1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_sched.h"
5 
6 /**
7  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
8  * @pi: port information structure
9  * @info: Scheduler element information from firmware
10  *
11  * This function inserts the root node of the scheduling tree topology
12  * to the SW DB.
13  */
14 static enum ice_status
15 ice_sched_add_root_node(struct ice_port_info *pi,
16 			struct ice_aqc_txsched_elem_data *info)
17 {
18 	struct ice_sched_node *root;
19 	struct ice_hw *hw;
20 
21 	if (!pi)
22 		return ICE_ERR_PARAM;
23 
24 	hw = pi->hw;
25 
26 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
27 	if (!root)
28 		return ICE_ERR_NO_MEMORY;
29 
30 	/* coverity[suspicious_sizeof] */
31 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 				      sizeof(*root), GFP_KERNEL);
33 	if (!root->children) {
34 		devm_kfree(ice_hw_to_dev(hw), root);
35 		return ICE_ERR_NO_MEMORY;
36 	}
37 
38 	memcpy(&root->info, info, sizeof(*info));
39 	pi->root = root;
40 	return 0;
41 }
42 
43 /**
44  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46  * @teid: node TEID to search
47  *
48  * This function searches for a node matching the TEID in the scheduling tree
49  * from the SW DB. The search is recursive and is restricted by the number of
50  * layers it has searched through; stopping at the max supported layer.
51  *
52  * This function needs to be called when holding the port_info->sched_lock
53  */
54 struct ice_sched_node *
55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 	u16 i;
58 
59 	/* The TEID is same as that of the start_node */
60 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 		return start_node;
62 
63 	/* The node has no children or is at the max layer */
64 	if (!start_node->num_children ||
65 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 		return NULL;
68 
69 	/* Check if TEID matches to any of the children nodes */
70 	for (i = 0; i < start_node->num_children; i++)
71 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 			return start_node->children[i];
73 
74 	/* Search within each child's sub-tree */
75 	for (i = 0; i < start_node->num_children; i++) {
76 		struct ice_sched_node *tmp;
77 
78 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 						  teid);
80 		if (tmp)
81 			return tmp;
82 	}
83 
84 	return NULL;
85 }
86 
87 /**
88  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89  * @hw: pointer to the HW struct
90  * @cmd_opc: cmd opcode
91  * @elems_req: number of elements to request
92  * @buf: pointer to buffer
93  * @buf_size: buffer size in bytes
94  * @elems_resp: returns total number of elements response
95  * @cd: pointer to command details structure or NULL
96  *
97  * This function sends a scheduling elements cmd (cmd_opc)
98  */
99 static enum ice_status
100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 			    u16 elems_req, void *buf, u16 buf_size,
102 			    u16 *elems_resp, struct ice_sq_cd *cd)
103 {
104 	struct ice_aqc_sched_elem_cmd *cmd;
105 	struct ice_aq_desc desc;
106 	enum ice_status status;
107 
108 	cmd = &desc.params.sched_elem_cmd;
109 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 	cmd->num_elem_req = cpu_to_le16(elems_req);
111 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 	if (!status && elems_resp)
114 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
115 
116 	return status;
117 }
118 
119 /**
120  * ice_aq_query_sched_elems - query scheduler elements
121  * @hw: pointer to the HW struct
122  * @elems_req: number of elements to query
123  * @buf: pointer to buffer
124  * @buf_size: buffer size in bytes
125  * @elems_ret: returns total number of elements returned
126  * @cd: pointer to command details structure or NULL
127  *
128  * Query scheduling elements (0x0404)
129  */
130 enum ice_status
131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 			 u16 *elems_ret, struct ice_sq_cd *cd)
134 {
135 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 					   elems_req, (void *)buf, buf_size,
137 					   elems_ret, cd);
138 }
139 
140 /**
141  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142  * @pi: port information structure
143  * @layer: Scheduler layer of the node
144  * @info: Scheduler element information from firmware
145  *
146  * This function inserts a scheduler node to the SW DB.
147  */
148 enum ice_status
149 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
150 		   struct ice_aqc_txsched_elem_data *info)
151 {
152 	struct ice_aqc_txsched_elem_data elem;
153 	struct ice_sched_node *parent;
154 	struct ice_sched_node *node;
155 	enum ice_status status;
156 	struct ice_hw *hw;
157 
158 	if (!pi)
159 		return ICE_ERR_PARAM;
160 
161 	hw = pi->hw;
162 
163 	/* A valid parent node should be there */
164 	parent = ice_sched_find_node_by_teid(pi->root,
165 					     le32_to_cpu(info->parent_teid));
166 	if (!parent) {
167 		ice_debug(hw, ICE_DBG_SCHED,
168 			  "Parent Node not found for parent_teid=0x%x\n",
169 			  le32_to_cpu(info->parent_teid));
170 		return ICE_ERR_PARAM;
171 	}
172 
173 	/* query the current node information from FW before adding it
174 	 * to the SW DB
175 	 */
176 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
177 	if (status)
178 		return status;
179 
180 	node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
181 	if (!node)
182 		return ICE_ERR_NO_MEMORY;
183 	if (hw->max_children[layer]) {
184 		/* coverity[suspicious_sizeof] */
185 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
186 					      hw->max_children[layer],
187 					      sizeof(*node), GFP_KERNEL);
188 		if (!node->children) {
189 			devm_kfree(ice_hw_to_dev(hw), node);
190 			return ICE_ERR_NO_MEMORY;
191 		}
192 	}
193 
194 	node->in_use = true;
195 	node->parent = parent;
196 	node->tx_sched_layer = layer;
197 	parent->children[parent->num_children++] = node;
198 	node->info = elem;
199 	return 0;
200 }
201 
202 /**
203  * ice_aq_delete_sched_elems - delete scheduler elements
204  * @hw: pointer to the HW struct
205  * @grps_req: number of groups to delete
206  * @buf: pointer to buffer
207  * @buf_size: buffer size in bytes
208  * @grps_del: returns total number of elements deleted
209  * @cd: pointer to command details structure or NULL
210  *
211  * Delete scheduling elements (0x040F)
212  */
213 static enum ice_status
214 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
215 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
216 			  u16 *grps_del, struct ice_sq_cd *cd)
217 {
218 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
219 					   grps_req, (void *)buf, buf_size,
220 					   grps_del, cd);
221 }
222 
223 /**
224  * ice_sched_remove_elems - remove nodes from HW
225  * @hw: pointer to the HW struct
226  * @parent: pointer to the parent node
227  * @num_nodes: number of nodes
228  * @node_teids: array of node teids to be deleted
229  *
230  * This function remove nodes from HW
231  */
232 static enum ice_status
233 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
234 		       u16 num_nodes, u32 *node_teids)
235 {
236 	struct ice_aqc_delete_elem *buf;
237 	u16 i, num_groups_removed = 0;
238 	enum ice_status status;
239 	u16 buf_size;
240 
241 	buf_size = struct_size(buf, teid, num_nodes);
242 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
243 	if (!buf)
244 		return ICE_ERR_NO_MEMORY;
245 
246 	buf->hdr.parent_teid = parent->info.node_teid;
247 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
248 	for (i = 0; i < num_nodes; i++)
249 		buf->teid[i] = cpu_to_le32(node_teids[i]);
250 
251 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
252 					   &num_groups_removed, NULL);
253 	if (status || num_groups_removed != 1)
254 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
255 			  hw->adminq.sq_last_status);
256 
257 	devm_kfree(ice_hw_to_dev(hw), buf);
258 	return status;
259 }
260 
261 /**
262  * ice_sched_get_first_node - get the first node of the given layer
263  * @pi: port information structure
264  * @parent: pointer the base node of the subtree
265  * @layer: layer number
266  *
267  * This function retrieves the first node of the given layer from the subtree
268  */
269 static struct ice_sched_node *
270 ice_sched_get_first_node(struct ice_port_info *pi,
271 			 struct ice_sched_node *parent, u8 layer)
272 {
273 	return pi->sib_head[parent->tc_num][layer];
274 }
275 
276 /**
277  * ice_sched_get_tc_node - get pointer to TC node
278  * @pi: port information structure
279  * @tc: TC number
280  *
281  * This function returns the TC node pointer
282  */
283 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
284 {
285 	u8 i;
286 
287 	if (!pi || !pi->root)
288 		return NULL;
289 	for (i = 0; i < pi->root->num_children; i++)
290 		if (pi->root->children[i]->tc_num == tc)
291 			return pi->root->children[i];
292 	return NULL;
293 }
294 
295 /**
296  * ice_free_sched_node - Free a Tx scheduler node from SW DB
297  * @pi: port information structure
298  * @node: pointer to the ice_sched_node struct
299  *
300  * This function frees up a node from SW DB as well as from HW
301  *
302  * This function needs to be called with the port_info->sched_lock held
303  */
304 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
305 {
306 	struct ice_sched_node *parent;
307 	struct ice_hw *hw = pi->hw;
308 	u8 i, j;
309 
310 	/* Free the children before freeing up the parent node
311 	 * The parent array is updated below and that shifts the nodes
312 	 * in the array. So always pick the first child if num children > 0
313 	 */
314 	while (node->num_children)
315 		ice_free_sched_node(pi, node->children[0]);
316 
317 	/* Leaf, TC and root nodes can't be deleted by SW */
318 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
319 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
320 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
321 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
322 		u32 teid = le32_to_cpu(node->info.node_teid);
323 
324 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
325 	}
326 	parent = node->parent;
327 	/* root has no parent */
328 	if (parent) {
329 		struct ice_sched_node *p;
330 
331 		/* update the parent */
332 		for (i = 0; i < parent->num_children; i++)
333 			if (parent->children[i] == node) {
334 				for (j = i + 1; j < parent->num_children; j++)
335 					parent->children[j - 1] =
336 						parent->children[j];
337 				parent->num_children--;
338 				break;
339 			}
340 
341 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
342 		while (p) {
343 			if (p->sibling == node) {
344 				p->sibling = node->sibling;
345 				break;
346 			}
347 			p = p->sibling;
348 		}
349 
350 		/* update the sibling head if head is getting removed */
351 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
352 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
353 				node->sibling;
354 	}
355 
356 	/* leaf nodes have no children */
357 	if (node->children)
358 		devm_kfree(ice_hw_to_dev(hw), node->children);
359 	devm_kfree(ice_hw_to_dev(hw), node);
360 }
361 
362 /**
363  * ice_aq_get_dflt_topo - gets default scheduler topology
364  * @hw: pointer to the HW struct
365  * @lport: logical port number
366  * @buf: pointer to buffer
367  * @buf_size: buffer size in bytes
368  * @num_branches: returns total number of queue to port branches
369  * @cd: pointer to command details structure or NULL
370  *
371  * Get default scheduler topology (0x400)
372  */
373 static enum ice_status
374 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
375 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
376 		     u8 *num_branches, struct ice_sq_cd *cd)
377 {
378 	struct ice_aqc_get_topo *cmd;
379 	struct ice_aq_desc desc;
380 	enum ice_status status;
381 
382 	cmd = &desc.params.get_topo;
383 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
384 	cmd->port_num = lport;
385 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
386 	if (!status && num_branches)
387 		*num_branches = cmd->num_branches;
388 
389 	return status;
390 }
391 
392 /**
