1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include <net/devlink.h> 5 #include "ice_sched.h" 6 7 /** 8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 9 * @pi: port information structure 10 * @info: Scheduler element information from firmware 11 * 12 * This function inserts the root node of the scheduling tree topology 13 * to the SW DB. 14 */ 15 static int 16 ice_sched_add_root_node(struct ice_port_info *pi, 17 struct ice_aqc_txsched_elem_data *info) 18 { 19 struct ice_sched_node *root; 20 struct ice_hw *hw; 21 22 if (!pi) 23 return -EINVAL; 24 25 hw = pi->hw; 26 27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 28 if (!root) 29 return -ENOMEM; 30 31 /* coverity[suspicious_sizeof] */ 32 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 33 sizeof(*root), GFP_KERNEL); 34 if (!root->children) { 35 devm_kfree(ice_hw_to_dev(hw), root); 36 return -ENOMEM; 37 } 38 39 memcpy(&root->info, info, sizeof(*info)); 40 pi->root = root; 41 return 0; 42 } 43 44 /** 45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 47 * @teid: node TEID to search 48 * 49 * This function searches for a node matching the TEID in the scheduling tree 50 * from the SW DB. The search is recursive and is restricted by the number of 51 * layers it has searched through; stopping at the max supported layer. 52 * 53 * This function needs to be called when holding the port_info->sched_lock 54 */ 55 struct ice_sched_node * 56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 57 { 58 u16 i; 59 60 /* The TEID is same as that of the start_node */ 61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 62 return start_node; 63 64 /* The node has no children or is at the max layer */ 65 if (!start_node->num_children || 66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 68 return NULL; 69 70 /* Check if TEID matches to any of the children nodes */ 71 for (i = 0; i < start_node->num_children; i++) 72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 73 return start_node->children[i]; 74 75 /* Search within each child's sub-tree */ 76 for (i = 0; i < start_node->num_children; i++) { 77 struct ice_sched_node *tmp; 78 79 tmp = ice_sched_find_node_by_teid(start_node->children[i], 80 teid); 81 if (tmp) 82 return tmp; 83 } 84 85 return NULL; 86 } 87 88 /** 89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 90 * @hw: pointer to the HW struct 91 * @cmd_opc: cmd opcode 92 * @elems_req: number of elements to request 93 * @buf: pointer to buffer 94 * @buf_size: buffer size in bytes 95 * @elems_resp: returns total number of elements response 96 * @cd: pointer to command details structure or NULL 97 * 98 * This function sends a scheduling elements cmd (cmd_opc) 99 */ 100 static int 101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 102 u16 elems_req, void *buf, u16 buf_size, 103 u16 *elems_resp, struct ice_sq_cd *cd) 104 { 105 struct ice_aqc_sched_elem_cmd *cmd; 106 struct ice_aq_desc desc; 107 int status; 108 109 cmd = &desc.params.sched_elem_cmd; 110 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 111 cmd->num_elem_req = cpu_to_le16(elems_req); 112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 113 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 114 if (!status && elems_resp) 115 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 116 117 return status; 118 } 119 120 /** 121 * ice_aq_query_sched_elems - query scheduler elements 122 * @hw: pointer to the HW struct 123 * @elems_req: number of elements to query 124 * @buf: pointer to buffer 125 * @buf_size: buffer size in bytes 126 * @elems_ret: returns total number of elements returned 127 * @cd: pointer to command details structure or NULL 128 * 129 * Query scheduling elements (0x0404) 130 */ 131 int 132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 134 u16 *elems_ret, struct ice_sq_cd *cd) 135 { 136 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 137 elems_req, (void *)buf, buf_size, 138 elems_ret, cd); 139 } 140 141 /** 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 143 * @pi: port information structure 144 * @layer: Scheduler layer of the node 145 * @info: Scheduler element information from firmware 146 * @prealloc_node: preallocated ice_sched_node struct for SW DB 147 * 148 * This function inserts a scheduler node to the SW DB. 149 */ 150 int 151 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 152 struct ice_aqc_txsched_elem_data *info, 153 struct ice_sched_node *prealloc_node) 154 { 155 struct ice_aqc_txsched_elem_data elem; 156 struct ice_sched_node *parent; 157 struct ice_sched_node *node; 158 struct ice_hw *hw; 159 int status; 160 161 if (!pi) 162 return -EINVAL; 163 164 hw = pi->hw; 165 166 /* A valid parent node should be there */ 167 parent = ice_sched_find_node_by_teid(pi->root, 168 le32_to_cpu(info->parent_teid)); 169 if (!parent) { 170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 171 le32_to_cpu(info->parent_teid)); 172 return -EINVAL; 173 } 174 175 /* query the current node information from FW before adding it 176 * to the SW DB 177 */ 178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 179 if (status) 180 return status; 181 182 if (prealloc_node) 183 node = prealloc_node; 184 else 185 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 186 if (!node) 187 return -ENOMEM; 188 if (hw->max_children[layer]) { 189 /* coverity[suspicious_sizeof] */ 190 node->children = devm_kcalloc(ice_hw_to_dev(hw), 191 hw->max_children[layer], 192 sizeof(*node), GFP_KERNEL); 193 if (!node->children) { 194 devm_kfree(ice_hw_to_dev(hw), node); 195 return -ENOMEM; 196 } 197 } 198 199 node->in_use = true; 200 node->parent = parent; 201 node->tx_sched_layer = layer; 202 parent->children[parent->num_children++] = node; 203 node->info = elem; 204 return 0; 205 } 206 207 /** 208 * ice_aq_delete_sched_elems - delete scheduler elements 209 * @hw: pointer to the HW struct 210 * @grps_req: number of groups to delete 211 * @buf: pointer to buffer 212 * @buf_size: buffer size in bytes 213 * @grps_del: returns total number of elements deleted 214 * @cd: pointer to command details structure or NULL 215 * 216 * Delete scheduling elements (0x040F) 217 */ 218 static int 219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 220 struct ice_aqc_delete_elem *buf, u16 buf_size, 221 u16 *grps_del, struct ice_sq_cd *cd) 222 { 223 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 224 grps_req, (void *)buf, buf_size, 225 grps_del, cd); 226 } 227 228 /** 229 * ice_sched_remove_elems - remove nodes from HW 230 * @hw: pointer to the HW struct 231 * @parent: pointer to the parent node 232 * @num_nodes: number of nodes 233 * @node_teids: array of node teids to be deleted 234 * 235 * This function remove nodes from HW 236 */ 237 static int 238 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 239 u16 num_nodes, u32 *node_teids) 240 { 241 struct ice_aqc_delete_elem *buf; 242 u16 i, num_groups_removed = 0; 243 u16 buf_size; 244 int status; 245 246 buf_size = struct_size(buf, teid, num_nodes); 247 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 248 if (!buf) 249 return -ENOMEM; 250 251 buf->hdr.parent_teid = parent->info.node_teid; 252 buf->hdr.num_elems = cpu_to_le16(num_nodes); 253 for (i = 0; i < num_nodes; i++) 254 buf->teid[i] = cpu_to_le32(node_teids[i]); 255 256 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 257 &num_groups_removed, NULL); 258 if (status || num_groups_removed != 1) 259 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 260 hw->adminq.sq_last_status); 261 262 devm_kfree(ice_hw_to_dev(hw), buf); 263 return status; 264 } 265 266 /** 267 * ice_sched_get_first_node - get the first node of the given layer 268 * @pi: port information structure 269 * @parent: pointer the base node of the subtree 270 * @layer: layer number 271 * 272 * This function retrieves the first node of the given layer from the subtree 273 */ 274 static struct ice_sched_node * 275 ice_sched_get_first_node(struct ice_port_info *pi, 276 struct ice_sched_node *parent, u8 layer) 277 { 278 return pi->sib_head[parent->tc_num][layer]; 279 } 280 281 /** 282 * ice_sched_get_tc_node - get pointer to TC node 283 * @pi: port information structure 284 * @tc: TC number 285 * 286 * This function returns the TC node pointer 287 */ 288 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 289 { 290 u8 i; 291 292 if (!pi || !pi->root) 293 return NULL; 294 for (i = 0; i < pi->root->num_children; i++) 295 if (pi->root->children[i]->tc_num == tc) 296 return pi->root->children[i]; 297 return NULL; 298 } 299 300 /** 301 * ice_free_sched_node - Free a Tx scheduler node from SW DB 302 * @pi: port information structure 303 * @node: pointer to the ice_sched_node struct 304 * 305 * This function frees up a node from SW DB as well as from HW 306 * 307 * This function needs to be called with the port_info->sched_lock held 308 */ 309 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 310 { 311 struct ice_sched_node *parent; 312 struct ice_hw *hw = pi->hw; 313 u8 i, j; 314 315 /* Free the children before freeing up the parent node 316 * The parent array is updated below and that shifts the nodes 317 * in the array. So always pick the first child if num children > 0 318 */ 319 while (node->num_children) 320 ice_free_sched_node(pi, node->children[0]); 321 322 /* Leaf, TC and root nodes can't be deleted by SW */ 323 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 324 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 325 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 326 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 327 u32 teid = le32_to_cpu(node->info.node_teid); 328 329 ice_sched_remove_elems(hw, node->parent, 1, &teid); 330 } 331 parent = node->parent; 332 /* root has no parent */ 333 if (parent) { 334 struct ice_sched_node *p; 335 336 /* update the parent */ 337 for (i = 0; i < parent->num_children; i++) 338 if (parent->children[i] == node) { 339 for (j = i + 1; j < parent->num_children; j++) 340 parent->children[j - 1] = 341 parent->children[j]; 342 parent->num_children--; 343 break; 344 } 345 346 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 347 while (p) { 348 if (p->sibling == node) { 349 p->sibling = node->sibling; 350 break; 351 } 352 p = p->sibling; 353 } 354 355 /* update the sibling head if head is getting removed */ 356 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 357 pi->sib_head[node->tc_num][node->tx_sched_layer] = 358 node->sibling; 359 } 360 361 /* leaf nodes have no children */ 362 if (node->children) 363 devm_kfree(ice_hw_to_dev(hw), node->children); 364 365 kfree(node->name); 366 xa_erase(&pi->sched_node_ids, node->id); 367 devm_kfree(ice_hw_to_dev(hw), node); 368 } 369 370 /** 371 * ice_aq_get_dflt_topo - gets default scheduler topology 372 * @hw: pointer to the HW struct 373 * @lport: logical port number 374 * @buf: pointer to buffer 375 * @buf_size: buffer size in bytes 376 * @num_branches: returns total number of queue to port branches 377 * @cd: pointer to command details structure or NULL 378 * 379 * Get default scheduler topology (0x400) 380 */ 381 static int 382 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 383 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 384 u8 *num_branches, struct ice_sq_cd *cd) 385 { 386 struct ice_aqc_get_topo *cmd; 387 struct ice_aq_desc desc; 388 int status; 389 390 cmd = &desc.params.get_topo; 391 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 392 cmd->port_num = lport; 393 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 394 if (!status && num_branches) 395 *num_branches = cmd->num_branches; 396 397 return status; 398 } 399 400 /** 401 * ice_aq_add_sched_elems - adds scheduling element 402 * @hw: pointer to the HW struct 403 * @grps_req: the number of groups that are requested to be added 404 * @buf: pointer to buffer 405 * @buf_size: buffer size in bytes 406 * @grps_added: returns total number of groups added 407 * @cd: pointer to command details structure or NULL 408 * 409 * Add scheduling elements (0x0401) 410 */ 411 static int 412 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 413 struct ice_aqc_add_elem *buf, u16 buf_size, 414 u16 *grps_added, struct ice_sq_cd *cd) 415 { 416 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 417 grps_req, (void *)buf, buf_size, 418 grps_added, cd); 419 } 420 421 /** 422 * ice_aq_cfg_sched_elems - configures scheduler elements 423 * @hw: pointer to the HW struct 424 * @elems_req: number of elements to configure 425 * @buf: pointer to buffer 426 * @buf_size: buffer size in bytes 427 * @elems_cfgd: returns total number of elements configured 428 * @cd: pointer to command details structure or NULL 429 * 430 * Configure scheduling elements (0x0403) 431 */ 432 static int 433 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 434 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 435 u16 *elems_cfgd, struct ice_sq_cd *cd) 436 { 437 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 438 elems_req, (void *)buf, buf_size, 439 elems_cfgd, cd); 440 } 441 442 /** 443 * ice_aq_move_sched_elems - move scheduler elements 444 * @hw: pointer to the HW struct 445 * @grps_req: number of groups to move 446 * @buf: pointer to buffer 447 * @buf_size: buffer size in bytes 448 * @grps_movd: returns total number of groups moved 449 * @cd: pointer to command details structure or NULL 450 * 451 * Move scheduling elements (0x0408) 452 */ 453 static int 454 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 455 struct ice_aqc_move_elem *buf, u16 buf_size, 456 u16 *grps_movd, struct ice_sq_cd *cd) 457 { 458 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 459 grps_req, (void *)buf, buf_size, 460 grps_movd, cd); 461 } 462 463 /** 464 * ice_aq_suspend_sched_elems - suspend scheduler elements 465 * @hw: pointer to the HW struct 466 * @elems_req: number of elements to suspend 467 * @buf: pointer to buffer 468 * @buf_size: buffer size in bytes 469 * @elems_ret: returns total number of elements suspended 470 * @cd: pointer to command details structure or NULL 471 * 472 * Suspend scheduling elements (0x0409) 473 */ 474 static int 475 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 476 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 477 { 478 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 479 elems_req, (void *)buf, buf_size, 480 elems_ret, cd); 481 } 482 483 /** 484 * ice_aq_resume_sched_elems - resume scheduler elements 485 * @hw: pointer to the HW struct 486 * @elems_req: number of elements to resume 487 * @buf: pointer to buffer 488 * @buf_size: buffer size in bytes 489 * @elems_ret: returns total number of elements resumed 490 * @cd: pointer to command details structure or NULL 491 * 492 * resume scheduling elements (0x040A) 493 */ 494 static int 495 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 496 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 497 { 498 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 499 elems_req, (void *)buf, buf_size, 500 elems_ret, cd); 501 } 502 503 /** 504 * ice_aq_query_sched_res - query scheduler resource 505 * @hw: pointer to the HW struct 506 * @buf_size: buffer size in bytes 507 * @buf: pointer to buffer 508 * @cd: pointer to command details structure or NULL 509 * 510 * Query scheduler resource allocation (0x0412) 511 */ 512 static int 513 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 514 struct ice_aqc_query_txsched_res_resp *buf, 515 struct ice_sq_cd *cd) 516 { 517 struct ice_aq_desc desc; 518 519 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 520 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 521 } 522 523 /** 524 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 525 * @hw: pointer to the HW struct 526 * @num_nodes: number of nodes 527 * @node_teids: array of node teids to be suspended or resumed 528 * @suspend: true means suspend / false means resume 529 * 530 * This function suspends or resumes HW nodes 531 */ 532 static int 533 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 534 bool suspend) 535 { 536 u16 i, buf_size, num_elem_ret = 0; 537 __le32 *buf; 538 int status; 539 540 buf_size = sizeof(*buf) * num_nodes; 541 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 542 if (!buf) 543 return -ENOMEM; 544 545 for (i = 0; i < num_nodes; i++) 546 buf[i] = cpu_to_le32(node_teids[i]); 547 548 if (suspend) 549 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 550 buf_size, &num_elem_ret, 551 NULL); 552 else 553 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 554 buf_size, &num_elem_ret, 555 NULL); 556 if (status || num_elem_ret != num_nodes) 557 