1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + pf->vfs.num_msix_per - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & 110 GLINT_VECT2FUNC_IS_PF_M) | 111 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 112 GLINT_VECT2FUNC_PF_NUM_M)); 113 wr32(hw, GLINT_VECT2FUNC(v), reg); 114 } 115 116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 118 else 119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 120 121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 123 else 124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 125 } 126 127 /** 128 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 129 * @pf: pointer to the PF structure 130 * 131 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 132 * the pf->sriov_base_vector. 133 * 134 * Returns 0 on success, and -EINVAL on error. 135 */ 136 static int ice_sriov_free_msix_res(struct ice_pf *pf) 137 { 138 if (!pf) 139 return -EINVAL; 140 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 mutex_lock(&vfs->table_lock); 174 175 ice_eswitch_release(pf); 176 177 ice_for_each_vf(pf, bkt, vf) { 178 mutex_lock(&vf->cfg_lock); 179 180 ice_dis_vf_qs(vf); 181 182 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 183 /* disable VF qp mappings and set VF disable state */ 184 ice_dis_vf_mappings(vf); 185 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 186 ice_free_vf_res(vf); 187 } 188 189 if (!pci_vfs_assigned(pf->pdev)) { 190 u32 reg_idx, bit_idx; 191 192 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 193 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 194 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 195 } 196 197 /* clear malicious info since the VF is getting released */ 198 list_del(&vf->mbx_info.list_entry); 199 200 mutex_unlock(&vf->cfg_lock); 201 } 202 203 if (ice_sriov_free_msix_res(pf)) 204 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 205 206 vfs->num_qps_per = 0; 207 ice_free_vf_entries(pf); 208 209 mutex_unlock(&vfs->table_lock); 210 211 clear_bit(ICE_VF_DIS, pf->state); 212 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 213 } 214 215 /** 216 * ice_vf_vsi_setup - Set up a VF VSI 217 * @vf: VF to setup VSI for 218 * 219 * Returns pointer to the successfully allocated VSI struct on success, 220 * otherwise returns NULL on failure. 221 */ 222 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 223 { 224 struct ice_vsi_cfg_params params = {}; 225 struct ice_pf *pf = vf->pf; 226 struct ice_vsi *vsi; 227 228 params.type = ICE_VSI_VF; 229 params.pi = ice_vf_get_port_info(vf); 230 params.vf = vf; 231 params.flags = ICE_VSI_FLAG_INIT; 232 233 vsi = ice_vsi_setup(pf, ¶ms); 234 235 if (!vsi) { 236 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 237 ice_vf_invalidate_vsi(vf); 238 return NULL; 239 } 240 241 vf->lan_vsi_idx = vsi->idx; 242 vf->lan_vsi_num = vsi->vsi_num; 243 244 return vsi; 245 } 246 247 /** 248 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space 249 * @pf: pointer to PF structure 250 * @vf: pointer to VF that the first MSIX vector index is being calculated for 251 * 252 * This returns the first MSIX vector index in PF space that is used by this VF. 253 * This index is used when accessing PF relative registers such as 254 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 255 * This will always be the OICR index in the AVF driver so any functionality 256 * using vf->first_vector_idx for queue configuration will have to increment by 257 * 1 to avoid meddling with the OICR index. 258 */ 259 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) 260 { 261 return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per; 262 } 263 264 /** 265 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 266 * @vf: VF to enable MSIX mappings for 267 * 268 * Some of the registers need to be indexed/configured using hardware global 269 * device values and other registers need 0-based values, which represent PF 270 * based values. 271 */ 272 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 273 { 274 int device_based_first_msix, device_based_last_msix; 275 int pf_based_first_msix, pf_based_last_msix, v; 276 struct ice_pf *pf = vf->pf; 277 int device_based_vf_id; 278 struct ice_hw *hw; 279 u32 reg; 280 281 hw = &pf->hw; 282 pf_based_first_msix = vf->first_vector_idx; 283 pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1; 284 285 device_based_first_msix = pf_based_first_msix + 286 pf->hw.func_caps.common_cap.msix_vector_first_id; 287 device_based_last_msix = 288 (device_based_first_msix + pf->vfs.num_msix_per) - 1; 289 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 290 291 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & 292 VPINT_ALLOC_FIRST_M) | 293 ((device_based_last_msix << VPINT_ALLOC_LAST_S) & 294 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); 295 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 296 297 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) 298 & VPINT_ALLOC_PCI_FIRST_M) | 299 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & 300 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); 301 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 302 303 /* map the interrupts to its functions */ 304 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 305 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & 306 GLINT_VECT2FUNC_VF_NUM_M) | 307 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 308 GLINT_VECT2FUNC_PF_NUM_M)); 309 wr32(hw, GLINT_VECT2FUNC(v), reg); 310 } 311 312 /* Map mailbox interrupt to VF MSI-X vector 0 */ 313 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 314 } 315 316 /** 317 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 318 * @vf: VF to enable the mappings for 319 * @max_txq: max Tx queues allowed on the VF's VSI 320 * @max_rxq: max Rx queues allowed on the VF's VSI 321 */ 322 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 323 { 324 struct device *dev = ice_pf_to_dev(vf->pf); 325 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 326 struct ice_hw *hw = &vf->pf->hw; 327 u32 reg; 328 329 if (WARN_ON(!vsi)) 330 return; 331 332 /* set regardless of mapping mode */ 333 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 334 335 /* VF Tx queues allocation */ 336 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 337 /* set the VF PF Tx queue range 338 * VFNUMQ value should be set to (number of queues - 1). A value 339 * of 0 means 1 queue and a value of 255 means 256 queues 340 */ 341 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & 342 VPLAN_TX_QBASE_VFFIRSTQ_M) | 343 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & 344 VPLAN_TX_QBASE_VFNUMQ_M)); 345 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 346 } else { 347 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 348 } 349 350 /* set regardless of mapping mode */ 351 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 352 353 /* VF Rx queues allocation */ 354 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 355 /* set the VF PF Rx queue range 356 * VFNUMQ value should be set to (number of queues - 1). A value 357 * of 0 means 1 queue and a value of 255 means 256 queues 358 */ 359 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & 360 VPLAN_RX_QBASE_VFFIRSTQ_M) | 361 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & 362 VPLAN_RX_QBASE_VFNUMQ_M)); 363 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 364 } else { 365 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 366 } 367 } 368 369 /** 370 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 371 * @vf: pointer to the VF structure 372 */ 373 static void ice_ena_vf_mappings(struct ice_vf *vf) 374 { 375 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 376 377 if (WARN_ON(!vsi)) 378 return; 379 380 ice_ena_vf_msix_mappings(vf); 381 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 382 } 383 384 /** 385 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 386 * @vf: VF to calculate the register index for 387 * @q_vector: a q_vector associated to the VF 388 */ 389 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 390 { 391 struct ice_pf *pf; 392 393 if (!vf || !q_vector) 394 return -EINVAL; 395 396 pf = vf->pf; 397 398 /* always add one to account for the OICR being the first MSIX */ 399 return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id + 400 q_vector->v_idx + 1; 401 } 402 403 /** 404 * ice_sriov_set_msix_res - Set any used MSIX resources 405 * @pf: pointer to PF structure 406 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 407 * 408 * This function allows SR-IOV resources to be taken from the end of the PF's 409 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 410 * just set the pf->sriov_base_vector and return success. 411 * 412 * If there are not enough resources available, return an error. This should 413 * always be caught by ice_set_per_vf_res(). 414 * 415 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 416 * in the PF's space available for SR-IOV. 417 */ 418 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 419 { 420 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 421 int vectors_used = ice_get_max_used_msix_vector(pf); 422 int sriov_base_vector; 423 424 sriov_base_vector = total_vectors - num_msix_needed; 425 426 /* make sure we only grab irq_tracker entries from the list end and 427 * that we have enough available MSIX vectors 428 */ 429 if (sriov_base_vector < vectors_used) 430 return -EINVAL; 431 432 pf->sriov_base_vector = sriov_base_vector; 433 434 return 0; 435 } 436 437 /** 438 * ice_set_per_vf_res - check if vectors and queues are available 439 * @pf: pointer to the PF structure 440 * @num_vfs: the number of SR-IOV VFs being configured 441 * 442 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 443 * get more vectors and can enable more queues per VF. Note that this does not 444 * grab any vectors from the SW pool already allocated. Also note, that all 445 * vector counts include one for each VF's miscellaneous interrupt vector 446 * (i.e. OICR). 447 * 448 * Minimum VFs - 2 vectors, 1 queue pair 449 * Small VFs - 5 vectors, 4 queue pairs 450 * Medium VFs - 17 vectors, 16 queue pairs 451 * 452 * Second, determine number of queue pairs per VF by starting with a pre-defined 453 * maximum each VF supports. If this is not possible, then we adjust based on 454 * queue pairs available on the device. 455 * 456 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 457 * by each VF during VF initialization and reset. 458 */ 459 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 460 { 461 int vectors_used = ice_get_max_used_msix_vector(pf); 462 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 463 int msix_avail_per_vf, msix_avail_for_sriov; 464 struct device *dev = ice_pf_to_dev(pf); 465 int err; 466 467 lockdep_assert_held(&pf->vfs.table_lock); 468 469 if (!num_vfs) 470 return -EINVAL; 471 472 /* determine MSI-X resources per VF */ 473 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 474 vectors_used; 475 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 476 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 477 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 478 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 479 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 480 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 481 