1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include <net/devlink.h> 5 #include "ice_sched.h" 6 7 /** 8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 9 * @pi: port information structure 10 * @info: Scheduler element information from firmware 11 * 12 * This function inserts the root node of the scheduling tree topology 13 * to the SW DB. 14 */ 15 static int 16 ice_sched_add_root_node(struct ice_port_info *pi, 17 struct ice_aqc_txsched_elem_data *info) 18 { 19 struct ice_sched_node *root; 20 struct ice_hw *hw; 21 22 if (!pi) 23 return -EINVAL; 24 25 hw = pi->hw; 26 27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 28 if (!root) 29 return -ENOMEM; 30 31 /* coverity[suspicious_sizeof] */ 32 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 33 sizeof(*root), GFP_KERNEL); 34 if (!root->children) { 35 devm_kfree(ice_hw_to_dev(hw), root); 36 return -ENOMEM; 37 } 38 39 memcpy(&root->info, info, sizeof(*info)); 40 pi->root = root; 41 return 0; 42 } 43 44 /** 45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 47 * @teid: node TEID to search 48 * 49 * This function searches for a node matching the TEID in the scheduling tree 50 * from the SW DB. The search is recursive and is restricted by the number of 51 * layers it has searched through; stopping at the max supported layer. 52 * 53 * This function needs to be called when holding the port_info->sched_lock 54 */ 55 struct ice_sched_node * 56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 57 { 58 u16 i; 59 60 /* The TEID is same as that of the start_node */ 61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 62 return start_node; 63 64 /* The node has no children or is at the max layer */ 65 if (!start_node->num_children || 66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 68 return NULL; 69 70 /* Check if TEID matches to any of the children nodes */ 71 for (i = 0; i < start_node->num_children; i++) 72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 73 return start_node->children[i]; 74 75 /* Search within each child's sub-tree */ 76 for (i = 0; i < start_node->num_children; i++) { 77 struct ice_sched_node *tmp; 78 79 tmp = ice_sched_find_node_by_teid(start_node->children[i], 80 teid); 81 if (tmp) 82 return tmp; 83 } 84 85 return NULL; 86 } 87 88 /** 89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 90 * @hw: pointer to the HW struct 91 * @cmd_opc: cmd opcode 92 * @elems_req: number of elements to request 93 * @buf: pointer to buffer 94 * @buf_size: buffer size in bytes 95 * @elems_resp: returns total number of elements response 96 * @cd: pointer to command details structure or NULL 97 * 98 * This function sends a scheduling elements cmd (cmd_opc) 99 */ 100 static int 101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 102 u16 elems_req, void *buf, u16 buf_size, 103 u16 *elems_resp, struct ice_sq_cd *cd) 104 { 105 struct ice_aqc_sched_elem_cmd *cmd; 106 struct ice_aq_desc desc; 107 int status; 108 109 cmd = &desc.params.sched_elem_cmd; 110 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 111 cmd->num_elem_req = cpu_to_le16(elems_req); 112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 113 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 114 if (!status && elems_resp) 115 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 116 117 return status; 118 } 119 120 /** 121 * ice_aq_query_sched_elems - query scheduler elements 122 * @hw: pointer to the HW struct 123 * @elems_req: number of elements to query 124 * @buf: pointer to buffer 125 * @buf_size: buffer size in bytes 126 * @elems_ret: returns total number of elements returned 127 * @cd: pointer to command details structure or NULL 128 * 129 * Query scheduling elements (0x0404) 130 */ 131 int 132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 134 u16 *elems_ret, struct ice_sq_cd *cd) 135 { 136 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 137 elems_req, (void *)buf, buf_size, 138 elems_ret, cd); 139 } 140 141 /** 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 143 * @pi: port information structure 144 * @layer: Scheduler layer of the node 145 * @info: Scheduler element information from firmware 146 * @prealloc_node: preallocated ice_sched_node struct for SW DB 147 * 148 * This function inserts a scheduler node to the SW DB. 149 */ 150 int 151 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 152 struct ice_aqc_txsched_elem_data *info, 153 struct ice_sched_node *prealloc_node) 154 { 155 struct ice_aqc_txsched_elem_data elem; 156 struct ice_sched_node *parent; 157 struct ice_sched_node *node; 158 struct ice_hw *hw; 159 int status; 160 161 if (!pi) 162 return -EINVAL; 163 164 hw = pi->hw; 165 166 /* A valid parent node should be there */ 167 parent = ice_sched_find_node_by_teid(pi->root, 168 le32_to_cpu(info->parent_teid)); 169 if (!parent) { 170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 171 le32_to_cpu(info->parent_teid)); 172 return -EINVAL; 173 } 174 175 /* query the current node information from FW before adding it 176 * to the SW DB 177 */ 178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 179 if (status) 180 return status; 181 182 if (prealloc_node) 183 node = prealloc_node; 184 else 185 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 186 if (!node) 187 return -ENOMEM; 188 if (hw->max_children[layer]) { 189 /* coverity[suspicious_sizeof] */ 190 node->children = devm_kcalloc(ice_hw_to_dev(hw), 191 hw->max_children[layer], 192 sizeof(*node), GFP_KERNEL); 193 if (!node->children) { 194 devm_kfree(ice_hw_to_dev(hw), node); 195 return -ENOMEM; 196 } 197 } 198 199 node->in_use = true; 200 node->parent = parent; 201 node->tx_sched_layer = layer; 202 parent->children[parent->num_children++] = node; 203 node->info = elem; 204 return 0; 205 } 206 207 /** 208 * ice_aq_delete_sched_elems - delete scheduler elements 209 * @hw: pointer to the HW struct 210 * @grps_req: number of groups to delete 211 * @buf: pointer to buffer 212 * @buf_size: buffer size in bytes 213 * @grps_del: returns total number of elements deleted 214 * @cd: pointer to command details structure or NULL 215 * 216 * Delete scheduling elements (0x040F) 217 */ 218 static int 219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 220 struct ice_aqc_delete_elem *buf, u16 buf_size, 221 u16 *grps_del, struct ice_sq_cd *cd) 222 { 223 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 224 grps_req, (void *)buf, buf_size, 225 grps_del, cd); 226 } 227 228 /** 229 * ice_sched_remove_elems - remove nodes from HW 230 * @hw: pointer to the HW struct 231 * @parent: pointer to the parent node 232 * @num_nodes: number of nodes 233 * @node_teids: array of node teids to be deleted 234 * 235 * This function remove nodes from HW 236 */ 237 static int 238 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 239 u16 num_nodes, u32 *node_teids) 240 { 241 struct ice_aqc_delete_elem *buf; 242 u16 i, num_groups_removed = 0; 243 u16 buf_size; 244 int status; 245 246 buf_size = struct_size(buf, teid, num_nodes); 247 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 248 if (!buf) 249 return -ENOMEM; 250 251 buf->hdr.parent_teid = parent->info.node_teid; 252 buf->hdr.num_elems = cpu_to_le16(num_nodes); 253 for (i = 0; i < num_nodes; i++) 254 buf->teid[i] = cpu_to_le32(node_teids[i]); 255 256 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 257 &num_groups_removed, NULL); 258 if (status || num_groups_removed != 1) 259 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 260 hw->adminq.sq_last_status); 261 262 devm_kfree(ice_hw_to_dev(hw), buf); 263 return status; 264 } 265 266 /** 267 * ice_sched_get_first_node - get the first node of the given layer 268 * @pi: port information structure 269 * @parent: pointer the base node of the subtree 270 * @layer: layer number 271 * 272 * This function retrieves the first node of the given layer from the subtree 273 */ 274 static struct ice_sched_node * 275 ice_sched_get_first_node(struct ice_port_info *pi, 276 struct ice_sched_node *parent, u8 layer) 277 { 278 return pi->sib_head[parent->tc_num][layer]; 279 } 280 281 /** 282 * ice_sched_get_tc_node - get pointer to TC node 283 * @pi: port information structure 284 * @tc: TC number 285 * 286 * This function returns the TC node pointer 287 */ 288 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 289 { 290 u8 i; 291 292 if (!pi || !pi->root) 293 return NULL; 294 for (i = 0; i < pi->root->num_children; i++) 295 if (pi->root->children[i]->tc_num == tc) 296 return pi->root->children[i]; 297 return NULL; 298 } 299 300 /** 301 * ice_free_sched_node - Free a Tx scheduler node from SW DB 302 * @pi: port information structure 303 * @node: pointer to the ice_sched_node struct 304 * 305 * This function frees up a node from SW DB as well as from HW 306 * 307 * This function needs to be called with the port_info->sched_lock held 308 */ 309 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 310 { 311 struct ice_sched_node *parent; 312 struct ice_hw *hw = pi->hw; 313 u8 i, j; 314 315 /* Free the children before freeing up the parent node 316 * The parent array is updated below and that shifts the nodes 317 * in the array. So always pick the first child if num children > 0 318 */ 319 while (node->num_children) 320 ice_free_sched_node(pi, node->children[0]); 321 322 /* Leaf, TC and root nodes can't be deleted by SW */ 323 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 324 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 325 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 326 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 327 u32 teid = le32_to_cpu(node->info.node_teid); 328 329 ice_sched_remove_elems(hw, node->parent, 1, &teid); 330 } 331 parent = node->parent; 332 /* root has no parent */ 333 if (parent) { 334 struct ice_sched_node *p; 335 336 /* update the parent */ 337 for (i = 0; i < parent->num_children; i++) 338 if (parent->children[i] == node) { 339 for (j = i + 1; j < parent->num_children; j++) 340 parent->children[j - 1] = 341 parent->children[j]; 342 parent->num_children--; 343 break; 344 } 345 346 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 347 while (p) { 348 if (p->sibling == node) { 349 p->sibling = node->sibling; 350 break; 351 } 352 p = p->sibling; 353 } 354 355 /* update the sibling head if head is getting removed */ 356 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 357 pi->sib_head[node->tc_num][node->tx_sched_layer] = 358 node->sibling; 359 } 360 361 /* leaf nodes have no children */ 362 if (node->children) 363 devm_kfree(ice_hw_to_dev(hw), node->children); 364 365 kfree(node->name); 366 xa_erase(&pi->sched_node_ids, node->id); 367 devm_kfree(ice_hw_to_dev(hw), node); 368 } 369 370 /** 371 * ice_aq_get_dflt_topo - gets default scheduler topology 372 * @hw: pointer to the HW struct 373 * @lport: logical port number 374 * @buf: pointer to buffer 375 * @buf_size: buffer size in bytes 376 * @num_branches: returns total number of queue to port branches 377 * @cd: pointer to command details structure or NULL 378 * 379 * Get default scheduler topology (0x400) 380 */ 381 static int 382 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 383 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 384 u8 *num_branches, struct ice_sq_cd *cd) 385 { 386 struct ice_aqc_get_topo *cmd; 387 struct ice_aq_desc desc; 388 int status; 389 390 cmd = &desc.params.get_topo; 391 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 392 cmd->port_num = lport; 393 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 394 if (!status && num_branches) 395 *num_branches = cmd->num_branches; 396 397 return status; 398 } 399 400 /** 401 * ice_aq_add_sched_elems - adds scheduling element 402 * @hw: pointer to the HW struct 403 * @grps_req: the number of groups that are requested to be added 404 * @buf: pointer to buffer 405 * @buf_size: buffer size in bytes 406 * @grps_added: returns total number of groups added 407 * @cd: pointer to command details structure or NULL 408 * 409 * Add scheduling elements (0x0401) 410 */ 411 static int 412 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 413 struct ice_aqc_add_elem *buf, u16 buf_size, 414 u16 *grps_added, struct ice_sq_cd *cd) 415 { 416 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 417 grps_req, (void *)buf, buf_size, 418 grps_added, cd); 419 } 420 421 /** 422 * ice_aq_cfg_sched_elems - configures scheduler elements 423 * @hw: pointer to the HW struct 424 * @elems_req: number of elements to configure 425 * @buf: pointer to buffer 426 * @buf_size: buffer size in bytes 427 * @elems_cfgd: returns total number of elements configured 428 * @cd: pointer to command details structure or NULL 429 * 430 * Configure scheduling elements (0x0403) 431 */ 432 static int 433 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 434 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 435 u16 *elems_cfgd, struct ice_sq_cd *cd) 436 { 437 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 438 elems_req, (void *)buf, buf_size, 439 elems_cfgd, cd); 440 } 441 442 /** 443 * ice_aq_move_sched_elems - move scheduler elements 444 * @hw: pointer to the HW struct 445 * @grps_req: number of groups to move 446 * @buf: pointer to buffer 447 * @buf_size: buffer size in bytes 448 * @grps_movd: returns total number of groups moved 449 * @cd: pointer to command details structure or NULL 450 * 451 * Move scheduling elements (0x0408) 452 */ 453 static int 454 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 455 struct ice_aqc_move_elem *buf, u16 buf_size, 456 u16 *grps_movd, struct ice_sq_cd *cd) 457 { 458 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 459 grps_req, (void *)buf, buf_size, 460 grps_movd, cd); 461 } 462 463 /** 464 * ice_aq_suspend_sched_elems - suspend scheduler elements 465 * @hw: pointer to the HW struct 466 * @elems_req: number of elements to suspend 467 * @buf: pointer to buffer 468 * @buf_size: buffer size in bytes 469 * @elems_ret: returns total number of elements suspended 470 * @cd: pointer to command details structure or NULL 471 * 472 * Suspend scheduling elements (0x0409) 473 */ 474 static int 475 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 476 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 477 { 478 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 479 elems_req, (void *)buf, buf_size, 480 elems_ret, cd); 481 } 482 483 /** 484 * ice_aq_resume_sched_elems - resume scheduler elements 485 * @hw: pointer to the HW struct 486 * @elems_req: number of elements to resume 487 * @buf: pointer to buffer 488 * @buf_size: buffer size in bytes 489 * @elems_ret: returns total number of elements resumed 490 * @cd: pointer to command details structure or NULL 491 * 492 * resume scheduling elements (0x040A) 493 */ 494 static int 495 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 496 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 497 { 498 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 499 elems_req, (void *)buf, buf_size, 500 elems_ret, cd); 501 } 502 503 /** 504 * ice_aq_query_sched_res - query scheduler resource 505 * @hw: pointer to the HW struct 506 * @buf_size: buffer size in bytes 507 * @buf: pointer to buffer 508 * @cd: pointer to command details structure or NULL 509 * 510 * Query scheduler resource allocation (0x0412) 511 */ 512 static int 513 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 514 struct ice_aqc_query_txsched_res_resp *buf, 515 struct ice_sq_cd *cd) 516 { 517 struct ice_aq_desc desc; 518 519 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 520 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 521 } 522 523 /** 524 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 525 * @hw: pointer to the HW struct 526 * @num_nodes: number of nodes 527 * @node_teids: array of node teids to be suspended or resumed 528 * @suspend: true means suspend / false means resume 529 * 530 * This function suspends or resumes HW nodes 531 */ 532 static int 533 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 534 bool suspend) 535 { 536 u16 i, buf_size, num_elem_ret = 0; 537 __le32 *buf; 538 int status; 539 540 buf_size = sizeof(*buf) * num_nodes; 541 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 542 if (!buf) 543 return -ENOMEM; 544 545 for (i = 0; i < num_nodes; i++) 546 buf[i] = cpu_to_le32(node_teids[i]); 547 548 if (suspend) 549 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 550 buf_size, &num_elem_ret, 551 NULL); 552 else 553 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 554 buf_size, &num_elem_ret, 555 NULL); 556 if (status || num_elem_ret != num_nodes) 557 