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 558 559 devm_kfree(ice_hw_to_dev(hw), buf); 560 return status; 561 } 562 563 /** 564 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 565 * @hw: pointer to the HW struct 566 * @vsi_handle: VSI handle 567 * @tc: TC number 568 * @new_numqs: number of queues 569 */ 570 static int 571 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 572 { 573 struct ice_vsi_ctx *vsi_ctx; 574 struct ice_q_ctx *q_ctx; 575 576 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 577 if (!vsi_ctx) 578 return -EINVAL; 579 /* allocate LAN queue contexts */ 580 if (!vsi_ctx->lan_q_ctx[tc]) { 581 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 582 new_numqs, 583 sizeof(*q_ctx), 584 GFP_KERNEL); 585 if (!vsi_ctx->lan_q_ctx[tc]) 586 return -ENOMEM; 587 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 588 return 0; 589 } 590 /* num queues are increased, update the queue contexts */ 591 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 592 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 593 594 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 595 sizeof(*q_ctx), GFP_KERNEL); 596 if (!q_ctx) 597 return -ENOMEM; 598 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 599 prev_num * sizeof(*q_ctx)); 600 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 601 vsi_ctx->lan_q_ctx[tc] = q_ctx; 602 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 603 } 604 return 0; 605 } 606 607 /** 608 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 609 * @hw: pointer to the HW struct 610 * @vsi_handle: VSI handle 611 * @tc: TC number 612 * @new_numqs: number of queues 613 */ 614 static int 615 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 616 { 617 struct ice_vsi_ctx *vsi_ctx; 618 struct ice_q_ctx *q_ctx; 619 620 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 621 if (!vsi_ctx) 622 return -EINVAL; 623 /* allocate RDMA queue contexts */ 624 if (!vsi_ctx->rdma_q_ctx[tc]) { 625 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 626 new_numqs, 627 sizeof(*q_ctx), 628 GFP_KERNEL); 629 if (!vsi_ctx->rdma_q_ctx[tc]) 630 return -ENOMEM; 631 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 632 return 0; 633 } 634 /* num queues are increased, update the queue contexts */ 635 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 636 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 637 638 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 639 sizeof(*q_ctx), GFP_KERNEL); 640 if (!q_ctx) 641 return -ENOMEM; 642 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 643 prev_num * sizeof(*q_ctx)); 644 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 645 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 646 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 647 } 648 return 0; 649 } 650 651 /** 652 * ice_aq_rl_profile - performs a rate limiting task 653 * @hw: pointer to the HW struct 654 * @opcode: opcode for add, query, or remove profile(s) 655 * @num_profiles: the number of profiles 656 * @buf: pointer to buffer 657 * @buf_size: buffer size in bytes 658 * @num_processed: number of processed add or remove profile(s) to return 659 * @cd: pointer to command details structure 660 * 661 * RL profile function to add, query, or remove profile(s) 662 */ 663 static int 664 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 665 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 666 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 667 { 668 struct ice_aqc_rl_profile *cmd; 669 struct ice_aq_desc desc; 670 int status; 671 672 cmd = &desc.params.rl_profile; 673 674 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 675 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 676 cmd->num_profiles = cpu_to_le16(num_profiles); 677 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 678 if (!status && num_processed) 679 *num_processed = le16_to_cpu(cmd->num_processed); 680 return status; 681 } 682 683 /** 684 * ice_aq_add_rl_profile - adds rate limiting profile(s) 685 * @hw: pointer to the HW struct 686 * @num_profiles: the number of profile(s) to be add 687 * @buf: pointer to buffer 688 * @buf_size: buffer size in bytes 689 * @num_profiles_added: total number of profiles added to return 690 * @cd: pointer to command details structure 691 * 692 * Add RL profile (0x0410) 693 */ 694 static int 695 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 696 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 697 u16 *num_profiles_added, struct ice_sq_cd *cd) 698 { 699 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 700 buf, buf_size, num_profiles_added, cd); 701 } 702 703 /** 704 * ice_aq_remove_rl_profile - removes RL profile(s) 705 * @hw: pointer to the HW struct 706 * @num_profiles: the number of profile(s) to remove 707 * @buf: pointer to buffer 708 * @buf_size: buffer size in bytes 709 * @num_profiles_removed: total number of profiles removed to return 710 * @cd: pointer to command details structure or NULL 711 * 712 * Remove RL profile (0x0415) 713 */ 714 static int 715 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 716 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 717 u16 *num_profiles_removed, struct ice_sq_cd *cd) 718 { 719 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 720 num_profiles, buf, buf_size, 721 num_profiles_removed, cd); 722 } 723 724 /** 725 * ice_sched_del_rl_profile - remove RL profile 726 * @hw: pointer to the HW struct 727 * @rl_info: rate limit profile information 728 * 729 * If the profile ID is not referenced anymore, it removes profile ID with 730 * its associated parameters from HW DB,and locally. The caller needs to 731 * hold scheduler lock. 732 */ 733 static int 734 ice_sched_del_rl_profile(struct ice_hw *hw, 735 struct ice_aqc_rl_profile_info *rl_info) 736 { 737 struct ice_aqc_rl_profile_elem *buf; 738 u16 num_profiles_removed; 739 u16 num_profiles = 1; 740 int status; 741 742 if (rl_info->prof_id_ref != 0) 743 return -EBUSY; 744 745 /* Safe to remove profile ID */ 746 buf = &rl_info->profile; 747 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 748 &num_profiles_removed, NULL); 749 if (status || num_profiles_removed != num_profiles) 750 return -EIO; 751 752 /* Delete stale entry now */ 753 list_del(&rl_info->list_entry); 754 devm_kfree(ice_hw_to_dev(hw), rl_info); 755 return status; 756 } 757 758 /** 759 * ice_sched_clear_rl_prof - clears RL prof entries 760 * @pi: port information structure 761 * 762 * This function removes all RL profile from HW as well as from SW DB. 763 */ 764 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 765 { 766 u16 ln; 767 768 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 769 struct ice_aqc_rl_profile_info *rl_prof_elem; 770 struct ice_aqc_rl_profile_info *rl_prof_tmp; 771 772 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 773 &pi->rl_prof_list[ln], list_entry) { 774 struct ice_hw *hw = pi->hw; 775 int status; 776 777 rl_prof_elem->prof_id_ref = 0; 778 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 779 if (status) { 780 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 781 /* On error, free mem required */ 782 list_del(&rl_prof_elem->list_entry); 783 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 784 } 785 } 786 } 787 } 788 789 /** 790 * ice_sched_clear_agg - clears the aggregator related information 791 * @hw: pointer to the hardware structure 792 * 793 * This function removes aggregator list and free up aggregator related memory 794 * previously allocated. 795 */ 796 void ice_sched_clear_agg(struct ice_hw *hw) 797 { 798 struct ice_sched_agg_info *agg_info; 799 struct ice_sched_agg_info *atmp; 800 801 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 802 struct ice_sched_agg_vsi_info *agg_vsi_info; 803 struct ice_sched_agg_vsi_info *vtmp; 804 805 list_for_each_entry_safe(agg_vsi_info, vtmp, 806 &agg_info->agg_vsi_list, list_entry) { 807 list_del(&agg_vsi_info->list_entry); 808 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 809 } 810 list_del(&agg_info->list_entry); 811 devm_kfree(ice_hw_to_dev(hw), agg_info); 812 } 813 } 814 815 /** 816 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 817 * @pi: port information structure 818 * 819 * This function removes all the nodes from HW as well as from SW DB. 820 */ 821 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 822 { 823 if (!pi) 824 return; 825 /* remove RL profiles related lists */ 826 ice_sched_clear_rl_prof(pi); 827 if (pi->root) { 828 ice_free_sched_node(pi, pi->root); 829 pi->root = NULL; 830 } 831 } 832 833 /** 834 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 835 * @pi: port information structure 836 * 837 * Cleanup scheduling elements from SW DB 838 */ 839 void ice_sched_clear_port(struct ice_port_info *pi) 840 { 841 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 842 return; 843 844 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 845 mutex_lock(&pi->sched_lock); 846 ice_sched_clear_tx_topo(pi); 847 mutex_unlock(&pi->sched_lock); 848 mutex_destroy(&pi->sched_lock); 849 } 850 851 /** 852 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 853 * @hw: pointer to the HW struct 854 * 855 * Cleanup scheduling elements from SW DB for all the ports 856 */ 857 void ice_sched_cleanup_all(struct ice_hw *hw) 858 { 859 if (!hw) 860 return; 861 862 if (hw->layer_info) { 863 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 864 hw->layer_info = NULL; 865 } 866 867 ice_sched_clear_port(hw->port_info); 868 869 hw->num_tx_sched_layers = 0; 870 hw->num_tx_sched_phys_layers = 0; 871 hw->flattened_layers = 0; 872 hw->max_cgds = 0; 873 } 874 875 /** 876 * ice_sched_add_elems - add nodes to HW and SW DB 877 * @pi: port information structure 878 * @tc_node: pointer to the branch node 879 * @parent: pointer to the parent node 880 * @layer: layer number to add nodes 881 * @num_nodes: number of nodes 882 * @num_nodes_added: pointer to num nodes added 883 * @first_node_teid: if new nodes are added then return the TEID of first node 884 * @prealloc_nodes: preallocated nodes struct for software DB 885 * 886 * This function add nodes to HW as well as to SW DB for a given layer 887 */ 888 int 889 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 890 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 891 u16 *num_nodes_added, u32 *first_node_teid, 892 struct ice_sched_node **prealloc_nodes) 893 { 894 struct ice_sched_node *prev, *new_node; 895 struct ice_aqc_add_elem *buf; 896 u16 i, num_groups_added = 0; 897 struct ice_hw *hw = pi->hw; 898 size_t buf_size; 899 int status = 0; 900 u32 teid; 901 902 buf_size = struct_size(buf, generic, num_nodes); 903 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 904 if (!buf) 905 return -ENOMEM; 906 907 buf->hdr.parent_teid = parent->info.node_teid; 908 buf->hdr.num_elems = cpu_to_le16(num_nodes); 909 for (i = 0; i < num_nodes; i++) { 910 buf->generic[i].parent_teid = parent->info.node_teid; 911 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 912 buf->generic[i].data.valid_sections = 913 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 914 ICE_AQC_ELEM_VALID_EIR; 915 buf->generic[i].data.generic = 0; 916 buf->generic[i].data.cir_bw.bw_profile_idx = 917 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 918 buf->generic[i].data.cir_bw.bw_alloc = 919 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 920 buf->generic[i].data.eir_bw.bw_profile_idx = 921 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 922 buf->generic[i].data.eir_bw.bw_alloc = 923 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 924 } 925 926 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 927 &num_groups_added, NULL); 928 if (status || num_groups_added != 1) { 929 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 930 hw->adminq.sq_last_status); 931 devm_kfree(ice_hw_to_dev(hw), buf); 932 return -EIO; 933 } 934 935 *num_nodes_added = num_nodes; 936 /* add nodes to the SW DB */ 937 for (i = 0; i < num_nodes; i++) { 938 if (prealloc_nodes) 939 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); 940 else 941 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); 942 943 if (status) { 944 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 945 status); 946 break; 947 } 948 949 teid = le32_to_cpu(buf->generic[i].node_teid); 950 new_node = ice_sched_find_node_by_teid(parent, teid); 951 if (!new_node) { 952 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 953 break; 954 } 955 956 new_node->sibling = NULL; 957 new_node->tc_num = tc_node->tc_num; 958 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; 959 new_node->tx_share = ICE_SCHED_DFLT_BW; 960 new_node->tx_max = ICE_SCHED_DFLT_BW; 961 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); 962 if (!new_node->name) 963 return -ENOMEM; 964 965 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), 966 GFP_KERNEL); 967 if (status) { 968 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", 969 status); 970 break; 971 } 972 973 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); 974 975 /* add it to previous node sibling pointer */ 976 /* Note: siblings are not linked across branches */ 977 prev = ice_sched_get_first_node(pi, tc_node, layer); 978 if (prev && prev != new_node) { 979 while (prev->sibling) 980 prev = prev->sibling; 981 prev->sibling = new_node; 982 } 983 984 /* initialize the sibling head */ 985 if (!pi->sib_head[tc_node->tc_num][layer]) 986 pi->sib_head[tc_node->tc_num][layer] = new_node; 987 988 if (i == 0) 989 *first_node_teid = teid; 990 } 991 992 devm_kfree(ice_hw_to_dev(hw), buf); 993 return status; 994 } 995 996 /** 997 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 998 * @pi: port information structure 999 * @tc_node: pointer to TC node 1000 * @parent: pointer to parent node 1001 * @layer: layer number to add nodes 1002 * @num_nodes: number of nodes to be added 1003 * @first_node_teid: pointer to the first node TEID 1004 * @num_nodes_added: pointer to number of nodes added 1005 * 1006 * Add nodes into specific HW layer. 1007 */ 1008 static int 1009 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 1010 struct ice_sched_node *tc_node, 1011 struct ice_sched_node *parent, u8 layer, 1012 u16 num_nodes, u32 *first_node_teid, 1013 u16 *num_nodes_added) 1014 { 1015 u16 max_child_nodes; 1016 1017 *num_nodes_added = 0; 1018 1019 if (!num_nodes) 1020 return 0; 1021 1022 if (!parent || layer < pi->hw->sw_entry_point_layer) 1023 return -EINVAL; 1024 1025 /* max children per node per layer */ 1026 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1027 1028 /* current number of children + required nodes exceed max children */ 1029 if ((parent->num_children + num_nodes) > max_child_nodes) { 1030 /* Fail if the parent is a TC node */ 1031 if (parent == tc_node) 1032 return -EIO; 1033 return -ENOSPC; 1034 } 1035 1036 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1037 num_nodes_added, first_node_teid, NULL); 1038 } 1039 1040 /** 1041 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1042 * @pi: port information structure 1043 * @tc_node: pointer to TC node 1044 * @parent: pointer to parent node 1045 * @layer: layer number to add nodes 1046 * @num_nodes: number of nodes to be added 1047 * @first_node_teid: pointer to the first node TEID 1048 * @num_nodes_added: pointer to number of nodes added 1049 * 1050 * This function add nodes to a given layer. 1051 */ 1052 static int 1053 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1054 struct ice_sched_node *tc_node, 1055 struct ice_sched_node *parent, u8 layer, 1056 u16 num_nodes, u32 *first_node_teid, 1057 u16 *num_nodes_added) 1058 { 1059 u32 *first_teid_ptr = first_node_teid; 1060 u16 new_num_nodes = num_nodes; 1061 int status = 0; 1062 1063 *num_nodes_added = 0; 1064 while (*num_nodes_added < num_nodes) { 1065 u16 max_child_nodes, num_added = 0; 1066 u32 temp; 1067 1068 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1069 layer, new_num_nodes, 1070 first_teid_ptr, 1071 &num_added); 1072 if (!status) 1073 *num_nodes_added += num_added; 1074 /* added more nodes than requested ? */ 1075 if (*num_nodes_added > num_nodes) { 1076 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1077 *num_nodes_added); 1078 status = -EIO; 1079 break; 1080 } 1081 /* break if all the nodes are added successfully */ 1082 if (!status && (*num_nodes_added == num_nodes)) 1083 break; 1084 /* break if the error is not max limit */ 1085 if (status && status != -ENOSPC) 1086 break; 1087 /* Exceeded the max children */ 1088 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1089 /* utilize all the spaces if the parent is not full */ 1090 if (parent->num_children < max_child_nodes) { 1091 new_num_nodes = max_child_nodes - parent->num_children; 1092 } else { 1093 /* This parent is full, try the next sibling */ 1094 parent = parent->sibling; 1095 /* Don't modify the first node TEID memory if the 1096 * first node was added already in the above call. 1097 * Instead send some temp memory for all other 1098 * recursive calls. 