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 482 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 483 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 484 } else { 485 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 486 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 487 num_vfs); 488 return -ENOSPC; 489 } 490 491 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 492 ICE_MAX_RSS_QS_PER_VF); 493 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 494 if (!avail_qs) 495 num_txq = 0; 496 else if (num_txq > avail_qs) 497 num_txq = rounddown_pow_of_two(avail_qs); 498 499 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 500 ICE_MAX_RSS_QS_PER_VF); 501 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 502 if (!avail_qs) 503 num_rxq = 0; 504 else if (num_rxq > avail_qs) 505 num_rxq = rounddown_pow_of_two(avail_qs); 506 507 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 508 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 509 ICE_MIN_QS_PER_VF, num_vfs); 510 return -ENOSPC; 511 } 512 513 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 514 if (err) { 515 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 516 num_vfs, err); 517 return err; 518 } 519 520 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 521 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 522 pf->vfs.num_msix_per = num_msix_per_vf; 523 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 524 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 525 526 return 0; 527 } 528 529 /** 530 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 531 * @vf: VF to initialize/setup the VSI for 532 * 533 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 534 * VF VSI's broadcast filter and is only used during initial VF creation. 535 */ 536 static int ice_init_vf_vsi_res(struct ice_vf *vf) 537 { 538 struct ice_pf *pf = vf->pf; 539 struct ice_vsi *vsi; 540 int err; 541 542 vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); 543 544 vsi = ice_vf_vsi_setup(vf); 545 if (!vsi) 546 return -ENOMEM; 547 548 err = ice_vf_init_host_cfg(vf, vsi); 549 if (err) 550 goto release_vsi; 551 552 return 0; 553 554 release_vsi: 555 ice_vf_vsi_release(vf); 556 return err; 557 } 558 559 /** 560 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 561 * @pf: PF the VFs are associated with 562 */ 563 static int ice_start_vfs(struct ice_pf *pf) 564 { 565 struct ice_hw *hw = &pf->hw; 566 unsigned int bkt, it_cnt; 567 struct ice_vf *vf; 568 int retval; 569 570 lockdep_assert_held(&pf->vfs.table_lock); 571 572 it_cnt = 0; 573 ice_for_each_vf(pf, bkt, vf) { 574 vf->vf_ops->clear_reset_trigger(vf); 575 576 retval = ice_init_vf_vsi_res(vf); 577 if (retval) { 578 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 579 vf->vf_id, retval); 580 goto teardown; 581 } 582 583 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 584 ice_ena_vf_mappings(vf); 585 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 586 it_cnt++; 587 } 588 589 ice_flush(hw); 590 return 0; 591 592 teardown: 593 ice_for_each_vf(pf, bkt, vf) { 594 if (it_cnt == 0) 595 break; 596 597 ice_dis_vf_mappings(vf); 598 ice_vf_vsi_release(vf); 599 it_cnt--; 600 } 601 602 return retval; 603 } 604 605 /** 606 * ice_sriov_free_vf - Free VF memory after all references are dropped 607 * @vf: pointer to VF to free 608 * 609 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 610 * structure has been dropped. 611 */ 612 static void ice_sriov_free_vf(struct ice_vf *vf) 613 { 614 mutex_destroy(&vf->cfg_lock); 615 616 kfree_rcu(vf, rcu); 617 } 618 619 /** 620 * ice_sriov_clear_reset_state - clears VF Reset status register 621 * @vf: the vf to configure 622 */ 623 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 624 { 625 struct ice_hw *hw = &vf->pf->hw; 626 627 /* Clear the reset status register so that VF immediately sees that 628 * the device is resetting, even if hardware hasn't yet gotten around 629 * to clearing VFGEN_RSTAT for us. 630 */ 631 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 632 } 633 634 /** 635 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 636 * @vf: the vf to configure 637 */ 638 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 639 { 640 struct ice_pf *pf = vf->pf; 641 642 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 643 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 644 } 645 646 /** 647 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 648 * @vf: pointer to VF structure 649 * @is_vflr: true if reset occurred due to VFLR 650 * 651 * Trigger and cleanup after a VF reset for a SR-IOV VF. 652 */ 653 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 654 { 655 struct ice_pf *pf = vf->pf; 656 u32 reg, reg_idx, bit_idx; 657 unsigned int vf_abs_id, i; 658 struct device *dev; 659 struct ice_hw *hw; 660 661 dev = ice_pf_to_dev(pf); 662 hw = &pf->hw; 663 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 664 665 /* In the case of a VFLR, HW has already reset the VF and we just need 666 * to clean up. Otherwise we must first trigger the reset using the 667 * VFRTRIG register. 