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 558 559 devm_kfree(ice_hw_to_dev(hw), buf); 560 return status; 561 } 562 563 /** 564 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 565 * @hw: pointer to the HW struct 566 * @vsi_handle: VSI handle 567 * @tc: TC number 568 * @new_numqs: number of queues 569 */ 570 static int 571 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 572 { 573 struct ice_vsi_ctx *vsi_ctx; 574 struct ice_q_ctx *q_ctx; 575 576 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 577 if (!vsi_ctx) 578 return -EINVAL; 579 /* allocate LAN queue contexts */ 580 if (!vsi_ctx->lan_q_ctx[tc]) { 581 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 582 new_numqs, 583 sizeof(*q_ctx), 584 GFP_KERNEL); 585 if (!vsi_ctx->lan_q_ctx[tc]) 586 return -ENOMEM; 587 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 588 return 0; 589 } 590 /* num queues are increased, update the queue contexts */ 591 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 592 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 593 594 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 595 sizeof(*q_ctx), GFP_KERNEL); 596 if (!q_ctx) 597 return -ENOMEM; 598 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 599 prev_num * sizeof(*q_ctx)); 600 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 601 vsi_ctx->lan_q_ctx[tc] = q_ctx; 602 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 603 } 604 return 0; 605 } 606 607 /** 608 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 609 * @hw: pointer to the HW struct 610 * @vsi_handle: VSI handle 611 * @tc: TC number 612 * @new_numqs: number of queues 613 */ 614 static int 615 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 616 { 617 struct ice_vsi_ctx *vsi_ctx; 618 struct ice_q_ctx *q_ctx; 619 620 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 621 if (!vsi_ctx) 622 return -EINVAL; 623 /* allocate RDMA queue contexts */ 624 if (!vsi_ctx->rdma_q_ctx[tc]) { 625 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 626 new_numqs, 627 sizeof(*q_ctx), 628 GFP_KERNEL); 629 if (!vsi_ctx->rdma_q_ctx[tc]) 630 return -ENOMEM; 631 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 632 return 0; 633 } 634 /* num queues are increased, update the queue contexts */ 635 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 636 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 637 638 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 639 sizeof(*q_ctx), GFP_KERNEL); 640 if (!q_ctx) 641 return -ENOMEM; 642 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 643 prev_num * sizeof(*q_ctx)); 644 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 645 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 646 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 647 } 648 return 0; 649 } 650 651 /** 652 * ice_aq_rl_profile - performs a rate limiting task 653 * @hw: pointer to the HW struct 654 * @opcode: opcode for add, query, or remove profile(s) 655 * @num_profiles: the number of profiles 656 * @buf: pointer to buffer 657 * @buf_size: buffer size in bytes 658 * @num_processed: number of processed add or remove profile(s) to return 659 * @cd: pointer to command details structure 660 * 661 * RL profile function to add, query, or remove profile(s) 662 */ 663 static int 664 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 665 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 666 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 667 { 668 struct ice_aqc_rl_profile *cmd; 669 struct ice_aq_desc desc; 670 int status; 671 672 cmd = &desc.params.rl_profile; 673 674 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 675 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 676 cmd->num_profiles = cpu_to_le16(num_profiles); 677 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 678 if (!status && num_processed) 679 *num_processed = le16_to_cpu(cmd->num_processed); 680 return status; 681 } 682 683 /** 684 * ice_aq_add_rl_profile - adds rate limiting profile(s) 685 * @hw: pointer to the HW struct 686 * @num_profiles: the number of profile(s) to be add 687 * @buf: pointer to buffer 688 * @buf_size: buffer size in bytes 689 * @num_profiles_added: total number of profiles added to return 690 * @cd: pointer to command details structure 691 * 692 * Add RL profile (0x0410) 693 */ 694 static int 695 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 696 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 697 u16 *num_profiles_added, struct ice_sq_cd *cd) 698 { 699 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 700 buf, buf_size, num_profiles_added, cd); 701 } 702 703 /** 704 * ice_aq_remove_rl_profile - removes RL profile(s) 705 * @hw: pointer to the HW struct 706 * @num_profiles: the number of profile(s) to remove 707 * @buf: pointer to buffer 708 * @buf_size: buffer size in bytes 709 * @num_profiles_removed: total number of profiles removed to return 710 * @cd: pointer to command details structure or NULL 711 * 712 * Remove RL profile (0x0415) 713 */ 714 static int 715 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 716 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 717 u16 *num_profiles_removed, struct ice_sq_cd *cd) 718 { 719 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 720 num_profiles, buf, buf_size, 721 num_profiles_removed, cd); 722 } 723 724 /** 725 * ice_sched_del_rl_profile - remove RL profile 726 * @hw: pointer to the HW struct 727 * @rl_info: rate limit profile information 728 * 729 * If the profile ID is not referenced anymore, it removes profile ID with 730 * its associated parameters from HW DB,and locally. The caller needs to 731 * hold scheduler lock. 732 */ 733 static int 734 ice_sched_del_rl_profile(struct ice_hw *hw, 735 struct ice_aqc_rl_profile_info *rl_info) 736 { 737 struct ice_aqc_rl_profile_elem *buf; 738 u16 num_profiles_removed; 739 u16 num_profiles = 1; 740 int status; 741 742 if (rl_info->prof_id_ref != 0) 743 return -EBUSY; 744 745 /* Safe to remove profile ID */ 746 buf = &rl_info->profile; 747 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 748 &num_profiles_removed, NULL); 749 if (status || num_profiles_removed != num_profiles) 750 return -EIO; 751 752 /* Delete stale entry now */ 753 list_del(&rl_info->list_entry); 754 devm_kfree(ice_hw_to_dev(hw), rl_info); 755 return status; 756 } 757 758 /** 759 * ice_sched_clear_rl_prof - clears RL prof entries 760 * @pi: port information structure 761 * 762 * This function removes all RL profile from HW as well as from SW DB. 763 */ 764 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 765 { 766 u16 ln; 767 768 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 769 struct ice_aqc_rl_profile_info *rl_prof_elem; 770 struct ice_aqc_rl_profile_info *rl_prof_tmp; 771 772 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 773 &pi->rl_prof_list[ln], list_entry) { 774 struct ice_hw *hw = pi->hw; 775 int status; 776 777 rl_prof_elem->prof_id_ref = 0; 778 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 779 if (status) { 780 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 781 /* On error, free mem required */ 782 list_del(&rl_prof_elem->list_entry); 783 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 784 } 785 } 786 } 787 } 788 789 /** 790 * ice_sched_clear_agg - clears the aggregator related information 791 * @hw: pointer to the hardware structure 792 * 793 * This function removes aggregator list and free up aggregator related memory 794 * previously allocated. 795 */ 796 void ice_sched_clear_agg(struct ice_hw *hw) 797 { 798 struct ice_sched_agg_info *agg_info; 799 struct ice_sched_agg_info *atmp; 800 801 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 802 struct ice_sched_agg_vsi_info *agg_vsi_info; 803 struct ice_sched_agg_vsi_info *vtmp; 804 805 list_for_each_entry_safe(agg_vsi_info, vtmp, 806 &agg_info->agg_vsi_list, list_entry) { 807 list_del(&agg_vsi_info->list_entry); 808 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 809 } 810 list_del(&agg_info->list_entry); 811 devm_kfree(ice_hw_to_dev(hw), agg_info); 812 } 813 } 814 815 /** 816 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 817 * @pi: port information structure 818 * 819 * This function removes all the nodes from HW as well as from SW DB. 820 */ 821 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 822 { 823 if (!pi) 824 return; 825 /* remove RL profiles related lists */ 826 ice_sched_clear_rl_prof(pi); 827 if (pi->root) { 828 ice_free_sched_node(pi, pi->root); 829 pi->root = NULL; 830 } 831 } 832 833 /** 834 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 835 * @pi: port information structure 836 * 837 * Cleanup scheduling elements from SW DB 838 */ 839 void ice_sched_clear_port(struct ice_port_info *pi) 840 { 841 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 842 return; 843 844 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 845 mutex_lock(&pi->sched_lock); 846 ice_sched_clear_tx_topo(pi); 847 mutex_unlock(&pi->sched_lock); 848 mutex_destroy(&pi->sched_lock); 849 } 850 851 /** 852 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 853 * @hw: pointer to the HW struct 854 * 855 * Cleanup scheduling elements from SW DB for all the ports 856 */ 857 void ice_sched_cleanup_all(struct ice_hw *hw) 858 { 859 if (!hw) 860 return; 861 862 if (hw->layer_info) { 863 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 864 hw->layer_info = NULL; 865 } 866 867 ice_sched_clear_port(hw->port_info); 868 869 hw->num_tx_sched_layers = 0; 870 hw->num_tx_sched_phys_layers = 0; 871 hw->flattened_layers = 0; 872 hw->max_cgds = 0; 873 } 874 875 /** 876 * ice_sched_add_elems - add nodes to HW and SW DB 877 * @pi: port information structure 878 * @tc_node: pointer to the branch node 879 * @parent: pointer to the parent node 880 * @layer: layer number to add nodes 881 * @num_nodes: number of nodes 882 * @num_nodes_added: pointer to num nodes added 883 * @first_node_teid: if new nodes are added then return the TEID of first node 884 * @prealloc_nodes: preallocated nodes struct for software DB 885 * 886 * This function add nodes to HW as well as to SW DB for a given layer 887 */ 888 int 889 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 890 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 891 u16 *num_nodes_added, u32 *first_node_teid, 892 struct ice_sched_node **prealloc_nodes) 893 { 894 struct ice_sched_node *prev, *new_node; 895 struct ice_aqc_add_elem *buf; 896 u16 i, num_groups_added = 0; 897 struct ice_hw *hw = pi->hw; 898 size_t buf_size; 899 int status = 0; 900 u32 teid; 901 902 buf_size = struct_size(buf, generic, num_nodes); 903 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 904 if (!buf) 905 return -ENOMEM; 906 907 buf->hdr.parent_teid = parent->info.node_teid; 908 buf->hdr.num_elems = cpu_to_le16(num_nodes); 909 for (i = 0; i < num_nodes; i++) { 910 buf->generic[i].parent_teid = parent->info.node_teid; 911 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 912 buf->generic[i].data.valid_sections = 913 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 914 ICE_AQC_ELEM_VALID_EIR; 915 buf->generic[i].data.generic = 0; 916 buf->generic[i].data.cir_bw.bw_profile_idx = 917 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 918 buf->generic[i].data.cir_bw.bw_alloc = 919 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 920 buf->generic[i].data.eir_bw.bw_profile_idx = 921 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 922 buf->generic[i].data.eir_bw.bw_alloc = 923 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 924 } 925 926 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 927 &num_groups_added, NULL); 928 if (status || num_groups_added != 1) { 929 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 930 hw->adminq.sq_last_status); 931 devm_kfree(ice_hw_to_dev(hw), buf); 932 return -EIO; 933 } 934 935 *num_nodes_added = num_nodes; 936 /* add nodes to the SW DB */ 937 for (i = 0; i < num_nodes; i++) { 938 if (prealloc_nodes) 939 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); 940 else 941 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); 942 943 if (status) { 944 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 945 status); 946 break; 947 } 948 949 teid = le32_to_cpu(buf->generic[i].node_teid); 950 new_node = ice_sched_find_node_by_teid(parent, teid); 951 if (!new_node) { 952 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 953 break; 954 } 955 956 new_node->sibling = NULL; 957 new_node->tc_num = tc_node->tc_num; 958 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; 959 new_node->tx_share = ICE_SCHED_DFLT_BW; 960 new_node->tx_max = ICE_SCHED_DFLT_BW; 961 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); 962 if (!new_node->name) 963 return -ENOMEM; 964 965 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), 966 GFP_KERNEL); 967 if (status) { 968 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", 969 status); 970 break; 971 } 972 973 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); 974 975 /* add it to previous node sibling pointer */ 976 /* Note: siblings are not linked across branches */ 977 prev = ice_sched_get_first_node(pi, tc_node, layer); 978 if (prev && prev != new_node) { 979 while (prev->sibling) 980 prev = prev->sibling; 981 prev->sibling = new_node; 982 } 983 984 /* initialize the sibling head */ 985 if (!pi->sib_head[tc_node->tc_num][layer]) 986 pi->sib_head[tc_node->tc_num][layer] = new_node; 987 988 if (i == 0) 989 *first_node_teid = teid; 990 } 991 992 devm_kfree(ice_hw_to_dev(hw), buf); 993 return status; 994 } 995 996 /** 997 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 998 * @pi: port information structure 999 * @tc_node: pointer to TC node 1000 * @parent: pointer to parent node 1001 * @layer: layer number to add nodes 1002 * @num_nodes: number of nodes to be added 1003 * @first_node_teid: pointer to the first node TEID 1004 * @num_nodes_added: pointer to number of nodes added 1005 * 1006 * Add nodes into specific HW layer. 1007 */ 1008 static int 1009 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 1010 struct ice_sched_node *tc_node, 1011 struct ice_sched_node *parent, u8 layer, 1012 u16 num_nodes, u32 *first_node_teid, 1013 u16 *num_nodes_added) 1014 { 1015 u16 max_child_nodes; 1016 1017 *num_nodes_added = 0; 1018 1019 if (!num_nodes) 1020 return 0; 1021 1022 if (!parent || layer < pi->hw->sw_entry_point_layer) 1023 return -EINVAL; 1024 1025 /* max children per node per layer */ 1026 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1027 1028 /* current number of children + required nodes exceed max children */ 1029 if ((parent->num_children + num_nodes) > max_child_nodes) { 1030 /* Fail if the parent is a TC node */ 1031 if (parent == tc_node) 1032 return -EIO; 1033 return -ENOSPC; 1034 } 1035 1036 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1037 num_nodes_added, first_node_teid, NULL); 1038 } 1039 1040 /** 1041 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1042 * @pi: port information structure 1043 * @tc_node: pointer to TC node 1044 * @parent: pointer to parent node 1045 * @layer: layer number to add nodes 1046 * @num_nodes: number of nodes to be added 1047 * @first_node_teid: pointer to the first node TEID 1048 * @num_nodes_added: pointer to number of nodes added 1049 * 1050 * This function add nodes to a given layer. 1051 */ 1052 static int 1053 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1054 struct ice_sched_node *tc_node, 1055 struct ice_sched_node *parent, u8 layer, 1056 u16 num_nodes, u32 *first_node_teid, 1057 u16 *num_nodes_added) 1058 { 1059 u32 *first_teid_ptr = first_node_teid; 1060 u16 new_num_nodes = num_nodes; 1061 int status = 0; 1062 1063 *num_nodes_added = 0; 1064 while (*num_nodes_added < num_nodes) { 1065 u16 max_child_nodes, num_added = 0; 1066 /* cppcheck-suppress unusedVariable */ 1067 u32 temp; 1068 1069 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1070 layer, new_num_nodes, 1071 first_teid_ptr, 1072 &num_added); 1073 if (!status) 1074 *num_nodes_added += num_added; 1075 /* added more nodes than requested ? */ 1076 if (*num_nodes_added > num_nodes) { 1077 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1078 *num_nodes_added); 1079 status = -EIO; 1080 break; 1081 } 1082 /* break if all the nodes are added successfully */ 1083 if (!status && (*num_nodes_added == num_nodes)) 1084 break; 1085 /* break if the error is not max limit */ 1086 if (status && status != -ENOSPC) 1087 break; 1088 /* Exceeded the max children */ 1089 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1090 /* utilize all the spaces if the parent is not full */ 1091 if (parent->num_children < max_child_nodes) { 1092 new_num_nodes = max_child_nodes - parent->num_children; 1093 } else { 1094 /* This parent is full, try the next sibling */ 1095 parent = parent->sibling; 1096 /* Don't modify the first node TEID memory if the 1097 * first node was added already in the above call. 1098 * Instead send some temp memory for all other 1099 * recursive calls. 