393  * ice_aq_add_sched_elems - adds scheduling element
394  * @hw: pointer to the HW struct
395  * @grps_req: the number of groups that are requested to be added
396  * @buf: pointer to buffer
397  * @buf_size: buffer size in bytes
398  * @grps_added: returns total number of groups added
399  * @cd: pointer to command details structure or NULL
400  *
401  * Add scheduling elements (0x0401)
402  */
403 static enum ice_status
404 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
405 		       struct ice_aqc_add_elem *buf, u16 buf_size,
406 		       u16 *grps_added, struct ice_sq_cd *cd)
407 {
408 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
409 					   grps_req, (void *)buf, buf_size,
410 					   grps_added, cd);
411 }
412 
413 /**
414  * ice_aq_cfg_sched_elems - configures scheduler elements
415  * @hw: pointer to the HW struct
416  * @elems_req: number of elements to configure
417  * @buf: pointer to buffer
418  * @buf_size: buffer size in bytes
419  * @elems_cfgd: returns total number of elements configured
420  * @cd: pointer to command details structure or NULL
421  *
422  * Configure scheduling elements (0x0403)
423  */
424 static enum ice_status
425 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
426 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
427 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
428 {
429 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
430 					   elems_req, (void *)buf, buf_size,
431 					   elems_cfgd, cd);
432 }
433 
434 /**
435  * ice_aq_suspend_sched_elems - suspend scheduler elements
436  * @hw: pointer to the HW struct
437  * @elems_req: number of elements to suspend
438  * @buf: pointer to buffer
439  * @buf_size: buffer size in bytes
440  * @elems_ret: returns total number of elements suspended
441  * @cd: pointer to command details structure or NULL
442  *
443  * Suspend scheduling elements (0x0409)
444  */
445 static enum ice_status
446 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
447 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
448 {
449 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
450 					   elems_req, (void *)buf, buf_size,
451 					   elems_ret, cd);
452 }
453 
454 /**
455  * ice_aq_resume_sched_elems - resume scheduler elements
456  * @hw: pointer to the HW struct
457  * @elems_req: number of elements to resume
458  * @buf: pointer to buffer
459  * @buf_size: buffer size in bytes
460  * @elems_ret: returns total number of elements resumed
461  * @cd: pointer to command details structure or NULL
462  *
463  * resume scheduling elements (0x040A)
464  */
465 static enum ice_status
466 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
467 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
468 {
469 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
470 					   elems_req, (void *)buf, buf_size,
471 					   elems_ret, cd);
472 }
473 
474 /**
475  * ice_aq_query_sched_res - query scheduler resource
476  * @hw: pointer to the HW struct
477  * @buf_size: buffer size in bytes
478  * @buf: pointer to buffer
479  * @cd: pointer to command details structure or NULL
480  *
481  * Query scheduler resource allocation (0x0412)
482  */
483 static enum ice_status
484 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
485 		       struct ice_aqc_query_txsched_res_resp *buf,
486 		       struct ice_sq_cd *cd)
487 {
488 	struct ice_aq_desc desc;
489 
490 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
491 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
492 }
493 
494 /**
495  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
496  * @hw: pointer to the HW struct
497  * @num_nodes: number of nodes
498  * @node_teids: array of node teids to be suspended or resumed
499  * @suspend: true means suspend / false means resume
500  *
501  * This function suspends or resumes HW nodes
502  */
503 static enum ice_status
504 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
505 			       bool suspend)
506 {
507 	u16 i, buf_size, num_elem_ret = 0;
508 	enum ice_status status;
509 	__le32 *buf;
510 
511 	buf_size = sizeof(*buf) * num_nodes;
512 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
513 	if (!buf)
514 		return ICE_ERR_NO_MEMORY;
515 
516 	for (i = 0; i < num_nodes; i++)
517 		buf[i] = cpu_to_le32(node_teids[i]);
518 
519 	if (suspend)
520 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
521 						    buf_size, &num_elem_ret,
522 						    NULL);
523 	else
524 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
525 						   buf_size, &num_elem_ret,
526 						   NULL);
527 	if (status || num_elem_ret != num_nodes)
528 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
529 
530 	devm_kfree(ice_hw_to_dev(hw), buf);
531 	return status;
532 }
533 
534 /**
535  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
536  * @hw: pointer to the HW struct
537  * @vsi_handle: VSI handle
538  * @tc: TC number
539  * @new_numqs: number of queues
540  */
541 static enum ice_status
542 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
543 {
544 	struct ice_vsi_ctx *vsi_ctx;
545 	struct ice_q_ctx *q_ctx;
546 
547 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
548 	if (!vsi_ctx)
549 		return ICE_ERR_PARAM;
550 	/* allocate LAN queue contexts */
551 	if (!vsi_ctx->lan_q_ctx[tc]) {
552 		vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
553 						      new_numqs,
554 						      sizeof(*q_ctx),
555 						      GFP_KERNEL);
556 		if (!vsi_ctx->lan_q_ctx[tc])
557 			return ICE_ERR_NO_MEMORY;
558 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
559 		return 0;
560 	}
561 	/* num queues are increased, update the queue contexts */
562 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
563 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
564 
565 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
566 				     sizeof(*q_ctx), GFP_KERNEL);
567 		if (!q_ctx)
568 			return ICE_ERR_NO_MEMORY;
569 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
570 		       prev_num * sizeof(*q_ctx));
571 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
572 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
573 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
574 	}
575 	return 0;
576 }
577 
578 /**
579  * ice_aq_rl_profile - performs a rate limiting task
580  * @hw: pointer to the HW struct
581  * @opcode: opcode for add, query, or remove profile(s)
582  * @num_profiles: the number of profiles
583  * @buf: pointer to buffer
584  * @buf_size: buffer size in bytes
585  * @num_processed: number of processed add or remove profile(s) to return
586  * @cd: pointer to command details structure
587  *
588  * RL profile function to add, query, or remove profile(s)
589  */
590 static enum ice_status
591 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
592 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
593 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
594 {
595 	struct ice_aqc_rl_profile *cmd;
596 	struct ice_aq_desc desc;
597 	enum ice_status status;
598 
599 	cmd = &desc.params.rl_profile;
600 
601 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
602 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
603 	cmd->num_profiles = cpu_to_le16(num_profiles);
604 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
605 	if (!status && num_processed)
606 		*num_processed = le16_to_cpu(cmd->num_processed);
607 	return status;
608 }
609 
610 /**
611  * ice_aq_add_rl_profile - adds rate limiting profile(s)
612  * @hw: pointer to the HW struct
613  * @num_profiles: the number of profile(s) to be add
614  * @buf: pointer to buffer
615  * @buf_size: buffer size in bytes
616  * @num_profiles_added: total number of profiles added to return
617  * @cd: pointer to command details structure
618  *
619  * Add RL profile (0x0410)
620  */
621 static enum ice_status
622 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
623 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
624 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
625 {
626 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
627 				 buf, buf_size, num_profiles_added, cd);
628 }
629 
630 /**
631  * ice_aq_remove_rl_profile - removes RL profile(s)
632  * @hw: pointer to the HW struct
633  * @num_profiles: the number of profile(s) to remove
634  * @buf: pointer to buffer
635  * @buf_size: buffer size in bytes
636  * @num_profiles_removed: total number of profiles removed to return
637  * @cd: pointer to command details structure or NULL
638  *
639  * Remove RL profile (0x0415)
640  */
641 static enum ice_status
642 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
643 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
644 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
645 {
646 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
647 				 num_profiles, buf, buf_size,
648 				 num_profiles_removed, cd);
649 }
650 
651 /**
652  * ice_sched_del_rl_profile - remove RL profile
653  * @hw: pointer to the HW struct
654  * @rl_info: rate limit profile information
655  *
656  * If the profile ID is not referenced anymore, it removes profile ID with
657  * its associated parameters from HW DB,and locally. The caller needs to
658  * hold scheduler lock.
659  */
660 static enum ice_status
661 ice_sched_del_rl_profile(struct ice_hw *hw,
662 			 struct ice_aqc_rl_profile_info *rl_info)
663 {
664 	struct ice_aqc_rl_profile_elem *buf;
665 	u16 num_profiles_removed;
666 	enum ice_status status;
667 	u16 num_profiles = 1;
668 
669 	if (rl_info->prof_id_ref != 0)
670 		return ICE_ERR_IN_USE;
671 
672 	/* Safe to remove profile ID */
673 	buf = &rl_info->profile;
674 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
675 					  &num_profiles_removed, NULL);
676 	if (status || num_profiles_removed != num_profiles)
677 		return ICE_ERR_CFG;
678 
679 	/* Delete stale entry now */
680 	list_del(&rl_info->list_entry);
681 	devm_kfree(ice_hw_to_dev(hw), rl_info);
682 	return status;
683 }
684 
685 /**
686  * ice_sched_clear_rl_prof - clears RL prof entries
687  * @pi: port information structure
688  *
689  * This function removes all RL profile from HW as well as from SW DB.
690  */
691 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
692 {
693 	u16 ln;
694 
695 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
696 		struct ice_aqc_rl_profile_info *rl_prof_elem;
697 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
698 
699 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
700 					 &pi->rl_prof_list[ln], list_entry) {
701 			struct ice_hw *hw = pi->hw;
702 			enum ice_status status;
703 
704 			rl_prof_elem->prof_id_ref = 0;
705 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
706 			if (status) {
707 				ice_debug(hw, ICE_DBG_SCHED,
708 					  "Remove rl profile failed\n");
709 				/* On error, free mem required */
710 				list_del(&rl_prof_elem->list_entry);
711 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
712 			}
713 		}
714 	}
715 }
716 
717 /**
718  * ice_sched_clear_agg - clears the aggregator related information
719  * @hw: pointer to the hardware structure
720  *
721  * This function removes aggregator list and free up aggregator related memory
722  * previously allocated.
723  */
724 void ice_sched_clear_agg(struct ice_hw *hw)
725 {
726 	struct ice_sched_agg_info *agg_info;
727 	struct ice_sched_agg_info *atmp;
728 
729 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
730 		struct ice_sched_agg_vsi_info *agg_vsi_info;
731 		struct ice_sched_agg_vsi_info *vtmp;
732 
733 		list_for_each_entry_safe(agg_vsi_info, vtmp,
734 					 &agg_info->agg_vsi_list, list_entry) {
735 			list_del(&agg_vsi_info->list_entry);
736 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
737 		}
738 		list_del(&agg_info->list_entry);
739 		devm_kfree(ice_hw_to_dev(hw), agg_info);
740 	}
741 }
742 
743 /**
744  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
745  * @pi: port information structure
746  *
747  * This function removes all the nodes from HW as well as from SW DB.