668 */ 669 if (!is_vflr) { 670 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 671 reg |= VPGEN_VFRTRIG_VFSWR_M; 672 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 673 } 674 675 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 676 reg_idx = (vf_abs_id) / 32; 677 bit_idx = (vf_abs_id) % 32; 678 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 679 ice_flush(hw); 680 681 wr32(hw, PF_PCI_CIAA, 682 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 683 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 684 reg = rd32(hw, PF_PCI_CIAD); 685 /* no transactions pending so stop polling */ 686 if ((reg & VF_TRANS_PENDING_M) == 0) 687 break; 688 689 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 690 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 691 } 692 } 693 694 /** 695 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 696 * @vf: pointer to VF structure 697 * 698 * Returns true when reset is successful, else returns false 699 */ 700 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 701 { 702 struct ice_pf *pf = vf->pf; 703 unsigned int i; 704 u32 reg; 705 706 for (i = 0; i < 10; i++) { 707 /* VF reset requires driver to first reset the VF and then 708 * poll the status register to make sure that the reset 709 * completed successfully. 710 */ 711 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 712 if (reg & VPGEN_VFRSTAT_VFRD_M) 713 return true; 714 715 /* only sleep if the reset is not done */ 716 usleep_range(10, 20); 717 } 718 return false; 719 } 720 721 /** 722 * ice_sriov_clear_reset_trigger - enable VF to access hardware 723 * @vf: VF to enabled hardware access for 724 */ 725 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 726 { 727 struct ice_hw *hw = &vf->pf->hw; 728 u32 reg; 729 730 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 731 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 732 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 733 ice_flush(hw); 734 } 735 736 /** 737 * ice_sriov_create_vsi - Create a new VSI for a VF 738 * @vf: VF to create the VSI for 739 * 740 * This is called by ice_vf_recreate_vsi to create the new VSI after the old 741 * VSI has been released. 742 */ 743 static int ice_sriov_create_vsi(struct ice_vf *vf) 744 { 745 struct ice_vsi *vsi; 746 747 vsi = ice_vf_vsi_setup(vf); 748 if (!vsi) 749 return -ENOMEM; 750 751 return 0; 752 } 753 754 /** 755 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 756 * @vf: VF to perform tasks on 757 */ 758 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 759 { 760 ice_ena_vf_mappings(vf); 761 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 762 } 763 764 static const struct ice_vf_ops ice_sriov_vf_ops = { 765 .reset_type = ICE_VF_RESET, 766 .free = ice_sriov_free_vf, 767 .clear_reset_state = ice_sriov_clear_reset_state, 768 .clear_mbx_register = ice_sriov_clear_mbx_register, 769 .trigger_reset_register = ice_sriov_trigger_reset_register, 770 .poll_reset_status = ice_sriov_poll_reset_status, 771 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 772 .irq_close = NULL, 773 .create_vsi = ice_sriov_create_vsi, 774 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 775 }; 776 777 /** 778 * ice_create_vf_entries - Allocate and insert VF entries 779 * @pf: pointer to the PF structure 780 * @num_vfs: the number of VFs to allocate 781 * 782 * Allocate new VF entries and insert them into the hash table. Set some 783 * basic default fields for initializing the new VFs. 784 * 785 * After this function exits, the hash table will have num_vfs entries 786 * inserted. 787 * 788 * Returns 0 on success or an integer error code on failure. 789 */ 790 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 791 { 792 struct ice_vfs *vfs = &pf->vfs; 793 struct ice_vf *vf; 794 u16 vf_id; 795 int err; 796 797 lockdep_assert_held(&vfs->table_lock); 798 799 for (vf_id = 0; vf_id < num_vfs; vf_id++) { 800 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 801 if (!vf) { 802 err = -ENOMEM; 803 goto err_free_entries; 804 } 805 kref_init(&vf->refcnt); 806 807 vf->pf = pf; 808 vf->vf_id = vf_id; 809 810 /* set sriov vf ops for VFs created during SRIOV flow */ 811 vf->vf_ops = &ice_sriov_vf_ops; 812 813 ice_initialize_vf_entry(vf); 814 815 vf->vf_sw_id = pf->first_sw; 816 817 hash_add_rcu(vfs->table, &vf->entry, vf_id); 818 } 819 820 return 0; 821 822 err_free_entries: 823 ice_free_vf_entries(pf); 824 return err; 825 } 826 827 /** 828 * ice_ena_vfs - enable VFs so they are ready to be used 829 * @pf: pointer to the PF structure 830 * @num_vfs: number of VFs to enable 831 */ 832 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 833 { 834 struct device *dev = ice_pf_to_dev(pf); 835 struct ice_hw *hw = &pf->hw; 836 int ret; 837 838 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 839 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 840 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 841 set_bit(ICE_OICR_INTR_DIS, pf->state); 842 ice_flush(hw); 843 844 ret = pci_enable_sriov(pf->pdev, num_vfs); 845 if (ret) 846 goto err_unroll_intr; 847 848 mutex_lock(&pf->vfs.table_lock); 849 850 ret = ice_set_per_vf_res(pf, num_vfs); 851 if (ret) { 852 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 853 num_vfs, ret); 854 goto err_unroll_sriov; 855 } 856 857 ret = ice_create_vf_entries(pf, num_vfs); 858 if (ret) { 859 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 860 num_vfs); 861 goto err_unroll_sriov; 862 } 863 864 ret = ice_start_vfs(pf); 865 if (ret) { 866 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 867 ret = -EAGAIN; 868 goto err_unroll_vf_entries; 869 } 870 871 clear_bit(ICE_VF_DIS, pf->state); 872 873 ret = ice_eswitch_configure(pf); 874 if (ret) { 875 dev_err(dev, "Failed to configure eswitch, err %d\n", ret); 876 goto err_unroll_sriov; 877 } 878 879 /* rearm global interrupts */ 880 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 881 ice_irq_dynamic_ena(hw, NULL, NULL); 882 883 mutex_unlock(&pf->vfs.table_lock); 884 885 return 0; 886 887 err_unroll_vf_entries: 888 ice_free_vf_entries(pf); 889 err_unroll_sriov: 890 mutex_unlock(&pf->vfs.table_lock); 891 pci_disable_sriov(pf->pdev); 892 err_unroll_intr: 893 /* rearm interrupts here */ 894 ice_irq_dynamic_ena(hw, NULL, NULL); 