1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node teid to search 47 * 48 * This function searches for a node matching the teid in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if teid matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aq_query_sched_elems - query scheduler elements 89 * @hw: pointer to the hw struct 90 * @elems_req: number of elements to query 91 * @buf: pointer to buffer 92 * @buf_size: buffer size in bytes 93 * @elems_ret: returns total number of elements returned 94 * @cd: pointer to command details structure or NULL 95 * 96 * Query scheduling elements (0x0404) 97 */ 98 static enum ice_status 99 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 100 struct ice_aqc_get_elem *buf, u16 buf_size, 101 u16 *elems_ret, struct ice_sq_cd *cd) 102 { 103 struct ice_aqc_get_cfg_elem *cmd; 104 struct ice_aq_desc desc; 105 enum ice_status status; 106 107 cmd = &desc.params.get_update_elem; 108 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sched_elems); 109 cmd->num_elem_req = cpu_to_le16(elems_req); 110 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 111 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 112 if (!status && elems_ret) 113 *elems_ret = le16_to_cpu(cmd->num_elem_resp); 114 115 return status; 116 } 117 118 /** 119 * ice_sched_query_elem - query element information from hw 120 * @hw: pointer to the hw struct 121 * @node_teid: node teid to be queried 122 * @buf: buffer to element information 123 * 124 * This function queries HW element information 125 */ 126 static enum ice_status 127 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, 128 struct ice_aqc_get_elem *buf) 129 { 130 u16 buf_size, num_elem_ret = 0; 131 enum ice_status status; 132 133 buf_size = sizeof(*buf); 134 memset(buf, 0, buf_size); 135 buf->generic[0].node_teid = cpu_to_le32(node_teid); 136 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, 137 NULL); 138 if (status || num_elem_ret != 1) 139 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); 140 return status; 141 } 142 143 /** 144 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 145 * @pi: port information structure 146 * @layer: Scheduler layer of the node 147 * @info: Scheduler element information from firmware 148 * 149 * This function inserts a scheduler node to the SW DB. 150 */ 151 enum ice_status 152 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 153 struct ice_aqc_txsched_elem_data *info) 154 { 155 struct ice_sched_node *parent; 156 struct ice_aqc_get_elem elem; 157 struct ice_sched_node *node; 158 enum ice_status status; 159 struct ice_hw *hw; 160 161 if (!pi) 162 return ICE_ERR_PARAM; 163 164 hw = pi->hw; 165 166 /* A valid parent node should be there */ 167 parent = ice_sched_find_node_by_teid(pi->root, 168 le32_to_cpu(info->parent_teid)); 169 if (!parent) { 170 ice_debug(hw, ICE_DBG_SCHED, 171 "Parent Node not found for parent_teid=0x%x\n", 172 le32_to_cpu(info->parent_teid)); 173 return ICE_ERR_PARAM; 174 } 175 176 /* query the current node information from FW before additing it 177 * to the SW DB 178 */ 179 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 180 if (status) 181 return status; 182 183 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 184 if (!node) 185 return ICE_ERR_NO_MEMORY; 186 if (hw->max_children[layer]) { 187 /* coverity[suspicious_sizeof] */ 188 node->children = devm_kcalloc(ice_hw_to_dev(hw), 189 hw->max_children[layer], 190 sizeof(*node), GFP_KERNEL); 191 if (!node->children) { 192 devm_kfree(ice_hw_to_dev(hw), node); 193 return ICE_ERR_NO_MEMORY; 194 } 195 } 196 197 node->in_use = true; 198 node->parent = parent; 199 node->tx_sched_layer = layer; 200 parent->children[parent->num_children++] = node; 201 memcpy(&node->info, &elem.generic[0], sizeof(node->info)); 202 return 0; 203 } 204 205 /** 206 * ice_aq_delete_sched_elems - delete scheduler elements 207 * @hw: pointer to the hw struct 208 * @grps_req: number of groups to delete 209 * @buf: pointer to buffer 210 * @buf_size: buffer size in bytes 211 * @grps_del: returns total number of elements deleted 212 * @cd: pointer to command details structure or NULL 213 * 214 * Delete scheduling elements (0x040F) 215 */ 216 static enum ice_status 217 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 218 struct ice_aqc_delete_elem *buf, u16 buf_size, 219 u16 *grps_del, struct ice_sq_cd *cd) 220 { 221 struct ice_aqc_add_move_delete_elem *cmd; 222 struct ice_aq_desc desc; 223 enum ice_status status; 224 225 cmd = &desc.params.add_move_delete_elem; 226 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_delete_sched_elems); 227 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 228 cmd->num_grps_req = cpu_to_le16(grps_req); 229 230 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 231 if (!status && grps_del) 232 *grps_del = le16_to_cpu(cmd->num_grps_updated); 233 234 return status; 235 } 236 237 /** 238 * ice_sched_remove_elems - remove nodes from hw 239 * @hw: pointer to the hw struct 240 * @parent: pointer to the parent node 241 * @num_nodes: number of nodes 242 * @node_teids: array of node teids to be deleted 243 * 244 * This function remove nodes from hw 245 */ 246 static enum ice_status 247 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 248 u16 num_nodes, u32 *node_teids) 249 { 250 struct ice_aqc_delete_elem *buf; 251 u16 i, num_groups_removed = 0; 252 enum ice_status status; 253 u16 buf_size; 254 255 buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1); 256 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 257 if (!buf) 258 return ICE_ERR_NO_MEMORY; 259 260 buf->hdr.parent_teid = parent->info.node_teid; 261 buf->hdr.num_elems = cpu_to_le16(num_nodes); 262 for (i = 0; i < num_nodes; i++) 263 buf->teid[i] = cpu_to_le32(node_teids[i]); 264 