1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_free_vf_res - Free a VF's resources
45  * @vf: pointer to the VF info
46  */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 	struct ice_pf *pf = vf->pf;
50 	int i, last_vector_idx;
51 
52 	/* First, disable VF's configuration API to prevent OS from
53 	 * accessing the VF's VSI after it's freed or invalidated.
54 	 */
55 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 	ice_vf_fdir_exit(vf);
57 	/* free VF control VSI */
58 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 		ice_vf_ctrl_vsi_release(vf);
60 
61 	/* free VSI and disconnect it from the parent uplink */
62 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 		ice_vf_vsi_release(vf);
64 		vf->num_mac = 0;
65 	}
66 
67 	last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
68 
69 	/* clear VF MDD event information */
70 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72 
73 	/* Disable interrupts so that VF starts in a known state */
74 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 		ice_flush(&pf->hw);
77 	}
78 	/* reset some of the state variables keeping track of the resources */
79 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82 
83 /**
84  * ice_dis_vf_mappings
85  * @vf: pointer to the VF structure
86  */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 	struct ice_pf *pf = vf->pf;
90 	struct ice_vsi *vsi;
91 	struct device *dev;
92 	int first, last, v;
93 	struct ice_hw *hw;
94 
95 	hw = &pf->hw;
96 	vsi = ice_get_vf_vsi(vf);
97 	if (WARN_ON(!vsi))
98 		return;
99 
100 	dev = ice_pf_to_dev(pf);
101 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103 
104 	first = vf->first_vector_idx;
105 	last = first + pf->vfs.num_msix_per - 1;
106 	for (v = first; v <= last; v++) {
107 		u32 reg;
108 
109 		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
110 			GLINT_VECT2FUNC_IS_PF_M) |
111 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
112 			GLINT_VECT2FUNC_PF_NUM_M));
113 		wr32(hw, GLINT_VECT2FUNC(v), reg);
114 	}
115 
116 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
118 	else
119 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
120 
121 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
123 	else
124 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
125 }
126 
127 /**
128  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
129  * @pf: pointer to the PF structure
130  *
131  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
132  * the pf->sriov_base_vector.
133  *
134  * Returns 0 on success, and -EINVAL on error.
135  */
136 static int ice_sriov_free_msix_res(struct ice_pf *pf)
137 {
138 	if (!pf)
139 		return -EINVAL;
140 
141 	pf->sriov_base_vector = 0;
142 
143 	return 0;
144 }
145 
146 /**
147  * ice_free_vfs - Free all VFs
148  * @pf: pointer to the PF structure
149  */
150 void ice_free_vfs(struct ice_pf *pf)
151 {
152 	struct device *dev = ice_pf_to_dev(pf);
153 	struct ice_vfs *vfs = &pf->vfs;
154 	struct ice_hw *hw = &pf->hw;
155 	struct ice_vf *vf;
156 	unsigned int bkt;
157 
158 	if (!ice_has_vfs(pf))
159 		return;
160 
161 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
162 		usleep_range(1000, 2000);
163 
164 	/* Disable IOV before freeing resources. This lets any VF drivers
165 	 * running in the host get themselves cleaned up before we yank
166 	 * the carpet out from underneath their feet.
167 	 */
168 	if (!pci_vfs_assigned(pf->pdev))
169 		pci_disable_sriov(pf->pdev);
170 	else
171 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
172 
173 	mutex_lock(&vfs->table_lock);
174 
175 	ice_eswitch_release(pf);
176 
177 	ice_for_each_vf(pf, bkt, vf) {
178 		mutex_lock(&vf->cfg_lock);
179 
180 		ice_dis_vf_qs(vf);
181 
182 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
183 			/* disable VF qp mappings and set VF disable state */
184 			ice_dis_vf_mappings(vf);
185 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
186 			ice_free_vf_res(vf);
187 		}
188 
189 		if (!pci_vfs_assigned(pf->pdev)) {
190 			u32 reg_idx, bit_idx;
191 
192 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
193 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
194 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
195 		}
196 
197 		/* clear malicious info since the VF is getting released */
198 		list_del(&vf->mbx_info.list_entry);
199 
200 		mutex_unlock(&vf->cfg_lock);
201 	}
202 
203 	if (ice_sriov_free_msix_res(pf))
204 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
205 
206 	vfs->num_qps_per = 0;
207 	ice_free_vf_entries(pf);
208 
209 	mutex_unlock(&vfs->table_lock);
210 
211 	clear_bit(ICE_VF_DIS, pf->state);
212 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
213 }
214 
215 /**
216  * ice_vf_vsi_setup - Set up a VF VSI
217  * @vf: VF to setup VSI for
218  *
219  * Returns pointer to the successfully allocated VSI struct on success,
220  * otherwise returns NULL on failure.
221  */
222 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
223 {
224 	struct ice_vsi_cfg_params params = {};
225 	struct ice_pf *pf = vf->pf;
226 	struct ice_vsi *vsi;
227 
228 	params.type = ICE_VSI_VF;
229 	params.pi = ice_vf_get_port_info(vf);
230 	params.vf = vf;
231 	params.flags = ICE_VSI_FLAG_INIT;
232 
233 	vsi = ice_vsi_setup(pf, &params);
234 
235 	if (!vsi) {
236 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
237 		ice_vf_invalidate_vsi(vf);
238 		return NULL;
239 	}
240 
241 	vf->lan_vsi_idx = vsi->idx;
242 	vf->lan_vsi_num = vsi->vsi_num;
243 
244 	return vsi;
245 }
246 
247 /**
248  * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
249  * @pf: pointer to PF structure
250  * @vf: pointer to VF that the first MSIX vector index is being calculated for
251  *
252  * This returns the first MSIX vector index in PF space that is used by this VF.
253  * This index is used when accessing PF relative registers such as
254  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
255  * This will always be the OICR index in the AVF driver so any functionality
256  * using vf->first_vector_idx for queue configuration will have to increment by
257  * 1 to avoid meddling with the OICR index.
