nothing left to do, unicast MAC already set */ 1244 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1245 ether_addr_equal(vf->hw_lan_addr, mac)) { 1246 ret = 0; 1247 goto out_put_vf; 1248 } 1249 1250 ret = ice_check_vf_ready_for_reset(vf); 1251 if (ret) 1252 goto out_put_vf; 1253 1254 mutex_lock(&vf->cfg_lock); 1255 1256 /* VF is notified of its new MAC via the PF's response to the 1257 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1258 */ 1259 ether_addr_copy(vf->dev_lan_addr, mac); 1260 ether_addr_copy(vf->hw_lan_addr, mac); 1261 if (is_zero_ether_addr(mac)) { 1262 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1263 vf->pf_set_mac = false; 1264 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1265 vf->vf_id); 1266 } else { 1267 /* PF will add MAC rule for the VF */ 1268 vf->pf_set_mac = true; 1269 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1270 mac, vf_id); 1271 } 1272 1273 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1274 mutex_unlock(&vf->cfg_lock); 1275 1276 out_put_vf: 1277 ice_put_vf(vf); 1278 return ret; 1279 } 1280 1281 /** 1282 * ice_set_vf_trust 1283 * @netdev: network interface device structure 1284 * @vf_id: VF identifier 1285 * @trusted: Boolean value to enable/disable trusted VF 1286 * 1287 * Enable or disable a given VF as trusted 1288 */ 1289 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1290 { 1291 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1292 struct ice_vf *vf; 1293 int ret; 1294 1295 vf = ice_get_vf_by_id(pf, vf_id); 1296 if (!vf) 1297 return -EINVAL; 1298 1299 if (ice_is_eswitch_mode_switchdev(pf)) { 1300 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1301 return -EOPNOTSUPP; 1302 } 1303 1304 ret = ice_check_vf_ready_for_reset(vf); 1305 if (ret) 1306 goto out_put_vf; 1307 1308 /* Check if already trusted */ 1309 if (trusted == vf->trusted) { 1310 ret = 0; 1311 goto out_put_vf; 1312 } 1313 1314 mutex_lock(&vf->cfg_lock); 1315 1316 vf->trusted = trusted; 1317 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1318 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1319 vf_id, trusted ? "" : "un"); 1320 1321 mutex_unlock(&vf->cfg_lock); 1322 1323 out_put_vf: 1324 ice_put_vf(vf); 1325 return ret; 1326 } 1327 1328 /** 1329 * ice_set_vf_link_state 1330 * @netdev: network interface device structure 1331 * @vf_id: VF identifier 1332 * @link_state: required link state 1333 * 1334 * Set VF's link state, irrespective of physical link state status 1335 */ 1336 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1337 { 1338 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1339 struct ice_vf *vf; 1340 int ret; 1341 1342 vf = ice_get_vf_by_id(pf, vf_id); 1343 if (!vf) 1344 return -EINVAL; 1345 1346 ret = ice_check_vf_ready_for_cfg(vf); 1347 if (ret) 1348 goto out_put_vf; 1349 1350 switch (link_state) { 1351 case IFLA_VF_LINK_STATE_AUTO: 1352 vf->link_forced = false; 1353 break; 1354 case IFLA_VF_LINK_STATE_ENABLE: 1355 vf->link_forced = true; 1356 vf->link_up = true; 1357 break; 1358 case IFLA_VF_LINK_STATE_DISABLE: 1359 vf->link_forced = true; 1360 vf->link_up = false; 1361 break; 1362 default: 1363 ret = -EINVAL; 1364 goto out_put_vf; 1365 } 1366 1367 ice_vc_notify_vf_link_state(vf); 1368 1369 out_put_vf: 1370 ice_put_vf(vf); 1371 return ret; 1372 } 1373 1374 /** 1375 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1376 * @pf: PF associated with VFs 1377 */ 1378 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1379 { 1380 struct ice_vf *vf; 1381 unsigned int bkt; 1382 int rate = 0; 1383 1384 rcu_read_lock(); 1385 ice_for_each_vf_rcu(pf, bkt, vf) 1386 rate += vf->min_tx_rate; 1387 rcu_read_unlock(); 1388 1389 return rate; 1390 } 1391 1392 /** 1393 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1394 * @vf: VF trying to configure min_tx_rate 1395 * @min_tx_rate: min Tx rate in Mbps 1396 * 1397 * Check if the min_tx_rate being passed in will cause oversubscription of total 1398 * min_tx_rate based on the current link speed and all other VFs configured 1399 * min_tx_rate 1400 * 1401 * Return true if the passed min_tx_rate would cause oversubscription, else 1402 * return false 1403 */ 1404 static bool 1405 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1406 { 1407 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1408 int all_vfs_min_tx_rate; 1409 int link_speed_mbps; 1410 1411 if (WARN_ON(!vsi)) 1412 return false; 1413 1414 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1415 