1100 */ 1101 if (num_added) 1102 first_teid_ptr = &temp; 1103 1104 new_num_nodes = num_nodes - *num_nodes_added; 1105 } 1106 } 1107 return status; 1108 } 1109 1110 /** 1111 * ice_sched_get_qgrp_layer - get the current queue group layer number 1112 * @hw: pointer to the HW struct 1113 * 1114 * This function returns the current queue group layer number 1115 */ 1116 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1117 { 1118 /* It's always total layers - 1, the array is 0 relative so -2 */ 1119 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1120 } 1121 1122 /** 1123 * ice_sched_get_vsi_layer - get the current VSI layer number 1124 * @hw: pointer to the HW struct 1125 * 1126 * This function returns the current VSI layer number 1127 */ 1128 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1129 { 1130 /* Num Layers VSI layer 1131 * 9 6 1132 * 7 4 1133 * 5 or less sw_entry_point_layer 1134 */ 1135 /* calculate the VSI layer based on number of layers. */ 1136 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1137 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1138 1139 if (layer > hw->sw_entry_point_layer) 1140 return layer; 1141 } 1142 return hw->sw_entry_point_layer; 1143 } 1144 1145 /** 1146 * ice_sched_get_agg_layer - get the current aggregator layer number 1147 * @hw: pointer to the HW struct 1148 * 1149 * This function returns the current aggregator layer number 1150 */ 1151 static u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1152 { 1153 /* Num Layers aggregator layer 1154 * 9 4 1155 * 7 or less sw_entry_point_layer 1156 */ 1157 /* calculate the aggregator layer based on number of layers. */ 1158 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1159 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1160 1161 if (layer > hw->sw_entry_point_layer) 1162 return layer; 1163 } 1164 return hw->sw_entry_point_layer; 1165 } 1166 1167 /** 1168 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1169 * @pi: port information structure 1170 * 1171 * This function removes the leaf node that was created by the FW 1172 * during initialization 1173 */ 1174 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1175 { 1176 struct ice_sched_node *node; 1177 1178 node = pi->root; 1179 while (node) { 1180 if (!node->num_children) 1181 break; 1182 node = node->children[0]; 1183 } 1184 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1185 u32 teid = le32_to_cpu(node->info.node_teid); 1186 int status; 1187 1188 /* remove the default leaf node */ 1189 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1190 if (!status) 1191 ice_free_sched_node(pi, node); 1192 } 1193 } 1194 1195 /** 1196 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1197 * @pi: port information structure 1198 * 1199 * This function frees all the nodes except root and TC that were created by 1200 * the FW during initialization 1201 */ 1202 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1203 { 1204 struct ice_sched_node *node; 1205 1206 ice_rm_dflt_leaf_node(pi); 1207 1208 /* remove the default nodes except TC and root nodes */ 1209 node = pi->root; 1210 while (node) { 1211 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1212 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1213 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1214 ice_free_sched_node(pi, node); 1215 break; 1216 } 1217 1218 if (!node->num_children) 1219 break; 1220 node = node->children[0]; 1221 } 1222 } 1223 1224 /** 1225 * ice_sched_init_port - Initialize scheduler by querying information from FW 1226 * @pi: port info structure for the tree to cleanup 1227 * 1228 * This function is the initial call to find the total number of Tx scheduler 1229 * resources, default topology created by firmware and storing the information 1230 * in SW DB. 1231 */ 1232 int ice_sched_init_port(struct ice_port_info *pi) 1233 { 1234 struct ice_aqc_get_topo_elem *buf; 1235 struct ice_hw *hw; 1236 u8 num_branches; 1237 u16 num_elems; 1238 int status; 1239 u8 i, j; 1240 1241 if (!pi) 1242 return -EINVAL; 1243 hw = pi->hw; 1244 1245 /* Query the Default Topology from FW */ 1246 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1247 if (!buf) 1248 return -ENOMEM; 1249 1250 /* Query default scheduling tree topology */ 1251 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1252 &num_branches, NULL); 1253 if (status) 1254 goto err_init_port; 1255 1256 /* num_branches should be between 1-8 */ 1257 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1258 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1259 num_branches); 1260 status = -EINVAL; 1261 goto err_init_port; 1262 } 1263 1264 /* get the number of elements on the default/first branch */ 1265 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1266 1267 /* num_elems should always be between 1-9 */ 1268 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1269 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1270 num_elems); 1271 status = -EINVAL; 1272 goto err_init_port; 1273 } 1274 1275 /* If the last node is a leaf node then the index of the queue group 1276 * layer is two less than the number of elements. 1277 */ 1278 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1279 ICE_AQC_ELEM_TYPE_LEAF) 1280 pi->last_node_teid = 1281 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1282 else 1283 pi->last_node_teid = 1284 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1285 1286 /* Insert the Tx Sched root node */ 1287 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1288 if (status) 1289 goto err_init_port; 1290 1291 /* Parse the default tree and cache the information */ 1292 for (i = 0; i < num_branches; i++) { 1293 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1294 1295 /* Skip root element as already inserted */ 1296 for (j = 1; j < num_elems; j++) { 1297 /* update the sw entry point */ 1298 if (buf[0].generic[j].data.elem_type == 1299 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1300 hw->sw_entry_point_layer = j; 1301 1302 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); 1303 if (status) 1304 goto err_init_port; 1305 } 1306 } 1307 1308 /* Remove the default nodes. */ 1309 if (pi->root) 1310 ice_sched_rm_dflt_nodes(pi); 1311 1312 /* initialize the port for handling the scheduler tree */ 1313 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1314 mutex_init(&pi->sched_lock); 1315 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1316 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1317 1318 err_init_port: 1319 if (status && pi->root) { 1320 ice_free_sched_node(pi, pi->root); 1321 pi->root = NULL; 1322 } 1323 1324 kfree(buf); 1325 return status; 1326 } 1327 1328 /** 1329 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1330 * @hw: pointer to the HW struct 1331 * 1332 * query FW for allocated scheduler resources and store in HW struct 1333 */ 1334 int ice_sched_query_res_alloc(struct ice_hw *hw) 1335 { 1336 struct ice_aqc_query_txsched_res_resp *buf; 1337 __le16 max_sibl; 1338 int status = 0; 1339 u16 i; 1340 1341 if (hw->layer_info) 1342 return status; 1343 1344 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1345 if (!buf) 1346 return -ENOMEM; 1347 1348 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1349 if (status) 1350 goto sched_query_out; 1351 1352 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1353 hw->num_tx_sched_phys_layers = 1354 le16_to_cpu(buf->sched_props.phys_levels); 1355 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1356 hw->max_cgds = buf->sched_props.max_pf_cgds; 1357 1358 /* max sibling group size of current layer refers to the max children 1359 * of the below layer node. 1360 * layer 1 node max children will be layer 2 max sibling group size 1361 * layer 2 node max children will be layer 3 max sibling group size 1362 * and so on. This array will be populated from root (index 0) to 1363 * qgroup layer 7. Leaf node has no children. 1364 */ 1365 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1366 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1367 hw->max_children[i] = le16_to_cpu(max_sibl); 1368 } 1369 1370 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1371 (hw->num_tx_sched_layers * 1372 sizeof(*hw->layer_info)), 1373 GFP_KERNEL); 1374 if (!hw->layer_info) { 1375 status = -ENOMEM; 1376 goto sched_query_out; 1377 } 1378 1379 sched_query_out: 1380 devm_kfree(ice_hw_to_dev(hw), buf); 1381 return status; 1382 } 1383 1384 /** 1385 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1386 * @hw: pointer to the HW struct 1387 * 1388 * Determine the PSM clock frequency and store in HW struct 1389 */ 1390 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1391 { 1392 u32 val, clk_src; 1393 1394 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1395 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1396 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1397 1398 #define PSM_CLK_SRC_367_MHZ 0x0 1399 #define PSM_CLK_SRC_416_MHZ 0x1 1400 #define PSM_CLK_SRC_446_MHZ 0x2 1401 #define PSM_CLK_SRC_390_MHZ 0x3 1402 1403 switch (clk_src) { 1404 case PSM_CLK_SRC_367_MHZ: 1405 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1406 break; 1407 case PSM_CLK_SRC_416_MHZ: 1408 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1409 break; 1410 case PSM_CLK_SRC_446_MHZ: 1411 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1412 break; 1413 case PSM_CLK_SRC_390_MHZ: 1414 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1415 break; 1416 default: 1417 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1418 clk_src); 1419 /* fall back to a safe default */ 1420 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1421 } 1422 } 1423 1424 /** 1425 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1426 * @hw: pointer to the HW struct 1427 * @base: pointer to the base node 1428 * @node: pointer to the node to search 1429 * 1430 * This function checks whether a given node is part of the base node 1431 * subtree or not 1432 */ 1433 static bool 1434 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1435 struct ice_sched_node *node) 1436 { 1437 u8 i; 1438 1439 for (i = 0; i < base->num_children; i++) { 1440 struct ice_sched_node *child = base->children[i]; 1441 1442 if (node == child) 1443 return true; 1444 1445 if (child->tx_sched_layer > node->tx_sched_layer) 1446 return false; 1447 1448 /* this recursion is intentional, and wouldn't 1449 * go more than 8 calls 1450 */ 1451 if (ice_sched_find_node_in_subtree(hw, child, node)) 1452 return true; 1453 } 1454 return false; 1455 } 1456 1457 /** 1458 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1459 * @pi: port information structure 1460 * @vsi_node: software VSI handle 1461 * @qgrp_node: first queue group node identified for scanning 1462 * @owner: LAN or RDMA 1463 * 1464 * This function retrieves a free LAN or RDMA queue group node by scanning 1465 * qgrp_node and its siblings for the queue group with the fewest number 1466 * of queues currently assigned. 1467 */ 1468 static struct ice_sched_node * 1469 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1470 struct ice_sched_node *vsi_node, 1471 struct ice_sched_node *qgrp_node, u8 owner) 1472 { 1473 struct ice_sched_node *min_qgrp; 1474 u8 min_children; 1475 1476 if (!qgrp_node) 1477 return qgrp_node; 1478 min_children = qgrp_node->num_children; 1479 if (!min_children) 1480 return qgrp_node; 1481 min_qgrp = qgrp_node; 1482 /* scan all queue groups until find a node which has less than the 1483 * minimum number of children. This way all queue group nodes get 1484 * equal number of shares and active. The bandwidth will be equally 1485 * distributed across all queues. 1486 */ 1487 while (qgrp_node) { 1488 /* make sure the qgroup node is part of the VSI subtree */ 1489 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1490 if (qgrp_node->num_children < min_children && 1491 qgrp_node->owner == owner) { 1492 /* replace the new min queue group node */ 1493 min_qgrp = qgrp_node; 1494 min_children = min_qgrp->num_children; 1495 /* break if it has no children, */ 1496 if (!min_children) 1497 break; 1498 } 1499 qgrp_node = qgrp_node->sibling; 1500 } 1501 return min_qgrp; 1502 } 1503 1504 /** 1505 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1506 * @pi: port information structure 1507 * @vsi_handle: software VSI handle 1508 * @tc: branch number 1509 * @owner: LAN or RDMA 1510 * 1511 * This function retrieves a free LAN or RDMA queue group node 1512 */ 1513 struct ice_sched_node * 1514 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1515 u8 owner) 1516 { 1517 struct ice_sched_node *vsi_node, *qgrp_node; 1518 struct ice_vsi_ctx *vsi_ctx; 1519 u16 max_children; 1520 u8 qgrp_layer; 1521 1522 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1523 max_children = pi->hw->max_children[qgrp_layer]; 1524 1525 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1526 if (!vsi_ctx) 1527 return NULL; 1528 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1529 /* validate invalid VSI ID */ 1530 if (!vsi_node) 1531 return NULL; 1532 1533 /* get the first queue group node from VSI sub-tree */ 1534 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1535 while (qgrp_node) { 1536 /* make sure the qgroup node is part of the VSI subtree */ 1537 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1538 if (qgrp_node->num_children < max_children && 1539 qgrp_node->owner == owner) 1540 break; 1541 qgrp_node = qgrp_node->sibling; 1542 } 1543 1544 /* Select the best queue group */ 1545 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1546 } 1547 1548 /** 1549 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1550 * @pi: pointer to the port information structure 1551 * @tc_node: pointer to the TC node 1552 * @vsi_handle: software VSI handle 1553 * 1554 * This function retrieves a VSI node for a given VSI ID from a given 1555 * TC branch 1556 */ 1557 static struct ice_sched_node * 1558 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1559 u16 vsi_handle) 1560 { 1561 struct ice_sched_node *node; 1562 u8 vsi_layer; 1563 1564 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1565 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1566 1567 /* Check whether it already exists */ 1568 while (node) { 1569 if (node->vsi_handle == vsi_handle) 1570 return node; 1571 node = node->sibling; 1572 } 1573 1574 return node; 1575 } 1576 1577 /** 1578 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1579 * @pi: pointer to the port information structure 1580 * @tc_node: pointer to the TC node 1581 * @agg_id: aggregator ID 1582 * 1583 * This function retrieves an aggregator node for a given aggregator ID from 1584 * a given TC branch 1585 */ 1586 static struct ice_sched_node * 1587 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1588 u32 agg_id) 1589 { 1590 struct ice_sched_node *node; 1591 struct ice_hw *hw = pi->hw; 1592 u8 agg_layer; 1593 1594 if (!hw) 1595 return NULL; 1596 agg_layer = ice_sched_get_agg_layer(hw); 1597 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1598 1599 /* Check whether it already exists */ 1600 while (node) { 1601 if (node->agg_id == agg_id) 1602 return node; 1603 node = node->sibling; 1604 } 1605 1606 return node; 1607 } 1608 1609 /** 1610 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1611 * @hw: pointer to the HW struct 1612 * @num_qs: number of queues 1613 * @num_nodes: num nodes array 1614 * 1615 * This function calculates the number of VSI child nodes based on the 1616 * number of queues. 1617 */ 1618 static void 1619 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1620 { 1621 u16 num = num_qs; 1622 u8 i, qgl, vsil; 1623 1624 qgl = ice_sched_get_qgrp_layer(hw); 1625 vsil = ice_sched_get_vsi_layer(hw); 1626 1627 /* calculate num nodes from queue group to VSI layer */ 1628 for (i = qgl; i > vsil; i--) { 1629 /* round to the next integer if there is a remainder */ 1630 num = DIV_ROUND_UP(num, hw->max_children[i]); 1631 1632 /* need at least one node */ 1633 num_nodes[i] = num ? num : 1; 1634 } 1635 } 1636 1637 /** 1638 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1639 * @pi: port information structure 1640 * @vsi_handle: software VSI handle 1641 * @tc_node: pointer to the TC node 1642 * @num_nodes: pointer to the num nodes that needs to be added per layer 1643 * @owner: node owner (LAN or RDMA) 1644 * 1645 * This function adds the VSI child nodes to tree. It gets called for 1646 * LAN and RDMA separately. 