1099 */ 1100 if (num_added) 1101 first_teid_ptr = &temp; 1102 1103 new_num_nodes = num_nodes - *num_nodes_added; 1104 } 1105 } 1106 return status; 1107 } 1108 1109 /** 1110 * ice_sched_get_qgrp_layer - get the current queue group layer number 1111 * @hw: pointer to the HW struct 1112 * 1113 * This function returns the current queue group layer number 1114 */ 1115 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1116 { 1117 /* It's always total layers - 1, the array is 0 relative so -2 */ 1118 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1119 } 1120 1121 /** 1122 * ice_sched_get_vsi_layer - get the current VSI layer number 1123 * @hw: pointer to the HW struct 1124 * 1125 * This function returns the current VSI layer number 1126 */ 1127 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1128 { 1129 /* Num Layers VSI layer 1130 * 9 6 1131 * 7 4 1132 * 5 or less sw_entry_point_layer 1133 */ 1134 /* calculate the VSI layer based on number of layers. */ 1135 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1136 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1137 1138 if (layer > hw->sw_entry_point_layer) 1139 return layer; 1140 } 1141 return hw->sw_entry_point_layer; 1142 } 1143 1144 /** 1145 * ice_sched_get_agg_layer - get the current aggregator layer number 1146 * @hw: pointer to the HW struct 1147 * 1148 * This function returns the current aggregator layer number 1149 */ 1150 static u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1151 { 1152 /* Num Layers aggregator layer 1153 * 9 4 1154 * 7 or less sw_entry_point_layer 1155 */ 1156 /* calculate the aggregator layer based on number of layers. */ 1157 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1158 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1159 1160 if (layer > hw->sw_entry_point_layer) 1161 return layer; 1162 } 1163 return hw->sw_entry_point_layer; 1164 } 1165 1166 /** 1167 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1168 * @pi: port information structure 1169 * 1170 * This function removes the leaf node that was created by the FW 1171 * during initialization 1172 */ 1173 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1174 { 1175 struct ice_sched_node *node; 1176 1177 node = pi->root; 1178 while (node) { 1179 if (!node->num_children) 1180 break; 1181 node = node->children[0]; 1182 } 1183 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1184 u32 teid = le32_to_cpu(node->info.node_teid); 1185 int status; 1186 1187 /* remove the default leaf node */ 1188 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1189 if (!status) 1190 ice_free_sched_node(pi, node); 1191 } 1192 } 1193 1194 /** 1195 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1196 * @pi: port information structure 1197 * 1198 * This function frees all the nodes except root and TC that were created by 1199 * the FW during initialization 1200 */ 1201 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1202 { 1203 struct ice_sched_node *node; 1204 1205 ice_rm_dflt_leaf_node(pi); 1206 1207 /* remove the default nodes except TC and root nodes */ 1208 node = pi->root; 1209 while (node) { 1210 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1211 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1212 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1213 ice_free_sched_node(pi, node); 1214 break; 1215 } 1216 1217 if (!node->num_children) 1218 break; 1219 node = node->children[0]; 1220 } 1221 } 1222 1223 /** 1224 * ice_sched_init_port - Initialize scheduler by querying information from FW 1225 * @pi: port info structure for the tree to cleanup 1226 * 1227 * This function is the initial call to find the total number of Tx scheduler 1228 * resources, default topology created by firmware and storing the information 1229 * in SW DB. 1230 */ 1231 int ice_sched_init_port(struct ice_port_info *pi) 1232 { 1233 struct ice_aqc_get_topo_elem *buf; 1234 struct ice_hw *hw; 1235 u8 num_branches; 1236 u16 num_elems; 1237 int status; 1238 u8 i, j; 1239 1240 if (!pi) 1241 return -EINVAL; 1242 hw = pi->hw; 1243 1244 /* Query the Default Topology from FW */ 1245 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1246 if (!buf) 1247 return -ENOMEM; 1248 1249 /* Query default scheduling tree topology */ 1250 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1251 &num_branches, NULL); 1252 if (status) 1253 goto err_init_port; 1254 1255 /* num_branches should be between 1-8 */ 1256 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1257 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1258 num_branches); 1259 status = -EINVAL; 1260 goto err_init_port; 1261 } 1262 1263 /* get the number of elements on the default/first branch */ 1264 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1265 1266 /* num_elems should always be between 1-9 */ 1267 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1268 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1269 num_elems); 1270 status = -EINVAL; 1271 goto err_init_port; 1272 } 1273 1274 /* If the last node is a leaf node then the index of the queue group 1275 * layer is two less than the number of elements. 1276 */ 1277 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1278 ICE_AQC_ELEM_TYPE_LEAF) 1279 pi->last_node_teid = 1280 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1281 else 1282 pi->last_node_teid = 1283 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1284 1285 /* Insert the Tx Sched root node */ 1286 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1287 if (status) 1288 goto err_init_port; 1289 1290 /* Parse the default tree and cache the information */ 1291 for (i = 0; i < num_branches; i++) { 1292 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1293 1294 /* Skip root element as already inserted */ 1295 for (j = 1; j < num_elems; j++) { 1296 /* update the sw entry point */ 1297 if (buf[0].generic[j].data.elem_type == 1298 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1299 hw->sw_entry_point_layer = j; 1300 1301 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); 1302 if (status) 1303 goto err_init_port; 1304 } 1305 } 1306 1307 /* Remove the default nodes. */ 1308 if (pi->root) 1309 ice_sched_rm_dflt_nodes(pi); 1310 1311 /* initialize the port for handling the scheduler tree */ 1312 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1313 mutex_init(&pi->sched_lock); 1314 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1315 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1316 1317 err_init_port: 1318 if (status && pi->root) { 1319 ice_free_sched_node(pi, pi->root); 1320 pi->root = NULL; 1321 } 1322 1323 kfree(buf); 1324 return status; 1325 } 1326 1327 /** 1328 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1329 * @hw: pointer to the HW struct 1330 * 1331 * query FW for allocated scheduler resources and store in HW struct 1332 */ 1333 int ice_sched_query_res_alloc(struct ice_hw *hw) 1334 { 1335 struct ice_aqc_query_txsched_res_resp *buf; 1336 __le16 max_sibl; 1337 int status = 0; 1338 u16 i; 1339 1340 if (hw->layer_info) 1341 return status; 1342 1343 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1344 if (!buf) 1345 return -ENOMEM; 1346 1347 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1348 if (status) 1349 goto sched_query_out; 1350 1351 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1352 hw->num_tx_sched_phys_layers = 1353 le16_to_cpu(buf->sched_props.phys_levels); 1354 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1355 hw->max_cgds = buf->sched_props.max_pf_cgds; 1356 1357 /* max sibling group size of current layer refers to the max children 1358 * of the below layer node. 1359 * layer 1 node max children will be layer 2 max sibling group size 1360 * layer 2 node max children will be layer 3 max sibling group size 1361 * and so on. This array will be populated from root (index 0) to 1362 * qgroup layer 7. Leaf node has no children. 1363 */ 1364 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1365 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1366 hw->max_children[i] = le16_to_cpu(max_sibl); 1367 } 1368 1369 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1370 (hw->num_tx_sched_layers * 1371 sizeof(*hw->layer_info)), 1372 GFP_KERNEL); 1373 if (!hw->layer_info) { 1374 status = -ENOMEM; 1375 goto sched_query_out; 1376 } 1377 1378 sched_query_out: 1379 devm_kfree(ice_hw_to_dev(hw), buf); 1380 return status; 1381 } 1382 1383 /** 1384 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1385 * @hw: pointer to the HW struct 1386 * 1387 * Determine the PSM clock frequency and store in HW struct 1388 */ 1389 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1390 { 1391 u32 val, clk_src; 1392 1393 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1394 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1395 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1396 1397 #define PSM_CLK_SRC_367_MHZ 0x0 1398 #define PSM_CLK_SRC_416_MHZ 0x1 1399 #define PSM_CLK_SRC_446_MHZ 0x2 1400 #define PSM_CLK_SRC_390_MHZ 0x3 1401 1402 switch (clk_src) { 1403 case PSM_CLK_SRC_367_MHZ: 1404 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1405 break; 1406 case PSM_CLK_SRC_416_MHZ: 1407 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1408 break; 1409 case PSM_CLK_SRC_446_MHZ: 1410 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1411 break; 1412 case PSM_CLK_SRC_390_MHZ: 1413 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1414 break; 1415 default: 1416 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1417 clk_src); 1418 /* fall back to a safe default */ 1419 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1420 } 1421 } 1422 1423 /** 1424 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1425 * @hw: pointer to the HW struct 1426 * @base: pointer to the base node 1427 * @node: pointer to the node to search 1428 * 1429 * This function checks whether a given node is part of the base node 1430 * subtree or not 1431 */ 1432 static bool 1433 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1434 struct ice_sched_node *node) 1435 { 1436 u8 i; 1437 1438 for (i = 0; i < base->num_children; i++) { 1439 struct ice_sched_node *child = base->children[i]; 1440 1441 if (node == child) 1442 return true; 1443 1444 if (child->tx_sched_layer > node->tx_sched_layer) 1445 return false; 1446 1447 /* this recursion is intentional, and wouldn't 1448 * go more than 8 calls 1449 */ 1450 if (ice_sched_find_node_in_subtree(hw, child, node)) 1451 return true; 1452 } 1453 return false; 1454 } 1455 1456 /** 1457 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1458 * @pi: port information structure 1459 * @vsi_node: software VSI handle 1460 * @qgrp_node: first queue group node identified for scanning 1461 * @owner: LAN or RDMA 1462 * 1463 * This function retrieves a free LAN or RDMA queue group node by scanning 1464 * qgrp_node and its siblings for the queue group with the fewest number 1465 * of queues currently assigned. 1466 */ 1467 static struct ice_sched_node * 1468 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1469 struct ice_sched_node *vsi_node, 1470 struct ice_sched_node *qgrp_node, u8 owner) 1471 { 1472 struct ice_sched_node *min_qgrp; 1473 u8 min_children; 1474 1475 if (!qgrp_node) 1476 return qgrp_node; 1477 min_children = qgrp_node->num_children; 1478 if (!min_children) 1479 return qgrp_node; 1480 min_qgrp = qgrp_node; 1481 /* scan all queue groups until find a node which has less than the 1482 * minimum number of children. This way all queue group nodes get 1483 * equal number of shares and active. The bandwidth will be equally 1484 * distributed across all queues. 1485 */ 1486 while (qgrp_node) { 1487 /* make sure the qgroup node is part of the VSI subtree */ 1488 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1489 if (qgrp_node->num_children < min_children && 1490 qgrp_node->owner == owner) { 1491 /* replace the new min queue group node */ 1492 min_qgrp = qgrp_node; 1493 min_children = min_qgrp->num_children; 1494 /* break if it has no children, */ 1495 if (!min_children) 1496 break; 1497 } 1498 qgrp_node = qgrp_node->sibling; 1499 } 1500 return min_qgrp; 1501 } 1502 1503 /** 1504 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1505 * @pi: port information structure 1506 * @vsi_handle: software VSI handle 1507 * @tc: branch number 1508 * @owner: LAN or RDMA 1509 * 1510 * This function retrieves a free LAN or RDMA queue group node 1511 */ 1512 struct ice_sched_node * 1513 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1514 u8 owner) 1515 { 1516 struct ice_sched_node *vsi_node, *qgrp_node; 1517 struct ice_vsi_ctx *vsi_ctx; 1518 u16 max_children; 1519 u8 qgrp_layer; 1520 1521 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1522 max_children = pi->hw->max_children[qgrp_layer]; 1523 1524 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1525 if (!vsi_ctx) 1526 return NULL; 1527 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1528 /* validate invalid VSI ID */ 1529 if (!vsi_node) 1530 return NULL; 1531 1532 /* get the first queue group node from VSI sub-tree */ 1533 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1534 while (qgrp_node) { 1535 /* make sure the qgroup node is part of the VSI subtree */ 1536 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1537 if (qgrp_node->num_children < max_children && 1538 qgrp_node->owner == owner) 1539 break; 1540 qgrp_node = qgrp_node->sibling; 1541 } 1542 1543 /* Select the best queue group */ 1544 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1545 } 1546 1547 /** 1548 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1549 * @pi: pointer to the port information structure 1550 * @tc_node: pointer to the TC node 1551 * @vsi_handle: software VSI handle 1552 * 1553 * This function retrieves a VSI node for a given VSI ID from a given 1554 * TC branch 1555 */ 1556 static struct ice_sched_node * 1557 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1558 u16 vsi_handle) 1559 { 1560 struct ice_sched_node *node; 1561 u8 vsi_layer; 1562 1563 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1564 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1565 1566 /* Check whether it already exists */ 1567 while (node) { 1568 if (node->vsi_handle == vsi_handle) 1569 return node; 1570 node = node->sibling; 1571 } 1572 1573 return node; 1574 } 1575 1576 /** 1577 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1578 * @pi: pointer to the port information structure 1579 * @tc_node: pointer to the TC node 1580 * @agg_id: aggregator ID 1581 * 1582 * This function retrieves an aggregator node for a given aggregator ID from 1583 * a given TC branch 1584 */ 1585 static struct ice_sched_node * 1586 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1587 u32 agg_id) 1588 { 1589 struct ice_sched_node *node; 1590 struct ice_hw *hw = pi->hw; 1591 u8 agg_layer; 1592 1593 if (!hw) 1594 return NULL; 1595 agg_layer = ice_sched_get_agg_layer(hw); 1596 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1597 1598 /* Check whether it already exists */ 1599 while (node) { 1600 if (node->agg_id == agg_id) 1601 return node; 1602 node = node->sibling; 1603 } 1604 1605 return node; 1606 } 1607 1608 /** 1609 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1610 * @hw: pointer to the HW struct 1611 * @num_qs: number of queues 1612 * @num_nodes: num nodes array 1613 * 1614 * This function calculates the number of VSI child nodes based on the 1615 * number of queues. 1616 */ 1617 static void 1618 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1619 { 1620 u16 num = num_qs; 1621 u8 i, qgl, vsil; 1622 1623 qgl = ice_sched_get_qgrp_layer(hw); 1624 vsil = ice_sched_get_vsi_layer(hw); 1625 1626 /* calculate num nodes from queue group to VSI layer */ 1627 for (i = qgl; i > vsil; i--) { 1628 /* round to the next integer if there is a remainder */ 1629 num = DIV_ROUND_UP(num, hw->max_children[i]); 1630 1631 /* need at least one node */ 1632 num_nodes[i] = num ? num : 1; 1633 } 1634 } 1635 1636 /** 1637 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1638 * @pi: port information structure 1639 * @vsi_handle: software VSI handle 1640 * @tc_node: pointer to the TC node 1641 * @num_nodes: pointer to the num nodes that needs to be added per layer 1642 * @owner: node owner (LAN or RDMA) 1643 * 1644 * This function adds the VSI child nodes to tree. It gets called for 1645 * LAN and RDMA separately. 