1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node teid to search 47 * 48 * This function searches for a node matching the teid in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if teid matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 89 * @pi: port information structure 90 * @layer: Scheduler layer of the node 91 * @info: Scheduler element information from firmware 92 * 93 * This function inserts a scheduler node to the SW DB. 94 */ 95 enum ice_status 96 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 97 struct ice_aqc_txsched_elem_data *info) 98 { 99 struct ice_sched_node *parent; 100 struct ice_sched_node *node; 101 struct ice_hw *hw; 102 103 if (!pi) 104 return ICE_ERR_PARAM; 105 106 hw = pi->hw; 107 108 /* A valid parent node should be there */ 109 parent = ice_sched_find_node_by_teid(pi->root, 110 le32_to_cpu(info->parent_teid)); 111 if (!parent) { 112 ice_debug(hw, ICE_DBG_SCHED, 113 "Parent Node not found for parent_teid=0x%x\n", 114 le32_to_cpu(info->parent_teid)); 115 return ICE_ERR_PARAM; 116 } 117 118 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 119 if (!node) 120 return ICE_ERR_NO_MEMORY; 121 if (hw->max_children[layer]) { 122 /* coverity[suspicious_sizeof] */ 123 node->children = devm_kcalloc(ice_hw_to_dev(hw), 124 hw->max_children[layer], 125 sizeof(*node), GFP_KERNEL); 126 if (!node->children) { 127 devm_kfree(ice_hw_to_dev(hw), node); 128 return ICE_ERR_NO_MEMORY; 129 } 130 } 131 132 node->in_use = true; 133 node->parent = parent; 134 node->tx_sched_layer = layer; 135 parent->children[parent->num_children++] = node; 136 memcpy(&node->info, info, sizeof(*info)); 137 return 0; 138 } 139 140 /** 141 * ice_aq_delete_sched_elems - delete scheduler elements 142 * @hw: pointer to the hw struct 143 * @grps_req: number of groups to delete 144 * @buf: pointer to buffer 145 * @buf_size: buffer size in bytes 146 * @grps_del: returns total number of elements deleted 147 * @cd: pointer to command details structure or NULL 148 * 149 * Delete scheduling elements (0x040F) 150 */ 151 static enum ice_status 152 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 153 struct ice_aqc_delete_elem *buf, u16 buf_size, 154 u16 *grps_del, struct ice_sq_cd *cd) 155 { 156 struct ice_aqc_add_move_delete_elem *cmd; 157 struct ice_aq_desc desc; 158 enum ice_status status; 159 160 cmd = &desc.params.add_move_delete_elem; 161 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_delete_sched_elems); 162 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 163 cmd->num_grps_req = cpu_to_le16(grps_req); 164 165 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 166 if (!status && grps_del) 167 *grps_del = le16_to_cpu(cmd->num_grps_updated); 168 169 return status; 170 } 171 172 /** 173 * ice_sched_remove_elems - remove nodes from hw 174 * @hw: pointer to the hw struct 175 * @parent: pointer to the parent node 176 * @num_nodes: number of nodes 177 * @node_teids: array of node teids to be deleted 178 * 179 * This function remove nodes from hw 180 */ 181 static enum ice_status 182 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 183 u16 num_nodes, u32 *node_teids) 184 { 185 struct ice_aqc_delete_elem *buf; 186 u16 i, num_groups_removed = 0; 187 enum ice_status status; 188 u16 buf_size; 189 190 buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1); 191 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 192 if (!buf) 193 return ICE_ERR_NO_MEMORY; 194 195 buf->hdr.parent_teid = parent->info.node_teid; 196 buf->hdr.num_elems = cpu_to_le16(num_nodes); 197 for (i = 0; i < num_nodes; i++) 198 buf->teid[i] = cpu_to_le32(node_teids[i]); 199 200 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 201 &num_groups_removed, NULL); 202 if (status || num_groups_removed != 1) 203 ice_debug(hw, ICE_DBG_SCHED, "remove elements failed\n"); 204 205 devm_kfree(ice_hw_to_dev(hw), buf); 206 return status; 207 } 208 209 /** 210 * ice_sched_get_first_node - get the first node of the given layer 211 * @hw: pointer to the hw struct 212 * @parent: pointer the base node of the subtree 213 * @layer: layer number 214 * 215 * This function retrieves the first node of the given layer from the subtree 216 */ 217 static struct ice_sched_node * 218 ice_sched_get_first_node(struct ice_hw *hw, struct ice_sched_node *parent, 219 u8 layer) 220 { 221 u8 i; 222 223 if (layer < hw->sw_entry_point_layer) 224 return NULL; 225 for (i = 0; i < parent->num_children; i++) { 226 struct ice_sched_node *node = parent->children[i]; 227 228 if (node) { 229 if (node->tx_sched_layer == layer) 230 return node; 231 /* this recursion is intentional, and wouldn't 232 * go more than 9 calls 233 */ 234 return ice_sched_get_first_node(hw, node, layer); 235 } 236 } 237 return NULL; 238 } 239 240 /** 241 * ice_sched_get_tc_node - get pointer to TC node 242 * @pi: port information structure 243 * @tc: TC number 244 * 245 * This function returns the TC node pointer 246 */ 247 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 248 { 249 u8 i; 250 251 if (!pi) 252 return NULL; 253 for (i = 0; i < pi->root->num_children; i++) 254 if (pi->root->children[i]->tc_num == tc) 255 return pi->root->children[i]; 256 return NULL; 257 } 258 259 /** 260 * ice_free_sched_node - Free a Tx scheduler node from SW DB 261 * @pi: port information structure 262 * @node: pointer to the ice_sched_node struct 263 * 264 * This function frees up a node from SW DB as well as from HW 265 * 266 * This function needs to be called with the port_info->sched_lock held 267 */ 268 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 269 { 270 struct ice_sched_node *parent; 271 struct ice_hw *hw = pi->hw; 272 u8 i, j; 