1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_vf_vsi_release - invalidate the VF's VSI after freeing it
45  * @vf: invalidate this VF's VSI after freeing it
46  */
47 static void ice_vf_vsi_release(struct ice_vf *vf)
48 {
49 	ice_vsi_release(ice_get_vf_vsi(vf));
50 	ice_vf_invalidate_vsi(vf);
51 }
52 
53 /**
54  * ice_free_vf_res - Free a VF's resources
55  * @vf: pointer to the VF info
56  */
57 static void ice_free_vf_res(struct ice_vf *vf)
58 {
59 	struct ice_pf *pf = vf->pf;
60 	int i, last_vector_idx;
61 
62 	/* First, disable VF's configuration API to prevent OS from
63 	 * accessing the VF's VSI after it's freed or invalidated.
64 	 */
65 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
66 	ice_vf_fdir_exit(vf);
67 	/* free VF control VSI */
68 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
69 		ice_vf_ctrl_vsi_release(vf);
70 
71 	/* free VSI and disconnect it from the parent uplink */
72 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
73 		ice_vf_vsi_release(vf);
74 		vf->num_mac = 0;
75 	}
76 
77 	last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
78 
79 	/* clear VF MDD event information */
80 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
81 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
82 
83 	/* Disable interrupts so that VF starts in a known state */
84 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
85 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
86 		ice_flush(&pf->hw);
87 	}
88 	/* reset some of the state variables keeping track of the resources */
89 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
90 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
91 }
92 
93 /**
94  * ice_dis_vf_mappings
95  * @vf: pointer to the VF structure
96  */
97 static void ice_dis_vf_mappings(struct ice_vf *vf)
98 {
99 	struct ice_pf *pf = vf->pf;
100 	struct ice_vsi *vsi;
101 	struct device *dev;
102 	int first, last, v;
103 	struct ice_hw *hw;
104 
105 	hw = &pf->hw;
106 	vsi = ice_get_vf_vsi(vf);
107 
108 	dev = ice_pf_to_dev(pf);
109 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
110 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
111 
112 	first = vf->first_vector_idx;
113 	last = first + pf->vfs.num_msix_per - 1;
114 	for (v = first; v <= last; v++) {
115 		u32 reg;
116 
117 		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
118 			GLINT_VECT2FUNC_IS_PF_M) |
119 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
120 			GLINT_VECT2FUNC_PF_NUM_M));
121 		wr32(hw, GLINT_VECT2FUNC(v), reg);
122 	}
123 
124 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
125 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
126 	else
127 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
128 
129 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
130 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
131 	else
132 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
133 }
134 
135 /**
136  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
137  * @pf: pointer to the PF structure
138  *
139  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
140  * the pf->sriov_base_vector.
141  *
142  * Returns 0 on success, and -EINVAL on error.
143  */
144 static int ice_sriov_free_msix_res(struct ice_pf *pf)
145 {
146 	struct ice_res_tracker *res;
147 
148 	if (!pf)
149 		return -EINVAL;
150 
151 	res = pf->irq_tracker;
152 	if (!res)
153 		return -EINVAL;
154 
155 	/* give back irq_tracker resources used */
156 	WARN_ON(pf->sriov_base_vector < res->num_entries);
157 
158 	pf->sriov_base_vector = 0;
159 
160 	return 0;
161 }
162 
163 /**
164  * ice_free_vfs - Free all VFs
165  * @pf: pointer to the PF structure
166  */
167 void ice_free_vfs(struct ice_pf *pf)
168 {
169 	struct device *dev = ice_pf_to_dev(pf);
170 	struct ice_vfs *vfs = &pf->vfs;
171 	struct ice_hw *hw = &pf->hw;
172 	struct ice_vf *vf;
173 	unsigned int bkt;
174 
175 	if (!ice_has_vfs(pf))
176 		return;
177 
178 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
179 		usleep_range(1000, 2000);
180 
181 	/* Disable IOV before freeing resources. This lets any VF drivers
182 	 * running in the host get themselves cleaned up before we yank
183 	 * the carpet out from underneath their feet.
184 	 */
185 	if (!pci_vfs_assigned(pf->pdev))
186 		pci_disable_sriov(pf->pdev);
187 	else
188 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
189 
190 	mutex_lock(&vfs->table_lock);
191 
192 	ice_eswitch_release(pf);
193 
194 	ice_for_each_vf(pf, bkt, vf) {
195 		mutex_lock(&vf->cfg_lock);
196 
197 		ice_dis_vf_qs(vf);
198 
199 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
200 			/* disable VF qp mappings and set VF disable state */
201 			ice_dis_vf_mappings(vf);
202 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
203 			ice_free_vf_res(vf);
204 		}
205 
206 		if (!pci_vfs_assigned(pf->pdev)) {
207 			u32 reg_idx, bit_idx;
208 
209 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
210 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
211 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
212 		}
213 
214 		/* clear malicious info since the VF is getting released */
215 		if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
216 					ICE_MAX_SRIOV_VFS, vf->vf_id))
217 			dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
218 				vf->vf_id);
219 
220 		mutex_unlock(&vf->cfg_lock);
221 	}
222 
223 	if (ice_sriov_free_msix_res(pf))
224 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
225 
226 	vfs->num_qps_per = 0;
227 	ice_free_vf_entries(pf);
228 
229 	mutex_unlock(&vfs->table_lock);
230 
231 	clear_bit(ICE_VF_DIS, pf->state);
232 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
233 }
234 
235 /**
236  * ice_vf_vsi_setup - Set up a VF VSI
237  * @vf: VF to setup VSI for
238  *
239  * Returns pointer to the successfully allocated VSI struct on success,
240  * otherwise returns NULL on failure.
241  */
242 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
243 {
244 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
245 	struct ice_pf *pf = vf->pf;
246 	struct ice_vsi *vsi;
247 
248 	vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf, NULL);
249 
250 	if (!vsi) {
251 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
252 		ice_vf_invalidate_vsi(vf);
253 		return NULL;
254 	}
255 
256 	vf->lan_vsi_idx = vsi->idx;
257 	vf->lan_vsi_num = vsi->vsi_num;
258 
259 	return vsi;
260 }
261 
262 /**
263  * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
264  * @pf: pointer to PF structure
265  * @vf: pointer to VF that the first MSIX vector index is being calculated for
266  *
267  * This returns the first MSIX vector index in PF space that is used by this VF.
268  * This index is used when accessing PF relative registers such as
269  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
270  * This will always be the OICR index in the AVF driver so any functionality
271  * using vf->first_vector_idx for queue configuration will have to increment by
272  * 1 to avoid meddling with the OICR index.
273  */
274 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
275 {
276 	return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
277 }
278 
279 /**
280  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
281  * @vf: VF to enable MSIX mappings for
282  *
283  * Some of the registers need to be indexed/configured using hardware global
284  * device values and other registers need 0-based values, which represent PF
285  * based values.