748  */
749 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
750 {
751 	if (!pi)
752 		return;
753 	/* remove RL profiles related lists */
754 	ice_sched_clear_rl_prof(pi);
755 	if (pi->root) {
756 		ice_free_sched_node(pi, pi->root);
757 		pi->root = NULL;
758 	}
759 }
760 
761 /**
762  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
763  * @pi: port information structure
764  *
765  * Cleanup scheduling elements from SW DB
766  */
767 void ice_sched_clear_port(struct ice_port_info *pi)
768 {
769 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
770 		return;
771 
772 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
773 	mutex_lock(&pi->sched_lock);
774 	ice_sched_clear_tx_topo(pi);
775 	mutex_unlock(&pi->sched_lock);
776 	mutex_destroy(&pi->sched_lock);
777 }
778 
779 /**
780  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
781  * @hw: pointer to the HW struct
782  *
783  * Cleanup scheduling elements from SW DB for all the ports
784  */
785 void ice_sched_cleanup_all(struct ice_hw *hw)
786 {
787 	if (!hw)
788 		return;
789 
790 	if (hw->layer_info) {
791 		devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
792 		hw->layer_info = NULL;
793 	}
794 
795 	ice_sched_clear_port(hw->port_info);
796 
797 	hw->num_tx_sched_layers = 0;
798 	hw->num_tx_sched_phys_layers = 0;
799 	hw->flattened_layers = 0;
800 	hw->max_cgds = 0;
801 }
802 
803 /**
804  * ice_sched_add_elems - add nodes to HW and SW DB
805  * @pi: port information structure
806  * @tc_node: pointer to the branch node
807  * @parent: pointer to the parent node
808  * @layer: layer number to add nodes
809  * @num_nodes: number of nodes
810  * @num_nodes_added: pointer to num nodes added
811  * @first_node_teid: if new nodes are added then return the TEID of first node
812  *
813  * This function add nodes to HW as well as to SW DB for a given layer
814  */
815 static enum ice_status
816 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
817 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
818 		    u16 *num_nodes_added, u32 *first_node_teid)
819 {
820 	struct ice_sched_node *prev, *new_node;
821 	struct ice_aqc_add_elem *buf;
822 	u16 i, num_groups_added = 0;
823 	enum ice_status status = 0;
824 	struct ice_hw *hw = pi->hw;
825 	size_t buf_size;
826 	u32 teid;
827 
828 	buf_size = struct_size(buf, generic, num_nodes);
829 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
830 	if (!buf)
831 		return ICE_ERR_NO_MEMORY;
832 
833 	buf->hdr.parent_teid = parent->info.node_teid;
834 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
835 	for (i = 0; i < num_nodes; i++) {
836 		buf->generic[i].parent_teid = parent->info.node_teid;
837 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
838 		buf->generic[i].data.valid_sections =
839 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
840 			ICE_AQC_ELEM_VALID_EIR;
841 		buf->generic[i].data.generic = 0;
842 		buf->generic[i].data.cir_bw.bw_profile_idx =
843 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
844 		buf->generic[i].data.cir_bw.bw_alloc =
845 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
846 		buf->generic[i].data.eir_bw.bw_profile_idx =
847 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
848 		buf->generic[i].data.eir_bw.bw_alloc =
849 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
850 	}
851 
852 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
853 					&num_groups_added, NULL);
854 	if (status || num_groups_added != 1) {
855 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
856 			  hw->adminq.sq_last_status);
857 		devm_kfree(ice_hw_to_dev(hw), buf);
858 		return ICE_ERR_CFG;
859 	}
860 
861 	*num_nodes_added = num_nodes;
862 	/* add nodes to the SW DB */
863 	for (i = 0; i < num_nodes; i++) {
864 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
865 		if (status) {
866 			ice_debug(hw, ICE_DBG_SCHED,
867 				  "add nodes in SW DB failed status =%d\n",
868 				  status);
869 			break;
870 		}
871 
872 		teid = le32_to_cpu(buf->generic[i].node_teid);
873 		new_node = ice_sched_find_node_by_teid(parent, teid);
874 		if (!new_node) {
875 			ice_debug(hw, ICE_DBG_SCHED,
876 				  "Node is missing for teid =%d\n", teid);
877 			break;
878 		}
879 
880 		new_node->sibling = NULL;
881 		new_node->tc_num = tc_node->tc_num;
882 
883 		/* add it to previous node sibling pointer */
884 		/* Note: siblings are not linked across branches */
885 		prev = ice_sched_get_first_node(pi, tc_node, layer);
886 		if (prev && prev != new_node) {
887 			while (prev->sibling)
888 				prev = prev->sibling;
889 			prev->sibling = new_node;
890 		}
891 
892 		/* initialize the sibling head */
893 		if (!pi->sib_head[tc_node->tc_num][layer])
894 			pi->sib_head[tc_node->tc_num][layer] = new_node;
895 
896 		if (i == 0)
897 			*first_node_teid = teid;
898 	}
899 
900 	devm_kfree(ice_hw_to_dev(hw), buf);
901 	return status;
902 }
903 
904 /**
905  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
906  * @pi: port information structure
907  * @tc_node: pointer to TC node
908  * @parent: pointer to parent node
909  * @layer: layer number to add nodes
910  * @num_nodes: number of nodes to be added
911  * @first_node_teid: pointer to the first node TEID
912  * @num_nodes_added: pointer to number of nodes added
913  *
914  * This function add nodes to a given layer.
915  */
916 static enum ice_status
917 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
918 			     struct ice_sched_node *tc_node,
919 			     struct ice_sched_node *parent, u8 layer,
920 			     u16 num_nodes, u32 *first_node_teid,
921 			     u16 *num_nodes_added)
922 {
923 	u32 *first_teid_ptr = first_node_teid;
924 	u16 new_num_nodes, max_child_nodes;
925 	enum ice_status status = 0;
926 	struct ice_hw *hw = pi->hw;
927 	u16 num_added = 0;
928 	u32 temp;
929 
930 	*num_nodes_added = 0;
931 
932 	if (!num_nodes)
933 		return status;
934 
935 	if (!parent || layer < hw->sw_entry_point_layer)
936 		return ICE_ERR_PARAM;
937 
938 	/* max children per node per layer */
939 	max_child_nodes = hw->max_children[parent->tx_sched_layer];
940 
941 	/* current number of children + required nodes exceed max children ? */
942 	if ((parent->num_children + num_nodes) > max_child_nodes) {
943 		/* Fail if the parent is a TC node */
944 		if (parent == tc_node)
945 			return ICE_ERR_CFG;
946 
947 		/* utilize all the spaces if the parent is not full */
948 		if (parent->num_children < max_child_nodes) {
949 			new_num_nodes = max_child_nodes - parent->num_children;
950 			/* this recursion is intentional, and wouldn't
951 			 * go more than 2 calls
952 			 */
953 			status = ice_sched_add_nodes_to_layer(pi, tc_node,
954 							      parent, layer,
955 							      new_num_nodes,
956 							      first_node_teid,
957 							      &num_added);
958 			if (status)
959 				return status;
960 
961 			*num_nodes_added += num_added;
962 		}
963 		/* Don't modify the first node TEID memory if the first node was
964 		 * added already in the above call. Instead send some temp
965 		 * memory for all other recursive calls.
966 		 */
967 		if (num_added)
968 			first_teid_ptr = &temp;
969 
970 		new_num_nodes = num_nodes - num_added;
971 
972 		/* This parent is full, try the next sibling */
973 		parent = parent->sibling;
974 
975 		/* this recursion is intentional, for 1024 queues
976 		 * per VSI, it goes max of 16 iterations.
977 		 * 1024 / 8 = 128 layer 8 nodes
978 		 * 128 /8 = 16 (add 8 nodes per iteration)
979 		 */
980 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
981 						      layer, new_num_nodes,
982 						      first_teid_ptr,
983 						      &num_added);
984 		*num_nodes_added += num_added;
985 		return status;
986 	}
987 
988 	status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
989 				     num_nodes_added, first_node_teid);
990 	return status;
991 }
992 
993 /**
994  * ice_sched_get_qgrp_layer - get the current queue group layer number
995  * @hw: pointer to the HW struct
996  *
997  * This function returns the current queue group layer number
998  */
999 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1000 {
1001 	/* It's always total layers - 1, the array is 0 relative so -2 */
1002 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1003 }
1004 
1005 /**
1006  * ice_sched_get_vsi_layer - get the current VSI layer number
1007  * @hw: pointer to the HW struct
1008  *
1009  * This function returns the current VSI layer number
1010  */
1011 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1012 {
1013 	/* Num Layers       VSI layer
1014 	 *     9               6
1015 	 *     7               4
1016 	 *     5 or less       sw_entry_point_layer
1017 	 */
1018 	/* calculate the VSI layer based on number of layers. */
1019 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1020 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1021 
1022 		if (layer > hw->sw_entry_point_layer)
1023 			return layer;
1024 	}
1025 	return hw->sw_entry_point_layer;
1026 }
1027 
1028 /**
1029  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1030  * @pi: port information structure
1031  *
1032  * This function removes the leaf node that was created by the FW
1033  * during initialization
1034  */
1035 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1036 {
1037 	struct ice_sched_node *node;
1038 
1039 	node = pi->root;
1040 	while (node) {
1041 		if (!node->num_children)
1042 			break;
1043 		node = node->children[0];
1044 	}
1045 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1046 		u32 teid = le32_to_cpu(node->info.node_teid);
1047 		enum ice_status status;
1048 
1049 		/* remove the default leaf node */
1050 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1051 		if (!status)
1052 			ice_free_sched_node(pi, node);
1053 	}
1054 }
1055 
1056 /**
1057  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1058  * @pi: port information structure
1059  *
1060  * This function frees all the nodes except root and TC that were created by
1061  * the FW during initialization
1062  */
1063 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1064 {
1065 	struct ice_sched_node *node;
1066 
1067 	ice_rm_dflt_leaf_node(pi);
1068 
1069 	/* remove the default nodes except TC and root nodes */
1070 	node = pi->root;
1071 	while (node) {
1072 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1073 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1074 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1075 			ice_free_sched_node(pi, node);
1076 			break;
1077 		}
1078 
1079 		if (!node->num_children)
1080 			break;
1081 		node = node->children[0];
1082 	}
1083 }
1084 
1085 /**
1086  * ice_sched_init_port - Initialize scheduler by querying information from FW
1087  * @pi: port info structure for the tree to cleanup
1088  *
1089  * This function is the initial call to find the total number of Tx scheduler
1090  * resources, default topology created by firmware and storing the information
1091  * in SW DB.
1092  */
1093 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1094 {
1095 	struct ice_aqc_get_topo_elem *buf;
1096 	enum ice_status status;
1097 	struct ice_hw *hw;
1098 	u8 num_branches;
1099 	u16 num_elems;
1100 	u8 i, j;
1101 
1102 	if (!pi)
1103 		return ICE_ERR_PARAM;
1104 	hw = pi->hw;
1105 
1106 	/* Query the Default Topology from FW */
1107 	buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1108 	if (!buf)
1109 		return ICE_ERR_NO_MEMORY;
1110 
1111 	/* Query default scheduling tree topology */
1112 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1113 				      &num_branches, NULL);
1114 	if (status)
1115 		goto err_init_port;
1116 
1117 	/* num_branches should be between 1-8 */
1118 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1119 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1120 			  num_branches);
1121 		status = ICE_ERR_PARAM;
1122 		goto err_init_port;
1123 	}
1124 
1125 	/* get the number of elements on the default/first branch */
1126 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1127 
1128 	/* num_elems should always be between 1-9 */
1129 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1130 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1131 			  num_elems);
1132 		status = ICE_ERR_PARAM;
1133 		goto err_init_port;
1134 	}
1135 
1136 	/* If the last node is a leaf node then the index of the queue group
1137 	 * layer is two less than the number of elements.