265 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 266 &num_groups_removed, NULL); 267 if (status || num_groups_removed != 1) 268 ice_debug(hw, ICE_DBG_SCHED, "remove elements failed\n"); 269 270 devm_kfree(ice_hw_to_dev(hw), buf); 271 return status; 272 } 273 274 /** 275 * ice_sched_get_first_node - get the first node of the given layer 276 * @hw: pointer to the hw struct 277 * @parent: pointer the base node of the subtree 278 * @layer: layer number 279 * 280 * This function retrieves the first node of the given layer from the subtree 281 */ 282 static struct ice_sched_node * 283 ice_sched_get_first_node(struct ice_hw *hw, struct ice_sched_node *parent, 284 u8 layer) 285 { 286 u8 i; 287 288 if (layer < hw->sw_entry_point_layer) 289 return NULL; 290 for (i = 0; i < parent->num_children; i++) { 291 struct ice_sched_node *node = parent->children[i]; 292 293 if (node) { 294 if (node->tx_sched_layer == layer) 295 return node; 296 /* this recursion is intentional, and wouldn't 297 * go more than 9 calls 298 */ 299 return ice_sched_get_first_node(hw, node, layer); 300 } 301 } 302 return NULL; 303 } 304 305 /** 306 * ice_sched_get_tc_node - get pointer to TC node 307 * @pi: port information structure 308 * @tc: TC number 309 * 310 * This function returns the TC node pointer 311 */ 312 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 313 { 314 u8 i; 315 316 if (!pi) 317 return NULL; 318 for (i = 0; i < pi->root->num_children; i++) 319 if (pi->root->children[i]->tc_num == tc) 320 return pi->root->children[i]; 321 return NULL; 322 } 323 324 /** 325 * ice_free_sched_node - Free a Tx scheduler node from SW DB 326 * @pi: port information structure 327 * @node: pointer to the ice_sched_node struct 328 * 329 * This function frees up a node from SW DB as well as from HW 330 * 331 * This function needs to be called with the port_info->sched_lock held 332 */ 333 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 334 { 335 struct ice_sched_node *parent; 336 struct ice_hw *hw = pi->hw; 337 u8 i, j; 338 339 /* Free the children before freeing up the parent node 340 * The parent array is updated below and that shifts the nodes 341 * in the array. So always pick the first child if num children > 0 342 */ 343 while (node->num_children) 344 ice_free_sched_node(pi, node->children[0]); 345 346 /* Leaf, TC and root nodes can't be deleted by SW */ 347 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 348 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 349 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 350 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 351 u32 teid = le32_to_cpu(node->info.node_teid); 352 enum ice_status status; 353 354 status = ice_sched_remove_elems(hw, node->parent, 1, &teid); 355 if (status) 356 ice_debug(hw, ICE_DBG_SCHED, 357 "remove element failed %d\n", status); 358 } 359 parent = node->parent; 360 /* root has no parent */ 361 if (parent) { 362 struct ice_sched_node *p, *tc_node; 363 364 /* update the parent */ 365 for (i = 0; i < parent->num_children; i++) 366 if (parent->children[i] == node) { 367 for (j = i + 1; j < parent->num_children; j++) 368 parent->children[j - 1] = 369 parent->children[j]; 370 parent->num_children--; 371 break; 372 } 373 374 /* search for previous sibling that points to this node and 375 * remove the reference 376 */ 377 tc_node = ice_sched_get_tc_node(pi, node->tc_num); 378 if (!tc_node) { 379 ice_debug(hw, ICE_DBG_SCHED, 380 "Invalid TC number %d\n", node->tc_num); 381 goto err_exit; 382 } 383 p = ice_sched_get_first_node(hw, tc_node, node->tx_sched_layer); 384 while (p) { 385 if (p->sibling == node) { 386 p->sibling = node->sibling; 387 break; 388 } 389 p = p->sibling; 390 } 391 } 392 err_exit: 393 /* leaf nodes have no children */ 394 if (node->children) 395 devm_kfree(ice_hw_to_dev(hw), node->children); 396 devm_kfree(ice_hw_to_dev(hw), node); 397 } 398 399 /** 400 * ice_aq_get_dflt_topo - gets default scheduler topology 401 * @hw: pointer to the hw struct 402 * @lport: logical port number 403 * @buf: pointer to buffer 404 * @buf_size: buffer size in bytes 405 * @num_branches: returns total number of queue to port branches 406 * @cd: pointer to command details structure or NULL 407 * 408 * Get default scheduler topology (0x400) 409 */ 410 static enum ice_status 411 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 412 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 413 u8 *num_branches, struct ice_sq_cd *cd) 414 { 415 struct ice_aqc_get_topo *cmd; 416 struct ice_aq_desc desc; 417 enum ice_status status; 418 419 cmd = &desc.params.get_topo; 420 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 421 cmd->port_num = lport; 422 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 423 if (!status && num_branches) 424 *num_branches = cmd->num_branches; 425 426 return status; 427 } 428 429 /** 430 * ice_aq_add_sched_elems - adds scheduling element 431 * @hw: pointer to the hw struct 432 * @grps_req: the number of groups that are requested to be added 433 * @buf: pointer to buffer 434 * @buf_size: buffer size in bytes 435 * @grps_added: returns total number of groups added 436 * @cd: pointer to command details structure or NULL 437 * 438 * Add scheduling elements (0x0401) 439 */ 440 static enum ice_status 441 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 442 struct ice_aqc_add_elem *buf, u16 buf_size, 443 u16 *grps_added, struct ice_sq_cd *cd) 444 { 445 struct ice_aqc_add_move_delete_elem *cmd; 446 struct ice_aq_desc desc; 447 enum ice_status status; 448 449 cmd = &desc.params.add_move_delete_elem; 450 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_sched_elems); 451 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 452 453 cmd->num_grps_req = cpu_to_le16(grps_req); 