895 clear_bit(ICE_OICR_INTR_DIS, pf->state); 896 return ret; 897 } 898 899 /** 900 * ice_pci_sriov_ena - Enable or change number of VFs 901 * @pf: pointer to the PF structure 902 * @num_vfs: number of VFs to allocate 903 * 904 * Returns 0 on success and negative on failure 905 */ 906 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 907 { 908 struct device *dev = ice_pf_to_dev(pf); 909 int err; 910 911 if (!num_vfs) { 912 ice_free_vfs(pf); 913 return 0; 914 } 915 916 if (num_vfs > pf->vfs.num_supported) { 917 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 918 num_vfs, pf->vfs.num_supported); 919 return -EOPNOTSUPP; 920 } 921 922 dev_info(dev, "Enabling %d VFs\n", num_vfs); 923 err = ice_ena_vfs(pf, num_vfs); 924 if (err) { 925 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 926 return err; 927 } 928 929 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 930 return 0; 931 } 932 933 /** 934 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 935 * @pf: PF to enabled SR-IOV on 936 */ 937 static int ice_check_sriov_allowed(struct ice_pf *pf) 938 { 939 struct device *dev = ice_pf_to_dev(pf); 940 941 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 942 dev_err(dev, "This device is not capable of SR-IOV\n"); 943 return -EOPNOTSUPP; 944 } 945 946 if (ice_is_safe_mode(pf)) { 947 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 948 return -EOPNOTSUPP; 949 } 950 951 if (!ice_pf_state_is_nominal(pf)) { 952 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 953 return -EBUSY; 954 } 955 956 return 0; 957 } 958 959 /** 960 * ice_sriov_configure - Enable or change number of VFs via sysfs 961 * @pdev: pointer to a pci_dev structure 962 * @num_vfs: number of VFs to allocate or 0 to free VFs 963 * 964 * This function is called when the user updates the number of VFs in sysfs. On 965 * success return whatever num_vfs was set to by the caller. Return negative on 966 * failure. 967 */ 968 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 969 { 970 struct ice_pf *pf = pci_get_drvdata(pdev); 971 struct device *dev = ice_pf_to_dev(pf); 972 int err; 973 974 err = ice_check_sriov_allowed(pf); 975 if (err) 976 return err; 977 978 if (!num_vfs) { 979 if (!pci_vfs_assigned(pdev)) { 980 ice_free_vfs(pf); 981 return 0; 982 } 983 984 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 985 return -EBUSY; 986 } 987 988 err = ice_pci_sriov_ena(pf, num_vfs); 989 if (err) 990 return err; 991 992 return num_vfs; 993 } 994 995 /** 996 * ice_process_vflr_event - Free VF resources via IRQ calls 997 * @pf: pointer to the PF structure 998 * 999 * called from the VFLR IRQ handler to 1000 * free up VF resources and state variables 1001 */ 1002 void ice_process_vflr_event(struct ice_pf *pf) 1003 { 1004 struct ice_hw *hw = &pf->hw; 1005 struct ice_vf *vf; 1006 unsigned int bkt; 1007 u32 reg; 1008 1009 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1010 !ice_has_vfs(pf)) 1011 return; 1012 1013 mutex_lock(&pf->vfs.table_lock); 1014 ice_for_each_vf(pf, bkt, vf) { 1015 u32 reg_idx, bit_idx; 1016 1017 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1018 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1019 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1020 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1021 if (reg & BIT(bit_idx)) 1022 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1023 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1024 } 1025 mutex_unlock(&pf->vfs.table_lock); 1026 } 1027 1028 /** 1029 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1030 * @pf: PF used to index all VFs 1031 * @pfq: queue index relative to the PF's function space 1032 * 1033 * If no VF is found who owns the pfq then return NULL, otherwise return a 1034 * pointer to the VF who owns the pfq 1035 * 1036 * If this function returns non-NULL, it acquires a reference count of the VF 1037 * structure. The caller is responsible for calling ice_put_vf() to drop this 1038 * reference. 1039 */ 1040 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1041 { 1042 struct ice_vf *vf; 1043 unsigned int bkt; 1044 1045 rcu_read_lock(); 1046 ice_for_each_vf_rcu(pf, bkt, vf) { 1047 struct ice_vsi *vsi; 1048 u16 rxq_idx; 1049 1050 vsi = ice_get_vf_vsi(vf); 1051 if (!vsi) 1052 continue; 1053 1054 ice_for_each_rxq(vsi, rxq_idx) 1055 if (vsi->rxq_map[rxq_idx] == pfq) { 1056 struct ice_vf *found; 1057 1058 if (kref_get_unless_zero(&vf->refcnt)) 1059 found = vf; 1060 else 1061 found = NULL; 1062 rcu_read_unlock(); 1063 return found; 1064 } 1065 } 1066 rcu_read_unlock(); 1067 1068 return NULL; 1069 } 1070 1071 /** 1072 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1073 * @pf: PF used for conversion 1074 * @globalq: global queue index used to convert to PF space queue index 1075 */ 1076 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1077 { 1078 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1079 } 1080 1081 /** 1082 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1083 * @pf: PF that the LAN overflow event happened on 1084 * @event: structure holding the event information for the LAN overflow event 1085 * 1086 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1087 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1088 * reset on the offending VF. 1089 */ 1090 void 1091 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1092 { 1093 u32 gldcb_rtctq, queue; 1094 struct ice_vf *vf; 1095 1096 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1097 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1098 1099 /* event returns device global Rx queue number */ 1100 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> 1101 GLDCB_RTCTQ_RXQNUM_S; 