1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static enum ice_status 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 enum ice_status status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 enum ice_status 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 enum ice_status 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_aqc_txsched_elem_data elem; 153 struct ice_sched_node *parent; 154 struct ice_sched_node *node; 155 enum ice_status status; 156 struct ice_hw *hw; 157 158 if (!pi) 159 return ICE_ERR_PARAM; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, 168 "Parent Node not found for parent_teid=0x%x\n", 169 le32_to_cpu(info->parent_teid)); 170 return ICE_ERR_PARAM; 171 } 172 173 /* query the current node information from FW before adding it 174 * to the SW DB 175 */ 176 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 177 if (status) 178 return status; 179 180 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 181 if (!node) 182 return ICE_ERR_NO_MEMORY; 183 if (hw->max_children[layer]) { 184 /* coverity[suspicious_sizeof] */ 185 node->children = devm_kcalloc(ice_hw_to_dev(hw), 186 hw->max_children[layer], 187 sizeof(*node), GFP_KERNEL); 188 if (!node->children) { 189 devm_kfree(ice_hw_to_dev(hw), node); 190 return ICE_ERR_NO_MEMORY; 191 } 192 } 193 194 node->in_use = true; 195 node->parent = parent; 196 node->tx_sched_layer = layer; 197 parent->children[parent->num_children++] = node; 198 node->info = elem; 199 return 0; 200 } 201 202 /** 203 * ice_aq_delete_sched_elems - delete scheduler elements 204 * @hw: pointer to the HW struct 205 * @grps_req: number of groups to delete 206 * @buf: pointer to buffer 207 * @buf_size: buffer size in bytes 208 * @grps_del: returns total number of elements deleted 209 * @cd: pointer to command details structure or NULL 210 * 211 * Delete scheduling elements (0x040F) 212 */ 213 static enum ice_status 214 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 215 struct ice_aqc_delete_elem *buf, u16 buf_size, 216 u16 *grps_del, struct ice_sq_cd *cd) 217 { 218 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 219 grps_req, (void *)buf, buf_size, 220 grps_del, cd); 221 } 222 223 /** 224 * ice_sched_remove_elems - remove nodes from HW 225 * @hw: pointer to the HW struct 226 * @parent: pointer to the parent node 227 * @num_nodes: number of nodes 228 * @node_teids: array of node teids to be deleted 229 * 230 * This function remove nodes from HW 231 */ 232 static enum ice_status 233 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 234 u16 num_nodes, u32 *node_teids) 235 { 236 struct ice_aqc_delete_elem *buf; 237 u16 i, num_groups_removed = 0; 238 enum ice_status status; 239 u16 buf_size; 240 241 buf_size = struct_size(buf, teid, num_nodes); 242 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 243 if (!buf) 244 return ICE_ERR_NO_MEMORY; 245 246 buf->hdr.parent_teid = parent->info.node_teid; 247 buf->hdr.num_elems = cpu_to_le16(num_nodes); 248 for (i = 0; i < num_nodes; i++) 249 buf->teid[i] = cpu_to_le32(node_teids[i]); 250 251 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 252 &num_groups_removed, NULL); 253 if (status || num_groups_removed != 1) 254 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 255 hw->adminq.sq_last_status); 256 257 devm_kfree(ice_hw_to_dev(hw), buf); 258 return status; 259 } 260 261 /** 262 * ice_sched_get_first_node - get the first node of the given layer 263 * @pi: port information structure 264 * @parent: pointer the base node of the subtree 265 * @layer: layer number 266 * 267 * This function retrieves the first node of the given layer from the subtree 268 */ 269 static struct ice_sched_node * 270 ice_sched_get_first_node(struct ice_port_info *pi, 271 struct ice_sched_node *parent, u8 layer) 272 { 273 return pi->sib_head[parent->tc_num][layer]; 274 } 275 276 /** 277 * ice_sched_get_tc_node - get pointer to TC node 278 * @pi: port information structure 279 * @tc: TC number 280 * 281 * This function returns the TC node pointer 282 */ 283 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 284 { 285 u8 i; 286 287 if (!pi || !pi->root) 288 return NULL; 289 for (i = 0; i < pi->root->num_children; i++) 290 if (pi->root->children[i]->tc_num == tc) 291 return pi->root->children[i]; 292 return NULL; 293 } 294 295 /** 296 * ice_free_sched_node - Free a Tx scheduler node from SW DB 297 * @pi: port information structure 298 * @node: pointer to the ice_sched_node struct 299 * 300 * This function frees up a node from SW DB as well as from HW 301 * 302 * This function needs to be called with the port_info->sched_lock held 303 */ 304 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 305 { 306 struct ice_sched_node *parent; 307 struct ice_hw *hw = pi->hw; 308 u8 i, j; 309 310 /* Free the children before freeing up the parent node 311 * The parent array is updated below and that shifts the nodes 312 * in the array. So always pick the first child if num children > 0 313 */ 314 while (node->num_children) 315 ice_free_sched_node(pi, node->children[0]); 316 317 /* Leaf, TC and root nodes can't be deleted by SW */ 318 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 321 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 322 u32 teid = le32_to_cpu(node->info.node_teid); 323 324 ice_sched_remove_elems(hw, node->parent, 1, &teid); 325 } 326 parent = node->parent; 327 /* root has no parent */ 328 if (parent) { 329 struct ice_sched_node *p; 330 331 /* update the parent */ 332 for (i = 0; i < parent->num_children; i++) 333 if (parent->children[i] == node) { 334 for (j = i + 1; j < parent->num_children; j++) 335 parent->children[j - 1] = 336 parent->children[j]; 337 parent->num_children--; 338 break; 339 } 340 341 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 342 while (p) { 343 if (p->sibling == node) { 344 p->sibling = node->sibling; 345 break; 346 } 347 p = p->sibling; 348 } 349 350 /* update the sibling head if head is getting removed */ 351 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 352 pi->sib_head[node->tc_num][node->tx_sched_layer] = 353 node->sibling; 354 } 355 356 /* leaf nodes have no children */ 357 if (node->children) 358 devm_kfree(ice_hw_to_dev(hw), node->children); 359 devm_kfree(ice_hw_to_dev(hw), node); 360 } 361 362 /** 363 * ice_aq_get_dflt_topo - gets default scheduler topology 364 * @hw: pointer to the HW struct 365 * @lport: logical port number 366 * @buf: pointer to buffer 367 * @buf_size: buffer size in bytes 368 * @num_branches: returns total number of queue to port branches 369 * @cd: pointer to command details structure or NULL 370 * 371 * Get default scheduler topology (0x400) 372 */ 373 static enum ice_status 374 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 375 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 376 u8 *num_branches, struct ice_sq_cd *cd) 377 { 378 struct ice_aqc_get_topo *cmd; 379 struct ice_aq_desc desc; 380 enum ice_status status; 381 382 cmd = &desc.params.get_topo; 383 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 384 cmd->port_num = lport; 385 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 386 if (!status && num_branches) 387 *num_branches = cmd->num_branches; 388 389 return status; 390 } 391 392 /** 393 * ice_aq_add_sched_elems - adds scheduling element 394 * @hw: pointer to the HW struct 395 * @grps_req: the number of groups that are requested to be added 396 * @buf: pointer to buffer 397 * @buf_size: buffer size in bytes 398 * @grps_added: returns total number of groups added 399 * @cd: pointer to command details structure or NULL 400 * 401 * Add scheduling elements (0x0401) 402 */ 403 static enum ice_status 404 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 405 struct ice_aqc_add_elem *buf, u16 buf_size, 406 u16 *grps_added, struct ice_sq_cd *cd) 407 { 408 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 409 grps_req, (void *)buf, buf_size, 410 grps_added, cd); 411 } 412 413 /** 414 * ice_aq_cfg_sched_elems - configures scheduler elements 415 * @hw: pointer to the HW struct 416 * @elems_req: number of elements to configure 417 * @buf: pointer to buffer 418 * @buf_size: buffer size in bytes 419 * @elems_cfgd: returns total number of elements configured 420 * @cd: pointer to command details structure or NULL 421 * 422 * Configure scheduling elements (0x0403) 423 */ 424 static enum ice_status 425 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 426 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 427 u16 *elems_cfgd, struct ice_sq_cd *cd) 428 { 429 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 430 elems_req, (void *)buf, buf_size, 431 elems_cfgd, cd); 432 } 433 434 /** 435 * ice_aq_suspend_sched_elems - suspend scheduler elements 436 * @hw: pointer to the HW struct 437 * @elems_req: number of elements to suspend 438 * @buf: pointer to buffer 439 * @buf_size: buffer size in bytes 440 * @elems_ret: returns total number of elements suspended 441 * @cd: pointer to command details structure or NULL 442 * 443 * Suspend scheduling elements (0x0409) 444 */ 445 static enum ice_status 446 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 447 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 448 { 449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 450 elems_req, (void *)buf, buf_size, 451 elems_ret, cd); 452 } 453 454 /** 455 * ice_aq_resume_sched_elems - resume scheduler elements 456 * @hw: pointer to the HW struct 457 * @elems_req: number of elements to resume 458 * @buf: pointer to buffer 459 * @buf_size: buffer size in bytes 460 * @elems_ret: returns total number of elements resumed 461 * @cd: pointer to command details structure or NULL 462 * 463 * resume scheduling elements (0x040A) 464 */ 465 static enum ice_status 466 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 467 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 468 { 469 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 470 elems_req, (void *)buf, buf_size, 471 elems_ret, cd); 472 } 473 474 /** 475 * ice_aq_query_sched_res - query scheduler resource 476 * @hw: pointer to the HW struct 477 * @buf_size: buffer size in bytes 478 * @buf: pointer to buffer 479 * @cd: pointer to command details structure or NULL 480 * 481 * Query scheduler resource allocation (0x0412) 482 */ 483 static enum ice_status 484 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 485 struct ice_aqc_query_txsched_res_resp *buf, 486 struct ice_sq_cd *cd) 487 { 488 struct ice_aq_desc desc; 489 490 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 491 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 492 } 493 494 /** 495 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 496 * @hw: pointer to the HW struct 497 * @num_nodes: number of nodes 498 * @node_teids: array of node teids to be suspended or resumed 499 * @suspend: true means suspend / false means resume 500 * 501 * This function suspends or resumes HW nodes 502 */ 503 static enum ice_status 504 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 505 bool suspend) 506 { 