1646 */ 1647 static int 1648 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1649 struct ice_sched_node *tc_node, u16 *num_nodes, 1650 u8 owner) 1651 { 1652 struct ice_sched_node *parent, *node; 1653 struct ice_hw *hw = pi->hw; 1654 u32 first_node_teid; 1655 u16 num_added = 0; 1656 u8 i, qgl, vsil; 1657 1658 qgl = ice_sched_get_qgrp_layer(hw); 1659 vsil = ice_sched_get_vsi_layer(hw); 1660 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1661 for (i = vsil + 1; i <= qgl; i++) { 1662 int status; 1663 1664 if (!parent) 1665 return -EIO; 1666 1667 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1668 num_nodes[i], 1669 &first_node_teid, 1670 &num_added); 1671 if (status || num_nodes[i] != num_added) 1672 return -EIO; 1673 1674 /* The newly added node can be a new parent for the next 1675 * layer nodes 1676 */ 1677 if (num_added) { 1678 parent = ice_sched_find_node_by_teid(tc_node, 1679 first_node_teid); 1680 node = parent; 1681 while (node) { 1682 node->owner = owner; 1683 node = node->sibling; 1684 } 1685 } else { 1686 parent = parent->children[0]; 1687 } 1688 } 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1695 * @pi: pointer to the port info structure 1696 * @tc_node: pointer to TC node 1697 * @num_nodes: pointer to num nodes array 1698 * 1699 * This function calculates the number of supported nodes needed to add this 1700 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1701 * layers 1702 */ 1703 static void 1704 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1705 struct ice_sched_node *tc_node, u16 *num_nodes) 1706 { 1707 struct ice_sched_node *node; 1708 u8 vsil; 1709 int i; 1710 1711 vsil = ice_sched_get_vsi_layer(pi->hw); 1712 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1713 /* Add intermediate nodes if TC has no children and 1714 * need at least one node for VSI 1715 */ 1716 if (!tc_node->num_children || i == vsil) { 1717 num_nodes[i]++; 1718 } else { 1719 /* If intermediate nodes are reached max children 1720 * then add a new one. 1721 */ 1722 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1723 /* scan all the siblings */ 1724 while (node) { 1725 if (node->num_children < pi->hw->max_children[i]) 1726 break; 1727 node = node->sibling; 1728 } 1729 1730 /* tree has one intermediate node to add this new VSI. 1731 * So no need to calculate supported nodes for below 1732 * layers. 1733 */ 1734 if (node) 1735 break; 1736 /* all the nodes are full, allocate a new one */ 1737 num_nodes[i]++; 1738 } 1739 } 1740 1741 /** 1742 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1743 * @pi: port information structure 1744 * @vsi_handle: software VSI handle 1745 * @tc_node: pointer to TC node 1746 * @num_nodes: pointer to num nodes array 1747 * 1748 * This function adds the VSI supported nodes into Tx tree including the 1749 * VSI, its parent and intermediate nodes in below layers 1750 */ 1751 static int 1752 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1753 struct ice_sched_node *tc_node, u16 *num_nodes) 1754 { 1755 struct ice_sched_node *parent = tc_node; 1756 u32 first_node_teid; 1757 u16 num_added = 0; 1758 u8 i, vsil; 1759 1760 if (!pi) 1761 return -EINVAL; 1762 1763 vsil = ice_sched_get_vsi_layer(pi->hw); 1764 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1765 int status; 1766 1767 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1768 i, num_nodes[i], 1769 &first_node_teid, 1770 &num_added); 1771 if (status || num_nodes[i] != num_added) 1772 return -EIO; 1773 1774 /* The newly added node can be a new parent for the next 1775 * layer nodes 1776 */ 1777 if (num_added) 1778 parent = ice_sched_find_node_by_teid(tc_node, 1779 first_node_teid); 1780 else 1781 parent = parent->children[0]; 1782 1783 if (!parent) 1784 return -EIO; 1785 1786 if (i == vsil) 1787 parent->vsi_handle = vsi_handle; 1788 } 1789 1790 return 0; 1791 } 1792 1793 /** 1794 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1795 * @pi: port information structure 1796 * @vsi_handle: software VSI handle 1797 * @tc: TC number 1798 * 1799 * This function adds a new VSI into scheduler tree 1800 */ 1801 static int 1802 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1803 { 1804 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1805 struct ice_sched_node *tc_node; 1806 1807 tc_node = ice_sched_get_tc_node(pi, tc); 1808 if (!tc_node) 1809 return -EINVAL; 1810 1811 /* calculate number of supported nodes needed for this VSI */ 1812 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1813 1814 /* add VSI supported nodes to TC subtree */ 1815 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1816 num_nodes); 1817 } 1818 1819 /** 1820 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1821 * @pi: port information structure 1822 * @vsi_handle: software VSI handle 1823 * @tc: TC number 1824 * @new_numqs: new number of max queues 1825 * @owner: owner of this subtree 1826 * 1827 * This function updates the VSI child nodes based on the number of queues 1828 */ 1829 static int 1830 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1831 u8 tc, u16 new_numqs, u8 owner) 1832 { 1833 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1834 struct ice_sched_node *vsi_node; 1835 struct ice_sched_node *tc_node; 1836 struct ice_vsi_ctx *vsi_ctx; 1837 struct ice_hw *hw = pi->hw; 1838 u16 prev_numqs; 1839 int status = 0; 1840 1841 tc_node = ice_sched_get_tc_node(pi, tc); 1842 if (!tc_node) 1843 return -EIO; 1844 1845 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1846 if (!vsi_node) 1847 return -EIO; 1848 1849 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1850 if (!vsi_ctx) 1851 return -EINVAL; 1852 1853 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1854 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1855 else 1856 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1857 /* num queues are not changed or less than the previous number */ 1858 if (new_numqs <= prev_numqs) 1859 return status; 1860 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1861 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1862 if (status) 1863 return status; 1864 } else { 1865 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1866 if (status) 1867 return status; 1868 } 1869 1870 if (new_numqs) 1871 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1872 /* Keep the max number of queue configuration all the time. Update the 1873 * tree only if number of queues > previous number of queues. This may 1874 * leave some extra nodes in the tree if number of queues < previous 1875 * number but that wouldn't harm anything. Removing those extra nodes 1876 * may complicate the code if those nodes are part of SRL or 1877 * individually rate limited. 1878 */ 1879 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1880 new_num_nodes, owner); 1881 if (status) 1882 return status; 1883 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1884 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1885 else 1886 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1887 1888 return 0; 1889 } 1890 1891 /** 1892 * ice_sched_cfg_vsi - configure the new/existing VSI 1893 * @pi: port information structure 1894 * @vsi_handle: software VSI handle 1895 * @tc: TC number 1896 * @maxqs: max number of queues 1897 * @owner: LAN or RDMA 1898 * @enable: TC enabled or disabled 1899 * 1900 * This function adds/updates VSI nodes based on the number of queues. If TC is 1901 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1902 * disabled then suspend the VSI if it is not already. 1903 */ 1904 int 1905 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1906 u8 owner, bool enable) 1907 { 1908 struct ice_sched_node *vsi_node, *tc_node; 1909 struct ice_vsi_ctx *vsi_ctx; 1910 struct ice_hw *hw = pi->hw; 1911 int status = 0; 1912 1913 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1914 tc_node = ice_sched_get_tc_node(pi, tc); 1915 if (!tc_node) 1916 return -EINVAL; 1917 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1918 if (!vsi_ctx) 1919 return -EINVAL; 1920 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1921 1922 /* suspend the VSI if TC is not enabled */ 1923 if (!enable) { 1924 if (vsi_node && vsi_node->in_use) { 1925 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1926 1927 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1928 true); 1929 if (!status) 1930 vsi_node->in_use = false; 1931 } 1932 return status; 1933 } 1934 1935 /* TC is enabled, if it is a new VSI then add it to the tree */ 1936 if (!vsi_node) { 1937 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1938 if (status) 1939 return status; 1940 1941 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1942 if (!vsi_node) 1943 return -EIO; 1944 1945 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1946 vsi_node->in_use = true; 1947 /* invalidate the max queues whenever VSI gets added first time 1948 * into the scheduler tree (boot or after reset). We need to 1949 * recreate the child nodes all the time in these cases. 1950 */ 1951 vsi_ctx->sched.max_lanq[tc] = 0; 1952 vsi_ctx->sched.max_rdmaq[tc] = 0; 1953 } 1954 1955 /* update the VSI child nodes */ 1956 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1957 owner); 1958 if (status) 1959 return status; 1960 1961 /* TC is enabled, resume the VSI if it is in the suspend state */ 1962 if (!vsi_node->in_use) { 1963 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1964 1965 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1966 if (!status) 1967 vsi_node->in_use = true; 1968 } 1969 1970 return status; 1971 } 1972 1973 /** 1974 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1975 * @pi: port information structure 1976 * @vsi_handle: software VSI handle 1977 * 1978 * This function removes single aggregator VSI info entry from 1979 * aggregator list. 1980 */ 1981 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1982 { 1983 struct ice_sched_agg_info *agg_info; 1984 struct ice_sched_agg_info *atmp; 1985 1986 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1987 list_entry) { 1988 struct ice_sched_agg_vsi_info *agg_vsi_info; 1989 struct ice_sched_agg_vsi_info *vtmp; 1990 1991 list_for_each_entry_safe(agg_vsi_info, vtmp, 1992 &agg_info->agg_vsi_list, list_entry) 1993 if (agg_vsi_info->vsi_handle == vsi_handle) { 1994 list_del(&agg_vsi_info->list_entry); 1995 devm_kfree(ice_hw_to_dev(pi->hw), 1996 agg_vsi_info); 1997 return; 1998 } 1999 } 2000 } 2001 2002 /** 2003 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 2004 * @node: pointer to the sub-tree node 2005 * 2006 * This function checks for a leaf node presence in a given sub-tree node. 2007 */ 2008 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 2009 { 2010 u8 i; 2011 2012 for (i = 0; i < node->num_children; i++) 2013 if (ice_sched_is_leaf_node_present(node->children[i])) 2014 return true; 2015 /* check for a leaf node */ 2016 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 2017 } 2018 2019 /** 2020 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 2021 * @pi: port information structure 2022 * @vsi_handle: software VSI handle 2023 * @owner: LAN or RDMA 2024 * 2025 * This function removes the VSI and its LAN or RDMA children nodes from the 2026 * scheduler tree. 2027 */ 2028 static int 2029 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 2030 { 2031 struct ice_vsi_ctx *vsi_ctx; 2032 int status = -EINVAL; 2033 u8 i; 2034 2035 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2036 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2037 return status; 2038 mutex_lock(&pi->sched_lock); 2039 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2040 if (!vsi_ctx) 2041 goto exit_sched_rm_vsi_cfg; 2042 2043 ice_for_each_traffic_class(i) { 2044 struct ice_sched_node *vsi_node, *tc_node; 2045 u8 j = 0; 2046 2047 tc_node = ice_sched_get_tc_node(pi, i); 2048 if (!tc_node) 2049 continue; 2050 2051 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2052 if (!vsi_node) 2053 continue; 2054 2055 if (ice_sched_is_leaf_node_present(vsi_node)) { 2056 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2057 status = -EBUSY; 2058 goto exit_sched_rm_vsi_cfg; 2059 } 2060 while (j < vsi_node->num_children) { 2061 if (vsi_node->children[j]->owner == owner) { 2062 ice_free_sched_node(pi, vsi_node->children[j]); 2063 2064 /* reset the counter again since the num 2065 * children will be updated after node removal 2066 */ 2067 j = 0; 2068 } else { 2069 j++; 2070 } 2071 } 2072 /* remove the VSI if it has no children */ 2073 if (!vsi_node->num_children) { 2074 ice_free_sched_node(pi, vsi_node); 2075 vsi_ctx->sched.vsi_node[i] = NULL; 2076 2077 /* clean up aggregator related VSI info if any */ 2078 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2079 } 2080 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2081 vsi_ctx->sched.max_lanq[i] = 0; 2082 else 2083 vsi_ctx->sched.max_rdmaq[i] = 0; 2084 } 2085 status = 0; 2086 2087 exit_sched_rm_vsi_cfg: 2088 mutex_unlock(&pi->sched_lock); 2089 return status; 2090 } 2091 2092 /** 2093 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2094 * @pi: port information structure 2095 * @vsi_handle: software VSI handle 2096 * 2097 * This function clears the VSI and its LAN children nodes from scheduler tree 2098 * for all TCs. 2099 */ 2100 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2101 { 2102 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2103 } 2104 2105 /** 2106 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2107 * @pi: port information structure 2108 * @vsi_handle: software VSI handle 2109 * 2110 * This function clears the VSI and its RDMA children nodes from scheduler tree 2111 * for all TCs. 2112 */ 2113 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2114 { 2115 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2116 } 2117 2118 /** 2119 * ice_get_agg_info - get the aggregator ID 2120 * @hw: pointer to the hardware structure 2121 * @agg_id: aggregator ID 2122 * 2123 * This function validates aggregator ID. The function returns info if 2124 * aggregator ID is present in list otherwise it returns null. 2125 */ 2126 static struct ice_sched_agg_info * 2127 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2128 { 2129 struct ice_sched_agg_info *agg_info; 2130 2131 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2132 if (agg_info->agg_id == agg_id) 2133 return agg_info; 2134 2135 return NULL; 2136 } 2137 2138 /** 2139 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2140 * @hw: pointer to the HW struct 2141 * @node: pointer to a child node 2142 * @num_nodes: num nodes count array 2143 * 2144 * This function walks through the aggregator subtree to find a free parent 2145 * node 2146 */ 2147 static struct ice_sched_node * 2148 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2149 u16 *num_nodes) 2150 { 2151 u8 l = node->tx_sched_layer; 2152 u8 vsil, i; 2153 2154 vsil = ice_sched_get_vsi_layer(hw); 2155 2156 /* Is it VSI parent layer ? */ 2157 if (l == vsil - 1) 2158 return (node->num_children < hw->max_children[l]) ? node : NULL; 2159 2160 /* We have intermediate nodes. Let's walk through the subtree. If the 2161 * intermediate node has space to add a new node then clear the count 2162 */ 2163 if (node->num_children < hw->max_children[l]) 2164 num_nodes[l] = 0; 2165 /* The below recursive call is intentional and wouldn't go more than 2166 * 2 or 3 iterations. 2167 */ 2168 2169 for (i = 0; i < node->num_children; i++) { 2170 struct ice_sched_node *parent; 2171 2172 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2173 num_nodes); 2174 if (parent) 2175 return parent; 2176 } 2177 2178 return NULL; 2179 } 2180 2181 /** 2182 * ice_sched_update_parent - update the new parent in SW DB 2183 * @new_parent: pointer to a new parent node 2184 * @node: pointer to a child node 2185 * 2186 * This function removes the child from the old parent and adds it to a new 2187 * parent 2188 */ 2189 void 2190 ice_sched_update_parent(struct ice_sched_node *new_parent, 2191 struct ice_sched_node *node) 2192 { 2193 struct ice_sched_node *old_parent; 2194 u8 i, j; 2195 2196 old_parent = node->parent; 2197 2198 /* update the old parent children */ 2199 for (i = 0; i < old_parent->num_children; i++) 2200 if (old_parent->children[i] == node) { 2201 for (j = i + 1; j < old_parent->num_children; j++) 2202 old_parent->children[j - 1] = 2203 old_parent->children[j]; 2204 old_parent->num_children--; 2205 break; 2206 } 2207 2208 /* now move the node to a new parent */ 2209 new_parent->children[new_parent->num_children++] = node; 2210 node->parent = new_parent; 2211 node->info.parent_teid = new_parent->info.node_teid; 2212 } 2213 2214 /** 2215 * ice_sched_move_nodes - move child nodes to a given parent 2216 * @pi: port information structure 2217 * @parent: pointer to parent node 2218 * @num_items: number of child nodes to be moved 2219 * @list: pointer to child node teids 2220 * 2221 * This function move the child nodes to a given parent. 