1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static int 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return -EINVAL; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return -ENOMEM; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return -ENOMEM; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static int 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 int status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 int 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 int 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_aqc_txsched_elem_data elem; 153 struct ice_sched_node *parent; 154 struct ice_sched_node *node; 155 struct ice_hw *hw; 156 int status; 157 158 if (!pi) 159 return -EINVAL; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 168 le32_to_cpu(info->parent_teid)); 169 return -EINVAL; 170 } 171 172 /* query the current node information from FW before adding it 173 * to the SW DB 174 */ 175 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 176 if (status) 177 return status; 178 179 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 180 if (!node) 181 return -ENOMEM; 182 if (hw->max_children[layer]) { 183 /* coverity[suspicious_sizeof] */ 184 node->children = devm_kcalloc(ice_hw_to_dev(hw), 185 hw->max_children[layer], 186 sizeof(*node), GFP_KERNEL); 187 if (!node->children) { 188 devm_kfree(ice_hw_to_dev(hw), node); 189 return -ENOMEM; 190 } 191 } 192 193 node->in_use = true; 194 node->parent = parent; 195 node->tx_sched_layer = layer; 196 parent->children[parent->num_children++] = node; 197 node->info = elem; 198 return 0; 199 } 200 201 /** 202 * ice_aq_delete_sched_elems - delete scheduler elements 203 * @hw: pointer to the HW struct 204 * @grps_req: number of groups to delete 205 * @buf: pointer to buffer 206 * @buf_size: buffer size in bytes 207 * @grps_del: returns total number of elements deleted 208 * @cd: pointer to command details structure or NULL 209 * 210 * Delete scheduling elements (0x040F) 211 */ 212 static int 213 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 214 struct ice_aqc_delete_elem *buf, u16 buf_size, 215 u16 *grps_del, struct ice_sq_cd *cd) 216 { 217 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 218 grps_req, (void *)buf, buf_size, 219 grps_del, cd); 220 } 221 222 /** 223 * ice_sched_remove_elems - remove nodes from HW 224 * @hw: pointer to the HW struct 225 * @parent: pointer to the parent node 226 * @num_nodes: number of nodes 227 * @node_teids: array of node teids to be deleted 228 * 229 * This function remove nodes from HW 230 */ 231 static int 232 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 233 u16 num_nodes, u32 *node_teids) 234 { 235 struct ice_aqc_delete_elem *buf; 236 u16 i, num_groups_removed = 0; 237 u16 buf_size; 238 int status; 239 240 buf_size = struct_size(buf, teid, num_nodes); 241 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 242 if (!buf) 243 return -ENOMEM; 244 245 buf->hdr.parent_teid = parent->info.node_teid; 246 buf->hdr.num_elems = cpu_to_le16(num_nodes); 247 for (i = 0; i < num_nodes; i++) 248 buf->teid[i] = cpu_to_le32(node_teids[i]); 249 250 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 251 &num_groups_removed, NULL); 252 if (status || num_groups_removed != 1) 253 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 254 hw->adminq.sq_last_status); 255 256 devm_kfree(ice_hw_to_dev(hw), buf); 257 return status; 258 } 259 260 /** 261 * ice_sched_get_first_node - get the first node of the given layer 262 * @pi: port information structure 263 * @parent: pointer the base node of the subtree 264 * @layer: layer number 265 * 266 * This function retrieves the first node of the given layer from the subtree 267 */ 268 static struct ice_sched_node * 269 ice_sched_get_first_node(struct ice_port_info *pi, 270 struct ice_sched_node *parent, u8 layer) 271 { 272 return pi->sib_head[parent->tc_num][layer]; 273 } 274 275 /** 276 * ice_sched_get_tc_node - get pointer to TC node 277 * @pi: port information structure 278 * @tc: TC number 279 * 280 * This function returns the TC node pointer 281 */ 282 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 283 { 284 u8 i; 285 286 if (!pi || !pi->root) 287 return NULL; 288 for (i = 0; i < pi->root->num_children; i++) 289 if (pi->root->children[i]->tc_num == tc) 290 return pi->root->children[i]; 291 return NULL; 292 } 293 294 /** 295 * ice_free_sched_node - Free a Tx scheduler node from SW DB 296 * @pi: port information structure 297 * @node: pointer to the ice_sched_node struct 298 * 299 * This function frees up a node from SW DB as well as from HW 300 * 301 * This function needs to be called with the port_info->sched_lock held 302 */ 303 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 304 { 305 struct ice_sched_node *parent; 306 struct ice_hw *hw = pi->hw; 307 u8 i, j; 308 309 /* Free the children before freeing up the parent node 310 * The parent array is updated below and that shifts the nodes 311 * in the array. So always pick the first child if num children > 0 312 */ 313 while (node->num_children) 314 ice_free_sched_node(pi, node->children[0]); 315 316 /* Leaf, TC and root nodes can't be deleted by SW */ 317 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 318 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 321 u32 teid = le32_to_cpu(node->info.node_teid); 322 323 ice_sched_remove_elems(hw, node->parent, 1, &teid); 324 } 325 parent = node->parent; 326 /* root has no parent */ 327 if (parent) { 328 struct ice_sched_node *p; 329 330 /* update the parent */ 331 for (i = 0; i < parent->num_children; i++) 332 if (parent->children[i] == node) { 333 for (j = i + 1; j < parent->num_children; j++) 334 parent->children[j - 1] = 335 parent->children[j]; 336 parent->num_children--; 337 break; 338 } 339 340 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 341 while (p) { 342 if (p->sibling == node) { 343 p->sibling = node->sibling; 344 break; 345 } 346 p = p->sibling; 347 } 348 349 /* update the sibling head if head is getting removed */ 350 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 351 pi->sib_head[node->tc_num][node->tx_sched_layer] = 352 node->sibling; 353 } 354 355 /* leaf nodes have no children */ 356 if (node->children) 357 devm_kfree(ice_hw_to_dev(hw), node->children); 358 devm_kfree(ice_hw_to_dev(hw), node); 359 } 360 361 /** 362 * ice_aq_get_dflt_topo - gets default scheduler topology 363 * @hw: pointer to the HW struct 364 * @lport: logical port number 365 * @buf: pointer to buffer 366 * @buf_size: buffer size in bytes 367 * @num_branches: returns total number of queue to port branches 368 * @cd: pointer to command details structure or NULL 369 * 370 * Get default scheduler topology (0x400) 371 */ 372 static int 373 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 374 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 375 u8 *num_branches, struct ice_sq_cd *cd) 376 { 377 struct ice_aqc_get_topo *cmd; 378 struct ice_aq_desc desc; 379 int status; 380 381 cmd = &desc.params.get_topo; 382 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 383 cmd->port_num = lport; 384 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 385 if (!status && num_branches) 386 *num_branches = cmd->num_branches; 387 388 return status; 389 } 390 391 /** 392 * ice_aq_add_sched_elems - adds scheduling element 393 * @hw: pointer to the HW struct 394 * @grps_req: the number of groups that are requested to be added 395 * @buf: pointer to buffer 396 * @buf_size: buffer size in bytes 397 * @grps_added: returns total number of groups added 398 * @cd: pointer to command details structure or NULL 399 * 400 * Add scheduling elements (0x0401) 401 */ 402 static int 403 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 404 struct ice_aqc_add_elem *buf, u16 buf_size, 405 u16 *grps_added, struct ice_sq_cd *cd) 406 { 407 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 408 grps_req, (void *)buf, buf_size, 409 grps_added, cd); 410 } 411 412 /** 413 * ice_aq_cfg_sched_elems - configures scheduler elements 414 * @hw: pointer to the HW struct 415 * @elems_req: number of elements to configure 416 * @buf: pointer to buffer 417 * @buf_size: buffer size in bytes 418 * @elems_cfgd: returns total number of elements configured 419 * @cd: pointer to command details structure or NULL 420 * 421 * Configure scheduling elements (0x0403) 422 */ 423 static int 424 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 425 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 426 u16 *elems_cfgd, struct ice_sq_cd *cd) 427 { 428 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 429 elems_req, (void *)buf, buf_size, 430 elems_cfgd, cd); 431 } 432 433 /** 434 * ice_aq_move_sched_elems - move scheduler elements 435 * @hw: pointer to the HW struct 436 * @grps_req: number of groups to move 437 * @buf: pointer to buffer 438 * @buf_size: buffer size in bytes 439 * @grps_movd: returns total number of groups moved 440 * @cd: pointer to command details structure or NULL 441 * 442 * Move scheduling elements (0x0408) 443 */ 444 static int 445 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 446 struct ice_aqc_move_elem *buf, u16 buf_size, 447 u16 *grps_movd, struct ice_sq_cd *cd) 448 { 449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 450 grps_req, (void *)buf, buf_size, 451 grps_movd, cd); 452 } 453 454 /** 455 * ice_aq_suspend_sched_elems - suspend scheduler elements 456 * @hw: pointer to the HW struct 457 * @elems_req: number of elements to suspend 458 * @buf: pointer to buffer 459 * @buf_size: buffer size in bytes 460 * @elems_ret: returns total number of elements suspended 461 * @cd: pointer to command details structure or NULL 462 * 463 * Suspend scheduling elements (0x0409) 464 */ 465 static int 466 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 467 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 468 { 469 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 470 elems_req, (void *)buf, buf_size, 471 elems_ret, cd); 472 } 473 474 /** 475 * ice_aq_resume_sched_elems - resume scheduler elements 476 * @hw: pointer to the HW struct 477 * @elems_req: number of elements to resume 478 * @buf: pointer to buffer 479 * @buf_size: buffer size in bytes 480 * @elems_ret: returns total number of elements resumed 481 * @cd: pointer to command details structure or NULL 482 * 483 * resume scheduling elements (0x040A) 484 */ 485 static int 486 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 487 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 488 { 489 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 490 elems_req, (void *)buf, buf_size, 491 elems_ret, cd); 492 } 493 494 /** 495 * ice_aq_query_sched_res - query scheduler resource 496 * @hw: pointer to the HW struct 497 * @buf_size: buffer size in bytes 498 * @buf: pointer to buffer 499 * @cd: pointer to command details structure or NULL 500 * 501 * Query scheduler resource allocation (0x0412) 502 */ 503 static int 504 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 505 struct ice_aqc_query_txsched_res_resp *buf, 506 struct ice_sq_cd *cd) 507 { 508 struct ice_aq_desc desc; 509 510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 511 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 512 } 513 514 /** 515 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 516 * @hw: pointer to the HW struct 517 * @num_nodes: number of nodes 518 * @node_teids: array of node teids to be suspended or resumed 519 * @suspend: true means suspend / false means resume 520 * 521 * This function suspends or resumes HW nodes 522 */ 523 static int 524 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 525 bool suspend) 526 { 527 u16 i, buf_size, num_elem_ret = 0; 528 __le32 *buf; 529 int status; 530 531 buf_size = sizeof(*buf) * num_nodes; 532 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 533 if (!buf) 534 return -ENOMEM; 535 536 for (i = 0; i < num_nodes; i++) 537 buf[i] = cpu_to_le32(node_teids[i]); 538 539 if (suspend) 540 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 541 buf_size, &num_elem_ret, 542 NULL); 543 else 544 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 545 buf_size, &num_elem_ret, 546 NULL); 547 if (status || num_elem_ret != num_nodes) 548 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 549 550 devm_kfree(ice_hw_to_dev(hw), buf); 551 return status; 552 } 553 554 /** 555 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 556 * @hw: pointer to the HW struct 557 * @vsi_handle: VSI handle 558 * @tc: TC number 559 * @new_numqs: number of queues 560 */ 561 static int 562 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 563 { 564 struct ice_vsi_ctx *vsi_ctx; 565 struct ice_q_ctx *q_ctx; 566 567 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 568 if (!vsi_ctx) 569 return -EINVAL; 570 /* allocate LAN queue contexts */ 571 if (!vsi_ctx->lan_q_ctx[tc]) { 572 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 573 new_numqs, 574 sizeof(*q_ctx), 575 GFP_KERNEL); 576 if (!vsi_ctx->lan_q_ctx[tc]) 577 return -ENOMEM; 578 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 579 return 0; 580 } 581 /* num queues are increased, update the queue contexts */ 582 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 583 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 584 585 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 586 sizeof(*q_ctx), GFP_KERNEL); 587 if (!q_ctx) 588 return -ENOMEM; 589 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 590 prev_num * sizeof(*q_ctx)); 591 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 592 vsi_ctx->lan_q_ctx[tc] = q_ctx; 593 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 594 } 595 return 0; 596 } 597 598 /** 599 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 600 * @hw: pointer to the HW struct 601 * @vsi_handle: VSI handle 602 * @tc: TC number 603 * @new_numqs: number of queues 604 */ 605 static int 606 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 607 { 608 struct ice_vsi_ctx *vsi_ctx; 609 struct ice_q_ctx *q_ctx; 610 611 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 612 if (!vsi_ctx) 613 return -EINVAL; 614 /* allocate RDMA queue contexts */ 615 if (!vsi_ctx->rdma_q_ctx[tc]) { 616 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 617 new_numqs, 618 sizeof(*q_ctx), 619 GFP_KERNEL); 620 if (!vsi_ctx->rdma_q_ctx[tc]) 621 return -ENOMEM; 622 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 623 return 0; 624 } 625 /* num queues are increased, update the queue contexts */ 626 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 627 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 628 629 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 630 sizeof(*q_ctx), GFP_KERNEL); 631 if (!q_ctx) 632 return -ENOMEM; 633 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 634 prev_num * sizeof(*q_ctx)); 635 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 636 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 637 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 638 } 639 return 0; 640 } 641 642 /** 643 * ice_aq_rl_profile - performs a rate limiting task 644 * @hw: pointer to the HW struct 645 * @opcode: opcode for add, query, or remove profile(s) 646 * @num_profiles: the number of profiles 647 * @buf: pointer to buffer 648 * @buf_size: buffer size in bytes 649 * @num_processed: number of processed add or remove profile(s) to return 650 * @cd: pointer to command details structure 651 * 652 * RL profile function to add, query, or remove profile(s) 653 */ 654 static