286  */
287 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
288 {
289 	int device_based_first_msix, device_based_last_msix;
290 	int pf_based_first_msix, pf_based_last_msix, v;
291 	struct ice_pf *pf = vf->pf;
292 	int device_based_vf_id;
293 	struct ice_hw *hw;
294 	u32 reg;
295 
296 	hw = &pf->hw;
297 	pf_based_first_msix = vf->first_vector_idx;
298 	pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
299 
300 	device_based_first_msix = pf_based_first_msix +
301 		pf->hw.func_caps.common_cap.msix_vector_first_id;
302 	device_based_last_msix =
303 		(device_based_first_msix + pf->vfs.num_msix_per) - 1;
304 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
305 
306 	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
307 		VPINT_ALLOC_FIRST_M) |
308 	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
309 		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
310 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
311 
312 	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
313 		 & VPINT_ALLOC_PCI_FIRST_M) |
314 	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
315 		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
316 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
317 
318 	/* map the interrupts to its functions */
319 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
320 		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
321 			GLINT_VECT2FUNC_VF_NUM_M) |
322 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
323 			GLINT_VECT2FUNC_PF_NUM_M));
324 		wr32(hw, GLINT_VECT2FUNC(v), reg);
325 	}
326 
327 	/* Map mailbox interrupt to VF MSI-X vector 0 */
328 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
329 }
330 
331 /**
332  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
333  * @vf: VF to enable the mappings for
334  * @max_txq: max Tx queues allowed on the VF's VSI
335  * @max_rxq: max Rx queues allowed on the VF's VSI
336  */
337 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
338 {
339 	struct device *dev = ice_pf_to_dev(vf->pf);
340 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
341 	struct ice_hw *hw = &vf->pf->hw;
342 	u32 reg;
343 
344 	/* set regardless of mapping mode */
345 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
346 
347 	/* VF Tx queues allocation */
348 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
349 		/* set the VF PF Tx queue range
350 		 * VFNUMQ value should be set to (number of queues - 1). A value
351 		 * of 0 means 1 queue and a value of 255 means 256 queues
352 		 */
353 		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
354 			VPLAN_TX_QBASE_VFFIRSTQ_M) |
355 		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
356 			VPLAN_TX_QBASE_VFNUMQ_M));
357 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
358 	} else {
359 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
360 	}
361 
362 	/* set regardless of mapping mode */
363 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
364 
365 	/* VF Rx queues allocation */
366 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
367 		/* set the VF PF Rx queue range
368 		 * VFNUMQ value should be set to (number of queues - 1). A value
369 		 * of 0 means 1 queue and a value of 255 means 256 queues
370 		 */
371 		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
372 			VPLAN_RX_QBASE_VFFIRSTQ_M) |
373 		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
374 			VPLAN_RX_QBASE_VFNUMQ_M));
375 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
376 	} else {
377 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
378 	}
379 }
380 
381 /**
382  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
383  * @vf: pointer to the VF structure
384  */
385 static void ice_ena_vf_mappings(struct ice_vf *vf)
386 {
387 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
388 
389 	ice_ena_vf_msix_mappings(vf);
390 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
391 }
392 
393 /**
394  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
395  * @vf: VF to calculate the register index for
396  * @q_vector: a q_vector associated to the VF
397  */
398 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
399 {
400 	struct ice_pf *pf;
401 
402 	if (!vf || !q_vector)
403 		return -EINVAL;
404 
405 	pf = vf->pf;
406 
407 	/* always add one to account for the OICR being the first MSIX */
408 	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
409 		q_vector->v_idx + 1;
410 }
411 
412 /**
413  * ice_get_max_valid_res_idx - Get the max valid resource index
414  * @res: pointer to the resource to find the max valid index for
415  *
416  * Start from the end of the ice_res_tracker and return right when we find the
417  * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
418  * valid for SR-IOV because it is the only consumer that manipulates the
419  * res->end and this is always called when res->end is set to res->num_entries.
420  */
421 static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
422 {
423 	int i;
424 
425 	if (!res)
426 		return -EINVAL;
427 
428 	for (i = res->num_entries - 1; i >= 0; i--)
429 		if (res->list[i] & ICE_RES_VALID_BIT)
430 			return i;
431 
432 	return 0;
433 }
434 
435 /**
436  * ice_sriov_set_msix_res - Set any used MSIX resources
437  * @pf: pointer to PF structure
438  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
439  *
440  * This function allows SR-IOV resources to be taken from the end of the PF's
441  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
442  * just set the pf->sriov_base_vector and return success.
443  *
444  * If there are not enough resources available, return an error. This should
445  * always be caught by ice_set_per_vf_res().
446  *
447  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
448  * in the PF's space available for SR-IOV.
449  */
450 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
451 {
452 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
453 	int vectors_used = pf->irq_tracker->num_entries;
454 	int sriov_base_vector;
455 
456 	sriov_base_vector = total_vectors - num_msix_needed;
457 
458 	/* make sure we only grab irq_tracker entries from the list end and
459 	 * that we have enough available MSIX vectors
460 	 */
461 	if (sriov_base_vector < vectors_used)
462 		return -EINVAL;
463 
464 	pf->sriov_base_vector = sriov_base_vector;
465 
466 	return 0;
467 }
468 
469 /**
470  * ice_set_per_vf_res - check if vectors and queues are available
471  * @pf: pointer to the PF structure
472  * @num_vfs: the number of SR-IOV VFs being configured
473  *
474  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
475  * get more vectors and can enable more queues per VF. Note that this does not
476  * grab any vectors from the SW pool already allocated. Also note, that all
477  * vector counts include one for each VF's miscellaneous interrupt vector
478  * (i.e. OICR).
479  *
480  * Minimum VFs - 2 vectors, 1 queue pair
481  * Small VFs - 5 vectors, 4 queue pairs
482  * Medium VFs - 17 vectors, 16 queue pairs
483  *
484  * Second, determine number of queue pairs per VF by starting with a pre-defined
485  * maximum each VF supports. If this is not possible, then we adjust based on
486  * queue pairs available on the device.
487  *
488  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
489  * by each VF during VF initialization and reset.