258  */
259 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
260 {
261 	return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
262 }
263 
264 /**
265  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
266  * @vf: VF to enable MSIX mappings for
267  *
268  * Some of the registers need to be indexed/configured using hardware global
269  * device values and other registers need 0-based values, which represent PF
270  * based values.
271  */
272 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
273 {
274 	int device_based_first_msix, device_based_last_msix;
275 	int pf_based_first_msix, pf_based_last_msix, v;
276 	struct ice_pf *pf = vf->pf;
277 	int device_based_vf_id;
278 	struct ice_hw *hw;
279 	u32 reg;
280 
281 	hw = &pf->hw;
282 	pf_based_first_msix = vf->first_vector_idx;
283 	pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
284 
285 	device_based_first_msix = pf_based_first_msix +
286 		pf->hw.func_caps.common_cap.msix_vector_first_id;
287 	device_based_last_msix =
288 		(device_based_first_msix + pf->vfs.num_msix_per) - 1;
289 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
290 
291 	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
292 		VPINT_ALLOC_FIRST_M) |
293 	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
294 		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
295 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
296 
297 	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
298 		 & VPINT_ALLOC_PCI_FIRST_M) |
299 	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
300 		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
301 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
302 
303 	/* map the interrupts to its functions */
304 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
305 		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
306 			GLINT_VECT2FUNC_VF_NUM_M) |
307 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
308 			GLINT_VECT2FUNC_PF_NUM_M));
309 		wr32(hw, GLINT_VECT2FUNC(v), reg);
310 	}
311 
312 	/* Map mailbox interrupt to VF MSI-X vector 0 */
313 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
314 }
315 
316 /**
317  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
318  * @vf: VF to enable the mappings for
319  * @max_txq: max Tx queues allowed on the VF's VSI
320  * @max_rxq: max Rx queues allowed on the VF's VSI
321  */
322 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
323 {
324 	struct device *dev = ice_pf_to_dev(vf->pf);
325 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
326 	struct ice_hw *hw = &vf->pf->hw;
327 	u32 reg;
328 
329 	if (WARN_ON(!vsi))
330 		return;
331 
332 	/* set regardless of mapping mode */
333 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
334 
335 	/* VF Tx queues allocation */
336 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
337 		/* set the VF PF Tx queue range
338 		 * VFNUMQ value should be set to (number of queues - 1). A value
339 		 * of 0 means 1 queue and a value of 255 means 256 queues
340 		 */
341 		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
342 			VPLAN_TX_QBASE_VFFIRSTQ_M) |
343 		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
344 			VPLAN_TX_QBASE_VFNUMQ_M));
345 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
346 	} else {
347 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
348 	}
349 
350 	/* set regardless of mapping mode */
351 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
352 
353 	/* VF Rx queues allocation */
354 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
355 		/* set the VF PF Rx queue range
356 		 * VFNUMQ value should be set to (number of queues - 1). A value
357 		 * of 0 means 1 queue and a value of 255 means 256 queues
358 		 */
359 		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
360 			VPLAN_RX_QBASE_VFFIRSTQ_M) |
361 		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
362 			VPLAN_RX_QBASE_VFNUMQ_M));
363 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
364 	} else {
365 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
366 	}
367 }
368 
369 /**
370  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
371  * @vf: pointer to the VF structure
372  */
373 static void ice_ena_vf_mappings(struct ice_vf *vf)
374 {
375 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
376 
377 	if (WARN_ON(!vsi))
378 		return;
379 
380 	ice_ena_vf_msix_mappings(vf);
381 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
382 }
383 
384 /**
385  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
386  * @vf: VF to calculate the register index for
387  * @q_vector: a q_vector associated to the VF
388  */
389 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
390 {
391 	struct ice_pf *pf;
392 
393 	if (!vf || !q_vector)
394 		return -EINVAL;
395 
396 	pf = vf->pf;
397 
398 	/* always add one to account for the OICR being the first MSIX */
399 	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
400 		q_vector->v_idx + 1;
401 }
402 
403 /**
404  * ice_sriov_set_msix_res - Set any used MSIX resources
405  * @pf: pointer to PF structure
406  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
407  *
408  * This function allows SR-IOV resources to be taken from the end of the PF's
409  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
410  * just set the pf->sriov_base_vector and return success.
411  *
412  * If there are not enough resources available, return an error. This should
413  * always be caught by ice_set_per_vf_res().
414  *
415  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
416  * in the PF's space available for SR-IOV.
417  */
418 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
419 {
420 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
421 	int vectors_used = pf->irq_tracker.num_entries;
422 	int sriov_base_vector;
423 
424 	sriov_base_vector = total_vectors - num_msix_needed;
425 
426 	/* make sure we only grab irq_tracker entries from the list end and
427 	 * that we have enough available MSIX vectors
428 	 */
429 	if (sriov_base_vector < vectors_used)
430 		return -EINVAL;
431 
432 	pf->sriov_base_vector = sriov_base_vector;
433 
434 	return 0;
435 }
436 
437 /**
438  * ice_set_per_vf_res - check if vectors and queues are available
439  * @pf: pointer to the PF structure
440  * @num_vfs: the number of SR-IOV VFs being configured
441  *
442  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
443  * get more vectors and can enable more queues per VF. Note that this does not
444  * grab any vectors from the SW pool already allocated. Also note, that all
445  * vector counts include one for each VF's miscellaneous interrupt vector
446  * (i.e. OICR).
447  *
448  * Minimum VFs - 2 vectors, 1 queue pair
449  * Small VFs - 5 vectors, 4 queue pairs
450  * Medium VFs - 17 vectors, 16 queue pairs
451  *
452  * Second, determine number of queue pairs per VF by starting with a pre-defined
453  * maximum each VF supports. If this is not possible, then we adjust based on
454  * queue pairs available on the device.
455  *
456  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
457  * by each VF during VF initialization and reset.