int 655 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 656 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 657 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 658 { 659 struct ice_aqc_rl_profile *cmd; 660 struct ice_aq_desc desc; 661 int status; 662 663 cmd = &desc.params.rl_profile; 664 665 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 666 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 667 cmd->num_profiles = cpu_to_le16(num_profiles); 668 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 669 if (!status && num_processed) 670 *num_processed = le16_to_cpu(cmd->num_processed); 671 return status; 672 } 673 674 /** 675 * ice_aq_add_rl_profile - adds rate limiting profile(s) 676 * @hw: pointer to the HW struct 677 * @num_profiles: the number of profile(s) to be add 678 * @buf: pointer to buffer 679 * @buf_size: buffer size in bytes 680 * @num_profiles_added: total number of profiles added to return 681 * @cd: pointer to command details structure 682 * 683 * Add RL profile (0x0410) 684 */ 685 static int 686 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 687 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 688 u16 *num_profiles_added, struct ice_sq_cd *cd) 689 { 690 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 691 buf, buf_size, num_profiles_added, cd); 692 } 693 694 /** 695 * ice_aq_remove_rl_profile - removes RL profile(s) 696 * @hw: pointer to the HW struct 697 * @num_profiles: the number of profile(s) to remove 698 * @buf: pointer to buffer 699 * @buf_size: buffer size in bytes 700 * @num_profiles_removed: total number of profiles removed to return 701 * @cd: pointer to command details structure or NULL 702 * 703 * Remove RL profile (0x0415) 704 */ 705 static int 706 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 707 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 708 u16 *num_profiles_removed, struct ice_sq_cd *cd) 709 { 710 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 711 num_profiles, buf, buf_size, 712 num_profiles_removed, cd); 713 } 714 715 /** 716 * ice_sched_del_rl_profile - remove RL profile 717 * @hw: pointer to the HW struct 718 * @rl_info: rate limit profile information 719 * 720 * If the profile ID is not referenced anymore, it removes profile ID with 721 * its associated parameters from HW DB,and locally. The caller needs to 722 * hold scheduler lock. 723 */ 724 static int 725 ice_sched_del_rl_profile(struct ice_hw *hw, 726 struct ice_aqc_rl_profile_info *rl_info) 727 { 728 struct ice_aqc_rl_profile_elem *buf; 729 u16 num_profiles_removed; 730 u16 num_profiles = 1; 731 int status; 732 733 if (rl_info->prof_id_ref != 0) 734 return -EBUSY; 735 736 /* Safe to remove profile ID */ 737 buf = &rl_info->profile; 738 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 739 &num_profiles_removed, NULL); 740 if (status || num_profiles_removed != num_profiles) 741 return -EIO; 742 743 /* Delete stale entry now */ 744 list_del(&rl_info->list_entry); 745 devm_kfree(ice_hw_to_dev(hw), rl_info); 746 return status; 747 } 748 749 /** 750 * ice_sched_clear_rl_prof - clears RL prof entries 751 * @pi: port information structure 752 * 753 * This function removes all RL profile from HW as well as from SW DB. 754 */ 755 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 756 { 757 u16 ln; 758 759 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 760 struct ice_aqc_rl_profile_info *rl_prof_elem; 761 struct ice_aqc_rl_profile_info *rl_prof_tmp; 762 763 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 764 &pi->rl_prof_list[ln], list_entry) { 765 struct ice_hw *hw = pi->hw; 766 int status; 767 768 rl_prof_elem->prof_id_ref = 0; 769 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 770 if (status) { 771 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 772 /* On error, free mem required */ 773 list_del(&rl_prof_elem->list_entry); 774 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 775 } 776 } 777 } 778 } 779 780 /** 781 * ice_sched_clear_agg - clears the aggregator related information 782 * @hw: pointer to the hardware structure 783 * 784 * This function removes aggregator list and free up aggregator related memory 785 * previously allocated. 786 */ 787 void ice_sched_clear_agg(struct ice_hw *hw) 788 { 789 struct ice_sched_agg_info *agg_info; 790 struct ice_sched_agg_info *atmp; 791 792 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 793 struct ice_sched_agg_vsi_info *agg_vsi_info; 794 struct ice_sched_agg_vsi_info *vtmp; 795 796 list_for_each_entry_safe(agg_vsi_info, vtmp, 797 &agg_info->agg_vsi_list, list_entry) { 798 list_del(&agg_vsi_info->list_entry); 799 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 800 } 801 list_del(&agg_info->list_entry); 802 devm_kfree(ice_hw_to_dev(hw), agg_info); 803 } 804 } 805 806 /** 807 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 808 * @pi: port information structure 809 * 810 * This function removes all the nodes from HW as well as from SW DB. 811 */ 812 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 813 { 814 if (!pi) 815 return; 816 /* remove RL profiles related lists */ 817 ice_sched_clear_rl_prof(pi); 818 if (pi->root) { 819 ice_free_sched_node(pi, pi->root); 820 pi->root = NULL; 821 } 822 } 823 824 /** 825 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 826 * @pi: port information structure 827 * 828 * Cleanup scheduling elements from SW DB 829 */ 830 void ice_sched_clear_port(struct ice_port_info *pi) 831 { 832 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 833 return; 834 835 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 836 mutex_lock(&pi->sched_lock); 837 ice_sched_clear_tx_topo(pi); 838 mutex_unlock(&pi->sched_lock); 839 mutex_destroy(&pi->sched_lock); 840 } 841 842 /** 843 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 844 * @hw: pointer to the HW struct 845 * 846 * Cleanup scheduling elements from SW DB for all the ports 847 */ 848 void ice_sched_cleanup_all(struct ice_hw *hw) 849 { 850 if (!hw) 851 return; 852 853 if (hw->layer_info) { 854 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 855 hw->layer_info = NULL; 856 } 857 858 ice_sched_clear_port(hw->port_info); 859 860 hw->num_tx_sched_layers = 0; 861 hw->num_tx_sched_phys_layers = 0; 862 hw->flattened_layers = 0; 863 hw->max_cgds = 0; 864 } 865 866 /** 867 * ice_sched_add_elems - add nodes to HW and SW DB 868 * @pi: port information structure 869 * @tc_node: pointer to the branch node 870 * @parent: pointer to the parent node 871 * @layer: layer number to add nodes 872 * @num_nodes: number of nodes 873 * @num_nodes_added: pointer to num nodes added 874 * @first_node_teid: if new nodes are added then return the TEID of first node 875 * 876 * This function add nodes to HW as well as to SW DB for a given layer 877 */ 878 static int 879 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 880 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 881 u16 *num_nodes_added, u32 *first_node_teid) 882 { 883 struct ice_sched_node *prev, *new_node; 884 struct ice_aqc_add_elem *buf; 885 u16 i, num_groups_added = 0; 886 struct ice_hw *hw = pi->hw; 887 size_t buf_size; 888 int status = 0; 889 u32 teid; 890 891 buf_size = struct_size(buf, generic, num_nodes); 892 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 893 if (!buf) 894 return -ENOMEM; 895 896 buf->hdr.parent_teid = parent->info.node_teid; 897 buf->hdr.num_elems = cpu_to_le16(num_nodes); 898 for (i = 0; i < num_nodes; i++) { 899 buf->generic[i].parent_teid = parent->info.node_teid; 900 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 901 buf->generic[i].data.valid_sections = 902 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 903 ICE_AQC_ELEM_VALID_EIR; 904 buf->generic[i].data.generic = 0; 905 buf->generic[i].data.cir_bw.bw_profile_idx = 906 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 907 buf->generic[i].data.cir_bw.bw_alloc = 908 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 909 buf->generic[i].data.eir_bw.bw_profile_idx = 910 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 911 buf->generic[i].data.eir_bw.bw_alloc = 912 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 913 } 914 915 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 916 &num_groups_added, NULL); 917 if (status || num_groups_added != 1) { 918 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 919 hw->adminq.sq_last_status); 920 devm_kfree(ice_hw_to_dev(hw), buf); 921 return -EIO; 922 } 923 924 *num_nodes_added = num_nodes; 925 /* add nodes to the SW DB */ 926 for (i = 0; i < num_nodes; i++) { 927 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 928 if (status) { 929 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 930 status); 931 break; 932 } 933 934 teid = le32_to_cpu(buf->generic[i].node_teid); 935 new_node = ice_sched_find_node_by_teid(parent, teid); 936 if (!new_node) { 937 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 938 break; 939 } 940 941 new_node->sibling = NULL; 942 new_node->tc_num = tc_node->tc_num; 943 944 /* add it to previous node sibling pointer */ 945 /* Note: siblings are not linked across branches */ 946 prev = ice_sched_get_first_node(pi, tc_node, layer); 947 if (prev && prev != new_node) { 948 while (prev->sibling) 949 prev = prev->sibling; 950 prev->sibling = new_node; 951 } 952 953 /* initialize the sibling head */ 954 if (!pi->sib_head[tc_node->tc_num][layer]) 955 pi->sib_head[tc_node->tc_num][layer] = new_node; 956 957 if (i == 0) 958 *first_node_teid = teid; 959 } 960 961 devm_kfree(ice_hw_to_dev(hw), buf); 962 return status; 963 } 964 965 /** 966 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 967 * @pi: port information structure 968 * @tc_node: pointer to TC node 969 * @parent: pointer to parent node 970 * @layer: layer number to add nodes 971 * @num_nodes: number of nodes to be added 972 * @first_node_teid: pointer to the first node TEID 973 * @num_nodes_added: pointer to number of nodes added 974 * 975 * Add nodes into specific HW layer. 976 */ 977 static int 978 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 979 struct ice_sched_node *tc_node, 980 struct ice_sched_node *parent, u8 layer, 981 u16 num_nodes, u32 *first_node_teid, 982 u16 *num_nodes_added) 983 { 984 u16 max_child_nodes; 985 986 *num_nodes_added = 0; 987 988 if (!num_nodes) 989 return 0; 990 991 if (!parent || layer < pi->hw->sw_entry_point_layer) 992 return -EINVAL; 993 994 /* max children per node per layer */ 995 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 996 997 /* current number of children + required nodes exceed max children */ 998 if ((parent->num_children + num_nodes) > max_child_nodes) { 999 /* Fail if the parent is a TC node */ 1000 if (parent == tc_node) 1001 return -EIO; 1002 return -ENOSPC; 1003 } 1004 1005 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1006 num_nodes_added, first_node_teid); 1007 } 1008 1009 /** 1010 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1011 * @pi: port information structure 1012 * @tc_node: pointer to TC node 1013 * @parent: pointer to parent node 1014 * @layer: layer number to add nodes 1015 * @num_nodes: number of nodes to be added 1016 * @first_node_teid: pointer to the first node TEID 1017 * @num_nodes_added: pointer to number of nodes added 1018 * 1019 * This function add nodes to a given layer. 1020 */ 1021 static int 1022 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1023 struct ice_sched_node *tc_node, 1024 struct ice_sched_node *parent, u8 layer, 1025 u16 num_nodes, u32 *first_node_teid, 1026 u16 *num_nodes_added) 1027 { 1028 u32 *first_teid_ptr = first_node_teid; 1029 u16 new_num_nodes = num_nodes; 1030 int status = 0; 1031 1032 *num_nodes_added = 0; 1033 while (*num_nodes_added < num_nodes) { 1034 u16 max_child_nodes, num_added = 0; 1035 /* cppcheck-suppress unusedVariable */ 1036 u32 temp; 1037 1038 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1039 layer, new_num_nodes, 1040 first_teid_ptr, 1041 &num_added); 1042 if (!status) 1043 *num_nodes_added += num_added; 1044 /* added more nodes than requested ? */ 1045 if (*num_nodes_added > num_nodes) { 1046 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1047 *num_nodes_added); 1048 status = -EIO; 1049 break; 1050 } 1051 /* break if all the nodes are added successfully */ 1052 if (!status && (*num_nodes_added == num_nodes)) 1053 break; 1054 /* break if the error is not max limit */ 1055 if (status && status != -ENOSPC) 1056 break; 1057 /* Exceeded the max children */ 1058 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1059 /* utilize all the spaces if the parent is not full */ 1060 if (parent->num_children < max_child_nodes) { 1061 new_num_nodes = max_child_nodes - parent->num_children; 1062 } else { 1063 /* This parent is full, try the next sibling */ 1064 parent = parent->sibling; 1065 /* Don't modify the first node TEID memory if the 1066 * first node was added already in the above call. 1067 * Instead send some temp memory for all other 1068 * recursive calls. 1069 */ 1070 if (num_added) 1071 first_teid_ptr = &temp; 1072 1073 new_num_nodes = num_nodes - *num_nodes_added; 1074 } 1075 } 1076 return status; 1077 } 1078 1079 /** 1080 * ice_sched_get_qgrp_layer - get the current queue group layer number 1081 * @hw: pointer to the HW struct 1082 * 1083 * This function returns the current queue group layer number 1084 */ 1085 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1086 { 1087 /* It's always total layers - 1, the array is 0 relative so -2 */ 1088 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1089 } 1090 1091 /** 1092 * ice_sched_get_vsi_layer - get the current VSI layer number 1093 * @hw: pointer to the HW struct 1094 * 1095 * This function returns the current VSI layer number 1096 */ 1097 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1098 { 1099 /* Num Layers VSI layer 1100 * 9 6 1101 * 7 4 1102 * 5 or less sw_entry_point_layer 1103 */ 1104 /* calculate the VSI layer based on number of layers. */ 1105 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1106 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1107 1108 if (layer > hw->sw_entry_point_layer) 1109 return layer; 1110 } 1111 return hw->sw_entry_point_layer; 1112 } 1113 1114 /** 1115 * ice_sched_get_agg_layer - get the current aggregator layer number 1116 * @hw: pointer to the HW struct 1117 * 1118 * This function returns the current aggregator layer number 1119 */ 1120 static u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1121 { 1122 /* Num Layers aggregator layer 1123 * 9 4 1124 * 7 or less sw_entry_point_layer 1125 */ 1126 /* calculate the aggregator layer based on number of layers. */ 1127 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1128 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1129 1130 if (layer > hw->sw_entry_point_layer) 1131 return layer; 1132 } 1133 return hw->sw_entry_point_layer; 1134 } 1135 1136 /** 1137 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1138 * @pi: port information structure 1139 * 1140 * This function removes the leaf node that was created by the FW 1141 * during initialization 1142 */ 1143 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1144 { 1145 struct ice_sched_node *node; 1146 1147 node = pi->root; 1148 while (node) { 1149 if (!node->num_children) 1150 break; 1151 node = node->children[0]; 1152 } 1153 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1154 u32 teid = le32_to_cpu(node->info.node_teid); 1155 int status; 1156 1157 /* remove the default leaf node */ 1158 