2222 */ 2223 int 2224 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2225 u16 num_items, u32 *list) 2226 { 2227 struct ice_aqc_move_elem *buf; 2228 struct ice_sched_node *node; 2229 u16 i, grps_movd = 0; 2230 struct ice_hw *hw; 2231 int status = 0; 2232 u16 buf_len; 2233 2234 hw = pi->hw; 2235 2236 if (!parent || !num_items) 2237 return -EINVAL; 2238 2239 /* Does parent have enough space */ 2240 if (parent->num_children + num_items > 2241 hw->max_children[parent->tx_sched_layer]) 2242 return -ENOSPC; 2243 2244 buf_len = struct_size(buf, teid, 1); 2245 buf = kzalloc(buf_len, GFP_KERNEL); 2246 if (!buf) 2247 return -ENOMEM; 2248 2249 for (i = 0; i < num_items; i++) { 2250 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2251 if (!node) { 2252 status = -EINVAL; 2253 goto move_err_exit; 2254 } 2255 2256 buf->hdr.src_parent_teid = node->info.parent_teid; 2257 buf->hdr.dest_parent_teid = parent->info.node_teid; 2258 buf->teid[0] = node->info.node_teid; 2259 buf->hdr.num_elems = cpu_to_le16(1); 2260 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2261 &grps_movd, NULL); 2262 if (status && grps_movd != 1) { 2263 status = -EIO; 2264 goto move_err_exit; 2265 } 2266 2267 /* update the SW DB */ 2268 ice_sched_update_parent(parent, node); 2269 } 2270 2271 move_err_exit: 2272 kfree(buf); 2273 return status; 2274 } 2275 2276 /** 2277 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2278 * @pi: port information structure 2279 * @vsi_handle: software VSI handle 2280 * @agg_id: aggregator ID 2281 * @tc: TC number 2282 * 2283 * This function moves a VSI to an aggregator node or its subtree. 2284 * Intermediate nodes may be created if required. 2285 */ 2286 static int 2287 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2288 u8 tc) 2289 { 2290 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2291 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2292 u32 first_node_teid, vsi_teid; 2293 u16 num_nodes_added; 2294 u8 aggl, vsil, i; 2295 int status; 2296 2297 tc_node = ice_sched_get_tc_node(pi, tc); 2298 if (!tc_node) 2299 return -EIO; 2300 2301 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2302 if (!agg_node) 2303 return -ENOENT; 2304 2305 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2306 if (!vsi_node) 2307 return -ENOENT; 2308 2309 /* Is this VSI already part of given aggregator? */ 2310 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2311 return 0; 2312 2313 aggl = ice_sched_get_agg_layer(pi->hw); 2314 vsil = ice_sched_get_vsi_layer(pi->hw); 2315 2316 /* set intermediate node count to 1 between aggregator and VSI layers */ 2317 for (i = aggl + 1; i < vsil; i++) 2318 num_nodes[i] = 1; 2319 2320 /* Check if the aggregator subtree has any free node to add the VSI */ 2321 for (i = 0; i < agg_node->num_children; i++) { 2322 parent = ice_sched_get_free_vsi_parent(pi->hw, 2323 agg_node->children[i], 2324 num_nodes); 2325 if (parent) 2326 goto move_nodes; 2327 } 2328 2329 /* add new nodes */ 2330 parent = agg_node; 2331 for (i = aggl + 1; i < vsil; i++) { 2332 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2333 num_nodes[i], 2334 &first_node_teid, 2335 &num_nodes_added); 2336 if (status || num_nodes[i] != num_nodes_added) 2337 return -EIO; 2338 2339 /* The newly added node can be a new parent for the next 2340 * layer nodes 2341 */ 2342 if (num_nodes_added) 2343 parent = ice_sched_find_node_by_teid(tc_node, 2344 first_node_teid); 2345 else 2346 parent = parent->children[0]; 2347 2348 if (!parent) 2349 return -EIO; 2350 } 2351 2352 move_nodes: 2353 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2354 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2355 } 2356 2357 /** 2358 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2359 * @pi: port information structure 2360 * @agg_info: aggregator info 2361 * @tc: traffic class number 2362 * @rm_vsi_info: true or false 2363 * 2364 * This function move all the VSI(s) to the default aggregator and delete 2365 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2366 * caller holds the scheduler lock. 2367 */ 2368 static int 2369 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2370 struct ice_sched_agg_info *agg_info, u8 tc, 2371 bool rm_vsi_info) 2372 { 2373 struct ice_sched_agg_vsi_info *agg_vsi_info; 2374 struct ice_sched_agg_vsi_info *tmp; 2375 int status = 0; 2376 2377 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2378 list_entry) { 2379 u16 vsi_handle = agg_vsi_info->vsi_handle; 2380 2381 /* Move VSI to default aggregator */ 2382 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2383 continue; 2384 2385 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2386 ICE_DFLT_AGG_ID, tc); 2387 if (status) 2388 break; 2389 2390 clear_bit(tc, agg_vsi_info->tc_bitmap); 2391 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2392 list_del(&agg_vsi_info->list_entry); 2393 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2394 } 2395 } 2396 2397 return status; 2398 } 2399 2400 /** 2401 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2402 * @pi: port information structure 2403 * @node: node pointer 2404 * 2405 * This function checks whether the aggregator is attached with any VSI or not. 2406 */ 2407 static bool 2408 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2409 { 2410 u8 vsil, i; 2411 2412 vsil = ice_sched_get_vsi_layer(pi->hw); 2413 if (node->tx_sched_layer < vsil - 1) { 2414 for (i = 0; i < node->num_children; i++) 2415 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2416 return true; 2417 return false; 2418 } else { 2419 return node->num_children ? true : false; 2420 } 2421 } 2422 2423 /** 2424 * ice_sched_rm_agg_cfg - remove the aggregator node 2425 * @pi: port information structure 2426 * @agg_id: aggregator ID 2427 * @tc: TC number 2428 * 2429 * This function removes the aggregator node and intermediate nodes if any 2430 * from the given TC 2431 */ 2432 static int 2433 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2434 { 2435 struct ice_sched_node *tc_node, *agg_node; 2436 struct ice_hw *hw = pi->hw; 2437 2438 tc_node = ice_sched_get_tc_node(pi, tc); 2439 if (!tc_node) 2440 return -EIO; 2441 2442 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2443 if (!agg_node) 2444 return -ENOENT; 2445 2446 /* Can't remove the aggregator node if it has children */ 2447 if (ice_sched_is_agg_inuse(pi, agg_node)) 2448 return -EBUSY; 2449 2450 /* need to remove the whole subtree if aggregator node is the 2451 * only child. 2452 */ 2453 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2454 struct ice_sched_node *parent = agg_node->parent; 2455 2456 if (!parent) 2457 return -EIO; 2458 2459 if (parent->num_children > 1) 2460 break; 2461 2462 agg_node = parent; 2463 } 2464 2465 ice_free_sched_node(pi, agg_node); 2466 return 0; 2467 } 2468 2469 /** 2470 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2471 * @pi: port information structure 2472 * @agg_info: aggregator ID 2473 * @tc: TC number 2474 * @rm_vsi_info: bool value true or false 2475 * 2476 * This function removes aggregator reference to VSI of given TC. It removes 2477 * the aggregator configuration completely for requested TC. The caller needs 2478 * to hold the scheduler lock. 2479 */ 2480 static int 2481 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2482 u8 tc, bool rm_vsi_info) 2483 { 2484 int status = 0; 2485 2486 /* If nothing to remove - return success */ 2487 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2488 goto exit_rm_agg_cfg_tc; 2489 2490 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2491 if (status) 2492 goto exit_rm_agg_cfg_tc; 2493 2494 /* Delete aggregator node(s) */ 2495 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2496 if (status) 2497 goto exit_rm_agg_cfg_tc; 2498 2499 clear_bit(tc, agg_info->tc_bitmap); 2500 exit_rm_agg_cfg_tc: 2501 return status; 2502 } 2503 2504 /** 2505 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2506 * @pi: port information structure 2507 * @agg_id: aggregator ID 2508 * @tc_bitmap: 8 bits TC bitmap 2509 * 2510 * Save aggregator TC bitmap. This function needs to be called with scheduler 2511 * lock held. 2512 */ 2513 static int 2514 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2515 unsigned long *tc_bitmap) 2516 { 2517 struct ice_sched_agg_info *agg_info; 2518 2519 agg_info = ice_get_agg_info(pi->hw, agg_id); 2520 if (!agg_info) 2521 return -EINVAL; 2522 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2523 ICE_MAX_TRAFFIC_CLASS); 2524 return 0; 2525 } 2526 2527 /** 2528 * ice_sched_add_agg_cfg - create an aggregator node 2529 * @pi: port information structure 2530 * @agg_id: aggregator ID 2531 * @tc: TC number 2532 * 2533 * This function creates an aggregator node and intermediate nodes if required 2534 * for the given TC 2535 */ 2536 static int 2537 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2538 { 2539 struct ice_sched_node *parent, *agg_node, *tc_node; 2540 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2541 struct ice_hw *hw = pi->hw; 2542 u32 first_node_teid; 2543 u16 num_nodes_added; 2544 int status = 0; 2545 u8 i, aggl; 2546 2547 tc_node = ice_sched_get_tc_node(pi, tc); 2548 if (!tc_node) 2549 return -EIO; 2550 2551 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2552 /* Does Agg node already exist ? */ 2553 if (agg_node) 2554 return status; 2555 2556 aggl = ice_sched_get_agg_layer(hw); 2557 2558 /* need one node in Agg layer */ 2559 num_nodes[aggl] = 1; 2560 2561 /* Check whether the intermediate nodes have space to add the 2562 * new aggregator. If they are full, then SW needs to allocate a new 2563 * intermediate node on those layers 2564 */ 2565 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2566 parent = ice_sched_get_first_node(pi, tc_node, i); 2567 2568 /* scan all the siblings */ 2569 while (parent) { 2570 if (parent->num_children < hw->max_children[i]) 2571 break; 2572 parent = parent->sibling; 2573 } 2574 2575 /* all the nodes are full, reserve one for this layer */ 2576 if (!parent) 2577 num_nodes[i]++; 2578 } 2579 2580 /* add the aggregator node */ 2581 parent = tc_node; 2582 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2583 if (!parent) 2584 return -EIO; 2585 2586 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2587 num_nodes[i], 2588 &first_node_teid, 2589 &num_nodes_added); 2590 if (status || num_nodes[i] != num_nodes_added) 2591 return -EIO; 2592 2593 /* The newly added node can be a new parent for the next 2594 * layer nodes 2595 */ 2596 if (num_nodes_added) { 2597 parent = ice_sched_find_node_by_teid(tc_node, 2598 first_node_teid); 2599 /* register aggregator ID with the aggregator node */ 2600 if (parent && i == aggl) 2601 parent->agg_id = agg_id; 2602 } else { 2603 parent = parent->children[0]; 2604 } 2605 } 2606 2607 return 0; 2608 } 2609 2610 /** 2611 * ice_sched_cfg_agg - configure aggregator node 2612 * @pi: port information structure 2613 * @agg_id: aggregator ID 2614 * @agg_type: aggregator type queue, VSI, or aggregator group 2615 * @tc_bitmap: bits TC bitmap 2616 * 2617 * It registers a unique aggregator node into scheduler services. It 2618 * allows a user to register with a unique ID to track it's resources. 2619 * The aggregator type determines if this is a queue group, VSI group 2620 * or aggregator group. It then creates the aggregator node(s) for requested 2621 * TC(s) or removes an existing aggregator node including its configuration 2622 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2623 * resources and remove aggregator ID. 2624 * This function needs to be called with scheduler lock held. 2625 */ 2626 static int 2627 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2628 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2629 { 2630 struct ice_sched_agg_info *agg_info; 2631 struct ice_hw *hw = pi->hw; 2632 int status = 0; 2633 u8 tc; 2634 2635 agg_info = ice_get_agg_info(hw, agg_id); 2636 if (!agg_info) { 2637 /* Create new entry for new aggregator ID */ 2638 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2639 GFP_KERNEL); 2640 if (!agg_info) 2641 return -ENOMEM; 2642 2643 agg_info->agg_id = agg_id; 2644 agg_info->agg_type = agg_type; 2645 agg_info->tc_bitmap[0] = 0; 2646 2647 /* Initialize the aggregator VSI list head */ 2648 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2649 2650 /* Add new entry in aggregator list */ 2651 list_add(&agg_info->list_entry, &hw->agg_list); 2652 } 2653 /* Create aggregator node(s) for requested TC(s) */ 2654 ice_for_each_traffic_class(tc) { 2655 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2656 /* Delete aggregator cfg TC if it exists previously */ 2657 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2658 if (status) 2659 break; 2660 continue; 2661 } 2662 2663 /* Check if aggregator node for TC already exists */ 2664 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2665 continue; 2666 2667 /* Create new aggregator node for TC */ 2668 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2669 if (status) 2670 break; 2671 2672 /* Save aggregator node's TC information */ 2673 set_bit(tc, agg_info->tc_bitmap); 2674 } 2675 2676 return status; 2677 } 2678 2679 /** 2680 * ice_cfg_agg - config aggregator node 2681 * @pi: port information structure 2682 * @agg_id: aggregator ID 2683 * @agg_type: aggregator type queue, VSI, or aggregator group 2684 * @tc_bitmap: bits TC bitmap 2685 * 2686 * This function configures aggregator node(s). 2687 */ 2688 int 2689 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2690 u8 tc_bitmap) 2691 { 2692 unsigned long bitmap = tc_bitmap; 2693 int status; 2694 2695 mutex_lock(&pi->sched_lock); 2696 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2697 if (!status) 2698 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2699 mutex_unlock(&pi->sched_lock); 2700 return status; 2701 } 2702 2703 /** 2704 * ice_get_agg_vsi_info - get the aggregator ID 2705 * @agg_info: aggregator info 2706 * @vsi_handle: software VSI handle 2707 * 2708 * The function returns aggregator VSI info based on VSI handle. This function 2709 * needs to be called with scheduler lock held. 2710 */ 2711 static struct ice_sched_agg_vsi_info * 2712 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2713 { 2714 struct ice_sched_agg_vsi_info *agg_vsi_info; 2715 2716 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2717 if (agg_vsi_info->vsi_handle == vsi_handle) 2718 return agg_vsi_info; 2719 2720 return NULL; 2721 } 2722 2723 /** 2724 * ice_get_vsi_agg_info - get the aggregator info of VSI 2725 * @hw: pointer to the hardware structure 2726 * @vsi_handle: Sw VSI handle 2727 * 2728 * The function returns aggregator info of VSI represented via vsi_handle. The 2729 * VSI has in this case a different aggregator than the default one. This 2730 * function needs to be called with scheduler lock held. 2731 */ 2732 static struct ice_sched_agg_info * 2733 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2734 { 2735 struct ice_sched_agg_info *agg_info; 2736 2737 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2738 struct ice_sched_agg_vsi_info *agg_vsi_info; 2739 2740 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2741 if (agg_vsi_info) 2742 return agg_info; 2743 } 2744 return NULL; 2745 } 2746 2747 /** 2748 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2749 * @pi: port information structure 2750 * @agg_id: aggregator ID 2751 * @vsi_handle: software VSI handle 2752 * @tc_bitmap: TC bitmap of enabled TC(s) 2753 * 2754 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2755 * lock held. 2756 */ 2757 static int 2758 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2759 unsigned long *tc_bitmap) 2760 { 2761 struct ice_sched_agg_vsi_info *agg_vsi_info; 2762 struct ice_sched_agg_info *agg_info; 2763 2764 agg_info = ice_get_agg_info(pi->hw, agg_id); 2765 if (!agg_info) 2766 return -EINVAL; 2767 /* check if entry already exist */ 2768 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2769 if (!agg_vsi_info) 2770 return -EINVAL; 2771 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2772 ICE_MAX_TRAFFIC_CLASS); 