458  */
459 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
460 {
461 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
462 	int msix_avail_per_vf, msix_avail_for_sriov;
463 	struct device *dev = ice_pf_to_dev(pf);
464 	int err;
465 
466 	lockdep_assert_held(&pf->vfs.table_lock);
467 
468 	if (!num_vfs)
469 		return -EINVAL;
470 
471 	/* determine MSI-X resources per VF */
472 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
473 		pf->irq_tracker.num_entries;
474 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
475 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
476 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
477 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
478 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
479 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
480 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
481 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
482 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
483 	} else {
484 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
485 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
486 			num_vfs);
487 		return -ENOSPC;
488 	}
489 
490 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
491 			ICE_MAX_RSS_QS_PER_VF);
492 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
493 	if (!avail_qs)
494 		num_txq = 0;
495 	else if (num_txq > avail_qs)
496 		num_txq = rounddown_pow_of_two(avail_qs);
497 
498 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
499 			ICE_MAX_RSS_QS_PER_VF);
500 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
501 	if (!avail_qs)
502 		num_rxq = 0;
503 	else if (num_rxq > avail_qs)
504 		num_rxq = rounddown_pow_of_two(avail_qs);
505 
506 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
507 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
508 			ICE_MIN_QS_PER_VF, num_vfs);
509 		return -ENOSPC;
510 	}
511 
512 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
513 	if (err) {
514 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
515 			num_vfs, err);
516 		return err;
517 	}
518 
519 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
520 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
521 	pf->vfs.num_msix_per = num_msix_per_vf;
522 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
523 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
524 
525 	return 0;
526 }
527 
528 /**
529  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
530  * @vf: VF to initialize/setup the VSI for
531  *
532  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
533  * VF VSI's broadcast filter and is only used during initial VF creation.
534  */
535 static int ice_init_vf_vsi_res(struct ice_vf *vf)
536 {
537 	struct ice_pf *pf = vf->pf;
538 	struct ice_vsi *vsi;
539 	int err;
540 
541 	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
542 
543 	vsi = ice_vf_vsi_setup(vf);
544 	if (!vsi)
545 		return -ENOMEM;
546 
547 	err = ice_vf_init_host_cfg(vf, vsi);
548 	if (err)
549 		goto release_vsi;
550 
551 	return 0;
552 
553 release_vsi:
554 	ice_vf_vsi_release(vf);
555 	return err;
556 }
557 
558 /**
559  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
560  * @pf: PF the VFs are associated with
561  */
562 static int ice_start_vfs(struct ice_pf *pf)
563 {
564 	struct ice_hw *hw = &pf->hw;
565 	unsigned int bkt, it_cnt;
566 	struct ice_vf *vf;
567 	int retval;
568 
569 	lockdep_assert_held(&pf->vfs.table_lock);
570 
571 	it_cnt = 0;
572 	ice_for_each_vf(pf, bkt, vf) {
573 		vf->vf_ops->clear_reset_trigger(vf);
574 
575 		retval = ice_init_vf_vsi_res(vf);
576 		if (retval) {
577 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
578 				vf->vf_id, retval);
579 			goto teardown;
580 		}
581 
582 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
583 		ice_ena_vf_mappings(vf);
584 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
585 		it_cnt++;
586 	}
587 
588 	ice_flush(hw);
589 	return 0;
590 
591 teardown:
592 	ice_for_each_vf(pf, bkt, vf) {
593 		if (it_cnt == 0)
594 			break;
595 
596 		ice_dis_vf_mappings(vf);
597 		ice_vf_vsi_release(vf);
598 		it_cnt--;
599 	}
600 
601 	return retval;
602 }
603 
604 /**
605  * ice_sriov_free_vf - Free VF memory after all references are dropped
606  * @vf: pointer to VF to free
607  *
608  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
609  * structure has been dropped.
610  */
611 static void ice_sriov_free_vf(struct ice_vf *vf)
612 {
613 	mutex_destroy(&vf->cfg_lock);
614 
615 	kfree_rcu(vf, rcu);
616 }
617 
618 /**
619  * ice_sriov_clear_reset_state - clears VF Reset status register
620  * @vf: the vf to configure
621  */
622 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
623 {
624 	struct ice_hw *hw = &vf->pf->hw;
625 
626 	/* Clear the reset status register so that VF immediately sees that
627 	 * the device is resetting, even if hardware hasn't yet gotten around
628 	 * to clearing VFGEN_RSTAT for us.
629 	 */
630 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
631 }
632 
633 /**
634  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
635  * @vf: the vf to configure
636  */
637 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
638 {
639 	struct ice_pf *pf = vf->pf;
640 
641 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
642 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
643 }
644 
645 /**
646  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
647  * @vf: pointer to VF structure
648  * @is_vflr: true if reset occurred due to VFLR
649  *
650  * Trigger and cleanup after a VF reset for a SR-IOV VF.
651  */
652 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
653 {
654 	struct ice_pf *pf = vf->pf;
655 	u32 reg, reg_idx, bit_idx;
656 	unsigned int vf_abs_id, i;
657 	struct device *dev;
658 	struct ice_hw *hw;
659 
660 	dev = ice_pf_to_dev(pf);
661 	hw = &pf->hw;
662 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
663 
664 	/* In the case of a VFLR, HW has already reset the VF and we just need
665 	 * to clean up. Otherwise we must first trigger the reset using the
666 	 * VFRTRIG register.
667 	 */
668 	if (!is_vflr) {
669 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
670 		reg |= VPGEN_VFRTRIG_VFSWR_M;
671 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
672 	}
673 
674 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
675 	reg_idx = (vf_abs_id) / 32;
676 	bit_idx = (vf_abs_id) % 32;
677 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
678 	ice_flush(hw);
679 
680 	wr32(hw, PF_PCI_CIAA,
681 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
682 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
683 		reg = rd32(hw, PF_PCI_CIAD);
684 		/* no transactions pending so stop polling */
685 		if ((reg & VF_TRANS_PENDING_M) == 0)
686 			break;
687 
688 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
689 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
690 	}
691 }
692 
693 /**
694  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
695  * @vf: pointer to VF structure
696  *
697  * Returns true when reset is successful, else returns false
698  */
699 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
700 {
701 	struct ice_pf *pf = vf->pf;
702 	unsigned int i;
703 	u32 reg;
704 
705 	for (i = 0; i < 10; i++) {
706 		/* VF reset requires driver to first reset the VF and then
707 		 * poll the status register to make sure that the reset
708 		 * completed successfully.