507 u16 i, buf_size, num_elem_ret = 0; 508 enum ice_status status; 509 __le32 *buf; 510 511 buf_size = sizeof(*buf) * num_nodes; 512 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 513 if (!buf) 514 return ICE_ERR_NO_MEMORY; 515 516 for (i = 0; i < num_nodes; i++) 517 buf[i] = cpu_to_le32(node_teids[i]); 518 519 if (suspend) 520 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 521 buf_size, &num_elem_ret, 522 NULL); 523 else 524 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 525 buf_size, &num_elem_ret, 526 NULL); 527 if (status || num_elem_ret != num_nodes) 528 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 529 530 devm_kfree(ice_hw_to_dev(hw), buf); 531 return status; 532 } 533 534 /** 535 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 536 * @hw: pointer to the HW struct 537 * @vsi_handle: VSI handle 538 * @tc: TC number 539 * @new_numqs: number of queues 540 */ 541 static enum ice_status 542 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 543 { 544 struct ice_vsi_ctx *vsi_ctx; 545 struct ice_q_ctx *q_ctx; 546 547 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 548 if (!vsi_ctx) 549 return ICE_ERR_PARAM; 550 /* allocate LAN queue contexts */ 551 if (!vsi_ctx->lan_q_ctx[tc]) { 552 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 553 new_numqs, 554 sizeof(*q_ctx), 555 GFP_KERNEL); 556 if (!vsi_ctx->lan_q_ctx[tc]) 557 return ICE_ERR_NO_MEMORY; 558 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 559 return 0; 560 } 561 /* num queues are increased, update the queue contexts */ 562 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 563 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 564 565 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 566 sizeof(*q_ctx), GFP_KERNEL); 567 if (!q_ctx) 568 return ICE_ERR_NO_MEMORY; 569 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 570 prev_num * sizeof(*q_ctx)); 571 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 572 vsi_ctx->lan_q_ctx[tc] = q_ctx; 573 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 574 } 575 return 0; 576 } 577 578 /** 579 * ice_aq_rl_profile - performs a rate limiting task 580 * @hw: pointer to the HW struct 581 * @opcode: opcode for add, query, or remove profile(s) 582 * @num_profiles: the number of profiles 583 * @buf: pointer to buffer 584 * @buf_size: buffer size in bytes 585 * @num_processed: number of processed add or remove profile(s) to return 586 * @cd: pointer to command details structure 587 * 588 * RL profile function to add, query, or remove profile(s) 589 */ 590 static enum ice_status 591 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 592 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 593 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 594 { 595 struct ice_aqc_rl_profile *cmd; 596 struct ice_aq_desc desc; 597 enum ice_status status; 598 599 cmd = &desc.params.rl_profile; 600 601 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 602 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 603 cmd->num_profiles = cpu_to_le16(num_profiles); 604 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 605 if (!status && num_processed) 606 *num_processed = le16_to_cpu(cmd->num_processed); 607 return status; 608 } 609 610 /** 611 * ice_aq_add_rl_profile - adds rate limiting profile(s) 612 * @hw: pointer to the HW struct 613 * @num_profiles: the number of profile(s) to be add 614 * @buf: pointer to buffer 615 * @buf_size: buffer size in bytes 616 * @num_profiles_added: total number of profiles added to return 617 * @cd: pointer to command details structure 618 * 619 * Add RL profile (0x0410) 620 */ 621 static enum ice_status 622 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 623 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 624 u16 *num_profiles_added, struct ice_sq_cd *cd) 625 { 626 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 627 buf, buf_size, num_profiles_added, cd); 628 } 629 630 /** 631 * ice_aq_remove_rl_profile - removes RL profile(s) 632 * @hw: pointer to the HW struct 633 * @num_profiles: the number of profile(s) to remove 634 * @buf: pointer to buffer 635 * @buf_size: buffer size in bytes 636 * @num_profiles_removed: total number of profiles removed to return 637 * @cd: pointer to command details structure or NULL 638 * 639 * Remove RL profile (0x0415) 640 */ 641 static enum ice_status 642 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 643 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 644 u16 *num_profiles_removed, struct ice_sq_cd *cd) 645 { 646 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 647 num_profiles, buf, buf_size, 648 num_profiles_removed, cd); 649 } 650 651 /** 652 * ice_sched_del_rl_profile - remove RL profile 653 * @hw: pointer to the HW struct 654 * @rl_info: rate limit profile information 655 * 656 * If the profile ID is not referenced anymore, it removes profile ID with 657 * its associated parameters from HW DB,and locally. The caller needs to 658 * hold scheduler lock. 659 */ 660 static enum ice_status 661 ice_sched_del_rl_profile(struct ice_hw *hw, 662 struct ice_aqc_rl_profile_info *rl_info) 663 { 664 struct ice_aqc_rl_profile_elem *buf; 665 u16 num_profiles_removed; 666 enum ice_status status; 667 u16 num_profiles = 1; 668 669 if (rl_info->prof_id_ref != 0) 670 return ICE_ERR_IN_USE; 671 672 /* Safe to remove profile ID */ 673 buf = &rl_info->profile; 674 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 675 &num_profiles_removed, NULL); 676 if (status || num_profiles_removed != num_profiles) 677 return ICE_ERR_CFG; 678 679 /* Delete stale entry now */ 680 list_del(&rl_info->list_entry); 681 devm_kfree(ice_hw_to_dev(hw), rl_info); 682 return status; 683 } 684 685 /** 686 * ice_sched_clear_rl_prof - clears RL prof entries 687 * @pi: port information structure 688 * 689 * This function removes all RL profile from HW as well as from SW DB. 690 */ 691 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 692 { 693 u16 ln; 694 695 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 696 struct ice_aqc_rl_profile_info *rl_prof_elem; 697 struct ice_aqc_rl_profile_info *rl_prof_tmp; 698 699 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 700 &pi->rl_prof_list[ln], list_entry) { 701 struct ice_hw *hw = pi->hw; 702 enum ice_status status; 703 704 rl_prof_elem->prof_id_ref = 0; 705 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 706 if (status) { 707 ice_debug(hw, ICE_DBG_SCHED, 708 "Remove rl profile failed\n"); 709 /* On error, free mem required */ 710 list_del(&rl_prof_elem->list_entry); 711 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 712 } 713 } 714 } 715 } 716 717 /** 718 * ice_sched_clear_agg - clears the aggregator related information 719 * @hw: pointer to the hardware structure 720 * 721 * This function removes aggregator list and free up aggregator related memory 722 * previously allocated. 723 */ 724 void ice_sched_clear_agg(struct ice_hw *hw) 725 { 726 struct ice_sched_agg_info *agg_info; 727 struct ice_sched_agg_info *atmp; 728 729 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 730 struct ice_sched_agg_vsi_info *agg_vsi_info; 731 struct ice_sched_agg_vsi_info *vtmp; 732 733 list_for_each_entry_safe(agg_vsi_info, vtmp, 734 &agg_info->agg_vsi_list, list_entry) { 735 list_del(&agg_vsi_info->list_entry); 736 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 737 } 738 list_del(&agg_info->list_entry); 739 devm_kfree(ice_hw_to_dev(hw), agg_info); 740 } 741 } 742 743 /** 744 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 745 * @pi: port information structure 746 * 747 * This function removes all the nodes from HW as well as from SW DB. 748 */ 749 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 750 { 751 if (!pi) 752 return; 753 /* remove RL profiles related lists */ 754 ice_sched_clear_rl_prof(pi); 755 if (pi->root) { 756 ice_free_sched_node(pi, pi->root); 757 pi->root = NULL; 758 } 759 } 760 761 /** 762 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 763 * @pi: port information structure 764 * 765 * Cleanup scheduling elements from SW DB 766 */ 767 void ice_sched_clear_port(struct ice_port_info *pi) 768 { 769 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 770 return; 771 772 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 773 mutex_lock(&pi->sched_lock); 774 ice_sched_clear_tx_topo(pi); 775 mutex_unlock(&pi->sched_lock); 776 mutex_destroy(&pi->sched_lock); 777 } 778 779 /** 780 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 781 * @hw: pointer to the HW struct 782 * 783 * Cleanup scheduling elements from SW DB for all the ports 784 */ 785 void ice_sched_cleanup_all(struct ice_hw *hw) 786 { 787 if (!hw) 788 return; 789 790 if (hw->layer_info) { 791 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 792 hw->layer_info = NULL; 793 } 794 795 ice_sched_clear_port(hw->port_info); 796 797 hw->num_tx_sched_layers = 0; 798 hw->num_tx_sched_phys_layers = 0; 799 hw->flattened_layers = 0; 800 hw->max_cgds = 0; 801 } 802 803 /** 804 * ice_sched_add_elems - add nodes to HW and SW DB 805 * @pi: port information structure 806 * @tc_node: pointer to the branch node 807 * @parent: pointer to the parent node 808 * @layer: layer number to add nodes 809 * @num_nodes: number of nodes 810 * @num_nodes_added: pointer to num nodes added 811 * @first_node_teid: if new nodes are added then return the TEID of first node 812 * 813 * This function add nodes to HW as well as to SW DB for a given layer 814 */ 815 static enum ice_status 816 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 817 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 818 u16 *num_nodes_added, u32 *first_node_teid) 819 { 820 struct ice_sched_node *prev, *new_node; 821 struct ice_aqc_add_elem *buf; 822 u16 i, num_groups_added = 0; 823 enum ice_status status = 0; 824 struct ice_hw *hw = pi->hw; 825 size_t buf_size; 826 u32 teid; 827 828 buf_size = struct_size(buf, generic, num_nodes); 829 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 830 if (!buf) 831 return ICE_ERR_NO_MEMORY; 832 833 buf->hdr.parent_teid = parent->info.node_teid; 834 buf->hdr.num_elems = cpu_to_le16(num_nodes); 835 for (i = 0; i < num_nodes; i++) { 836 buf->generic[i].parent_teid = parent->info.node_teid; 837 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 838 buf->generic[i].data.valid_sections = 839 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 840 ICE_AQC_ELEM_VALID_EIR; 841 buf->generic[i].data.generic = 0; 842 buf->generic[i].data.cir_bw.bw_profile_idx = 843 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 844 buf->generic[i].data.cir_bw.bw_alloc = 845 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 846 buf->generic[i].data.eir_bw.bw_profile_idx = 847 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 848 buf->generic[i].data.eir_bw.bw_alloc = 849 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 850 } 851 852 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 853 &num_groups_added, NULL); 854 if (status || num_groups_added != 1) { 855 