2773 return 0; 2774 } 2775 2776 /** 2777 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2778 * @pi: port information structure 2779 * @agg_id: aggregator ID 2780 * @vsi_handle: software VSI handle 2781 * @tc_bitmap: TC bitmap of enabled TC(s) 2782 * 2783 * This function moves VSI to a new or default aggregator node. If VSI is 2784 * already associated to the aggregator node then no operation is performed on 2785 * the tree. This function needs to be called with scheduler lock held. 2786 */ 2787 static int 2788 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2789 u16 vsi_handle, unsigned long *tc_bitmap) 2790 { 2791 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL; 2792 struct ice_sched_agg_info *agg_info, *old_agg_info; 2793 struct ice_hw *hw = pi->hw; 2794 int status = 0; 2795 u8 tc; 2796 2797 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2798 return -EINVAL; 2799 agg_info = ice_get_agg_info(hw, agg_id); 2800 if (!agg_info) 2801 return -EINVAL; 2802 /* If the VSI is already part of another aggregator then update 2803 * its VSI info list 2804 */ 2805 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2806 if (old_agg_info && old_agg_info != agg_info) { 2807 struct ice_sched_agg_vsi_info *vtmp; 2808 2809 list_for_each_entry_safe(iter, vtmp, 2810 &old_agg_info->agg_vsi_list, 2811 list_entry) 2812 if (iter->vsi_handle == vsi_handle) { 2813 old_agg_vsi_info = iter; 2814 break; 2815 } 2816 } 2817 2818 /* check if entry already exist */ 2819 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2820 if (!agg_vsi_info) { 2821 /* Create new entry for VSI under aggregator list */ 2822 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2823 sizeof(*agg_vsi_info), GFP_KERNEL); 2824 if (!agg_vsi_info) 2825 return -EINVAL; 2826 2827 /* add VSI ID into the aggregator list */ 2828 agg_vsi_info->vsi_handle = vsi_handle; 2829 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2830 } 2831 /* Move VSI node to new aggregator node for requested TC(s) */ 2832 ice_for_each_traffic_class(tc) { 2833 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2834 continue; 2835 2836 /* Move VSI to new aggregator */ 2837 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2838 if (status) 2839 break; 2840 2841 set_bit(tc, agg_vsi_info->tc_bitmap); 2842 if (old_agg_vsi_info) 2843 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2844 } 2845 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2846 list_del(&old_agg_vsi_info->list_entry); 2847 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2848 } 2849 return status; 2850 } 2851 2852 /** 2853 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2854 * @pi: port information structure 2855 * 2856 * This function removes unused rate limit profiles from the HW and 2857 * SW DB. The caller needs to hold scheduler lock. 2858 */ 2859 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2860 { 2861 u16 ln; 2862 2863 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2864 struct ice_aqc_rl_profile_info *rl_prof_elem; 2865 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2866 2867 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2868 &pi->rl_prof_list[ln], list_entry) { 2869 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2870 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2871 } 2872 } 2873 } 2874 2875 /** 2876 * ice_sched_update_elem - update element 2877 * @hw: pointer to the HW struct 2878 * @node: pointer to node 2879 * @info: node info to update 2880 * 2881 * Update the HW DB, and local SW DB of node. Update the scheduling 2882 * parameters of node from argument info data buffer (Info->data buf) and 2883 * returns success or error on config sched element failure. The caller 2884 * needs to hold scheduler lock. 2885 */ 2886 static int 2887 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2888 struct ice_aqc_txsched_elem_data *info) 2889 { 2890 struct ice_aqc_txsched_elem_data buf; 2891 u16 elem_cfgd = 0; 2892 u16 num_elems = 1; 2893 int status; 2894 2895 buf = *info; 2896 /* Parent TEID is reserved field in this aq call */ 2897 buf.parent_teid = 0; 2898 /* Element type is reserved field in this aq call */ 2899 buf.data.elem_type = 0; 2900 /* Flags is reserved field in this aq call */ 2901 buf.data.flags = 0; 2902 2903 /* Update HW DB */ 2904 /* Configure element node */ 2905 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2906 &elem_cfgd, NULL); 2907 if (status || elem_cfgd != num_elems) { 2908 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2909 return -EIO; 2910 } 2911 2912 /* Config success case */ 2913 /* Now update local SW DB */ 2914 /* Only copy the data portion of info buffer */ 2915 node->info.data = info->data; 2916 return status; 2917 } 2918 2919 /** 2920 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2921 * @hw: pointer to the HW struct 2922 * @node: sched node to configure 2923 * @rl_type: rate limit type CIR, EIR, or shared 2924 * @bw_alloc: BW weight/allocation 2925 * 2926 * This function configures node element's BW allocation. 2927 */ 2928 static int 2929 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2930 enum ice_rl_type rl_type, u16 bw_alloc) 2931 { 2932 struct ice_aqc_txsched_elem_data buf; 2933 struct ice_aqc_txsched_elem *data; 2934 2935 buf = node->info; 2936 data = &buf.data; 2937 if (rl_type == ICE_MIN_BW) { 2938 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2939 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2940 } else if (rl_type == ICE_MAX_BW) { 2941 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2942 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2943 } else { 2944 return -EINVAL; 2945 } 2946 2947 /* Configure element */ 2948 return ice_sched_update_elem(hw, node, &buf); 2949 } 2950 2951 /** 2952 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2953 * @pi: port information structure 2954 * @agg_id: aggregator ID 2955 * @vsi_handle: software VSI handle 2956 * @tc_bitmap: TC bitmap of enabled TC(s) 2957 * 2958 * Move or associate VSI to a new or default aggregator node. 2959 */ 2960 int 2961 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2962 u8 tc_bitmap) 2963 { 2964 unsigned long bitmap = tc_bitmap; 2965 int status; 2966 2967 mutex_lock(&pi->sched_lock); 2968 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2969 (unsigned long *)&bitmap); 2970 if (!status) 2971 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2972 (unsigned long *)&bitmap); 2973 mutex_unlock(&pi->sched_lock); 2974 return status; 2975 } 2976 2977 /** 2978 * ice_set_clear_cir_bw - set or clear CIR BW 2979 * @bw_t_info: bandwidth type information structure 2980 * @bw: bandwidth in Kbps - Kilo bits per sec 2981 * 2982 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2983 */ 2984 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2985 { 2986 if (bw == ICE_SCHED_DFLT_BW) { 2987 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2988 bw_t_info->cir_bw.bw = 0; 2989 } else { 2990 /* Save type of BW information */ 2991 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2992 bw_t_info->cir_bw.bw = bw; 2993 } 2994 } 2995 2996 /** 2997 * ice_set_clear_eir_bw - set or clear EIR BW 2998 * @bw_t_info: bandwidth type information structure 2999 * @bw: bandwidth in Kbps - Kilo bits per sec 3000 * 3001 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 3002 */ 3003 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3004 { 3005 if (bw == ICE_SCHED_DFLT_BW) { 3006 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3007 bw_t_info->eir_bw.bw = 0; 3008 } else { 3009 /* EIR BW and Shared BW profiles are mutually exclusive and 3010 * hence only one of them may be set for any given element. 3011 * First clear earlier saved shared BW information. 3012 */ 3013 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3014 bw_t_info->shared_bw = 0; 3015 /* save EIR BW information */ 3016 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3017 bw_t_info->eir_bw.bw = bw; 3018 } 3019 } 3020 3021 /** 3022 * ice_set_clear_shared_bw - set or clear shared BW 3023 * @bw_t_info: bandwidth type information structure 3024 * @bw: bandwidth in Kbps - Kilo bits per sec 3025 * 3026 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 3027 */ 3028 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3029 { 3030 if (bw == ICE_SCHED_DFLT_BW) { 3031 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3032 bw_t_info->shared_bw = 0; 3033 } else { 3034 /* EIR BW and Shared BW profiles are mutually exclusive and 3035 * hence only one of them may be set for any given element. 3036 * First clear earlier saved EIR BW information. 3037 */ 3038 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3039 bw_t_info->eir_bw.bw = 0; 3040 /* save shared BW information */ 3041 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3042 bw_t_info->shared_bw = bw; 3043 } 3044 } 3045 3046 /** 3047 * ice_sched_save_vsi_bw - save VSI node's BW information 3048 * @pi: port information structure 3049 * @vsi_handle: sw VSI handle 3050 * @tc: traffic class 3051 * @rl_type: rate limit type min, max, or shared 3052 * @bw: bandwidth in Kbps - Kilo bits per sec 3053 * 3054 * Save BW information of VSI type node for post replay use. 3055 */ 3056 static int 3057 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3058 enum ice_rl_type rl_type, u32 bw) 3059 { 3060 struct ice_vsi_ctx *vsi_ctx; 3061 3062 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3063 return -EINVAL; 3064 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3065 if (!vsi_ctx) 3066 return -EINVAL; 3067 switch (rl_type) { 3068 case ICE_MIN_BW: 3069 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3070 break; 3071 case ICE_MAX_BW: 3072 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3073 break; 3074 case ICE_SHARED_BW: 3075 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3076 break; 3077 default: 3078 return -EINVAL; 3079 } 3080 return 0; 3081 } 3082 3083 /** 3084 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3085 * @hw: pointer to the HW struct 3086 * @bw: bandwidth in Kbps 3087 * 3088 * This function calculates the wakeup parameter of RL profile. 3089 */ 3090 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3091 { 3092 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3093 s32 wakeup_f_int; 3094 u16 wakeup = 0; 3095 3096 /* Get the wakeup integer value */ 3097 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3098 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3099 if (wakeup_int > 63) { 3100 wakeup = (u16)((1 << 15) | wakeup_int); 3101 } else { 3102 /* Calculate fraction value up to 4 decimals 3103 * Convert Integer value to a constant multiplier 3104 */ 3105 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3106 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3107 hw->psm_clk_freq, bytes_per_sec); 3108 3109 /* Get Fraction value */ 3110 wakeup_f = wakeup_a - wakeup_b; 3111 3112 /* Round up the Fractional value via Ceil(Fractional value) */ 3113 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3114 wakeup_f += 1; 3115 3116 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3117 ICE_RL_PROF_MULTIPLIER); 3118 wakeup |= (u16)(wakeup_int << 9); 3119 wakeup |= (u16)(0x1ff & wakeup_f_int); 3120 } 3121 3122 return wakeup; 3123 } 3124 3125 /** 3126 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3127 * @hw: pointer to the HW struct 3128 * @bw: bandwidth in Kbps 3129 * @profile: profile parameters to return 3130 * 3131 * This function converts the BW to profile structure format. 3132 */ 3133 static int 3134 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3135 struct ice_aqc_rl_profile_elem *profile) 3136 { 3137 s64 bytes_per_sec, ts_rate, mv_tmp; 3138 int status = -EINVAL; 3139 bool found = false; 3140 s32 encode = 0; 3141 s64 mv = 0; 3142 s32 i; 3143 3144 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3145 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3146 return status; 3147 3148 /* Bytes per second from Kbps */ 3149 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3150 3151 /* encode is 6 bits but really useful are 5 bits */ 3152 for (i = 0; i < 64; i++) { 3153 u64 pow_result = BIT_ULL(i); 3154 3155 ts_rate = div64_long((s64)hw->psm_clk_freq, 3156 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3157 if (ts_rate <= 0) 3158 continue; 3159 3160 /* Multiplier value */ 3161 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3162 ts_rate); 3163 3164 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3165 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3166 3167 /* First multiplier value greater than the given 3168 * accuracy bytes 3169 */ 3170 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3171 encode = i; 3172 found = true; 3173 break; 3174 } 3175 } 3176 if (found) { 3177 u16 wm; 3178 3179 wm = ice_sched_calc_wakeup(hw, bw); 3180 profile->rl_multiply = cpu_to_le16(mv); 3181 profile->wake_up_calc = cpu_to_le16(wm); 3182 profile->rl_encode = cpu_to_le16(encode); 3183 status = 0; 3184 } else { 3185 status = -ENOENT; 3186 } 3187 3188 return status; 3189 } 3190 3191 /** 3192 * ice_sched_add_rl_profile - add RL profile 3193 * @pi: port information structure 3194 * @rl_type: type of rate limit BW - min, max, or shared 3195 * @bw: bandwidth in Kbps - Kilo bits per sec 3196 * @layer_num: specifies in which layer to create profile 3197 * 3198 * This function first checks the existing list for corresponding BW 3199 * parameter. If it exists, it returns the associated profile otherwise 3200 * it creates a new rate limit profile for requested BW, and adds it to 3201 * the HW DB and local list. It returns the new profile or null on error. 3202 * The caller needs to hold the scheduler lock. 3203 */ 3204 static struct ice_aqc_rl_profile_info * 3205 ice_sched_add_rl_profile(struct ice_port_info *pi, 3206 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3207 { 3208 struct ice_aqc_rl_profile_info *rl_prof_elem; 3209 u16 profiles_added = 0, num_profiles = 1; 3210 struct ice_aqc_rl_profile_elem *buf; 3211 struct ice_hw *hw; 3212 u8 profile_type; 3213 int status; 3214 3215 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3216 return NULL; 3217 switch (rl_type) { 3218 case ICE_MIN_BW: 3219 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3220 break; 3221 case ICE_MAX_BW: 3222 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3223 break; 3224 case ICE_SHARED_BW: 3225 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3226 break; 3227 default: 3228 return NULL; 3229 } 3230 3231 if (!pi) 3232 return NULL; 3233 hw = pi->hw; 3234 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3235 list_entry) 3236 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3237 profile_type && rl_prof_elem->bw == bw) 3238 /* Return existing profile ID info */ 3239 return rl_prof_elem; 3240 3241 /* Create new profile ID */ 3242 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3243 GFP_KERNEL); 3244 3245 if (!rl_prof_elem) 3246 return NULL; 3247 3248 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3249 if (status) 3250 goto exit_add_rl_prof; 3251 3252 rl_prof_elem->bw = bw; 3253 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3254 rl_prof_elem->profile.level = layer_num + 1; 3255 rl_prof_elem->profile.flags = profile_type; 3256 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3257 3258 /* Create new entry in HW DB */ 3259 buf = &rl_prof_elem->profile; 3260 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3261 &profiles_added, NULL); 3262 if (status || profiles_added != num_profiles) 3263 goto exit_add_rl_prof; 3264 3265 /* Good entry - add in the list */ 3266 rl_prof_elem->prof_id_ref = 0; 3267 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3268 return rl_prof_elem; 3269 3270 exit_add_rl_prof: 3271 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3272 return NULL; 3273 } 3274 3275 /** 3276 * ice_sched_cfg_node_bw_lmt - configure node sched params 3277 * @hw: pointer to the HW struct 3278 * @node: sched node to configure 3279 * @rl_type: rate limit type CIR, EIR, or shared 3280 * @rl_prof_id: rate limit profile ID 3281 * 3282 * This function configures node element's BW limit. 