273 274 /* Free the children before freeing up the parent node 275 * The parent array is updated below and that shifts the nodes 276 * in the array. So always pick the first child if num children > 0 277 */ 278 while (node->num_children) 279 ice_free_sched_node(pi, node->children[0]); 280 281 /* Leaf, TC and root nodes can't be deleted by SW */ 282 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 283 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 284 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 285 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 286 u32 teid = le32_to_cpu(node->info.node_teid); 287 enum ice_status status; 288 289 status = ice_sched_remove_elems(hw, node->parent, 1, &teid); 290 if (status) 291 ice_debug(hw, ICE_DBG_SCHED, 292 "remove element failed %d\n", status); 293 } 294 parent = node->parent; 295 /* root has no parent */ 296 if (parent) { 297 struct ice_sched_node *p, *tc_node; 298 299 /* update the parent */ 300 for (i = 0; i < parent->num_children; i++) 301 if (parent->children[i] == node) { 302 for (j = i + 1; j < parent->num_children; j++) 303 parent->children[j - 1] = 304 parent->children[j]; 305 parent->num_children--; 306 break; 307 } 308 309 /* search for previous sibling that points to this node and 310 * remove the reference 311 */ 312 tc_node = ice_sched_get_tc_node(pi, node->tc_num); 313 if (!tc_node) { 314 ice_debug(hw, ICE_DBG_SCHED, 315 "Invalid TC number %d\n", node->tc_num); 316 goto err_exit; 317 } 318 p = ice_sched_get_first_node(hw, tc_node, node->tx_sched_layer); 319 while (p) { 320 if (p->sibling == node) { 321 p->sibling = node->sibling; 322 break; 323 } 324 p = p->sibling; 325 } 326 } 327 err_exit: 328 /* leaf nodes have no children */ 329 if (node->children) 330 devm_kfree(ice_hw_to_dev(hw), node->children); 331 devm_kfree(ice_hw_to_dev(hw), node); 332 } 333 334 /** 335 * ice_aq_get_dflt_topo - gets default scheduler topology 336 * @hw: pointer to the hw struct 337 * @lport: logical port number 338 * @buf: pointer to buffer 339 * @buf_size: buffer size in bytes 340 * @num_branches: returns total number of queue to port branches 341 * @cd: pointer to command details structure or NULL 342 * 343 * Get default scheduler topology (0x400) 344 */ 345 static enum ice_status 346 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 347 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 348 u8 *num_branches, struct ice_sq_cd *cd) 349 { 350 struct ice_aqc_get_topo *cmd; 351 struct ice_aq_desc desc; 352 enum ice_status status; 353 354 cmd = &desc.params.get_topo; 355 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 356 cmd->port_num = lport; 357 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 358 if (!status && num_branches) 359 *num_branches = cmd->num_branches; 360 361 return status; 362 } 363 364 /** 365 * ice_aq_add_sched_elems - adds scheduling element 366 * @hw: pointer to the hw struct 367 * @grps_req: the number of groups that are requested to be added 368 * @buf: pointer to buffer 369 * @buf_size: buffer size in bytes 370 * @grps_added: returns total number of groups added 371 * @cd: pointer to command details structure or NULL 372 * 373 * Add scheduling elements (0x0401) 374 */ 375 static enum ice_status 376 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 377 struct ice_aqc_add_elem *buf, u16 buf_size, 378 u16 *grps_added, struct ice_sq_cd *cd) 379 { 380 struct ice_aqc_add_move_delete_elem *cmd; 381 struct ice_aq_desc desc; 382 enum ice_status status; 383 384 cmd = &desc.params.add_move_delete_elem; 385 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_sched_elems); 386 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 387 388 cmd->num_grps_req = cpu_to_le16(grps_req); 389 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 390 if (!status && grps_added) 391 *grps_added = le16_to_cpu(cmd->num_grps_updated); 392 393 return status; 394 } 395 396 /** 397 * ice_suspend_resume_elems - suspend/resume scheduler elements 398 * @hw: pointer to the hw struct 399 * @elems_req: number of elements to suspend 400 * @buf: pointer to buffer 401 * @buf_size: buffer size in bytes 402 * @elems_ret: returns total number of elements suspended 403 * @cd: pointer to command details structure or NULL 404 * @cmd_code: command code for suspend or resume 405 * 406 * suspend/resume scheduler elements 407 */ 408 static enum ice_status 409 ice_suspend_resume_elems(struct ice_hw *hw, u16 elems_req, 410 struct ice_aqc_suspend_resume_elem *buf, u16 buf_size, 411 u16 *elems_ret, struct ice_sq_cd *cd, 412 enum ice_adminq_opc cmd_code) 413 { 414 struct ice_aqc_get_cfg_elem *cmd; 415 struct ice_aq_desc desc; 416 enum ice_status status; 417 418 cmd = &desc.params.get_update_elem; 419 ice_fill_dflt_direct_cmd_desc(&desc, cmd_code); 420 cmd->num_elem_req = cpu_to_le16(elems_req); 421 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 422 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 423 if (!status && elems_ret) 424 *elems_ret = le16_to_cpu(cmd->num_elem_resp); 425 return status; 426 } 427 428 /** 429 * ice_aq_suspend_sched_elems - suspend scheduler elements 430 * @hw: pointer to the hw struct 431 * @elems_req: number of elements to suspend 432 * @buf: pointer to buffer 433 * @buf_size: buffer size in bytes 434 * @elems_ret: returns total number of elements suspended 435 * @cd: pointer to command details structure or NULL 436 * 437 * Suspend scheduling elements (0x0409) 438 */ 439 static enum ice_status 440 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, 441 struct ice_aqc_suspend_resume_elem *buf, 442 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 443 { 444 return