1138 	 */
1139 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1140 	    ICE_AQC_ELEM_TYPE_LEAF)
1141 		pi->last_node_teid =
1142 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1143 	else
1144 		pi->last_node_teid =
1145 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1146 
1147 	/* Insert the Tx Sched root node */
1148 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1149 	if (status)
1150 		goto err_init_port;
1151 
1152 	/* Parse the default tree and cache the information */
1153 	for (i = 0; i < num_branches; i++) {
1154 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1155 
1156 		/* Skip root element as already inserted */
1157 		for (j = 1; j < num_elems; j++) {
1158 			/* update the sw entry point */
1159 			if (buf[0].generic[j].data.elem_type ==
1160 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1161 				hw->sw_entry_point_layer = j;
1162 
1163 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1164 			if (status)
1165 				goto err_init_port;
1166 		}
1167 	}
1168 
1169 	/* Remove the default nodes. */
1170 	if (pi->root)
1171 		ice_sched_rm_dflt_nodes(pi);
1172 
1173 	/* initialize the port for handling the scheduler tree */
1174 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1175 	mutex_init(&pi->sched_lock);
1176 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1177 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1178 
1179 err_init_port:
1180 	if (status && pi->root) {
1181 		ice_free_sched_node(pi, pi->root);
1182 		pi->root = NULL;
1183 	}
1184 
1185 	devm_kfree(ice_hw_to_dev(hw), buf);
1186 	return status;
1187 }
1188 
1189 /**
1190  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1191  * @hw: pointer to the HW struct
1192  *
1193  * query FW for allocated scheduler resources and store in HW struct
1194  */
1195 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1196 {
1197 	struct ice_aqc_query_txsched_res_resp *buf;
1198 	enum ice_status status = 0;
1199 	__le16 max_sibl;
1200 	u16 i;
1201 
1202 	if (hw->layer_info)
1203 		return status;
1204 
1205 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1206 	if (!buf)
1207 		return ICE_ERR_NO_MEMORY;
1208 
1209 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1210 	if (status)
1211 		goto sched_query_out;
1212 
1213 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1214 	hw->num_tx_sched_phys_layers =
1215 		le16_to_cpu(buf->sched_props.phys_levels);
1216 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1217 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1218 
1219 	/* max sibling group size of current layer refers to the max children
1220 	 * of the below layer node.
1221 	 * layer 1 node max children will be layer 2 max sibling group size
1222 	 * layer 2 node max children will be layer 3 max sibling group size
1223 	 * and so on. This array will be populated from root (index 0) to
1224 	 * qgroup layer 7. Leaf node has no children.
1225 	 */
1226 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1227 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1228 		hw->max_children[i] = le16_to_cpu(max_sibl);
1229 	}
1230 
1231 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1232 				      (hw->num_tx_sched_layers *
1233 				       sizeof(*hw->layer_info)),
1234 				      GFP_KERNEL);
1235 	if (!hw->layer_info) {
1236 		status = ICE_ERR_NO_MEMORY;
1237 		goto sched_query_out;
1238 	}
1239 
1240 sched_query_out:
1241 	devm_kfree(ice_hw_to_dev(hw), buf);
1242 	return status;
1243 }
1244 
1245 /**
1246  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1247  * @hw: pointer to the HW struct
1248  * @base: pointer to the base node
1249  * @node: pointer to the node to search
1250  *
1251  * This function checks whether a given node is part of the base node
1252  * subtree or not
1253  */
1254 static bool
1255 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1256 			       struct ice_sched_node *node)
1257 {
1258 	u8 i;
1259 
1260 	for (i = 0; i < base->num_children; i++) {
1261 		struct ice_sched_node *child = base->children[i];
1262 
1263 		if (node == child)
1264 			return true;
1265 
1266 		if (child->tx_sched_layer > node->tx_sched_layer)
1267 			return false;
1268 
1269 		/* this recursion is intentional, and wouldn't
1270 		 * go more than 8 calls
1271 		 */
1272 		if (ice_sched_find_node_in_subtree(hw, child, node))
1273 			return true;
1274 	}
1275 	return false;
1276 }
1277 
1278 /**
1279  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1280  * @pi: port information structure
1281  * @vsi_node: software VSI handle
1282  * @qgrp_node: first queue group node identified for scanning
1283  * @owner: LAN or RDMA
1284  *
1285  * This function retrieves a free LAN or RDMA queue group node by scanning
1286  * qgrp_node and its siblings for the queue group with the fewest number
1287  * of queues currently assigned.
1288  */
1289 static struct ice_sched_node *
1290 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1291 			struct ice_sched_node *vsi_node,
1292 			struct ice_sched_node *qgrp_node, u8 owner)
1293 {
1294 	struct ice_sched_node *min_qgrp;
1295 	u8 min_children;
1296 
1297 	if (!qgrp_node)
1298 		return qgrp_node;
1299 	min_children = qgrp_node->num_children;
1300 	if (!min_children)
1301 		return qgrp_node;
1302 	min_qgrp = qgrp_node;
1303 	/* scan all queue groups until find a node which has less than the
1304 	 * minimum number of children. This way all queue group nodes get
1305 	 * equal number of shares and active. The bandwidth will be equally
1306 	 * distributed across all queues.
1307 	 */
1308 	while (qgrp_node) {
1309 		/* make sure the qgroup node is part of the VSI subtree */
1310 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1311 			if (qgrp_node->num_children < min_children &&
1312 			    qgrp_node->owner == owner) {
1313 				/* replace the new min queue group node */
1314 				min_qgrp = qgrp_node;
1315 				min_children = min_qgrp->num_children;
1316 				/* break if it has no children, */
1317 				if (!min_children)
1318 					break;
1319 			}
1320 		qgrp_node = qgrp_node->sibling;
1321 	}
1322 	return min_qgrp;
1323 }
1324 
1325 /**
1326  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1327  * @pi: port information structure
1328  * @vsi_handle: software VSI handle
1329  * @tc: branch number
1330  * @owner: LAN or RDMA
1331  *
1332  * This function retrieves a free LAN or RDMA queue group node
1333  */
1334 struct ice_sched_node *
1335 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1336 			   u8 owner)
1337 {
1338 	struct ice_sched_node *vsi_node, *qgrp_node;
1339 	struct ice_vsi_ctx *vsi_ctx;
1340 	u16 max_children;
1341 	u8 qgrp_layer;
1342 
1343 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1344 	max_children = pi->hw->max_children[qgrp_layer];
1345 
1346 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1347 	if (!vsi_ctx)
1348 		return NULL;
1349 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1350 	/* validate invalid VSI ID */
1351 	if (!vsi_node)
1352 		return NULL;
1353 
1354 	/* get the first queue group node from VSI sub-tree */
1355 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1356 	while (qgrp_node) {
1357 		/* make sure the qgroup node is part of the VSI subtree */
1358 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1359 			if (qgrp_node->num_children < max_children &&
1360 			    qgrp_node->owner == owner)
1361 				break;
1362 		qgrp_node = qgrp_node->sibling;
1363 	}
1364 
1365 	/* Select the best queue group */
1366 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1367 }
1368 
1369 /**
1370  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1371  * @hw: pointer to the HW struct
1372  * @tc_node: pointer to the TC node
1373  * @vsi_handle: software VSI handle
1374  *
1375  * This function retrieves a VSI node for a given VSI ID from a given
1376  * TC branch
1377  */
1378 static struct ice_sched_node *
1379 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node,
1380 		       u16 vsi_handle)
1381 {
1382 	struct ice_sched_node *node;
1383 	u8 vsi_layer;
1384 
1385 	vsi_layer = ice_sched_get_vsi_layer(hw);
1386 	node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer);
1387 
1388 	/* Check whether it already exists */
1389 	while (node) {
1390 		if (node->vsi_handle == vsi_handle)
1391 			return node;
1392 		node = node->sibling;
1393 	}
1394 
1395 	return node;
1396 }
1397 
1398 /**
1399  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1400  * @hw: pointer to the HW struct
1401  * @num_qs: number of queues
1402  * @num_nodes: num nodes array
1403  *
1404  * This function calculates the number of VSI child nodes based on the
1405  * number of queues.
1406  */
1407 static void
1408 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1409 {
1410 	u16 num = num_qs;
1411 	u8 i, qgl, vsil;
1412 
1413 	qgl = ice_sched_get_qgrp_layer(hw);
1414 	vsil = ice_sched_get_vsi_layer(hw);
1415 
1416 	/* calculate num nodes from queue group to VSI layer */
1417 	for (i = qgl; i > vsil; i--) {
1418 		/* round to the next integer if there is a remainder */
1419 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1420 
1421 		/* need at least one node */
1422 		num_nodes[i] = num ? num : 1;
1423 	}
1424 }
1425 
1426 /**
1427  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1428  * @pi: port information structure
1429  * @vsi_handle: software VSI handle
1430  * @tc_node: pointer to the TC node
1431  * @num_nodes: pointer to the num nodes that needs to be added per layer
1432  * @owner: node owner (LAN or RDMA)
1433  *
1434  * This function adds the VSI child nodes to tree. It gets called for
1435  * LAN and RDMA separately.
1436  */
1437 static enum ice_status
1438 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1439 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1440 			      u8 owner)
1441 {
1442 	struct ice_sched_node *parent, *node;
1443 	struct ice_hw *hw = pi->hw;
1444 	enum ice_status status;
1445 	u32 first_node_teid;
1446 	u16 num_added = 0;
1447 	u8 i, qgl, vsil;
1448 
1449 	qgl = ice_sched_get_qgrp_layer(hw);
1450 	vsil = ice_sched_get_vsi_layer(hw);
1451 	parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1452 	for (i = vsil + 1; i <= qgl; i++) {
1453 		if (!parent)
1454 			return ICE_ERR_CFG;
1455 
1456 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1457 						      num_nodes[i],
1458 						      &first_node_teid,
1459 						      &num_added);
1460 		if (status || num_nodes[i] != num_added)
1461 			return ICE_ERR_CFG;
1462 
1463 		/* The newly added node can be a new parent for the next
1464 		 * layer nodes
1465 		 */
1466 		if (num_added) {
1467 			parent = ice_sched_find_node_by_teid(tc_node,
1468 							     first_node_teid);
1469 			node = parent;
1470 			while (node) {
1471 				node->owner = owner;
1472 				node = node->sibling;
1473 			}
1474 		} else {
1475 			parent = parent->children[0];
1476 		}
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /**
1483  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1484  * @hw: pointer to the HW struct
1485  * @tc_node: pointer to TC node
1486  * @num_nodes: pointer to num nodes array
1487  *
1488  * This function calculates the number of supported nodes needed to add this
1489  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1490  * layers
1491  */
1492 static void
1493 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw,
1494 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1495 {
1496 	struct ice_sched_node *node;
1497 	u8 vsil;
1498 	int i;
1499 
1500 	vsil = ice_sched_get_vsi_layer(hw);
1501 	for (i = vsil; i >= hw->sw_entry_point_layer; i--)
1502 		/* Add intermediate nodes if TC has no children and
1503 		 * need at least one node for VSI
1504 		 */
1505 		if (!tc_node->num_children || i == vsil) {
1506 			num_nodes[i]++;
1507 		} else {
1508 			/* If intermediate nodes are reached max children
1509 			 * then add a new one.