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 856 hw->adminq.sq_last_status); 857 devm_kfree(ice_hw_to_dev(hw), buf); 858 return ICE_ERR_CFG; 859 } 860 861 *num_nodes_added = num_nodes; 862 /* add nodes to the SW DB */ 863 for (i = 0; i < num_nodes; i++) { 864 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 865 if (status) { 866 ice_debug(hw, ICE_DBG_SCHED, 867 "add nodes in SW DB failed status =%d\n", 868 status); 869 break; 870 } 871 872 teid = le32_to_cpu(buf->generic[i].node_teid); 873 new_node = ice_sched_find_node_by_teid(parent, teid); 874 if (!new_node) { 875 ice_debug(hw, ICE_DBG_SCHED, 876 "Node is missing for teid =%d\n", teid); 877 break; 878 } 879 880 new_node->sibling = NULL; 881 new_node->tc_num = tc_node->tc_num; 882 883 /* add it to previous node sibling pointer */ 884 /* Note: siblings are not linked across branches */ 885 prev = ice_sched_get_first_node(pi, tc_node, layer); 886 if (prev && prev != new_node) { 887 while (prev->sibling) 888 prev = prev->sibling; 889 prev->sibling = new_node; 890 } 891 892 /* initialize the sibling head */ 893 if (!pi->sib_head[tc_node->tc_num][layer]) 894 pi->sib_head[tc_node->tc_num][layer] = new_node; 895 896 if (i == 0) 897 *first_node_teid = teid; 898 } 899 900 devm_kfree(ice_hw_to_dev(hw), buf); 901 return status; 902 } 903 904 /** 905 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 906 * @pi: port information structure 907 * @tc_node: pointer to TC node 908 * @parent: pointer to parent node 909 * @layer: layer number to add nodes 910 * @num_nodes: number of nodes to be added 911 * @first_node_teid: pointer to the first node TEID 912 * @num_nodes_added: pointer to number of nodes added 913 * 914 * This function add nodes to a given layer. 915 */ 916 static enum ice_status 917 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 918 struct ice_sched_node *tc_node, 919 struct ice_sched_node *parent, u8 layer, 920 u16 num_nodes, u32 *first_node_teid, 921 u16 *num_nodes_added) 922 { 923 u32 *first_teid_ptr = first_node_teid; 924 u16 new_num_nodes, max_child_nodes; 925 enum ice_status status = 0; 926 struct ice_hw *hw = pi->hw; 927 u16 num_added = 0; 928 u32 temp; 929 930 *num_nodes_added = 0; 931 932 if (!num_nodes) 933 return status; 934 935 if (!parent || layer < hw->sw_entry_point_layer) 936 return ICE_ERR_PARAM; 937 938 /* max children per node per layer */ 939 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 940 941 /* current number of children + required nodes exceed max children ? */ 942 if ((parent->num_children + num_nodes) > max_child_nodes) { 943 /* Fail if the parent is a TC node */ 944 if (parent == tc_node) 945 return ICE_ERR_CFG; 946 947 /* utilize all the spaces if the parent is not full */ 948 if (parent->num_children < max_child_nodes) { 949 new_num_nodes = max_child_nodes - parent->num_children; 950 /* this recursion is intentional, and wouldn't 951 * go more than 2 calls 952 */ 953 status = ice_sched_add_nodes_to_layer(pi, tc_node, 954 parent, layer, 955 new_num_nodes, 956 first_node_teid, 957 &num_added); 958 if (status) 959 return status; 960 961 *num_nodes_added += num_added; 962 } 963 /* Don't modify the first node TEID memory if the first node was 964 * added already in the above call. Instead send some temp 965 * memory for all other recursive calls. 966 */ 967 if (num_added) 968 first_teid_ptr = &temp; 969 970 new_num_nodes = num_nodes - num_added; 971 972 /* This parent is full, try the next sibling */ 973 parent = parent->sibling; 974 975 /* this recursion is intentional, for 1024 queues 976 * per VSI, it goes max of 16 iterations. 977 * 1024 / 8 = 128 layer 8 nodes 978 * 128 /8 = 16 (add 8 nodes per iteration) 979 */ 980 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 981 layer, new_num_nodes, 982 first_teid_ptr, 983 &num_added); 984 *num_nodes_added += num_added; 985 return status; 986 } 987 988 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 989 num_nodes_added, first_node_teid); 990 return status; 991 } 992 993 /** 994 * ice_sched_get_qgrp_layer - get the current queue group layer number 995 * @hw: pointer to the HW struct 996 * 997 * This function returns the current queue group layer number 998 */ 999 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1000 { 1001 /* It's always total layers - 1, the array is 0 relative so -2 */ 1002 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1003 } 1004 1005 /** 1006 * ice_sched_get_vsi_layer - get the current VSI layer number 1007 * @hw: pointer to the HW struct 1008 * 1009 * This function returns the current VSI layer number 1010 */ 1011 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1012 { 1013 /* Num Layers VSI layer 1014 * 9 6 1015 * 7 4 1016 * 5 or less sw_entry_point_layer 1017 */ 1018 /* calculate the VSI layer based on number of layers. */ 1019 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1020 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1021 1022 if (layer > hw->sw_entry_point_layer) 1023 return layer; 1024 } 1025 return hw->sw_entry_point_layer; 1026 } 1027 1028 /** 1029 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1030 * @pi: port information structure 1031 * 1032 * This function removes the leaf node that was created by the FW 1033 * during initialization 1034 */ 1035 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1036 { 1037 struct ice_sched_node *node; 1038 1039 node = pi->root; 1040 while (node) { 1041 if (!node->num_children) 1042 break; 1043 node = node->children[0]; 1044 } 1045 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1046 u32 teid = le32_to_cpu(node->info.node_teid); 1047 enum ice_status status; 1048 1049 /* remove the default leaf node */ 1050 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1051 if (!status) 1052 ice_free_sched_node(pi, node); 1053 } 1054 } 1055 1056 /** 1057 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1058 * @pi: port information structure 1059 * 1060 * This function frees all the nodes except root and TC that were created by 1061 * the FW during initialization 1062 */ 1063 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1064 { 1065 struct ice_sched_node *node; 1066 1067 ice_rm_dflt_leaf_node(pi); 1068 1069 /* remove the default nodes except TC and root nodes */ 1070 node = pi->root; 1071 while (node) { 1072 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1073 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1074 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1075 ice_free_sched_node(pi, node); 1076 break; 1077 } 1078 1079 if (!node->num_children) 1080 break; 1081 node = node->children[0]; 1082 } 1083 } 1084 1085 /** 1086 * ice_sched_init_port - Initialize scheduler by querying information from FW 1087 * @pi: port info structure for the tree to cleanup 1088 * 1089 * This function is the initial call to find the total number of Tx scheduler 1090 * resources, default topology created by firmware and storing the information 1091 * in SW DB. 1092 */ 1093 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 1094 { 1095 struct ice_aqc_get_topo_elem *buf; 1096 enum ice_status status; 1097 struct ice_hw *hw; 1098 u8 num_branches; 1099 u16 num_elems; 1100 u8 i, j; 1101 1102 if (!pi) 1103 return ICE_ERR_PARAM; 1104 hw = pi->hw; 1105 1106 /* Query the Default Topology from FW */ 1107 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1108 if (!buf) 1109 return ICE_ERR_NO_MEMORY; 1110 1111 /* Query default scheduling tree topology */ 1112 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1113 &num_branches, NULL); 1114 if (status) 1115 goto err_init_port; 1116 1117 /* num_branches should be between 1-8 */ 1118 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1119 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1120 num_branches); 1121 status = ICE_ERR_PARAM; 1122 goto err_init_port; 1123 } 1124 1125 /* get the number of elements on the default/first branch */ 1126 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1127 1128 /* num_elems should always be between 1-9 */ 1129 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1130 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1131 num_elems); 1132 status = ICE_ERR_PARAM; 1133 goto err_init_port; 1134 } 1135 1136 /* If the last node is a leaf node then the index of the queue group 1137 * layer is two less than the number of elements. 1138 */ 1139 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1140 ICE_AQC_ELEM_TYPE_LEAF) 1141 pi->last_node_teid = 1142 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1143 else 1144 pi->last_node_teid = 1145 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1146 1147 /* Insert the Tx Sched root node */ 1148 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1149 if (status) 1150 goto err_init_port; 1151 1152 /* Parse the default tree and cache the information */ 1153 for (i = 0; i < num_branches; i++) { 1154 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1155 1156 /* Skip root element as already inserted */ 1157 for (j = 1; j < num_elems; j++) { 1158 /* update the sw entry point */ 1159 if (buf[0].generic[j].data.elem_type == 1160 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1161 hw->sw_entry_point_layer = j; 1162 1163 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1164 if (status) 1165 goto err_init_port; 1166 } 1167 } 1168 1169 /* Remove the default nodes. */ 1170 if (pi->root) 1171 ice_sched_rm_dflt_nodes(pi); 1172 1173 /* initialize the port for handling the scheduler tree */ 1174 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1175 mutex_init(&pi->sched_lock); 1176 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1177 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1178 1179 err_init_port: 1180 if (status && pi->root) { 1181 ice_free_sched_node(pi, pi->root); 1182 pi->root = NULL; 1183 } 1184 1185 devm_kfree(ice_hw_to_dev(hw), buf); 1186 return status; 1187 } 1188 1189 /** 1190 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1191 * @hw: pointer to the HW struct 1192 * 1193 * query FW for allocated scheduler resources and store in HW struct 1194 */ 1195 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1196 { 1197 struct ice_aqc_query_txsched_res_resp *buf; 1198 enum ice_status status = 0; 1199 __le16 max_sibl; 1200 u16 i; 1201 1202 if (hw->layer_info) 1203 return status; 1204 1205 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1206 if (!buf) 1207 return ICE_ERR_NO_MEMORY; 1208 1209 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1210 if (status) 1211 goto sched_query_out; 1212 1213 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1214 hw->num_tx_sched_phys_layers = 1215 le16_to_cpu(buf->sched_props.phys_levels); 1216 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1217 hw->max_cgds = buf->sched_props.max_pf_cgds; 1218 1219 /* max sibling group size of current layer refers to the max children 1220 * of the below layer node. 1221 * layer 1 node max children will be layer 2 max sibling group size 1222 * layer 2 node max children will be layer 3 max sibling group size 1223 * and so on. This array will be populated from root (index 0) to 1224 * qgroup layer 7. Leaf node has no children. 