ice_suspend_resume_elems(hw, elems_req, buf, buf_size, elems_ret, 445 cd, ice_aqc_opc_suspend_sched_elems); 446 } 447 448 /** 449 * ice_aq_resume_sched_elems - resume scheduler elements 450 * @hw: pointer to the hw struct 451 * @elems_req: number of elements to resume 452 * @buf: pointer to buffer 453 * @buf_size: buffer size in bytes 454 * @elems_ret: returns total number of elements resumed 455 * @cd: pointer to command details structure or NULL 456 * 457 * resume scheduling elements (0x040A) 458 */ 459 static enum ice_status 460 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, 461 struct ice_aqc_suspend_resume_elem *buf, 462 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 463 { 464 return ice_suspend_resume_elems(hw, elems_req, buf, buf_size, elems_ret, 465 cd, ice_aqc_opc_resume_sched_elems); 466 } 467 468 /** 469 * ice_aq_query_sched_res - query scheduler resource 470 * @hw: pointer to the hw struct 471 * @buf_size: buffer size in bytes 472 * @buf: pointer to buffer 473 * @cd: pointer to command details structure or NULL 474 * 475 * Query scheduler resource allocation (0x0412) 476 */ 477 static enum ice_status 478 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 479 struct ice_aqc_query_txsched_res_resp *buf, 480 struct ice_sq_cd *cd) 481 { 482 struct ice_aq_desc desc; 483 484 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 485 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 486 } 487 488 /** 489 * ice_sched_suspend_resume_elems - suspend or resume hw nodes 490 * @hw: pointer to the hw struct 491 * @num_nodes: number of nodes 492 * @node_teids: array of node teids to be suspended or resumed 493 * @suspend: true means suspend / false means resume 494 * 495 * This function suspends or resumes hw nodes 496 */ 497 static enum ice_status 498 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 499 bool suspend) 500 { 501 struct ice_aqc_suspend_resume_elem *buf; 502 u16 i, buf_size, num_elem_ret = 0; 503 enum ice_status status; 504 505 buf_size = sizeof(*buf) * num_nodes; 506 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 507 if (!buf) 508 return ICE_ERR_NO_MEMORY; 509 510 for (i = 0; i < num_nodes; i++) 511 buf->teid[i] = cpu_to_le32(node_teids[i]); 512 513 if (suspend) 514 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 515 buf_size, &num_elem_ret, 516 NULL); 517 else 518 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 519 buf_size, &num_elem_ret, 520 NULL); 521 if (status || num_elem_ret != num_nodes) 522 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 523 524 devm_kfree(ice_hw_to_dev(hw), buf); 525 return status; 526 } 527 528 /** 529 * ice_sched_clear_tx_topo - clears the schduler tree nodes 530 * @pi: port information structure 531 * 532 * This function removes all the nodes from HW as well as from SW DB. 533 */ 534 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 535 { 536 struct ice_sched_agg_info *agg_info; 537 struct ice_sched_vsi_info *vsi_elem; 538 struct ice_sched_agg_info *atmp; 539 struct ice_sched_vsi_info *tmp; 540 struct ice_hw *hw; 541 542 if (!pi) 543 return; 544 545 hw = pi->hw; 546 547 list_for_each_entry_safe(agg_info, atmp, &pi->agg_list, list_entry) { 548 struct ice_sched_agg_vsi_info *agg_vsi_info; 549 struct ice_sched_agg_vsi_info *vtmp; 550 551 list_for_each_entry_safe(agg_vsi_info, vtmp, 552 &agg_info->agg_vsi_list, list_entry) { 553 list_del(&agg_vsi_info->list_entry); 554 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 555 } 556 } 557 558 /* remove the vsi list */ 559 list_for_each_entry_safe(vsi_elem, tmp, &pi->vsi_info_list, 560 list_entry) { 561 list_del(&vsi_elem->list_entry); 562 devm_kfree(ice_hw_to_dev(hw), vsi_elem); 563 } 564 565 if (pi->root) { 566 ice_free_sched_node(pi, pi->root); 567 pi->root = NULL; 568 } 569 } 570 571 /** 572 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 573 * @pi: port information structure 574 * 575 * Cleanup scheduling elements from SW DB 576 */ 577 static void ice_sched_clear_port(struct ice_port_info *pi) 578 { 579 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 580 return; 581 582 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 583 mutex_lock(&pi->sched_lock); 584 ice_sched_clear_tx_topo(pi); 585 mutex_unlock(&pi->sched_lock); 586 mutex_destroy(&pi->sched_lock); 587 } 588 589 /** 590 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 591 * @hw: pointer to the hw struct 592 * 593 * Cleanup scheduling elements from SW DB for all the ports 594 */ 595 void ice_sched_cleanup_all(struct ice_hw *hw) 596 { 597 if (!hw) 598 return; 599 600 if (hw->layer_info) { 601 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 602 hw->layer_info = NULL; 603 } 604 605 if (hw->port_info) 606 ice_sched_clear_port(hw->port_info); 607 608 hw->num_tx_sched_layers = 0; 609 hw->num_tx_sched_phys_layers = 0; 610 hw->flattened_layers = 0; 611 hw->max_cgds = 0; 612 } 613 614 /** 615 * ice_sched_create_vsi_info_entry - create an empty new VSI entry 616 * @pi: port information structure 617 * @vsi_id: VSI Id 618 * 619 * This function creates a new VSI entry and adds it to list 620 */ 621 static struct ice_sched_vsi_info * 622 ice_sched_create_vsi_info_entry(struct ice_port_info *pi, u16 vsi_id) 623 { 624 struct ice_sched_vsi_info *vsi_elem; 625 626 if (!pi) 627 return NULL; 628 629 vsi_elem = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*vsi_elem), 630 GFP_KERNEL); 631 if (!vsi_elem) 632 return NULL; 633 634 list_add(&vsi_elem->list_entry, &pi->vsi_info_list); 635 vsi_elem->vsi_id = vsi_id; 636 return vsi_elem; 637 } 638 639 /** 640 * ice_sched_add_elems - add nodes to hw and SW DB 641 * @pi: port information structure 642 * @tc_node: pointer to the branch node 643 * @parent: pointer to the parent node 644 * @layer: layer number to add nodes 645 * @num_nodes: number of nodes 646 * @num_nodes_added: pointer to num nodes added 647 * @first_node_teid: if new nodes are added then return the teid of first node 648 * 649 * This function add nodes to hw as well as to SW DB for a given layer 650 */ 651 static enum ice_status 652 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 653 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 654 u16 *num_nodes_added, u32 *first_node_teid) 655 { 656 struct ice_sched_node *prev, *new_node; 657 struct ice_aqc_add_elem *buf; 658 u16 i, num_groups_added = 0; 659 enum ice_status status = 0; 660 struct ice_hw *hw = pi->hw; 661 u16 buf_size; 662 u32 teid; 663 664 buf_size = sizeof(*buf) + sizeof(*buf->generic) * (num_nodes - 1); 665 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 666 if (!buf) 667 return ICE_ERR_NO_MEMORY; 668 669 buf->hdr.parent_teid = parent->info.node_teid; 670 buf->hdr.num_elems = cpu_to_le16(num_nodes); 671 for (i = 0; i < num_nodes; i++) { 672 buf->generic[i].parent_teid = parent->info.node_teid; 673 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 674 buf->generic[i].data.valid_sections = 675 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 676 ICE_AQC_ELEM_VALID_EIR; 677 buf->generic[i].data.generic = 0; 678 buf->generic[i].data.cir_bw.bw_profile_idx = 679 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 680 buf->generic[i].data.cir_bw.bw_alloc = 681 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 682 buf->generic[i].data.eir_bw.bw_profile_idx = 683 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 684 buf->generic[i].data.eir_bw.bw_alloc = 685 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 686 } 687 688 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 689 &num_groups_added, NULL); 690 if (status || num_groups_added != 1) { 691 ice_debug(hw, ICE_DBG_SCHED, "add elements failed\n"); 692 devm_kfree(ice_hw_to_dev(hw), buf); 693 return ICE_ERR_CFG; 694 } 695 696 *num_nodes_added = num_nodes; 697 /* add nodes to the SW DB */ 698 for (i = 0; i < num_nodes; i++) { 699 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 700 if (status) { 701 ice_debug(hw, ICE_DBG_SCHED, 702 "add nodes in SW DB failed status =%d\n", 703 status); 704 break; 705 } 706 707 teid = le32_to_cpu(buf->generic[i].node_teid); 708 new_node = ice_sched_find_node_by_teid(parent, teid); 709 if (!new_node) { 710 ice_debug(hw, ICE_DBG_SCHED, 711 "Node is missing for teid =%d\n", teid); 712 break; 713 } 714 715 new_node->sibling = NULL; 716 new_node->tc_num = tc_node->tc_num; 717 718 /* add it to previous node sibling pointer */ 719 /* Note: siblings are not linked across branches */ 720 prev = ice_sched_get_first_node(hw, tc_node, layer); 721 if (prev && prev != new_node) { 722 while (prev->sibling) 723 prev = prev->sibling; 724 prev->sibling = new_node; 725 } 726 727 if (i == 0) 728 *first_node_teid = teid; 729 } 730 731 devm_kfree(ice_hw_to_dev(hw), buf); 732 return status; 733 } 734 735 /** 736 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 737 * @pi: port information structure 738 * @tc_node: pointer to TC node 739 * @parent: pointer to parent node 740 * @layer: layer number to add nodes 741 * @num_nodes: number of nodes to be added 742 * @first_node_teid: pointer to the first node teid 743 * @num_nodes_added: pointer to number of nodes added 744 * 745 * This function add nodes to a given layer. 746 */ 747 static enum ice_status 748 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 749 struct ice_sched_node *tc_node, 750 struct ice_sched_node *parent, u8 layer, 751 u16 num_nodes, u32 *first_node_teid, 752 u16 *num_nodes_added) 753 { 754 u32 *first_teid_ptr = first_node_teid; 755 u16 new_num_nodes, max_child_nodes; 756 enum ice_status status = 0; 757 struct ice_hw *hw = pi->hw; 758 u16 num_added = 0; 759 u32 temp; 760 761 *num_nodes_added = 0; 762 763 if (!num_nodes) 764 return status; 765 766 if (!parent || layer < hw->sw_entry_point_layer) 767 return ICE_ERR_PARAM; 768 769 /* max children per node per layer */ 770 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 771 772 /* current number of children + required nodes exceed max children ? */ 773 if ((parent->num_children + num_nodes) > max_child_nodes) { 774 /* Fail if the parent is a TC node */ 775 if (parent == tc_node) 776 return ICE_ERR_CFG; 777 778 /* utilize all the spaces if the parent is not full */ 779 if (parent->num_children < max_child_nodes) { 780 new_num_nodes = max_child_nodes - parent->num_children; 781 /* this recursion is intentional, and wouldn't 782 * go more than 2 calls 783 */ 784 status = ice_sched_add_nodes_to_layer(pi, tc_node, 785 parent, layer, 786 new_num_nodes, 787 first_node_teid, 788 &num_added); 789 if (status) 790 return status; 791 792 *num_nodes_added += num_added; 793 } 794 /* Don't modify the first node teid memory if the first node was 795 * added already in the above call. Instead send some temp 796 * memory for all other recursive calls. 797 */ 798 if (num_added) 799 first_teid_ptr = &temp; 800 801 new_num_nodes = num_nodes - num_added; 802 803 /* This parent is full, try the next sibling */ 804 parent = parent->sibling; 805 806 /* this recursion is intentional, for 1024 queues 807 * per VSI, it goes max of 16 iterations. 