490  */
491 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
492 {
493 	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
494 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
495 	int msix_avail_per_vf, msix_avail_for_sriov;
496 	struct device *dev = ice_pf_to_dev(pf);
497 	int err;
498 
499 	lockdep_assert_held(&pf->vfs.table_lock);
500 
501 	if (!num_vfs)
502 		return -EINVAL;
503 
504 	if (max_valid_res_idx < 0)
505 		return -ENOSPC;
506 
507 	/* determine MSI-X resources per VF */
508 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
509 		pf->irq_tracker->num_entries;
510 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
511 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
512 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
513 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
514 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
515 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
516 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
517 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
518 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
519 	} else {
520 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
521 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
522 			num_vfs);
523 		return -ENOSPC;
524 	}
525 
526 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
527 			ICE_MAX_RSS_QS_PER_VF);
528 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
529 	if (!avail_qs)
530 		num_txq = 0;
531 	else if (num_txq > avail_qs)
532 		num_txq = rounddown_pow_of_two(avail_qs);
533 
534 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
535 			ICE_MAX_RSS_QS_PER_VF);
536 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
537 	if (!avail_qs)
538 		num_rxq = 0;
539 	else if (num_rxq > avail_qs)
540 		num_rxq = rounddown_pow_of_two(avail_qs);
541 
542 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
543 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
544 			ICE_MIN_QS_PER_VF, num_vfs);
545 		return -ENOSPC;
546 	}
547 
548 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
549 	if (err) {
550 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
551 			num_vfs, err);
552 		return err;
553 	}
554 
555 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
556 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
557 	pf->vfs.num_msix_per = num_msix_per_vf;
558 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
559 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
560 
561 	return 0;
562 }
563 
564 /**
565  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
566  * @vf: VF to initialize/setup the VSI for
567  *
568  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
569  * VF VSI's broadcast filter and is only used during initial VF creation.
570  */
571 static int ice_init_vf_vsi_res(struct ice_vf *vf)
572 {
573 	struct ice_vsi_vlan_ops *vlan_ops;
574 	struct ice_pf *pf = vf->pf;
575 	u8 broadcast[ETH_ALEN];
576 	struct ice_vsi *vsi;
577 	struct device *dev;
578 	int err;
579 
580 	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
581 
582 	dev = ice_pf_to_dev(pf);
583 	vsi = ice_vf_vsi_setup(vf);
584 	if (!vsi)
585 		return -ENOMEM;
586 
587 	err = ice_vsi_add_vlan_zero(vsi);
588 	if (err) {
589 		dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
590 			 vf->vf_id);
591 		goto release_vsi;
592 	}
593 
594 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
595 	err = vlan_ops->ena_rx_filtering(vsi);
596 	if (err) {
597 		dev_warn(dev, "Failed to enable Rx VLAN filtering for VF %d\n",
598 			 vf->vf_id);
599 		goto release_vsi;
600 	}
601 
602 	eth_broadcast_addr(broadcast);
603 	err = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
604 	if (err) {
605 		dev_err(dev, "Failed to add broadcast MAC filter for VF %d, error %d\n",
606 			vf->vf_id, err);
607 		goto release_vsi;
608 	}
609 
610 	err = ice_vsi_apply_spoofchk(vsi, vf->spoofchk);
611 	if (err) {
612 		dev_warn(dev, "Failed to initialize spoofchk setting for VF %d\n",
613 			 vf->vf_id);
614 		goto release_vsi;
615 	}
616 
617 	vf->num_mac = 1;
618 
619 	return 0;
620 
621 release_vsi:
622 	ice_vf_vsi_release(vf);
623 	return err;
624 }
625 
626 /**
627  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
628  * @pf: PF the VFs are associated with
629  */
630 static int ice_start_vfs(struct ice_pf *pf)
631 {
632 	struct ice_hw *hw = &pf->hw;
633 	unsigned int bkt, it_cnt;
634 	struct ice_vf *vf;
635 	int retval;
636 
637 	lockdep_assert_held(&pf->vfs.table_lock);
638 
639 	it_cnt = 0;
640 	ice_for_each_vf(pf, bkt, vf) {
641 		vf->vf_ops->clear_reset_trigger(vf);
642 
643 		retval = ice_init_vf_vsi_res(vf);
644 		if (retval) {
645 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
646 				vf->vf_id, retval);
647 			goto teardown;
648 		}
649 
650 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
651 		ice_ena_vf_mappings(vf);
652 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
653 		it_cnt++;
654 	}
655 
656 	ice_flush(hw);
657 	return 0;
658 
659 teardown:
660 	ice_for_each_vf(pf, bkt, vf) {
661 		if (it_cnt == 0)
662 			break;
663 
664 		ice_dis_vf_mappings(vf);
665 		ice_vf_vsi_release(vf);
666 		it_cnt--;
667 	}
668 
669 	return retval;
670 }
671 
672 /**
673  * ice_sriov_free_vf - Free VF memory after all references are dropped
674  * @vf: pointer to VF to free
675  *
676  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
677  * structure has been dropped.
678  */
679 static void ice_sriov_free_vf(struct ice_vf *vf)
680 {
681 	mutex_destroy(&vf->cfg_lock);
682 
683 	kfree_rcu(vf, rcu);
684 }
685 
686 /**
687  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
688  * @vf: the vf to configure
689  */
690 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
691 {
692 	struct ice_pf *pf = vf->pf;
693 
694 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
695 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
696 }
697 
698 /**
699  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
700  * @vf: pointer to VF structure
701  * @is_vflr: true if reset occurred due to VFLR
702  *
703  * Trigger and cleanup after a VF reset for a SR-IOV VF.
704  */
705 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
706 {
707 	struct ice_pf *pf = vf->pf;
708 	u32 reg, reg_idx, bit_idx;
709 	unsigned int vf_abs_id, i;
710 	struct device *dev;
711 	struct ice_hw *hw;
712 
713 	dev = ice_pf_to_dev(pf);
714 	hw = &pf->hw;
715 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
716 
717 	/* In the case of a VFLR, HW has already reset the VF and we just need
718 	 * to clean up. Otherwise we must first trigger the reset using the
719 	 * VFRTRIG register.
720 	 */
721 	if (!is_vflr) {
722 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
723 		reg |= VPGEN_VFRTRIG_VFSWR_M;
724 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
725 	}
726 
727 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
728 	reg_idx = (vf_abs_id) / 32;
729 	bit_idx = (vf_abs_id) % 32;
730 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
731 	ice_flush(hw);
732 
733 	wr32(hw, PF_PCI_CIAA,
734 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
735 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
736 		reg = rd32(hw, PF_PCI_CIAD);
737 		/* no transactions pending so stop polling */
738 		if ((reg & VF_TRANS_PENDING_M) == 0)
739 			break;
740 
741 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
742 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
743 	}
744 }
745 
746 /**
747  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
748  * @vf: pointer to VF structure
749  *
750  * Returns true when reset is successful, else returns false
751  */
752 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
753 {
754 	struct ice_pf *pf = vf->pf;
755 	unsigned int i;
756 	u32 reg;
757 
758 	for (i = 0; i < 10; i++) {
759 		/* VF reset requires driver to first reset the VF and then
760 		 * poll the status register to make sure that the reset
761 		 * completed successfully.