1225 */ 1226 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1227 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1228 hw->max_children[i] = le16_to_cpu(max_sibl); 1229 } 1230 1231 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1232 (hw->num_tx_sched_layers * 1233 sizeof(*hw->layer_info)), 1234 GFP_KERNEL); 1235 if (!hw->layer_info) { 1236 status = ICE_ERR_NO_MEMORY; 1237 goto sched_query_out; 1238 } 1239 1240 sched_query_out: 1241 devm_kfree(ice_hw_to_dev(hw), buf); 1242 return status; 1243 } 1244 1245 /** 1246 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1247 * @hw: pointer to the HW struct 1248 * @base: pointer to the base node 1249 * @node: pointer to the node to search 1250 * 1251 * This function checks whether a given node is part of the base node 1252 * subtree or not 1253 */ 1254 static bool 1255 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1256 struct ice_sched_node *node) 1257 { 1258 u8 i; 1259 1260 for (i = 0; i < base->num_children; i++) { 1261 struct ice_sched_node *child = base->children[i]; 1262 1263 if (node == child) 1264 return true; 1265 1266 if (child->tx_sched_layer > node->tx_sched_layer) 1267 return false; 1268 1269 /* this recursion is intentional, and wouldn't 1270 * go more than 8 calls 1271 */ 1272 if (ice_sched_find_node_in_subtree(hw, child, node)) 1273 return true; 1274 } 1275 return false; 1276 } 1277 1278 /** 1279 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1280 * @pi: port information structure 1281 * @vsi_node: software VSI handle 1282 * @qgrp_node: first queue group node identified for scanning 1283 * @owner: LAN or RDMA 1284 * 1285 * This function retrieves a free LAN or RDMA queue group node by scanning 1286 * qgrp_node and its siblings for the queue group with the fewest number 1287 * of queues currently assigned. 1288 */ 1289 static struct ice_sched_node * 1290 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1291 struct ice_sched_node *vsi_node, 1292 struct ice_sched_node *qgrp_node, u8 owner) 1293 { 1294 struct ice_sched_node *min_qgrp; 1295 u8 min_children; 1296 1297 if (!qgrp_node) 1298 return qgrp_node; 1299 min_children = qgrp_node->num_children; 1300 if (!min_children) 1301 return qgrp_node; 1302 min_qgrp = qgrp_node; 1303 /* scan all queue groups until find a node which has less than the 1304 * minimum number of children. This way all queue group nodes get 1305 * equal number of shares and active. The bandwidth will be equally 1306 * distributed across all queues. 1307 */ 1308 while (qgrp_node) { 1309 /* make sure the qgroup node is part of the VSI subtree */ 1310 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1311 if (qgrp_node->num_children < min_children && 1312 qgrp_node->owner == owner) { 1313 /* replace the new min queue group node */ 1314 min_qgrp = qgrp_node; 1315 min_children = min_qgrp->num_children; 1316 /* break if it has no children, */ 1317 if (!min_children) 1318 break; 1319 } 1320 qgrp_node = qgrp_node->sibling; 1321 } 1322 return min_qgrp; 1323 } 1324 1325 /** 1326 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1327 * @pi: port information structure 1328 * @vsi_handle: software VSI handle 1329 * @tc: branch number 1330 * @owner: LAN or RDMA 1331 * 1332 * This function retrieves a free LAN or RDMA queue group node 1333 */ 1334 struct ice_sched_node * 1335 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1336 u8 owner) 1337 { 1338 struct ice_sched_node *vsi_node, *qgrp_node; 1339 struct ice_vsi_ctx *vsi_ctx; 1340 u16 max_children; 1341 u8 qgrp_layer; 1342 1343 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1344 max_children = pi->hw->max_children[qgrp_layer]; 1345 1346 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1347 if (!vsi_ctx) 1348 return NULL; 1349 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1350 /* validate invalid VSI ID */ 1351 if (!vsi_node) 1352 return NULL; 1353 1354 /* get the first queue group node from VSI sub-tree */ 1355 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1356 while (qgrp_node) { 1357 /* make sure the qgroup node is part of the VSI subtree */ 1358 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1359 if (qgrp_node->num_children < max_children && 1360 qgrp_node->owner == owner) 1361 break; 1362 qgrp_node = qgrp_node->sibling; 1363 } 1364 1365 /* Select the best queue group */ 1366 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1367 } 1368 1369 /** 1370 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1371 * @hw: pointer to the HW struct 1372 * @tc_node: pointer to the TC node 1373 * @vsi_handle: software VSI handle 1374 * 1375 * This function retrieves a VSI node for a given VSI ID from a given 1376 * TC branch 1377 */ 1378 static struct ice_sched_node * 1379 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, 1380 u16 vsi_handle) 1381 { 1382 struct ice_sched_node *node; 1383 u8 vsi_layer; 1384 1385 vsi_layer = ice_sched_get_vsi_layer(hw); 1386 node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer); 1387 1388 /* Check whether it already exists */ 1389 while (node) { 1390 if (node->vsi_handle == vsi_handle) 1391 return node; 1392 node = node->sibling; 1393 } 1394 1395 return node; 1396 } 1397 1398 /** 1399 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1400 * @hw: pointer to the HW struct 1401 * @num_qs: number of queues 1402 * @num_nodes: num nodes array 1403 * 1404 * This function calculates the number of VSI child nodes based on the 1405 * number of queues. 1406 */ 1407 static void 1408 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1409 { 1410 u16 num = num_qs; 1411 u8 i, qgl, vsil; 1412 1413 qgl = ice_sched_get_qgrp_layer(hw); 1414 vsil = ice_sched_get_vsi_layer(hw); 1415 1416 /* calculate num nodes from queue group to VSI layer */ 1417 for (i = qgl; i > vsil; i--) { 1418 /* round to the next integer if there is a remainder */ 1419 num = DIV_ROUND_UP(num, hw->max_children[i]); 1420 1421 /* need at least one node */ 1422 num_nodes[i] = num ? num : 1; 1423 } 1424 } 1425 1426 /** 1427 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1428 * @pi: port information structure 1429 * @vsi_handle: software VSI handle 1430 * @tc_node: pointer to the TC node 1431 * @num_nodes: pointer to the num nodes that needs to be added per layer 1432 * @owner: node owner (LAN or RDMA) 1433 * 1434 * This function adds the VSI child nodes to tree. It gets called for 1435 * LAN and RDMA separately. 1436 */ 1437 static enum ice_status 1438 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1439 struct ice_sched_node *tc_node, u16 *num_nodes, 1440 u8 owner) 1441 { 1442 struct ice_sched_node *parent, *node; 1443 struct ice_hw *hw = pi->hw; 1444 enum ice_status status; 1445 u32 first_node_teid; 1446 u16 num_added = 0; 1447 u8 i, qgl, vsil; 1448 1449 qgl = ice_sched_get_qgrp_layer(hw); 1450 vsil = ice_sched_get_vsi_layer(hw); 1451 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1452 for (i = vsil + 1; i <= qgl; i++) { 1453 if (!parent) 1454 return ICE_ERR_CFG; 1455 1456 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1457 num_nodes[i], 1458 &first_node_teid, 1459 &num_added); 1460 if (status || num_nodes[i] != num_added) 1461 return ICE_ERR_CFG; 1462 1463 /* The newly added node can be a new parent for the next 1464 * layer nodes 1465 */ 1466 if (num_added) { 1467 parent = ice_sched_find_node_by_teid(tc_node, 1468 first_node_teid); 1469 node = parent; 1470 while (node) { 1471 node->owner = owner; 1472 node = node->sibling; 1473 } 1474 } else { 1475 parent = parent->children[0]; 1476 } 1477 } 1478 1479 return 0; 1480 } 1481 1482 /** 1483 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1484 * @hw: pointer to the HW struct 1485 * @tc_node: pointer to TC node 1486 * @num_nodes: pointer to num nodes array 1487 * 1488 * This function calculates the number of supported nodes needed to add this 1489 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1490 * layers 1491 */ 1492 static void 1493 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, 1494 struct ice_sched_node *tc_node, u16 *num_nodes) 1495 { 1496 struct ice_sched_node *node; 1497 u8 vsil; 1498 int i; 1499 1500 vsil = ice_sched_get_vsi_layer(hw); 1501 for (i = vsil; i >= hw->sw_entry_point_layer; i--) 1502 /* Add intermediate nodes if TC has no children and 1503 * need at least one node for VSI 1504 */ 1505 if (!tc_node->num_children || i == vsil) { 1506 num_nodes[i]++; 1507 } else { 1508 /* If intermediate nodes are reached max children 1509 * then add a new one. 1510 */ 1511 node = ice_sched_get_first_node(hw->port_info, tc_node, 1512 (u8)i); 1513 /* scan all the siblings */ 1514 while (node) { 1515 if (node->num_children < hw->max_children[i]) 1516 break; 1517 node = node->sibling; 1518 } 1519 1520 /* tree has one intermediate node to add this new VSI. 1521 * So no need to calculate supported nodes for below 1522 * layers. 1523 */ 1524 if (node) 1525 break; 1526 /* all the nodes are full, allocate a new one */ 1527 num_nodes[i]++; 1528 } 1529 } 1530 1531 /** 1532 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1533 * @pi: port information structure 1534 * @vsi_handle: software VSI handle 1535 * @tc_node: pointer to TC node 1536 * @num_nodes: pointer to num nodes array 1537 * 1538 * This function adds the VSI supported nodes into Tx tree including the 1539 * VSI, its parent and intermediate nodes in below layers 1540 */ 1541 static enum ice_status 1542 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1543 struct ice_sched_node *tc_node, u16 *num_nodes) 1544 { 1545 struct ice_sched_node *parent = tc_node; 1546 enum ice_status status; 1547 u32 first_node_teid; 1548 u16 num_added = 0; 1549 u8 i, vsil; 1550 1551 if (!pi) 1552 return ICE_ERR_PARAM; 1553 1554 vsil = ice_sched_get_vsi_layer(pi->hw); 1555 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1556 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1557 i, num_nodes[i], 1558 &first_node_teid, 1559 &num_added); 1560 if (status || num_nodes[i] != num_added) 1561 return ICE_ERR_CFG; 1562 1563 /* The newly added node can be a new parent for the next 1564 * layer nodes 1565 */ 1566 if (num_added) 1567 parent = ice_sched_find_node_by_teid(tc_node, 1568 first_node_teid); 1569 else 1570 parent = parent->children[0]; 1571 1572 if (!parent) 1573 return ICE_ERR_CFG; 1574 1575 if (i == vsil) 1576 parent->vsi_handle = vsi_handle; 1577 } 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1584 * @pi: port information structure 1585 * @vsi_handle: software VSI handle 1586 * @tc: TC number 1587 * 1588 * This function adds a new VSI into scheduler tree 1589 */ 1590 static enum ice_status 1591 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1592 { 1593 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1594 struct ice_sched_node *tc_node; 1595 struct ice_hw *hw = pi->hw; 1596 1597 tc_node = ice_sched_get_tc_node(pi, tc); 1598 if (!tc_node) 1599 return ICE_ERR_PARAM; 1600 1601 /* calculate