808 * 1024 / 8 = 128 layer 8 nodes 809 * 128 /8 = 16 (add 8 nodes per iteration) 810 */ 811 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 812 layer, new_num_nodes, 813 first_teid_ptr, 814 &num_added); 815 *num_nodes_added += num_added; 816 return status; 817 } 818 819 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 820 num_nodes_added, first_node_teid); 821 return status; 822 } 823 824 /** 825 * ice_sched_get_qgrp_layer - get the current queue group layer number 826 * @hw: pointer to the hw struct 827 * 828 * This function returns the current queue group layer number 829 */ 830 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 831 { 832 /* It's always total layers - 1, the array is 0 relative so -2 */ 833 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 834 } 835 836 /** 837 * ice_sched_get_vsi_layer - get the current VSI layer number 838 * @hw: pointer to the hw struct 839 * 840 * This function returns the current VSI layer number 841 */ 842 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 843 { 844 /* Num Layers VSI layer 845 * 9 6 846 * 7 4 847 * 5 or less sw_entry_point_layer 848 */ 849 /* calculate the vsi layer based on number of layers. */ 850 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 851 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 852 853 if (layer > hw->sw_entry_point_layer) 854 return layer; 855 } 856 return hw->sw_entry_point_layer; 857 } 858 859 /** 860 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 861 * @pi: port information structure 862 * 863 * This function removes the leaf node that was created by the FW 864 * during initialization 865 */ 866 static void 867 ice_rm_dflt_leaf_node(struct ice_port_info *pi) 868 { 869 struct ice_sched_node *node; 870 871 node = pi->root; 872 while (node) { 873 if (!node->num_children) 874 break; 875 node = node->children[0]; 876 } 877 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 878 u32 teid = le32_to_cpu(node->info.node_teid); 879 enum ice_status status; 880 881 /* remove the default leaf node */ 882 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 883 if (!status) 884 ice_free_sched_node(pi, node); 885 } 886 } 887 888 /** 889 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 890 * @pi: port information structure 891 * 892 * This function frees all the nodes except root and TC that were created by 893 * the FW during initialization 894 */ 895 static void 896 ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 897 { 898 struct ice_sched_node *node; 899 900 ice_rm_dflt_leaf_node(pi); 901 902 /* remove the default nodes except TC and root nodes */ 903 node = pi->root; 904 while (node) { 905 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 906 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 907 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 908 ice_free_sched_node(pi, node); 909 break; 910 } 911 912 if (!node->num_children) 913 break; 914 node = node->children[0]; 915 } 916 } 917 918 /** 919 * ice_sched_init_port - Initialize scheduler by querying information from FW 920 * @pi: port info structure for the tree to cleanup 921 * 922 * This function is the initial call to find the total number of Tx scheduler 923 * resources, default topology created by firmware and storing the information 924 * in SW DB. 925 */ 926 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 927 { 928 struct ice_aqc_get_topo_elem *buf; 929 enum ice_status status; 930 struct ice_hw *hw; 931 u8 num_branches; 932 u16 num_elems; 933 u8 i, j; 934 935 if (!pi) 936 return ICE_ERR_PARAM; 937 hw = pi->hw; 938 939 /* Query the Default Topology from FW */ 940 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 941 if (!buf) 942 return ICE_ERR_NO_MEMORY; 943 944 /* Query default scheduling tree topology */ 945 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 946 &num_branches, NULL); 947 if (status) 948 goto err_init_port; 949 950 /* num_branches should be between 1-8 */ 951 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 952 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 953 num_branches); 954 status = ICE_ERR_PARAM; 955 goto err_init_port; 956 } 957 958 /* get the number of elements on the default/first branch */ 959 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 960 961 /* num_elems should always be between 1-9 */ 962 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 963 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 964 num_elems); 965 status = ICE_ERR_PARAM; 966 goto err_init_port; 967 } 968 969 /* If the last node is a leaf node then the index of the Q group 970 * layer is two less than the number of elements. 971 */ 972 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 973 ICE_AQC_ELEM_TYPE_LEAF) 974 pi->last_node_teid = 975 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 976 else 977 pi->last_node_teid = 978 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 979 980 /* Insert the Tx Sched root node */ 981 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 982 if (status) 983 goto err_init_port; 984 985 /* Parse the default tree and cache the information */ 986 for (i = 0; i < num_branches; i++) { 987 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 988 989 /* Skip root element as already inserted */ 990 for (j = 1; j < num_elems; j++) { 991 /* update the sw entry point */ 992 if (buf[0].generic[j].data.elem_type == 993 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 994 hw->sw_entry_point_layer = j; 995 996 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 997 if (status) 998 goto err_init_port; 999 } 1000 } 1001 1002 /* Remove the default nodes. */ 1003 if (pi->root) 1004 ice_sched_rm_dflt_nodes(pi); 1005 1006 /* initialize the port for handling the scheduler tree */ 1007 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1008 mutex_init(&pi->sched_lock); 1009 INIT_LIST_HEAD(&pi->agg_list); 1010 INIT_LIST_HEAD(&pi->vsi_info_list); 1011 1012 err_init_port: 