1510 			 */
1511 			node = ice_sched_get_first_node(hw->port_info, tc_node,
1512 							(u8)i);
1513 			/* scan all the siblings */
1514 			while (node) {
1515 				if (node->num_children < hw->max_children[i])
1516 					break;
1517 				node = node->sibling;
1518 			}
1519 
1520 			/* tree has one intermediate node to add this new VSI.
1521 			 * So no need to calculate supported nodes for below
1522 			 * layers.
1523 			 */
1524 			if (node)
1525 				break;
1526 			/* all the nodes are full, allocate a new one */
1527 			num_nodes[i]++;
1528 		}
1529 }
1530 
1531 /**
1532  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1533  * @pi: port information structure
1534  * @vsi_handle: software VSI handle
1535  * @tc_node: pointer to TC node
1536  * @num_nodes: pointer to num nodes array
1537  *
1538  * This function adds the VSI supported nodes into Tx tree including the
1539  * VSI, its parent and intermediate nodes in below layers
1540  */
1541 static enum ice_status
1542 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1543 				struct ice_sched_node *tc_node, u16 *num_nodes)
1544 {
1545 	struct ice_sched_node *parent = tc_node;
1546 	enum ice_status status;
1547 	u32 first_node_teid;
1548 	u16 num_added = 0;
1549 	u8 i, vsil;
1550 
1551 	if (!pi)
1552 		return ICE_ERR_PARAM;
1553 
1554 	vsil = ice_sched_get_vsi_layer(pi->hw);
1555 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1556 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1557 						      i, num_nodes[i],
1558 						      &first_node_teid,
1559 						      &num_added);
1560 		if (status || num_nodes[i] != num_added)
1561 			return ICE_ERR_CFG;
1562 
1563 		/* The newly added node can be a new parent for the next
1564 		 * layer nodes
1565 		 */
1566 		if (num_added)
1567 			parent = ice_sched_find_node_by_teid(tc_node,
1568 							     first_node_teid);
1569 		else
1570 			parent = parent->children[0];
1571 
1572 		if (!parent)
1573 			return ICE_ERR_CFG;
1574 
1575 		if (i == vsil)
1576 			parent->vsi_handle = vsi_handle;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 /**
1583  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1584  * @pi: port information structure
1585  * @vsi_handle: software VSI handle
1586  * @tc: TC number
1587  *
1588  * This function adds a new VSI into scheduler tree
1589  */
1590 static enum ice_status
1591 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1592 {
1593 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1594 	struct ice_sched_node *tc_node;
1595 	struct ice_hw *hw = pi->hw;
1596 
1597 	tc_node = ice_sched_get_tc_node(pi, tc);
1598 	if (!tc_node)
1599 		return ICE_ERR_PARAM;
1600 
1601 	/* calculate number of supported nodes needed for this VSI */
1602 	ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes);
1603 
1604 	/* add VSI supported nodes to TC subtree */
1605 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1606 					       num_nodes);
1607 }
1608 
1609 /**
1610  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1611  * @pi: port information structure
1612  * @vsi_handle: software VSI handle
1613  * @tc: TC number
1614  * @new_numqs: new number of max queues
1615  * @owner: owner of this subtree
1616  *
1617  * This function updates the VSI child nodes based on the number of queues
1618  */
1619 static enum ice_status
1620 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1621 				 u8 tc, u16 new_numqs, u8 owner)
1622 {
1623 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1624 	struct ice_sched_node *vsi_node;
1625 	struct ice_sched_node *tc_node;
1626 	struct ice_vsi_ctx *vsi_ctx;
1627 	enum ice_status status = 0;
1628 	struct ice_hw *hw = pi->hw;
1629 	u16 prev_numqs;
1630 
1631 	tc_node = ice_sched_get_tc_node(pi, tc);
1632 	if (!tc_node)
1633 		return ICE_ERR_CFG;
1634 
1635 	vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1636 	if (!vsi_node)
1637 		return ICE_ERR_CFG;
1638 
1639 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1640 	if (!vsi_ctx)
1641 		return ICE_ERR_PARAM;
1642 
1643 	prev_numqs = vsi_ctx->sched.max_lanq[tc];
1644 	/* num queues are not changed or less than the previous number */
1645 	if (new_numqs <= prev_numqs)
1646 		return status;
1647 	status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1648 	if (status)
1649 		return status;
1650 
1651 	if (new_numqs)
1652 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1653 	/* Keep the max number of queue configuration all the time. Update the
1654 	 * tree only if number of queues > previous number of queues. This may
1655 	 * leave some extra nodes in the tree if number of queues < previous
1656 	 * number but that wouldn't harm anything. Removing those extra nodes
1657 	 * may complicate the code if those nodes are part of SRL or
1658 	 * individually rate limited.
1659 	 */
1660 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1661 					       new_num_nodes, owner);
1662 	if (status)
1663 		return status;
1664 	vsi_ctx->sched.max_lanq[tc] = new_numqs;
1665 
1666 	return 0;
1667 }
1668 
1669 /**
1670  * ice_sched_cfg_vsi - configure the new/existing VSI
1671  * @pi: port information structure
1672  * @vsi_handle: software VSI handle
1673  * @tc: TC number
1674  * @maxqs: max number of queues
1675  * @owner: LAN or RDMA
1676  * @enable: TC enabled or disabled
1677  *
1678  * This function adds/updates VSI nodes based on the number of queues. If TC is
1679  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1680  * disabled then suspend the VSI if it is not already.
1681  */
1682 enum ice_status
1683 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1684 		  u8 owner, bool enable)
1685 {
1686 	struct ice_sched_node *vsi_node, *tc_node;
1687 	struct ice_vsi_ctx *vsi_ctx;
1688 	enum ice_status status = 0;
1689 	struct ice_hw *hw = pi->hw;
1690 
1691 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1692 	tc_node = ice_sched_get_tc_node(pi, tc);
1693 	if (!tc_node)
1694 		return ICE_ERR_PARAM;
1695 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1696 	if (!vsi_ctx)
1697 		return ICE_ERR_PARAM;
1698 	vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1699 
1700 	/* suspend the VSI if TC is not enabled */
1701 	if (!enable) {
1702 		if (vsi_node && vsi_node->in_use) {
1703 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1704 
1705 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1706 								true);
1707 			if (!status)
1708 				vsi_node->in_use = false;
1709 		}
1710 		return status;
1711 	}
1712 
1713 	/* TC is enabled, if it is a new VSI then add it to the tree */
1714 	if (!vsi_node) {
1715 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1716 		if (status)
1717 			return status;
1718 
1719 		vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1720 		if (!vsi_node)
1721 			return ICE_ERR_CFG;
1722 
1723 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1724 		vsi_node->in_use = true;
1725 		/* invalidate the max queues whenever VSI gets added first time
1726 		 * into the scheduler tree (boot or after reset). We need to
1727 		 * recreate the child nodes all the time in these cases.
1728 		 */
1729 		vsi_ctx->sched.max_lanq[tc] = 0;
1730 	}
1731 
1732 	/* update the VSI child nodes */
1733 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1734 						  owner);
1735 	if (status)
1736 		return status;
1737 
1738 	/* TC is enabled, resume the VSI if it is in the suspend state */
1739 	if (!vsi_node->in_use) {
1740 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1741 
1742 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1743 		if (!status)
1744 			vsi_node->in_use = true;
1745 	}
1746 
1747 	return status;
1748 }
1749 
1750 /**
1751  * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
1752  * @pi: port information structure
1753  * @vsi_handle: software VSI handle
1754  *
1755  * This function removes single aggregator VSI info entry from
1756  * aggregator list.
1757  */
1758 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1759 {
1760 	struct ice_sched_agg_info *agg_info;
1761 	struct ice_sched_agg_info *atmp;
1762 
1763 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1764 				 list_entry) {
1765 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1766 		struct ice_sched_agg_vsi_info *vtmp;
1767 
1768 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1769 					 &agg_info->agg_vsi_list, list_entry)
1770 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1771 				list_del(&agg_vsi_info->list_entry);
1772 				devm_kfree(ice_hw_to_dev(pi->hw),
1773 					   agg_vsi_info);
1774 				return;
1775 			}
1776 	}
1777 }
1778 
1779 /**
1780  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1781  * @node: pointer to the sub-tree node
1782  *
1783  * This function checks for a leaf node presence in a given sub-tree node.
1784  */
1785 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1786 {
1787 	u8 i;
1788 
1789 	for (i = 0; i < node->num_children; i++)
1790 		if (ice_sched_is_leaf_node_present(node->children[i]))
1791 			return true;
1792 	/* check for a leaf node */
1793 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1794 }
1795 
1796 /**
1797  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1798  * @pi: port information structure
1799  * @vsi_handle: software VSI handle
1800  * @owner: LAN or RDMA
1801  *
1802  * This function removes the VSI and its LAN or RDMA children nodes from the
1803  * scheduler tree.
1804  */
1805 static enum ice_status
1806 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1807 {
1808 	enum ice_status status = ICE_ERR_PARAM;
1809 	struct ice_vsi_ctx *vsi_ctx;
1810 	u8 i;
1811 
1812 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
1813 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
1814 		return status;
1815 	mutex_lock(&pi->sched_lock);
1816 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1817 	if (!vsi_ctx)
1818 		goto exit_sched_rm_vsi_cfg;
1819 
1820 	ice_for_each_traffic_class(i) {
1821 		struct ice_sched_node *vsi_node, *tc_node;
1822 		u8 j = 0;
1823 
1824 		tc_node = ice_sched_get_tc_node(pi, i);
1825 		if (!tc_node)
1826 			continue;
1827 
1828 		vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle);
1829 		if (!vsi_node)
1830 			continue;
1831 
1832 		if (ice_sched_is_leaf_node_present(vsi_node)) {
1833 			ice_debug(pi->hw, ICE_DBG_SCHED,
1834 				  "VSI has leaf nodes in TC %d\n", i);
1835 			status = ICE_ERR_IN_USE;
1836 			goto exit_sched_rm_vsi_cfg;
1837 		}
1838 		while (j < vsi_node->num_children) {
1839 			if (vsi_node->children[j]->owner == owner) {
1840 				ice_free_sched_node(pi, vsi_node->children[j]);
1841 
1842 				/* reset the counter again since the num
1843 				 * children will be updated after node removal
1844 				 */
1845 				j = 0;
1846 			} else {
1847 				j++;
1848 			}
1849 		}
1850 		/* remove the VSI if it has no children */
1851 		if (!vsi_node->num_children) {
1852 			ice_free_sched_node(pi, vsi_node);
1853 			vsi_ctx->sched.vsi_node[i] = NULL;
1854 
1855 			/* clean up aggregator related VSI info if any */
1856 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
1857 		}
1858 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
1859 			vsi_ctx->sched.max_lanq[i] = 0;
1860 	}
1861 	status = 0;
1862 
1863 exit_sched_rm_vsi_cfg:
1864 	mutex_unlock(&pi->sched_lock);
1865 	return status;
1866 }
1867 
1868 /**
1869  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
1870  * @pi: port information structure
1871  * @vsi_handle: software VSI handle
1872  *
1873  * This function clears the VSI and its LAN children nodes from scheduler tree
1874  * for all TCs.