454 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 455 if (!status && grps_added) 456 *grps_added = le16_to_cpu(cmd->num_grps_updated); 457 458 return status; 459 } 460 461 /** 462 * ice_suspend_resume_elems - suspend/resume scheduler elements 463 * @hw: pointer to the hw struct 464 * @elems_req: number of elements to suspend 465 * @buf: pointer to buffer 466 * @buf_size: buffer size in bytes 467 * @elems_ret: returns total number of elements suspended 468 * @cd: pointer to command details structure or NULL 469 * @cmd_code: command code for suspend or resume 470 * 471 * suspend/resume scheduler elements 472 */ 473 static enum ice_status 474 ice_suspend_resume_elems(struct ice_hw *hw, u16 elems_req, 475 struct ice_aqc_suspend_resume_elem *buf, u16 buf_size, 476 u16 *elems_ret, struct ice_sq_cd *cd, 477 enum ice_adminq_opc cmd_code) 478 { 479 struct ice_aqc_get_cfg_elem *cmd; 480 struct ice_aq_desc desc; 481 enum ice_status status; 482 483 cmd = &desc.params.get_update_elem; 484 ice_fill_dflt_direct_cmd_desc(&desc, cmd_code); 485 cmd->num_elem_req = cpu_to_le16(elems_req); 486 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 487 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 488 if (!status && elems_ret) 489 *elems_ret = le16_to_cpu(cmd->num_elem_resp); 490 return status; 491 } 492 493 /** 494 * ice_aq_suspend_sched_elems - suspend scheduler elements 495 * @hw: pointer to the hw struct 496 * @elems_req: number of elements to suspend 497 * @buf: pointer to buffer 498 * @buf_size: buffer size in bytes 499 * @elems_ret: returns total number of elements suspended 500 * @cd: pointer to command details structure or NULL 501 * 502 * Suspend scheduling elements (0x0409) 503 */ 504 static enum ice_status 505 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, 506 struct ice_aqc_suspend_resume_elem *buf, 507 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 508 { 509 return ice_suspend_resume_elems(hw, elems_req, buf, buf_size, elems_ret, 510 cd, ice_aqc_opc_suspend_sched_elems); 511 } 512 513 /** 514 * ice_aq_resume_sched_elems - resume scheduler elements 515 * @hw: pointer to the hw struct 516 * @elems_req: number of elements to resume 517 * @buf: pointer to buffer 518 * @buf_size: buffer size in bytes 519 * @elems_ret: returns total number of elements resumed 520 * @cd: pointer to command details structure or NULL 521 * 522 * resume scheduling elements (0x040A) 523 */ 524 static enum ice_status 525 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, 526 struct ice_aqc_suspend_resume_elem *buf, 527 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 528 { 529 return ice_suspend_resume_elems(hw, elems_req, buf, buf_size, elems_ret, 530 cd, ice_aqc_opc_resume_sched_elems); 531 } 532 533 /** 534 * ice_aq_query_sched_res - query scheduler resource 535 * @hw: pointer to the hw struct 536 * @buf_size: buffer size in bytes 537 * @buf: pointer to buffer 538 * @cd: pointer to command details structure or NULL 539 * 540 * Query scheduler resource allocation (0x0412) 541 */ 542 static enum ice_status 543 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 544 struct ice_aqc_query_txsched_res_resp *buf, 545 struct ice_sq_cd *cd) 546 { 547 struct ice_aq_desc desc; 548 549 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 550 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 551 } 552 553 /** 554 * ice_sched_suspend_resume_elems - suspend or resume hw nodes 555 * @hw: pointer to the hw struct 556 * @num_nodes: number of nodes 557 * @node_teids: array of node teids to be suspended or resumed 558 * @suspend: true means suspend / false means resume 559 * 560 * This function suspends or resumes hw nodes 561 */ 562 static enum ice_status 563 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 564 bool suspend) 565 { 566 struct ice_aqc_suspend_resume_elem *buf; 567 u16 i, buf_size, num_elem_ret = 0; 568 enum ice_status status; 569 570 buf_size = sizeof(*buf) * num_nodes; 571 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 572 if (!buf) 573 return ICE_ERR_NO_MEMORY; 574 575 for (i = 0; i < num_nodes; i++) 576 buf->teid[i] = cpu_to_le32(node_teids[i]); 577 578 if (suspend) 579 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 580 buf_size, &num_elem_ret, 581 NULL); 582 else 583 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 584 buf_size, &num_elem_ret, 585 NULL); 586 if (status || num_elem_ret != num_nodes) 587 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 588 589 devm_kfree(ice_hw_to_dev(hw), buf); 590 return status; 591 } 592 593 /** 594 * ice_sched_clear_tx_topo - clears the schduler tree nodes 595 * @pi: port information structure 596 * 597 * This function removes all the nodes from HW as well as from SW DB. 598 */ 599 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 600 { 601 struct ice_sched_agg_info *agg_info; 602 struct ice_sched_agg_info *atmp; 603 struct ice_hw *hw; 604 605 if (!pi) 606 return; 607 608 hw = pi->hw; 609 610 list_for_each_entry_safe(agg_info, atmp, &pi->agg_list, list_entry) { 611 struct ice_sched_agg_vsi_info *agg_vsi_info; 612 struct ice_sched_agg_vsi_info *vtmp; 613 614 list_for_each_entry_safe(agg_vsi_info, vtmp, 615 &agg_info->agg_vsi_list, list_entry) { 616 list_del(&agg_vsi_info->list_entry); 617 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 618 } 619 } 620 621 if (pi->root) { 622 ice_free_sched_node(pi, pi->root); 623 pi->root = NULL; 624 } 625 } 626 627 /** 628 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 629 * @pi: port information structure 630 * 631 * Cleanup scheduling elements from SW DB 632 */ 633 static void ice_sched_clear_port(struct ice_port_info *pi) 634 { 635 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 636 return; 637 638 