1013 if (status && pi->root) { 1014 ice_free_sched_node(pi, pi->root); 1015 pi->root = NULL; 1016 } 1017 1018 devm_kfree(ice_hw_to_dev(hw), buf); 1019 return status; 1020 } 1021 1022 /** 1023 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1024 * @hw: pointer to the HW struct 1025 * 1026 * query FW for allocated scheduler resources and store in HW struct 1027 */ 1028 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1029 { 1030 struct ice_aqc_query_txsched_res_resp *buf; 1031 enum ice_status status = 0; 1032 __le16 max_sibl; 1033 u8 i; 1034 1035 if (hw->layer_info) 1036 return status; 1037 1038 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1039 if (!buf) 1040 return ICE_ERR_NO_MEMORY; 1041 1042 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1043 if (status) 1044 goto sched_query_out; 1045 1046 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1047 hw->num_tx_sched_phys_layers = 1048 le16_to_cpu(buf->sched_props.phys_levels); 1049 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1050 hw->max_cgds = buf->sched_props.max_pf_cgds; 1051 1052 /* max sibling group size of current layer refers to the max children 1053 * of the below layer node. 1054 * layer 1 node max children will be layer 2 max sibling group size 1055 * layer 2 node max children will be layer 3 max sibling group size 1056 * and so on. This array will be populated from root (index 0) to 1057 * qgroup layer 7. Leaf node has no children. 1058 */ 1059 for (i = 0; i < hw->num_tx_sched_layers; i++) { 1060 max_sibl = buf->layer_props[i].max_sibl_grp_sz; 1061 hw->max_children[i] = le16_to_cpu(max_sibl); 1062 } 1063 1064 hw->layer_info = (struct ice_aqc_layer_props *) 1065 devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1066 (hw->num_tx_sched_layers * 1067 sizeof(*hw->layer_info)), 1068 GFP_KERNEL); 1069 if (!hw->layer_info) { 1070 status = ICE_ERR_NO_MEMORY; 1071 goto sched_query_out; 1072 } 1073 1074 sched_query_out: 1075 devm_kfree(ice_hw_to_dev(hw), buf); 1076 return status; 1077 } 1078 1079 /** 1080 * ice_sched_get_vsi_info_entry - Get the vsi entry list for given vsi_id 1081 * @pi: port information structure 1082 * @vsi_id: vsi id 1083 * 1084 * This function retrieves the vsi list for the given vsi id 1085 */ 1086 static struct ice_sched_vsi_info * 1087 ice_sched_get_vsi_info_entry(struct ice_port_info *pi, u16 vsi_id) 1088 { 1089 struct ice_sched_vsi_info *list_elem; 1090 1091 if (!pi) 1092 return NULL; 1093 1094 list_for_each_entry(list_elem, &pi->vsi_info_list, list_entry) 1095 if (list_elem->vsi_id == vsi_id) 1096 return list_elem; 1097 return NULL; 1098 } 1099 1100 /** 1101 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1102 * @hw: pointer to the hw struct 1103 * @base: pointer to the base node 1104 * @node: pointer to the node to search 1105 * 1106 * This function checks whether a given node is part of the base node 1107 * subtree or not 1108 */ 1109 static bool 1110 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1111 struct ice_sched_node *node) 1112 { 1113 u8 i; 1114 1115 for (i = 0; i < base->num_children; i++) { 1116 struct ice_sched_node *child = base->children[i]; 1117 1118 if (node == child) 1119 return true; 1120 1121 if (child->tx_sched_layer > node->tx_sched_layer) 1122 return false; 1123 1124 /* this recursion is intentional, and wouldn't 1125 * go more than 8 calls 1126 */ 1127 if (ice_sched_find_node_in_subtree(hw, child, node)) 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 /** 1134 * ice_sched_get_free_qparent - Get a free lan or rdma q group node 1135 * @pi: port information structure 1136 * @vsi_id: vsi id 1137 * @tc: branch number 1138 * @owner: lan or rdma 1139 * 1140 * This function retrieves a free lan or rdma q group node 1141 */ 1142 struct ice_sched_node * 1143 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_id, u8 tc, 1144 u8 owner) 1145 { 1146 struct ice_sched_node *vsi_node, *qgrp_node = NULL; 1147 struct ice_sched_vsi_info *list_elem; 1148 u16 max_children; 1149 u8 qgrp_layer; 1150 1151 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1152 max_children = pi->hw->max_children[qgrp_layer]; 1153 1154 list_elem = ice_sched_get_vsi_info_entry(pi, vsi_id); 1155 if (!list_elem) 1156 goto lan_q_exit; 1157 1158 vsi_node = list_elem->vsi_node[tc]; 1159 1160 /* validate invalid VSI id */ 1161 if (!vsi_node) 1162 goto lan_q_exit; 1163 1164 /* get the first q group node from VSI sub-tree */ 1165 qgrp_node = ice_sched_get_first_node(pi->hw, vsi_node, qgrp_layer); 1166 while (qgrp_node) { 1167 /* make sure the qgroup node is part of the VSI subtree */ 1168 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1169 if (qgrp_node->num_children < max_children && 1170 qgrp_node->owner == owner) 1171 break; 1172 qgrp_node = qgrp_node->sibling; 1173 } 1174 1175 lan_q_exit: 1176 return qgrp_node; 1177 } 1178 1179 /** 1180 * ice_sched_get_vsi_node - Get a VSI node based on VSI id 1181 * @hw: pointer to the hw struct 1182 * @tc_node: pointer to the TC node 1183 * @vsi_id: VSI id 1184 * 1185 * This function retrieves a VSI node for a given VSI id from a given 1186 * TC branch 1187 */ 1188 static struct ice_sched_node * 1189 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, 1190 u16 vsi_id) 1191 { 1192 struct ice_sched_node *node; 1193 u8 vsi_layer; 1194 1195 vsi_layer = ice_sched_get_vsi_layer(hw); 1196 node = ice_sched_get_first_node(hw, tc_node, vsi_layer); 1197 1198 /* Check whether it already exists */ 1199 while (node) { 1200 if (node->vsi_id == vsi_id) 1201 return node; 1202 node = node->sibling; 1203 } 1204 1205 return node; 1206 } 1207 1208 /** 1209 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1210 * @hw: pointer to the hw struct 1211 * @num_qs: number of queues 1212 * @num_nodes: num nodes array 1213 * 1214 * This function calculates the number of VSI child nodes based on the 1215 * number of queues. 