1647 */ 1648 static int 1649 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1650 struct ice_sched_node *tc_node, u16 *num_nodes, 1651 u8 owner) 1652 { 1653 struct ice_sched_node *parent, *node; 1654 struct ice_hw *hw = pi->hw; 1655 u32 first_node_teid; 1656 u16 num_added = 0; 1657 u8 i, qgl, vsil; 1658 int status; 1659 1660 qgl = ice_sched_get_qgrp_layer(hw); 1661 vsil = ice_sched_get_vsi_layer(hw); 1662 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1663 for (i = vsil + 1; i <= qgl; i++) { 1664 if (!parent) 1665 return -EIO; 1666 1667 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1668 num_nodes[i], 1669 &first_node_teid, 1670 &num_added); 1671 if (status || num_nodes[i] != num_added) 1672 return -EIO; 1673 1674 /* The newly added node can be a new parent for the next 1675 * layer nodes 1676 */ 1677 if (num_added) { 1678 parent = ice_sched_find_node_by_teid(tc_node, 1679 first_node_teid); 1680 node = parent; 1681 while (node) { 1682 node->owner = owner; 1683 node = node->sibling; 1684 } 1685 } else { 1686 parent = parent->children[0]; 1687 } 1688 } 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1695 * @pi: pointer to the port info structure 1696 * @tc_node: pointer to TC node 1697 * @num_nodes: pointer to num nodes array 1698 * 1699 * This function calculates the number of supported nodes needed to add this 1700 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1701 * layers 1702 */ 1703 static void 1704 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1705 struct ice_sched_node *tc_node, u16 *num_nodes) 1706 { 1707 struct ice_sched_node *node; 1708 u8 vsil; 1709 int i; 1710 1711 vsil = ice_sched_get_vsi_layer(pi->hw); 1712 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1713 /* Add intermediate nodes if TC has no children and 1714 * need at least one node for VSI 1715 */ 1716 if (!tc_node->num_children || i == vsil) { 1717 num_nodes[i]++; 1718 } else { 1719 /* If intermediate nodes are reached max children 1720 * then add a new one. 1721 */ 1722 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1723 /* scan all the siblings */ 1724 while (node) { 1725 if (node->num_children < pi->hw->max_children[i]) 1726 break; 1727 node = node->sibling; 1728 } 1729 1730 /* tree has one intermediate node to add this new VSI. 1731 * So no need to calculate supported nodes for below 1732 * layers. 1733 */ 1734 if (node) 1735 break; 1736 /* all the nodes are full, allocate a new one */ 1737 num_nodes[i]++; 1738 } 1739 } 1740 1741 /** 1742 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1743 * @pi: port information structure 1744 * @vsi_handle: software VSI handle 1745 * @tc_node: pointer to TC node 1746 * @num_nodes: pointer to num nodes array 1747 * 1748 * This function adds the VSI supported nodes into Tx tree including the 1749 * VSI, its parent and intermediate nodes in below layers 1750 */ 1751 static int 1752 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1753 struct ice_sched_node *tc_node, u16 *num_nodes) 1754 { 1755 struct ice_sched_node *parent = tc_node; 1756 u32 first_node_teid; 1757 u16 num_added = 0; 1758 u8 i, vsil; 1759 int status; 1760 1761 if (!pi) 1762 return -EINVAL; 1763 1764 vsil = ice_sched_get_vsi_layer(pi->hw); 1765 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1766 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1767 i, num_nodes[i], 1768 &first_node_teid, 1769 &num_added); 1770 if (status || num_nodes[i] != num_added) 1771 return -EIO; 1772 1773 /* The newly added node can be a new parent for the next 1774 * layer nodes 1775 */ 1776 if (num_added) 1777 parent = ice_sched_find_node_by_teid(tc_node, 1778 first_node_teid); 1779 else 1780 parent = parent->children[0]; 1781 1782 if (!parent) 1783 return -EIO; 1784 1785 if (i == vsil) 1786 parent->vsi_handle = vsi_handle; 1787 } 1788 1789 return 0; 1790 } 1791 1792 /** 1793 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1794 * @pi: port information structure 1795 * @vsi_handle: software VSI handle 1796 * @tc: TC number 1797 * 1798 * This function adds a new VSI into scheduler tree 1799 */ 1800 static int 1801 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1802 { 1803 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1804 struct ice_sched_node *tc_node; 1805 1806 tc_node = ice_sched_get_tc_node(pi, tc); 1807 if (!tc_node) 1808 return -EINVAL; 1809 1810 /* calculate number of supported nodes needed for this VSI */ 1811 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1812 1813 /* add VSI supported nodes to TC subtree */ 1814 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1815 num_nodes); 1816 } 1817 1818 /** 1819 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1820 * @pi: port information structure 1821 * @vsi_handle: software VSI handle 1822 * @tc: TC number 1823 * @new_numqs: new number of max queues 1824 * @owner: owner of this subtree 1825 * 1826 * This function updates the VSI child nodes based on the number of queues 1827 */ 1828 static int 1829 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1830 u8 tc, u16 new_numqs, u8 owner) 1831 { 1832 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1833 struct ice_sched_node *vsi_node; 1834 struct ice_sched_node *tc_node; 1835 struct ice_vsi_ctx *vsi_ctx; 1836 struct ice_hw *hw = pi->hw; 1837 u16 prev_numqs; 1838 int status = 0; 1839 1840 tc_node = ice_sched_get_tc_node(pi, tc); 1841 if (!tc_node) 1842 return -EIO; 1843 1844 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1845 if (!vsi_node) 1846 return -EIO; 1847 1848 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1849 if (!vsi_ctx) 1850 return -EINVAL; 1851 1852 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1853 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1854 else 1855 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1856 /* num queues are not changed or less than the previous number */ 1857 if (new_numqs <= prev_numqs) 1858 return status; 1859 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1860 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1861 if (status) 1862 return status; 1863 } else { 1864 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1865 if (status) 1866 return status; 1867 } 1868 1869 if (new_numqs) 1870 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1871 /* Keep the max number of queue configuration all the time. Update the 1872 * tree only if number of queues > previous number of queues. This may 1873 * leave some extra nodes in the tree if number of queues < previous 1874 * number but that wouldn't harm anything. Removing those extra nodes 1875 * may complicate the code if those nodes are part of SRL or 1876 * individually rate limited. 1877 */ 1878 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1879 new_num_nodes, owner); 1880 if (status) 1881 return status; 1882 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1883 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1884 else 1885 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1886 1887 return 0; 1888 } 1889 1890 /** 1891 * ice_sched_cfg_vsi - configure the new/existing VSI 1892 * @pi: port information structure 1893 * @vsi_handle: software VSI handle 1894 * @tc: TC number 1895 * @maxqs: max number of queues 1896 * @owner: LAN or RDMA 1897 * @enable: TC enabled or disabled 1898 * 1899 * This function adds/updates VSI nodes based on the number of queues. If TC is 1900 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1901 * disabled then suspend the VSI if it is not already. 1902 */ 1903 int 1904 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1905 u8 owner, bool enable) 1906 { 1907 struct ice_sched_node *vsi_node, *tc_node; 1908 struct ice_vsi_ctx *vsi_ctx; 1909 struct ice_hw *hw = pi->hw; 1910 int status = 0; 1911 1912 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1913 tc_node = ice_sched_get_tc_node(pi, tc); 1914 if (!tc_node) 1915 return -EINVAL; 1916 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1917 if (!vsi_ctx) 1918 return -EINVAL; 1919 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1920 1921 /* suspend the VSI if TC is not enabled */ 1922 if (!enable) { 1923 if (vsi_node && vsi_node->in_use) { 1924 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1925 1926 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1927 true); 1928 if (!status) 1929 vsi_node->in_use = false; 1930 } 1931 return status; 1932 } 1933 1934 /* TC is enabled, if it is a new VSI then add it to the tree */ 1935 if (!vsi_node) { 1936 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1937 if (status) 1938 return status; 1939 1940 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1941 if (!vsi_node) 1942 return -EIO; 1943 1944 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1945 vsi_node->in_use = true; 1946 /* invalidate the max queues whenever VSI gets added first time 1947 * into the scheduler tree (boot or after reset). We need to 1948 * recreate the child nodes all the time in these cases. 1949 */ 1950 vsi_ctx->sched.max_lanq[tc] = 0; 1951 vsi_ctx->sched.max_rdmaq[tc] = 0; 1952 } 1953 1954 /* update the VSI child nodes */ 1955 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1956 owner); 1957 if (status) 1958 return status; 1959 1960 /* TC is enabled, resume the VSI if it is in the suspend state */ 1961 if (!vsi_node->in_use) { 1962 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1963 1964 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1965 if (!status) 1966 vsi_node->in_use = true; 1967 } 1968 1969 return status; 1970 } 1971 1972 /** 1973 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1974 * @pi: port information structure 1975 * @vsi_handle: software VSI handle 1976 * 1977 * This function removes single aggregator VSI info entry from 1978 * aggregator list. 1979 */ 1980 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1981 { 1982 struct ice_sched_agg_info *agg_info; 1983 struct ice_sched_agg_info *atmp; 1984 1985 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1986 list_entry) { 1987 struct ice_sched_agg_vsi_info *agg_vsi_info; 1988 struct ice_sched_agg_vsi_info *vtmp; 1989 1990 list_for_each_entry_safe(agg_vsi_info, vtmp, 1991 &agg_info->agg_vsi_list, list_entry) 1992 if (agg_vsi_info->vsi_handle == vsi_handle) { 1993 list_del(&agg_vsi_info->list_entry); 1994 devm_kfree(ice_hw_to_dev(pi->hw), 1995 agg_vsi_info); 1996 return; 1997 } 1998 } 1999 } 2000 2001 /** 2002 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 2003 * @node: pointer to the sub-tree node 2004 * 2005 * This function checks for a leaf node presence in a given sub-tree node. 2006 */ 2007 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 2008 { 2009 u8 i; 2010 2011 for (i = 0; i < node->num_children; i++) 2012 if (ice_sched_is_leaf_node_present(node->children[i])) 2013 return true; 2014 /* check for a leaf node */ 2015 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 2016 } 2017 2018 /** 2019 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 2020 * @pi: port information structure 2021 * @vsi_handle: software VSI handle 2022 * @owner: LAN or RDMA 2023 * 2024 * This function removes the VSI and its LAN or RDMA children nodes from the 2025 * scheduler tree. 2026 */ 2027 static int 2028 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 2029 { 2030 struct ice_vsi_ctx *vsi_ctx; 2031 int status = -EINVAL; 2032 u8 i; 2033 2034 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2035 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2036 return status; 2037 mutex_lock(&pi->sched_lock); 2038 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2039 if (!vsi_ctx) 2040 goto exit_sched_rm_vsi_cfg; 2041 2042 ice_for_each_traffic_class(i) { 2043 struct ice_sched_node *vsi_node, *tc_node; 2044 u8 j = 0; 2045 2046 tc_node = ice_sched_get_tc_node(pi, i); 2047 if (!tc_node) 2048 continue; 2049 2050 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2051 if (!vsi_node) 2052 continue; 2053 2054 if (ice_sched_is_leaf_node_present(vsi_node)) { 2055 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2056 status = -EBUSY; 2057 goto exit_sched_rm_vsi_cfg; 2058 } 2059 while (j < vsi_node->num_children) { 2060 if (vsi_node->children[j]->owner == owner) { 2061 ice_free_sched_node(pi, vsi_node->children[j]); 2062 2063 /* reset the counter again since the num 2064 * children will be updated after node removal 2065 */ 2066 j = 0; 2067 } else { 2068 j++; 2069 } 2070 } 2071 /* remove the VSI if it has no children */ 2072 if (!vsi_node->num_children) { 2073 ice_free_sched_node(pi, vsi_node); 2074 vsi_ctx->sched.vsi_node[i] = NULL; 2075 2076 /* clean up aggregator related VSI info if any */ 2077 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2078 } 2079 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2080 vsi_ctx->sched.max_lanq[i] = 0; 2081 else 2082 vsi_ctx->sched.max_rdmaq[i] = 0; 2083 } 2084 status = 0; 2085 2086 exit_sched_rm_vsi_cfg: 2087 mutex_unlock(&pi->sched_lock); 2088 return status; 2089 } 2090 2091 /** 2092 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2093 * @pi: port information structure 2094 * @vsi_handle: software VSI handle 2095 * 2096 * This function clears the VSI and its LAN children nodes from scheduler tree 2097 * for all TCs. 2098 */ 2099 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2100 { 2101 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2102 } 2103 2104 /** 2105 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2106 * @pi: port information structure 2107 * @vsi_handle: software VSI handle 2108 * 2109 * This function clears the VSI and its RDMA children nodes from scheduler tree 2110 * for all TCs. 2111 */ 2112 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2113 { 2114 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2115 } 2116 2117 /** 2118 * ice_get_agg_info - get the aggregator ID 2119 * @hw: pointer to the hardware structure 2120 * @agg_id: aggregator ID 2121 * 2122 * This function validates aggregator ID. The function returns info if 2123 * aggregator ID is present in list otherwise it returns null. 2124 */ 2125 static struct ice_sched_agg_info * 2126 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2127 { 2128 struct ice_sched_agg_info *agg_info; 2129 2130 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2131 if (agg_info->agg_id == agg_id) 2132 return agg_info; 2133 2134 return NULL; 2135 } 2136 2137 /** 2138 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2139 * @hw: pointer to the HW struct 2140 * @node: pointer to a child node 2141 * @num_nodes: num nodes count array 2142 * 2143 * This function walks through the aggregator subtree to find a free parent 2144 * node 2145 */ 2146 static struct ice_sched_node * 2147 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2148 u16 *num_nodes) 2149 { 2150 u8 l = node->tx_sched_layer; 2151 u8 vsil, i; 2152 2153 vsil = ice_sched_get_vsi_layer(hw); 2154 2155 /* Is it VSI parent layer ? */ 2156 if (l == vsil - 1) 2157 return (node->num_children < hw->max_children[l]) ? node : NULL; 2158 2159 /* We have intermediate nodes. Let's walk through the subtree. If the 2160 * intermediate node has space to add a new node then clear the count 2161 */ 2162 if (node->num_children < hw->max_children[l]) 2163 num_nodes[l] = 0; 2164 /* The below recursive call is intentional and wouldn't go more than 2165 * 2 or 3 iterations. 2166 */ 2167 2168 for (i = 0; i < node->num_children; i++) { 2169 struct ice_sched_node *parent; 2170 2171 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2172 num_nodes); 2173 if (parent) 2174 return parent; 2175 } 2176 2177 return NULL; 2178 } 2179 2180 /** 2181 * ice_sched_update_parent - update the new parent in SW DB 2182 * @new_parent: pointer to a new parent node 2183 * @node: pointer to a child node 2184 * 2185 * This function removes the child from the old parent and adds it to a new 2186 * parent 2187 */ 2188 void 2189 ice_sched_update_parent(struct ice_sched_node *new_parent, 2190 struct ice_sched_node *node) 2191 { 2192 struct ice_sched_node *old_parent; 2193 u8 i, j; 2194 2195 old_parent = node->parent; 2196 2197 /* update the old parent children */ 2198 for (i = 0; i < old_parent->num_children; i++) 2199 if (old_parent->children[i] == node) { 2200 for (j = i + 1; j < old_parent->num_children; j++) 2201 old_parent->children[j - 1] = 2202 old_parent->children[j]; 2203 old_parent->num_children--; 2204 break; 2205 } 2206 2207 /* now move the node to a new parent */ 2208 new_parent->children[new_parent->num_children++] = node; 2209 node->parent = new_parent; 2210 node->info.parent_teid = new_parent->info.node_teid; 2211 } 2212 2213 /** 2214 * ice_sched_move_nodes - move child nodes to a given parent 2215 * @pi: port information structure 2216 * @parent: pointer to parent node 2217 * @num_items: number of child nodes to be moved 2218 * @list: pointer to child node teids 2219 * 2220 * This function move the child nodes to a given parent. 