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1159 if (!status) 1160 ice_free_sched_node(pi, node); 1161 } 1162 } 1163 1164 /** 1165 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1166 * @pi: port information structure 1167 * 1168 * This function frees all the nodes except root and TC that were created by 1169 * the FW during initialization 1170 */ 1171 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1172 { 1173 struct ice_sched_node *node; 1174 1175 ice_rm_dflt_leaf_node(pi); 1176 1177 /* remove the default nodes except TC and root nodes */ 1178 node = pi->root; 1179 while (node) { 1180 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1181 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1182 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1183 ice_free_sched_node(pi, node); 1184 break; 1185 } 1186 1187 if (!node->num_children) 1188 break; 1189 node = node->children[0]; 1190 } 1191 } 1192 1193 /** 1194 * ice_sched_init_port - Initialize scheduler by querying information from FW 1195 * @pi: port info structure for the tree to cleanup 1196 * 1197 * This function is the initial call to find the total number of Tx scheduler 1198 * resources, default topology created by firmware and storing the information 1199 * in SW DB. 1200 */ 1201 int ice_sched_init_port(struct ice_port_info *pi) 1202 { 1203 struct ice_aqc_get_topo_elem *buf; 1204 struct ice_hw *hw; 1205 u8 num_branches; 1206 u16 num_elems; 1207 int status; 1208 u8 i, j; 1209 1210 if (!pi) 1211 return -EINVAL; 1212 hw = pi->hw; 1213 1214 /* Query the Default Topology from FW */ 1215 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1216 if (!buf) 1217 return -ENOMEM; 1218 1219 /* Query default scheduling tree topology */ 1220 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1221 &num_branches, NULL); 1222 if (status) 1223 goto err_init_port; 1224 1225 /* num_branches should be between 1-8 */ 1226 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1227 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1228 num_branches); 1229 status = -EINVAL; 1230 goto err_init_port; 1231 } 1232 1233 /* get the number of elements on the default/first branch */ 1234 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1235 1236 /* num_elems should always be between 1-9 */ 1237 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1238 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1239 num_elems); 1240 status = -EINVAL; 1241 goto err_init_port; 1242 } 1243 1244 /* If the last node is a leaf node then the index of the queue group 1245 * layer is two less than the number of elements. 1246 */ 1247 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1248 ICE_AQC_ELEM_TYPE_LEAF) 1249 pi->last_node_teid = 1250 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1251 else 1252 pi->last_node_teid = 1253 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1254 1255 /* Insert the Tx Sched root node */ 1256 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1257 if (status) 1258 goto err_init_port; 1259 1260 /* Parse the default tree and cache the information */ 1261 for (i = 0; i < num_branches; i++) { 1262 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1263 1264 /* Skip root element as already inserted */ 1265 for (j = 1; j < num_elems; j++) { 1266 /* update the sw entry point */ 1267 if (buf[0].generic[j].data.elem_type == 1268 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1269 hw->sw_entry_point_layer = j; 1270 1271 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1272 if (status) 1273 goto err_init_port; 1274 } 1275 } 1276 1277 /* Remove the default nodes. */ 1278 if (pi->root) 1279 ice_sched_rm_dflt_nodes(pi); 1280 1281 /* initialize the port for handling the scheduler tree */ 1282 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1283 mutex_init(&pi->sched_lock); 1284 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1285 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1286 1287 err_init_port: 1288 if (status && pi->root) { 1289 ice_free_sched_node(pi, pi->root); 1290 pi->root = NULL; 1291 } 1292 1293 devm_kfree(ice_hw_to_dev(hw), buf); 1294 return status; 1295 } 1296 1297 /** 1298 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1299 * @hw: pointer to the HW struct 1300 * 1301 * query FW for allocated scheduler resources and store in HW struct 1302 */ 1303 int ice_sched_query_res_alloc(struct ice_hw *hw) 1304 { 1305 struct ice_aqc_query_txsched_res_resp *buf; 1306 __le16 max_sibl; 1307 int status = 0; 1308 u16 i; 1309 1310 if (hw->layer_info) 1311 return status; 1312 1313 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1314 if (!buf) 1315 return -ENOMEM; 1316 1317 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1318 if (status) 1319 goto sched_query_out; 1320 1321 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1322 hw->num_tx_sched_phys_layers = 1323 le16_to_cpu(buf->sched_props.phys_levels); 1324 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1325 hw->max_cgds = buf->sched_props.max_pf_cgds; 1326 1327 /* max sibling group size of current layer refers to the max children 1328 * of the below layer node. 1329 * layer 1 node max children will be layer 2 max sibling group size 1330 * layer 2 node max children will be layer 3 max sibling group size 1331 * and so on. This array will be populated from root (index 0) to 1332 * qgroup layer 7. Leaf node has no children. 1333 */ 1334 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1335 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1336 hw->max_children[i] = le16_to_cpu(max_sibl); 1337 } 1338 1339 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1340 (hw->num_tx_sched_layers * 1341 sizeof(*hw->layer_info)), 1342 GFP_KERNEL); 1343 if (!hw->layer_info) { 1344 status = -ENOMEM; 1345 goto sched_query_out; 1346 } 1347 1348 sched_query_out: 1349 devm_kfree(ice_hw_to_dev(hw), buf); 1350 return status; 1351 } 1352 1353 /** 1354 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1355 * @hw: pointer to the HW struct 1356 * 1357 * Determine the PSM clock frequency and store in HW struct 1358 */ 1359 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1360 { 1361 u32 val, clk_src; 1362 1363 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1364 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1365 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1366 1367 #define PSM_CLK_SRC_367_MHZ 0x0 1368 #define PSM_CLK_SRC_416_MHZ 0x1 1369 #define PSM_CLK_SRC_446_MHZ 0x2 1370 #define PSM_CLK_SRC_390_MHZ 0x3 1371 1372 switch (clk_src) { 1373 case PSM_CLK_SRC_367_MHZ: 1374 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1375 break; 1376 case PSM_CLK_SRC_416_MHZ: 1377 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1378 break; 1379 case PSM_CLK_SRC_446_MHZ: 1380 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1381 break; 1382 case PSM_CLK_SRC_390_MHZ: 1383 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1384 break; 1385 default: 1386 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1387 clk_src); 1388 /* fall back to a safe default */ 1389 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1390 } 1391 } 1392 1393 /** 1394 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1395 * @hw: pointer to the HW struct 1396 * @base: pointer to the base node 1397 * @node: pointer to the node to search 1398 * 1399 * This function checks whether a given node is part of the base node 1400 * subtree or not 1401 */ 1402 static bool 1403 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1404 struct ice_sched_node *node) 1405 { 1406 u8 i; 1407 1408 for (i = 0; i < base->num_children; i++) { 1409 struct ice_sched_node *child = base->children[i]; 1410 1411 if (node == child) 1412 return true; 1413 1414 if (child->tx_sched_layer > node->tx_sched_layer) 1415 return false; 1416 1417 /* this recursion is intentional, and wouldn't 1418 * go more than 8 calls 1419 */ 1420 if (ice_sched_find_node_in_subtree(hw, child, node)) 1421 return true; 1422 } 1423 return false; 1424 } 1425 1426 /** 1427 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1428 * @pi: port information structure 1429 * @vsi_node: software VSI handle 1430 * @qgrp_node: first queue group node identified for scanning 1431 * @owner: LAN or RDMA 1432 * 1433 * This function retrieves a free LAN or RDMA queue group node by scanning 1434 * qgrp_node and its siblings for the queue group with the fewest number 1435 * of queues currently assigned. 1436 */ 1437 static struct ice_sched_node * 1438 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1439 struct ice_sched_node *vsi_node, 1440 struct ice_sched_node *qgrp_node, u8 owner) 1441 { 1442 struct ice_sched_node *min_qgrp; 1443 u8 min_children; 1444 1445 if (!qgrp_node) 1446 return qgrp_node; 1447 min_children = qgrp_node->num_children; 1448 if (!min_children) 1449 return qgrp_node; 1450 min_qgrp = qgrp_node; 1451 /* scan all queue groups until find a node which has less than the 1452 * minimum number of children. This way all queue group nodes get 1453 * equal number of shares and active. The bandwidth will be equally 1454 * distributed across all queues. 1455 */ 1456 while (qgrp_node) { 1457 /* make sure the qgroup node is part of the VSI subtree */ 1458 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1459 if (qgrp_node->num_children < min_children && 1460 qgrp_node->owner == owner) { 1461 /* replace the new min queue group node */ 1462 min_qgrp = qgrp_node; 1463 min_children = min_qgrp->num_children; 1464 /* break if it has no children, */ 1465 if (!min_children) 1466 break; 1467 } 1468 qgrp_node = qgrp_node->sibling; 1469 } 1470 return min_qgrp; 1471 } 1472 1473 /** 1474 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1475 * @pi: port information structure 1476 * @vsi_handle: software VSI handle 1477 * @tc: branch number 1478 * @owner: LAN or RDMA 1479 * 1480 * This function retrieves a free LAN or RDMA queue group node 1481 */ 1482 struct ice_sched_node * 1483 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1484 u8 owner) 1485 { 1486 struct ice_sched_node *vsi_node, *qgrp_node; 1487 struct ice_vsi_ctx *vsi_ctx; 1488 u16 max_children; 1489 u8 qgrp_layer; 1490 1491 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1492 max_children = pi->hw->max_children[qgrp_layer]; 1493 1494 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1495 if (!vsi_ctx) 1496 return NULL; 1497 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1498 /* validate invalid VSI ID */ 1499 if (!vsi_node) 1500 return NULL; 1501 1502 /* get the first queue group node from VSI sub-tree */ 1503 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1504 while (qgrp_node) { 1505 /* make sure the qgroup node is part of the VSI subtree */ 1506 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1507 if (qgrp_node->num_children < max_children && 1508 qgrp_node->owner == owner) 1509 break; 1510 qgrp_node = qgrp_node->sibling; 1511 } 1512 1513 /* Select the best queue group */ 1514 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1515 } 1516 1517 /** 1518 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1519 * @pi: pointer to the port information structure 1520 * @tc_node: pointer to the TC node 1521 * @vsi_handle: software VSI handle 1522 * 1523 * This function retrieves a VSI node for a given VSI ID from a given 1524 * TC branch 1525 */ 1526 static struct ice_sched_node * 1527 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1528 u16 vsi_handle) 1529 { 1530 struct ice_sched_node *node; 1531 u8 vsi_layer; 1532 1533 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1534 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1535 1536 /* Check whether it already exists */ 1537 while (node) { 1538 if (node->vsi_handle == vsi_handle) 1539 return node; 1540 node = node->sibling; 1541 } 1542 1543 return node; 1544 } 1545 1546 /** 1547 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1548 * @pi: pointer to the port information structure 1549 * @tc_node: pointer to the TC node 1550 * @agg_id: aggregator ID 1551 * 1552 * This function retrieves an aggregator node for a given aggregator ID from 1553 * a given TC branch 1554 */ 1555 static struct ice_sched_node * 1556 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1557 u32 agg_id) 1558 { 1559 struct ice_sched_node *node; 1560 struct ice_hw *hw = pi->hw; 1561 u8 agg_layer; 1562 1563 if (!hw) 1564 return NULL; 1565 agg_layer = ice_sched_get_agg_layer(hw); 1566 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1567 1568 /* Check whether it already exists */ 1569 while (node) { 1570 if (node->agg_id == agg_id) 1571 return node; 1572 node = node->sibling; 1573 } 1574 1575 return node; 1576 } 1577 1578 /** 1579 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1580 * @hw: pointer to the HW struct 1581 * @num_qs: number of queues 1582 * @num_nodes: num nodes array 1583 * 1584 * This function calculates the number of VSI child nodes based on the 1585 * number of queues. 1586 */ 1587 static void 1588 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1589 { 1590 u16 num = num_qs; 1591 u8 i, qgl, vsil; 1592 1593 qgl = ice_sched_get_qgrp_layer(hw); 1594 vsil = ice_sched_get_vsi_layer(hw); 1595 1596 /* calculate num nodes from queue group to VSI layer */ 1597 for (i = qgl; i > vsil; i--) { 1598 /* round to the next integer if there is a remainder */ 1599 num = DIV_ROUND_UP(num, hw->max_children[i]); 1600 1601 /* need at least one node */ 1602 num_nodes[i] = num ? num : 1; 1603 } 1604 } 1605 1606 /** 1607 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1608 * @pi: port information structure 1609 * @vsi_handle: software VSI handle 1610 * @tc_node: pointer to the TC node 1611 * @num_nodes: pointer to the num nodes that needs to be added per layer 1612 * @owner: node owner (LAN or RDMA) 1613 * 1614 * This function adds the VSI child nodes to tree. It gets called for 1615 * LAN and RDMA separately. 1616 */ 1617 static int 1618 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1619 struct ice_sched_node *tc_node, u16 *num_nodes, 1620 u8 owner) 1621 { 1622 struct ice_sched_node *parent, *node; 1623 struct ice_hw *hw = pi->hw; 1624 u32 first_node_teid; 1625 u16 num_added = 0; 1626 u8 i, qgl, vsil; 1627 int status; 1628 1629 qgl = ice_sched_get_qgrp_layer(hw); 1630 vsil = ice_sched_get_vsi_layer(hw); 1631 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1632 for (i = vsil + 1; i <= qgl; i++) { 1633 if (!parent) 1634 return -EIO; 1635 1636 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1637 num_nodes[i], 1638 &first_node_teid, 1639 &num_added); 1640 if (status || num_nodes[i] != num_added) 1641 return -EIO; 1642 1643 /* The newly added node can be a new parent for the next 1644 * layer nodes 1645 */ 1646 if (num_added) { 1647 parent = ice_sched_find_node_by_teid(tc_node, 1648 first_node_teid); 1649 node = parent; 1650 while (node) { 1651 node->owner = owner; 1652 node = node->sibling; 1653 } 1654 } else { 1655 parent = parent->children[0]; 1656 } 1657 } 1658 1659 return 0; 1660 } 1661 1662 /** 1663 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1664 * @pi: pointer to the port info structure 1665 * @tc_node: pointer to TC node 1666 * @num_nodes: pointer to num nodes array 1667 * 1668 * This function calculates the number of supported nodes needed to add this 1669 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1670 * layers 1671 */ 1672 static void 1673 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1674 struct ice_sched_node *tc_node, u16 *num_nodes) 1675 { 1676 struct ice_sched_node *node; 1677 u8 vsil; 1678 int i; 1679 1680 vsil = ice_sched_get_vsi_layer(pi->hw); 1681 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1682 /* Add intermediate nodes if TC has no children and 1683 * need at least one node for VSI 1684 */ 1685 if (!tc_node->num_children || i == vsil) { 1686 num_nodes[i]++; 1687 } else { 1688 /* If intermediate nodes are reached max children 1689 * then add a new one. 1690 */ 1691 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1692 /* scan all the siblings */ 1693 while (node) { 1694 if (node->num_children < pi->hw->max_children[i]) 1695 break; 1696 node = node->sibling; 1697 } 1698 1699 /* tree has one intermediate node to add this new VSI. 1700 * So no need to calculate supported nodes for below 1701 * layers. 