1216 */ 1217 static void 1218 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1219 { 1220 u16 num = num_qs; 1221 u8 i, qgl, vsil; 1222 1223 qgl = ice_sched_get_qgrp_layer(hw); 1224 vsil = ice_sched_get_vsi_layer(hw); 1225 1226 /* calculate num nodes from q group to VSI layer */ 1227 for (i = qgl; i > vsil; i--) { 1228 /* round to the next integer if there is a remainder */ 1229 num = DIV_ROUND_UP(num, hw->max_children[i]); 1230 1231 /* need at least one node */ 1232 num_nodes[i] = num ? num : 1; 1233 } 1234 } 1235 1236 /** 1237 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1238 * @pi: port information structure 1239 * @vsi_id: VSI id 1240 * @tc_node: pointer to the TC node 1241 * @num_nodes: pointer to the num nodes that needs to be added per layer 1242 * @owner: node owner (lan or rdma) 1243 * 1244 * This function adds the VSI child nodes to tree. It gets called for 1245 * lan and rdma separately. 1246 */ 1247 static enum ice_status 1248 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_id, 1249 struct ice_sched_node *tc_node, u16 *num_nodes, 1250 u8 owner) 1251 { 1252 struct ice_sched_node *parent, *node; 1253 struct ice_hw *hw = pi->hw; 1254 enum ice_status status; 1255 u32 first_node_teid; 1256 u16 num_added = 0; 1257 u8 i, qgl, vsil; 1258 1259 qgl = ice_sched_get_qgrp_layer(hw); 1260 vsil = ice_sched_get_vsi_layer(hw); 1261 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_id); 1262 for (i = vsil + 1; i <= qgl; i++) { 1263 if (!parent) 1264 return ICE_ERR_CFG; 1265 1266 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1267 num_nodes[i], 1268 &first_node_teid, 1269 &num_added); 1270 if (status || num_nodes[i] != num_added) 1271 return ICE_ERR_CFG; 1272 1273 /* The newly added node can be a new parent for the next 1274 * layer nodes 1275 */ 1276 if (num_added) { 1277 parent = ice_sched_find_node_by_teid(tc_node, 1278 first_node_teid); 1279 node = parent; 1280 while (node) { 1281 node->owner = owner; 1282 node = node->sibling; 1283 } 1284 } else { 1285 parent = parent->children[0]; 1286 } 1287 } 1288 1289 return 0; 1290 } 1291 1292 /** 1293 * ice_sched_rm_vsi_child_nodes - remove VSI child nodes from the tree 1294 * @pi: port information structure 1295 * @vsi_node: pointer to the VSI node 1296 * @num_nodes: pointer to the num nodes that needs to be removed per layer 1297 * @owner: node owner (lan or rdma) 1298 * 1299 * This function removes the VSI child nodes from the tree. It gets called for 1300 * lan and rdma separately. 1301 */ 1302 static void 1303 ice_sched_rm_vsi_child_nodes(struct ice_port_info *pi, 1304 struct ice_sched_node *vsi_node, u16 *num_nodes, 1305 u8 owner) 1306 { 1307 struct ice_sched_node *node, *next; 1308 u8 i, qgl, vsil; 1309 u16 num; 1310 1311 qgl = ice_sched_get_qgrp_layer(pi->hw); 1312 vsil = ice_sched_get_vsi_layer(pi->hw); 1313 1314 for (i = qgl; i > vsil; i--) { 1315 num = num_nodes[i]; 1316 node = ice_sched_get_first_node(pi->hw, vsi_node, i); 1317 while (node && num) { 1318 next = node->sibling; 1319 if (node->owner == owner && !node->num_children) { 1320 ice_free_sched_node(pi, node); 1321 num--; 1322 } 1323 node = next; 1324 } 1325 } 1326 } 1327 1328 /** 1329 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1330 * @hw: pointer to the hw struct 1331 * @tc_node: pointer to TC node 1332 * @num_nodes: pointer to num nodes array 1333 * 1334 * This function calculates the number of supported nodes needed to add this 1335 * VSI into tx tree including the VSI, parent and intermediate nodes in below 1336 * layers 1337 */ 1338 static void 1339 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, 1340 struct ice_sched_node *tc_node, u16 *num_nodes) 1341 { 1342 struct ice_sched_node *node; 1343 u8 vsil; 1344 int i; 1345 1346 vsil = ice_sched_get_vsi_layer(hw); 1347 for (i = vsil; i >= hw->sw_entry_point_layer; i--) 1348 /* Add intermediate nodes if TC has no children and 1349 * need at least one node for VSI 1350 */ 1351 if (!tc_node->num_children || i == vsil) { 1352 num_nodes[i]++; 1353 } else { 1354 /* If intermediate nodes are reached max children 1355 * then add a new one. 1356 */ 1357 node = ice_sched_get_first_node(hw, tc_node, (u8)i); 1358 /* scan all the siblings */ 1359 while (node) { 1360 if (node->num_children < hw->max_children[i]) 1361 break; 1362 node = node->sibling; 1363 } 1364 1365 /* all the nodes are full, allocate a new one */ 1366 if (!node) 1367 num_nodes[i]++; 1368 } 1369 } 1370 1371 /** 1372 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into tx tree 1373 * @pi: port information structure 1374 * @vsi_id: VSI Id 1375 * @tc_node: pointer to TC node 1376 * @num_nodes: pointer to num nodes array 1377 * 1378 * This function adds the VSI supported nodes into tx tree including the 1379 * VSI, its parent and intermediate nodes in below layers 1380 */ 1381 static enum ice_status 1382 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_id, 1383 struct ice_sched_node *tc_node, u16 *num_nodes) 1384 { 1385 struct ice_sched_node *parent = tc_node; 1386 enum ice_status status; 1387 u32 first_node_teid; 1388 u16 num_added = 0; 1389 u8 i, vsil; 1390 1391 if (!pi) 1392 return ICE_ERR_PARAM; 1393 1394 vsil = ice_sched_get_vsi_layer(pi->hw); 1395 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1396 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1397 i, num_nodes[i], 1398 &first_node_teid, 1399 &num_added); 1400 if (status || num_nodes[i] != num_added) 1401 return