1875  */
1876 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
1877 {
1878 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
1879 }
1880 
1881 /**
1882  * ice_sched_rm_unused_rl_prof - remove unused RL profile
1883  * @pi: port information structure
1884  *
1885  * This function removes unused rate limit profiles from the HW and
1886  * SW DB. The caller needs to hold scheduler lock.
1887  */
1888 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
1889 {
1890 	u16 ln;
1891 
1892 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
1893 		struct ice_aqc_rl_profile_info *rl_prof_elem;
1894 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
1895 
1896 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
1897 					 &pi->rl_prof_list[ln], list_entry) {
1898 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
1899 				ice_debug(pi->hw, ICE_DBG_SCHED,
1900 					  "Removed rl profile\n");
1901 		}
1902 	}
1903 }
1904 
1905 /**
1906  * ice_sched_update_elem - update element
1907  * @hw: pointer to the HW struct
1908  * @node: pointer to node
1909  * @info: node info to update
1910  *
1911  * Update the HW DB, and local SW DB of node. Update the scheduling
1912  * parameters of node from argument info data buffer (Info->data buf) and
1913  * returns success or error on config sched element failure. The caller
1914  * needs to hold scheduler lock.
1915  */
1916 static enum ice_status
1917 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
1918 		      struct ice_aqc_txsched_elem_data *info)
1919 {
1920 	struct ice_aqc_txsched_elem_data buf;
1921 	enum ice_status status;
1922 	u16 elem_cfgd = 0;
1923 	u16 num_elems = 1;
1924 
1925 	buf = *info;
1926 	/* Parent TEID is reserved field in this aq call */
1927 	buf.parent_teid = 0;
1928 	/* Element type is reserved field in this aq call */
1929 	buf.data.elem_type = 0;
1930 	/* Flags is reserved field in this aq call */
1931 	buf.data.flags = 0;
1932 
1933 	/* Update HW DB */
1934 	/* Configure element node */
1935 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
1936 					&elem_cfgd, NULL);
1937 	if (status || elem_cfgd != num_elems) {
1938 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
1939 		return ICE_ERR_CFG;
1940 	}
1941 
1942 	/* Config success case */
1943 	/* Now update local SW DB */
1944 	/* Only copy the data portion of info buffer */
1945 	node->info.data = info->data;
1946 	return status;
1947 }
1948 
1949 /**
1950  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
1951  * @hw: pointer to the HW struct
1952  * @node: sched node to configure
1953  * @rl_type: rate limit type CIR, EIR, or shared
1954  * @bw_alloc: BW weight/allocation
1955  *
1956  * This function configures node element's BW allocation.
1957  */
1958 static enum ice_status
1959 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
1960 			    enum ice_rl_type rl_type, u16 bw_alloc)
1961 {
1962 	struct ice_aqc_txsched_elem_data buf;
1963 	struct ice_aqc_txsched_elem *data;
1964 	enum ice_status status;
1965 
1966 	buf = node->info;
1967 	data = &buf.data;
1968 	if (rl_type == ICE_MIN_BW) {
1969 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
1970 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1971 	} else if (rl_type == ICE_MAX_BW) {
1972 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
1973 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1974 	} else {
1975 		return ICE_ERR_PARAM;
1976 	}
1977 
1978 	/* Configure element */
1979 	status = ice_sched_update_elem(hw, node, &buf);
1980 	return status;
1981 }
1982 
1983 /**
1984  * ice_set_clear_cir_bw - set or clear CIR BW
1985  * @bw_t_info: bandwidth type information structure
1986  * @bw: bandwidth in Kbps - Kilo bits per sec
1987  *
1988  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
1989  */
1990 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
1991 {
1992 	if (bw == ICE_SCHED_DFLT_BW) {
1993 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1994 		bw_t_info->cir_bw.bw = 0;
1995 	} else {
1996 		/* Save type of BW information */
1997 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1998 		bw_t_info->cir_bw.bw = bw;
1999 	}
2000 }
2001 
2002 /**
2003  * ice_set_clear_eir_bw - set or clear EIR BW
2004  * @bw_t_info: bandwidth type information structure
2005  * @bw: bandwidth in Kbps - Kilo bits per sec
2006  *
2007  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2008  */
2009 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2010 {
2011 	if (bw == ICE_SCHED_DFLT_BW) {
2012 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2013 		bw_t_info->eir_bw.bw = 0;
2014 	} else {
2015 		/* EIR BW and Shared BW profiles are mutually exclusive and
2016 		 * hence only one of them may be set for any given element.
2017 		 * First clear earlier saved shared BW information.
2018 		 */
2019 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2020 		bw_t_info->shared_bw = 0;
2021 		/* save EIR BW information */
2022 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2023 		bw_t_info->eir_bw.bw = bw;
2024 	}
2025 }
2026 
2027 /**
2028  * ice_set_clear_shared_bw - set or clear shared BW
2029  * @bw_t_info: bandwidth type information structure
2030  * @bw: bandwidth in Kbps - Kilo bits per sec
2031  *
2032  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2033  */
2034 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2035 {
2036 	if (bw == ICE_SCHED_DFLT_BW) {
2037 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2038 		bw_t_info->shared_bw = 0;
2039 	} else {
2040 		/* EIR BW and Shared BW profiles are mutually exclusive and
2041 		 * hence only one of them may be set for any given element.
2042 		 * First clear earlier saved EIR BW information.
2043 		 */
2044 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2045 		bw_t_info->eir_bw.bw = 0;
2046 		/* save shared BW information */
2047 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2048 		bw_t_info->shared_bw = bw;
2049 	}
2050 }
2051 
2052 /**
2053  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
2054  * @bw: bandwidth in Kbps
2055  *
2056  * This function calculates the wakeup parameter of RL profile.
2057  */
2058 static u16 ice_sched_calc_wakeup(s32 bw)
2059 {
2060 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
2061 	s32 wakeup_f_int;
2062 	u16 wakeup = 0;
2063 
2064 	/* Get the wakeup integer value */
2065 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2066 	wakeup_int = div64_long(ICE_RL_PROF_FREQUENCY, bytes_per_sec);
2067 	if (wakeup_int > 63) {
2068 		wakeup = (u16)((1 << 15) | wakeup_int);
2069 	} else {
2070 		/* Calculate fraction value up to 4 decimals
2071 		 * Convert Integer value to a constant multiplier
2072 		 */
2073 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
2074 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
2075 					   ICE_RL_PROF_FREQUENCY,
2076 				      bytes_per_sec);
2077 
2078 		/* Get Fraction value */
2079 		wakeup_f = wakeup_a - wakeup_b;
2080 
2081 		/* Round up the Fractional value via Ceil(Fractional value) */
2082 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
2083 			wakeup_f += 1;
2084 
2085 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
2086 					       ICE_RL_PROF_MULTIPLIER);
2087 		wakeup |= (u16)(wakeup_int << 9);
2088 		wakeup |= (u16)(0x1ff & wakeup_f_int);
2089 	}
2090 
2091 	return wakeup;
2092 }
2093 
2094 /**
2095  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
2096  * @bw: bandwidth in Kbps
2097  * @profile: profile parameters to return
2098  *
2099  * This function converts the BW to profile structure format.
2100  */
2101 static enum ice_status
2102 ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile)
2103 {
2104 	enum ice_status status = ICE_ERR_PARAM;
2105 	s64 bytes_per_sec, ts_rate, mv_tmp;
2106 	bool found = false;
2107 	s32 encode = 0;
2108 	s64 mv = 0;
2109 	s32 i;
2110 
2111 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
2112 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
2113 		return status;
2114 
2115 	/* Bytes per second from Kbps */
2116 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2117 
2118 	/* encode is 6 bits but really useful are 5 bits */
2119 	for (i = 0; i < 64; i++) {
2120 		u64 pow_result = BIT_ULL(i);
2121 
2122 		ts_rate = div64_long((s64)ICE_RL_PROF_FREQUENCY,
2123 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
2124 		if (ts_rate <= 0)
2125 			continue;
2126 
2127 		/* Multiplier value */
2128 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
2129 				    ts_rate);
2130 
2131 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
2132 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
2133 
2134 		/* First multiplier value greater than the given
2135 		 * accuracy bytes
2136 		 */
2137 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
2138 			encode = i;
2139 			found = true;
2140 			break;
2141 		}
2142 	}
2143 	if (found) {
2144 		u16 wm;
2145 
2146 		wm = ice_sched_calc_wakeup(bw);
2147 		profile->rl_multiply = cpu_to_le16(mv);
2148 		profile->wake_up_calc = cpu_to_le16(wm);
2149 		profile->rl_encode = cpu_to_le16(encode);
2150 		status = 0;
2151 	} else {
2152 		status = ICE_ERR_DOES_NOT_EXIST;
2153 	}
2154 
2155 	return status;
2156 }
2157 
2158 /**
2159  * ice_sched_add_rl_profile - add RL profile
2160  * @pi: port information structure
2161  * @rl_type: type of rate limit BW - min, max, or shared
2162  * @bw: bandwidth in Kbps - Kilo bits per sec
2163  * @layer_num: specifies in which layer to create profile
2164  *
2165  * This function first checks the existing list for corresponding BW
2166  * parameter. If it exists, it returns the associated profile otherwise
2167  * it creates a new rate limit profile for requested BW, and adds it to
2168  * the HW DB and local list. It returns the new profile or null on error.
2169  * The caller needs to hold the scheduler lock.
2170  */
2171 static struct ice_aqc_rl_profile_info *
2172 ice_sched_add_rl_profile(struct ice_port_info *pi,
2173 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2174 {
2175 	struct ice_aqc_rl_profile_info *rl_prof_elem;
2176 	u16 profiles_added = 0, num_profiles = 1;
2177 	struct ice_aqc_rl_profile_elem *buf;
2178 	enum ice_status status;
2179 	struct ice_hw *hw;
2180 	u8 profile_type;
2181 
2182 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2183 		return NULL;
2184 	switch (rl_type) {
2185 	case ICE_MIN_BW:
2186 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2187 		break;
2188 	case ICE_MAX_BW:
2189 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2190 		break;
2191 	case ICE_SHARED_BW:
2192 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2193 		break;
2194 	default:
2195 		return NULL;
2196 	}
2197 
2198 	if (!pi)
2199 		return NULL;
2200 	hw = pi->hw;
2201 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2202 			    list_entry)
2203 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2204 		    profile_type && rl_prof_elem->bw == bw)
2205 			/* Return existing profile ID info */
2206 			return rl_prof_elem;
2207 
2208 	/* Create new profile ID */
2209 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
2210 				    GFP_KERNEL);
2211 
2212 	if (!rl_prof_elem)
2213 		return NULL;
2214 
2215 	status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile);
2216 	if (status)
2217 		goto exit_add_rl_prof;
2218 
2219 	rl_prof_elem->bw = bw;
2220 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
2221 	rl_prof_elem->profile.level = layer_num + 1;
2222 	rl_prof_elem->profile.flags = profile_type;
2223 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
2224 
2225 	/* Create new entry in HW DB */
2226 	buf = &rl_prof_elem->profile;
2227 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
2228 				       &profiles_added, NULL);
2229 	if (status || profiles_added != num_profiles)
2230 		goto exit_add_rl_prof;
2231 
2232 	/* Good entry - add in the list */
2233 	rl_prof_elem->prof_id_ref = 0;
2234 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
2235 	return rl_prof_elem;
2236 
2237 exit_add_rl_prof:
2238 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
2239 	return NULL;
2240 }
2241 
2242 /**
2243  * ice_sched_cfg_node_bw_lmt - configure node sched params
2244  * @hw: pointer to the HW struct
2245  * @node: sched node to configure
2246  * @rl_type: rate limit type CIR, EIR, or shared
2247  * @rl_prof_id: rate limit profile ID
2248  *
2249  * This function configures node element's BW limit.