number of supported nodes needed for this VSI */ 1602 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); 1603 1604 /* add VSI supported nodes to TC subtree */ 1605 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1606 num_nodes); 1607 } 1608 1609 /** 1610 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1611 * @pi: port information structure 1612 * @vsi_handle: software VSI handle 1613 * @tc: TC number 1614 * @new_numqs: new number of max queues 1615 * @owner: owner of this subtree 1616 * 1617 * This function updates the VSI child nodes based on the number of queues 1618 */ 1619 static enum ice_status 1620 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1621 u8 tc, u16 new_numqs, u8 owner) 1622 { 1623 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1624 struct ice_sched_node *vsi_node; 1625 struct ice_sched_node *tc_node; 1626 struct ice_vsi_ctx *vsi_ctx; 1627 enum ice_status status = 0; 1628 struct ice_hw *hw = pi->hw; 1629 u16 prev_numqs; 1630 1631 tc_node = ice_sched_get_tc_node(pi, tc); 1632 if (!tc_node) 1633 return ICE_ERR_CFG; 1634 1635 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1636 if (!vsi_node) 1637 return ICE_ERR_CFG; 1638 1639 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1640 if (!vsi_ctx) 1641 return ICE_ERR_PARAM; 1642 1643 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1644 /* num queues are not changed or less than the previous number */ 1645 if (new_numqs <= prev_numqs) 1646 return status; 1647 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1648 if (status) 1649 return status; 1650 1651 if (new_numqs) 1652 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1653 /* Keep the max number of queue configuration all the time. Update the 1654 * tree only if number of queues > previous number of queues. This may 1655 * leave some extra nodes in the tree if number of queues < previous 1656 * number but that wouldn't harm anything. Removing those extra nodes 1657 * may complicate the code if those nodes are part of SRL or 1658 * individually rate limited. 1659 */ 1660 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1661 new_num_nodes, owner); 1662 if (status) 1663 return status; 1664 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1665 1666 return 0; 1667 } 1668 1669 /** 1670 * ice_sched_cfg_vsi - configure the new/existing VSI 1671 * @pi: port information structure 1672 * @vsi_handle: software VSI handle 1673 * @tc: TC number 1674 * @maxqs: max number of queues 1675 * @owner: LAN or RDMA 1676 * @enable: TC enabled or disabled 1677 * 1678 * This function adds/updates VSI nodes based on the number of queues. If TC is 1679 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1680 * disabled then suspend the VSI if it is not already. 1681 */ 1682 enum ice_status 1683 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1684 u8 owner, bool enable) 1685 { 1686 struct ice_sched_node *vsi_node, *tc_node; 1687 struct ice_vsi_ctx *vsi_ctx; 1688 enum ice_status status = 0; 1689 struct ice_hw *hw = pi->hw; 1690 1691 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1692 tc_node = ice_sched_get_tc_node(pi, tc); 1693 if (!tc_node) 1694 return ICE_ERR_PARAM; 1695 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1696 if (!vsi_ctx) 1697 return ICE_ERR_PARAM; 1698 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1699 1700 /* suspend the VSI if TC is not enabled */ 1701 if (!enable) { 1702 if (vsi_node && vsi_node->in_use) { 1703 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1704 1705 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1706 true); 1707 if (!status) 1708 vsi_node->in_use = false; 1709 } 1710 return status; 1711 } 1712 1713 /* TC is enabled, if it is a new VSI then add it to the tree */ 1714 if (!vsi_node) { 1715 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1716 if (status) 1717 return status; 1718 1719 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1720 if (!vsi_node) 1721 return ICE_ERR_CFG; 1722 1723 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1724 vsi_node->in_use = true; 1725 /* invalidate the max queues whenever VSI gets added first time 1726 * into the scheduler tree (boot or after reset). We need to 1727 * recreate the child nodes all the time in these cases. 1728 */ 1729 vsi_ctx->sched.max_lanq[tc] = 0; 1730 } 1731 1732 /* update the VSI child nodes */ 1733 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1734 owner); 1735 if (status) 1736 return status; 1737 1738 /* TC is enabled, resume the VSI if it is in the suspend state */ 1739 if (!vsi_node->in_use) { 1740 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1741 1742 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1743 if (!status) 1744 vsi_node->in_use = true; 1745 } 1746 1747 return status; 1748 } 1749 1750 /** 1751 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry 1752 * @pi: port information structure 1753 * @vsi_handle: software VSI handle 1754 * 1755 * This function removes single aggregator VSI info entry from 1756 * aggregator list. 1757 */ 1758 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1759 { 1760 struct ice_sched_agg_info *agg_info; 1761 struct ice_sched_agg_info *atmp; 1762 1763 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1764 list_entry) { 1765 struct ice_sched_agg_vsi_info *agg_vsi_info; 1766 struct ice_sched_agg_vsi_info *vtmp; 1767 1768 list_for_each_entry_safe(agg_vsi_info, vtmp, 1769 &agg_info->agg_vsi_list, list_entry) 1770 if (agg_vsi_info->vsi_handle == vsi_handle) { 1771 list_del(&agg_vsi_info->list_entry); 1772 devm_kfree(ice_hw_to_dev(pi->hw), 1773 agg_vsi_info); 1774 return; 1775 } 1776 } 1777 } 1778 1779 /** 1780 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1781 * @node: pointer to the sub-tree node 1782 * 1783 * This function checks for a leaf node presence in a given sub-tree node. 1784 */ 1785 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1786 { 1787 u8 i; 1788 1789 for (i = 0; i < node->num_children; i++) 1790 if (ice_sched_is_leaf_node_present(node->children[i])) 1791 return true; 1792 /* check for a leaf node */ 1793 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1794 } 1795 1796 /** 1797 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1798 * @pi: port information structure 1799 * @vsi_handle: software VSI handle 1800 * @owner: LAN or RDMA 1801 * 1802 * This function removes the VSI and its LAN or RDMA children nodes from the 1803 * scheduler tree. 1804 */ 1805 static enum ice_status 1806 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1807 { 1808 enum ice_status status = ICE_ERR_PARAM; 1809 struct ice_vsi_ctx *vsi_ctx; 1810 u8 i; 1811 1812 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 1813 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 1814 return status; 1815 mutex_lock(&pi->sched_lock); 1816 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1817 if (!vsi_ctx) 1818 goto exit_sched_rm_vsi_cfg; 1819 1820 ice_for_each_traffic_class(i) { 1821 struct ice_sched_node *vsi_node, *tc_node; 1822 u8 j = 0; 1823 1824 tc_node = ice_sched_get_tc_node(pi, i); 1825 if (!tc_node) 1826 continue; 1827 1828 vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle); 1829 if (!vsi_node) 1830 continue; 1831 1832 if (ice_sched_is_leaf_node_present(vsi_node)) { 1833 ice_debug(pi->hw, ICE_DBG_SCHED, 1834 "VSI has leaf nodes in TC %d\n", i); 1835 status = ICE_ERR_IN_USE; 1836 goto exit_sched_rm_vsi_cfg; 1837 } 1838 while (j < vsi_node->num_children) { 1839 if (vsi_node->children[j]->owner == owner) { 1840 ice_free_sched_node(pi, vsi_node->children[j]); 1841 1842 /* reset the counter again since the num 1843 * children will be updated after node removal 1844 */ 1845 j = 0; 1846 } else { 1847 j++; 1848 } 1849 } 1850 /* remove the VSI if it has no children */ 1851 if (!vsi_node->num_children) { 1852 ice_free_sched_node(pi, vsi_node); 1853 vsi_ctx->sched.vsi_node[i] = NULL; 1854 1855 /* clean up aggregator related VSI info if any */ 1856 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 1857 } 1858 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1859 vsi_ctx->sched.max_lanq[i] = 0; 1860 } 1861 status = 0; 1862 1863 exit_sched_rm_vsi_cfg: 1864 mutex_unlock(&pi->sched_lock); 1865 return status; 1866 } 1867 1868 /** 1869 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 1870 * @pi: port information structure 1871 * @vsi_handle: software VSI handle 1872 * 1873 * This function clears the VSI and its LAN children nodes from scheduler tree 1874 * for all TCs. 1875 */ 1876 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 1877 { 1878 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 1879 } 1880 1881 /** 1882 * ice_sched_rm_unused_rl_prof - remove unused RL profile 1883 * @pi: port information structure 1884 * 1885 * This function removes unused rate limit profiles from the HW and 1886 * SW DB. The caller needs to hold scheduler lock. 1887 */ 1888 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 1889 { 1890 u16 ln; 1891 1892 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 1893 struct ice_aqc_rl_profile_info *rl_prof_elem; 1894 struct ice_aqc_rl_profile_info *rl_prof_tmp; 1895 1896 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 1897 &pi->rl_prof_list[ln], list_entry) { 1898 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 1899 ice_debug(pi->hw, ICE_DBG_SCHED, 1900 "Removed rl profile\n"); 1901 } 1902 } 1903 } 1904 1905 /** 1906 * ice_sched_update_elem - update element 1907 * @hw: pointer to the HW struct 1908 * @node: pointer to node 1909 * @info: node info to update 1910 * 1911 * Update the HW DB, and local SW DB of node. Update the scheduling 1912 * parameters of node from argument info data buffer (Info->data buf) and 1913 * returns success or error on config sched element failure. The caller 1914 * needs to hold scheduler lock. 1915 */ 1916 static enum ice_status 1917 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 1918 struct ice_aqc_txsched_elem_data *info) 1919 { 1920 struct ice_aqc_txsched_elem_data buf; 1921 enum ice_status status; 1922 u16 elem_cfgd = 0; 1923 u16 num_elems = 1; 1924 1925 buf = *info; 1926 /* Parent TEID is reserved field in this aq call */ 1927 buf.parent_teid = 0; 1928 /* Element type is reserved field in this aq call */ 1929 buf.data.elem_type = 0; 1930 /* Flags is reserved field in this aq call */ 1931 buf.data.flags = 0; 1932 1933 /* Update HW DB */ 1934 /* Configure element node */ 1935 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 1936 &elem_cfgd, NULL); 1937 if (status || elem_cfgd != num_elems) { 1938 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 1939 return ICE_ERR_CFG; 1940 } 1941 1942 /* Config success case */ 1943 /* Now update local SW DB */ 1944 /* Only copy the data portion of info buffer */ 1945 node->info.data = info->data; 1946 return status; 1947 } 1948 1949 /** 1950 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 1951 * @hw: pointer to the HW struct 1952 * @node: sched node to configure 1953 * @rl_type: rate limit type CIR, EIR, or shared 1954 * @bw_alloc: BW weight/allocation 1955 * 1956 * This function configures node element's BW allocation. 