1702 */ 1703 if (node) 1704 break; 1705 /* all the nodes are full, allocate a new one */ 1706 num_nodes[i]++; 1707 } 1708 } 1709 1710 /** 1711 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1712 * @pi: port information structure 1713 * @vsi_handle: software VSI handle 1714 * @tc_node: pointer to TC node 1715 * @num_nodes: pointer to num nodes array 1716 * 1717 * This function adds the VSI supported nodes into Tx tree including the 1718 * VSI, its parent and intermediate nodes in below layers 1719 */ 1720 static int 1721 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1722 struct ice_sched_node *tc_node, u16 *num_nodes) 1723 { 1724 struct ice_sched_node *parent = tc_node; 1725 u32 first_node_teid; 1726 u16 num_added = 0; 1727 u8 i, vsil; 1728 int status; 1729 1730 if (!pi) 1731 return -EINVAL; 1732 1733 vsil = ice_sched_get_vsi_layer(pi->hw); 1734 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1735 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1736 i, num_nodes[i], 1737 &first_node_teid, 1738 &num_added); 1739 if (status || num_nodes[i] != num_added) 1740 return -EIO; 1741 1742 /* The newly added node can be a new parent for the next 1743 * layer nodes 1744 */ 1745 if (num_added) 1746 parent = ice_sched_find_node_by_teid(tc_node, 1747 first_node_teid); 1748 else 1749 parent = parent->children[0]; 1750 1751 if (!parent) 1752 return -EIO; 1753 1754 if (i == vsil) 1755 parent->vsi_handle = vsi_handle; 1756 } 1757 1758 return 0; 1759 } 1760 1761 /** 1762 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1763 * @pi: port information structure 1764 * @vsi_handle: software VSI handle 1765 * @tc: TC number 1766 * 1767 * This function adds a new VSI into scheduler tree 1768 */ 1769 static int 1770 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1771 { 1772 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1773 struct ice_sched_node *tc_node; 1774 1775 tc_node = ice_sched_get_tc_node(pi, tc); 1776 if (!tc_node) 1777 return -EINVAL; 1778 1779 /* calculate number of supported nodes needed for this VSI */ 1780 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1781 1782 /* add VSI supported nodes to TC subtree */ 1783 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1784 num_nodes); 1785 } 1786 1787 /** 1788 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1789 * @pi: port information structure 1790 * @vsi_handle: software VSI handle 1791 * @tc: TC number 1792 * @new_numqs: new number of max queues 1793 * @owner: owner of this subtree 1794 * 1795 * This function updates the VSI child nodes based on the number of queues 1796 */ 1797 static int 1798 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1799 u8 tc, u16 new_numqs, u8 owner) 1800 { 1801 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1802 struct ice_sched_node *vsi_node; 1803 struct ice_sched_node *tc_node; 1804 struct ice_vsi_ctx *vsi_ctx; 1805 struct ice_hw *hw = pi->hw; 1806 u16 prev_numqs; 1807 int status = 0; 1808 1809 tc_node = ice_sched_get_tc_node(pi, tc); 1810 if (!tc_node) 1811 return -EIO; 1812 1813 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1814 if (!vsi_node) 1815 return -EIO; 1816 1817 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1818 if (!vsi_ctx) 1819 return -EINVAL; 1820 1821 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1822 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1823 else 1824 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1825 /* num queues are not changed or less than the previous number */ 1826 if (new_numqs <= prev_numqs) 1827 return status; 1828 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1829 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1830 if (status) 1831 return status; 1832 } else { 1833 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1834 if (status) 1835 return status; 1836 } 1837 1838 if (new_numqs) 1839 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1840 /* Keep the max number of queue configuration all the time. Update the 1841 * tree only if number of queues > previous number of queues. This may 1842 * leave some extra nodes in the tree if number of queues < previous 1843 * number but that wouldn't harm anything. Removing those extra nodes 1844 * may complicate the code if those nodes are part of SRL or 1845 * individually rate limited. 1846 */ 1847 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1848 new_num_nodes, owner); 1849 if (status) 1850 return status; 1851 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1852 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1853 else 1854 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1855 1856 return 0; 1857 } 1858 1859 /** 1860 * ice_sched_cfg_vsi - configure the new/existing VSI 1861 * @pi: port information structure 1862 * @vsi_handle: software VSI handle 1863 * @tc: TC number 1864 * @maxqs: max number of queues 1865 * @owner: LAN or RDMA 1866 * @enable: TC enabled or disabled 1867 * 1868 * This function adds/updates VSI nodes based on the number of queues. If TC is 1869 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1870 * disabled then suspend the VSI if it is not already. 1871 */ 1872 int 1873 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1874 u8 owner, bool enable) 1875 { 1876 struct ice_sched_node *vsi_node, *tc_node; 1877 struct ice_vsi_ctx *vsi_ctx; 1878 struct ice_hw *hw = pi->hw; 1879 int status = 0; 1880 1881 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1882 tc_node = ice_sched_get_tc_node(pi, tc); 1883 if (!tc_node) 1884 return -EINVAL; 1885 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1886 if (!vsi_ctx) 1887 return -EINVAL; 1888 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1889 1890 /* suspend the VSI if TC is not enabled */ 1891 if (!enable) { 1892 if (vsi_node && vsi_node->in_use) { 1893 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1894 1895 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1896 true); 1897 if (!status) 1898 vsi_node->in_use = false; 1899 } 1900 return status; 1901 } 1902 1903 /* TC is enabled, if it is a new VSI then add it to the tree */ 1904 if (!vsi_node) { 1905 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1906 if (status) 1907 return status; 1908 1909 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1910 if (!vsi_node) 1911 return -EIO; 1912 1913 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1914 vsi_node->in_use = true; 1915 /* invalidate the max queues whenever VSI gets added first time 1916 * into the scheduler tree (boot or after reset). We need to 1917 * recreate the child nodes all the time in these cases. 1918 */ 1919 vsi_ctx->sched.max_lanq[tc] = 0; 1920 vsi_ctx->sched.max_rdmaq[tc] = 0; 1921 } 1922 1923 /* update the VSI child nodes */ 1924 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1925 owner); 1926 if (status) 1927 return status; 1928 1929 /* TC is enabled, resume the VSI if it is in the suspend state */ 1930 if (!vsi_node->in_use) { 1931 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1932 1933 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1934 if (!status) 1935 vsi_node->in_use = true; 1936 } 1937 1938 return status; 1939 } 1940 1941 /** 1942 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1943 * @pi: port information structure 1944 * @vsi_handle: software VSI handle 1945 * 1946 * This function removes single aggregator VSI info entry from 1947 * aggregator list. 1948 */ 1949 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1950 { 1951 struct ice_sched_agg_info *agg_info; 1952 struct ice_sched_agg_info *atmp; 1953 1954 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1955 list_entry) { 1956 struct ice_sched_agg_vsi_info *agg_vsi_info; 1957 struct ice_sched_agg_vsi_info *vtmp; 1958 1959 list_for_each_entry_safe(agg_vsi_info, vtmp, 1960 &agg_info->agg_vsi_list, list_entry) 1961 if (agg_vsi_info->vsi_handle == vsi_handle) { 1962 list_del(&agg_vsi_info->list_entry); 1963 devm_kfree(ice_hw_to_dev(pi->hw), 1964 agg_vsi_info); 1965 return; 1966 } 1967 } 1968 } 1969 1970 /** 1971 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1972 * @node: pointer to the sub-tree node 1973 * 1974 * This function checks for a leaf node presence in a given sub-tree node. 1975 */ 1976 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1977 { 1978 u8 i; 1979 1980 for (i = 0; i < node->num_children; i++) 1981 if (ice_sched_is_leaf_node_present(node->children[i])) 1982 return true; 1983 /* check for a leaf node */ 1984 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1985 } 1986 1987 /** 1988 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1989 * @pi: port information structure 1990 * @vsi_handle: software VSI handle 1991 * @owner: LAN or RDMA 1992 * 1993 * This function removes the VSI and its LAN or RDMA children nodes from the 1994 * scheduler tree. 1995 */ 1996 static int 1997 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1998 { 1999 struct ice_vsi_ctx *vsi_ctx; 2000 int status = -EINVAL; 2001 u8 i; 2002 2003 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2004 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2005 return status; 2006 mutex_lock(&pi->sched_lock); 2007 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2008 if (!vsi_ctx) 2009 goto exit_sched_rm_vsi_cfg; 2010 2011 ice_for_each_traffic_class(i) { 2012 struct ice_sched_node *vsi_node, *tc_node; 2013 u8 j = 0; 2014 2015 tc_node = ice_sched_get_tc_node(pi, i); 2016 if (!tc_node) 2017 continue; 2018 2019 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2020 if (!vsi_node) 2021 continue; 2022 2023 if (ice_sched_is_leaf_node_present(vsi_node)) { 2024 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2025 status = -EBUSY; 2026 goto exit_sched_rm_vsi_cfg; 2027 } 2028 while (j < vsi_node->num_children) { 2029 if (vsi_node->children[j]->owner == owner) { 2030 ice_free_sched_node(pi, vsi_node->children[j]); 2031 2032 /* reset the counter again since the num 2033 * children will be updated after node removal 2034 */ 2035 j = 0; 2036 } else { 2037 j++; 2038 } 2039 } 2040 /* remove the VSI if it has no children */ 2041 if (!vsi_node->num_children) { 2042 ice_free_sched_node(pi, vsi_node); 2043 vsi_ctx->sched.vsi_node[i] = NULL; 2044 2045 /* clean up aggregator related VSI info if any */ 2046 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2047 } 2048 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2049 vsi_ctx->sched.max_lanq[i] = 0; 2050 else 2051 vsi_ctx->sched.max_rdmaq[i] = 0; 2052 } 2053 status = 0; 2054 2055 exit_sched_rm_vsi_cfg: 2056 mutex_unlock(&pi->sched_lock); 2057 return status; 2058 } 2059 2060 /** 2061 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2062 * @pi: port information structure 2063 * @vsi_handle: software VSI handle 2064 * 2065 * This function clears the VSI and its LAN children nodes from scheduler tree 2066 * for all TCs. 2067 */ 2068 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2069 { 2070 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2071 } 2072 2073 /** 2074 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2075 * @pi: port information structure 2076 * @vsi_handle: software VSI handle 2077 * 2078 * This function clears the VSI and its RDMA children nodes from scheduler tree 2079 * for all TCs. 2080 */ 2081 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2082 { 2083 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2084 } 2085 2086 /** 2087 * ice_get_agg_info - get the aggregator ID 2088 * @hw: pointer to the hardware structure 2089 * @agg_id: aggregator ID 2090 * 2091 * This function validates aggregator ID. The function returns info if 2092 * aggregator ID is present in list otherwise it returns null. 2093 */ 2094 static struct ice_sched_agg_info * 2095 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2096 { 2097 struct ice_sched_agg_info *agg_info; 2098 2099 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2100 if (agg_info->agg_id == agg_id) 2101 return agg_info; 2102 2103 return NULL; 2104 } 2105 2106 /** 2107 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2108 * @hw: pointer to the HW struct 2109 * @node: pointer to a child node 2110 * @num_nodes: num nodes count array 2111 * 2112 * This function walks through the aggregator subtree to find a free parent 2113 * node 2114 */ 2115 static struct ice_sched_node * 2116 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2117 u16 *num_nodes) 2118 { 2119 u8 l = node->tx_sched_layer; 2120 u8 vsil, i; 2121 2122 vsil = ice_sched_get_vsi_layer(hw); 2123 2124 /* Is it VSI parent layer ? */ 2125 if (l == vsil - 1) 2126 return (node->num_children < hw->max_children[l]) ? node : NULL; 2127 2128 /* We have intermediate nodes. Let's walk through the subtree. If the 2129 * intermediate node has space to add a new node then clear the count 2130 */ 2131 if (node->num_children < hw->max_children[l]) 2132 num_nodes[l] = 0; 2133 /* The below recursive call is intentional and wouldn't go more than 2134 * 2 or 3 iterations. 2135 */ 2136 2137 for (i = 0; i < node->num_children; i++) { 2138 struct ice_sched_node *parent; 2139 2140 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2141 num_nodes); 2142 if (parent) 2143 return parent; 2144 } 2145 2146 return NULL; 2147 } 2148 2149 /** 2150 * ice_sched_update_parent - update the new parent in SW DB 2151 * @new_parent: pointer to a new parent node 2152 * @node: pointer to a child node 2153 * 2154 * This function removes the child from the old parent and adds it to a new 2155 * parent 2156 */ 2157 static void 2158 ice_sched_update_parent(struct ice_sched_node *new_parent, 2159 struct ice_sched_node *node) 2160 { 2161 struct ice_sched_node *old_parent; 2162 u8 i, j; 2163 2164 old_parent = node->parent; 2165 2166 /* update the old parent children */ 2167 for (i = 0; i < old_parent->num_children; i++) 2168 if (old_parent->children[i] == node) { 2169 for (j = i + 1; j < old_parent->num_children; j++) 2170 old_parent->children[j - 1] = 2171 old_parent->children[j]; 2172 old_parent->num_children--; 2173 break; 2174 } 2175 2176 /* now move the node to a new parent */ 2177 new_parent->children[new_parent->num_children++] = node; 2178 node->parent = new_parent; 2179 node->info.parent_teid = new_parent->info.node_teid; 2180 } 2181 2182 /** 2183 * ice_sched_move_nodes - move child nodes to a given parent 2184 * @pi: port information structure 2185 * @parent: pointer to parent node 2186 * @num_items: number of child nodes to be moved 2187 * @list: pointer to child node teids 2188 * 2189 * This function move the child nodes to a given parent. 