2221 */ 2222 int 2223 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2224 u16 num_items, u32 *list) 2225 { 2226 struct ice_aqc_move_elem *buf; 2227 struct ice_sched_node *node; 2228 u16 i, grps_movd = 0; 2229 struct ice_hw *hw; 2230 int status = 0; 2231 u16 buf_len; 2232 2233 hw = pi->hw; 2234 2235 if (!parent || !num_items) 2236 return -EINVAL; 2237 2238 /* Does parent have enough space */ 2239 if (parent->num_children + num_items > 2240 hw->max_children[parent->tx_sched_layer]) 2241 return -ENOSPC; 2242 2243 buf_len = struct_size(buf, teid, 1); 2244 buf = kzalloc(buf_len, GFP_KERNEL); 2245 if (!buf) 2246 return -ENOMEM; 2247 2248 for (i = 0; i < num_items; i++) { 2249 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2250 if (!node) { 2251 status = -EINVAL; 2252 goto move_err_exit; 2253 } 2254 2255 buf->hdr.src_parent_teid = node->info.parent_teid; 2256 buf->hdr.dest_parent_teid = parent->info.node_teid; 2257 buf->teid[0] = node->info.node_teid; 2258 buf->hdr.num_elems = cpu_to_le16(1); 2259 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2260 &grps_movd, NULL); 2261 if (status && grps_movd != 1) { 2262 status = -EIO; 2263 goto move_err_exit; 2264 } 2265 2266 /* update the SW DB */ 2267 ice_sched_update_parent(parent, node); 2268 } 2269 2270 move_err_exit: 2271 kfree(buf); 2272 return status; 2273 } 2274 2275 /** 2276 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2277 * @pi: port information structure 2278 * @vsi_handle: software VSI handle 2279 * @agg_id: aggregator ID 2280 * @tc: TC number 2281 * 2282 * This function moves a VSI to an aggregator node or its subtree. 2283 * Intermediate nodes may be created if required. 2284 */ 2285 static int 2286 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2287 u8 tc) 2288 { 2289 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2290 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2291 u32 first_node_teid, vsi_teid; 2292 u16 num_nodes_added; 2293 u8 aggl, vsil, i; 2294 int status; 2295 2296 tc_node = ice_sched_get_tc_node(pi, tc); 2297 if (!tc_node) 2298 return -EIO; 2299 2300 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2301 if (!agg_node) 2302 return -ENOENT; 2303 2304 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2305 if (!vsi_node) 2306 return -ENOENT; 2307 2308 /* Is this VSI already part of given aggregator? */ 2309 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2310 return 0; 2311 2312 aggl = ice_sched_get_agg_layer(pi->hw); 2313 vsil = ice_sched_get_vsi_layer(pi->hw); 2314 2315 /* set intermediate node count to 1 between aggregator and VSI layers */ 2316 for (i = aggl + 1; i < vsil; i++) 2317 num_nodes[i] = 1; 2318 2319 /* Check if the aggregator subtree has any free node to add the VSI */ 2320 for (i = 0; i < agg_node->num_children; i++) { 2321 parent = ice_sched_get_free_vsi_parent(pi->hw, 2322 agg_node->children[i], 2323 num_nodes); 2324 if (parent) 2325 goto move_nodes; 2326 } 2327 2328 /* add new nodes */ 2329 parent = agg_node; 2330 for (i = aggl + 1; i < vsil; i++) { 2331 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2332 num_nodes[i], 2333 &first_node_teid, 2334 &num_nodes_added); 2335 if (status || num_nodes[i] != num_nodes_added) 2336 return -EIO; 2337 2338 /* The newly added node can be a new parent for the next 2339 * layer nodes 2340 */ 2341 if (num_nodes_added) 2342 parent = ice_sched_find_node_by_teid(tc_node, 2343 first_node_teid); 2344 else 2345 parent = parent->children[0]; 2346 2347 if (!parent) 2348 return -EIO; 2349 } 2350 2351 move_nodes: 2352 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2353 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2354 } 2355 2356 /** 2357 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2358 * @pi: port information structure 2359 * @agg_info: aggregator info 2360 * @tc: traffic class number 2361 * @rm_vsi_info: true or false 2362 * 2363 * This function move all the VSI(s) to the default aggregator and delete 2364 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2365 * caller holds the scheduler lock. 2366 */ 2367 static int 2368 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2369 struct ice_sched_agg_info *agg_info, u8 tc, 2370 bool rm_vsi_info) 2371 { 2372 struct ice_sched_agg_vsi_info *agg_vsi_info; 2373 struct ice_sched_agg_vsi_info *tmp; 2374 int status = 0; 2375 2376 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2377 list_entry) { 2378 u16 vsi_handle = agg_vsi_info->vsi_handle; 2379 2380 /* Move VSI to default aggregator */ 2381 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2382 continue; 2383 2384 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2385 ICE_DFLT_AGG_ID, tc); 2386 if (status) 2387 break; 2388 2389 clear_bit(tc, agg_vsi_info->tc_bitmap); 2390 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2391 list_del(&agg_vsi_info->list_entry); 2392 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2393 } 2394 } 2395 2396 return status; 2397 } 2398 2399 /** 2400 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2401 * @pi: port information structure 2402 * @node: node pointer 2403 * 2404 * This function checks whether the aggregator is attached with any VSI or not. 2405 */ 2406 static bool 2407 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2408 { 2409 u8 vsil, i; 2410 2411 vsil = ice_sched_get_vsi_layer(pi->hw); 2412 if (node->tx_sched_layer < vsil - 1) { 2413 for (i = 0; i < node->num_children; i++) 2414 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2415 return true; 2416 return false; 2417 } else { 2418 return node->num_children ? true : false; 2419 } 2420 } 2421 2422 /** 2423 * ice_sched_rm_agg_cfg - remove the aggregator node 2424 * @pi: port information structure 2425 * @agg_id: aggregator ID 2426 * @tc: TC number 2427 * 2428 * This function removes the aggregator node and intermediate nodes if any 2429 * from the given TC 2430 */ 2431 static int 2432 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2433 { 2434 struct ice_sched_node *tc_node, *agg_node; 2435 struct ice_hw *hw = pi->hw; 2436 2437 tc_node = ice_sched_get_tc_node(pi, tc); 2438 if (!tc_node) 2439 return -EIO; 2440 2441 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2442 if (!agg_node) 2443 return -ENOENT; 2444 2445 /* Can't remove the aggregator node if it has children */ 2446 if (ice_sched_is_agg_inuse(pi, agg_node)) 2447 return -EBUSY; 2448 2449 /* need to remove the whole subtree if aggregator node is the 2450 * only child. 2451 */ 2452 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2453 struct ice_sched_node *parent = agg_node->parent; 2454 2455 if (!parent) 2456 return -EIO; 2457 2458 if (parent->num_children > 1) 2459 break; 2460 2461 agg_node = parent; 2462 } 2463 2464 ice_free_sched_node(pi, agg_node); 2465 return 0; 2466 } 2467 2468 /** 2469 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2470 * @pi: port information structure 2471 * @agg_info: aggregator ID 2472 * @tc: TC number 2473 * @rm_vsi_info: bool value true or false 2474 * 2475 * This function removes aggregator reference to VSI of given TC. It removes 2476 * the aggregator configuration completely for requested TC. The caller needs 2477 * to hold the scheduler lock. 2478 */ 2479 static int 2480 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2481 u8 tc, bool rm_vsi_info) 2482 { 2483 int status = 0; 2484 2485 /* If nothing to remove - return success */ 2486 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2487 goto exit_rm_agg_cfg_tc; 2488 2489 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2490 if (status) 2491 goto exit_rm_agg_cfg_tc; 2492 2493 /* Delete aggregator node(s) */ 2494 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2495 if (status) 2496 goto exit_rm_agg_cfg_tc; 2497 2498 clear_bit(tc, agg_info->tc_bitmap); 2499 exit_rm_agg_cfg_tc: 2500 return status; 2501 } 2502 2503 /** 2504 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2505 * @pi: port information structure 2506 * @agg_id: aggregator ID 2507 * @tc_bitmap: 8 bits TC bitmap 2508 * 2509 * Save aggregator TC bitmap. This function needs to be called with scheduler 2510 * lock held. 2511 */ 2512 static int 2513 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2514 unsigned long *tc_bitmap) 2515 { 2516 struct ice_sched_agg_info *agg_info; 2517 2518 agg_info = ice_get_agg_info(pi->hw, agg_id); 2519 if (!agg_info) 2520 return -EINVAL; 2521 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2522 ICE_MAX_TRAFFIC_CLASS); 2523 return 0; 2524 } 2525 2526 /** 2527 * ice_sched_add_agg_cfg - create an aggregator node 2528 * @pi: port information structure 2529 * @agg_id: aggregator ID 2530 * @tc: TC number 2531 * 2532 * This function creates an aggregator node and intermediate nodes if required 2533 * for the given TC 2534 */ 2535 static int 2536 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2537 { 2538 struct ice_sched_node *parent, *agg_node, *tc_node; 2539 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2540 struct ice_hw *hw = pi->hw; 2541 u32 first_node_teid; 2542 u16 num_nodes_added; 2543 int status = 0; 2544 u8 i, aggl; 2545 2546 tc_node = ice_sched_get_tc_node(pi, tc); 2547 if (!tc_node) 2548 return -EIO; 2549 2550 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2551 /* Does Agg node already exist ? */ 2552 if (agg_node) 2553 return status; 2554 2555 aggl = ice_sched_get_agg_layer(hw); 2556 2557 /* need one node in Agg layer */ 2558 num_nodes[aggl] = 1; 2559 2560 /* Check whether the intermediate nodes have space to add the 2561 * new aggregator. If they are full, then SW needs to allocate a new 2562 * intermediate node on those layers 2563 */ 2564 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2565 parent = ice_sched_get_first_node(pi, tc_node, i); 2566 2567 /* scan all the siblings */ 2568 while (parent) { 2569 if (parent->num_children < hw->max_children[i]) 2570 break; 2571 parent = parent->sibling; 2572 } 2573 2574 /* all the nodes are full, reserve one for this layer */ 2575 if (!parent) 2576 num_nodes[i]++; 2577 } 2578 2579 /* add the aggregator node */ 2580 parent = tc_node; 2581 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2582 if (!parent) 2583 return -EIO; 2584 2585 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2586 num_nodes[i], 2587 &first_node_teid, 2588 &num_nodes_added); 2589 if (status || num_nodes[i] != num_nodes_added) 2590 return -EIO; 2591 2592 /* The newly added node can be a new parent for the next 2593 * layer nodes 2594 */ 2595 if (num_nodes_added) { 2596 parent = ice_sched_find_node_by_teid(tc_node, 2597 first_node_teid); 2598 /* register aggregator ID with the aggregator node */ 2599 if (parent && i == aggl) 2600 parent->agg_id = agg_id; 2601 } else { 2602 parent = parent->children[0]; 2603 } 2604 } 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * ice_sched_cfg_agg - configure aggregator node 2611 * @pi: port information structure 2612 * @agg_id: aggregator ID 2613 * @agg_type: aggregator type queue, VSI, or aggregator group 2614 * @tc_bitmap: bits TC bitmap 2615 * 2616 * It registers a unique aggregator node into scheduler services. It 2617 * allows a user to register with a unique ID to track it's resources. 2618 * The aggregator type determines if this is a queue group, VSI group 2619 * or aggregator group. It then creates the aggregator node(s) for requested 2620 * TC(s) or removes an existing aggregator node including its configuration 2621 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2622 * resources and remove aggregator ID. 2623 * This function needs to be called with scheduler lock held. 2624 */ 2625 static int 2626 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2627 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2628 { 2629 struct ice_sched_agg_info *agg_info; 2630 struct ice_hw *hw = pi->hw; 2631 int status = 0; 2632 u8 tc; 2633 2634 agg_info = ice_get_agg_info(hw, agg_id); 2635 if (!agg_info) { 2636 /* Create new entry for new aggregator ID */ 2637 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2638 GFP_KERNEL); 2639 if (!agg_info) 2640 return -ENOMEM; 2641 2642 agg_info->agg_id = agg_id; 2643 agg_info->agg_type = agg_type; 2644 agg_info->tc_bitmap[0] = 0; 2645 2646 /* Initialize the aggregator VSI list head */ 2647 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2648 2649 /* Add new entry in aggregator list */ 2650 list_add(&agg_info->list_entry, &hw->agg_list); 2651 } 2652 /* Create aggregator node(s) for requested TC(s) */ 2653 ice_for_each_traffic_class(tc) { 2654 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2655 /* Delete aggregator cfg TC if it exists previously */ 2656 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2657 if (status) 2658 break; 2659 continue; 2660 } 2661 2662 /* Check if aggregator node for TC already exists */ 2663 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2664 continue; 2665 2666 /* Create new aggregator node for TC */ 2667 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2668 if (status) 2669 break; 2670 2671 /* Save aggregator node's TC information */ 2672 set_bit(tc, agg_info->tc_bitmap); 2673 } 2674 2675 return status; 2676 } 2677 2678 /** 2679 * ice_cfg_agg - config aggregator node 2680 * @pi: port information structure 2681 * @agg_id: aggregator ID 2682 * @agg_type: aggregator type queue, VSI, or aggregator group 2683 * @tc_bitmap: bits TC bitmap 2684 * 2685 * This function configures aggregator node(s). 2686 */ 2687 int 2688 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2689 u8 tc_bitmap) 2690 { 2691 unsigned long bitmap = tc_bitmap; 2692 int status; 2693 2694 mutex_lock(&pi->sched_lock); 2695 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2696 if (!status) 2697 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2698 mutex_unlock(&pi->sched_lock); 2699 return status; 2700 } 2701 2702 /** 2703 * ice_get_agg_vsi_info - get the aggregator ID 2704 * @agg_info: aggregator info 2705 * @vsi_handle: software VSI handle 2706 * 2707 * The function returns aggregator VSI info based on VSI handle. This function 2708 * needs to be called with scheduler lock held. 2709 */ 2710 static struct ice_sched_agg_vsi_info * 2711 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2712 { 2713 struct ice_sched_agg_vsi_info *agg_vsi_info; 2714 2715 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2716 if (agg_vsi_info->vsi_handle == vsi_handle) 2717 return agg_vsi_info; 2718 2719 return NULL; 2720 } 2721 2722 /** 2723 * ice_get_vsi_agg_info - get the aggregator info of VSI 2724 * @hw: pointer to the hardware structure 2725 * @vsi_handle: Sw VSI handle 2726 * 2727 * The function returns aggregator info of VSI represented via vsi_handle. The 2728 * VSI has in this case a different aggregator than the default one. This 2729 * function needs to be called with scheduler lock held. 2730 */ 2731 static struct ice_sched_agg_info * 2732 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2733 { 2734 struct ice_sched_agg_info *agg_info; 2735 2736 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2737 struct ice_sched_agg_vsi_info *agg_vsi_info; 2738 2739 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2740 if (agg_vsi_info) 2741 return agg_info; 2742 } 2743 return NULL; 2744 } 2745 2746 /** 2747 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2748 * @pi: port information structure 2749 * @agg_id: aggregator ID 2750 * @vsi_handle: software VSI handle 2751 * @tc_bitmap: TC bitmap of enabled TC(s) 2752 * 2753 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2754 * lock held. 2755 */ 2756 static int 2757 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2758 unsigned long *tc_bitmap) 2759 { 2760 struct ice_sched_agg_vsi_info *agg_vsi_info; 2761 struct ice_sched_agg_info *agg_info; 2762 2763 agg_info = ice_get_agg_info(pi->hw, agg_id); 2764 if (!agg_info) 2765 return -EINVAL; 2766 /* check if entry already exist */ 2767 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2768 if (!agg_vsi_info) 2769 return -EINVAL; 2770 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2771 