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 639 mutex_lock(&pi->sched_lock); 640 ice_sched_clear_tx_topo(pi); 641 mutex_unlock(&pi->sched_lock); 642 mutex_destroy(&pi->sched_lock); 643 } 644 645 /** 646 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 647 * @hw: pointer to the hw struct 648 * 649 * Cleanup scheduling elements from SW DB for all the ports 650 */ 651 void ice_sched_cleanup_all(struct ice_hw *hw) 652 { 653 if (!hw) 654 return; 655 656 if (hw->layer_info) { 657 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 658 hw->layer_info = NULL; 659 } 660 661 if (hw->port_info) 662 ice_sched_clear_port(hw->port_info); 663 664 hw->num_tx_sched_layers = 0; 665 hw->num_tx_sched_phys_layers = 0; 666 hw->flattened_layers = 0; 667 hw->max_cgds = 0; 668 } 669 670 /** 671 * ice_sched_add_elems - add nodes to hw and SW DB 672 * @pi: port information structure 673 * @tc_node: pointer to the branch node 674 * @parent: pointer to the parent node 675 * @layer: layer number to add nodes 676 * @num_nodes: number of nodes 677 * @num_nodes_added: pointer to num nodes added 678 * @first_node_teid: if new nodes are added then return the teid of first node 679 * 680 * This function add nodes to hw as well as to SW DB for a given layer 681 */ 682 static enum ice_status 683 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 684 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 685 u16 *num_nodes_added, u32 *first_node_teid) 686 { 687 struct ice_sched_node *prev, *new_node; 688 struct ice_aqc_add_elem *buf; 689 u16 i, num_groups_added = 0; 690 enum ice_status status = 0; 691 struct ice_hw *hw = pi->hw; 692 u16 buf_size; 693 u32 teid; 694 695 buf_size = sizeof(*buf) + sizeof(*buf->generic) * (num_nodes - 1); 696 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 697 if (!buf) 698 return ICE_ERR_NO_MEMORY; 699 700 buf->hdr.parent_teid = parent->info.node_teid; 701 buf->hdr.num_elems = cpu_to_le16(num_nodes); 702 for (i = 0; i < num_nodes; i++) { 703 buf->generic[i].parent_teid = parent->info.node_teid; 704 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 705 buf->generic[i].data.valid_sections = 706 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 707 ICE_AQC_ELEM_VALID_EIR; 708 buf->generic[i].data.generic = 0; 709 buf->generic[i].data.cir_bw.bw_profile_idx = 710 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 711 buf->generic[i].data.cir_bw.bw_alloc = 712 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 713 buf->generic[i].data.eir_bw.bw_profile_idx = 714 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 715 buf->generic[i].data.eir_bw.bw_alloc = 716 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 717 } 718 719 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 720 &num_groups_added, NULL); 721 if (status || num_groups_added != 1) { 722 ice_debug(hw, ICE_DBG_SCHED, "add elements failed\n"); 723 devm_kfree(ice_hw_to_dev(hw), buf); 724 return ICE_ERR_CFG; 725 } 726 727 *num_nodes_added = num_nodes; 728 /* add nodes to the SW DB */ 729 for (i = 0; i < num_nodes; i++) { 730 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 731 if (status) { 732 ice_debug(hw, ICE_DBG_SCHED, 733 "add nodes in SW DB failed status =%d\n", 734 status); 735 break; 736 } 737 738 teid = le32_to_cpu(buf->generic[i].node_teid); 739 new_node = ice_sched_find_node_by_teid(parent, teid); 740 if (!new_node) { 741 ice_debug(hw, ICE_DBG_SCHED, 742 "Node is missing for teid =%d\n", teid); 743 break; 744 } 745 746 new_node->sibling = NULL; 747 new_node->tc_num = tc_node->tc_num; 748 749 /* add it to previous node sibling pointer */ 750 /* Note: siblings are not linked across branches */ 751 prev = ice_sched_get_first_node(hw, tc_node, layer); 752 if (prev && prev != new_node) { 753 while (prev->sibling) 754 prev = prev->sibling; 755 prev->sibling = new_node; 756 } 757 758 if (i == 0) 759 *first_node_teid = teid; 760 } 761 762 devm_kfree(ice_hw_to_dev(hw), buf); 763 return status; 764 } 765 766 /** 767 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 768 * @pi: port information structure 769 * @tc_node: pointer to TC node 770 * @parent: pointer to parent node 771 * @layer: layer number to add nodes 772 * @num_nodes: number of nodes to be added 773 * @first_node_teid: pointer to the first node teid 774 * @num_nodes_added: pointer to number of nodes added 775 * 776 * This function add nodes to a given layer. 777 */ 778 static enum ice_status 779 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 780 struct ice_sched_node *tc_node, 781 struct ice_sched_node *parent, u8 layer, 782 u16 num_nodes, u32 *first_node_teid, 783 u16 *num_nodes_added) 784 { 785 u32 *first_teid_ptr = first_node_teid; 786 u16 new_num_nodes, max_child_nodes; 787 enum ice_status status = 0; 788 struct ice_hw *hw = pi->hw; 789 u16 num_added = 0; 790 u32 temp; 791 792 *num_nodes_added = 0; 793 794 if (!num_nodes) 795 return status; 796 797 if (!parent || layer < hw->sw_entry_point_layer) 798 return ICE_ERR_PARAM; 799 800 /* max children per node per layer */ 801 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 802 803 /* current number of children + required nodes exceed max children ? */ 804 if ((parent->num_children + num_nodes) > max_child_nodes) { 805 /* Fail if the parent is a TC node */ 806 if (parent == tc_node) 807 return ICE_ERR_CFG; 808 809 /* utilize all the spaces if the parent is not full */ 810 if (parent->num_children < max_child_nodes) { 811 new_num_nodes = max_child_nodes - parent->num_children; 812 /* this recursion is intentional, and wouldn't 813 * go more than 2 calls 814 */ 815 status = ice_sched_add_nodes_to_layer(pi, tc_node, 816 parent, layer, 817 new_num_nodes, 818 first_node_teid, 819 &num_added); 820 if (status) 821 return status; 822 823 *num_nodes_added += num_added; 824 } 825 /* Don't modify the first node teid memory if the first node was 826 * added already in the above call. Instead send some temp 827 * memory for all other recursive calls. 