2250  */
2251 static enum ice_status
2252 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
2253 			  enum ice_rl_type rl_type, u16 rl_prof_id)
2254 {
2255 	struct ice_aqc_txsched_elem_data buf;
2256 	struct ice_aqc_txsched_elem *data;
2257 
2258 	buf = node->info;
2259 	data = &buf.data;
2260 	switch (rl_type) {
2261 	case ICE_MIN_BW:
2262 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2263 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2264 		break;
2265 	case ICE_MAX_BW:
2266 		/* EIR BW and Shared BW profiles are mutually exclusive and
2267 		 * hence only one of them may be set for any given element
2268 		 */
2269 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2270 			return ICE_ERR_CFG;
2271 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2272 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2273 		break;
2274 	case ICE_SHARED_BW:
2275 		/* Check for removing shared BW */
2276 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
2277 			/* remove shared profile */
2278 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
2279 			data->srl_id = 0; /* clear SRL field */
2280 
2281 			/* enable back EIR to default profile */
2282 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2283 			data->eir_bw.bw_profile_idx =
2284 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
2285 			break;
2286 		}
2287 		/* EIR BW and Shared BW profiles are mutually exclusive and
2288 		 * hence only one of them may be set for any given element
2289 		 */
2290 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
2291 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
2292 			    ICE_SCHED_DFLT_RL_PROF_ID))
2293 			return ICE_ERR_CFG;
2294 		/* EIR BW is set to default, disable it */
2295 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
2296 		/* Okay to enable shared BW now */
2297 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
2298 		data->srl_id = cpu_to_le16(rl_prof_id);
2299 		break;
2300 	default:
2301 		/* Unknown rate limit type */
2302 		return ICE_ERR_PARAM;
2303 	}
2304 
2305 	/* Configure element */
2306 	return ice_sched_update_elem(hw, node, &buf);
2307 }
2308 
2309 /**
2310  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
2311  * @node: sched node
2312  * @rl_type: rate limit type
2313  *
2314  * If existing profile matches, it returns the corresponding rate
2315  * limit profile ID, otherwise it returns an invalid ID as error.
2316  */
2317 static u16
2318 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
2319 			      enum ice_rl_type rl_type)
2320 {
2321 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
2322 	struct ice_aqc_txsched_elem *data;
2323 
2324 	data = &node->info.data;
2325 	switch (rl_type) {
2326 	case ICE_MIN_BW:
2327 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
2328 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
2329 		break;
2330 	case ICE_MAX_BW:
2331 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
2332 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
2333 		break;
2334 	case ICE_SHARED_BW:
2335 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2336 			rl_prof_id = le16_to_cpu(data->srl_id);
2337 		break;
2338 	default:
2339 		break;
2340 	}
2341 
2342 	return rl_prof_id;
2343 }
2344 
2345 /**
2346  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
2347  * @pi: port information structure
2348  * @rl_type: type of rate limit BW - min, max, or shared
2349  * @layer_index: layer index
2350  *
2351  * This function returns requested profile creation layer.
2352  */
2353 static u8
2354 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
2355 			    u8 layer_index)
2356 {
2357 	struct ice_hw *hw = pi->hw;
2358 
2359 	if (layer_index >= hw->num_tx_sched_layers)
2360 		return ICE_SCHED_INVAL_LAYER_NUM;
2361 	switch (rl_type) {
2362 	case ICE_MIN_BW:
2363 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
2364 			return layer_index;
2365 		break;
2366 	case ICE_MAX_BW:
2367 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
2368 			return layer_index;
2369 		break;
2370 	case ICE_SHARED_BW:
2371 		/* if current layer doesn't support SRL profile creation
2372 		 * then try a layer up or down.
2373 		 */
2374 		if (hw->layer_info[layer_index].max_srl_profiles)
2375 			return layer_index;
2376 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
2377 			 hw->layer_info[layer_index + 1].max_srl_profiles)
2378 			return layer_index + 1;
2379 		else if (layer_index > 0 &&
2380 			 hw->layer_info[layer_index - 1].max_srl_profiles)
2381 			return layer_index - 1;
2382 		break;
2383 	default:
2384 		break;
2385 	}
2386 	return ICE_SCHED_INVAL_LAYER_NUM;
2387 }
2388 
2389 /**
2390  * ice_sched_get_srl_node - get shared rate limit node
2391  * @node: tree node
2392  * @srl_layer: shared rate limit layer
2393  *
2394  * This function returns SRL node to be used for shared rate limit purpose.
2395  * The caller needs to hold scheduler lock.
2396  */
2397 static struct ice_sched_node *
2398 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
2399 {
2400 	if (srl_layer > node->tx_sched_layer)
2401 		return node->children[0];
2402 	else if (srl_layer < node->tx_sched_layer)
2403 		/* Node can't be created without a parent. It will always
2404 		 * have a valid parent except root node.
2405 		 */
2406 		return node->parent;
2407 	else
2408 		return node;
2409 }
2410 
2411 /**
2412  * ice_sched_rm_rl_profile - remove RL profile ID
2413  * @pi: port information structure
2414  * @layer_num: layer number where profiles are saved
2415  * @profile_type: profile type like EIR, CIR, or SRL
2416  * @profile_id: profile ID to remove
2417  *
2418  * This function removes rate limit profile from layer 'layer_num' of type
2419  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
2420  * scheduler lock.
2421  */
2422 static enum ice_status
2423 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
2424 			u16 profile_id)
2425 {
2426 	struct ice_aqc_rl_profile_info *rl_prof_elem;
2427 	enum ice_status status = 0;
2428 
2429 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2430 		return ICE_ERR_PARAM;
2431 	/* Check the existing list for RL profile */
2432 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2433 			    list_entry)
2434 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2435 		    profile_type &&
2436 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
2437 		    profile_id) {
2438 			if (rl_prof_elem->prof_id_ref)
2439 				rl_prof_elem->prof_id_ref--;
2440 
2441 			/* Remove old profile ID from database */
2442 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
2443 			if (status && status != ICE_ERR_IN_USE)
2444 				ice_debug(pi->hw, ICE_DBG_SCHED,
2445 					  "Remove rl profile failed\n");
2446 			break;
2447 		}
2448 	if (status == ICE_ERR_IN_USE)
2449 		status = 0;
2450 	return status;
2451 }
2452 
2453 /**
2454  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
2455  * @pi: port information structure
2456  * @node: pointer to node structure
2457  * @rl_type: rate limit type min, max, or shared
2458  * @layer_num: layer number where RL profiles are saved
2459  *
2460  * This function configures node element's BW rate limit profile ID of
2461  * type CIR, EIR, or SRL to default. This function needs to be called
2462  * with the scheduler lock held.
2463  */
2464 static enum ice_status
2465 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
2466 			   struct ice_sched_node *node,
2467 			   enum ice_rl_type rl_type, u8 layer_num)
2468 {
2469 	enum ice_status status;
2470 	struct ice_hw *hw;
2471 	u8 profile_type;
2472 	u16 rl_prof_id;
2473 	u16 old_id;
2474 
2475 	hw = pi->hw;
2476 	switch (rl_type) {
2477 	case ICE_MIN_BW:
2478 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2479 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2480 		break;
2481 	case ICE_MAX_BW:
2482 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2483 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2484 		break;
2485 	case ICE_SHARED_BW:
2486 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2487 		/* No SRL is configured for default case */
2488 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
2489 		break;
2490 	default:
2491 		return ICE_ERR_PARAM;
2492 	}
2493 	/* Save existing RL prof ID for later clean up */
2494 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2495 	/* Configure BW scheduling parameters */
2496 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2497 	if (status)
2498 		return status;
2499 
2500 	/* Remove stale RL profile ID */
2501 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
2502 	    old_id == ICE_SCHED_INVAL_PROF_ID)
2503 		return 0;
2504 
2505 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
2506 }
2507 
2508 /**
2509  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
2510  * @pi: port information structure
2511  * @node: pointer to node structure
2512  * @layer_num: layer number where rate limit profiles are saved
2513  * @rl_type: rate limit type min, max, or shared
2514  * @bw: bandwidth value
2515  *
2516  * This function prepares node element's bandwidth to SRL or EIR exclusively.
2517  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
2518  * them may be set for any given element. This function needs to be called
2519  * with the scheduler lock held.
2520  */
2521 static enum ice_status
2522 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
2523 			   struct ice_sched_node *node,
2524 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
2525 {
2526 	if (rl_type == ICE_SHARED_BW) {
2527 		/* SRL node passed in this case, it may be different node */
2528 		if (bw == ICE_SCHED_DFLT_BW)
2529 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
2530 			 * enables EIR to default. EIR is not set in this
2531 			 * case, so no additional action is required.
2532 			 */
2533 			return 0;
2534 
2535 		/* SRL being configured, set EIR to default here.
2536 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
2537 		 * configures SRL
2538 		 */
2539 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
2540 						  layer_num);
2541 	} else if (rl_type == ICE_MAX_BW &&
2542 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
2543 		/* Remove Shared profile. Set default shared BW call
2544 		 * removes shared profile for a node.
2545 		 */
2546 		return ice_sched_set_node_bw_dflt(pi, node,
2547 						  ICE_SHARED_BW,
2548 						  layer_num);
2549 	}
2550 	return 0;
2551 }
2552 
2553 /**
2554  * ice_sched_set_node_bw - set node's bandwidth
2555  * @pi: port information structure
2556  * @node: tree node
2557  * @rl_type: rate limit type min, max, or shared
2558  * @bw: bandwidth in Kbps - Kilo bits per sec
2559  * @layer_num: layer number
2560  *
2561  * This function adds new profile corresponding to requested BW, configures
2562  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
2563  * ID from local database. The caller needs to hold scheduler lock.
2564  */
2565 static enum ice_status
2566 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
2567 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2568 {
2569 	struct ice_aqc_rl_profile_info *rl_prof_info;
2570 	enum ice_status status = ICE_ERR_PARAM;
2571 	struct ice_hw *hw = pi->hw;
2572 	u16 old_id, rl_prof_id;
2573 
2574 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
2575 	if (!rl_prof_info)
2576 		return status;
2577 
2578 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
2579 
2580 	/* Save existing RL prof ID for later clean up */
2581 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2582 	/* Configure BW scheduling parameters */
2583 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2584 	if (status)
2585 		return status;
2586 
2587 	/* New changes has been applied */
2588 	/* Increment the profile ID reference count */
2589 	rl_prof_info->prof_id_ref++;
2590 
2591 	/* Check for old ID removal */
2592 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
2593 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
2594 		return 0;
2595 
2596 	return ice_sched_rm_rl_profile(pi, layer_num,
2597 				       rl_prof_info->profile.flags &
2598 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
2599 }
2600 
2601 /**
2602  * ice_sched_set_node_bw_lmt - set node's BW limit
2603  * @pi: port information structure
2604  * @node: tree node
2605  * @rl_type: rate limit type min, max, or shared
2606  * @bw: bandwidth in Kbps - Kilo bits per sec
2607  *
2608  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
2609  * EIR, or SRL. The caller needs to hold scheduler lock.