ICE_MAX_TRAFFIC_CLASS); 2772 return 0; 2773 } 2774 2775 /** 2776 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2777 * @pi: port information structure 2778 * @agg_id: aggregator ID 2779 * @vsi_handle: software VSI handle 2780 * @tc_bitmap: TC bitmap of enabled TC(s) 2781 * 2782 * This function moves VSI to a new or default aggregator node. If VSI is 2783 * already associated to the aggregator node then no operation is performed on 2784 * the tree. This function needs to be called with scheduler lock held. 2785 */ 2786 static int 2787 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2788 u16 vsi_handle, unsigned long *tc_bitmap) 2789 { 2790 struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL; 2791 struct ice_sched_agg_info *agg_info, *old_agg_info; 2792 struct ice_hw *hw = pi->hw; 2793 int status = 0; 2794 u8 tc; 2795 2796 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2797 return -EINVAL; 2798 agg_info = ice_get_agg_info(hw, agg_id); 2799 if (!agg_info) 2800 return -EINVAL; 2801 /* If the VSI is already part of another aggregator then update 2802 * its VSI info list 2803 */ 2804 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2805 if (old_agg_info && old_agg_info != agg_info) { 2806 struct ice_sched_agg_vsi_info *vtmp; 2807 2808 list_for_each_entry_safe(old_agg_vsi_info, vtmp, 2809 &old_agg_info->agg_vsi_list, 2810 list_entry) 2811 if (old_agg_vsi_info->vsi_handle == vsi_handle) 2812 break; 2813 } 2814 2815 /* check if entry already exist */ 2816 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2817 if (!agg_vsi_info) { 2818 /* Create new entry for VSI under aggregator list */ 2819 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2820 sizeof(*agg_vsi_info), GFP_KERNEL); 2821 if (!agg_vsi_info) 2822 return -EINVAL; 2823 2824 /* add VSI ID into the aggregator list */ 2825 agg_vsi_info->vsi_handle = vsi_handle; 2826 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2827 } 2828 /* Move VSI node to new aggregator node for requested TC(s) */ 2829 ice_for_each_traffic_class(tc) { 2830 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2831 continue; 2832 2833 /* Move VSI to new aggregator */ 2834 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2835 if (status) 2836 break; 2837 2838 set_bit(tc, agg_vsi_info->tc_bitmap); 2839 if (old_agg_vsi_info) 2840 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2841 } 2842 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2843 list_del(&old_agg_vsi_info->list_entry); 2844 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2845 } 2846 return status; 2847 } 2848 2849 /** 2850 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2851 * @pi: port information structure 2852 * 2853 * This function removes unused rate limit profiles from the HW and 2854 * SW DB. The caller needs to hold scheduler lock. 2855 */ 2856 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2857 { 2858 u16 ln; 2859 2860 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2861 struct ice_aqc_rl_profile_info *rl_prof_elem; 2862 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2863 2864 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2865 &pi->rl_prof_list[ln], list_entry) { 2866 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2867 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2868 } 2869 } 2870 } 2871 2872 /** 2873 * ice_sched_update_elem - update element 2874 * @hw: pointer to the HW struct 2875 * @node: pointer to node 2876 * @info: node info to update 2877 * 2878 * Update the HW DB, and local SW DB of node. Update the scheduling 2879 * parameters of node from argument info data buffer (Info->data buf) and 2880 * returns success or error on config sched element failure. The caller 2881 * needs to hold scheduler lock. 2882 */ 2883 static int 2884 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2885 struct ice_aqc_txsched_elem_data *info) 2886 { 2887 struct ice_aqc_txsched_elem_data buf; 2888 u16 elem_cfgd = 0; 2889 u16 num_elems = 1; 2890 int status; 2891 2892 buf = *info; 2893 /* Parent TEID is reserved field in this aq call */ 2894 buf.parent_teid = 0; 2895 /* Element type is reserved field in this aq call */ 2896 buf.data.elem_type = 0; 2897 /* Flags is reserved field in this aq call */ 2898 buf.data.flags = 0; 2899 2900 /* Update HW DB */ 2901 /* Configure element node */ 2902 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2903 &elem_cfgd, NULL); 2904 if (status || elem_cfgd != num_elems) { 2905 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2906 return -EIO; 2907 } 2908 2909 /* Config success case */ 2910 /* Now update local SW DB */ 2911 /* Only copy the data portion of info buffer */ 2912 node->info.data = info->data; 2913 return status; 2914 } 2915 2916 /** 2917 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2918 * @hw: pointer to the HW struct 2919 * @node: sched node to configure 2920 * @rl_type: rate limit type CIR, EIR, or shared 2921 * @bw_alloc: BW weight/allocation 2922 * 2923 * This function configures node element's BW allocation. 2924 */ 2925 static int 2926 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2927 enum ice_rl_type rl_type, u16 bw_alloc) 2928 { 2929 struct ice_aqc_txsched_elem_data buf; 2930 struct ice_aqc_txsched_elem *data; 2931 2932 buf = node->info; 2933 data = &buf.data; 2934 if (rl_type == ICE_MIN_BW) { 2935 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2936 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2937 } else if (rl_type == ICE_MAX_BW) { 2938 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2939 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2940 } else { 2941 return -EINVAL; 2942 } 2943 2944 /* Configure element */ 2945 return ice_sched_update_elem(hw, node, &buf); 2946 } 2947 2948 /** 2949 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2950 * @pi: port information structure 2951 * @agg_id: aggregator ID 2952 * @vsi_handle: software VSI handle 2953 * @tc_bitmap: TC bitmap of enabled TC(s) 2954 * 2955 * Move or associate VSI to a new or default aggregator node. 2956 */ 2957 int 2958 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2959 u8 tc_bitmap) 2960 { 2961 unsigned long bitmap = tc_bitmap; 2962 int status; 2963 2964 mutex_lock(&pi->sched_lock); 2965 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2966 (unsigned long *)&bitmap); 2967 if (!status) 2968 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2969 (unsigned long *)&bitmap); 2970 mutex_unlock(&pi->sched_lock); 2971 return status; 2972 } 2973 2974 /** 2975 * ice_set_clear_cir_bw - set or clear CIR BW 2976 * @bw_t_info: bandwidth type information structure 2977 * @bw: bandwidth in Kbps - Kilo bits per sec 2978 * 2979 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2980 */ 2981 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2982 { 2983 if (bw == ICE_SCHED_DFLT_BW) { 2984 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2985 bw_t_info->cir_bw.bw = 0; 2986 } else { 2987 /* Save type of BW information */ 2988 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2989 bw_t_info->cir_bw.bw = bw; 2990 } 2991 } 2992 2993 /** 2994 * ice_set_clear_eir_bw - set or clear EIR BW 2995 * @bw_t_info: bandwidth type information structure 2996 * @bw: bandwidth in Kbps - Kilo bits per sec 2997 * 2998 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2999 */ 3000 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3001 { 3002 if (bw == ICE_SCHED_DFLT_BW) { 3003 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3004 bw_t_info->eir_bw.bw = 0; 3005 } else { 3006 /* EIR BW and Shared BW profiles are mutually exclusive and 3007 * hence only one of them may be set for any given element. 3008 * First clear earlier saved shared BW information. 3009 */ 3010 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3011 bw_t_info->shared_bw = 0; 3012 /* save EIR BW information */ 3013 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3014 bw_t_info->eir_bw.bw = bw; 3015 } 3016 } 3017 3018 /** 3019 * ice_set_clear_shared_bw - set or clear shared BW 3020 * @bw_t_info: bandwidth type information structure 3021 * @bw: bandwidth in Kbps - Kilo bits per sec 3022 * 3023 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 3024 */ 3025 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3026 { 3027 if (bw == ICE_SCHED_DFLT_BW) { 3028 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3029 bw_t_info->shared_bw = 0; 3030 } else { 3031 /* EIR BW and Shared BW profiles are mutually exclusive and 3032 * hence only one of them may be set for any given element. 3033 * First clear earlier saved EIR BW information. 3034 */ 3035 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3036 bw_t_info->eir_bw.bw = 0; 3037 /* save shared BW information */ 3038 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3039 bw_t_info->shared_bw = bw; 3040 } 3041 } 3042 3043 /** 3044 * ice_sched_save_vsi_bw - save VSI node's BW information 3045 * @pi: port information structure 3046 * @vsi_handle: sw VSI handle 3047 * @tc: traffic class 3048 * @rl_type: rate limit type min, max, or shared 3049 * @bw: bandwidth in Kbps - Kilo bits per sec 3050 * 3051 * Save BW information of VSI type node for post replay use. 3052 */ 3053 static int 3054 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3055 enum ice_rl_type rl_type, u32 bw) 3056 { 3057 struct ice_vsi_ctx *vsi_ctx; 3058 3059 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3060 return -EINVAL; 3061 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3062 if (!vsi_ctx) 3063 return -EINVAL; 3064 switch (rl_type) { 3065 case ICE_MIN_BW: 3066 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3067 break; 3068 case ICE_MAX_BW: 3069 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3070 break; 3071 case ICE_SHARED_BW: 3072 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3073 break; 3074 default: 3075 return -EINVAL; 3076 } 3077 return 0; 3078 } 3079 3080 /** 3081 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3082 * @hw: pointer to the HW struct 3083 * @bw: bandwidth in Kbps 3084 * 3085 * This function calculates the wakeup parameter of RL profile. 3086 */ 3087 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3088 { 3089 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3090 s32 wakeup_f_int; 3091 u16 wakeup = 0; 3092 3093 /* Get the wakeup integer value */ 3094 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3095 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3096 if (wakeup_int > 63) { 3097 wakeup = (u16)((1 << 15) | wakeup_int); 3098 } else { 3099 /* Calculate fraction value up to 4 decimals 3100 * Convert Integer value to a constant multiplier 3101 */ 3102 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3103 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3104 hw->psm_clk_freq, bytes_per_sec); 3105 3106 /* Get Fraction value */ 3107 wakeup_f = wakeup_a - wakeup_b; 3108 3109 /* Round up the Fractional value via Ceil(Fractional value) */ 3110 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3111 wakeup_f += 1; 3112 3113 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3114 ICE_RL_PROF_MULTIPLIER); 3115 wakeup |= (u16)(wakeup_int << 9); 3116 wakeup |= (u16)(0x1ff & wakeup_f_int); 3117 } 3118 3119 return wakeup; 3120 } 3121 3122 /** 3123 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3124 * @hw: pointer to the HW struct 3125 * @bw: bandwidth in Kbps 3126 * @profile: profile parameters to return 3127 * 3128 * This function converts the BW to profile structure format. 3129 */ 3130 static int 3131 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3132 struct ice_aqc_rl_profile_elem *profile) 3133 { 3134 s64 bytes_per_sec, ts_rate, mv_tmp; 3135 int status = -EINVAL; 3136 bool found = false; 3137 s32 encode = 0; 3138 s64 mv = 0; 3139 s32 i; 3140 3141 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3142 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3143 return status; 3144 3145 /* Bytes per second from Kbps */ 3146 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3147 3148 /* encode is 6 bits but really useful are 5 bits */ 3149 for (i = 0; i < 64; i++) { 3150 u64 pow_result = BIT_ULL(i); 3151 3152 ts_rate = div64_long((s64)hw->psm_clk_freq, 3153 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3154 if (ts_rate <= 0) 3155 continue; 3156 3157 /* Multiplier value */ 3158 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3159 ts_rate); 3160 3161 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3162 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3163 3164 /* First multiplier value greater than the given 3165 * accuracy bytes 3166 */ 3167 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3168 encode = i; 3169 found = true; 3170 break; 3171 } 3172 } 3173 if (found) { 3174 u16 wm; 3175 3176 wm = ice_sched_calc_wakeup(hw, bw); 3177 profile->rl_multiply = cpu_to_le16(mv); 3178 profile->wake_up_calc = cpu_to_le16(wm); 3179 profile->rl_encode = cpu_to_le16(encode); 3180 status = 0; 3181 } else { 3182 status = -ENOENT; 3183 } 3184 3185 return status; 3186 } 3187 3188 /** 3189 * ice_sched_add_rl_profile - add RL profile 3190 * @pi: port information structure 3191 * @rl_type: type of rate limit BW - min, max, or shared 3192 * @bw: bandwidth in Kbps - Kilo bits per sec 3193 * @layer_num: specifies in which layer to create profile 3194 * 3195 * This function first checks the existing list for corresponding BW 3196 * parameter. If it exists, it returns the associated profile otherwise 3197 * it creates a new rate limit profile for requested BW, and adds it to 3198 * the HW DB and local list. It returns the new profile or null on error. 3199 * The caller needs to hold the scheduler lock. 3200 */ 3201 static struct ice_aqc_rl_profile_info * 3202 ice_sched_add_rl_profile(struct ice_port_info *pi, 3203 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3204 { 3205 struct ice_aqc_rl_profile_info *rl_prof_elem; 3206 u16 profiles_added = 0, num_profiles = 1; 3207 struct ice_aqc_rl_profile_elem *buf; 3208 struct ice_hw *hw; 3209 u8 profile_type; 3210 int status; 3211 3212 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3213 return NULL; 3214 switch (rl_type) { 3215 case ICE_MIN_BW: 3216 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3217 break; 3218 case ICE_MAX_BW: 3219 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3220 break; 3221 case ICE_SHARED_BW: 3222 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3223 break; 3224 default: 3225 return NULL; 3226 } 3227 3228 if (!pi) 3229 return NULL; 3230 hw = pi->hw; 3231 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3232 list_entry) 3233 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3234 profile_type && rl_prof_elem->bw == bw) 3235 /* Return existing profile ID info */ 3236 return rl_prof_elem; 3237 3238 /* Create new profile ID */ 3239 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3240 GFP_KERNEL); 3241 3242 if (!rl_prof_elem) 3243 return NULL; 3244 3245 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3246 if (status) 3247 goto exit_add_rl_prof; 3248 3249 rl_prof_elem->bw = bw; 3250 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3251 rl_prof_elem->profile.level = layer_num + 1; 3252 rl_prof_elem->profile.flags = profile_type; 3253 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3254 3255 /* Create new entry in HW DB */ 3256 buf = &rl_prof_elem->profile; 3257 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3258 &profiles_added, NULL); 3259 if (status || profiles_added != num_profiles) 3260 goto exit_add_rl_prof; 3261 3262 /* Good entry - add in the list */ 3263 rl_prof_elem->prof_id_ref = 0; 3264 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3265 return rl_prof_elem; 3266 3267 exit_add_rl_prof: 3268 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3269 return NULL; 3270 } 3271 3272 /** 3273 * ice_sched_cfg_node_bw_lmt - configure node sched params 3274 * @hw: pointer to the HW struct 3275 * @node: sched node to configure 3276 * @rl_type: rate limit type CIR, EIR, or shared 3277 * @rl_prof_id: rate limit profile ID 3278 * 3279 * This function configures node element's BW limit. 