1102 1103 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1104 if (!vf) 1105 return; 1106 1107 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1108 ice_put_vf(vf); 1109 } 1110 1111 /** 1112 * ice_set_vf_spoofchk 1113 * @netdev: network interface device structure 1114 * @vf_id: VF identifier 1115 * @ena: flag to enable or disable feature 1116 * 1117 * Enable or disable VF spoof checking 1118 */ 1119 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1120 { 1121 struct ice_netdev_priv *np = netdev_priv(netdev); 1122 struct ice_pf *pf = np->vsi->back; 1123 struct ice_vsi *vf_vsi; 1124 struct device *dev; 1125 struct ice_vf *vf; 1126 int ret; 1127 1128 dev = ice_pf_to_dev(pf); 1129 1130 vf = ice_get_vf_by_id(pf, vf_id); 1131 if (!vf) 1132 return -EINVAL; 1133 1134 ret = ice_check_vf_ready_for_cfg(vf); 1135 if (ret) 1136 goto out_put_vf; 1137 1138 vf_vsi = ice_get_vf_vsi(vf); 1139 if (!vf_vsi) { 1140 netdev_err(netdev, "VSI %d for VF %d is null\n", 1141 vf->lan_vsi_idx, vf->vf_id); 1142 ret = -EINVAL; 1143 goto out_put_vf; 1144 } 1145 1146 if (vf_vsi->type != ICE_VSI_VF) { 1147 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1148 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1149 ret = -ENODEV; 1150 goto out_put_vf; 1151 } 1152 1153 if (ena == vf->spoofchk) { 1154 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1155 ret = 0; 1156 goto out_put_vf; 1157 } 1158 1159 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1160 if (ret) 1161 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1162 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1163 else 1164 vf->spoofchk = ena; 1165 1166 out_put_vf: 1167 ice_put_vf(vf); 1168 return ret; 1169 } 1170 1171 /** 1172 * ice_get_vf_cfg 1173 * @netdev: network interface device structure 1174 * @vf_id: VF identifier 1175 * @ivi: VF configuration structure 1176 * 1177 * return VF configuration 1178 */ 1179 int 1180 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1181 { 1182 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1183 struct ice_vf *vf; 1184 int ret; 1185 1186 vf = ice_get_vf_by_id(pf, vf_id); 1187 if (!vf) 1188 return -EINVAL; 1189 1190 ret = ice_check_vf_ready_for_cfg(vf); 1191 if (ret) 1192 goto out_put_vf; 1193 1194 ivi->vf = vf_id; 1195 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1196 1197 /* VF configuration for VLAN and applicable QoS */ 1198 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1199 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1200 if (ice_vf_is_port_vlan_ena(vf)) 1201 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1202 1203 ivi->trusted = vf->trusted; 1204 ivi->spoofchk = vf->spoofchk; 1205 if (!vf->link_forced) 1206 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1207 else if (vf->link_up) 1208 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1209 else 1210 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1211 ivi->max_tx_rate = vf->max_tx_rate; 1212 ivi->min_tx_rate = vf->min_tx_rate; 1213 1214 out_put_vf: 1215 ice_put_vf(vf); 1216 return ret; 1217 } 1218 1219 /** 1220 * ice_set_vf_mac 1221 * @netdev: network interface device structure 1222 * @vf_id: VF identifier 1223 * @mac: MAC address 1224 * 1225 * program VF MAC address 1226 */ 1227 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1228 { 1229 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1230 struct ice_vf *vf; 1231 int ret; 1232 1233 if (is_multicast_ether_addr(mac)) { 1234 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1235 return -EINVAL; 1236 } 1237 1238 vf = ice_get_vf_by_id(pf, vf_id); 1239 if (!vf) 1240 return -EINVAL; 1241 1242 /* nothing left to do, unicast MAC already set */ 1243 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1244 ether_addr_equal(vf->hw_lan_addr, mac)) { 1245 ret = 0; 1246 goto out_put_vf; 1247 } 1248 1249 ret = ice_check_vf_ready_for_cfg(vf); 1250 if (ret) 1251 goto out_put_vf; 1252 1253 mutex_lock(&vf->cfg_lock); 1254 1255 /* VF is notified of its new MAC via the PF's response to the 1256 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1257 */ 1258 ether_addr_copy(vf->dev_lan_addr, mac); 1259 ether_addr_copy(vf->hw_lan_addr, mac); 1260 if (is_zero_ether_addr(mac)) { 1261 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1262 vf->pf_set_mac = false; 1263 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1264 vf->vf_id); 1265 } else { 1266 /* PF will add MAC rule for the VF */ 1267 vf->pf_set_mac = true; 1268 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1269 mac, vf_id); 1270 } 1271 1272 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1273 mutex_unlock(&vf->cfg_lock); 1274 1275 out_put_vf: 1276 ice_put_vf(vf); 1277 return ret; 1278 } 1279 1280 /** 1281 * ice_set_vf_trust 1282 * @netdev: network interface device structure 1283 * @vf_id: VF identifier 1284 * @trusted: Boolean value to enable/disable trusted VF 1285 * 1286 * Enable or disable a given VF as trusted 1287 */ 1288 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1289 { 1290 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1291 struct ice_vf *vf; 1292 int ret; 1293 1294 vf = ice_get_vf_by_id(pf, vf_id); 1295 if (!vf) 1296 return -EINVAL; 1297 1298 if (ice_is_eswitch_mode_switchdev(pf)) { 1299 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1300 return -EOPNOTSUPP; 1301 } 1302 1303 ret = ice_check_vf_ready_for_cfg(vf); 1304 if (ret) 1305 goto out_put_vf; 1306 1307 /* Check if already trusted */ 1308 if (trusted == vf->trusted) { 1309 ret = 0; 1310 goto out_put_vf; 1311 } 1312 1313 mutex_lock(&vf->cfg_lock); 1314 1315 vf->trusted = trusted; 1316 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1317 