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1416 1417 /* this VF's previous rate is being overwritten */ 1418 all_vfs_min_tx_rate -= vf->min_tx_rate; 1419 1420 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1421 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1422 min_tx_rate, vf->vf_id, 1423 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1424 link_speed_mbps); 1425 return true; 1426 } 1427 1428 return false; 1429 } 1430 1431 /** 1432 * ice_set_vf_bw - set min/max VF bandwidth 1433 * @netdev: network interface device structure 1434 * @vf_id: VF identifier 1435 * @min_tx_rate: Minimum Tx rate in Mbps 1436 * @max_tx_rate: Maximum Tx rate in Mbps 1437 */ 1438 int 1439 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1440 int max_tx_rate) 1441 { 1442 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1443 struct ice_vsi *vsi; 1444 struct device *dev; 1445 struct ice_vf *vf; 1446 int ret; 1447 1448 dev = ice_pf_to_dev(pf); 1449 1450 vf = ice_get_vf_by_id(pf, vf_id); 1451 if (!vf) 1452 return -EINVAL; 1453 1454 ret = ice_check_vf_ready_for_cfg(vf); 1455 if (ret) 1456 goto out_put_vf; 1457 1458 vsi = ice_get_vf_vsi(vf); 1459 if (!vsi) { 1460 ret = -EINVAL; 1461 goto out_put_vf; 1462 } 1463 1464 if (min_tx_rate && ice_is_dcb_active(pf)) { 1465 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1466 ret = -EOPNOTSUPP; 1467 goto out_put_vf; 1468 } 1469 1470 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1471 ret = -EINVAL; 1472 goto out_put_vf; 1473 } 1474 1475 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1476 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1477 if (ret) { 1478 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1479 vf->vf_id); 1480 goto out_put_vf; 1481 } 1482 1483 vf->min_tx_rate = min_tx_rate; 1484 } 1485 1486 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1487 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1488 if (ret) { 1489 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1490 vf->vf_id); 1491 goto out_put_vf; 1492 } 1493 1494 vf->max_tx_rate = max_tx_rate; 1495 } 1496 1497 out_put_vf: 1498 ice_put_vf(vf); 1499 return ret; 1500 } 1501 1502 /** 1503 * ice_get_vf_stats - populate some stats for the VF 1504 * @netdev: the netdev of the PF 1505 * @vf_id: the host OS identifier (0-255) 1506 * @vf_stats: pointer to the OS memory to be initialized 1507 */ 1508 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1509 struct ifla_vf_stats *vf_stats) 1510 { 1511 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1512 struct ice_eth_stats *stats; 1513 struct ice_vsi *vsi; 1514 struct ice_vf *vf; 1515 int ret; 1516 1517 vf = ice_get_vf_by_id(pf, vf_id); 1518 if (!vf) 1519 return -EINVAL; 1520 1521 ret = ice_check_vf_ready_for_cfg(vf); 1522 if (ret) 1523 goto out_put_vf; 1524 1525 vsi = ice_get_vf_vsi(vf); 1526 if (!vsi) { 1527 ret = -EINVAL; 1528 goto out_put_vf; 1529 } 1530 1531 ice_update_eth_stats(vsi); 1532 stats = &vsi->eth_stats; 1533 1534 memset(vf_stats, 0, sizeof(*vf_stats)); 1535 1536 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1537 stats->rx_multicast; 1538 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1539 stats->tx_multicast; 1540 vf_stats->rx_bytes = stats->rx_bytes; 1541 vf_stats->tx_bytes = stats->tx_bytes; 1542 vf_stats->broadcast = stats->rx_broadcast; 1543 vf_stats->multicast = stats->rx_multicast; 1544 vf_stats->rx_dropped = stats->rx_discards; 1545 vf_stats->tx_dropped = stats->tx_discards; 1546 1547 out_put_vf: 1548 ice_put_vf(vf); 1549 return ret; 1550 } 1551 1552 /** 1553 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1554 * @hw: hardware structure used to check the VLAN mode 1555 * @vlan_proto: VLAN TPID being checked 1556 * 1557 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1558 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1559 * Mode (SVM), then only ETH_P_8021Q is supported. 