3283 */ 3284 static int 3285 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3286 enum ice_rl_type rl_type, u16 rl_prof_id) 3287 { 3288 struct ice_aqc_txsched_elem_data buf; 3289 struct ice_aqc_txsched_elem *data; 3290 3291 buf = node->info; 3292 data = &buf.data; 3293 switch (rl_type) { 3294 case ICE_MIN_BW: 3295 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3296 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3297 break; 3298 case ICE_MAX_BW: 3299 /* EIR BW and Shared BW profiles are mutually exclusive and 3300 * hence only one of them may be set for any given element 3301 */ 3302 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3303 return -EIO; 3304 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3305 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3306 break; 3307 case ICE_SHARED_BW: 3308 /* Check for removing shared BW */ 3309 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3310 /* remove shared profile */ 3311 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3312 data->srl_id = 0; /* clear SRL field */ 3313 3314 /* enable back EIR to default profile */ 3315 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3316 data->eir_bw.bw_profile_idx = 3317 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3318 break; 3319 } 3320 /* EIR BW and Shared BW profiles are mutually exclusive and 3321 * hence only one of them may be set for any given element 3322 */ 3323 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3324 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3325 ICE_SCHED_DFLT_RL_PROF_ID)) 3326 return -EIO; 3327 /* EIR BW is set to default, disable it */ 3328 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3329 /* Okay to enable shared BW now */ 3330 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3331 data->srl_id = cpu_to_le16(rl_prof_id); 3332 break; 3333 default: 3334 /* Unknown rate limit type */ 3335 return -EINVAL; 3336 } 3337 3338 /* Configure element */ 3339 return ice_sched_update_elem(hw, node, &buf); 3340 } 3341 3342 /** 3343 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3344 * @node: sched node 3345 * @rl_type: rate limit type 3346 * 3347 * If existing profile matches, it returns the corresponding rate 3348 * limit profile ID, otherwise it returns an invalid ID as error. 3349 */ 3350 static u16 3351 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3352 enum ice_rl_type rl_type) 3353 { 3354 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3355 struct ice_aqc_txsched_elem *data; 3356 3357 data = &node->info.data; 3358 switch (rl_type) { 3359 case ICE_MIN_BW: 3360 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3361 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3362 break; 3363 case ICE_MAX_BW: 3364 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3365 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3366 break; 3367 case ICE_SHARED_BW: 3368 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3369 rl_prof_id = le16_to_cpu(data->srl_id); 3370 break; 3371 default: 3372 break; 3373 } 3374 3375 return rl_prof_id; 3376 } 3377 3378 /** 3379 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3380 * @pi: port information structure 3381 * @rl_type: type of rate limit BW - min, max, or shared 3382 * @layer_index: layer index 3383 * 3384 * This function returns requested profile creation layer. 3385 */ 3386 static u8 3387 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3388 u8 layer_index) 3389 { 3390 struct ice_hw *hw = pi->hw; 3391 3392 if (layer_index >= hw->num_tx_sched_layers) 3393 return ICE_SCHED_INVAL_LAYER_NUM; 3394 switch (rl_type) { 3395 case ICE_MIN_BW: 3396 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3397 return layer_index; 3398 break; 3399 case ICE_MAX_BW: 3400 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3401 return layer_index; 3402 break; 3403 case ICE_SHARED_BW: 3404 /* if current layer doesn't support SRL profile creation 3405 * then try a layer up or down. 3406 */ 3407 if (hw->layer_info[layer_index].max_srl_profiles) 3408 return layer_index; 3409 else if (layer_index < hw->num_tx_sched_layers - 1 && 3410 hw->layer_info[layer_index + 1].max_srl_profiles) 3411 return layer_index + 1; 3412 else if (layer_index > 0 && 3413 hw->layer_info[layer_index - 1].max_srl_profiles) 3414 return layer_index - 1; 3415 break; 3416 default: 3417 break; 3418 } 3419 return ICE_SCHED_INVAL_LAYER_NUM; 3420 } 3421 3422 /** 3423 * ice_sched_get_srl_node - get shared rate limit node 3424 * @node: tree node 3425 * @srl_layer: shared rate limit layer 3426 * 3427 * This function returns SRL node to be used for shared rate limit purpose. 3428 * The caller needs to hold scheduler lock. 3429 */ 3430 static struct ice_sched_node * 3431 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3432 { 3433 if (srl_layer > node->tx_sched_layer) 3434 return node->children[0]; 3435 else if (srl_layer < node->tx_sched_layer) 3436 /* Node can't be created without a parent. It will always 3437 * have a valid parent except root node. 3438 */ 3439 return node->parent; 3440 else 3441 return node; 3442 } 3443 3444 /** 3445 * ice_sched_rm_rl_profile - remove RL profile ID 3446 * @pi: port information structure 3447 * @layer_num: layer number where profiles are saved 3448 * @profile_type: profile type like EIR, CIR, or SRL 3449 * @profile_id: profile ID to remove 3450 * 3451 * This function removes rate limit profile from layer 'layer_num' of type 3452 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3453 * scheduler lock. 3454 */ 3455 static int 3456 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3457 u16 profile_id) 3458 { 3459 struct ice_aqc_rl_profile_info *rl_prof_elem; 3460 int status = 0; 3461 3462 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3463 return -EINVAL; 3464 /* Check the existing list for RL profile */ 3465 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3466 list_entry) 3467 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3468 profile_type && 3469 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3470 profile_id) { 3471 if (rl_prof_elem->prof_id_ref) 3472 rl_prof_elem->prof_id_ref--; 3473 3474 /* Remove old profile ID from database */ 3475 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3476 if (status && status != -EBUSY) 3477 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3478 break; 3479 } 3480 if (status == -EBUSY) 3481 status = 0; 3482 return status; 3483 } 3484 3485 /** 3486 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3487 * @pi: port information structure 3488 * @node: pointer to node structure 3489 * @rl_type: rate limit type min, max, or shared 3490 * @layer_num: layer number where RL profiles are saved 3491 * 3492 * This function configures node element's BW rate limit profile ID of 3493 * type CIR, EIR, or SRL to default. This function needs to be called 3494 * with the scheduler lock held. 3495 */ 3496 static int 3497 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3498 struct ice_sched_node *node, 3499 enum ice_rl_type rl_type, u8 layer_num) 3500 { 3501 struct ice_hw *hw; 3502 u8 profile_type; 3503 u16 rl_prof_id; 3504 u16 old_id; 3505 int status; 3506 3507 hw = pi->hw; 3508 switch (rl_type) { 3509 case ICE_MIN_BW: 3510 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3511 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3512 break; 3513 case ICE_MAX_BW: 3514 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3515 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3516 break; 3517 case ICE_SHARED_BW: 3518 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3519 /* No SRL is configured for default case */ 3520 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3521 break; 3522 default: 3523 return -EINVAL; 3524 } 3525 /* Save existing RL prof ID for later clean up */ 3526 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3527 /* Configure BW scheduling parameters */ 3528 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3529 if (status) 3530 return status; 3531 3532 /* Remove stale RL profile ID */ 3533 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3534 old_id == ICE_SCHED_INVAL_PROF_ID) 3535 return 0; 3536 3537 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3538 } 3539 3540 /** 3541 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3542 * @pi: port information structure 3543 * @node: pointer to node structure 3544 * @layer_num: layer number where rate limit profiles are saved 3545 * @rl_type: rate limit type min, max, or shared 3546 * @bw: bandwidth value 3547 * 3548 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3549 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3550 * them may be set for any given element. This function needs to be called 3551 * with the scheduler lock held. 3552 */ 3553 static int 3554 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3555 struct ice_sched_node *node, 3556 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3557 { 3558 if (rl_type == ICE_SHARED_BW) { 3559 /* SRL node passed in this case, it may be different node */ 3560 if (bw == ICE_SCHED_DFLT_BW) 3561 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3562 * enables EIR to default. EIR is not set in this 3563 * case, so no additional action is required. 3564 */ 3565 return 0; 3566 3567 /* SRL being configured, set EIR to default here. 3568 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3569 * configures SRL 3570 */ 3571 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3572 layer_num); 3573 } else if (rl_type == ICE_MAX_BW && 3574 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3575 /* Remove Shared profile. Set default shared BW call 3576 * removes shared profile for a node. 3577 */ 3578 return ice_sched_set_node_bw_dflt(pi, node, 3579 ICE_SHARED_BW, 3580 layer_num); 3581 } 3582 return 0; 3583 } 3584 3585 /** 3586 * ice_sched_set_node_bw - set node's bandwidth 3587 * @pi: port information structure 3588 * @node: tree node 3589 * @rl_type: rate limit type min, max, or shared 3590 * @bw: bandwidth in Kbps - Kilo bits per sec 3591 * @layer_num: layer number 3592 * 3593 * This function adds new profile corresponding to requested BW, configures 3594 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3595 * ID from local database. The caller needs to hold scheduler lock. 3596 */ 3597 int 3598 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3599 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3600 { 3601 struct ice_aqc_rl_profile_info *rl_prof_info; 3602 struct ice_hw *hw = pi->hw; 3603 u16 old_id, rl_prof_id; 3604 int status = -EINVAL; 3605 3606 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3607 if (!rl_prof_info) 3608 return status; 3609 3610 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3611 3612 /* Save existing RL prof ID for later clean up */ 3613 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3614 /* Configure BW scheduling parameters */ 3615 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3616 if (status) 3617 return status; 3618 3619 /* New changes has been applied */ 3620 /* Increment the profile ID reference count */ 3621 rl_prof_info->prof_id_ref++; 3622 3623 /* Check for old ID removal */ 3624 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3625 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3626 return 0; 3627 3628 return ice_sched_rm_rl_profile(pi, layer_num, 3629 rl_prof_info->profile.flags & 3630 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3631 } 3632 3633 /** 3634 * ice_sched_set_node_priority - set node's priority 3635 * @pi: port information structure 3636 * @node: tree node 3637 * @priority: number 0-7 representing priority among siblings 3638 * 3639 * This function sets priority of a node among it's siblings. 3640 */ 3641 int 3642 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, 3643 u16 priority) 3644 { 3645 struct ice_aqc_txsched_elem_data buf; 3646 struct ice_aqc_txsched_elem *data; 3647 3648 buf = node->info; 3649 data = &buf.data; 3650 3651 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3652 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); 3653 3654 return ice_sched_update_elem(pi->hw, node, &buf); 3655 } 3656 3657 /** 3658 * ice_sched_set_node_weight - set node's weight 3659 * @pi: port information structure 3660 * @node: tree node 3661 * @weight: number 1-200 representing weight for WFQ 3662 * 3663 * This function sets weight of the node for WFQ algorithm. 3664 */ 3665 int 3666 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) 3667 { 3668 struct ice_aqc_txsched_elem_data buf; 3669 struct ice_aqc_txsched_elem *data; 3670 3671 buf = node->info; 3672 data = &buf.data; 3673 3674 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | 3675 ICE_AQC_ELEM_VALID_GENERIC; 3676 data->cir_bw.bw_alloc = cpu_to_le16(weight); 3677 data->eir_bw.bw_alloc = cpu_to_le16(weight); 3678 3679 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); 3680 3681 return ice_sched_update_elem(pi->hw, node, &buf); 3682 } 3683 3684 /** 3685 * ice_sched_set_node_bw_lmt - set node's BW limit 3686 * @pi: port information structure 3687 * @node: tree node 3688 * @rl_type: rate limit type min, max, or shared 3689 * @bw: bandwidth in Kbps - Kilo bits per sec 3690 * 3691 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3692 * EIR, or SRL. The caller needs to hold scheduler lock. 3693 */ 3694 int 3695 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3696 enum ice_rl_type rl_type, u32 bw) 3697 { 3698 struct ice_sched_node *cfg_node = node; 3699 int status; 3700 3701 struct ice_hw *hw; 3702 u8 layer_num; 3703 3704 if (!pi) 3705 return -EINVAL; 3706 hw = pi->hw; 3707 /* Remove unused RL profile IDs from HW and SW DB */ 3708 ice_sched_rm_unused_rl_prof(pi); 3709 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3710 node->tx_sched_layer); 3711 if (layer_num >= hw->num_tx_sched_layers) 3712 return -EINVAL; 3713 3714 if (rl_type == ICE_SHARED_BW) { 3715 /* SRL node may be different */ 3716 cfg_node = ice_sched_get_srl_node(node, layer_num); 3717 if (!cfg_node) 3718 return -EIO; 3719 } 3720 /* EIR BW and Shared BW profiles are mutually exclusive and 3721 * hence only one of them may be set for any given element 3722 */ 3723 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3724 bw); 3725 if (status) 3726 return status; 3727 if (bw == ICE_SCHED_DFLT_BW) 3728 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3729 layer_num); 3730 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3731 } 3732 3733 /** 3734 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3735 * @pi: port information structure 3736 * @node: pointer to node structure 3737 * @rl_type: rate limit type min, max, or shared 3738 * 3739 * This function configures node element's BW rate limit profile ID of 3740 * type CIR, EIR, or SRL to default. This function needs to be called 3741 * with the scheduler lock held. 3742 */ 3743 static int 3744 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3745 struct ice_sched_node *node, 3746 enum ice_rl_type rl_type) 3747 { 3748 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3749 ICE_SCHED_DFLT_BW); 3750 } 3751 3752 /** 3753 * ice_sched_validate_srl_node - Check node for SRL applicability 3754 * @node: sched node to configure 3755 * @sel_layer: selected SRL layer 3756 * 3757 * This function checks if the SRL can be applied to a selected layer node on 3758 * behalf of the requested node (first argument). This function needs to be 3759 * called with scheduler lock held. 3760 */ 3761 static int 3762 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3763 { 3764 /* SRL profiles are not available on all layers. Check if the 3765 * SRL profile can be applied to a node above or below the 3766 * requested node. SRL configuration is possible only if the 3767 * selected layer's node has single child. 