709 		 */
710 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
711 		if (reg & VPGEN_VFRSTAT_VFRD_M)
712 			return true;
713 
714 		/* only sleep if the reset is not done */
715 		usleep_range(10, 20);
716 	}
717 	return false;
718 }
719 
720 /**
721  * ice_sriov_clear_reset_trigger - enable VF to access hardware
722  * @vf: VF to enabled hardware access for
723  */
724 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
725 {
726 	struct ice_hw *hw = &vf->pf->hw;
727 	u32 reg;
728 
729 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
730 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
731 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
732 	ice_flush(hw);
733 }
734 
735 /**
736  * ice_sriov_create_vsi - Create a new VSI for a VF
737  * @vf: VF to create the VSI for
738  *
739  * This is called by ice_vf_recreate_vsi to create the new VSI after the old
740  * VSI has been released.
741  */
742 static int ice_sriov_create_vsi(struct ice_vf *vf)
743 {
744 	struct ice_vsi *vsi;
745 
746 	vsi = ice_vf_vsi_setup(vf);
747 	if (!vsi)
748 		return -ENOMEM;
749 
750 	return 0;
751 }
752 
753 /**
754  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
755  * @vf: VF to perform tasks on
756  */
757 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
758 {
759 	ice_ena_vf_mappings(vf);
760 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
761 }
762 
763 static const struct ice_vf_ops ice_sriov_vf_ops = {
764 	.reset_type = ICE_VF_RESET,
765 	.free = ice_sriov_free_vf,
766 	.clear_reset_state = ice_sriov_clear_reset_state,
767 	.clear_mbx_register = ice_sriov_clear_mbx_register,
768 	.trigger_reset_register = ice_sriov_trigger_reset_register,
769 	.poll_reset_status = ice_sriov_poll_reset_status,
770 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
771 	.irq_close = NULL,
772 	.create_vsi = ice_sriov_create_vsi,
773 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
774 };
775 
776 /**
777  * ice_create_vf_entries - Allocate and insert VF entries
778  * @pf: pointer to the PF structure
779  * @num_vfs: the number of VFs to allocate
780  *
781  * Allocate new VF entries and insert them into the hash table. Set some
782  * basic default fields for initializing the new VFs.
783  *
784  * After this function exits, the hash table will have num_vfs entries
785  * inserted.
786  *
787  * Returns 0 on success or an integer error code on failure.
788  */
789 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
790 {
791 	struct ice_vfs *vfs = &pf->vfs;
792 	struct ice_vf *vf;
793 	u16 vf_id;
794 	int err;
795 
796 	lockdep_assert_held(&vfs->table_lock);
797 
798 	for (vf_id = 0; vf_id < num_vfs; vf_id++) {
799 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
800 		if (!vf) {
801 			err = -ENOMEM;
802 			goto err_free_entries;
803 		}
804 		kref_init(&vf->refcnt);
805 
806 		vf->pf = pf;
807 		vf->vf_id = vf_id;
808 
809 		/* set sriov vf ops for VFs created during SRIOV flow */
810 		vf->vf_ops = &ice_sriov_vf_ops;
811 
812 		ice_initialize_vf_entry(vf);
813 
814 		vf->vf_sw_id = pf->first_sw;
815 
816 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
817 	}
818 
819 	return 0;
820 
821 err_free_entries:
822 	ice_free_vf_entries(pf);
823 	return err;
824 }
825 
826 /**
827  * ice_ena_vfs - enable VFs so they are ready to be used
828  * @pf: pointer to the PF structure
829  * @num_vfs: number of VFs to enable
830  */
831 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
832 {
833 	struct device *dev = ice_pf_to_dev(pf);
834 	struct ice_hw *hw = &pf->hw;
835 	int ret;
836 
837 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
838 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
839 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
840 	set_bit(ICE_OICR_INTR_DIS, pf->state);
841 	ice_flush(hw);
842 
843 	ret = pci_enable_sriov(pf->pdev, num_vfs);
844 	if (ret)
845 		goto err_unroll_intr;
846 
847 	mutex_lock(&pf->vfs.table_lock);
848 
849 	ret = ice_set_per_vf_res(pf, num_vfs);
850 	if (ret) {
851 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
852 			num_vfs, ret);
853 		goto err_unroll_sriov;
854 	}
855 
856 	ret = ice_create_vf_entries(pf, num_vfs);
857 	if (ret) {
858 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
859 			num_vfs);
860 		goto err_unroll_sriov;
861 	}
862 
863 	ret = ice_start_vfs(pf);
864 	if (ret) {
865 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
866 		ret = -EAGAIN;
867 		goto err_unroll_vf_entries;
868 	}
869 
870 	clear_bit(ICE_VF_DIS, pf->state);
871 
872 	ret = ice_eswitch_configure(pf);
873 	if (ret) {
874 		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
875 		goto err_unroll_sriov;
876 	}
877 
878 	/* rearm global interrupts */
879 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
880 		ice_irq_dynamic_ena(hw, NULL, NULL);
881 
882 	mutex_unlock(&pf->vfs.table_lock);
883 
884 	return 0;
885 
886 err_unroll_vf_entries:
887 	ice_free_vf_entries(pf);
888 err_unroll_sriov:
889 	mutex_unlock(&pf->vfs.table_lock);
890 	pci_disable_sriov(pf->pdev);
891 err_unroll_intr:
892 	/* rearm interrupts here */
893 	ice_irq_dynamic_ena(hw, NULL, NULL);
894 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
895 	return ret;
896 }
897 
898 /**
899  * ice_pci_sriov_ena - Enable or change number of VFs
900  * @pf: pointer to the PF structure
901  * @num_vfs: number of VFs to allocate
902  *
903  * Returns 0 on success and negative on failure
904  */