2190 */ 2191 static int 2192 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2193 u16 num_items, u32 *list) 2194 { 2195 struct ice_aqc_move_elem *buf; 2196 struct ice_sched_node *node; 2197 u16 i, grps_movd = 0; 2198 struct ice_hw *hw; 2199 int status = 0; 2200 u16 buf_len; 2201 2202 hw = pi->hw; 2203 2204 if (!parent || !num_items) 2205 return -EINVAL; 2206 2207 /* Does parent have enough space */ 2208 if (parent->num_children + num_items > 2209 hw->max_children[parent->tx_sched_layer]) 2210 return -ENOSPC; 2211 2212 buf_len = struct_size(buf, teid, 1); 2213 buf = kzalloc(buf_len, GFP_KERNEL); 2214 if (!buf) 2215 return -ENOMEM; 2216 2217 for (i = 0; i < num_items; i++) { 2218 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2219 if (!node) { 2220 status = -EINVAL; 2221 goto move_err_exit; 2222 } 2223 2224 buf->hdr.src_parent_teid = node->info.parent_teid; 2225 buf->hdr.dest_parent_teid = parent->info.node_teid; 2226 buf->teid[0] = node->info.node_teid; 2227 buf->hdr.num_elems = cpu_to_le16(1); 2228 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2229 &grps_movd, NULL); 2230 if (status && grps_movd != 1) { 2231 status = -EIO; 2232 goto move_err_exit; 2233 } 2234 2235 /* update the SW DB */ 2236 ice_sched_update_parent(parent, node); 2237 } 2238 2239 move_err_exit: 2240 kfree(buf); 2241 return status; 2242 } 2243 2244 /** 2245 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2246 * @pi: port information structure 2247 * @vsi_handle: software VSI handle 2248 * @agg_id: aggregator ID 2249 * @tc: TC number 2250 * 2251 * This function moves a VSI to an aggregator node or its subtree. 2252 * Intermediate nodes may be created if required. 2253 */ 2254 static int 2255 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2256 u8 tc) 2257 { 2258 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2259 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2260 u32 first_node_teid, vsi_teid; 2261 u16 num_nodes_added; 2262 u8 aggl, vsil, i; 2263 int status; 2264 2265 tc_node = ice_sched_get_tc_node(pi, tc); 2266 if (!tc_node) 2267 return -EIO; 2268 2269 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2270 if (!agg_node) 2271 return -ENOENT; 2272 2273 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2274 if (!vsi_node) 2275 return -ENOENT; 2276 2277 /* Is this VSI already part of given aggregator? */ 2278 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2279 return 0; 2280 2281 aggl = ice_sched_get_agg_layer(pi->hw); 2282 vsil = ice_sched_get_vsi_layer(pi->hw); 2283 2284 /* set intermediate node count to 1 between aggregator and VSI layers */ 2285 for (i = aggl + 1; i < vsil; i++) 2286 num_nodes[i] = 1; 2287 2288 /* Check if the aggregator subtree has any free node to add the VSI */ 2289 for (i = 0; i < agg_node->num_children; i++) { 2290 parent = ice_sched_get_free_vsi_parent(pi->hw, 2291 agg_node->children[i], 2292 num_nodes); 2293 if (parent) 2294 goto move_nodes; 2295 } 2296 2297 /* add new nodes */ 2298 parent = agg_node; 2299 for (i = aggl + 1; i < vsil; i++) { 2300 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2301 num_nodes[i], 2302 &first_node_teid, 2303 &num_nodes_added); 2304 if (status || num_nodes[i] != num_nodes_added) 2305 return -EIO; 2306 2307 /* The newly added node can be a new parent for the next 2308 * layer nodes 2309 */ 2310 if (num_nodes_added) 2311 parent = ice_sched_find_node_by_teid(tc_node, 2312 first_node_teid); 2313 else 2314 parent = parent->children[0]; 2315 2316 if (!parent) 2317 return -EIO; 2318 } 2319 2320 move_nodes: 2321 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2322 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2323 } 2324 2325 /** 2326 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2327 * @pi: port information structure 2328 * @agg_info: aggregator info 2329 * @tc: traffic class number 2330 * @rm_vsi_info: true or false 2331 * 2332 * This function move all the VSI(s) to the default aggregator and delete 2333 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2334 * caller holds the scheduler lock. 2335 */ 2336 static int 2337 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2338 struct ice_sched_agg_info *agg_info, u8 tc, 2339 bool rm_vsi_info) 2340 { 2341 struct ice_sched_agg_vsi_info *agg_vsi_info; 2342 struct ice_sched_agg_vsi_info *tmp; 2343 int status = 0; 2344 2345 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2346 list_entry) { 2347 u16 vsi_handle = agg_vsi_info->vsi_handle; 2348 2349 /* Move VSI to default aggregator */ 2350 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2351 continue; 2352 2353 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2354 ICE_DFLT_AGG_ID, tc); 2355 if (status) 2356 break; 2357 2358 clear_bit(tc, agg_vsi_info->tc_bitmap); 2359 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2360 list_del(&agg_vsi_info->list_entry); 2361 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2362 } 2363 } 2364 2365 return status; 2366 } 2367 2368 /** 2369 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2370 * @pi: port information structure 2371 * @node: node pointer 2372 * 2373 * This function checks whether the aggregator is attached with any VSI or not. 2374 */ 2375 static bool 2376 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2377 { 2378 u8 vsil, i; 2379 2380 vsil = ice_sched_get_vsi_layer(pi->hw); 2381 if (node->tx_sched_layer < vsil - 1) { 2382 for (i = 0; i < node->num_children; i++) 2383 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2384 return true; 2385 return false; 2386 } else { 2387 return node->num_children ? true : false; 2388 } 2389 } 2390 2391 /** 2392 * ice_sched_rm_agg_cfg - remove the aggregator node 2393 * @pi: port information structure 2394 * @agg_id: aggregator ID 2395 * @tc: TC number 2396 * 2397 * This function removes the aggregator node and intermediate nodes if any 2398 * from the given TC 2399 */ 2400 static int 2401 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2402 { 2403 struct ice_sched_node *tc_node, *agg_node; 2404 struct ice_hw *hw = pi->hw; 2405 2406 tc_node = ice_sched_get_tc_node(pi, tc); 2407 if (!tc_node) 2408 return -EIO; 2409 2410 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2411 if (!agg_node) 2412 return -ENOENT; 2413 2414 /* Can't remove the aggregator node if it has children */ 2415 if (ice_sched_is_agg_inuse(pi, agg_node)) 2416 return -EBUSY; 2417 2418 /* need to remove the whole subtree if aggregator node is the 2419 * only child. 2420 */ 2421 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2422 struct ice_sched_node *parent = agg_node->parent; 2423 2424 if (!parent) 2425 return -EIO; 2426 2427 if (parent->num_children > 1) 2428 break; 2429 2430 agg_node = parent; 2431 } 2432 2433 ice_free_sched_node(pi, agg_node); 2434 return 0; 2435 } 2436 2437 /** 2438 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2439 * @pi: port information structure 2440 * @agg_info: aggregator ID 2441 * @tc: TC number 2442 * @rm_vsi_info: bool value true or false 2443 * 2444 * This function removes aggregator reference to VSI of given TC. It removes 2445 * the aggregator configuration completely for requested TC. The caller needs 2446 * to hold the scheduler lock. 2447 */ 2448 static int 2449 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2450 u8 tc, bool rm_vsi_info) 2451 { 2452 int status = 0; 2453 2454 /* If nothing to remove - return success */ 2455 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2456 goto exit_rm_agg_cfg_tc; 2457 2458 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2459 if (status) 2460 goto exit_rm_agg_cfg_tc; 2461 2462 /* Delete aggregator node(s) */ 2463 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2464 if (status) 2465 goto exit_rm_agg_cfg_tc; 2466 2467 clear_bit(tc, agg_info->tc_bitmap); 2468 exit_rm_agg_cfg_tc: 2469 return status; 2470 } 2471 2472 /** 2473 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2474 * @pi: port information structure 2475 * @agg_id: aggregator ID 2476 * @tc_bitmap: 8 bits TC bitmap 2477 * 2478 * Save aggregator TC bitmap. This function needs to be called with scheduler 2479 * lock held. 2480 */ 2481 static int 2482 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2483 unsigned long *tc_bitmap) 2484 { 2485 struct ice_sched_agg_info *agg_info; 2486 2487 agg_info = ice_get_agg_info(pi->hw, agg_id); 2488 if (!agg_info) 2489 return -EINVAL; 2490 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2491 ICE_MAX_TRAFFIC_CLASS); 2492 return 0; 2493 } 2494 2495 /** 2496 * ice_sched_add_agg_cfg - create an aggregator node 2497 * @pi: port information structure 2498 * @agg_id: aggregator ID 2499 * @tc: TC number 2500 * 2501 * This function creates an aggregator node and intermediate nodes if required 2502 * for the given TC 2503 */ 2504 static int 2505 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2506 { 2507 struct ice_sched_node *parent, *agg_node, *tc_node; 2508 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2509 struct ice_hw *hw = pi->hw; 2510 u32 first_node_teid; 2511 u16 num_nodes_added; 2512 int status = 0; 2513 u8 i, aggl; 2514 2515 tc_node = ice_sched_get_tc_node(pi, tc); 2516 if (!tc_node) 2517 return -EIO; 2518 2519 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2520 /* Does Agg node already exist ? */ 2521 if (agg_node) 2522 return status; 2523 2524 aggl = ice_sched_get_agg_layer(hw); 2525 2526 /* need one node in Agg layer */ 2527 num_nodes[aggl] = 1; 2528 2529 /* Check whether the intermediate nodes have space to add the 2530 * new aggregator. If they are full, then SW needs to allocate a new 2531 * intermediate node on those layers 2532 */ 2533 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2534 parent = ice_sched_get_first_node(pi, tc_node, i); 2535 2536 /* scan all the siblings */ 2537 while (parent) { 2538 if (parent->num_children < hw->max_children[i]) 2539 break; 2540 parent = parent->sibling; 2541 } 2542 2543 /* all the nodes are full, reserve one for this layer */ 2544 if (!parent) 2545 num_nodes[i]++; 2546 } 2547 2548 /* add the aggregator node */ 2549 parent = tc_node; 2550 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2551 if (!parent) 2552 return -EIO; 2553 2554 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2555 num_nodes[i], 2556 &first_node_teid, 2557 &num_nodes_added); 2558 if (status || num_nodes[i] != num_nodes_added) 2559 return -EIO; 2560 2561 /* The newly added node can be a new parent for the next 2562 * layer nodes 2563 */ 2564 if (num_nodes_added) { 2565 parent = ice_sched_find_node_by_teid(tc_node, 2566 first_node_teid); 2567 /* register aggregator ID with the aggregator node */ 2568 if (parent && i == aggl) 2569 parent->agg_id = agg_id; 2570 } else { 2571 parent = parent->children[0]; 2572 } 2573 } 2574 2575 return 0; 2576 } 2577 2578 /** 2579 * ice_sched_cfg_agg - configure aggregator node 2580 * @pi: port information structure 2581 * @agg_id: aggregator ID 2582 * @agg_type: aggregator type queue, VSI, or aggregator group 2583 * @tc_bitmap: bits TC bitmap 2584 * 2585 * It registers a unique aggregator node into scheduler services. It 2586 * allows a user to register with a unique ID to track it's resources. 2587 * The aggregator type determines if this is a queue group, VSI group 2588 * or aggregator group. It then creates the aggregator node(s) for requested 2589 * TC(s) or removes an existing aggregator node including its configuration 2590 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2591 * resources and remove aggregator ID. 2592 * This function needs to be called with scheduler lock held. 2593 */ 2594 static int 2595 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2596 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2597 { 2598 struct ice_sched_agg_info *agg_info; 2599 struct ice_hw *hw = pi->hw; 2600 int status = 0; 2601 u8 tc; 2602 2603 agg_info = ice_get_agg_info(hw, agg_id); 2604 if (!agg_info) { 2605 /* Create new entry for new aggregator ID */ 2606 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2607 GFP_KERNEL); 2608 if (!agg_info) 2609 return -ENOMEM; 2610 2611 agg_info->agg_id = agg_id; 2612 agg_info->agg_type = agg_type; 2613 agg_info->tc_bitmap[0] = 0; 2614 2615 /* Initialize the aggregator VSI list head */ 2616 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2617 2618 /* Add new entry in aggregator list */ 2619 list_add(&agg_info->list_entry, &hw->agg_list); 2620 } 2621 /* Create aggregator node(s) for requested TC(s) */ 2622 ice_for_each_traffic_class(tc) { 2623 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2624 /* Delete aggregator cfg TC if it exists previously */ 2625 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2626 if (status) 2627 break; 2628 continue; 2629 } 2630 2631 /* Check if aggregator node for TC already exists */ 2632 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2633 continue; 2634 2635 /* Create new aggregator node for TC */ 2636 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2637 if (status) 2638 break; 2639 2640 /* Save aggregator node's TC information */ 2641 set_bit(tc, agg_info->tc_bitmap); 2642 } 2643 2644 return status; 2645 } 2646 2647 /** 2648 * ice_cfg_agg - config aggregator node 2649 * @pi: port information structure 2650 * @agg_id: aggregator ID 2651 * @agg_type: aggregator type queue, VSI, or aggregator group 2652 * @tc_bitmap: bits TC bitmap 2653 * 2654 * This function configures aggregator node(s). 2655 */ 2656 int 2657 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2658 u8 tc_bitmap) 2659 { 2660 unsigned long bitmap = tc_bitmap; 2661 int status; 2662 2663 mutex_lock(&pi->sched_lock); 2664 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2665 if (!status) 2666 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2667 mutex_unlock(&pi->sched_lock); 2668 return status; 2669 } 2670 2671 /** 2672 * ice_get_agg_vsi_info - get the aggregator ID 2673 * @agg_info: aggregator info 2674 * @vsi_handle: software VSI handle 2675 * 2676 * The function returns aggregator VSI info based on VSI handle. This function 2677 * needs to be called with scheduler lock held. 2678 */ 2679 static struct ice_sched_agg_vsi_info * 2680 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2681 { 2682 struct ice_sched_agg_vsi_info *agg_vsi_info; 2683 2684 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2685 if (agg_vsi_info->vsi_handle == vsi_handle) 2686 return agg_vsi_info; 2687 2688 return NULL; 2689 } 2690 2691 /** 2692 * ice_get_vsi_agg_info - get the aggregator info of VSI 2693 * @hw: pointer to the hardware structure 2694 * @vsi_handle: Sw VSI handle 2695 * 2696 * The function returns aggregator info of VSI represented via vsi_handle. The 2697 * VSI has in this case a different aggregator than the default one. This 2698 * function needs to be called with scheduler lock held. 2699 */ 2700 static struct ice_sched_agg_info * 2701 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2702 { 2703 struct ice_sched_agg_info *agg_info; 2704 2705 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2706 struct ice_sched_agg_vsi_info *agg_vsi_info; 2707 2708 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2709 if (agg_vsi_info) 2710 return agg_info; 2711 } 2712 return NULL; 2713 } 2714 2715 /** 2716 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2717 * @pi: port information structure 2718 * @agg_id: aggregator ID 2719 * @vsi_handle: software VSI handle 2720 * @tc_bitmap: TC bitmap of enabled TC(s) 2721 * 2722 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2723 * lock held. 2724 */ 2725 static int 2726 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2727 unsigned long *tc_bitmap) 2728 { 2729 struct ice_sched_agg_vsi_info *agg_vsi_info; 2730 struct ice_sched_agg_info *agg_info; 2731 2732 agg_info = ice_get_agg_info(pi->hw, agg_id); 