ICE_ERR_CFG; 1402 1403 /* The newly added node can be a new parent for the next 1404 * layer nodes 1405 */ 1406 if (num_added) 1407 parent = ice_sched_find_node_by_teid(tc_node, 1408 first_node_teid); 1409 else 1410 parent = parent->children[0]; 1411 1412 if (!parent) 1413 return ICE_ERR_CFG; 1414 1415 if (i == vsil) 1416 parent->vsi_id = vsi_id; 1417 } 1418 1419 return 0; 1420 } 1421 1422 /** 1423 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1424 * @pi: port information structure 1425 * @vsi_id: VSI Id 1426 * @tc: TC number 1427 * 1428 * This function adds a new VSI into scheduler tree 1429 */ 1430 static enum ice_status 1431 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_id, u8 tc) 1432 { 1433 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1434 struct ice_sched_node *tc_node; 1435 struct ice_hw *hw = pi->hw; 1436 1437 tc_node = ice_sched_get_tc_node(pi, tc); 1438 if (!tc_node) 1439 return ICE_ERR_PARAM; 1440 1441 /* calculate number of supported nodes needed for this VSI */ 1442 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); 1443 1444 /* add vsi supported nodes to tc subtree */ 1445 return ice_sched_add_vsi_support_nodes(pi, vsi_id, tc_node, num_nodes); 1446 } 1447 1448 /** 1449 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1450 * @pi: port information structure 1451 * @vsi_id: VSI Id 1452 * @tc: TC number 1453 * @new_numqs: new number of max queues 1454 * @owner: owner of this subtree 1455 * 1456 * This function updates the VSI child nodes based on the number of queues 1457 */ 1458 static enum ice_status 1459 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_id, u8 tc, 1460 u16 new_numqs, u8 owner) 1461 { 1462 u16 prev_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1463 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1464 struct ice_sched_node *vsi_node; 1465 struct ice_sched_node *tc_node; 1466 struct ice_sched_vsi_info *vsi; 1467 enum ice_status status = 0; 1468 struct ice_hw *hw = pi->hw; 1469 u16 prev_numqs; 1470 u8 i; 1471 1472 tc_node = ice_sched_get_tc_node(pi, tc); 1473 if (!tc_node) 1474 return ICE_ERR_CFG; 1475 1476 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_id); 1477 if (!vsi_node) 1478 return ICE_ERR_CFG; 1479 1480 vsi = ice_sched_get_vsi_info_entry(pi, vsi_id); 1481 if (!vsi) 1482 return ICE_ERR_CFG; 1483 1484 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1485 prev_numqs = vsi->max_lanq[tc]; 1486 else 1487 return ICE_ERR_PARAM; 1488 1489 /* num queues are not changed */ 1490 if (prev_numqs == new_numqs) 1491 return status; 1492 1493 /* calculate number of nodes based on prev/new number of qs */ 1494 if (prev_numqs) 1495 ice_sched_calc_vsi_child_nodes(hw, prev_numqs, prev_num_nodes); 1496 1497 if (new_numqs) 1498 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1499 1500 if (prev_numqs > new_numqs) { 1501 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1502 new_num_nodes[i] = prev_num_nodes[i] - new_num_nodes[i]; 1503 1504 ice_sched_rm_vsi_child_nodes(pi, vsi_node, new_num_nodes, 1505 owner); 1506 } else { 1507 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1508 new_num_nodes[i] -= prev_num_nodes[i]; 1509 1510 status = ice_sched_add_vsi_child_nodes(pi, vsi_id, tc_node, 1511 new_num_nodes, owner); 1512 if (status) 1513 return status; 1514 } 1515 1516 vsi->max_lanq[tc] = new_numqs; 1517 1518 return status; 1519 } 1520 1521 /** 1522 * ice_sched_cfg_vsi - configure the new/exisiting VSI 1523 * @pi: port information structure 1524 * @vsi_id: VSI Id 1525 * @tc: TC number 1526 * @maxqs: max number of queues 1527 * @owner: lan or rdma 1528 * @enable: TC enabled or disabled 1529 * 1530 * This function adds/updates VSI nodes based on the number of queues. If TC is 1531 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1532 * disabled then suspend the VSI if it is not already. 1533 */ 1534 enum ice_status 1535 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_id, u8 tc, u16 maxqs, 1536 u8 owner, bool enable) 1537 { 1538 struct ice_sched_node *vsi_node, *tc_node; 1539 struct ice_sched_vsi_info *vsi; 1540 enum ice_status status = 0; 1541 struct ice_hw *hw = pi->hw; 1542 1543 tc_node = ice_sched_get_tc_node(pi, tc); 1544 if (!tc_node) 1545 return ICE_ERR_PARAM; 1546 1547 vsi = ice_sched_get_vsi_info_entry(pi, vsi_id); 1548 if (!vsi) 1549 vsi = ice_sched_create_vsi_info_entry(pi, vsi_id); 1550 if (!vsi) 1551 return ICE_ERR_NO_MEMORY; 1552 1553 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_id); 1554 1555 /* suspend the VSI if tc is not enabled */ 1556 if (!enable) { 1557 if (vsi_node && vsi_node->in_use) { 1558 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1559 1560 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1561 true); 1562 if (!status) 1563 vsi_node->in_use = false; 1564 } 1565 return status; 1566 } 1567 1568 /* TC is enabled, if it is a new VSI then add it to the tree */ 1569 if (!vsi_node) { 1570 status = ice_sched_add_vsi_to_topo(pi, vsi_id, tc); 1571 if (status) 1572 return status; 1573 1574 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_id); 1575 if (!vsi_node) 1576 return ICE_ERR_CFG; 1577 1578 vsi->vsi_node[tc] = vsi_node; 1579 vsi_node->in_use = true; 1580 } 1581 1582 /* update the VSI child nodes */ 1583 status = ice_sched_update_vsi_child_nodes(pi, vsi_id, tc, maxqs, owner); 1584 if (status) 1585 return status; 1586 1587 /* TC is enabled, resume the VSI if it is in the suspend state */ 1588 if (!vsi_node->in_use) { 1589 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1590 1591 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1592 if (!status) 1593 vsi_node->in_use = true; 1594 } 1595 1596 return status; 1597 } 1598