905 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
906 {
907 	int pre_existing_vfs = pci_num_vf(pf->pdev);
908 	struct device *dev = ice_pf_to_dev(pf);
909 	int err;
910 
911 	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
912 		ice_free_vfs(pf);
913 	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
914 		return 0;
915 
916 	if (num_vfs > pf->vfs.num_supported) {
917 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
918 			num_vfs, pf->vfs.num_supported);
919 		return -EOPNOTSUPP;
920 	}
921 
922 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
923 	err = ice_ena_vfs(pf, num_vfs);
924 	if (err) {
925 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
926 		return err;
927 	}
928 
929 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
930 	return 0;
931 }
932 
933 /**
934  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
935  * @pf: PF to enabled SR-IOV on
936  */
937 static int ice_check_sriov_allowed(struct ice_pf *pf)
938 {
939 	struct device *dev = ice_pf_to_dev(pf);
940 
941 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
942 		dev_err(dev, "This device is not capable of SR-IOV\n");
943 		return -EOPNOTSUPP;
944 	}
945 
946 	if (ice_is_safe_mode(pf)) {
947 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
948 		return -EOPNOTSUPP;
949 	}
950 
951 	if (!ice_pf_state_is_nominal(pf)) {
952 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
953 		return -EBUSY;
954 	}
955 
956 	return 0;
957 }
958 
959 /**
960  * ice_sriov_configure - Enable or change number of VFs via sysfs
961  * @pdev: pointer to a pci_dev structure
962  * @num_vfs: number of VFs to allocate or 0 to free VFs
963  *
964  * This function is called when the user updates the number of VFs in sysfs. On
965  * success return whatever num_vfs was set to by the caller. Return negative on
966  * failure.
967  */
968 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
969 {
970 	struct ice_pf *pf = pci_get_drvdata(pdev);
971 	struct device *dev = ice_pf_to_dev(pf);
972 	int err;
973 
974 	err = ice_check_sriov_allowed(pf);
975 	if (err)
976 		return err;
977 
978 	if (!num_vfs) {
979 		if (!pci_vfs_assigned(pdev)) {
980 			ice_free_vfs(pf);
981 			if (pf->lag)
982 				ice_enable_lag(pf->lag);
983 			return 0;
984 		}
985 
986 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
987 		return -EBUSY;
988 	}
989 
990 	err = ice_pci_sriov_ena(pf, num_vfs);
991 	if (err)
992 		return err;
993 
994 	if (pf->lag)
995 		ice_disable_lag(pf->lag);
996 	return num_vfs;
997 }
998 
999 /**
1000  * ice_process_vflr_event - Free VF resources via IRQ calls
1001  * @pf: pointer to the PF structure
1002  *
1003  * called from the VFLR IRQ handler to
1004  * free up VF resources and state variables
1005  */
1006 void ice_process_vflr_event(struct ice_pf *pf)
1007 {
1008 	struct ice_hw *hw = &pf->hw;
1009 	struct ice_vf *vf;
1010 	unsigned int bkt;
1011 	u32 reg;
1012 
1013 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1014 	    !ice_has_vfs(pf))
1015 		return;
1016 
1017 	mutex_lock(&pf->vfs.table_lock);
1018 	ice_for_each_vf(pf, bkt, vf) {
1019 		u32 reg_idx, bit_idx;
1020 
1021 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1022 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1023 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1024 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1025 		if (reg & BIT(bit_idx))
1026 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1027 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1028 	}
1029 	mutex_unlock(&pf->vfs.table_lock);
1030 }
1031 
1032 /**
1033  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1034  * @pf: PF used to index all VFs
1035  * @pfq: queue index relative to the PF's function space
1036  *
1037  * If no VF is found who owns the pfq then return NULL, otherwise return a
1038  * pointer to the VF who owns the pfq
1039  *
1040  * If this function returns non-NULL, it acquires a reference count of the VF
1041  * structure. The caller is responsible for calling ice_put_vf() to drop this
1042  * reference.
1043  */
1044 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1045 {
1046 	struct ice_vf *vf;
1047 	unsigned int bkt;
1048 
1049 	rcu_read_lock();
1050 	ice_for_each_vf_rcu(pf, bkt, vf) {
1051 		struct ice_vsi *vsi;
1052 		u16 rxq_idx;
1053 
1054 		vsi = ice_get_vf_vsi(vf);
1055 		if (!vsi)
1056 			continue;
1057 
1058 		ice_for_each_rxq(vsi, rxq_idx)
1059 			if (vsi->rxq_map[rxq_idx] == pfq) {
1060 				struct ice_vf *found;
1061 
1062 				if (kref_get_unless_zero(&vf->refcnt))
1063 					found = vf;
1064 				else
1065 					found = NULL;
1066 				rcu_read_unlock();
1067 				return found;
1068 			}
1069 	}
1070 	rcu_read_unlock();
1071 
1072 	return NULL;
1073 }
1074 
1075 /**
1076  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1077  * @pf: PF used for conversion
1078  * @globalq: global queue index used to convert to PF space queue index
1079  */
1080 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1081 {
1082 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1083 }
1084 
1085 /**
1086  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1087  * @pf: PF that the LAN overflow event happened on
1088  * @event: structure holding the event information for the LAN overflow event
1089  *
1090  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1091  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1092  * reset on the offending VF.