762 		 */
763 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
764 		if (reg & VPGEN_VFRSTAT_VFRD_M)
765 			return true;
766 
767 		/* only sleep if the reset is not done */
768 		usleep_range(10, 20);
769 	}
770 	return false;
771 }
772 
773 /**
774  * ice_sriov_clear_reset_trigger - enable VF to access hardware
775  * @vf: VF to enabled hardware access for
776  */
777 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
778 {
779 	struct ice_hw *hw = &vf->pf->hw;
780 	u32 reg;
781 
782 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
783 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
784 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
785 	ice_flush(hw);
786 }
787 
788 /**
789  * ice_sriov_vsi_rebuild - release and rebuild VF's VSI
790  * @vf: VF to release and setup the VSI for
791  *
792  * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
793  * configuration change, etc.).
794  */
795 static int ice_sriov_vsi_rebuild(struct ice_vf *vf)
796 {
797 	struct ice_pf *pf = vf->pf;
798 
799 	ice_vf_vsi_release(vf);
800 	if (!ice_vf_vsi_setup(vf)) {
801 		dev_err(ice_pf_to_dev(pf),
802 			"Failed to release and setup the VF%u's VSI\n",
803 			vf->vf_id);
804 		return -ENOMEM;
805 	}
806 
807 	return 0;
808 }
809 
810 /**
811  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
812  * @vf: VF to perform tasks on
813  */
814 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
815 {
816 	ice_vf_rebuild_host_cfg(vf);
817 	ice_vf_set_initialized(vf);
818 	ice_ena_vf_mappings(vf);
819 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
820 }
821 
822 static const struct ice_vf_ops ice_sriov_vf_ops = {
823 	.reset_type = ICE_VF_RESET,
824 	.free = ice_sriov_free_vf,
825 	.clear_mbx_register = ice_sriov_clear_mbx_register,
826 	.trigger_reset_register = ice_sriov_trigger_reset_register,
827 	.poll_reset_status = ice_sriov_poll_reset_status,
828 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
829 	.vsi_rebuild = ice_sriov_vsi_rebuild,
830 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
831 };
832 
833 /**
834  * ice_create_vf_entries - Allocate and insert VF entries
835  * @pf: pointer to the PF structure
836  * @num_vfs: the number of VFs to allocate
837  *
838  * Allocate new VF entries and insert them into the hash table. Set some
839  * basic default fields for initializing the new VFs.
840  *
841  * After this function exits, the hash table will have num_vfs entries
842  * inserted.
843  *
844  * Returns 0 on success or an integer error code on failure.
845  */
846 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
847 {
848 	struct ice_vfs *vfs = &pf->vfs;
849 	struct ice_vf *vf;
850 	u16 vf_id;
851 	int err;
852 
853 	lockdep_assert_held(&vfs->table_lock);
854 
855 	for (vf_id = 0; vf_id < num_vfs; vf_id++) {
856 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
857 		if (!vf) {
858 			err = -ENOMEM;
859 			goto err_free_entries;
860 		}
861 		kref_init(&vf->refcnt);
862 
863 		vf->pf = pf;
864 		vf->vf_id = vf_id;
865 
866 		/* set sriov vf ops for VFs created during SRIOV flow */
867 		vf->vf_ops = &ice_sriov_vf_ops;
868 
869 		vf->vf_sw_id = pf->first_sw;
870 		/* assign default capabilities */
871 		vf->spoofchk = true;
872 		vf->num_vf_qs = pf->vfs.num_qps_per;
873 		ice_vc_set_default_allowlist(vf);
874 
875 		/* ctrl_vsi_idx will be set to a valid value only when VF
876 		 * creates its first fdir rule.
877 		 */
878 		ice_vf_ctrl_invalidate_vsi(vf);
879 		ice_vf_fdir_init(vf);
880 
881 		ice_virtchnl_set_dflt_ops(vf);
882 
883 		mutex_init(&vf->cfg_lock);
884 
885 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
886 	}
887 
888 	return 0;
889 
890 err_free_entries:
891 	ice_free_vf_entries(pf);
892 	return err;
893 }
894 
895 /**
896  * ice_ena_vfs - enable VFs so they are ready to be used
897  * @pf: pointer to the PF structure
898  * @num_vfs: number of VFs to enable
899  */
900 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
901 {
902 	struct device *dev = ice_pf_to_dev(pf);
903 	struct ice_hw *hw = &pf->hw;
904 	int ret;
905 
906 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
907 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
908 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
909 	set_bit(ICE_OICR_INTR_DIS, pf->state);
910 	ice_flush(hw);
911 
912 	ret = pci_enable_sriov(pf->pdev, num_vfs);
913 	if (ret)
914 		goto err_unroll_intr;
915 
916 	mutex_lock(&pf->vfs.table_lock);
917 
918 	ret = ice_set_per_vf_res(pf, num_vfs);
919 	if (ret) {
920 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
921 			num_vfs, ret);
922 		goto err_unroll_sriov;
923 	}
924 
925 	ret = ice_create_vf_entries(pf, num_vfs);
926 	if (ret) {
927 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
928 			num_vfs);
929 		goto err_unroll_sriov;
930 	}
931 
932 	ret = ice_start_vfs(pf);
933 	if (ret) {
934 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
935 		ret = -EAGAIN;
936 		goto err_unroll_vf_entries;
937 	}
938 
939 	clear_bit(ICE_VF_DIS, pf->state);
940 
941 	ret = ice_eswitch_configure(pf);
942 	if (ret) {
943 		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
944 		goto err_unroll_sriov;
945 	}
946 
947 	/* rearm global interrupts */
948 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
949 		ice_irq_dynamic_ena(hw, NULL, NULL);
950 
951 	mutex_unlock(&pf->vfs.table_lock);
952 
953 	return 0;
954 
955 err_unroll_vf_entries:
956 	ice_free_vf_entries(pf);
957 err_unroll_sriov:
958 	mutex_unlock(&pf->vfs.table_lock);
959 	pci_disable_sriov(pf->pdev);
960 err_unroll_intr:
961 	/* rearm interrupts here */
962 	ice_irq_dynamic_ena(hw, NULL, NULL);
963 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
964 	return ret;
965 }
966 
967 /**
968  * ice_pci_sriov_ena - Enable or change number of VFs
969  * @pf: pointer to the PF structure
970  * @num_vfs: number of VFs to allocate
971  *
972  * Returns 0 on success and negative on failure
973  */
974 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
975 {
976 	int pre_existing_vfs = pci_num_vf(pf->pdev);
977 	struct device *dev = ice_pf_to_dev(pf);
978 	int err;
979 
980 	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
981 		ice_free_vfs(pf);
982 	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
983 		return 0;
984 
985 	if (num_vfs > pf->vfs.num_supported) {
986 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
987 			num_vfs, pf->vfs.num_supported);
988 		return -EOPNOTSUPP;
989 	}
990 
991 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
992 	err = ice_ena_vfs(pf, num_vfs);
993 	if (err) {
994 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
995 		return err;
996 	}
997 
998 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
999 	return 0;
1000 }
1001 
1002 /**
1003  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
1004  * @pf: PF to enabled SR-IOV on
1005  */
1006 static int ice_check_sriov_allowed(struct ice_pf *pf)
1007 {
1008 	struct device *dev = ice_pf_to_dev(pf);
1009 
1010 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1011 		dev_err(dev, "This device is not capable of SR-IOV\n");
1012 		return -EOPNOTSUPP;
1013 	}
1014 
1015 	if (ice_is_safe_mode(pf)) {
1016 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1017 		return -EOPNOTSUPP;
1018 	}
1019 
1020 	if (!ice_pf_state_is_nominal(pf)) {
1021 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1022 		return -EBUSY;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /**
1029  * ice_sriov_configure - Enable or change number of VFs via sysfs
1030  * @pdev: pointer to a pci_dev structure
1031  * @num_vfs: number of VFs to allocate or 0 to free VFs
1032  *
1033  * This function is called when the user updates the number of VFs in sysfs. On
1034  * success return whatever num_vfs was set to by the caller. Return negative on
1035  * failure.