1560 */ 1561 static bool 1562 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1563 { 1564 bool is_supported = false; 1565 1566 switch (vlan_proto) { 1567 case ETH_P_8021Q: 1568 is_supported = true; 1569 break; 1570 case ETH_P_8021AD: 1571 if (ice_is_dvm_ena(hw)) 1572 is_supported = true; 1573 break; 1574 } 1575 1576 return is_supported; 1577 } 1578 1579 /** 1580 * ice_set_vf_port_vlan 1581 * @netdev: network interface device structure 1582 * @vf_id: VF identifier 1583 * @vlan_id: VLAN ID being set 1584 * @qos: priority setting 1585 * @vlan_proto: VLAN protocol 1586 * 1587 * program VF Port VLAN ID and/or QoS 1588 */ 1589 int 1590 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1591 __be16 vlan_proto) 1592 { 1593 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1594 u16 local_vlan_proto = ntohs(vlan_proto); 1595 struct device *dev; 1596 struct ice_vf *vf; 1597 int ret; 1598 1599 dev = ice_pf_to_dev(pf); 1600 1601 if (vlan_id >= VLAN_N_VID || qos > 7) { 1602 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1603 vf_id, vlan_id, qos); 1604 return -EINVAL; 1605 } 1606 1607 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1608 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1609 local_vlan_proto); 1610 return -EPROTONOSUPPORT; 1611 } 1612 1613 vf = ice_get_vf_by_id(pf, vf_id); 1614 if (!vf) 1615 return -EINVAL; 1616 1617 ret = ice_check_vf_ready_for_reset(vf); 1618 if (ret) 1619 goto out_put_vf; 1620 1621 if (ice_vf_get_port_vlan_prio(vf) == qos && 1622 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1623 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1624 /* duplicate request, so just return success */ 1625 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1626 vlan_id, qos, local_vlan_proto); 1627 ret = 0; 1628 goto out_put_vf; 1629 } 1630 1631 mutex_lock(&vf->cfg_lock); 1632 1633 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1634 if (ice_vf_is_port_vlan_ena(vf)) 1635 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1636 vlan_id, qos, local_vlan_proto, vf_id); 1637 else 1638 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1639 1640 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1641 mutex_unlock(&vf->cfg_lock); 1642 1643 out_put_vf: 1644 ice_put_vf(vf); 1645 return ret; 1646 } 1647 1648 /** 1649 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1650 * @vf: pointer to the VF structure 1651 */ 1652 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1653 { 1654 struct ice_pf *pf = vf->pf; 1655 struct device *dev; 1656 1657 dev = ice_pf_to_dev(pf); 1658 1659 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1660 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1661 vf->dev_lan_addr, 1662 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1663 ? "on" : "off"); 1664 } 1665 1666 /** 1667 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1668 * @pf: pointer to the PF structure 1669 * 1670 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1671 */ 1672 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1673 { 1674 struct device *dev = ice_pf_to_dev(pf); 1675 struct ice_hw *hw = &pf->hw; 1676 struct ice_vf *vf; 1677 unsigned int bkt; 1678 1679 /* check that there are pending MDD events to print */ 1680 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1681 return; 1682 1683 /* VF MDD event logs are rate limited to one second intervals */ 1684 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1685 return; 1686 1687 pf->vfs.last_printed_mdd_jiffies = jiffies; 1688 1689 mutex_lock(&pf->vfs.table_lock); 1690 ice_for_each_vf(pf, bkt, vf) { 1691 /* only print Rx MDD event message if there are new events */ 1692 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1693 vf->mdd_rx_events.last_printed = 1694 vf->mdd_rx_events.count; 1695 ice_print_vf_rx_mdd_event(vf); 1696 } 1697 1698 /* only print Tx MDD event message if there are new events */ 1699 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1700 vf->mdd_tx_events.last_printed = 1701 vf->mdd_tx_events.count; 1702 1703 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1704 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1705 vf->dev_lan_addr); 1706 } 1707 } 1708 mutex_unlock(&pf->vfs.table_lock); 1709 } 1710 1711 /** 1712 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1713 * @pdev: pointer to a pci_dev structure 1714 * 1715 * Called when recovering from a PF FLR to restore interrupt capability to 1716 * the VFs. 1717 */ 1718 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev) 1719 { 1720 u16 vf_id; 1721 int pos; 1722 1723 if (!pci_num_vf(pdev)) 1724 return; 1725 1726 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 1727 if (pos) { 1728 struct pci_dev *vfdev; 1729 1730 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, 1731 &vf_id); 1732 vfdev = pci_get_device(pdev->vendor, vf_id, NULL); 1733 while (vfdev) { 1734 if (vfdev->is_virtfn && vfdev->physfn == pdev) 1735 pci_restore_msi_state(vfdev); 1736 vfdev = pci_get_device(pdev->vendor, vf_id, 1737 vfdev); 1738 } 1739 } 1740 } 1741