828 */ 829 if (num_added) 830 first_teid_ptr = &temp; 831 832 new_num_nodes = num_nodes - num_added; 833 834 /* This parent is full, try the next sibling */ 835 parent = parent->sibling; 836 837 /* this recursion is intentional, for 1024 queues 838 * per VSI, it goes max of 16 iterations. 839 * 1024 / 8 = 128 layer 8 nodes 840 * 128 /8 = 16 (add 8 nodes per iteration) 841 */ 842 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 843 layer, new_num_nodes, 844 first_teid_ptr, 845 &num_added); 846 *num_nodes_added += num_added; 847 return status; 848 } 849 850 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 851 num_nodes_added, first_node_teid); 852 return status; 853 } 854 855 /** 856 * ice_sched_get_qgrp_layer - get the current queue group layer number 857 * @hw: pointer to the hw struct 858 * 859 * This function returns the current queue group layer number 860 */ 861 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 862 { 863 /* It's always total layers - 1, the array is 0 relative so -2 */ 864 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 865 } 866 867 /** 868 * ice_sched_get_vsi_layer - get the current VSI layer number 869 * @hw: pointer to the hw struct 870 * 871 * This function returns the current VSI layer number 872 */ 873 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 874 { 875 /* Num Layers VSI layer 876 * 9 6 877 * 7 4 878 * 5 or less sw_entry_point_layer 879 */ 880 /* calculate the vsi layer based on number of layers. */ 881 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 882 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 883 884 if (layer > hw->sw_entry_point_layer) 885 return layer; 886 } 887 return hw->sw_entry_point_layer; 888 } 889 890 /** 891 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 892 * @pi: port information structure 893 * 894 * This function removes the leaf node that was created by the FW 895 * during initialization 896 */ 897 static void 898 ice_rm_dflt_leaf_node(struct ice_port_info *pi) 899 { 900 struct ice_sched_node *node; 901 902 node = pi->root; 903 while (node) { 904 if (!node->num_children) 905 break; 906 node = node->children[0]; 907 } 908 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 909 u32 teid = le32_to_cpu(node->info.node_teid); 910 enum ice_status status; 911 912 /* remove the default leaf node */ 913 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 914 if (!status) 915 ice_free_sched_node(pi, node); 916 } 917 } 918 919 /** 920 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 921 * @pi: port information structure 922 * 923 * This function frees all the nodes except root and TC that were created by 924 * the FW during initialization 925 */ 926 static void 927 ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 928 { 929 struct ice_sched_node *node; 930 931 ice_rm_dflt_leaf_node(pi); 932 933 /* remove the default nodes except TC and root nodes */ 934 node = pi->root; 935 while (node) { 936 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 937 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 938 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 939 ice_free_sched_node(pi, node); 940 break; 941 } 942 943 if (!node->num_children) 944 break; 945 node = node->children[0]; 946 } 947 } 948 949 /** 950 * ice_sched_init_port - Initialize scheduler by querying information from FW 951 * @pi: port info structure for the tree to cleanup 952 * 953 * This function is the initial call to find the total number of Tx scheduler 954 * resources, default topology created by firmware and storing the information 955 * in SW DB. 956 */ 957 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 958 { 959 struct ice_aqc_get_topo_elem *buf; 960 enum ice_status status; 961 struct ice_hw *hw; 962 u8 num_branches; 963 u16 num_elems; 964 u8 i, j; 965 966 if (!pi) 967 return ICE_ERR_PARAM; 968 hw = pi->hw; 969 970 /* Query the Default Topology from FW */ 971 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 972 if (!buf) 973 return ICE_ERR_NO_MEMORY; 974 975 /* Query default scheduling tree topology */ 976 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 977 &num_branches, NULL); 978 if (status) 979 goto err_init_port; 980 981 /* num_branches should be between 1-8 */ 982 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 983 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 984 num_branches); 985 status = ICE_ERR_PARAM; 986 goto err_init_port; 987 } 988 989 /* get the number of elements on the default/first branch */ 990 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 991 992 /* num_elems should always be between 1-9 */ 993 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 994 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 995 num_elems); 996 status = ICE_ERR_PARAM; 997 goto err_init_port; 998 } 999 1000 /* If the last node is a leaf node then the index of the Q group 1001 * layer is two less than the number of elements. 