1957 */ 1958 static enum ice_status 1959 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 1960 enum ice_rl_type rl_type, u16 bw_alloc) 1961 { 1962 struct ice_aqc_txsched_elem_data buf; 1963 struct ice_aqc_txsched_elem *data; 1964 enum ice_status status; 1965 1966 buf = node->info; 1967 data = &buf.data; 1968 if (rl_type == ICE_MIN_BW) { 1969 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 1970 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 1971 } else if (rl_type == ICE_MAX_BW) { 1972 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 1973 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 1974 } else { 1975 return ICE_ERR_PARAM; 1976 } 1977 1978 /* Configure element */ 1979 status = ice_sched_update_elem(hw, node, &buf); 1980 return status; 1981 } 1982 1983 /** 1984 * ice_set_clear_cir_bw - set or clear CIR BW 1985 * @bw_t_info: bandwidth type information structure 1986 * @bw: bandwidth in Kbps - Kilo bits per sec 1987 * 1988 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 1989 */ 1990 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 1991 { 1992 if (bw == ICE_SCHED_DFLT_BW) { 1993 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 1994 bw_t_info->cir_bw.bw = 0; 1995 } else { 1996 /* Save type of BW information */ 1997 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 1998 bw_t_info->cir_bw.bw = bw; 1999 } 2000 } 2001 2002 /** 2003 * ice_set_clear_eir_bw - set or clear EIR BW 2004 * @bw_t_info: bandwidth type information structure 2005 * @bw: bandwidth in Kbps - Kilo bits per sec 2006 * 2007 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2008 */ 2009 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2010 { 2011 if (bw == ICE_SCHED_DFLT_BW) { 2012 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2013 bw_t_info->eir_bw.bw = 0; 2014 } else { 2015 /* EIR BW and Shared BW profiles are mutually exclusive and 2016 * hence only one of them may be set for any given element. 2017 * First clear earlier saved shared BW information. 2018 */ 2019 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2020 bw_t_info->shared_bw = 0; 2021 /* save EIR BW information */ 2022 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2023 bw_t_info->eir_bw.bw = bw; 2024 } 2025 } 2026 2027 /** 2028 * ice_set_clear_shared_bw - set or clear shared BW 2029 * @bw_t_info: bandwidth type information structure 2030 * @bw: bandwidth in Kbps - Kilo bits per sec 2031 * 2032 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 2033 */ 2034 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2035 { 2036 if (bw == ICE_SCHED_DFLT_BW) { 2037 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2038 bw_t_info->shared_bw = 0; 2039 } else { 2040 /* EIR BW and Shared BW profiles are mutually exclusive and 2041 * hence only one of them may be set for any given element. 2042 * First clear earlier saved EIR BW information. 2043 */ 2044 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2045 bw_t_info->eir_bw.bw = 0; 2046 /* save shared BW information */ 2047 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2048 bw_t_info->shared_bw = bw; 2049 } 2050 } 2051 2052 /** 2053 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 2054 * @bw: bandwidth in Kbps 2055 * 2056 * This function calculates the wakeup parameter of RL profile. 2057 */ 2058 static u16 ice_sched_calc_wakeup(s32 bw) 2059 { 2060 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 2061 s32 wakeup_f_int; 2062 u16 wakeup = 0; 2063 2064 /* Get the wakeup integer value */ 2065 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2066 wakeup_int = div64_long(ICE_RL_PROF_FREQUENCY, bytes_per_sec); 2067 if (wakeup_int > 63) { 2068 wakeup = (u16)((1 << 15) | wakeup_int); 2069 } else { 2070 /* Calculate fraction value up to 4 decimals 2071 * Convert Integer value to a constant multiplier 2072 */ 2073 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 2074 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 2075 ICE_RL_PROF_FREQUENCY, 2076 bytes_per_sec); 2077 2078 /* Get Fraction value */ 2079 wakeup_f = wakeup_a - wakeup_b; 2080 2081 /* Round up the Fractional value via Ceil(Fractional value) */ 2082 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 2083 wakeup_f += 1; 2084 2085 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 2086 ICE_RL_PROF_MULTIPLIER); 2087 wakeup |= (u16)(wakeup_int << 9); 2088 wakeup |= (u16)(0x1ff & wakeup_f_int); 2089 } 2090 2091 return wakeup; 2092 } 2093 2094 /** 2095 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 2096 * @bw: bandwidth in Kbps 2097 * @profile: profile parameters to return 2098 * 2099 * This function converts the BW to profile structure format. 2100 */ 2101 static enum ice_status 2102 ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile) 2103 { 2104 enum ice_status status = ICE_ERR_PARAM; 2105 s64 bytes_per_sec, ts_rate, mv_tmp; 2106 bool found = false; 2107 s32 encode = 0; 2108 s64 mv = 0; 2109 s32 i; 2110 2111 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 2112 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 2113 return status; 2114 2115 /* Bytes per second from Kbps */ 2116 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2117 2118 /* encode is 6 bits but really useful are 5 bits */ 2119 for (i = 0; i < 64; i++) { 2120 u64 pow_result = BIT_ULL(i); 2121 2122 ts_rate = div64_long((s64)ICE_RL_PROF_FREQUENCY, 2123 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 2124 if (ts_rate <= 0) 2125 continue; 2126 2127 /* Multiplier value */ 2128 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 2129 ts_rate); 2130 2131 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 2132 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 2133 2134 /* First multiplier value greater than the given 2135 * accuracy bytes 2136 */ 2137 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 2138 encode = i; 2139 found = true; 2140 break; 2141 } 2142 } 2143 if (found) { 2144 u16 wm; 2145 2146 wm = ice_sched_calc_wakeup(bw); 2147 profile->rl_multiply = cpu_to_le16(mv); 2148 profile->wake_up_calc = cpu_to_le16(wm); 2149 profile->rl_encode = cpu_to_le16(encode); 2150 status = 0; 2151 } else { 2152 status = ICE_ERR_DOES_NOT_EXIST; 2153 } 2154 2155 return status; 2156 } 2157 2158 /** 2159 * ice_sched_add_rl_profile - add RL profile 2160 * @pi: port information structure 2161 * @rl_type: type of rate limit BW - min, max, or shared 2162 * @bw: bandwidth in Kbps - Kilo bits per sec 2163 * @layer_num: specifies in which layer to create profile 2164 * 2165 * This function first checks the existing list for corresponding BW 2166 * parameter. If it exists, it returns the associated profile otherwise 2167 * it creates a new rate limit profile for requested BW, and adds it to 2168 * the HW DB and local list. It returns the new profile or null on error. 2169 * The caller needs to hold the scheduler lock. 2170 */ 2171 static struct ice_aqc_rl_profile_info * 2172 ice_sched_add_rl_profile(struct ice_port_info *pi, 2173 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 2174 { 2175 struct ice_aqc_rl_profile_info *rl_prof_elem; 2176 u16 profiles_added = 0, num_profiles = 1; 2177 struct ice_aqc_rl_profile_elem *buf; 2178 enum ice_status status; 2179 struct ice_hw *hw; 2180 u8 profile_type; 2181 2182 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 2183 return NULL; 2184 switch (rl_type) { 2185 case ICE_MIN_BW: 2186 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 2187 break; 2188 case ICE_MAX_BW: 2189 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 2190 break; 2191 case ICE_SHARED_BW: 2192 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 2193 break; 2194 default: 2195 return NULL; 2196 } 2197 2198 if (!pi) 2199 return NULL; 2200 hw = pi->hw; 2201 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 2202 list_entry) 2203 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 2204 profile_type && rl_prof_elem->bw == bw) 2205 /* Return existing profile ID info */ 2206 return rl_prof_elem; 2207 2208 /* Create new profile ID */ 2209 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 2210 GFP_KERNEL); 2211 2212 if (!rl_prof_elem) 2213 return NULL; 2214 2215 status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile); 2216 if (status) 2217 goto exit_add_rl_prof; 2218 2219 rl_prof_elem->bw = bw; 2220 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 2221 rl_prof_elem->profile.level = layer_num + 1; 2222 rl_prof_elem->profile.flags = profile_type; 2223 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 2224 2225 /* Create new entry in HW DB */ 2226 buf = &rl_prof_elem->profile; 2227 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 2228 &profiles_added, NULL); 2229 if (status || profiles_added != num_profiles) 2230 goto exit_add_rl_prof; 2231 2232 /* Good entry - add in the list */ 2233 rl_prof_elem->prof_id_ref = 0; 2234 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 2235 return rl_prof_elem; 2236 2237 exit_add_rl_prof: 2238 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 2239 return NULL; 2240 } 2241 2242 /** 2243 * ice_sched_cfg_node_bw_lmt - configure node sched params 2244 * @hw: pointer to the HW struct 2245 * @node: sched node to configure 2246 * @rl_type: rate limit type CIR, EIR, or shared 2247 * @rl_prof_id: rate limit profile ID 2248 * 2249 * This function configures node element's BW limit. 2250 */ 2251 static enum ice_status 2252 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 2253 enum ice_rl_type rl_type, u16 rl_prof_id) 2254 { 2255 struct ice_aqc_txsched_elem_data buf; 2256 struct ice_aqc_txsched_elem *data; 2257 2258 buf = node->info; 2259 data = &buf.data; 2260 switch (rl_type) { 2261 case ICE_MIN_BW: 2262 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2263 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 2264 break; 2265 case ICE_MAX_BW: 2266 /* EIR BW and Shared BW profiles are mutually exclusive and 2267 * hence only one of them may be set for any given element 2268 */ 2269 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 2270 return ICE_ERR_CFG; 2271 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2272 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 2273 break; 2274 case ICE_SHARED_BW: 2275 /* Check for removing shared BW */ 2276 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 2277 /* remove shared profile */ 2278 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 2279 data->srl_id = 0; /* clear SRL field */ 2280 2281 /* enable back EIR to default profile */ 2282 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2283 data->eir_bw.bw_profile_idx = 2284 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 2285 break; 2286 } 2287 /* EIR BW and Shared BW profiles are mutually exclusive and 2288 * hence only one of them may be set for any given element 2289 */ 2290 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 2291 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 2292 ICE_SCHED_DFLT_RL_PROF_ID)) 2293 return ICE_ERR_CFG; 2294 /* EIR BW is set to default, disable it */ 2295 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 2296 /* Okay to enable shared BW now */ 2297 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 2298 data->srl_id = cpu_to_le16(rl_prof_id); 2299 break; 2300 default: 2301 /* Unknown rate limit type */ 2302 return ICE_ERR_PARAM; 2303 } 2304 2305 /* Configure element */ 2306 return ice_sched_update_elem(hw, node, &buf); 2307 } 2308 2309 /** 2310 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 2311 * @node: sched node 2312 * @rl_type: rate limit type 2313 * 2314 * If existing profile matches, it returns the corresponding rate 2315 * limit profile ID, otherwise it returns an invalid ID as error. 