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1318 vf_id, trusted ? "" : "un"); 1319 1320 mutex_unlock(&vf->cfg_lock); 1321 1322 out_put_vf: 1323 ice_put_vf(vf); 1324 return ret; 1325 } 1326 1327 /** 1328 * ice_set_vf_link_state 1329 * @netdev: network interface device structure 1330 * @vf_id: VF identifier 1331 * @link_state: required link state 1332 * 1333 * Set VF's link state, irrespective of physical link state status 1334 */ 1335 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1336 { 1337 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1338 struct ice_vf *vf; 1339 int ret; 1340 1341 vf = ice_get_vf_by_id(pf, vf_id); 1342 if (!vf) 1343 return -EINVAL; 1344 1345 ret = ice_check_vf_ready_for_cfg(vf); 1346 if (ret) 1347 goto out_put_vf; 1348 1349 switch (link_state) { 1350 case IFLA_VF_LINK_STATE_AUTO: 1351 vf->link_forced = false; 1352 break; 1353 case IFLA_VF_LINK_STATE_ENABLE: 1354 vf->link_forced = true; 1355 vf->link_up = true; 1356 break; 1357 case IFLA_VF_LINK_STATE_DISABLE: 1358 vf->link_forced = true; 1359 vf->link_up = false; 1360 break; 1361 default: 1362 ret = -EINVAL; 1363 goto out_put_vf; 1364 } 1365 1366 ice_vc_notify_vf_link_state(vf); 1367 1368 out_put_vf: 1369 ice_put_vf(vf); 1370 return ret; 1371 } 1372 1373 /** 1374 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1375 * @pf: PF associated with VFs 1376 */ 1377 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1378 { 1379 struct ice_vf *vf; 1380 unsigned int bkt; 1381 int rate = 0; 1382 1383 rcu_read_lock(); 1384 ice_for_each_vf_rcu(pf, bkt, vf) 1385 rate += vf->min_tx_rate; 1386 rcu_read_unlock(); 1387 1388 return rate; 1389 } 1390 1391 /** 1392 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1393 * @vf: VF trying to configure min_tx_rate 1394 * @min_tx_rate: min Tx rate in Mbps 1395 * 1396 * Check if the min_tx_rate being passed in will cause oversubscription of total 1397 * min_tx_rate based on the current link speed and all other VFs configured 1398 * min_tx_rate 1399 * 1400 * Return true if the passed min_tx_rate would cause oversubscription, else 1401 * return false 1402 */ 1403 static bool 1404 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1405 { 1406 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1407 int all_vfs_min_tx_rate; 1408 int link_speed_mbps; 1409 1410 if (WARN_ON(!vsi)) 1411 return false; 1412 1413 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1414 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1415 1416 /* this VF's previous rate is being overwritten */ 1417 all_vfs_min_tx_rate -= vf->min_tx_rate; 1418 1419 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1420 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1421 min_tx_rate, vf->vf_id, 1422 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1423 link_speed_mbps); 1424 return true; 1425 } 1426 1427 return false; 1428 } 1429 1430 /** 1431 * ice_set_vf_bw - set min/max VF bandwidth 1432 * @netdev: network interface device structure 1433 * @vf_id: VF identifier 1434 * @min_tx_rate: Minimum Tx rate in Mbps 1435 * @max_tx_rate: Maximum Tx rate in Mbps 1436 */ 1437 int 1438 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1439 int max_tx_rate) 1440 { 1441 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1442 struct ice_vsi *vsi; 1443 struct device *dev; 1444 struct ice_vf *vf; 1445 int ret; 1446 1447 dev = ice_pf_to_dev(pf); 1448 1449 vf = ice_get_vf_by_id(pf, vf_id); 1450 if (!vf) 1451 return -EINVAL; 1452 1453 ret = ice_check_vf_ready_for_cfg(vf); 1454 if (ret) 1455 goto out_put_vf; 1456 1457 vsi = ice_get_vf_vsi(vf); 1458 if (!vsi) { 1459 ret = -EINVAL; 1460 goto out_put_vf; 1461 } 1462 1463 if (min_tx_rate && ice_is_dcb_active(pf)) { 1464 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1465 ret = -EOPNOTSUPP; 1466 goto out_put_vf; 1467 } 1468 1469 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1470 ret = -EINVAL; 1471 goto out_put_vf; 1472 } 1473 1474 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1475 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1476 if (ret) { 1477 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1478 vf->vf_id); 1479 goto out_put_vf; 1480 } 1481 1482 vf->min_tx_rate = min_tx_rate; 1483 } 1484 1485 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1486 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1487 if (ret) { 1488 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1489 vf->vf_id); 1490 goto out_put_vf; 1491 } 1492 1493 vf->max_tx_rate = max_tx_rate; 1494 } 1495 1496 out_put_vf: 1497 ice_put_vf(vf); 1498 return ret; 1499 } 1500 1501 /** 1502 * ice_get_vf_stats - populate some stats for the VF 1503 * @netdev: the netdev of the PF 1504 * @vf_id: the host OS identifier (0-255) 1505 * @vf_stats: pointer to the OS memory to be initialized 1506 */ 1507 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1508 struct ifla_vf_stats *vf_stats) 1509 { 1510 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1511 struct ice_eth_stats *stats; 1512 struct ice_vsi *vsi; 1513 struct ice_vf *vf; 1514 int ret; 1515 1516 vf = ice_get_vf_by_id(pf, vf_id); 1517 if (!vf) 1518 return -EINVAL; 1519 1520 ret = ice_check_vf_ready_for_cfg(vf); 1521 if (ret) 1522 goto out_put_vf; 1523 1524 vsi = ice_get_vf_vsi(vf); 1525 if (!vsi) { 1526 ret = -EINVAL; 1527 goto out_put_vf; 1528 } 1529 1530 ice_update_eth_stats(vsi); 1531 stats = &vsi->eth_stats; 1532 1533 memset(vf_stats, 0, sizeof(*vf_stats)); 1534 1535 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1536 stats->rx_multicast; 1537 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1538 stats->tx_multicast; 1539 vf_stats->rx_bytes = stats->rx_bytes; 1540 vf_stats->tx_bytes = stats->tx_bytes; 1541 vf_stats->broadcast = stats->rx_broadcast; 1542 vf_stats->multicast = stats->rx_multicast; 1543 vf_stats->rx_dropped = stats->rx_discards; 1544 vf_stats->tx_dropped = stats->tx_discards; 1545 1546 out_put_vf: 1547 ice_put_vf(vf); 1548 return ret; 1549 } 1550 1551 /** 1552 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1553 * @hw: hardware structure used to check the VLAN mode 1554 * @vlan_proto: VLAN TPID being checked 1555 * 1556 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1557 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1558 * Mode (SVM), then only ETH_P_8021Q is supported. 