3768 */ 3769 if (sel_layer == node->tx_sched_layer || 3770 ((sel_layer == node->tx_sched_layer + 1) && 3771 node->num_children == 1) || 3772 ((sel_layer == node->tx_sched_layer - 1) && 3773 (node->parent && node->parent->num_children == 1))) 3774 return 0; 3775 3776 return -EIO; 3777 } 3778 3779 /** 3780 * ice_sched_save_q_bw - save queue node's BW information 3781 * @q_ctx: queue context structure 3782 * @rl_type: rate limit type min, max, or shared 3783 * @bw: bandwidth in Kbps - Kilo bits per sec 3784 * 3785 * Save BW information of queue type node for post replay use. 3786 */ 3787 static int 3788 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3789 { 3790 switch (rl_type) { 3791 case ICE_MIN_BW: 3792 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3793 break; 3794 case ICE_MAX_BW: 3795 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3796 break; 3797 case ICE_SHARED_BW: 3798 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3799 break; 3800 default: 3801 return -EINVAL; 3802 } 3803 return 0; 3804 } 3805 3806 /** 3807 * ice_sched_set_q_bw_lmt - sets queue BW limit 3808 * @pi: port information structure 3809 * @vsi_handle: sw VSI handle 3810 * @tc: traffic class 3811 * @q_handle: software queue handle 3812 * @rl_type: min, max, or shared 3813 * @bw: bandwidth in Kbps 3814 * 3815 * This function sets BW limit of queue scheduling node. 3816 */ 3817 static int 3818 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3819 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3820 { 3821 struct ice_sched_node *node; 3822 struct ice_q_ctx *q_ctx; 3823 int status = -EINVAL; 3824 3825 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3826 return -EINVAL; 3827 mutex_lock(&pi->sched_lock); 3828 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3829 if (!q_ctx) 3830 goto exit_q_bw_lmt; 3831 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3832 if (!node) { 3833 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3834 goto exit_q_bw_lmt; 3835 } 3836 3837 /* Return error if it is not a leaf node */ 3838 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3839 goto exit_q_bw_lmt; 3840 3841 /* SRL bandwidth layer selection */ 3842 if (rl_type == ICE_SHARED_BW) { 3843 u8 sel_layer; /* selected layer */ 3844 3845 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3846 node->tx_sched_layer); 3847 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3848 status = -EINVAL; 3849 goto exit_q_bw_lmt; 3850 } 3851 status = ice_sched_validate_srl_node(node, sel_layer); 3852 if (status) 3853 goto exit_q_bw_lmt; 3854 } 3855 3856 if (bw == ICE_SCHED_DFLT_BW) 3857 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3858 else 3859 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3860 3861 if (!status) 3862 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3863 3864 exit_q_bw_lmt: 3865 mutex_unlock(&pi->sched_lock); 3866 return status; 3867 } 3868 3869 /** 3870 * ice_cfg_q_bw_lmt - configure queue BW limit 3871 * @pi: port information structure 3872 * @vsi_handle: sw VSI handle 3873 * @tc: traffic class 3874 * @q_handle: software queue handle 3875 * @rl_type: min, max, or shared 3876 * @bw: bandwidth in Kbps 3877 * 3878 * This function configures BW limit of queue scheduling node. 3879 */ 3880 int 3881 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3882 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3883 { 3884 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3885 bw); 3886 } 3887 3888 /** 3889 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3890 * @pi: port information structure 3891 * @vsi_handle: sw VSI handle 3892 * @tc: traffic class 3893 * @q_handle: software queue handle 3894 * @rl_type: min, max, or shared 3895 * 3896 * This function configures BW default limit of queue scheduling node. 3897 */ 3898 int 3899 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3900 u16 q_handle, enum ice_rl_type rl_type) 3901 { 3902 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3903 ICE_SCHED_DFLT_BW); 3904 } 3905 3906 /** 3907 * ice_sched_get_node_by_id_type - get node from ID type 3908 * @pi: port information structure 3909 * @id: identifier 3910 * @agg_type: type of aggregator 3911 * @tc: traffic class 3912 * 3913 * This function returns node identified by ID of type aggregator, and 3914 * based on traffic class (TC). This function needs to be called with 3915 * the scheduler lock held. 3916 */ 3917 static struct ice_sched_node * 3918 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3919 enum ice_agg_type agg_type, u8 tc) 3920 { 3921 struct ice_sched_node *node = NULL; 3922 3923 switch (agg_type) { 3924 case ICE_AGG_TYPE_VSI: { 3925 struct ice_vsi_ctx *vsi_ctx; 3926 u16 vsi_handle = (u16)id; 3927 3928 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3929 break; 3930 /* Get sched_vsi_info */ 3931 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3932 if (!vsi_ctx) 3933 break; 3934 node = vsi_ctx->sched.vsi_node[tc]; 3935 break; 3936 } 3937 3938 case ICE_AGG_TYPE_AGG: { 3939 struct ice_sched_node *tc_node; 3940 3941 tc_node = ice_sched_get_tc_node(pi, tc); 3942 if (tc_node) 3943 node = ice_sched_get_agg_node(pi, tc_node, id); 3944 break; 3945 } 3946 3947 default: 3948 break; 3949 } 3950 3951 return node; 3952 } 3953 3954 /** 3955 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3956 * @pi: port information structure 3957 * @id: ID (software VSI handle or AGG ID) 3958 * @agg_type: aggregator type (VSI or AGG type node) 3959 * @tc: traffic class 3960 * @rl_type: min or max 3961 * @bw: bandwidth in Kbps 3962 * 3963 * This function sets BW limit of VSI or Aggregator scheduling node 3964 * based on TC information from passed in argument BW. 3965 */ 3966 int 3967 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3968 enum ice_agg_type agg_type, u8 tc, 3969 enum ice_rl_type rl_type, u32 bw) 3970 { 3971 struct ice_sched_node *node; 3972 int status = -EINVAL; 3973 3974 if (!pi) 3975 return status; 3976 3977 if (rl_type == ICE_UNKNOWN_BW) 3978 return status; 3979 3980 mutex_lock(&pi->sched_lock); 3981 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3982 if (!node) { 3983 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3984 goto exit_set_node_bw_lmt_per_tc; 3985 } 3986 if (bw == ICE_SCHED_DFLT_BW) 3987 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3988 else 3989 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3990 3991 exit_set_node_bw_lmt_per_tc: 3992 mutex_unlock(&pi->sched_lock); 3993 return status; 3994 } 3995 3996 /** 3997 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 3998 * @pi: port information structure 3999 * @vsi_handle: software VSI handle 4000 * @tc: traffic class 4001 * @rl_type: min or max 4002 * @bw: bandwidth in Kbps 4003 * 4004 * This function configures BW limit of VSI scheduling node based on TC 4005 * information. 4006 */ 4007 int 4008 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4009 enum ice_rl_type rl_type, u32 bw) 4010 { 4011 int status; 4012 4013 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4014 ICE_AGG_TYPE_VSI, 4015 tc, rl_type, bw); 4016 if (!status) { 4017 mutex_lock(&pi->sched_lock); 4018 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 4019 mutex_unlock(&pi->sched_lock); 4020 } 4021 return status; 4022 } 4023 4024 /** 4025 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 4026 * @pi: port information structure 4027 * @vsi_handle: software VSI handle 4028 * @tc: traffic class 4029 * @rl_type: min or max 4030 * 4031 * This function configures default BW limit of VSI scheduling node based on TC 4032 * information. 4033 */ 4034 int 4035 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4036 enum ice_rl_type rl_type) 4037 { 4038 int status; 4039 4040 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4041 ICE_AGG_TYPE_VSI, 4042 tc, rl_type, 4043 ICE_SCHED_DFLT_BW); 4044 if (!status) { 4045 mutex_lock(&pi->sched_lock); 4046 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 4047 ICE_SCHED_DFLT_BW); 4048 mutex_unlock(&pi->sched_lock); 4049 } 4050 return status; 4051 } 4052 4053 /** 4054 * ice_cfg_rl_burst_size - Set burst size value 4055 * @hw: pointer to the HW struct 4056 * @bytes: burst size in bytes 4057 * 4058 * This function configures/set the burst size to requested new value. The new 4059 * burst size value is used for future rate limit calls. It doesn't change the 4060 * existing or previously created RL profiles. 4061 */ 4062 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 4063 { 4064 u16 burst_size_to_prog; 4065 4066 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 4067 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 4068 return -EINVAL; 4069 if (ice_round_to_num(bytes, 64) <= 4070 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 4071 /* 64 byte granularity case */ 4072 /* Disable MSB granularity bit */ 4073 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 4074 /* round number to nearest 64 byte granularity */ 4075 bytes = ice_round_to_num(bytes, 64); 4076 /* The value is in 64 byte chunks */ 4077 burst_size_to_prog |= (u16)(bytes / 64); 4078 } else { 4079 /* k bytes granularity case */ 4080 /* Enable MSB granularity bit */ 4081 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 4082 /* round number to nearest 1024 granularity */ 4083 bytes = ice_round_to_num(bytes, 1024); 4084 /* check rounding doesn't go beyond allowed */ 4085 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4086 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4087 /* The value is in k bytes */ 4088 burst_size_to_prog |= (u16)(bytes / 1024); 4089 } 4090 hw->max_burst_size = burst_size_to_prog; 4091 return 0; 4092 } 4093 4094 /** 4095 * ice_sched_replay_node_prio - re-configure node priority 4096 * @hw: pointer to the HW struct 4097 * @node: sched node to configure 4098 * @priority: priority value 4099 * 4100 * This function configures node element's priority value. It 4101 * needs to be called with scheduler lock held. 4102 */ 4103 static int 4104 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4105 u8 priority) 4106 { 4107 struct ice_aqc_txsched_elem_data buf; 4108 struct ice_aqc_txsched_elem *data; 4109 int status; 4110 4111 buf = node->info; 4112 data = &buf.data; 4113 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4114 data->generic = priority; 4115 4116 /* Configure element */ 4117 status = ice_sched_update_elem(hw, node, &buf); 4118 return status; 4119 } 4120 4121 /** 4122 * ice_sched_replay_node_bw - replay node(s) BW 4123 * @hw: pointer to the HW struct 4124 * @node: sched node to configure 4125 * @bw_t_info: BW type information 4126 * 4127 * This function restores node's BW from bw_t_info. The caller needs 4128 * to hold the scheduler lock. 4129 */ 4130 static int 4131 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4132 struct ice_bw_type_info *bw_t_info) 4133 { 4134 struct ice_port_info *pi = hw->port_info; 4135 int status = -EINVAL; 4136 u16 bw_alloc; 4137 4138 if (!node) 4139 return status; 4140 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4141 return 0; 4142 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4143 status = ice_sched_replay_node_prio(hw, node, 4144 bw_t_info->generic); 4145 if (status) 4146 return status; 4147 } 4148 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4149 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4150 bw_t_info->cir_bw.bw); 4151 if (status) 4152 return status; 4153 } 4154 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4155 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4156 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4157 bw_alloc); 4158 if (status) 4159 return status; 4160 } 4161 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4162 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4163 bw_t_info->eir_bw.bw); 4164 if (status) 4165 return status; 4166 } 4167 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4168 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4169 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4170 bw_alloc); 4171 if (status) 4172 return status; 4173 } 4174 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4175 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4176 bw_t_info->shared_bw); 4177 return status; 4178 } 4179 4180 /** 4181 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4182 * @pi: port info struct 4183 * @tc_bitmap: 8 bits TC bitmap to check 4184 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4185 * 4186 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4187 * may be missing, it returns enabled TCs. This function needs to be called with 4188 * scheduler lock held. 4189 */ 4190 static void 4191 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4192 unsigned long *tc_bitmap, 4193 unsigned long *ena_tc_bitmap) 4194 { 4195 u8 tc; 4196 4197 /* Some TC(s) may be missing after reset, adjust for replay */ 4198 ice_for_each_traffic_class(tc) 4199 if (ice_is_tc_ena(*tc_bitmap, tc) && 4200 (ice_sched_get_tc_node(pi, tc))) 4201 set_bit(tc, ena_tc_bitmap); 4202 } 4203 4204 /** 4205 * ice_sched_replay_agg - recreate aggregator node(s) 4206 * @hw: pointer to the HW struct 4207 * 4208 * This function recreate aggregator type nodes which are not replayed earlier. 4209 * It also replay aggregator BW information. These aggregator nodes are not 4210 * associated with VSI type node yet. 4211 */ 4212 void ice_sched_replay_agg(struct ice_hw *hw) 4213 { 4214 struct ice_port_info *pi = hw->port_info; 4215 struct ice_sched_agg_info *agg_info; 4216 4217 mutex_lock(&pi->sched_lock); 4218 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4219 /* replay aggregator (re-create aggregator node) */ 4220 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4221 ICE_MAX_TRAFFIC_CLASS)) { 4222 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4223 int status; 4224 4225 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4226 ice_sched_get_ena_tc_bitmap(pi, 4227 agg_info->replay_tc_bitmap, 4228 replay_bitmap); 4229 status = ice_sched_cfg_agg(hw->port_info, 4230 agg_info->agg_id, 4231 ICE_AGG_TYPE_AGG, 4232 replay_bitmap); 4233 if (status) { 4234 dev_info(ice_hw_to_dev(hw), 4235 "Replay agg id[%d] failed\n", 4236 agg_info->agg_id); 4237 /* Move on to next one */ 4238 continue; 4239 } 4240 } 4241 mutex_unlock(&pi->sched_lock); 4242 } 4243 4244 /** 4245 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4246 * @hw: pointer to the HW struct 4247 * 4248 * This function initialize aggregator(s) TC bitmap to zero. A required 4249 * preinit step for replaying aggregators. 4250 */ 4251 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4252 { 4253 struct ice_port_info *pi = hw->port_info; 4254 struct ice_sched_agg_info *agg_info; 4255 4256 mutex_lock(&pi->sched_lock); 4257 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4258 struct ice_sched_agg_vsi_info *agg_vsi_info; 4259 4260 agg_info->tc_bitmap[0] = 0; 4261 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4262 list_entry) 4263 agg_vsi_info->tc_bitmap[0] = 0; 4264 } 4265 mutex_unlock(&pi->sched_lock); 4266 } 4267 4268 /** 4269 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4270 * @hw: pointer to the HW struct 4271 * @vsi_handle: software VSI handle 4272 * 4273 * This function replays aggregator node, VSI to aggregator type nodes, and 4274 * their node bandwidth information. This function needs to be called with 4275 * scheduler lock held. 4276 */ 4277 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4278 { 4279 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4280 struct ice_sched_agg_vsi_info *agg_vsi_info; 4281 struct ice_port_info *pi = hw->port_info; 4282 struct ice_sched_agg_info *agg_info; 4283 int status; 4284 4285 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4286 if (!ice_is_vsi_valid(hw, vsi_handle)) 4287 return -EINVAL; 4288 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4289 if (!agg_info) 4290 return 0; /* Not present in list - default Agg case */ 4291 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4292 if (!agg_vsi_info) 4293 return 0; /* Not present in list - default Agg case */ 4294 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4295 replay_bitmap); 4296 /* Replay aggregator node associated to vsi_handle */ 4297 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4298 ICE_AGG_TYPE_AGG, replay_bitmap); 4299 if (status) 4300 return status; 4301 4302 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4303 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4304 replay_bitmap); 4305 /* Move this VSI (vsi_handle) to above aggregator */ 4306 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4307 replay_bitmap); 4308 } 4309 4310 /** 4311 * ice_replay_vsi_agg - replay VSI to aggregator node 4312 * @hw: pointer to the HW struct 4313 * @vsi_handle: software VSI handle 4314 * 4315 * This function replays association of VSI to aggregator type nodes, and 4316 * node bandwidth information. 4317 */ 4318 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4319 { 4320 struct ice_port_info *pi = hw->port_info; 4321 int status; 4322 4323 mutex_lock(&pi->sched_lock); 4324 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4325 mutex_unlock(&pi->sched_lock); 4326 return status; 4327 } 4328 4329 /** 4330 * ice_sched_replay_q_bw - replay queue type node BW 4331 * @pi: port information structure 4332 * @q_ctx: queue context structure 4333 * 4334 * This function replays queue type node bandwidth. This function needs to be 4335 * called with scheduler lock held. 4336 */ 4337 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4338 { 4339 struct ice_sched_node *q_node; 4340 4341 /* Following also checks the presence of node in tree */ 4342 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4343 if (!q_node) 4344 return -EINVAL; 4345 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4346 } 4347