1036  */
1037 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1038 {
1039 	struct ice_pf *pf = pci_get_drvdata(pdev);
1040 	struct device *dev = ice_pf_to_dev(pf);
1041 	int err;
1042 
1043 	err = ice_check_sriov_allowed(pf);
1044 	if (err)
1045 		return err;
1046 
1047 	if (!num_vfs) {
1048 		if (!pci_vfs_assigned(pdev)) {
1049 			ice_mbx_deinit_snapshot(&pf->hw);
1050 			ice_free_vfs(pf);
1051 			if (pf->lag)
1052 				ice_enable_lag(pf->lag);
1053 			return 0;
1054 		}
1055 
1056 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1057 		return -EBUSY;
1058 	}
1059 
1060 	err = ice_mbx_init_snapshot(&pf->hw, num_vfs);
1061 	if (err)
1062 		return err;
1063 
1064 	err = ice_pci_sriov_ena(pf, num_vfs);
1065 	if (err) {
1066 		ice_mbx_deinit_snapshot(&pf->hw);
1067 		return err;
1068 	}
1069 
1070 	if (pf->lag)
1071 		ice_disable_lag(pf->lag);
1072 	return num_vfs;
1073 }
1074 
1075 /**
1076  * ice_process_vflr_event - Free VF resources via IRQ calls
1077  * @pf: pointer to the PF structure
1078  *
1079  * called from the VFLR IRQ handler to
1080  * free up VF resources and state variables
1081  */
1082 void ice_process_vflr_event(struct ice_pf *pf)
1083 {
1084 	struct ice_hw *hw = &pf->hw;
1085 	struct ice_vf *vf;
1086 	unsigned int bkt;
1087 	u32 reg;
1088 
1089 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1090 	    !ice_has_vfs(pf))
1091 		return;
1092 
1093 	mutex_lock(&pf->vfs.table_lock);
1094 	ice_for_each_vf(pf, bkt, vf) {
1095 		u32 reg_idx, bit_idx;
1096 
1097 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1098 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1099 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1100 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1101 		if (reg & BIT(bit_idx))
1102 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1103 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1104 	}
1105 	mutex_unlock(&pf->vfs.table_lock);
1106 }
1107 
1108 /**
1109  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1110  * @pf: PF used to index all VFs
1111  * @pfq: queue index relative to the PF's function space
1112  *
1113  * If no VF is found who owns the pfq then return NULL, otherwise return a
1114  * pointer to the VF who owns the pfq
1115  *
1116  * If this function returns non-NULL, it acquires a reference count of the VF
1117  * structure. The caller is responsible for calling ice_put_vf() to drop this
1118  * reference.
1119  */
1120 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1121 {
1122 	struct ice_vf *vf;
1123 	unsigned int bkt;
1124 
1125 	rcu_read_lock();
1126 	ice_for_each_vf_rcu(pf, bkt, vf) {
1127 		struct ice_vsi *vsi;
1128 		u16 rxq_idx;
1129 
1130 		vsi = ice_get_vf_vsi(vf);
1131 
1132 		ice_for_each_rxq(vsi, rxq_idx)
1133 			if (vsi->rxq_map[rxq_idx] == pfq) {
1134 				struct ice_vf *found;
1135 
1136 				if (kref_get_unless_zero(&vf->refcnt))
1137 					found = vf;
1138 				else
1139 					found = NULL;
1140 				rcu_read_unlock();
1141 				return found;
1142 			}
1143 	}
1144 	rcu_read_unlock();
1145 
1146 	return NULL;
1147 }
1148 
1149 /**
1150  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1151  * @pf: PF used for conversion
1152  * @globalq: global queue index used to convert to PF space queue index
1153  */
1154 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1155 {
1156 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1157 }
1158 
1159 /**
1160  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1161  * @pf: PF that the LAN overflow event happened on
1162  * @event: structure holding the event information for the LAN overflow event
1163  *
1164  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1165  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1166  * reset on the offending VF.