2316 */ 2317 static u16 2318 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 2319 enum ice_rl_type rl_type) 2320 { 2321 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 2322 struct ice_aqc_txsched_elem *data; 2323 2324 data = &node->info.data; 2325 switch (rl_type) { 2326 case ICE_MIN_BW: 2327 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 2328 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 2329 break; 2330 case ICE_MAX_BW: 2331 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 2332 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 2333 break; 2334 case ICE_SHARED_BW: 2335 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 2336 rl_prof_id = le16_to_cpu(data->srl_id); 2337 break; 2338 default: 2339 break; 2340 } 2341 2342 return rl_prof_id; 2343 } 2344 2345 /** 2346 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 2347 * @pi: port information structure 2348 * @rl_type: type of rate limit BW - min, max, or shared 2349 * @layer_index: layer index 2350 * 2351 * This function returns requested profile creation layer. 2352 */ 2353 static u8 2354 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 2355 u8 layer_index) 2356 { 2357 struct ice_hw *hw = pi->hw; 2358 2359 if (layer_index >= hw->num_tx_sched_layers) 2360 return ICE_SCHED_INVAL_LAYER_NUM; 2361 switch (rl_type) { 2362 case ICE_MIN_BW: 2363 if (hw->layer_info[layer_index].max_cir_rl_profiles) 2364 return layer_index; 2365 break; 2366 case ICE_MAX_BW: 2367 if (hw->layer_info[layer_index].max_eir_rl_profiles) 2368 return layer_index; 2369 break; 2370 case ICE_SHARED_BW: 2371 /* if current layer doesn't support SRL profile creation 2372 * then try a layer up or down. 2373 */ 2374 if (hw->layer_info[layer_index].max_srl_profiles) 2375 return layer_index; 2376 else if (layer_index < hw->num_tx_sched_layers - 1 && 2377 hw->layer_info[layer_index + 1].max_srl_profiles) 2378 return layer_index + 1; 2379 else if (layer_index > 0 && 2380 hw->layer_info[layer_index - 1].max_srl_profiles) 2381 return layer_index - 1; 2382 break; 2383 default: 2384 break; 2385 } 2386 return ICE_SCHED_INVAL_LAYER_NUM; 2387 } 2388 2389 /** 2390 * ice_sched_get_srl_node - get shared rate limit node 2391 * @node: tree node 2392 * @srl_layer: shared rate limit layer 2393 * 2394 * This function returns SRL node to be used for shared rate limit purpose. 2395 * The caller needs to hold scheduler lock. 2396 */ 2397 static struct ice_sched_node * 2398 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 2399 { 2400 if (srl_layer > node->tx_sched_layer) 2401 return node->children[0]; 2402 else if (srl_layer < node->tx_sched_layer) 2403 /* Node can't be created without a parent. It will always 2404 * have a valid parent except root node. 2405 */ 2406 return node->parent; 2407 else 2408 return node; 2409 } 2410 2411 /** 2412 * ice_sched_rm_rl_profile - remove RL profile ID 2413 * @pi: port information structure 2414 * @layer_num: layer number where profiles are saved 2415 * @profile_type: profile type like EIR, CIR, or SRL 2416 * @profile_id: profile ID to remove 2417 * 2418 * This function removes rate limit profile from layer 'layer_num' of type 2419 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 2420 * scheduler lock. 2421 */ 2422 static enum ice_status 2423 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 2424 u16 profile_id) 2425 { 2426 struct ice_aqc_rl_profile_info *rl_prof_elem; 2427 enum ice_status status = 0; 2428 2429 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 2430 return ICE_ERR_PARAM; 2431 /* Check the existing list for RL profile */ 2432 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 2433 list_entry) 2434 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 2435 profile_type && 2436 le16_to_cpu(rl_prof_elem->profile.profile_id) == 2437 profile_id) { 2438 if (rl_prof_elem->prof_id_ref) 2439 rl_prof_elem->prof_id_ref--; 2440 2441 /* Remove old profile ID from database */ 2442 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 2443 if (status && status != ICE_ERR_IN_USE) 2444 ice_debug(pi->hw, ICE_DBG_SCHED, 2445 "Remove rl profile failed\n"); 2446 break; 2447 } 2448 if (status == ICE_ERR_IN_USE) 2449 status = 0; 2450 return status; 2451 } 2452 2453 /** 2454 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 2455 * @pi: port information structure 2456 * @node: pointer to node structure 2457 * @rl_type: rate limit type min, max, or shared 2458 * @layer_num: layer number where RL profiles are saved 2459 * 2460 * This function configures node element's BW rate limit profile ID of 2461 * type CIR, EIR, or SRL to default. This function needs to be called 2462 * with the scheduler lock held. 2463 */ 2464 static enum ice_status 2465 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 2466 struct ice_sched_node *node, 2467 enum ice_rl_type rl_type, u8 layer_num) 2468 { 2469 enum ice_status status; 2470 struct ice_hw *hw; 2471 u8 profile_type; 2472 u16 rl_prof_id; 2473 u16 old_id; 2474 2475 hw = pi->hw; 2476 switch (rl_type) { 2477 case ICE_MIN_BW: 2478 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 2479 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 2480 break; 2481 case ICE_MAX_BW: 2482 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 2483 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 2484 break; 2485 case ICE_SHARED_BW: 2486 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 2487 /* No SRL is configured for default case */ 2488 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 2489 break; 2490 default: 2491 return ICE_ERR_PARAM; 2492 } 2493 /* Save existing RL prof ID for later clean up */ 2494 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 2495 /* Configure BW scheduling parameters */ 2496 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 2497 if (status) 2498 return status; 2499 2500 /* Remove stale RL profile ID */ 2501 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 2502 old_id == ICE_SCHED_INVAL_PROF_ID) 2503 return 0; 2504 2505 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 2506 } 2507 2508 /** 2509 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 2510 * @pi: port information structure 2511 * @node: pointer to node structure 2512 * @layer_num: layer number where rate limit profiles are saved 2513 * @rl_type: rate limit type min, max, or shared 2514 * @bw: bandwidth value 2515 * 2516 * This function prepares node element's bandwidth to SRL or EIR exclusively. 2517 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 2518 * them may be set for any given element. This function needs to be called 2519 * with the scheduler lock held. 2520 */ 2521 static enum ice_status 2522 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 2523 struct ice_sched_node *node, 2524 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 2525 { 2526 if (rl_type == ICE_SHARED_BW) { 2527 /* SRL node passed in this case, it may be different node */ 2528 if (bw == ICE_SCHED_DFLT_BW) 2529 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 2530 * enables EIR to default. EIR is not set in this 2531 * case, so no additional action is required. 2532 */ 2533 return 0; 2534 2535 /* SRL being configured, set EIR to default here. 2536 * ice_sched_cfg_node_bw_lmt() disables EIR when it 2537 * configures SRL 2538 */ 2539 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 2540 layer_num); 2541 } else if (rl_type == ICE_MAX_BW && 2542 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 2543 /* Remove Shared profile. Set default shared BW call 2544 * removes shared profile for a node. 2545 */ 2546 return ice_sched_set_node_bw_dflt(pi, node, 2547 ICE_SHARED_BW, 2548 layer_num); 2549 } 2550 return 0; 2551 } 2552 2553 /** 2554 * ice_sched_set_node_bw - set node's bandwidth 2555 * @pi: port information structure 2556 * @node: tree node 2557 * @rl_type: rate limit type min, max, or shared 2558 * @bw: bandwidth in Kbps - Kilo bits per sec 2559 * @layer_num: layer number 2560 * 2561 * This function adds new profile corresponding to requested BW, configures 2562 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 2563 * ID from local database. The caller needs to hold scheduler lock. 2564 */ 2565 static enum ice_status 2566 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 2567 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 2568 { 2569 struct ice_aqc_rl_profile_info *rl_prof_info; 2570 enum ice_status status = ICE_ERR_PARAM; 2571 struct ice_hw *hw = pi->hw; 2572 u16 old_id, rl_prof_id; 2573 2574 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 2575 if (!rl_prof_info) 2576 return status; 2577 2578 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 2579 2580 /* Save existing RL prof ID for later clean up */ 2581 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 2582 /* Configure BW scheduling parameters */ 2583 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 2584 if (status) 2585 return status; 2586 2587 /* New changes has been applied */ 2588 /* Increment the profile ID reference count */ 2589 rl_prof_info->prof_id_ref++; 2590 2591 /* Check for old ID removal */ 2592 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 2593 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 2594 return 0; 2595 2596 return ice_sched_rm_rl_profile(pi, layer_num, 2597 rl_prof_info->profile.flags & 2598 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 2599 } 2600 2601 /** 2602 * ice_sched_set_node_bw_lmt - set node's BW limit 2603 * @pi: port information structure 2604 * @node: tree node 2605 * @rl_type: rate limit type min, max, or shared 2606 * @bw: bandwidth in Kbps - Kilo bits per sec 2607 * 2608 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 2609 * EIR, or SRL. The caller needs to hold scheduler lock. 2610 */ 2611 static enum ice_status 2612 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 2613 enum ice_rl_type rl_type, u32 bw) 2614 { 2615 struct ice_sched_node *cfg_node = node; 2616 enum ice_status status; 2617 2618 struct ice_hw *hw; 2619 u8 layer_num; 2620 2621 if (!pi) 2622 return ICE_ERR_PARAM; 2623 hw = pi->hw; 2624 /* Remove unused RL profile IDs from HW and SW DB */ 2625 ice_sched_rm_unused_rl_prof(pi); 2626 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 2627 node->tx_sched_layer); 2628 if (layer_num >= hw->num_tx_sched_layers) 2629 return ICE_ERR_PARAM; 2630 2631 if (rl_type == ICE_SHARED_BW) { 2632 /* SRL node may be different */ 2633 cfg_node = ice_sched_get_srl_node(node, layer_num); 2634 if (!cfg_node) 2635 return ICE_ERR_CFG; 2636 } 2637 /* EIR BW and Shared BW profiles are mutually exclusive and 2638 * hence only one of them may be set for any given element 2639 */ 2640 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 2641 bw); 2642 if (status) 2643 return status; 2644 if (bw == ICE_SCHED_DFLT_BW) 2645 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 2646 layer_num); 2647 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 2648 } 2649 2650 /** 2651 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 2652 * @pi: port information structure 2653 * @node: pointer to node structure 2654 * @rl_type: rate limit type min, max, or shared 2655 * 2656 * This function configures node element's BW rate limit profile ID of 2657 * type CIR, EIR, or SRL to default. This function needs to be called 2658 * with the scheduler lock held. 2659 */ 2660 static enum ice_status 2661 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 2662 struct ice_sched_node *node, 2663 enum ice_rl_type rl_type) 2664 { 2665 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 2666 ICE_SCHED_DFLT_BW); 2667 } 2668 2669 /** 2670 * ice_sched_validate_srl_node - Check node for SRL applicability 2671 * @node: sched node to configure 2672 * @sel_layer: selected SRL layer 2673 * 2674 * This function checks if the SRL can be applied to a selected layer node on 2675 * behalf of the requested node (first argument). This function needs to be 2676 * called with scheduler lock held. 2677 */ 2678 static enum ice_status 2679 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 2680 { 2681 /* SRL profiles are not available on all layers. Check if the 2682 * SRL profile can be applied to a node above or below the 2683 * requested node. SRL configuration is possible only if the 2684 * selected layer's node has single child. 2685 */ 2686 if (sel_layer == node->tx_sched_layer || 2687 ((sel_layer == node->tx_sched_layer + 1) && 2688 node->num_children == 1) || 2689 ((sel_layer == node->tx_sched_layer - 1) && 2690 (node->parent && node->parent->num_children == 1))) 2691 return 0; 2692 2693 return ICE_ERR_CFG; 2694 } 2695 2696 /** 2697 * ice_sched_save_q_bw - save queue node's BW information 2698 * @q_ctx: queue context structure 2699 * @rl_type: rate limit type min, max, or shared 2700 * @bw: bandwidth in Kbps - Kilo bits per sec 2701 * 2702 * Save BW information of queue type node for post replay use. 2703 */ 2704 static enum ice_status 2705 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 2706 { 2707 switch (rl_type) { 2708 case ICE_MIN_BW: 2709 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 2710 break; 2711 case ICE_MAX_BW: 2712 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 2713 break; 2714 case ICE_SHARED_BW: 2715 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 2716 break; 2717 default: 2718 return ICE_ERR_PARAM; 2719 } 2720 return 0; 2721 } 2722 2723 /** 2724 * ice_sched_set_q_bw_lmt - sets queue BW limit 2725 * @pi: port information structure 2726 * @vsi_handle: sw VSI handle 2727 * @tc: traffic class 2728 * @q_handle: software queue handle 2729 * @rl_type: min, max, or shared 2730 * @bw: bandwidth in Kbps 2731 * 2732 * This function sets BW limit of queue scheduling node. 2733 */ 2734 static enum ice_status 2735 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 2736 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 2737 { 2738 enum ice_status status = ICE_ERR_PARAM; 2739 struct ice_sched_node *node; 2740 struct ice_q_ctx *q_ctx; 2741 2742 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2743 return ICE_ERR_PARAM; 2744 mutex_lock(&pi->sched_lock); 2745 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 2746 if (!q_ctx) 2747 goto exit_q_bw_lmt; 2748 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 2749 if (!node) { 2750 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 2751 goto exit_q_bw_lmt; 2752 } 2753 2754 /* Return error if it is not a leaf node */ 2755 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 2756 goto exit_q_bw_lmt; 2757 2758 /* SRL bandwidth layer selection */ 2759 if (rl_type == ICE_SHARED_BW) { 2760 u8 sel_layer; /* selected layer */ 2761 2762 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 2763 node->tx_sched_layer); 2764 if (sel_layer >= pi->hw->num_tx_sched_layers) { 2765 status = ICE_ERR_PARAM; 2766 goto exit_q_bw_lmt; 2767 } 2768 status = ice_sched_validate_srl_node(node, sel_layer); 2769 if (status) 2770 goto exit_q_bw_lmt; 2771 } 2772 2773 if (bw == ICE_SCHED_DFLT_BW) 2774 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 2775 else 2776 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 2777 2778 if (!status) 2779 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 2780 2781 exit_q_bw_lmt: 2782 mutex_unlock(&pi->sched_lock); 2783 return status; 2784 } 2785 2786 /** 2787 * ice_cfg_q_bw_lmt - configure queue BW limit 2788 * @pi: port information structure 2789 * @vsi_handle: sw VSI handle 2790 * @tc: traffic class 2791 * @q_handle: software queue handle 2792 * @rl_type: min, max, or shared 2793 * @bw: bandwidth in Kbps 2794 * 2795 * This function configures BW limit of queue scheduling node. 2796 */ 2797 enum ice_status 2798 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 2799 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 2800 { 2801 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 2802 bw); 2803 } 2804 2805 /** 2806 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 2807 * @pi: port information structure 2808 * @vsi_handle: sw VSI handle 2809 * @tc: traffic class 2810 * @q_handle: software queue handle 2811 * @rl_type: min, max, or shared 2812 * 2813 * This function configures BW default limit of queue scheduling node. 2814 */ 2815 enum ice_status 2816 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 2817 u16 q_handle, enum ice_rl_type rl_type) 2818 { 2819 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 2820 ICE_SCHED_DFLT_BW); 2821 } 2822 2823 /** 2824 * ice_cfg_rl_burst_size - Set burst size value 2825 * @hw: pointer to the HW struct 2826 * @bytes: burst size in bytes 2827 * 2828 * This function configures/set the burst size to requested new value. The new 2829 * burst size value is used for future rate limit calls. It doesn't change the 2830 * existing or previously created RL profiles. 2831 */ 2832 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 2833 { 2834 u16 burst_size_to_prog; 2835 2836 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 2837 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 2838 return ICE_ERR_PARAM; 2839 if (ice_round_to_num(bytes, 64) <= 2840 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 2841 /* 64 byte granularity case */ 2842 /* Disable MSB granularity bit */ 2843 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 2844 /* round number to nearest 64 byte granularity */ 2845 bytes = ice_round_to_num(bytes, 64); 2846 /* The value is in 64 byte chunks */ 2847 burst_size_to_prog |= (u16)(bytes / 64); 2848 } else { 2849 /* k bytes granularity case */ 2850 /* Enable MSB granularity bit */ 2851 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 2852 /* round number to nearest 1024 granularity */ 2853 bytes = ice_round_to_num(bytes, 1024); 2854 /* check rounding doesn't go beyond allowed */ 2855 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 2856 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 2857 /* The value is in k bytes */ 2858 burst_size_to_prog |= (u16)(bytes / 1024); 2859 } 2860 hw->max_burst_size = burst_size_to_prog; 2861 return 0; 2862 } 2863 2864 /** 2865 * ice_sched_replay_node_prio - re-configure node priority 2866 * @hw: pointer to the HW struct 2867 * @node: sched node to configure 2868 * @priority: priority value 2869 * 2870 * This function configures node element's priority value. It 2871 * needs to be called with scheduler lock held. 2872 */ 2873 static enum ice_status 2874 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 2875 u8 priority) 2876 { 2877 struct ice_aqc_txsched_elem_data buf; 2878 struct ice_aqc_txsched_elem *data; 2879 enum ice_status status; 2880 2881 buf = node->info; 2882 data = &buf.data; 2883 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 2884 data->generic = priority; 2885 2886 /* Configure element */ 2887 status = ice_sched_update_elem(hw, node, &buf); 2888 return status; 2889 } 2890 2891 /** 2892 * ice_sched_replay_node_bw - replay node(s) BW 2893 * @hw: pointer to the HW struct 2894 * @node: sched node to configure 2895 * @bw_t_info: BW type information 2896 * 2897 * This function restores node's BW from bw_t_info. The caller needs 2898 * to hold the scheduler lock. 2899 */ 2900 static enum ice_status 2901 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 2902 struct ice_bw_type_info *bw_t_info) 2903 { 2904 struct ice_port_info *pi = hw->port_info; 2905 enum ice_status status = ICE_ERR_PARAM; 2906 u16 bw_alloc; 2907 2908 if (!node) 2909 return status; 2910 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 2911 return 0; 2912 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 2913 status = ice_sched_replay_node_prio(hw, node, 2914 bw_t_info->generic); 2915 if (status) 2916 return status; 2917 } 2918 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 2919 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 2920 bw_t_info->cir_bw.bw); 2921 if (status) 2922 return status; 2923 } 2924 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 2925 bw_alloc = bw_t_info->cir_bw.bw_alloc; 2926 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 2927 bw_alloc); 2928 if (status) 2929 return status; 2930 } 2931 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 2932 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 2933 bw_t_info->eir_bw.bw); 2934 if (status) 2935 return status; 2936 } 2937 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 2938 bw_alloc = bw_t_info->eir_bw.bw_alloc; 2939 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 2940 bw_alloc); 2941 if (status) 2942 return status; 2943 } 2944 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 2945 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 2946 bw_t_info->shared_bw); 2947 return status; 2948 } 2949 2950 /** 2951 * ice_sched_replay_q_bw - replay queue type node BW 2952 * @pi: port information structure 2953 * @q_ctx: queue context structure 2954 * 2955 * This function replays queue type node bandwidth. This function needs to be 2956 * called with scheduler lock held. 2957 */ 2958 enum ice_status 2959 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 2960 { 2961 struct ice_sched_node *q_node; 2962 2963 /* Following also checks the presence of node in tree */ 2964 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 2965 if (!q_node) 2966 return ICE_ERR_PARAM; 2967 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 2968 } 2969