2733 if (!agg_info) 2734 return -EINVAL; 2735 /* check if entry already exist */ 2736 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2737 if (!agg_vsi_info) 2738 return -EINVAL; 2739 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2740 ICE_MAX_TRAFFIC_CLASS); 2741 return 0; 2742 } 2743 2744 /** 2745 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2746 * @pi: port information structure 2747 * @agg_id: aggregator ID 2748 * @vsi_handle: software VSI handle 2749 * @tc_bitmap: TC bitmap of enabled TC(s) 2750 * 2751 * This function moves VSI to a new or default aggregator node. If VSI is 2752 * already associated to the aggregator node then no operation is performed on 2753 * the tree. This function needs to be called with scheduler lock held. 2754 */ 2755 static int 2756 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2757 u16 vsi_handle, unsigned long *tc_bitmap) 2758 { 2759 struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL; 2760 struct ice_sched_agg_info *agg_info, *old_agg_info; 2761 struct ice_hw *hw = pi->hw; 2762 int status = 0; 2763 u8 tc; 2764 2765 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2766 return -EINVAL; 2767 agg_info = ice_get_agg_info(hw, agg_id); 2768 if (!agg_info) 2769 return -EINVAL; 2770 /* If the VSI is already part of another aggregator then update 2771 * its VSI info list 2772 */ 2773 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2774 if (old_agg_info && old_agg_info != agg_info) { 2775 struct ice_sched_agg_vsi_info *vtmp; 2776 2777 list_for_each_entry_safe(old_agg_vsi_info, vtmp, 2778 &old_agg_info->agg_vsi_list, 2779 list_entry) 2780 if (old_agg_vsi_info->vsi_handle == vsi_handle) 2781 break; 2782 } 2783 2784 /* check if entry already exist */ 2785 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2786 if (!agg_vsi_info) { 2787 /* Create new entry for VSI under aggregator list */ 2788 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2789 sizeof(*agg_vsi_info), GFP_KERNEL); 2790 if (!agg_vsi_info) 2791 return -EINVAL; 2792 2793 /* add VSI ID into the aggregator list */ 2794 agg_vsi_info->vsi_handle = vsi_handle; 2795 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2796 } 2797 /* Move VSI node to new aggregator node for requested TC(s) */ 2798 ice_for_each_traffic_class(tc) { 2799 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2800 continue; 2801 2802 /* Move VSI to new aggregator */ 2803 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2804 if (status) 2805 break; 2806 2807 set_bit(tc, agg_vsi_info->tc_bitmap); 2808 if (old_agg_vsi_info) 2809 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2810 } 2811 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2812 list_del(&old_agg_vsi_info->list_entry); 2813 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2814 } 2815 return status; 2816 } 2817 2818 /** 2819 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2820 * @pi: port information structure 2821 * 2822 * This function removes unused rate limit profiles from the HW and 2823 * SW DB. The caller needs to hold scheduler lock. 2824 */ 2825 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2826 { 2827 u16 ln; 2828 2829 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2830 struct ice_aqc_rl_profile_info *rl_prof_elem; 2831 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2832 2833 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2834 &pi->rl_prof_list[ln], list_entry) { 2835 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2836 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2837 } 2838 } 2839 } 2840 2841 /** 2842 * ice_sched_update_elem - update element 2843 * @hw: pointer to the HW struct 2844 * @node: pointer to node 2845 * @info: node info to update 2846 * 2847 * Update the HW DB, and local SW DB of node. Update the scheduling 2848 * parameters of node from argument info data buffer (Info->data buf) and 2849 * returns success or error on config sched element failure. The caller 2850 * needs to hold scheduler lock. 2851 */ 2852 static int 2853 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2854 struct ice_aqc_txsched_elem_data *info) 2855 { 2856 struct ice_aqc_txsched_elem_data buf; 2857 u16 elem_cfgd = 0; 2858 u16 num_elems = 1; 2859 int status; 2860 2861 buf = *info; 2862 /* Parent TEID is reserved field in this aq call */ 2863 buf.parent_teid = 0; 2864 /* Element type is reserved field in this aq call */ 2865 buf.data.elem_type = 0; 2866 /* Flags is reserved field in this aq call */ 2867 buf.data.flags = 0; 2868 2869 /* Update HW DB */ 2870 /* Configure element node */ 2871 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2872 &elem_cfgd, NULL); 2873 if (status || elem_cfgd != num_elems) { 2874 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2875 return -EIO; 2876 } 2877 2878 /* Config success case */ 2879 /* Now update local SW DB */ 2880 /* Only copy the data portion of info buffer */ 2881 node->info.data = info->data; 2882 return status; 2883 } 2884 2885 /** 2886 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2887 * @hw: pointer to the HW struct 2888 * @node: sched node to configure 2889 * @rl_type: rate limit type CIR, EIR, or shared 2890 * @bw_alloc: BW weight/allocation 2891 * 2892 * This function configures node element's BW allocation. 2893 */ 2894 static int 2895 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2896 enum ice_rl_type rl_type, u16 bw_alloc) 2897 { 2898 struct ice_aqc_txsched_elem_data buf; 2899 struct ice_aqc_txsched_elem *data; 2900 2901 buf = node->info; 2902 data = &buf.data; 2903 if (rl_type == ICE_MIN_BW) { 2904 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2905 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2906 } else if (rl_type == ICE_MAX_BW) { 2907 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2908 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2909 } else { 2910 return -EINVAL; 2911 } 2912 2913 /* Configure element */ 2914 return ice_sched_update_elem(hw, node, &buf); 2915 } 2916 2917 /** 2918 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2919 * @pi: port information structure 2920 * @agg_id: aggregator ID 2921 * @vsi_handle: software VSI handle 2922 * @tc_bitmap: TC bitmap of enabled TC(s) 2923 * 2924 * Move or associate VSI to a new or default aggregator node. 2925 */ 2926 int 2927 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2928 u8 tc_bitmap) 2929 { 2930 unsigned long bitmap = tc_bitmap; 2931 int status; 2932 2933 mutex_lock(&pi->sched_lock); 2934 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2935 (unsigned long *)&bitmap); 2936 if (!status) 2937 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2938 (unsigned long *)&bitmap); 2939 mutex_unlock(&pi->sched_lock); 2940 return status; 2941 } 2942 2943 /** 2944 * ice_set_clear_cir_bw - set or clear CIR BW 2945 * @bw_t_info: bandwidth type information structure 2946 * @bw: bandwidth in Kbps - Kilo bits per sec 2947 * 2948 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2949 */ 2950 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2951 { 2952 if (bw == ICE_SCHED_DFLT_BW) { 2953 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2954 bw_t_info->cir_bw.bw = 0; 2955 } else { 2956 /* Save type of BW information */ 2957 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2958 bw_t_info->cir_bw.bw = bw; 2959 } 2960 } 2961 2962 /** 2963 * ice_set_clear_eir_bw - set or clear EIR BW 2964 * @bw_t_info: bandwidth type information structure 2965 * @bw: bandwidth in Kbps - Kilo bits per sec 2966 * 2967 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2968 */ 2969 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2970 { 2971 if (bw == ICE_SCHED_DFLT_BW) { 2972 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2973 bw_t_info->eir_bw.bw = 0; 2974 } else { 2975 /* EIR BW and Shared BW profiles are mutually exclusive and 2976 * hence only one of them may be set for any given element. 2977 * First clear earlier saved shared BW information. 2978 */ 2979 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2980 bw_t_info->shared_bw = 0; 2981 /* save EIR BW information */ 2982 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2983 bw_t_info->eir_bw.bw = bw; 2984 } 2985 } 2986 2987 /** 2988 * ice_set_clear_shared_bw - set or clear shared BW 2989 * @bw_t_info: bandwidth type information structure 2990 * @bw: bandwidth in Kbps - Kilo bits per sec 2991 * 2992 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 2993 */ 2994 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2995 { 2996 if (bw == ICE_SCHED_DFLT_BW) { 2997 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2998 bw_t_info->shared_bw = 0; 2999 } else { 3000 /* EIR BW and Shared BW profiles are mutually exclusive and 3001 * hence only one of them may be set for any given element. 3002 * First clear earlier saved EIR BW information. 3003 */ 3004 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3005 bw_t_info->eir_bw.bw = 0; 3006 /* save shared BW information */ 3007 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3008 bw_t_info->shared_bw = bw; 3009 } 3010 } 3011 3012 /** 3013 * ice_sched_save_vsi_bw - save VSI node's BW information 3014 * @pi: port information structure 3015 * @vsi_handle: sw VSI handle 3016 * @tc: traffic class 3017 * @rl_type: rate limit type min, max, or shared 3018 * @bw: bandwidth in Kbps - Kilo bits per sec 3019 * 3020 * Save BW information of VSI type node for post replay use. 3021 */ 3022 static int 3023 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3024 enum ice_rl_type rl_type, u32 bw) 3025 { 3026 struct ice_vsi_ctx *vsi_ctx; 3027 3028 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3029 return -EINVAL; 3030 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3031 if (!vsi_ctx) 3032 return -EINVAL; 3033 switch (rl_type) { 3034 case ICE_MIN_BW: 3035 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3036 break; 3037 case ICE_MAX_BW: 3038 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3039 break; 3040 case ICE_SHARED_BW: 3041 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3042 break; 3043 default: 3044 return -EINVAL; 3045 } 3046 return 0; 3047 } 3048 3049 /** 3050 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3051 * @hw: pointer to the HW struct 3052 * @bw: bandwidth in Kbps 3053 * 3054 * This function calculates the wakeup parameter of RL profile. 3055 */ 3056 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3057 { 3058 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3059 s32 wakeup_f_int; 3060 u16 wakeup = 0; 3061 3062 /* Get the wakeup integer value */ 3063 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3064 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3065 if (wakeup_int > 63) { 3066 wakeup = (u16)((1 << 15) | wakeup_int); 3067 } else { 3068 /* Calculate fraction value up to 4 decimals 3069 * Convert Integer value to a constant multiplier 3070 */ 3071 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3072 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3073 hw->psm_clk_freq, bytes_per_sec); 3074 3075 /* Get Fraction value */ 3076 wakeup_f = wakeup_a - wakeup_b; 3077 3078 /* Round up the Fractional value via Ceil(Fractional value) */ 3079 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3080 wakeup_f += 1; 3081 3082 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3083 ICE_RL_PROF_MULTIPLIER); 3084 wakeup |= (u16)(wakeup_int << 9); 3085 wakeup |= (u16)(0x1ff & wakeup_f_int); 3086 } 3087 3088 return wakeup; 3089 } 3090 3091 /** 3092 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3093 * @hw: pointer to the HW struct 3094 * @bw: bandwidth in Kbps 3095 * @profile: profile parameters to return 3096 * 3097 * This function converts the BW to profile structure format. 3098 */ 3099 static int 3100 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3101 struct ice_aqc_rl_profile_elem *profile) 3102 { 3103 s64 bytes_per_sec, ts_rate, mv_tmp; 3104 int status = -EINVAL; 3105 bool found = false; 3106 s32 encode = 0; 3107 s64 mv = 0; 3108 s32 i; 3109 3110 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3111 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3112 return status; 3113 3114 /* Bytes per second from Kbps */ 3115 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3116 3117 /* encode is 6 bits but really useful are 5 bits */ 3118 for (i = 0; i < 64; i++) { 3119 u64 pow_result = BIT_ULL(i); 3120 3121 ts_rate = div64_long((s64)hw->psm_clk_freq, 3122 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3123 if (ts_rate <= 0) 3124 continue; 3125 3126 /* Multiplier value */ 3127 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3128 ts_rate); 3129 3130 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3131 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3132 3133 /* First multiplier value greater than the given 3134 * accuracy bytes 3135 */ 3136 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3137 encode = i; 3138 found = true; 3139 break; 3140 } 3141 } 3142 if (found) { 3143 u16 wm; 3144 3145 wm = ice_sched_calc_wakeup(hw, bw); 3146 profile->rl_multiply = cpu_to_le16(mv); 3147 profile->wake_up_calc = cpu_to_le16(wm); 3148 profile->rl_encode = cpu_to_le16(encode); 3149 status = 0; 3150 } else { 3151 status = -ENOENT; 3152 } 3153 3154 return status; 3155 } 3156 3157 /** 3158 * ice_sched_add_rl_profile - add RL profile 3159 * @pi: port information structure 3160 * @rl_type: type of rate limit BW - min, max, or shared 3161 * @bw: bandwidth in Kbps - Kilo bits per sec 3162 * @layer_num: specifies in which layer to create profile 3163 * 3164 * This function first checks the existing list for corresponding BW 3165 * parameter. If it exists, it returns the associated profile otherwise 3166 * it creates a new rate limit profile for requested BW, and adds it to 3167 * the HW DB and local list. It returns the new profile or null on error. 3168 * The caller needs to hold the scheduler lock. 3169 */ 3170 static struct ice_aqc_rl_profile_info * 3171 ice_sched_add_rl_profile(struct ice_port_info *pi, 3172 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3173 { 3174 struct ice_aqc_rl_profile_info *rl_prof_elem; 3175 u16 profiles_added = 0, num_profiles = 1; 3176 struct ice_aqc_rl_profile_elem *buf; 3177 struct ice_hw *hw; 3178 u8 profile_type; 3179 int status; 3180 3181 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3182 return NULL; 3183 switch (rl_type) { 3184 case ICE_MIN_BW: 3185 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3186 break; 3187 case ICE_MAX_BW: 3188 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3189 break; 3190 case ICE_SHARED_BW: 3191 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3192 break; 3193 default: 3194 return NULL; 3195 } 3196 3197 if (!pi) 3198 return NULL; 3199 hw = pi->hw; 3200 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3201 list_entry) 3202 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3203 profile_type && rl_prof_elem->bw == bw) 3204 /* Return existing profile ID info */ 3205 return rl_prof_elem; 3206 3207 /* Create new profile ID */ 3208 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3209 GFP_KERNEL); 3210 3211 if (!rl_prof_elem) 3212 return NULL; 3213 3214 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3215 if (status) 3216 goto exit_add_rl_prof; 3217 3218 rl_prof_elem->bw = bw; 3219 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3220 rl_prof_elem->profile.level = layer_num + 1; 3221 rl_prof_elem->profile.flags = profile_type; 3222 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3223 3224 /* Create new entry in HW DB */ 3225 buf = &rl_prof_elem->profile; 3226 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3227 &profiles_added, NULL); 3228 if (status || profiles_added != num_profiles) 3229 goto exit_add_rl_prof; 3230 3231 /* Good entry - add in the list */ 3232 rl_prof_elem->prof_id_ref = 0; 3233 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3234 return rl_prof_elem; 3235 3236 exit_add_rl_prof: 3237 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3238 return NULL; 3239 } 3240 3241 /** 3242 * ice_sched_cfg_node_bw_lmt - configure node sched params 3243 * @hw: pointer to the HW struct 3244 * @node: sched node to configure 3245 * @rl_type: rate limit type CIR, EIR, or shared 3246 * @rl_prof_id: rate limit profile ID 3247 * 3248 * This function configures node element's BW limit. 