1167  */
1168 void
1169 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1170 {
1171 	u32 gldcb_rtctq, queue;
1172 	struct ice_vf *vf;
1173 
1174 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1175 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1176 
1177 	/* event returns device global Rx queue number */
1178 	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1179 		GLDCB_RTCTQ_RXQNUM_S;
1180 
1181 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1182 	if (!vf)
1183 		return;
1184 
1185 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1186 	ice_put_vf(vf);
1187 }
1188 
1189 /**
1190  * ice_set_vf_spoofchk
1191  * @netdev: network interface device structure
1192  * @vf_id: VF identifier
1193  * @ena: flag to enable or disable feature
1194  *
1195  * Enable or disable VF spoof checking
1196  */
1197 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1198 {
1199 	struct ice_netdev_priv *np = netdev_priv(netdev);
1200 	struct ice_pf *pf = np->vsi->back;
1201 	struct ice_vsi *vf_vsi;
1202 	struct device *dev;
1203 	struct ice_vf *vf;
1204 	int ret;
1205 
1206 	dev = ice_pf_to_dev(pf);
1207 
1208 	vf = ice_get_vf_by_id(pf, vf_id);
1209 	if (!vf)
1210 		return -EINVAL;
1211 
1212 	ret = ice_check_vf_ready_for_cfg(vf);
1213 	if (ret)
1214 		goto out_put_vf;
1215 
1216 	vf_vsi = ice_get_vf_vsi(vf);
1217 	if (!vf_vsi) {
1218 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1219 			   vf->lan_vsi_idx, vf->vf_id);
1220 		ret = -EINVAL;
1221 		goto out_put_vf;
1222 	}
1223 
1224 	if (vf_vsi->type != ICE_VSI_VF) {
1225 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1226 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1227 		ret = -ENODEV;
1228 		goto out_put_vf;
1229 	}
1230 
1231 	if (ena == vf->spoofchk) {
1232 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1233 		ret = 0;
1234 		goto out_put_vf;
1235 	}
1236 
1237 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1238 	if (ret)
1239 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1240 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1241 	else
1242 		vf->spoofchk = ena;
1243 
1244 out_put_vf:
1245 	ice_put_vf(vf);
1246 	return ret;
1247 }
1248 
1249 /**
1250  * ice_get_vf_cfg
1251  * @netdev: network interface device structure
1252  * @vf_id: VF identifier
1253  * @ivi: VF configuration structure
1254  *
1255  * return VF configuration
1256  */
1257 int
1258 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1259 {
1260 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1261 	struct ice_vf *vf;
1262 	int ret;
1263 
1264 	vf = ice_get_vf_by_id(pf, vf_id);
1265 	if (!vf)
1266 		return -EINVAL;
1267 
1268 	ret = ice_check_vf_ready_for_cfg(vf);
1269 	if (ret)
1270 		goto out_put_vf;
1271 
1272 	ivi->vf = vf_id;
1273 	ether_addr_copy(ivi->mac, vf->hw_lan_addr.addr);
1274 
1275 	/* VF configuration for VLAN and applicable QoS */
1276 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1277 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1278 	if (ice_vf_is_port_vlan_ena(vf))
1279 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1280 
1281 	ivi->trusted = vf->trusted;
1282 	ivi->spoofchk = vf->spoofchk;
1283 	if (!vf->link_forced)
1284 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1285 	else if (vf->link_up)
1286 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1287 	else
1288 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1289 	ivi->max_tx_rate = vf->max_tx_rate;
1290 	ivi->min_tx_rate = vf->min_tx_rate;
1291 
1292 out_put_vf:
1293 	ice_put_vf(vf);
1294 	return ret;
1295 }
1296 
1297 /**
1298  * ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
1299  * @pf: PF used to reference the switch's rules
1300  * @umac: unicast MAC to compare against existing switch rules
1301  *
1302  * Return true on the first/any match, else return false
1303  */
1304 static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
1305 {
1306 	struct ice_sw_recipe *mac_recipe_list =
1307 		&pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
1308 	struct ice_fltr_mgmt_list_entry *list_itr;
1309 	struct list_head *rule_head;
1310 	struct mutex *rule_lock; /* protect MAC filter list access */
1311 
1312 	rule_head = &mac_recipe_list->filt_rules;
1313 	rule_lock = &mac_recipe_list->filt_rule_lock;
1314 
1315 	mutex_lock(rule_lock);
1316 	list_for_each_entry(list_itr, rule_head, list_entry) {
1317 		u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
1318 
1319 		if (ether_addr_equal(existing_mac, umac)) {
1320 			mutex_unlock(rule_lock);
1321 			return true;
1322 		}
1323 	}
1324 
1325 	mutex_unlock(rule_lock);
1326 
1327 	return false;
1328 }
1329 
1330 /**
1331  * ice_set_vf_mac
1332  * @netdev: network interface device structure
1333  * @vf_id: VF identifier
1334  * @mac: MAC address
1335  *
1336  * program VF MAC address
1337  */
1338 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1339 {
1340 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1341 	struct ice_vf *vf;
1342 	int ret;
1343 
1344 	if (is_multicast_ether_addr(mac)) {
1345 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1346 		return -EINVAL;
1347 	}
1348 
1349 	vf = ice_get_vf_by_id(pf, vf_id);
1350 	if (!vf)
1351 		return -EINVAL;
1352 
1353 	/* nothing left to do, unicast MAC already set */
1354 	if (ether_addr_equal(vf->dev_lan_addr.addr, mac) &&
1355 	    ether_addr_equal(vf->hw_lan_addr.addr, mac)) {
1356 		ret = 0;
1357 		goto out_put_vf;
1358 	}
1359 
1360 	ret = ice_check_vf_ready_for_cfg(vf);
1361 	if (ret)
1362 		goto out_put_vf;
1363 
1364 	if (ice_unicast_mac_exists(pf, mac)) {
1365 		netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
1366 			   mac, vf_id, mac);
1367 		ret = -EINVAL;
1368 		goto out_put_vf;
1369 	}
1370 
1371 	mutex_lock(&vf->cfg_lock);
1372 
1373 	/* VF is notified of its new MAC via the PF's response to the
1374 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1375 	 */
1376 	ether_addr_copy(vf->dev_lan_addr.addr, mac);
1377 	ether_addr_copy(vf->hw_lan_addr.addr, mac);
1378 	if (is_zero_ether_addr(mac)) {
1379 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1380 		vf->pf_set_mac = false;
1381 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1382 			    vf->vf_id);
1383 	} else {
1384 		/* PF will add MAC rule for the VF */
1385 		vf->pf_set_mac = true;
1386 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1387 			    mac, vf_id);
1388 	}
1389 
1390 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1391 	mutex_unlock(&vf->cfg_lock);
1392 
1393 out_put_vf:
1394 	ice_put_vf(vf);
1395 	return ret;
1396 }
1397 
1398 /**
1399  * ice_set_vf_trust
1400  * @netdev: network interface device structure
1401  * @vf_id: VF identifier
1402  * @trusted: Boolean value to enable/disable trusted VF
1403  *
1404  * Enable or disable a given VF as trusted
1405  */
1406 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1407 {
1408 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1409 	struct ice_vf *vf;
1410 	int ret;
1411 
1412 	if (ice_is_eswitch_mode_switchdev(pf)) {
1413 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1414 		return -EOPNOTSUPP;
1415 	}
1416 
1417 	vf = ice_get_vf_by_id(pf, vf_id);