1559 */ 1560 static bool 1561 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1562 { 1563 bool is_supported = false; 1564 1565 switch (vlan_proto) { 1566 case ETH_P_8021Q: 1567 is_supported = true; 1568 break; 1569 case ETH_P_8021AD: 1570 if (ice_is_dvm_ena(hw)) 1571 is_supported = true; 1572 break; 1573 } 1574 1575 return is_supported; 1576 } 1577 1578 /** 1579 * ice_set_vf_port_vlan 1580 * @netdev: network interface device structure 1581 * @vf_id: VF identifier 1582 * @vlan_id: VLAN ID being set 1583 * @qos: priority setting 1584 * @vlan_proto: VLAN protocol 1585 * 1586 * program VF Port VLAN ID and/or QoS 1587 */ 1588 int 1589 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1590 __be16 vlan_proto) 1591 { 1592 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1593 u16 local_vlan_proto = ntohs(vlan_proto); 1594 struct device *dev; 1595 struct ice_vf *vf; 1596 int ret; 1597 1598 dev = ice_pf_to_dev(pf); 1599 1600 if (vlan_id >= VLAN_N_VID || qos > 7) { 1601 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1602 vf_id, vlan_id, qos); 1603 return -EINVAL; 1604 } 1605 1606 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1607 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1608 local_vlan_proto); 1609 return -EPROTONOSUPPORT; 1610 } 1611 1612 vf = ice_get_vf_by_id(pf, vf_id); 1613 if (!vf) 1614 return -EINVAL; 1615 1616 ret = ice_check_vf_ready_for_cfg(vf); 1617 if (ret) 1618 goto out_put_vf; 1619 1620 if (ice_vf_get_port_vlan_prio(vf) == qos && 1621 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1622 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1623 /* duplicate request, so just return success */ 1624 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1625 vlan_id, qos, local_vlan_proto); 1626 ret = 0; 1627 goto out_put_vf; 1628 } 1629 1630 mutex_lock(&vf->cfg_lock); 1631 1632 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1633 if (ice_vf_is_port_vlan_ena(vf)) 1634 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1635 vlan_id, qos, local_vlan_proto, vf_id); 1636 else 1637 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1638 1639 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1640 mutex_unlock(&vf->cfg_lock); 1641 1642 out_put_vf: 1643 ice_put_vf(vf); 1644 return ret; 1645 } 1646 1647 /** 1648 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1649 * @vf: pointer to the VF structure 1650 */ 1651 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1652 { 1653 struct ice_pf *pf = vf->pf; 1654 struct device *dev; 1655 1656 dev = ice_pf_to_dev(pf); 1657 1658 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1659 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1660 vf->dev_lan_addr, 1661 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1662 ? "on" : "off"); 1663 } 1664 1665 /** 1666 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1667 * @pf: pointer to the PF structure 1668 * 1669 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1670 */ 1671 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1672 { 1673 struct device *dev = ice_pf_to_dev(pf); 1674 struct ice_hw *hw = &pf->hw; 1675 struct ice_vf *vf; 1676 unsigned int bkt; 1677 1678 /* check that there are pending MDD events to print */ 1679 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1680 return; 1681 1682 /* VF MDD event logs are rate limited to one second intervals */ 1683 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1684 return; 1685 1686 pf->vfs.last_printed_mdd_jiffies = jiffies; 1687 1688 mutex_lock(&pf->vfs.table_lock); 1689 ice_for_each_vf(pf, bkt, vf) { 1690 /* only print Rx MDD event message if there are new events */ 1691 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1692 vf->mdd_rx_events.last_printed = 1693 vf->mdd_rx_events.count; 1694 ice_print_vf_rx_mdd_event(vf); 1695 } 1696 1697 /* only print Tx MDD event message if there are new events */ 1698 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1699 vf->mdd_tx_events.last_printed = 1700 vf->mdd_tx_events.count; 1701 1702 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1703 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1704 vf->dev_lan_addr); 1705 } 1706 } 1707 mutex_unlock(&pf->vfs.table_lock); 1708 } 1709 1710 /** 1711 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1712 * @pdev: pointer to a pci_dev structure 1713 * 1714 * Called when recovering from a PF FLR to restore interrupt capability to 1715 * the VFs. 1716 */ 1717 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev) 1718 { 1719 u16 vf_id; 1720 int pos; 1721 1722 if (!pci_num_vf(pdev)) 1723 return; 1724 1725 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 1726 if (pos) { 1727 struct pci_dev *vfdev; 1728 1729 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, 1730 &vf_id); 1731 vfdev = pci_get_device(pdev->vendor, vf_id, NULL); 1732 while (vfdev) { 1733 if (vfdev->is_virtfn && vfdev->physfn == pdev) 1734 pci_restore_msi_state(vfdev); 1735 vfdev = pci_get_device(pdev->vendor, vf_id, 1736 vfdev); 1737 } 1738 } 1739 } 1740