2610  */
2611 static enum ice_status
2612 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
2613 			  enum ice_rl_type rl_type, u32 bw)
2614 {
2615 	struct ice_sched_node *cfg_node = node;
2616 	enum ice_status status;
2617 
2618 	struct ice_hw *hw;
2619 	u8 layer_num;
2620 
2621 	if (!pi)
2622 		return ICE_ERR_PARAM;
2623 	hw = pi->hw;
2624 	/* Remove unused RL profile IDs from HW and SW DB */
2625 	ice_sched_rm_unused_rl_prof(pi);
2626 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
2627 						node->tx_sched_layer);
2628 	if (layer_num >= hw->num_tx_sched_layers)
2629 		return ICE_ERR_PARAM;
2630 
2631 	if (rl_type == ICE_SHARED_BW) {
2632 		/* SRL node may be different */
2633 		cfg_node = ice_sched_get_srl_node(node, layer_num);
2634 		if (!cfg_node)
2635 			return ICE_ERR_CFG;
2636 	}
2637 	/* EIR BW and Shared BW profiles are mutually exclusive and
2638 	 * hence only one of them may be set for any given element
2639 	 */
2640 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
2641 					    bw);
2642 	if (status)
2643 		return status;
2644 	if (bw == ICE_SCHED_DFLT_BW)
2645 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
2646 						  layer_num);
2647 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
2648 }
2649 
2650 /**
2651  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
2652  * @pi: port information structure
2653  * @node: pointer to node structure
2654  * @rl_type: rate limit type min, max, or shared
2655  *
2656  * This function configures node element's BW rate limit profile ID of
2657  * type CIR, EIR, or SRL to default. This function needs to be called
2658  * with the scheduler lock held.
2659  */
2660 static enum ice_status
2661 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
2662 			       struct ice_sched_node *node,
2663 			       enum ice_rl_type rl_type)
2664 {
2665 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
2666 					 ICE_SCHED_DFLT_BW);
2667 }
2668 
2669 /**
2670  * ice_sched_validate_srl_node - Check node for SRL applicability
2671  * @node: sched node to configure
2672  * @sel_layer: selected SRL layer
2673  *
2674  * This function checks if the SRL can be applied to a selected layer node on
2675  * behalf of the requested node (first argument). This function needs to be
2676  * called with scheduler lock held.
2677  */
2678 static enum ice_status
2679 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
2680 {
2681 	/* SRL profiles are not available on all layers. Check if the
2682 	 * SRL profile can be applied to a node above or below the
2683 	 * requested node. SRL configuration is possible only if the
2684 	 * selected layer's node has single child.
2685 	 */
2686 	if (sel_layer == node->tx_sched_layer ||
2687 	    ((sel_layer == node->tx_sched_layer + 1) &&
2688 	    node->num_children == 1) ||
2689 	    ((sel_layer == node->tx_sched_layer - 1) &&
2690 	    (node->parent && node->parent->num_children == 1)))
2691 		return 0;
2692 
2693 	return ICE_ERR_CFG;
2694 }
2695 
2696 /**
2697  * ice_sched_save_q_bw - save queue node's BW information
2698  * @q_ctx: queue context structure
2699  * @rl_type: rate limit type min, max, or shared
2700  * @bw: bandwidth in Kbps - Kilo bits per sec
2701  *
2702  * Save BW information of queue type node for post replay use.
2703  */
2704 static enum ice_status
2705 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
2706 {
2707 	switch (rl_type) {
2708 	case ICE_MIN_BW:
2709 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
2710 		break;
2711 	case ICE_MAX_BW:
2712 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
2713 		break;
2714 	case ICE_SHARED_BW:
2715 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
2716 		break;
2717 	default:
2718 		return ICE_ERR_PARAM;
2719 	}
2720 	return 0;
2721 }
2722 
2723 /**
2724  * ice_sched_set_q_bw_lmt - sets queue BW limit
2725  * @pi: port information structure
2726  * @vsi_handle: sw VSI handle
2727  * @tc: traffic class
2728  * @q_handle: software queue handle
2729  * @rl_type: min, max, or shared
2730  * @bw: bandwidth in Kbps
2731  *
2732  * This function sets BW limit of queue scheduling node.
2733  */
2734 static enum ice_status
2735 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2736 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2737 {
2738 	enum ice_status status = ICE_ERR_PARAM;
2739 	struct ice_sched_node *node;
2740 	struct ice_q_ctx *q_ctx;
2741 
2742 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2743 		return ICE_ERR_PARAM;
2744 	mutex_lock(&pi->sched_lock);
2745 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
2746 	if (!q_ctx)
2747 		goto exit_q_bw_lmt;
2748 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2749 	if (!node) {
2750 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
2751 		goto exit_q_bw_lmt;
2752 	}
2753 
2754 	/* Return error if it is not a leaf node */
2755 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
2756 		goto exit_q_bw_lmt;
2757 
2758 	/* SRL bandwidth layer selection */
2759 	if (rl_type == ICE_SHARED_BW) {
2760 		u8 sel_layer; /* selected layer */
2761 
2762 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
2763 							node->tx_sched_layer);
2764 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
2765 			status = ICE_ERR_PARAM;
2766 			goto exit_q_bw_lmt;
2767 		}
2768 		status = ice_sched_validate_srl_node(node, sel_layer);
2769 		if (status)
2770 			goto exit_q_bw_lmt;
2771 	}
2772 
2773 	if (bw == ICE_SCHED_DFLT_BW)
2774 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
2775 	else
2776 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
2777 
2778 	if (!status)
2779 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
2780 
2781 exit_q_bw_lmt:
2782 	mutex_unlock(&pi->sched_lock);
2783 	return status;
2784 }
2785 
2786 /**
2787  * ice_cfg_q_bw_lmt - configure queue BW limit
2788  * @pi: port information structure
2789  * @vsi_handle: sw VSI handle
2790  * @tc: traffic class
2791  * @q_handle: software queue handle
2792  * @rl_type: min, max, or shared
2793  * @bw: bandwidth in Kbps
2794  *
2795  * This function configures BW limit of queue scheduling node.
2796  */
2797 enum ice_status
2798 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2799 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2800 {
2801 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2802 				      bw);
2803 }
2804 
2805 /**
2806  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
2807  * @pi: port information structure
2808  * @vsi_handle: sw VSI handle
2809  * @tc: traffic class
2810  * @q_handle: software queue handle
2811  * @rl_type: min, max, or shared
2812  *
2813  * This function configures BW default limit of queue scheduling node.
2814  */
2815 enum ice_status
2816 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2817 		      u16 q_handle, enum ice_rl_type rl_type)
2818 {
2819 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2820 				      ICE_SCHED_DFLT_BW);
2821 }
2822 
2823 /**
2824  * ice_cfg_rl_burst_size - Set burst size value
2825  * @hw: pointer to the HW struct
2826  * @bytes: burst size in bytes
2827  *
2828  * This function configures/set the burst size to requested new value. The new
2829  * burst size value is used for future rate limit calls. It doesn't change the
2830  * existing or previously created RL profiles.
2831  */
2832 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
2833 {
2834 	u16 burst_size_to_prog;
2835 
2836 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
2837 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
2838 		return ICE_ERR_PARAM;
2839 	if (ice_round_to_num(bytes, 64) <=
2840 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
2841 		/* 64 byte granularity case */
2842 		/* Disable MSB granularity bit */
2843 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
2844 		/* round number to nearest 64 byte granularity */
2845 		bytes = ice_round_to_num(bytes, 64);
2846 		/* The value is in 64 byte chunks */
2847 		burst_size_to_prog |= (u16)(bytes / 64);
2848 	} else {
2849 		/* k bytes granularity case */
2850 		/* Enable MSB granularity bit */
2851 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
2852 		/* round number to nearest 1024 granularity */
2853 		bytes = ice_round_to_num(bytes, 1024);
2854 		/* check rounding doesn't go beyond allowed */
2855 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
2856 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
2857 		/* The value is in k bytes */
2858 		burst_size_to_prog |= (u16)(bytes / 1024);
2859 	}
2860 	hw->max_burst_size = burst_size_to_prog;
2861 	return 0;
2862 }
2863 
2864 /**
2865  * ice_sched_replay_node_prio - re-configure node priority
2866  * @hw: pointer to the HW struct
2867  * @node: sched node to configure
2868  * @priority: priority value
2869  *
2870  * This function configures node element's priority value. It
2871  * needs to be called with scheduler lock held.
2872  */
2873 static enum ice_status
2874 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
2875 			   u8 priority)
2876 {
2877 	struct ice_aqc_txsched_elem_data buf;
2878 	struct ice_aqc_txsched_elem *data;
2879 	enum ice_status status;
2880 
2881 	buf = node->info;
2882 	data = &buf.data;
2883 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
2884 	data->generic = priority;
2885 
2886 	/* Configure element */
2887 	status = ice_sched_update_elem(hw, node, &buf);
2888 	return status;
2889 }
2890 
2891 /**
2892  * ice_sched_replay_node_bw - replay node(s) BW
2893  * @hw: pointer to the HW struct
2894  * @node: sched node to configure
2895  * @bw_t_info: BW type information
2896  *
2897  * This function restores node's BW from bw_t_info. The caller needs
2898  * to hold the scheduler lock.
2899  */
2900 static enum ice_status
2901 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
2902 			 struct ice_bw_type_info *bw_t_info)
2903 {
2904 	struct ice_port_info *pi = hw->port_info;
2905 	enum ice_status status = ICE_ERR_PARAM;
2906 	u16 bw_alloc;
2907 
2908 	if (!node)
2909 		return status;
2910 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
2911 		return 0;
2912 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
2913 		status = ice_sched_replay_node_prio(hw, node,
2914 						    bw_t_info->generic);
2915 		if (status)
2916 			return status;
2917 	}
2918 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
2919 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
2920 						   bw_t_info->cir_bw.bw);
2921 		if (status)
2922 			return status;
2923 	}
2924 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
2925 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
2926 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
2927 						     bw_alloc);
2928 		if (status)
2929 			return status;
2930 	}
2931 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
2932 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
2933 						   bw_t_info->eir_bw.bw);
2934 		if (status)
2935 			return status;
2936 	}
2937 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
2938 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
2939 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
2940 						     bw_alloc);
2941 		if (status)
2942 			return status;
2943 	}
2944 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
2945 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
2946 						   bw_t_info->shared_bw);
2947 	return status;
2948 }
2949 
2950 /**
2951  * ice_sched_replay_q_bw - replay queue type node BW
2952  * @pi: port information structure
2953  * @q_ctx: queue context structure
2954  *
2955  * This function replays queue type node bandwidth. This function needs to be
2956  * called with scheduler lock held.
2957  */
2958 enum ice_status
2959 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
2960 {
2961 	struct ice_sched_node *q_node;
2962 
2963 	/* Following also checks the presence of node in tree */
2964 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2965 	if (!q_node)
2966 		return ICE_ERR_PARAM;
2967 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
2968 }
2969