3280 */ 3281 static int 3282 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3283 enum ice_rl_type rl_type, u16 rl_prof_id) 3284 { 3285 struct ice_aqc_txsched_elem_data buf; 3286 struct ice_aqc_txsched_elem *data; 3287 3288 buf = node->info; 3289 data = &buf.data; 3290 switch (rl_type) { 3291 case ICE_MIN_BW: 3292 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3293 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3294 break; 3295 case ICE_MAX_BW: 3296 /* EIR BW and Shared BW profiles are mutually exclusive and 3297 * hence only one of them may be set for any given element 3298 */ 3299 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3300 return -EIO; 3301 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3302 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3303 break; 3304 case ICE_SHARED_BW: 3305 /* Check for removing shared BW */ 3306 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3307 /* remove shared profile */ 3308 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3309 data->srl_id = 0; /* clear SRL field */ 3310 3311 /* enable back EIR to default profile */ 3312 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3313 data->eir_bw.bw_profile_idx = 3314 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3315 break; 3316 } 3317 /* EIR BW and Shared BW profiles are mutually exclusive and 3318 * hence only one of them may be set for any given element 3319 */ 3320 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3321 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3322 ICE_SCHED_DFLT_RL_PROF_ID)) 3323 return -EIO; 3324 /* EIR BW is set to default, disable it */ 3325 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3326 /* Okay to enable shared BW now */ 3327 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3328 data->srl_id = cpu_to_le16(rl_prof_id); 3329 break; 3330 default: 3331 /* Unknown rate limit type */ 3332 return -EINVAL; 3333 } 3334 3335 /* Configure element */ 3336 return ice_sched_update_elem(hw, node, &buf); 3337 } 3338 3339 /** 3340 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3341 * @node: sched node 3342 * @rl_type: rate limit type 3343 * 3344 * If existing profile matches, it returns the corresponding rate 3345 * limit profile ID, otherwise it returns an invalid ID as error. 3346 */ 3347 static u16 3348 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3349 enum ice_rl_type rl_type) 3350 { 3351 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3352 struct ice_aqc_txsched_elem *data; 3353 3354 data = &node->info.data; 3355 switch (rl_type) { 3356 case ICE_MIN_BW: 3357 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3358 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3359 break; 3360 case ICE_MAX_BW: 3361 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3362 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3363 break; 3364 case ICE_SHARED_BW: 3365 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3366 rl_prof_id = le16_to_cpu(data->srl_id); 3367 break; 3368 default: 3369 break; 3370 } 3371 3372 return rl_prof_id; 3373 } 3374 3375 /** 3376 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3377 * @pi: port information structure 3378 * @rl_type: type of rate limit BW - min, max, or shared 3379 * @layer_index: layer index 3380 * 3381 * This function returns requested profile creation layer. 3382 */ 3383 static u8 3384 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3385 u8 layer_index) 3386 { 3387 struct ice_hw *hw = pi->hw; 3388 3389 if (layer_index >= hw->num_tx_sched_layers) 3390 return ICE_SCHED_INVAL_LAYER_NUM; 3391 switch (rl_type) { 3392 case ICE_MIN_BW: 3393 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3394 return layer_index; 3395 break; 3396 case ICE_MAX_BW: 3397 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3398 return layer_index; 3399 break; 3400 case ICE_SHARED_BW: 3401 /* if current layer doesn't support SRL profile creation 3402 * then try a layer up or down. 3403 */ 3404 if (hw->layer_info[layer_index].max_srl_profiles) 3405 return layer_index; 3406 else if (layer_index < hw->num_tx_sched_layers - 1 && 3407 hw->layer_info[layer_index + 1].max_srl_profiles) 3408 return layer_index + 1; 3409 else if (layer_index > 0 && 3410 hw->layer_info[layer_index - 1].max_srl_profiles) 3411 return layer_index - 1; 3412 break; 3413 default: 3414 break; 3415 } 3416 return ICE_SCHED_INVAL_LAYER_NUM; 3417 } 3418 3419 /** 3420 * ice_sched_get_srl_node - get shared rate limit node 3421 * @node: tree node 3422 * @srl_layer: shared rate limit layer 3423 * 3424 * This function returns SRL node to be used for shared rate limit purpose. 3425 * The caller needs to hold scheduler lock. 3426 */ 3427 static struct ice_sched_node * 3428 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3429 { 3430 if (srl_layer > node->tx_sched_layer) 3431 return node->children[0]; 3432 else if (srl_layer < node->tx_sched_layer) 3433 /* Node can't be created without a parent. It will always 3434 * have a valid parent except root node. 3435 */ 3436 return node->parent; 3437 else 3438 return node; 3439 } 3440 3441 /** 3442 * ice_sched_rm_rl_profile - remove RL profile ID 3443 * @pi: port information structure 3444 * @layer_num: layer number where profiles are saved 3445 * @profile_type: profile type like EIR, CIR, or SRL 3446 * @profile_id: profile ID to remove 3447 * 3448 * This function removes rate limit profile from layer 'layer_num' of type 3449 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3450 * scheduler lock. 3451 */ 3452 static int 3453 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3454 u16 profile_id) 3455 { 3456 struct ice_aqc_rl_profile_info *rl_prof_elem; 3457 int status = 0; 3458 3459 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3460 return -EINVAL; 3461 /* Check the existing list for RL profile */ 3462 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3463 list_entry) 3464 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3465 profile_type && 3466 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3467 profile_id) { 3468 if (rl_prof_elem->prof_id_ref) 3469 rl_prof_elem->prof_id_ref--; 3470 3471 /* Remove old profile ID from database */ 3472 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3473 if (status && status != -EBUSY) 3474 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3475 break; 3476 } 3477 if (status == -EBUSY) 3478 status = 0; 3479 return status; 3480 } 3481 3482 /** 3483 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3484 * @pi: port information structure 3485 * @node: pointer to node structure 3486 * @rl_type: rate limit type min, max, or shared 3487 * @layer_num: layer number where RL profiles are saved 3488 * 3489 * This function configures node element's BW rate limit profile ID of 3490 * type CIR, EIR, or SRL to default. This function needs to be called 3491 * with the scheduler lock held. 3492 */ 3493 static int 3494 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3495 struct ice_sched_node *node, 3496 enum ice_rl_type rl_type, u8 layer_num) 3497 { 3498 struct ice_hw *hw; 3499 u8 profile_type; 3500 u16 rl_prof_id; 3501 u16 old_id; 3502 int status; 3503 3504 hw = pi->hw; 3505 switch (rl_type) { 3506 case ICE_MIN_BW: 3507 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3508 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3509 break; 3510 case ICE_MAX_BW: 3511 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3512 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3513 break; 3514 case ICE_SHARED_BW: 3515 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3516 /* No SRL is configured for default case */ 3517 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3518 break; 3519 default: 3520 return -EINVAL; 3521 } 3522 /* Save existing RL prof ID for later clean up */ 3523 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3524 /* Configure BW scheduling parameters */ 3525 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3526 if (status) 3527 return status; 3528 3529 /* Remove stale RL profile ID */ 3530 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3531 old_id == ICE_SCHED_INVAL_PROF_ID) 3532 return 0; 3533 3534 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3535 } 3536 3537 /** 3538 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3539 * @pi: port information structure 3540 * @node: pointer to node structure 3541 * @layer_num: layer number where rate limit profiles are saved 3542 * @rl_type: rate limit type min, max, or shared 3543 * @bw: bandwidth value 3544 * 3545 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3546 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3547 * them may be set for any given element. This function needs to be called 3548 * with the scheduler lock held. 3549 */ 3550 static int 3551 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3552 struct ice_sched_node *node, 3553 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3554 { 3555 if (rl_type == ICE_SHARED_BW) { 3556 /* SRL node passed in this case, it may be different node */ 3557 if (bw == ICE_SCHED_DFLT_BW) 3558 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3559 * enables EIR to default. EIR is not set in this 3560 * case, so no additional action is required. 3561 */ 3562 return 0; 3563 3564 /* SRL being configured, set EIR to default here. 3565 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3566 * configures SRL 3567 */ 3568 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3569 layer_num); 3570 } else if (rl_type == ICE_MAX_BW && 3571 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3572 /* Remove Shared profile. Set default shared BW call 3573 * removes shared profile for a node. 3574 */ 3575 return ice_sched_set_node_bw_dflt(pi, node, 3576 ICE_SHARED_BW, 3577 layer_num); 3578 } 3579 return 0; 3580 } 3581 3582 /** 3583 * ice_sched_set_node_bw - set node's bandwidth 3584 * @pi: port information structure 3585 * @node: tree node 3586 * @rl_type: rate limit type min, max, or shared 3587 * @bw: bandwidth in Kbps - Kilo bits per sec 3588 * @layer_num: layer number 3589 * 3590 * This function adds new profile corresponding to requested BW, configures 3591 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3592 * ID from local database. The caller needs to hold scheduler lock. 3593 */ 3594 int 3595 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3596 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3597 { 3598 struct ice_aqc_rl_profile_info *rl_prof_info; 3599 struct ice_hw *hw = pi->hw; 3600 u16 old_id, rl_prof_id; 3601 int status = -EINVAL; 3602 3603 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3604 if (!rl_prof_info) 3605 return status; 3606 3607 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3608 3609 /* Save existing RL prof ID for later clean up */ 3610 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3611 /* Configure BW scheduling parameters */ 3612 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3613 if (status) 3614 return status; 3615 3616 /* New changes has been applied */ 3617 /* Increment the profile ID reference count */ 3618 rl_prof_info->prof_id_ref++; 3619 3620 /* Check for old ID removal */ 3621 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3622 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3623 return 0; 3624 3625 return ice_sched_rm_rl_profile(pi, layer_num, 3626 rl_prof_info->profile.flags & 3627 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3628 } 3629 3630 /** 3631 * ice_sched_set_node_priority - set node's priority 3632 * @pi: port information structure 3633 * @node: tree node 3634 * @priority: number 0-7 representing priority among siblings 3635 * 3636 * This function sets priority of a node among it's siblings. 3637 */ 3638 int 3639 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, 3640 u16 priority) 3641 { 3642 struct ice_aqc_txsched_elem_data buf; 3643 struct ice_aqc_txsched_elem *data; 3644 3645 buf = node->info; 3646 data = &buf.data; 3647 3648 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3649 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); 3650 3651 return ice_sched_update_elem(pi->hw, node, &buf); 3652 } 3653 3654 /** 3655 * ice_sched_set_node_weight - set node's weight 3656 * @pi: port information structure 3657 * @node: tree node 3658 * @weight: number 1-200 representing weight for WFQ 3659 * 3660 * This function sets weight of the node for WFQ algorithm. 3661 */ 3662 int 3663 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) 3664 { 3665 struct ice_aqc_txsched_elem_data buf; 3666 struct ice_aqc_txsched_elem *data; 3667 3668 buf = node->info; 3669 data = &buf.data; 3670 3671 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | 3672 ICE_AQC_ELEM_VALID_GENERIC; 3673 data->cir_bw.bw_alloc = cpu_to_le16(weight); 3674 data->eir_bw.bw_alloc = cpu_to_le16(weight); 3675 3676 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); 3677 3678 return ice_sched_update_elem(pi->hw, node, &buf); 3679 } 3680 3681 /** 3682 * ice_sched_set_node_bw_lmt - set node's BW limit 3683 * @pi: port information structure 3684 * @node: tree node 3685 * @rl_type: rate limit type min, max, or shared 3686 * @bw: bandwidth in Kbps - Kilo bits per sec 3687 * 3688 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3689 * EIR, or SRL. The caller needs to hold scheduler lock. 3690 */ 3691 int 3692 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3693 enum ice_rl_type rl_type, u32 bw) 3694 { 3695 struct ice_sched_node *cfg_node = node; 3696 int status; 3697 3698 struct ice_hw *hw; 3699 u8 layer_num; 3700 3701 if (!pi) 3702 return -EINVAL; 3703 hw = pi->hw; 3704 /* Remove unused RL profile IDs from HW and SW DB */ 3705 ice_sched_rm_unused_rl_prof(pi); 3706 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3707 node->tx_sched_layer); 3708 if (layer_num >= hw->num_tx_sched_layers) 3709 return -EINVAL; 3710 3711 if (rl_type == ICE_SHARED_BW) { 3712 /* SRL node may be different */ 3713 cfg_node = ice_sched_get_srl_node(node, layer_num); 3714 if (!cfg_node) 3715 return -EIO; 3716 } 3717 /* EIR BW and Shared BW profiles are mutually exclusive and 3718 * hence only one of them may be set for any given element 3719 */ 3720 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3721 bw); 3722 if (status) 3723 return status; 3724 if (bw == ICE_SCHED_DFLT_BW) 3725 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3726 layer_num); 3727 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3728 } 3729 3730 /** 3731 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3732 * @pi: port information structure 3733 * @node: pointer to node structure 3734 * @rl_type: rate limit type min, max, or shared 3735 * 3736 * This function configures node element's BW rate limit profile ID of 3737 * type CIR, EIR, or SRL to default. This function needs to be called 3738 * with the scheduler lock held. 3739 */ 3740 static int 3741 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3742 struct ice_sched_node *node, 3743 enum ice_rl_type rl_type) 3744 { 3745 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3746 ICE_SCHED_DFLT_BW); 3747 } 3748 3749 /** 3750 * ice_sched_validate_srl_node - Check node for SRL applicability 3751 * @node: sched node to configure 3752 * @sel_layer: selected SRL layer 3753 * 3754 * This function checks if the SRL can be applied to a selected layer node on 3755 * behalf of the requested node (first argument). This function needs to be 3756 * called with scheduler lock held. 3757 */ 3758 static int 3759 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3760 { 3761 /* SRL profiles are not available on all layers. Check if the 3762 * SRL profile can be applied to a node above or below the 3763 * requested node. SRL configuration is possible only if the 3764 * selected layer's node has single child. 