1093  */
1094 void
1095 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1096 {
1097 	u32 gldcb_rtctq, queue;
1098 	struct ice_vf *vf;
1099 
1100 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1101 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1102 
1103 	/* event returns device global Rx queue number */
1104 	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1105 		GLDCB_RTCTQ_RXQNUM_S;
1106 
1107 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1108 	if (!vf)
1109 		return;
1110 
1111 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1112 	ice_put_vf(vf);
1113 }
1114 
1115 /**
1116  * ice_set_vf_spoofchk
1117  * @netdev: network interface device structure
1118  * @vf_id: VF identifier
1119  * @ena: flag to enable or disable feature
1120  *
1121  * Enable or disable VF spoof checking
1122  */
1123 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1124 {
1125 	struct ice_netdev_priv *np = netdev_priv(netdev);
1126 	struct ice_pf *pf = np->vsi->back;
1127 	struct ice_vsi *vf_vsi;
1128 	struct device *dev;
1129 	struct ice_vf *vf;
1130 	int ret;
1131 
1132 	dev = ice_pf_to_dev(pf);
1133 
1134 	vf = ice_get_vf_by_id(pf, vf_id);
1135 	if (!vf)
1136 		return -EINVAL;
1137 
1138 	ret = ice_check_vf_ready_for_cfg(vf);
1139 	if (ret)
1140 		goto out_put_vf;
1141 
1142 	vf_vsi = ice_get_vf_vsi(vf);
1143 	if (!vf_vsi) {
1144 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1145 			   vf->lan_vsi_idx, vf->vf_id);
1146 		ret = -EINVAL;
1147 		goto out_put_vf;
1148 	}
1149 
1150 	if (vf_vsi->type != ICE_VSI_VF) {
1151 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1152 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1153 		ret = -ENODEV;
1154 		goto out_put_vf;
1155 	}
1156 
1157 	if (ena == vf->spoofchk) {
1158 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1159 		ret = 0;
1160 		goto out_put_vf;
1161 	}
1162 
1163 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1164 	if (ret)
1165 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1166 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1167 	else
1168 		vf->spoofchk = ena;
1169 
1170 out_put_vf:
1171 	ice_put_vf(vf);
1172 	return ret;
1173 }
1174 
1175 /**
1176  * ice_get_vf_cfg
1177  * @netdev: network interface device structure
1178  * @vf_id: VF identifier
1179  * @ivi: VF configuration structure
1180  *
1181  * return VF configuration
1182  */
1183 int
1184 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1185 {
1186 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1187 	struct ice_vf *vf;
1188 	int ret;
1189 
1190 	vf = ice_get_vf_by_id(pf, vf_id);
1191 	if (!vf)
1192 		return -EINVAL;
1193 
1194 	ret = ice_check_vf_ready_for_cfg(vf);
1195 	if (ret)
1196 		goto out_put_vf;
1197 
1198 	ivi->vf = vf_id;
1199 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1200 
1201 	/* VF configuration for VLAN and applicable QoS */
1202 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1203 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1204 	if (ice_vf_is_port_vlan_ena(vf))
1205 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1206 
1207 	ivi->trusted = vf->trusted;
1208 	ivi->spoofchk = vf->spoofchk;
1209 	if (!vf->link_forced)
1210 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1211 	else if (vf->link_up)
1212 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1213 	else
1214 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1215 	ivi->max_tx_rate = vf->max_tx_rate;
1216 	ivi->min_tx_rate = vf->min_tx_rate;
1217 
1218 out_put_vf:
1219 	ice_put_vf(vf);
1220 	return ret;
1221 }
1222 
1223 /**
1224  * ice_set_vf_mac
1225  * @netdev: network interface device structure
1226  * @vf_id: VF identifier
1227  * @mac: MAC address
1228  *
1229  * program VF MAC address
1230  */
1231 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1232 {
1233 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1234 	struct ice_vf *vf;
1235 	int ret;
1236 
1237 	if (is_multicast_ether_addr(mac)) {
1238 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1239 		return -EINVAL;
1240 	}
1241 
1242 	vf = ice_get_vf_by_id(pf, vf_id);
1243 	if (!vf)
1244 		return -EINVAL;
1245 
1246 	/* nothing left to do, unicast MAC already set */
1247 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1248 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1249 		ret = 0;
1250 		goto out_put_vf;
1251 	}
1252 
1253 	ret = ice_check_vf_ready_for_cfg(vf);
1254 	if (ret)
1255 		goto out_put_vf;
1256 
1257 	mutex_lock(&vf->cfg_lock);
1258 
1259 	/* VF is notified of its new MAC via the PF's response to the
1260 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1261 	 */
1262 	ether_addr_copy(vf->dev_lan_addr, mac);
1263 	ether_addr_copy(vf->hw_lan_addr, mac);
1264 	if (is_zero_ether_addr(mac)) {
1265 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1266 		vf->pf_set_mac = false;
1267 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1268 			    vf->vf_id);
1269 	} else {
1270 		/* PF will add MAC rule for the VF */
1271 		vf->pf_set_mac = true;
1272 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1273 			    mac, vf_id);
1274 	}
1275 
1276 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1277 	mutex_unlock(&vf->cfg_lock);
1278 
1279 out_put_vf:
1280 	ice_put_vf(vf);
1281 	return ret;
1282 }
1283 
1284 /**
1285  * ice_set_vf_trust
1286  * @netdev: network interface device structure
1287  * @vf_id: VF identifier
1288  * @trusted: Boolean value to enable/disable trusted VF
1289  *
1290  * Enable or disable a given VF as trusted
1291  */
1292 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1293 {
1294 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1295 	struct ice_vf *vf;
1296 	int ret;
1297 
1298 	vf = ice_get_vf_by_id(pf, vf_id);
1299 	if (!vf)
1300 		return -EINVAL;
1301 
1302 	if (ice_is_eswitch_mode_switchdev(pf)) {
1303 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1304 		return -EOPNOTSUPP;
1305 	}
1306 
1307 	ret = ice_check_vf_ready_for_cfg(vf);
1308 	if (ret)
1309 		goto out_put_vf;
1310 
1311 	/* Check if already trusted */
1312 	if (trusted == vf->trusted) {
1313 		ret = 0;
1314 		goto out_put_vf;
1315 	}
1316 
1317 	mutex_lock(&vf->cfg_lock);
1318 
1319 	vf->trusted = trusted;
1320 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1321 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1322 		 vf_id, trusted ? "" : "un");
1323 
1324 	mutex_unlock(&vf->cfg_lock);
1325 
1326 out_put_vf:
1327 	ice_put_vf(vf);
1328 	return ret;
1329 }
1330 
1331 /**
1332  * ice_set_vf_link_state
1333  * @netdev: network interface device structure
1334  * @vf_id: VF identifier
1335  * @link_state: required link state
1336  *
1337  * Set VF's link state, irrespective of physical link state status
1338  */
1339 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1340 {
1341 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1342 	struct ice_vf *vf;
1343 	int ret;
1344 
1345 	vf = ice_get_vf_by_id(pf, vf_id);
1346 	if (!vf)
1347 		return -EINVAL;
1348 
1349 	ret = ice_check_vf_ready_for_cfg(vf);
1350 	if (ret)
1351 		goto out_put_vf;
1352 
1353 	switch (link_state) {
1354 	case IFLA_VF_LINK_STATE_AUTO:
1355 		vf->link_forced = false;
1356 		break;
1357 	case IFLA_VF_LINK_STATE_ENABLE:
1358 		vf->link_forced = true;
1359 		vf->link_up = true;
1360 		break;
1361 	case IFLA_VF_LINK_STATE_DISABLE:
1362 		vf->link_forced = true;
1363 		vf->link_up = false;
1364 		break;
1365 	default:
1366 		ret = -EINVAL;
1367 		goto out_put_vf;
1368 	}
1369 
1370 	ice_vc_notify_vf_link_state(vf);
1371 
1372 out_put_vf:
1373 	ice_put_vf(vf);
1374 	return ret;
1375 }
1376 
1377 /**
1378  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1379  * @pf: PF associated with VFs
1380  */
1381 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1382 {
1383 	struct ice_vf *vf;
1384 	unsigned int bkt;
1385 	int rate = 0;
1386 
1387 	rcu_read_lock();
1388 	ice_for_each_vf_rcu(pf, bkt, vf)
1389 		rate += vf->min_tx_rate;
1390 	rcu_read_unlock();
1391 
1392 	return rate;
1393 }
1394 
1395 /**
1396  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1397  * @vf: VF trying to configure min_tx_rate
1398  * @min_tx_rate: min Tx rate in Mbps
1399  *
1400  * Check if the min_tx_rate being passed in will cause oversubscription of total
1401  * min_tx_rate based on the current link speed and all other VFs configured
1402  * min_tx_rate
1403  *
1404  * Return true if the passed min_tx_rate would cause oversubscription, else
1405  * return false
1406  */
1407 static bool
1408 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1409 {
1410 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1411 	int all_vfs_min_tx_rate;
1412 	int link_speed_mbps;
1413 
1414 	if (WARN_ON(!vsi))
1415 		return false;
1416 
1417 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1418 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1419 
1420 	/* this VF's previous rate is being overwritten */
1421 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1422 
1423 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1424 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1425 			min_tx_rate, vf->vf_id,
1426 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1427 			link_speed_mbps);
1428 		return true;
1429 	}
1430 
1431 	return false;
1432 }
1433 
1434 /**
1435  * ice_set_vf_bw - set min/max VF bandwidth
1436  * @netdev: network interface device structure
1437  * @vf_id: VF identifier
1438  * @min_tx_rate: Minimum Tx rate in Mbps
1439  * @max_tx_rate: Maximum Tx rate in Mbps
1440  */
1441 int
1442 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1443 	      int max_tx_rate)
1444 {
1445 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1446 	struct ice_vsi *vsi;
1447 	struct device *dev;
1448 	struct ice_vf *vf;
1449 	int ret;
1450 
1451 	dev = ice_pf_to_dev(pf);
1452 
1453 	vf = ice_get_vf_by_id(pf, vf_id);
1454 	if (!vf)
1455 		return -EINVAL;
1456 
1457 	ret = ice_check_vf_ready_for_cfg(vf);
1458 	if (ret)
1459 		goto out_put_vf;
1460 
1461 	vsi = ice_get_vf_vsi(vf);
1462 	if (!vsi) {
1463 		ret = -EINVAL;
1464 		goto out_put_vf;
1465 	}
1466 
1467 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1468 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1469 		ret = -EOPNOTSUPP;
1470 		goto out_put_vf;
1471 	}
1472 
1473 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1474 		ret = -EINVAL;
1475 		goto out_put_vf;
1476 	}
1477 
1478 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1479 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1480 		if (ret) {
1481 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1482 				vf->vf_id);
1483 			goto out_put_vf;
1484 		}
1485 
1486 		vf->min_tx_rate = min_tx_rate;
1487 	}
1488 
1489 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1490 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1491 		if (ret) {
1492 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1493 				vf->vf_id);
1494 			goto out_put_vf;
1495 		}
1496 
1497 		vf->max_tx_rate = max_tx_rate;
1498 	}
1499 
1500 out_put_vf:
1501 	ice_put_vf(vf);
1502 	return ret;
1503 }
1504 
1505 /**
1506  * ice_get_vf_stats - populate some stats for the VF
1507  * @netdev: the netdev of the PF
1508  * @vf_id: the host OS identifier (0-255)
1509  * @vf_stats: pointer to the OS memory to be initialized
1510  */
1511 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1512 		     struct ifla_vf_stats *vf_stats)
1513 {
1514 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1515 	struct ice_eth_stats *stats;
1516 	struct ice_vsi *vsi;
1517 	struct ice_vf *vf;
1518 	int ret;
1519 
1520 	vf = ice_get_vf_by_id(pf, vf_id);
1521 	if (!vf)
1522 		return -EINVAL;
1523 
1524 	ret = ice_check_vf_ready_for_cfg(vf);
1525 	if (ret)
1526 		goto out_put_vf;
1527 
1528 	vsi = ice_get_vf_vsi(vf);
1529 	if (!vsi) {
1530 		ret = -EINVAL;
1531 		goto out_put_vf;
1532 	}
1533 
1534 	ice_update_eth_stats(vsi);
1535 	stats = &vsi->eth_stats;
1536 
1537 	memset(vf_stats, 0, sizeof(*vf_stats));
1538 
1539 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1540 		stats->rx_multicast;
1541 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1542 		stats->tx_multicast;
1543 	vf_stats->rx_bytes   = stats->rx_bytes;
1544 	vf_stats->tx_bytes   = stats->tx_bytes;
1545 	vf_stats->broadcast  = stats->rx_broadcast;
1546 	vf_stats->multicast  = stats->rx_multicast;
1547 	vf_stats->rx_dropped = stats->rx_discards;
1548 	vf_stats->tx_dropped = stats->tx_discards;
1549 
1550 out_put_vf:
1551 	ice_put_vf(vf);
1552 	return ret;
1553 }
1554 
1555 /**
1556  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1557  * @hw: hardware structure used to check the VLAN mode
1558  * @vlan_proto: VLAN TPID being checked
1559  *
1560  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1561  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1562  * Mode (SVM), then only ETH_P_8021Q is supported.