3249 */ 3250 static int 3251 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3252 enum ice_rl_type rl_type, u16 rl_prof_id) 3253 { 3254 struct ice_aqc_txsched_elem_data buf; 3255 struct ice_aqc_txsched_elem *data; 3256 3257 buf = node->info; 3258 data = &buf.data; 3259 switch (rl_type) { 3260 case ICE_MIN_BW: 3261 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3262 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3263 break; 3264 case ICE_MAX_BW: 3265 /* EIR BW and Shared BW profiles are mutually exclusive and 3266 * hence only one of them may be set for any given element 3267 */ 3268 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3269 return -EIO; 3270 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3271 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3272 break; 3273 case ICE_SHARED_BW: 3274 /* Check for removing shared BW */ 3275 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3276 /* remove shared profile */ 3277 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3278 data->srl_id = 0; /* clear SRL field */ 3279 3280 /* enable back EIR to default profile */ 3281 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3282 data->eir_bw.bw_profile_idx = 3283 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3284 break; 3285 } 3286 /* EIR BW and Shared BW profiles are mutually exclusive and 3287 * hence only one of them may be set for any given element 3288 */ 3289 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3290 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3291 ICE_SCHED_DFLT_RL_PROF_ID)) 3292 return -EIO; 3293 /* EIR BW is set to default, disable it */ 3294 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3295 /* Okay to enable shared BW now */ 3296 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3297 data->srl_id = cpu_to_le16(rl_prof_id); 3298 break; 3299 default: 3300 /* Unknown rate limit type */ 3301 return -EINVAL; 3302 } 3303 3304 /* Configure element */ 3305 return ice_sched_update_elem(hw, node, &buf); 3306 } 3307 3308 /** 3309 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3310 * @node: sched node 3311 * @rl_type: rate limit type 3312 * 3313 * If existing profile matches, it returns the corresponding rate 3314 * limit profile ID, otherwise it returns an invalid ID as error. 3315 */ 3316 static u16 3317 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3318 enum ice_rl_type rl_type) 3319 { 3320 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3321 struct ice_aqc_txsched_elem *data; 3322 3323 data = &node->info.data; 3324 switch (rl_type) { 3325 case ICE_MIN_BW: 3326 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3327 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3328 break; 3329 case ICE_MAX_BW: 3330 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3331 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3332 break; 3333 case ICE_SHARED_BW: 3334 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3335 rl_prof_id = le16_to_cpu(data->srl_id); 3336 break; 3337 default: 3338 break; 3339 } 3340 3341 return rl_prof_id; 3342 } 3343 3344 /** 3345 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3346 * @pi: port information structure 3347 * @rl_type: type of rate limit BW - min, max, or shared 3348 * @layer_index: layer index 3349 * 3350 * This function returns requested profile creation layer. 3351 */ 3352 static u8 3353 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3354 u8 layer_index) 3355 { 3356 struct ice_hw *hw = pi->hw; 3357 3358 if (layer_index >= hw->num_tx_sched_layers) 3359 return ICE_SCHED_INVAL_LAYER_NUM; 3360 switch (rl_type) { 3361 case ICE_MIN_BW: 3362 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3363 return layer_index; 3364 break; 3365 case ICE_MAX_BW: 3366 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3367 return layer_index; 3368 break; 3369 case ICE_SHARED_BW: 3370 /* if current layer doesn't support SRL profile creation 3371 * then try a layer up or down. 3372 */ 3373 if (hw->layer_info[layer_index].max_srl_profiles) 3374 return layer_index; 3375 else if (layer_index < hw->num_tx_sched_layers - 1 && 3376 hw->layer_info[layer_index + 1].max_srl_profiles) 3377 return layer_index + 1; 3378 else if (layer_index > 0 && 3379 hw->layer_info[layer_index - 1].max_srl_profiles) 3380 return layer_index - 1; 3381 break; 3382 default: 3383 break; 3384 } 3385 return ICE_SCHED_INVAL_LAYER_NUM; 3386 } 3387 3388 /** 3389 * ice_sched_get_srl_node - get shared rate limit node 3390 * @node: tree node 3391 * @srl_layer: shared rate limit layer 3392 * 3393 * This function returns SRL node to be used for shared rate limit purpose. 3394 * The caller needs to hold scheduler lock. 3395 */ 3396 static struct ice_sched_node * 3397 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3398 { 3399 if (srl_layer > node->tx_sched_layer) 3400 return node->children[0]; 3401 else if (srl_layer < node->tx_sched_layer) 3402 /* Node can't be created without a parent. It will always 3403 * have a valid parent except root node. 3404 */ 3405 return node->parent; 3406 else 3407 return node; 3408 } 3409 3410 /** 3411 * ice_sched_rm_rl_profile - remove RL profile ID 3412 * @pi: port information structure 3413 * @layer_num: layer number where profiles are saved 3414 * @profile_type: profile type like EIR, CIR, or SRL 3415 * @profile_id: profile ID to remove 3416 * 3417 * This function removes rate limit profile from layer 'layer_num' of type 3418 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3419 * scheduler lock. 3420 */ 3421 static int 3422 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3423 u16 profile_id) 3424 { 3425 struct ice_aqc_rl_profile_info *rl_prof_elem; 3426 int status = 0; 3427 3428 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3429 return -EINVAL; 3430 /* Check the existing list for RL profile */ 3431 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3432 list_entry) 3433 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3434 profile_type && 3435 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3436 profile_id) { 3437 if (rl_prof_elem->prof_id_ref) 3438 rl_prof_elem->prof_id_ref--; 3439 3440 /* Remove old profile ID from database */ 3441 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3442 if (status && status != -EBUSY) 3443 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3444 break; 3445 } 3446 if (status == -EBUSY) 3447 status = 0; 3448 return status; 3449 } 3450 3451 /** 3452 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3453 * @pi: port information structure 3454 * @node: pointer to node structure 3455 * @rl_type: rate limit type min, max, or shared 3456 * @layer_num: layer number where RL profiles are saved 3457 * 3458 * This function configures node element's BW rate limit profile ID of 3459 * type CIR, EIR, or SRL to default. This function needs to be called 3460 * with the scheduler lock held. 3461 */ 3462 static int 3463 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3464 struct ice_sched_node *node, 3465 enum ice_rl_type rl_type, u8 layer_num) 3466 { 3467 struct ice_hw *hw; 3468 u8 profile_type; 3469 u16 rl_prof_id; 3470 u16 old_id; 3471 int status; 3472 3473 hw = pi->hw; 3474 switch (rl_type) { 3475 case ICE_MIN_BW: 3476 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3477 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3478 break; 3479 case ICE_MAX_BW: 3480 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3481 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3482 break; 3483 case ICE_SHARED_BW: 3484 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3485 /* No SRL is configured for default case */ 3486 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3487 break; 3488 default: 3489 return -EINVAL; 3490 } 3491 /* Save existing RL prof ID for later clean up */ 3492 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3493 /* Configure BW scheduling parameters */ 3494 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3495 if (status) 3496 return status; 3497 3498 /* Remove stale RL profile ID */ 3499 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3500 old_id == ICE_SCHED_INVAL_PROF_ID) 3501 return 0; 3502 3503 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3504 } 3505 3506 /** 3507 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3508 * @pi: port information structure 3509 * @node: pointer to node structure 3510 * @layer_num: layer number where rate limit profiles are saved 3511 * @rl_type: rate limit type min, max, or shared 3512 * @bw: bandwidth value 3513 * 3514 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3515 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3516 * them may be set for any given element. This function needs to be called 3517 * with the scheduler lock held. 3518 */ 3519 static int 3520 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3521 struct ice_sched_node *node, 3522 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3523 { 3524 if (rl_type == ICE_SHARED_BW) { 3525 /* SRL node passed in this case, it may be different node */ 3526 if (bw == ICE_SCHED_DFLT_BW) 3527 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3528 * enables EIR to default. EIR is not set in this 3529 * case, so no additional action is required. 3530 */ 3531 return 0; 3532 3533 /* SRL being configured, set EIR to default here. 3534 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3535 * configures SRL 3536 */ 3537 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3538 layer_num); 3539 } else if (rl_type == ICE_MAX_BW && 3540 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3541 /* Remove Shared profile. Set default shared BW call 3542 * removes shared profile for a node. 3543 */ 3544 return ice_sched_set_node_bw_dflt(pi, node, 3545 ICE_SHARED_BW, 3546 layer_num); 3547 } 3548 return 0; 3549 } 3550 3551 /** 3552 * ice_sched_set_node_bw - set node's bandwidth 3553 * @pi: port information structure 3554 * @node: tree node 3555 * @rl_type: rate limit type min, max, or shared 3556 * @bw: bandwidth in Kbps - Kilo bits per sec 3557 * @layer_num: layer number 3558 * 3559 * This function adds new profile corresponding to requested BW, configures 3560 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3561 * ID from local database. The caller needs to hold scheduler lock. 3562 */ 3563 static int 3564 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3565 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3566 { 3567 struct ice_aqc_rl_profile_info *rl_prof_info; 3568 struct ice_hw *hw = pi->hw; 3569 u16 old_id, rl_prof_id; 3570 int status = -EINVAL; 3571 3572 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3573 if (!rl_prof_info) 3574 return status; 3575 3576 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3577 3578 /* Save existing RL prof ID for later clean up */ 3579 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3580 /* Configure BW scheduling parameters */ 3581 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3582 if (status) 3583 return status; 3584 3585 /* New changes has been applied */ 3586 /* Increment the profile ID reference count */ 3587 rl_prof_info->prof_id_ref++; 3588 3589 /* Check for old ID removal */ 3590 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3591 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3592 return 0; 3593 3594 return ice_sched_rm_rl_profile(pi, layer_num, 3595 rl_prof_info->profile.flags & 3596 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3597 } 3598 3599 /** 3600 * ice_sched_set_node_bw_lmt - set node's BW limit 3601 * @pi: port information structure 3602 * @node: tree node 3603 * @rl_type: rate limit type min, max, or shared 3604 * @bw: bandwidth in Kbps - Kilo bits per sec 3605 * 3606 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3607 * EIR, or SRL. The caller needs to hold scheduler lock. 3608 */ 3609 static int 3610 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3611 enum ice_rl_type rl_type, u32 bw) 3612 { 3613 struct ice_sched_node *cfg_node = node; 3614 int status; 3615 3616 struct ice_hw *hw; 3617 u8 layer_num; 3618 3619 if (!pi) 3620 return -EINVAL; 3621 hw = pi->hw; 3622 /* Remove unused RL profile IDs from HW and SW DB */ 3623 ice_sched_rm_unused_rl_prof(pi); 3624 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3625 node->tx_sched_layer); 3626 if (layer_num >= hw->num_tx_sched_layers) 3627 return -EINVAL; 3628 3629 if (rl_type == ICE_SHARED_BW) { 3630 /* SRL node may be different */ 3631 cfg_node = ice_sched_get_srl_node(node, layer_num); 3632 if (!cfg_node) 3633 return -EIO; 3634 } 3635 /* EIR BW and Shared BW profiles are mutually exclusive and 3636 * hence only one of them may be set for any given element 3637 */ 3638 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3639 bw); 3640 if (status) 3641 return status; 3642 if (bw == ICE_SCHED_DFLT_BW) 3643 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3644 layer_num); 3645 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3646 } 3647 3648 /** 3649 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3650 * @pi: port information structure 3651 * @node: pointer to node structure 3652 * @rl_type: rate limit type min, max, or shared 3653 * 3654 * This function configures node element's BW rate limit profile ID of 3655 * type CIR, EIR, or SRL to default. This function needs to be called 3656 * with the scheduler lock held. 3657 */ 3658 static int 3659 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3660 struct ice_sched_node *node, 3661 enum ice_rl_type rl_type) 3662 { 3663 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3664 ICE_SCHED_DFLT_BW); 3665 } 3666 3667 /** 3668 * ice_sched_validate_srl_node - Check node for SRL applicability 3669 * @node: sched node to configure 3670 * @sel_layer: selected SRL layer 3671 * 3672 * This function checks if the SRL can be applied to a selected layer node on 3673 * behalf of the requested node (first argument). This function needs to be 3674 * called with scheduler lock held. 3675 */ 3676 static int 3677 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3678 { 3679 /* SRL profiles are not available on all layers. Check if the 3680 * SRL profile can be applied to a node above or below the 3681 * requested node. SRL configuration is possible only if the 3682 * selected layer's node has single child. 