1002 */ 1003 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1004 ICE_AQC_ELEM_TYPE_LEAF) 1005 pi->last_node_teid = 1006 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1007 else 1008 pi->last_node_teid = 1009 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1010 1011 /* Insert the Tx Sched root node */ 1012 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1013 if (status) 1014 goto err_init_port; 1015 1016 /* Parse the default tree and cache the information */ 1017 for (i = 0; i < num_branches; i++) { 1018 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1019 1020 /* Skip root element as already inserted */ 1021 for (j = 1; j < num_elems; j++) { 1022 /* update the sw entry point */ 1023 if (buf[0].generic[j].data.elem_type == 1024 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1025 hw->sw_entry_point_layer = j; 1026 1027 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1028 if (status) 1029 goto err_init_port; 1030 } 1031 } 1032 1033 /* Remove the default nodes. */ 1034 if (pi->root) 1035 ice_sched_rm_dflt_nodes(pi); 1036 1037 /* initialize the port for handling the scheduler tree */ 1038 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1039 mutex_init(&pi->sched_lock); 1040 INIT_LIST_HEAD(&pi->agg_list); 1041 1042 err_init_port: 1043 if (status && pi->root) { 1044 ice_free_sched_node(pi, pi->root); 1045 pi->root = NULL; 1046 } 1047 1048 devm_kfree(ice_hw_to_dev(hw), buf); 1049 return status; 1050 } 1051 1052 /** 1053 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1054 * @hw: pointer to the HW struct 1055 * 1056 * query FW for allocated scheduler resources and store in HW struct 1057 */ 1058 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1059 { 1060 struct ice_aqc_query_txsched_res_resp *buf; 1061 enum ice_status status = 0; 1062 __le16 max_sibl; 1063 u8 i; 1064 1065 if (hw->layer_info) 1066 return status; 1067 1068 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1069 if (!buf) 1070 return ICE_ERR_NO_MEMORY; 1071 1072 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1073 if (status) 1074 goto sched_query_out; 1075 1076 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1077 hw->num_tx_sched_phys_layers = 1078 le16_to_cpu(buf->sched_props.phys_levels); 1079 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1080 hw->max_cgds = buf->sched_props.max_pf_cgds; 1081 1082 /* max sibling group size of current layer refers to the max children 1083 * of the below layer node. 1084 * layer 1 node max children will be layer 2 max sibling group size 1085 * layer 2 node max children will be layer 3 max sibling group size 1086 * and so on. This array will be populated from root (index 0) to 1087 * qgroup layer 7. Leaf node has no children. 1088 */ 1089 for (i = 0; i < hw->num_tx_sched_layers; i++) { 1090 max_sibl = buf->layer_props[i].max_sibl_grp_sz; 1091 hw->max_children[i] = le16_to_cpu(max_sibl); 1092 } 1093 1094 hw->layer_info = (struct ice_aqc_layer_props *) 1095 devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1096 (hw->num_tx_sched_layers * 1097 sizeof(*hw->layer_info)), 1098 GFP_KERNEL); 1099 if (!hw->layer_info) { 1100 status = ICE_ERR_NO_MEMORY; 1101 goto sched_query_out; 1102 } 1103 1104 sched_query_out: 1105 devm_kfree(ice_hw_to_dev(hw), buf); 1106 return status; 1107 } 1108 1109 /** 1110 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1111 * @hw: pointer to the hw struct 1112 * @base: pointer to the base node 1113 * @node: pointer to the node to search 1114 * 1115 * This function checks whether a given node is part of the base node 1116 * subtree or not 1117 */ 1118 static bool 1119 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1120 struct ice_sched_node *node) 1121 { 1122 u8 i; 1123 1124 for (i = 0; i < base->num_children; i++) { 1125 struct ice_sched_node *child = base->children[i]; 1126 1127 if (node == child) 1128 return true; 1129 1130 if (child->tx_sched_layer > node->tx_sched_layer) 1131 return false; 1132 1133 /* this recursion is intentional, and wouldn't 1134 * go more than 8 calls 1135 */ 1136 if (ice_sched_find_node_in_subtree(hw, child, node)) 1137 return true; 1138 } 1139 return false; 1140 } 1141 1142 /** 1143 * ice_sched_get_free_qparent - Get a free lan or rdma q group node 1144 * @pi: port information structure 1145 * @vsi_handle: software VSI handle 1146 * @tc: branch number 1147 * @owner: lan or rdma 1148 * 1149 * This function retrieves a free lan or rdma q group node 1150 */ 1151 struct ice_sched_node * 1152 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1153 u8 owner) 1154 { 1155 struct ice_sched_node *vsi_node, *qgrp_node = NULL; 1156 struct ice_vsi_ctx *vsi_ctx; 1157 u16 max_children; 1158 u8 qgrp_layer; 1159 1160 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1161 max_children = pi->hw->max_children[qgrp_layer]; 1162 1163 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1164 if (!vsi_ctx) 1165 return NULL; 1166 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1167 /* validate invalid VSI id */ 1168 if (!vsi_node) 1169 goto lan_q_exit; 1170 1171 /* get the first q group node from VSI sub-tree */ 1172 qgrp_node = ice_sched_get_first_node(pi->hw, vsi_node, qgrp_layer); 1173 while (qgrp_node) { 1174 /* make sure the qgroup node is part of the VSI subtree */ 1175 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1176 if (qgrp_node->num_children < max_children && 1177 qgrp_node->owner == owner) 1178 break; 1179 qgrp_node = qgrp_node->sibling; 1180 } 1181 1182 lan_q_exit: 1183 return qgrp_node; 1184 } 1185 1186 /** 1187 * ice_sched_get_vsi_node - Get a VSI node based on VSI id 1188 * @hw: pointer to the hw struct 1189 * @tc_node: pointer to the TC node 1190 * @vsi_handle: software VSI handle 1191 * 1192 * This function retrieves a VSI node for a given VSI id from a given 1193 * TC branch 1194 */ 1195 static struct ice_sched_node * 1196 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, 1197 u16 vsi_handle) 1198 { 1199 struct ice_sched_node *node; 1200 u8 vsi_layer; 1201 1202 vsi_layer = ice_sched_get_vsi_layer(hw); 1203 node = ice_sched_get_first_node(hw, tc_node, vsi_layer); 1204 1205 /* Check whether it already exists */ 1206 while (node) { 1207 if (node->vsi_handle == vsi_handle) 1208 return node; 1209 node = node->sibling; 1210 } 1211 1212 return node; 1213 } 1214 1215 /** 1216 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1217 * @hw: pointer to the hw struct 1218 * @num_qs: number of queues 1219 * @num_nodes: num nodes array 1220 * 1221 * This function calculates the number of VSI child nodes based on the 1222 * number of queues. 