1418 	if (!vf)
1419 		return -EINVAL;
1420 
1421 	ret = ice_check_vf_ready_for_cfg(vf);
1422 	if (ret)
1423 		goto out_put_vf;
1424 
1425 	/* Check if already trusted */
1426 	if (trusted == vf->trusted) {
1427 		ret = 0;
1428 		goto out_put_vf;
1429 	}
1430 
1431 	mutex_lock(&vf->cfg_lock);
1432 
1433 	vf->trusted = trusted;
1434 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1435 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1436 		 vf_id, trusted ? "" : "un");
1437 
1438 	mutex_unlock(&vf->cfg_lock);
1439 
1440 out_put_vf:
1441 	ice_put_vf(vf);
1442 	return ret;
1443 }
1444 
1445 /**
1446  * ice_set_vf_link_state
1447  * @netdev: network interface device structure
1448  * @vf_id: VF identifier
1449  * @link_state: required link state
1450  *
1451  * Set VF's link state, irrespective of physical link state status
1452  */
1453 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1454 {
1455 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1456 	struct ice_vf *vf;
1457 	int ret;
1458 
1459 	vf = ice_get_vf_by_id(pf, vf_id);
1460 	if (!vf)
1461 		return -EINVAL;
1462 
1463 	ret = ice_check_vf_ready_for_cfg(vf);
1464 	if (ret)
1465 		goto out_put_vf;
1466 
1467 	switch (link_state) {
1468 	case IFLA_VF_LINK_STATE_AUTO:
1469 		vf->link_forced = false;
1470 		break;
1471 	case IFLA_VF_LINK_STATE_ENABLE:
1472 		vf->link_forced = true;
1473 		vf->link_up = true;
1474 		break;
1475 	case IFLA_VF_LINK_STATE_DISABLE:
1476 		vf->link_forced = true;
1477 		vf->link_up = false;
1478 		break;
1479 	default:
1480 		ret = -EINVAL;
1481 		goto out_put_vf;
1482 	}
1483 
1484 	ice_vc_notify_vf_link_state(vf);
1485 
1486 out_put_vf:
1487 	ice_put_vf(vf);
1488 	return ret;
1489 }
1490 
1491 /**
1492  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1493  * @pf: PF associated with VFs
1494  */
1495 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1496 {
1497 	struct ice_vf *vf;
1498 	unsigned int bkt;
1499 	int rate = 0;
1500 
1501 	rcu_read_lock();
1502 	ice_for_each_vf_rcu(pf, bkt, vf)
1503 		rate += vf->min_tx_rate;
1504 	rcu_read_unlock();
1505 
1506 	return rate;
1507 }
1508 
1509 /**
1510  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1511  * @vf: VF trying to configure min_tx_rate
1512  * @min_tx_rate: min Tx rate in Mbps
1513  *
1514  * Check if the min_tx_rate being passed in will cause oversubscription of total
1515  * min_tx_rate based on the current link speed and all other VFs configured
1516  * min_tx_rate
1517  *
1518  * Return true if the passed min_tx_rate would cause oversubscription, else
1519  * return false
1520  */
1521 static bool
1522 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1523 {
1524 	int link_speed_mbps = ice_get_link_speed_mbps(ice_get_vf_vsi(vf));
1525 	int all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1526 
1527 	/* this VF's previous rate is being overwritten */
1528 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1529 
1530 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1531 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1532 			min_tx_rate, vf->vf_id,
1533 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1534 			link_speed_mbps);
1535 		return true;
1536 	}
1537 
1538 	return false;
1539 }
1540 
1541 /**
1542  * ice_set_vf_bw - set min/max VF bandwidth
1543  * @netdev: network interface device structure
1544  * @vf_id: VF identifier
1545  * @min_tx_rate: Minimum Tx rate in Mbps
1546  * @max_tx_rate: Maximum Tx rate in Mbps
1547  */
1548 int
1549 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1550 	      int max_tx_rate)
1551 {
1552 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1553 	struct ice_vsi *vsi;
1554 	struct device *dev;
1555 	struct ice_vf *vf;
1556 	int ret;
1557 
1558 	dev = ice_pf_to_dev(pf);
1559 
1560 	vf = ice_get_vf_by_id(pf, vf_id);
1561 	if (!vf)
1562 		return -EINVAL;
1563 
1564 	ret = ice_check_vf_ready_for_cfg(vf);
1565 	if (ret)
1566 		goto out_put_vf;
1567 
1568 	vsi = ice_get_vf_vsi(vf);
1569 
1570 	/* when max_tx_rate is zero that means no max Tx rate limiting, so only
1571 	 * check if max_tx_rate is non-zero
1572 	 */
1573 	if (max_tx_rate && min_tx_rate > max_tx_rate) {
1574 		dev_err(dev, "Cannot set min Tx rate %d Mbps greater than max Tx rate %d Mbps\n",
1575 			min_tx_rate, max_tx_rate);
1576 		ret = -EINVAL;
1577 		goto out_put_vf;
1578 	}
1579 
1580 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1581 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1582 		ret = -EOPNOTSUPP;
1583 		goto out_put_vf;
1584 	}
1585 
1586 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1587 		ret = -EINVAL;
1588 		goto out_put_vf;
1589 	}
1590 
1591 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1592 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1593 		if (ret) {
1594 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1595 				vf->vf_id);
1596 			goto out_put_vf;
1597 		}
1598 
1599 		vf->min_tx_rate = min_tx_rate;
1600 	}
1601 
1602 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1603 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1604 		if (ret) {
1605 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1606 				vf->vf_id);
1607 			goto out_put_vf;
1608 		}
1609 
1610 		vf->max_tx_rate = max_tx_rate;
1611 	}
1612 
1613 out_put_vf:
1614 	ice_put_vf(vf);
1615 	return ret;
1616 }
1617 
1618 /**
1619  * ice_get_vf_stats - populate some stats for the VF
1620  * @netdev: the netdev of the PF
1621  * @vf_id: the host OS identifier (0-255)
1622  * @vf_stats: pointer to the OS memory to be initialized
1623  */
1624 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1625 		     struct ifla_vf_stats *vf_stats)
1626 {
1627 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1628 	struct ice_eth_stats *stats;
1629 	struct ice_vsi *vsi;
1630 	struct ice_vf *vf;
1631 	int ret;
1632 
1633 	vf = ice_get_vf_by_id(pf, vf_id);
1634 	if (!vf)
1635 		return -EINVAL;
1636 
1637 	ret = ice_check_vf_ready_for_cfg(vf);
1638 	if (ret)
1639 		goto out_put_vf;
1640 
1641 	vsi = ice_get_vf_vsi(vf);
1642 	if (!vsi) {
1643 		ret = -EINVAL;
1644 		goto out_put_vf;
1645 	}
1646 
1647 	ice_update_eth_stats(vsi);
1648 	stats = &vsi->eth_stats;
1649 
1650 	memset(vf_stats, 0, sizeof(*vf_stats));
1651 
1652 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1653 		stats->rx_multicast;
1654 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1655 		stats->tx_multicast;
1656 	vf_stats->rx_bytes   = stats->rx_bytes;
1657 	vf_stats->tx_bytes   = stats->tx_bytes;
1658 	vf_stats->broadcast  = stats->rx_broadcast;
1659 	vf_stats->multicast  = stats->rx_multicast;
1660 	vf_stats->rx_dropped = stats->rx_discards;
1661 	vf_stats->tx_dropped = stats->tx_discards;
1662 
1663 out_put_vf:
1664 	ice_put_vf(vf);
1665 	return ret;
1666 }
1667 
1668 /**
1669  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1670  * @hw: hardware structure used to check the VLAN mode
1671  * @vlan_proto: VLAN TPID being checked
1672  *
1673  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1674  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1675  * Mode (SVM), then only ETH_P_8021Q is supported.