1563  */
1564 static bool
1565 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1566 {
1567 	bool is_supported = false;
1568 
1569 	switch (vlan_proto) {
1570 	case ETH_P_8021Q:
1571 		is_supported = true;
1572 		break;
1573 	case ETH_P_8021AD:
1574 		if (ice_is_dvm_ena(hw))
1575 			is_supported = true;
1576 		break;
1577 	}
1578 
1579 	return is_supported;
1580 }
1581 
1582 /**
1583  * ice_set_vf_port_vlan
1584  * @netdev: network interface device structure
1585  * @vf_id: VF identifier
1586  * @vlan_id: VLAN ID being set
1587  * @qos: priority setting
1588  * @vlan_proto: VLAN protocol
1589  *
1590  * program VF Port VLAN ID and/or QoS
1591  */
1592 int
1593 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1594 		     __be16 vlan_proto)
1595 {
1596 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1597 	u16 local_vlan_proto = ntohs(vlan_proto);
1598 	struct device *dev;
1599 	struct ice_vf *vf;
1600 	int ret;
1601 
1602 	dev = ice_pf_to_dev(pf);
1603 
1604 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1605 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1606 			vf_id, vlan_id, qos);
1607 		return -EINVAL;
1608 	}
1609 
1610 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1611 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1612 			local_vlan_proto);
1613 		return -EPROTONOSUPPORT;
1614 	}
1615 
1616 	vf = ice_get_vf_by_id(pf, vf_id);
1617 	if (!vf)
1618 		return -EINVAL;
1619 
1620 	ret = ice_check_vf_ready_for_cfg(vf);
1621 	if (ret)
1622 		goto out_put_vf;
1623 
1624 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1625 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1626 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1627 		/* duplicate request, so just return success */
1628 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1629 			vlan_id, qos, local_vlan_proto);
1630 		ret = 0;
1631 		goto out_put_vf;
1632 	}
1633 
1634 	mutex_lock(&vf->cfg_lock);
1635 
1636 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1637 	if (ice_vf_is_port_vlan_ena(vf))
1638 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1639 			 vlan_id, qos, local_vlan_proto, vf_id);
1640 	else
1641 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1642 
1643 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1644 	mutex_unlock(&vf->cfg_lock);
1645 
1646 out_put_vf:
1647 	ice_put_vf(vf);
1648 	return ret;
1649 }
1650 
1651 /**
1652  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1653  * @vf: pointer to the VF structure
1654  */
1655 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1656 {
1657 	struct ice_pf *pf = vf->pf;
1658 	struct device *dev;
1659 
1660 	dev = ice_pf_to_dev(pf);
1661 
1662 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1663 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1664 		 vf->dev_lan_addr,
1665 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1666 			  ? "on" : "off");
1667 }
1668 
1669 /**
1670  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1671  * @pf: pointer to the PF structure
1672  *
1673  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1674  */
1675 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1676 {
1677 	struct device *dev = ice_pf_to_dev(pf);
1678 	struct ice_hw *hw = &pf->hw;
1679 	struct ice_vf *vf;
1680 	unsigned int bkt;
1681 
1682 	/* check that there are pending MDD events to print */
1683 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1684 		return;
1685 
1686 	/* VF MDD event logs are rate limited to one second intervals */
1687 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1688 		return;
1689 
1690 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1691 
1692 	mutex_lock(&pf->vfs.table_lock);
1693 	ice_for_each_vf(pf, bkt, vf) {
1694 		/* only print Rx MDD event message if there are new events */
1695 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1696 			vf->mdd_rx_events.last_printed =
1697 							vf->mdd_rx_events.count;
1698 			ice_print_vf_rx_mdd_event(vf);
1699 		}
1700 
1701 		/* only print Tx MDD event message if there are new events */
1702 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1703 			vf->mdd_tx_events.last_printed =
1704 							vf->mdd_tx_events.count;
1705 
1706 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1707 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1708 				 vf->dev_lan_addr);
1709 		}
1710 	}
1711 	mutex_unlock(&pf->vfs.table_lock);
1712 }
1713 
1714 /**
1715  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1716  * @pdev: pointer to a pci_dev structure
1717  *
1718  * Called when recovering from a PF FLR to restore interrupt capability to
1719  * the VFs.
1720  */
1721 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1722 {
1723 	u16 vf_id;
1724 	int pos;
1725 
1726 	if (!pci_num_vf(pdev))
1727 		return;
1728 
1729 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1730 	if (pos) {
1731 		struct pci_dev *vfdev;
1732 
1733 		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1734 				     &vf_id);
1735 		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1736 		while (vfdev) {
1737 			if (vfdev->is_virtfn && vfdev->physfn == pdev)
1738 				pci_restore_msi_state(vfdev);
1739 			vfdev = pci_get_device(pdev->vendor, vf_id,
1740 					       vfdev);
1741 		}
1742 	}
1743 }
1744