1223 */ 1224 static void 1225 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1226 { 1227 u16 num = num_qs; 1228 u8 i, qgl, vsil; 1229 1230 qgl = ice_sched_get_qgrp_layer(hw); 1231 vsil = ice_sched_get_vsi_layer(hw); 1232 1233 /* calculate num nodes from q group to VSI layer */ 1234 for (i = qgl; i > vsil; i--) { 1235 /* round to the next integer if there is a remainder */ 1236 num = DIV_ROUND_UP(num, hw->max_children[i]); 1237 1238 /* need at least one node */ 1239 num_nodes[i] = num ? num : 1; 1240 } 1241 } 1242 1243 /** 1244 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1245 * @pi: port information structure 1246 * @vsi_handle: software VSI handle 1247 * @tc_node: pointer to the TC node 1248 * @num_nodes: pointer to the num nodes that needs to be added per layer 1249 * @owner: node owner (lan or rdma) 1250 * 1251 * This function adds the VSI child nodes to tree. It gets called for 1252 * lan and rdma separately. 1253 */ 1254 static enum ice_status 1255 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1256 struct ice_sched_node *tc_node, u16 *num_nodes, 1257 u8 owner) 1258 { 1259 struct ice_sched_node *parent, *node; 1260 struct ice_hw *hw = pi->hw; 1261 enum ice_status status; 1262 u32 first_node_teid; 1263 u16 num_added = 0; 1264 u8 i, qgl, vsil; 1265 1266 qgl = ice_sched_get_qgrp_layer(hw); 1267 vsil = ice_sched_get_vsi_layer(hw); 1268 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1269 for (i = vsil + 1; i <= qgl; i++) { 1270 if (!parent) 1271 return ICE_ERR_CFG; 1272 1273 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1274 num_nodes[i], 1275 &first_node_teid, 1276 &num_added); 1277 if (status || num_nodes[i] != num_added) 1278 return ICE_ERR_CFG; 1279 1280 /* The newly added node can be a new parent for the next 1281 * layer nodes 1282 */ 1283 if (num_added) { 1284 parent = ice_sched_find_node_by_teid(tc_node, 1285 first_node_teid); 1286 node = parent; 1287 while (node) { 1288 node->owner = owner; 1289 node = node->sibling; 1290 } 1291 } else { 1292 parent = parent->children[0]; 1293 } 1294 } 1295 1296 return 0; 1297 } 1298 1299 /** 1300 * ice_sched_rm_vsi_child_nodes - remove VSI child nodes from the tree 1301 * @pi: port information structure 1302 * @vsi_node: pointer to the VSI node 1303 * @num_nodes: pointer to the num nodes that needs to be removed per layer 1304 * @owner: node owner (lan or rdma) 1305 * 1306 * This function removes the VSI child nodes from the tree. It gets called for 1307 * lan and rdma separately. 1308 */ 1309 static void 1310 ice_sched_rm_vsi_child_nodes(struct ice_port_info *pi, 1311 struct ice_sched_node *vsi_node, u16 *num_nodes, 1312 u8 owner) 1313 { 1314 struct ice_sched_node *node, *next; 1315 u8 i, qgl, vsil; 1316 u16 num; 1317 1318 qgl = ice_sched_get_qgrp_layer(pi->hw); 1319 vsil = ice_sched_get_vsi_layer(pi->hw); 1320 1321 for (i = qgl; i > vsil; i--) { 1322 num = num_nodes[i]; 1323 node = ice_sched_get_first_node(pi->hw, vsi_node, i); 1324 while (node && num) { 1325 next = node->sibling; 1326 if (node->owner == owner && !node->num_children) { 1327 ice_free_sched_node(pi, node); 1328 num--; 1329 } 1330 node = next; 1331 } 1332 } 1333 } 1334 1335 /** 1336 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1337 * @hw: pointer to the hw struct 1338 * @tc_node: pointer to TC node 1339 * @num_nodes: pointer to num nodes array 1340 * 1341 * This function calculates the number of supported nodes needed to add this 1342 * VSI into tx tree including the VSI, parent and intermediate nodes in below 1343 * layers 1344 */ 1345 static void 1346 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, 1347 struct ice_sched_node *tc_node, u16 *num_nodes) 1348 { 1349 struct ice_sched_node *node; 1350 u8 vsil; 1351 int i; 1352 1353 vsil = ice_sched_get_vsi_layer(hw); 1354 for (i = vsil; i >= hw->sw_entry_point_layer; i--) 1355 /* Add intermediate nodes if TC has no children and 1356 * need at least one node for VSI 1357 */ 1358 if (!tc_node->num_children || i == vsil) { 1359 num_nodes[i]++; 1360 } else { 1361 /* If intermediate nodes are reached max children 1362 * then add a new one. 1363 */ 1364 node = ice_sched_get_first_node(hw, tc_node, (u8)i); 1365 /* scan all the siblings */ 1366 while (node) { 1367 if (node->num_children < hw->max_children[i]) 1368 break; 1369 node = node->sibling; 1370 } 1371 1372 /* all the nodes are full, allocate a new one */ 1373 if (!node) 1374 num_nodes[i]++; 1375 } 1376 } 1377 1378 /** 1379 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into tx tree 1380 * @pi: port information structure 1381 * @vsi_handle: software VSI handle 1382 * @tc_node: pointer to TC node 1383 * @num_nodes: pointer to num nodes array 1384 * 1385 * This function adds the VSI supported nodes into tx tree including the 1386 * VSI, its parent and intermediate nodes in below layers 1387 */ 1388 static enum ice_status 1389 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1390 struct ice_sched_node *tc_node, u16 *num_nodes) 1391 { 1392 struct ice_sched_node *parent = tc_node; 1393 enum ice_status status; 1394 u32 first_node_teid; 1395 u16 num_added = 0; 1396 u8 i, vsil; 1397 1398 if (!pi) 1399 return ICE_ERR_PARAM; 1400 1401 vsil = ice_sched_get_vsi_layer(pi->hw); 1402 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1403 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1404 i, num_nodes[i], 1405 &first_node_teid, 1406 &num_added); 1407 if (status || num_nodes[i] != num_added) 1408 return ICE_ERR_CFG; 1409 1410 /* The newly added node can be a new parent for the next 1411 * layer nodes 1412 */ 1413 if (num_added) 1414 parent = ice_sched_find_node_by_teid(tc_node, 1415 first_node_teid); 1416 else 1417 parent = parent->children[0]; 1418 1419 if (!parent) 1420 return ICE_ERR_CFG; 1421 1422 if (i == vsil) 1423 parent->vsi_handle = vsi_handle; 1424 } 1425 1426 return 0; 1427 } 1428 1429 /** 1430 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1431 * @pi: port information structure 1432 * @vsi_handle: software VSI handle 1433 * @tc: TC number 1434 * 1435 * This function adds a new VSI into scheduler tree 1436 */ 1437 static enum ice_status 1438 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1439 { 1440 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1441 struct ice_sched_node *tc_node; 1442 struct ice_hw *hw = pi->hw; 1443 1444 tc_node = ice_sched_get_tc_node(pi, tc); 1445 if (!tc_node) 1446 return ICE_ERR_PARAM; 1447 1448 /* calculate number of supported nodes needed for this VSI */ 1449 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); 1450 1451 /* add vsi supported nodes to tc subtree */ 1452 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1453 num_nodes); 1454 } 1455 1456 /** 1457 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1458 * @pi: port information structure 1459 * @vsi_handle: software VSI handle 1460 * @tc: TC number 1461 * @new_numqs: new number of max queues 1462 * @owner: owner of this subtree 1463 * 1464 * This function updates the VSI child nodes based on the number of queues 1465 */ 1466 static enum ice_status 1467 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1468 u8 tc, u16 new_numqs, u8 owner) 1469 { 1470 u16 prev_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1471 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1472 struct ice_sched_node *vsi_node; 1473 struct ice_sched_node *tc_node; 1474 struct ice_vsi_ctx *vsi_ctx; 1475 enum ice_status status = 0; 1476 struct ice_hw *hw = pi->hw; 1477 u16 prev_numqs; 1478 u8 i; 1479 1480 tc_node = ice_sched_get_tc_node(pi, tc); 1481 if (!tc_node) 1482 return ICE_ERR_CFG; 1483 1484 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1485 if (!vsi_node) 1486 return ICE_ERR_CFG; 1487 1488 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1489 if (!vsi_ctx) 1490 return ICE_ERR_PARAM; 1491 1492 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1493 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1494 else 1495 return ICE_ERR_PARAM; 1496 1497 /* num queues are not changed */ 1498 if (prev_numqs == new_numqs) 1499 return status; 1500 1501 /* calculate number of nodes based on prev/new number of qs */ 1502 if (prev_numqs) 1503 ice_sched_calc_vsi_child_nodes(hw, prev_numqs, prev_num_nodes); 1504 1505 if (new_numqs) 1506 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1507 1508 if (prev_numqs > new_numqs) { 1509 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1510 new_num_nodes[i] = prev_num_nodes[i] - new_num_nodes[i]; 1511 1512 ice_sched_rm_vsi_child_nodes(pi, vsi_node, new_num_nodes, 1513 owner); 1514 } else { 1515 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1516 new_num_nodes[i] -= prev_num_nodes[i]; 1517 1518 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1519 new_num_nodes, owner); 1520 if (status) 1521 return status; 1522 } 1523 1524 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1525 1526 return status; 1527 } 1528 1529 /** 1530 * ice_sched_cfg_vsi - configure the new/exisiting VSI 1531 * @pi: port information structure 1532 * @vsi_handle: software VSI handle 1533 * @tc: TC number 1534 * @maxqs: max number of queues 1535 * @owner: lan or rdma 1536 * @enable: TC enabled or disabled 1537 * 1538 * This function adds/updates VSI nodes based on the number of queues. If TC is 1539 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1540 * disabled then suspend the VSI if it is not already. 1541 */ 1542 enum ice_status 1543 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1544 u8 owner, bool enable) 1545 { 1546 struct ice_sched_node *vsi_node, *tc_node; 1547 struct ice_vsi_ctx *vsi_ctx; 1548 enum ice_status status = 0; 1549 struct ice_hw *hw = pi->hw; 1550 1551 tc_node = ice_sched_get_tc_node(pi, tc); 1552 if (!tc_node) 1553 return ICE_ERR_PARAM; 1554 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1555 if (!vsi_ctx) 1556 return ICE_ERR_PARAM; 1557 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1558 1559 /* suspend the VSI if tc is not enabled */ 1560 if (!enable) { 1561 if (vsi_node && vsi_node->in_use) { 1562 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1563 1564 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1565 true); 1566 if (!status) 1567 vsi_node->in_use = false; 1568 } 1569 return status; 1570 } 1571 1572 /* TC is enabled, if it is a new VSI then add it to the tree */ 1573 if (!vsi_node) { 1574 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1575 if (status) 1576 return status; 1577 1578 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1579 if (!vsi_node) 1580 return ICE_ERR_CFG; 1581 1582 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1583 vsi_node->in_use = true; 1584 /* invalidate the max queues whenever VSI gets added first time 1585 * into the scheduler tree (boot or after reset). We need to 1586 * recreate the child nodes all the time in these cases. 1587 */ 1588 vsi_ctx->sched.max_lanq[tc] = 0; 1589 } 1590 1591 /* update the VSI child nodes */ 1592 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1593 owner); 1594 if (status) 1595 return status; 1596 1597 /* TC is enabled, resume the VSI if it is in the suspend state */ 1598 if (!vsi_node->in_use) { 1599 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1600 1601 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1602 if (!status) 1603 vsi_node->in_use = true; 1604 } 1605 1606 return status; 1607 } 1608