1676  */
1677 static bool
1678 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1679 {
1680 	bool is_supported = false;
1681 
1682 	switch (vlan_proto) {
1683 	case ETH_P_8021Q:
1684 		is_supported = true;
1685 		break;
1686 	case ETH_P_8021AD:
1687 		if (ice_is_dvm_ena(hw))
1688 			is_supported = true;
1689 		break;
1690 	}
1691 
1692 	return is_supported;
1693 }
1694 
1695 /**
1696  * ice_set_vf_port_vlan
1697  * @netdev: network interface device structure
1698  * @vf_id: VF identifier
1699  * @vlan_id: VLAN ID being set
1700  * @qos: priority setting
1701  * @vlan_proto: VLAN protocol
1702  *
1703  * program VF Port VLAN ID and/or QoS
1704  */
1705 int
1706 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1707 		     __be16 vlan_proto)
1708 {
1709 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1710 	u16 local_vlan_proto = ntohs(vlan_proto);
1711 	struct device *dev;
1712 	struct ice_vf *vf;
1713 	int ret;
1714 
1715 	dev = ice_pf_to_dev(pf);
1716 
1717 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1718 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1719 			vf_id, vlan_id, qos);
1720 		return -EINVAL;
1721 	}
1722 
1723 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1724 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1725 			local_vlan_proto);
1726 		return -EPROTONOSUPPORT;
1727 	}
1728 
1729 	vf = ice_get_vf_by_id(pf, vf_id);
1730 	if (!vf)
1731 		return -EINVAL;
1732 
1733 	ret = ice_check_vf_ready_for_cfg(vf);
1734 	if (ret)
1735 		goto out_put_vf;
1736 
1737 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1738 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1739 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1740 		/* duplicate request, so just return success */
1741 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1742 			vlan_id, qos, local_vlan_proto);
1743 		ret = 0;
1744 		goto out_put_vf;
1745 	}
1746 
1747 	mutex_lock(&vf->cfg_lock);
1748 
1749 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1750 	if (ice_vf_is_port_vlan_ena(vf))
1751 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1752 			 vlan_id, qos, local_vlan_proto, vf_id);
1753 	else
1754 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1755 
1756 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1757 	mutex_unlock(&vf->cfg_lock);
1758 
1759 out_put_vf:
1760 	ice_put_vf(vf);
1761 	return ret;
1762 }
1763 
1764 /**
1765  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1766  * @vf: pointer to the VF structure
1767  */
1768 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1769 {
1770 	struct ice_pf *pf = vf->pf;
1771 	struct device *dev;
1772 
1773 	dev = ice_pf_to_dev(pf);
1774 
1775 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1776 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1777 		 vf->dev_lan_addr.addr,
1778 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1779 			  ? "on" : "off");
1780 }
1781 
1782 /**
1783  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1784  * @pf: pointer to the PF structure
1785  *
1786  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1787  */
1788 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1789 {
1790 	struct device *dev = ice_pf_to_dev(pf);
1791 	struct ice_hw *hw = &pf->hw;
1792 	struct ice_vf *vf;
1793 	unsigned int bkt;
1794 
1795 	/* check that there are pending MDD events to print */
1796 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1797 		return;
1798 
1799 	/* VF MDD event logs are rate limited to one second intervals */
1800 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1801 		return;
1802 
1803 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1804 
1805 	mutex_lock(&pf->vfs.table_lock);
1806 	ice_for_each_vf(pf, bkt, vf) {
1807 		/* only print Rx MDD event message if there are new events */
1808 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1809 			vf->mdd_rx_events.last_printed =
1810 							vf->mdd_rx_events.count;
1811 			ice_print_vf_rx_mdd_event(vf);
1812 		}
1813 
1814 		/* only print Tx MDD event message if there are new events */
1815 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1816 			vf->mdd_tx_events.last_printed =
1817 							vf->mdd_tx_events.count;
1818 
1819 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1820 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1821 				 vf->dev_lan_addr.addr);
1822 		}
1823 	}
1824 	mutex_unlock(&pf->vfs.table_lock);
1825 }
1826 
1827 /**
1828  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1829  * @pdev: pointer to a pci_dev structure
1830  *
1831  * Called when recovering from a PF FLR to restore interrupt capability to
1832  * the VFs.
1833  */
1834 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1835 {
1836 	u16 vf_id;
1837 	int pos;
1838 
1839 	if (!pci_num_vf(pdev))
1840 		return;
1841 
1842 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1843 	if (pos) {
1844 		struct pci_dev *vfdev;
1845 
1846 		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1847 				     &vf_id);
1848 		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1849 		while (vfdev) {
1850 			if (vfdev->is_virtfn && vfdev->physfn == pdev)
1851 				pci_restore_msi_state(vfdev);
1852 			vfdev = pci_get_device(pdev->vendor, vf_id,
1853 					       vfdev);
1854 		}
1855 	}
1856 }
1857 
1858 /**
1859  * ice_is_malicious_vf - helper function to detect a malicious VF
1860  * @pf: ptr to struct ice_pf
1861  * @event: pointer to the AQ event
1862  * @num_msg_proc: the number of messages processed so far
1863  * @num_msg_pending: the number of messages peinding in admin queue
1864  */
1865 bool
1866 ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event,
1867 		    u16 num_msg_proc, u16 num_msg_pending)
1868 {
1869 	s16 vf_id = le16_to_cpu(event->desc.retval);
1870 	struct device *dev = ice_pf_to_dev(pf);
1871 	struct ice_mbx_data mbxdata;
1872 	bool malvf = false;
1873 	struct ice_vf *vf;
1874 	int status;
1875 
1876 	vf = ice_get_vf_by_id(pf, vf_id);
1877 	if (!vf)
1878 		return false;
1879 
1880 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
1881 		goto out_put_vf;
1882 
1883 	mbxdata.num_msg_proc = num_msg_proc;
1884 	mbxdata.num_pending_arq = num_msg_pending;
1885 	mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries;
1886 #define ICE_MBX_OVERFLOW_WATERMARK 64
1887 	mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1888 
1889 	/* check to see if we have a malicious VF */
1890 	status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf);
1891 	if (status)
1892 		goto out_put_vf;
1893 
1894 	if (malvf) {
1895 		bool report_vf = false;
1896 
1897 		/* if the VF is malicious and we haven't let the user
1898 		 * know about it, then let them know now
1899 		 */
1900 		status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs,
1901 					      ICE_MAX_SRIOV_VFS, vf_id,
1902 					      &report_vf);
1903 		if (status)
1904 			dev_dbg(dev, "Error reporting malicious VF\n");
1905 
1906 		if (report_vf) {
1907 			struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
1908 
1909 			if (pf_vsi)
1910 				dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
1911 					 &vf->dev_lan_addr.addr[0],
1912 					 pf_vsi->netdev->dev_addr);
1913 		}
1914 	}
1915 
1916 out_put_vf:
1917 	ice_put_vf(vf);
1918 	return malvf;
1919 }
1920