3765 */ 3766 if (sel_layer == node->tx_sched_layer || 3767 ((sel_layer == node->tx_sched_layer + 1) && 3768 node->num_children == 1) || 3769 ((sel_layer == node->tx_sched_layer - 1) && 3770 (node->parent && node->parent->num_children == 1))) 3771 return 0; 3772 3773 return -EIO; 3774 } 3775 3776 /** 3777 * ice_sched_save_q_bw - save queue node's BW information 3778 * @q_ctx: queue context structure 3779 * @rl_type: rate limit type min, max, or shared 3780 * @bw: bandwidth in Kbps - Kilo bits per sec 3781 * 3782 * Save BW information of queue type node for post replay use. 3783 */ 3784 static int 3785 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3786 { 3787 switch (rl_type) { 3788 case ICE_MIN_BW: 3789 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3790 break; 3791 case ICE_MAX_BW: 3792 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3793 break; 3794 case ICE_SHARED_BW: 3795 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3796 break; 3797 default: 3798 return -EINVAL; 3799 } 3800 return 0; 3801 } 3802 3803 /** 3804 * ice_sched_set_q_bw_lmt - sets queue BW limit 3805 * @pi: port information structure 3806 * @vsi_handle: sw VSI handle 3807 * @tc: traffic class 3808 * @q_handle: software queue handle 3809 * @rl_type: min, max, or shared 3810 * @bw: bandwidth in Kbps 3811 * 3812 * This function sets BW limit of queue scheduling node. 3813 */ 3814 static int 3815 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3816 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3817 { 3818 struct ice_sched_node *node; 3819 struct ice_q_ctx *q_ctx; 3820 int status = -EINVAL; 3821 3822 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3823 return -EINVAL; 3824 mutex_lock(&pi->sched_lock); 3825 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3826 if (!q_ctx) 3827 goto exit_q_bw_lmt; 3828 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3829 if (!node) { 3830 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3831 goto exit_q_bw_lmt; 3832 } 3833 3834 /* Return error if it is not a leaf node */ 3835 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3836 goto exit_q_bw_lmt; 3837 3838 /* SRL bandwidth layer selection */ 3839 if (rl_type == ICE_SHARED_BW) { 3840 u8 sel_layer; /* selected layer */ 3841 3842 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3843 node->tx_sched_layer); 3844 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3845 status = -EINVAL; 3846 goto exit_q_bw_lmt; 3847 } 3848 status = ice_sched_validate_srl_node(node, sel_layer); 3849 if (status) 3850 goto exit_q_bw_lmt; 3851 } 3852 3853 if (bw == ICE_SCHED_DFLT_BW) 3854 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3855 else 3856 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3857 3858 if (!status) 3859 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3860 3861 exit_q_bw_lmt: 3862 mutex_unlock(&pi->sched_lock); 3863 return status; 3864 } 3865 3866 /** 3867 * ice_cfg_q_bw_lmt - configure queue BW limit 3868 * @pi: port information structure 3869 * @vsi_handle: sw VSI handle 3870 * @tc: traffic class 3871 * @q_handle: software queue handle 3872 * @rl_type: min, max, or shared 3873 * @bw: bandwidth in Kbps 3874 * 3875 * This function configures BW limit of queue scheduling node. 3876 */ 3877 int 3878 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3879 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3880 { 3881 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3882 bw); 3883 } 3884 3885 /** 3886 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3887 * @pi: port information structure 3888 * @vsi_handle: sw VSI handle 3889 * @tc: traffic class 3890 * @q_handle: software queue handle 3891 * @rl_type: min, max, or shared 3892 * 3893 * This function configures BW default limit of queue scheduling node. 3894 */ 3895 int 3896 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3897 u16 q_handle, enum ice_rl_type rl_type) 3898 { 3899 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3900 ICE_SCHED_DFLT_BW); 3901 } 3902 3903 /** 3904 * ice_sched_get_node_by_id_type - get node from ID type 3905 * @pi: port information structure 3906 * @id: identifier 3907 * @agg_type: type of aggregator 3908 * @tc: traffic class 3909 * 3910 * This function returns node identified by ID of type aggregator, and 3911 * based on traffic class (TC). This function needs to be called with 3912 * the scheduler lock held. 3913 */ 3914 static struct ice_sched_node * 3915 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3916 enum ice_agg_type agg_type, u8 tc) 3917 { 3918 struct ice_sched_node *node = NULL; 3919 3920 switch (agg_type) { 3921 case ICE_AGG_TYPE_VSI: { 3922 struct ice_vsi_ctx *vsi_ctx; 3923 u16 vsi_handle = (u16)id; 3924 3925 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3926 break; 3927 /* Get sched_vsi_info */ 3928 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3929 if (!vsi_ctx) 3930 break; 3931 node = vsi_ctx->sched.vsi_node[tc]; 3932 break; 3933 } 3934 3935 case ICE_AGG_TYPE_AGG: { 3936 struct ice_sched_node *tc_node; 3937 3938 tc_node = ice_sched_get_tc_node(pi, tc); 3939 if (tc_node) 3940 node = ice_sched_get_agg_node(pi, tc_node, id); 3941 break; 3942 } 3943 3944 default: 3945 break; 3946 } 3947 3948 return node; 3949 } 3950 3951 /** 3952 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3953 * @pi: port information structure 3954 * @id: ID (software VSI handle or AGG ID) 3955 * @agg_type: aggregator type (VSI or AGG type node) 3956 * @tc: traffic class 3957 * @rl_type: min or max 3958 * @bw: bandwidth in Kbps 3959 * 3960 * This function sets BW limit of VSI or Aggregator scheduling node 3961 * based on TC information from passed in argument BW. 3962 */ 3963 int 3964 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3965 enum ice_agg_type agg_type, u8 tc, 3966 enum ice_rl_type rl_type, u32 bw) 3967 { 3968 struct ice_sched_node *node; 3969 int status = -EINVAL; 3970 3971 if (!pi) 3972 return status; 3973 3974 if (rl_type == ICE_UNKNOWN_BW) 3975 return status; 3976 3977 mutex_lock(&pi->sched_lock); 3978 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3979 if (!node) { 3980 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3981 goto exit_set_node_bw_lmt_per_tc; 3982 } 3983 if (bw == ICE_SCHED_DFLT_BW) 3984 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3985 else 3986 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3987 3988 exit_set_node_bw_lmt_per_tc: 3989 mutex_unlock(&pi->sched_lock); 3990 return status; 3991 } 3992 3993 /** 3994 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 3995 * @pi: port information structure 3996 * @vsi_handle: software VSI handle 3997 * @tc: traffic class 3998 * @rl_type: min or max 3999 * @bw: bandwidth in Kbps 4000 * 4001 * This function configures BW limit of VSI scheduling node based on TC 4002 * information. 4003 */ 4004 int 4005 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4006 enum ice_rl_type rl_type, u32 bw) 4007 { 4008 int status; 4009 4010 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4011 ICE_AGG_TYPE_VSI, 4012 tc, rl_type, bw); 4013 if (!status) { 4014 mutex_lock(&pi->sched_lock); 4015 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 4016 mutex_unlock(&pi->sched_lock); 4017 } 4018 return status; 4019 } 4020 4021 /** 4022 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 4023 * @pi: port information structure 4024 * @vsi_handle: software VSI handle 4025 * @tc: traffic class 4026 * @rl_type: min or max 4027 * 4028 * This function configures default BW limit of VSI scheduling node based on TC 4029 * information. 4030 */ 4031 int 4032 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4033 enum ice_rl_type rl_type) 4034 { 4035 int status; 4036 4037 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4038 ICE_AGG_TYPE_VSI, 4039 tc, rl_type, 4040 ICE_SCHED_DFLT_BW); 4041 if (!status) { 4042 mutex_lock(&pi->sched_lock); 4043 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 4044 ICE_SCHED_DFLT_BW); 4045 mutex_unlock(&pi->sched_lock); 4046 } 4047 return status; 4048 } 4049 4050 /** 4051 * ice_cfg_rl_burst_size - Set burst size value 4052 * @hw: pointer to the HW struct 4053 * @bytes: burst size in bytes 4054 * 4055 * This function configures/set the burst size to requested new value. The new 4056 * burst size value is used for future rate limit calls. It doesn't change the 4057 * existing or previously created RL profiles. 4058 */ 4059 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 4060 { 4061 u16 burst_size_to_prog; 4062 4063 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 4064 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 4065 return -EINVAL; 4066 if (ice_round_to_num(bytes, 64) <= 4067 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 4068 /* 64 byte granularity case */ 4069 /* Disable MSB granularity bit */ 4070 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 4071 /* round number to nearest 64 byte granularity */ 4072 bytes = ice_round_to_num(bytes, 64); 4073 /* The value is in 64 byte chunks */ 4074 burst_size_to_prog |= (u16)(bytes / 64); 4075 } else { 4076 /* k bytes granularity case */ 4077 /* Enable MSB granularity bit */ 4078 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 4079 /* round number to nearest 1024 granularity */ 4080 bytes = ice_round_to_num(bytes, 1024); 4081 /* check rounding doesn't go beyond allowed */ 4082 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4083 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4084 /* The value is in k bytes */ 4085 burst_size_to_prog |= (u16)(bytes / 1024); 4086 } 4087 hw->max_burst_size = burst_size_to_prog; 4088 return 0; 4089 } 4090 4091 /** 4092 * ice_sched_replay_node_prio - re-configure node priority 4093 * @hw: pointer to the HW struct 4094 * @node: sched node to configure 4095 * @priority: priority value 4096 * 4097 * This function configures node element's priority value. It 4098 * needs to be called with scheduler lock held. 4099 */ 4100 static int 4101 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4102 u8 priority) 4103 { 4104 struct ice_aqc_txsched_elem_data buf; 4105 struct ice_aqc_txsched_elem *data; 4106 int status; 4107 4108 buf = node->info; 4109 data = &buf.data; 4110 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4111 data->generic = priority; 4112 4113 /* Configure element */ 4114 status = ice_sched_update_elem(hw, node, &buf); 4115 return status; 4116 } 4117 4118 /** 4119 * ice_sched_replay_node_bw - replay node(s) BW 4120 * @hw: pointer to the HW struct 4121 * @node: sched node to configure 4122 * @bw_t_info: BW type information 4123 * 4124 * This function restores node's BW from bw_t_info. The caller needs 4125 * to hold the scheduler lock. 4126 */ 4127 static int 4128 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4129 struct ice_bw_type_info *bw_t_info) 4130 { 4131 struct ice_port_info *pi = hw->port_info; 4132 int status = -EINVAL; 4133 u16 bw_alloc; 4134 4135 if (!node) 4136 return status; 4137 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4138 return 0; 4139 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4140 status = ice_sched_replay_node_prio(hw, node, 4141 bw_t_info->generic); 4142 if (status) 4143 return status; 4144 } 4145 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4146 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4147 bw_t_info->cir_bw.bw); 4148 if (status) 4149 return status; 4150 } 4151 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4152 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4153 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4154 bw_alloc); 4155 if (status) 4156 return status; 4157 } 4158 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4159 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4160 bw_t_info->eir_bw.bw); 4161 if (status) 4162 return status; 4163 } 4164 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4165 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4166 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4167 bw_alloc); 4168 if (status) 4169 return status; 4170 } 4171 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4172 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4173 bw_t_info->shared_bw); 4174 return status; 4175 } 4176 4177 /** 4178 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4179 * @pi: port info struct 4180 * @tc_bitmap: 8 bits TC bitmap to check 4181 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4182 * 4183 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4184 * may be missing, it returns enabled TCs. This function needs to be called with 4185 * scheduler lock held. 4186 */ 4187 static void 4188 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4189 unsigned long *tc_bitmap, 4190 unsigned long *ena_tc_bitmap) 4191 { 4192 u8 tc; 4193 4194 /* Some TC(s) may be missing after reset, adjust for replay */ 4195 ice_for_each_traffic_class(tc) 4196 if (ice_is_tc_ena(*tc_bitmap, tc) && 4197 (ice_sched_get_tc_node(pi, tc))) 4198 set_bit(tc, ena_tc_bitmap); 4199 } 4200 4201 /** 4202 * ice_sched_replay_agg - recreate aggregator node(s) 4203 * @hw: pointer to the HW struct 4204 * 4205 * This function recreate aggregator type nodes which are not replayed earlier. 4206 * It also replay aggregator BW information. These aggregator nodes are not 4207 * associated with VSI type node yet. 4208 */ 4209 void ice_sched_replay_agg(struct ice_hw *hw) 4210 { 4211 struct ice_port_info *pi = hw->port_info; 4212 struct ice_sched_agg_info *agg_info; 4213 4214 mutex_lock(&pi->sched_lock); 4215 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4216 /* replay aggregator (re-create aggregator node) */ 4217 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4218 ICE_MAX_TRAFFIC_CLASS)) { 4219 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4220 int status; 4221 4222 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4223 ice_sched_get_ena_tc_bitmap(pi, 4224 agg_info->replay_tc_bitmap, 4225 replay_bitmap); 4226 status = ice_sched_cfg_agg(hw->port_info, 4227 agg_info->agg_id, 4228 ICE_AGG_TYPE_AGG, 4229 replay_bitmap); 4230 if (status) { 4231 dev_info(ice_hw_to_dev(hw), 4232 "Replay agg id[%d] failed\n", 4233 agg_info->agg_id); 4234 /* Move on to next one */ 4235 continue; 4236 } 4237 } 4238 mutex_unlock(&pi->sched_lock); 4239 } 4240 4241 /** 4242 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4243 * @hw: pointer to the HW struct 4244 * 4245 * This function initialize aggregator(s) TC bitmap to zero. A required 4246 * preinit step for replaying aggregators. 4247 */ 4248 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4249 { 4250 struct ice_port_info *pi = hw->port_info; 4251 struct ice_sched_agg_info *agg_info; 4252 4253 mutex_lock(&pi->sched_lock); 4254 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4255 struct ice_sched_agg_vsi_info *agg_vsi_info; 4256 4257 agg_info->tc_bitmap[0] = 0; 4258 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4259 list_entry) 4260 agg_vsi_info->tc_bitmap[0] = 0; 4261 } 4262 mutex_unlock(&pi->sched_lock); 4263 } 4264 4265 /** 4266 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4267 * @hw: pointer to the HW struct 4268 * @vsi_handle: software VSI handle 4269 * 4270 * This function replays aggregator node, VSI to aggregator type nodes, and 4271 * their node bandwidth information. This function needs to be called with 4272 * scheduler lock held. 4273 */ 4274 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4275 { 4276 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4277 struct ice_sched_agg_vsi_info *agg_vsi_info; 4278 struct ice_port_info *pi = hw->port_info; 4279 struct ice_sched_agg_info *agg_info; 4280 int status; 4281 4282 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4283 if (!ice_is_vsi_valid(hw, vsi_handle)) 4284 return -EINVAL; 4285 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4286 if (!agg_info) 4287 return 0; /* Not present in list - default Agg case */ 4288 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4289 if (!agg_vsi_info) 4290 return 0; /* Not present in list - default Agg case */ 4291 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4292 replay_bitmap); 4293 /* Replay aggregator node associated to vsi_handle */ 4294 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4295 ICE_AGG_TYPE_AGG, replay_bitmap); 4296 if (status) 4297 return status; 4298 4299 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4300 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4301 replay_bitmap); 4302 /* Move this VSI (vsi_handle) to above aggregator */ 4303 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4304 replay_bitmap); 4305 } 4306 4307 /** 4308 * ice_replay_vsi_agg - replay VSI to aggregator node 4309 * @hw: pointer to the HW struct 4310 * @vsi_handle: software VSI handle 4311 * 4312 * This function replays association of VSI to aggregator type nodes, and 4313 * node bandwidth information. 4314 */ 4315 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4316 { 4317 struct ice_port_info *pi = hw->port_info; 4318 int status; 4319 4320 mutex_lock(&pi->sched_lock); 4321 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4322 mutex_unlock(&pi->sched_lock); 4323 return status; 4324 } 4325 4326 /** 4327 * ice_sched_replay_q_bw - replay queue type node BW 4328 * @pi: port information structure 4329 * @q_ctx: queue context structure 4330 * 4331 * This function replays queue type node bandwidth. This function needs to be 4332 * called with scheduler lock held. 4333 */ 4334 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4335 { 4336 struct ice_sched_node *q_node; 4337 4338 /* Following also checks the presence of node in tree */ 4339 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4340 if (!q_node) 4341 return -EINVAL; 4342 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4343 } 4344