3683 */ 3684 if (sel_layer == node->tx_sched_layer || 3685 ((sel_layer == node->tx_sched_layer + 1) && 3686 node->num_children == 1) || 3687 ((sel_layer == node->tx_sched_layer - 1) && 3688 (node->parent && node->parent->num_children == 1))) 3689 return 0; 3690 3691 return -EIO; 3692 } 3693 3694 /** 3695 * ice_sched_save_q_bw - save queue node's BW information 3696 * @q_ctx: queue context structure 3697 * @rl_type: rate limit type min, max, or shared 3698 * @bw: bandwidth in Kbps - Kilo bits per sec 3699 * 3700 * Save BW information of queue type node for post replay use. 3701 */ 3702 static int 3703 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3704 { 3705 switch (rl_type) { 3706 case ICE_MIN_BW: 3707 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3708 break; 3709 case ICE_MAX_BW: 3710 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3711 break; 3712 case ICE_SHARED_BW: 3713 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3714 break; 3715 default: 3716 return -EINVAL; 3717 } 3718 return 0; 3719 } 3720 3721 /** 3722 * ice_sched_set_q_bw_lmt - sets queue BW limit 3723 * @pi: port information structure 3724 * @vsi_handle: sw VSI handle 3725 * @tc: traffic class 3726 * @q_handle: software queue handle 3727 * @rl_type: min, max, or shared 3728 * @bw: bandwidth in Kbps 3729 * 3730 * This function sets BW limit of queue scheduling node. 3731 */ 3732 static int 3733 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3734 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3735 { 3736 struct ice_sched_node *node; 3737 struct ice_q_ctx *q_ctx; 3738 int status = -EINVAL; 3739 3740 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3741 return -EINVAL; 3742 mutex_lock(&pi->sched_lock); 3743 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3744 if (!q_ctx) 3745 goto exit_q_bw_lmt; 3746 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3747 if (!node) { 3748 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3749 goto exit_q_bw_lmt; 3750 } 3751 3752 /* Return error if it is not a leaf node */ 3753 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3754 goto exit_q_bw_lmt; 3755 3756 /* SRL bandwidth layer selection */ 3757 if (rl_type == ICE_SHARED_BW) { 3758 u8 sel_layer; /* selected layer */ 3759 3760 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3761 node->tx_sched_layer); 3762 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3763 status = -EINVAL; 3764 goto exit_q_bw_lmt; 3765 } 3766 status = ice_sched_validate_srl_node(node, sel_layer); 3767 if (status) 3768 goto exit_q_bw_lmt; 3769 } 3770 3771 if (bw == ICE_SCHED_DFLT_BW) 3772 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3773 else 3774 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3775 3776 if (!status) 3777 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3778 3779 exit_q_bw_lmt: 3780 mutex_unlock(&pi->sched_lock); 3781 return status; 3782 } 3783 3784 /** 3785 * ice_cfg_q_bw_lmt - configure queue BW limit 3786 * @pi: port information structure 3787 * @vsi_handle: sw VSI handle 3788 * @tc: traffic class 3789 * @q_handle: software queue handle 3790 * @rl_type: min, max, or shared 3791 * @bw: bandwidth in Kbps 3792 * 3793 * This function configures BW limit of queue scheduling node. 3794 */ 3795 int 3796 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3797 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3798 { 3799 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3800 bw); 3801 } 3802 3803 /** 3804 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3805 * @pi: port information structure 3806 * @vsi_handle: sw VSI handle 3807 * @tc: traffic class 3808 * @q_handle: software queue handle 3809 * @rl_type: min, max, or shared 3810 * 3811 * This function configures BW default limit of queue scheduling node. 3812 */ 3813 int 3814 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3815 u16 q_handle, enum ice_rl_type rl_type) 3816 { 3817 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3818 ICE_SCHED_DFLT_BW); 3819 } 3820 3821 /** 3822 * ice_sched_get_node_by_id_type - get node from ID type 3823 * @pi: port information structure 3824 * @id: identifier 3825 * @agg_type: type of aggregator 3826 * @tc: traffic class 3827 * 3828 * This function returns node identified by ID of type aggregator, and 3829 * based on traffic class (TC). This function needs to be called with 3830 * the scheduler lock held. 3831 */ 3832 static struct ice_sched_node * 3833 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3834 enum ice_agg_type agg_type, u8 tc) 3835 { 3836 struct ice_sched_node *node = NULL; 3837 3838 switch (agg_type) { 3839 case ICE_AGG_TYPE_VSI: { 3840 struct ice_vsi_ctx *vsi_ctx; 3841 u16 vsi_handle = (u16)id; 3842 3843 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3844 break; 3845 /* Get sched_vsi_info */ 3846 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3847 if (!vsi_ctx) 3848 break; 3849 node = vsi_ctx->sched.vsi_node[tc]; 3850 break; 3851 } 3852 3853 case ICE_AGG_TYPE_AGG: { 3854 struct ice_sched_node *tc_node; 3855 3856 tc_node = ice_sched_get_tc_node(pi, tc); 3857 if (tc_node) 3858 node = ice_sched_get_agg_node(pi, tc_node, id); 3859 break; 3860 } 3861 3862 default: 3863 break; 3864 } 3865 3866 return node; 3867 } 3868 3869 /** 3870 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3871 * @pi: port information structure 3872 * @id: ID (software VSI handle or AGG ID) 3873 * @agg_type: aggregator type (VSI or AGG type node) 3874 * @tc: traffic class 3875 * @rl_type: min or max 3876 * @bw: bandwidth in Kbps 3877 * 3878 * This function sets BW limit of VSI or Aggregator scheduling node 3879 * based on TC information from passed in argument BW. 3880 */ 3881 int 3882 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3883 enum ice_agg_type agg_type, u8 tc, 3884 enum ice_rl_type rl_type, u32 bw) 3885 { 3886 struct ice_sched_node *node; 3887 int status = -EINVAL; 3888 3889 if (!pi) 3890 return status; 3891 3892 if (rl_type == ICE_UNKNOWN_BW) 3893 return status; 3894 3895 mutex_lock(&pi->sched_lock); 3896 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3897 if (!node) { 3898 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3899 goto exit_set_node_bw_lmt_per_tc; 3900 } 3901 if (bw == ICE_SCHED_DFLT_BW) 3902 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3903 else 3904 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3905 3906 exit_set_node_bw_lmt_per_tc: 3907 mutex_unlock(&pi->sched_lock); 3908 return status; 3909 } 3910 3911 /** 3912 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 3913 * @pi: port information structure 3914 * @vsi_handle: software VSI handle 3915 * @tc: traffic class 3916 * @rl_type: min or max 3917 * @bw: bandwidth in Kbps 3918 * 3919 * This function configures BW limit of VSI scheduling node based on TC 3920 * information. 3921 */ 3922 int 3923 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3924 enum ice_rl_type rl_type, u32 bw) 3925 { 3926 int status; 3927 3928 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 3929 ICE_AGG_TYPE_VSI, 3930 tc, rl_type, bw); 3931 if (!status) { 3932 mutex_lock(&pi->sched_lock); 3933 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 3934 mutex_unlock(&pi->sched_lock); 3935 } 3936 return status; 3937 } 3938 3939 /** 3940 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 3941 * @pi: port information structure 3942 * @vsi_handle: software VSI handle 3943 * @tc: traffic class 3944 * @rl_type: min or max 3945 * 3946 * This function configures default BW limit of VSI scheduling node based on TC 3947 * information. 3948 */ 3949 int 3950 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3951 enum ice_rl_type rl_type) 3952 { 3953 int status; 3954 3955 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 3956 ICE_AGG_TYPE_VSI, 3957 tc, rl_type, 3958 ICE_SCHED_DFLT_BW); 3959 if (!status) { 3960 mutex_lock(&pi->sched_lock); 3961 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 3962 ICE_SCHED_DFLT_BW); 3963 mutex_unlock(&pi->sched_lock); 3964 } 3965 return status; 3966 } 3967 3968 /** 3969 * ice_cfg_rl_burst_size - Set burst size value 3970 * @hw: pointer to the HW struct 3971 * @bytes: burst size in bytes 3972 * 3973 * This function configures/set the burst size to requested new value. The new 3974 * burst size value is used for future rate limit calls. It doesn't change the 3975 * existing or previously created RL profiles. 3976 */ 3977 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 3978 { 3979 u16 burst_size_to_prog; 3980 3981 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 3982 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 3983 return -EINVAL; 3984 if (ice_round_to_num(bytes, 64) <= 3985 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 3986 /* 64 byte granularity case */ 3987 /* Disable MSB granularity bit */ 3988 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 3989 /* round number to nearest 64 byte granularity */ 3990 bytes = ice_round_to_num(bytes, 64); 3991 /* The value is in 64 byte chunks */ 3992 burst_size_to_prog |= (u16)(bytes / 64); 3993 } else { 3994 /* k bytes granularity case */ 3995 /* Enable MSB granularity bit */ 3996 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 3997 /* round number to nearest 1024 granularity */ 3998 bytes = ice_round_to_num(bytes, 1024); 3999 /* check rounding doesn't go beyond allowed */ 4000 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4001 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4002 /* The value is in k bytes */ 4003 burst_size_to_prog |= (u16)(bytes / 1024); 4004 } 4005 hw->max_burst_size = burst_size_to_prog; 4006 return 0; 4007 } 4008 4009 /** 4010 * ice_sched_replay_node_prio - re-configure node priority 4011 * @hw: pointer to the HW struct 4012 * @node: sched node to configure 4013 * @priority: priority value 4014 * 4015 * This function configures node element's priority value. It 4016 * needs to be called with scheduler lock held. 4017 */ 4018 static int 4019 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4020 u8 priority) 4021 { 4022 struct ice_aqc_txsched_elem_data buf; 4023 struct ice_aqc_txsched_elem *data; 4024 int status; 4025 4026 buf = node->info; 4027 data = &buf.data; 4028 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4029 data->generic = priority; 4030 4031 /* Configure element */ 4032 status = ice_sched_update_elem(hw, node, &buf); 4033 return status; 4034 } 4035 4036 /** 4037 * ice_sched_replay_node_bw - replay node(s) BW 4038 * @hw: pointer to the HW struct 4039 * @node: sched node to configure 4040 * @bw_t_info: BW type information 4041 * 4042 * This function restores node's BW from bw_t_info. The caller needs 4043 * to hold the scheduler lock. 4044 */ 4045 static int 4046 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4047 struct ice_bw_type_info *bw_t_info) 4048 { 4049 struct ice_port_info *pi = hw->port_info; 4050 int status = -EINVAL; 4051 u16 bw_alloc; 4052 4053 if (!node) 4054 return status; 4055 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4056 return 0; 4057 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4058 status = ice_sched_replay_node_prio(hw, node, 4059 bw_t_info->generic); 4060 if (status) 4061 return status; 4062 } 4063 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4064 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4065 bw_t_info->cir_bw.bw); 4066 if (status) 4067 return status; 4068 } 4069 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4070 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4071 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4072 bw_alloc); 4073 if (status) 4074 return status; 4075 } 4076 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4077 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4078 bw_t_info->eir_bw.bw); 4079 if (status) 4080 return status; 4081 } 4082 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4083 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4084 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4085 bw_alloc); 4086 if (status) 4087 return status; 4088 } 4089 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4090 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4091 bw_t_info->shared_bw); 4092 return status; 4093 } 4094 4095 /** 4096 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4097 * @pi: port info struct 4098 * @tc_bitmap: 8 bits TC bitmap to check 4099 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4100 * 4101 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4102 * may be missing, it returns enabled TCs. This function needs to be called with 4103 * scheduler lock held. 4104 */ 4105 static void 4106 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4107 unsigned long *tc_bitmap, 4108 unsigned long *ena_tc_bitmap) 4109 { 4110 u8 tc; 4111 4112 /* Some TC(s) may be missing after reset, adjust for replay */ 4113 ice_for_each_traffic_class(tc) 4114 if (ice_is_tc_ena(*tc_bitmap, tc) && 4115 (ice_sched_get_tc_node(pi, tc))) 4116 set_bit(tc, ena_tc_bitmap); 4117 } 4118 4119 /** 4120 * ice_sched_replay_agg - recreate aggregator node(s) 4121 * @hw: pointer to the HW struct 4122 * 4123 * This function recreate aggregator type nodes which are not replayed earlier. 4124 * It also replay aggregator BW information. These aggregator nodes are not 4125 * associated with VSI type node yet. 4126 */ 4127 void ice_sched_replay_agg(struct ice_hw *hw) 4128 { 4129 struct ice_port_info *pi = hw->port_info; 4130 struct ice_sched_agg_info *agg_info; 4131 4132 mutex_lock(&pi->sched_lock); 4133 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4134 /* replay aggregator (re-create aggregator node) */ 4135 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4136 ICE_MAX_TRAFFIC_CLASS)) { 4137 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4138 int status; 4139 4140 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4141 ice_sched_get_ena_tc_bitmap(pi, 4142 agg_info->replay_tc_bitmap, 4143 replay_bitmap); 4144 status = ice_sched_cfg_agg(hw->port_info, 4145 agg_info->agg_id, 4146 ICE_AGG_TYPE_AGG, 4147 replay_bitmap); 4148 if (status) { 4149 dev_info(ice_hw_to_dev(hw), 4150 "Replay agg id[%d] failed\n", 4151 agg_info->agg_id); 4152 /* Move on to next one */ 4153 continue; 4154 } 4155 } 4156 mutex_unlock(&pi->sched_lock); 4157 } 4158 4159 /** 4160 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4161 * @hw: pointer to the HW struct 4162 * 4163 * This function initialize aggregator(s) TC bitmap to zero. A required 4164 * preinit step for replaying aggregators. 4165 */ 4166 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4167 { 4168 struct ice_port_info *pi = hw->port_info; 4169 struct ice_sched_agg_info *agg_info; 4170 4171 mutex_lock(&pi->sched_lock); 4172 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4173 struct ice_sched_agg_vsi_info *agg_vsi_info; 4174 4175 agg_info->tc_bitmap[0] = 0; 4176 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4177 list_entry) 4178 agg_vsi_info->tc_bitmap[0] = 0; 4179 } 4180 mutex_unlock(&pi->sched_lock); 4181 } 4182 4183 /** 4184 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4185 * @hw: pointer to the HW struct 4186 * @vsi_handle: software VSI handle 4187 * 4188 * This function replays aggregator node, VSI to aggregator type nodes, and 4189 * their node bandwidth information. This function needs to be called with 4190 * scheduler lock held. 4191 */ 4192 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4193 { 4194 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4195 struct ice_sched_agg_vsi_info *agg_vsi_info; 4196 struct ice_port_info *pi = hw->port_info; 4197 struct ice_sched_agg_info *agg_info; 4198 int status; 4199 4200 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4201 if (!ice_is_vsi_valid(hw, vsi_handle)) 4202 return -EINVAL; 4203 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4204 if (!agg_info) 4205 return 0; /* Not present in list - default Agg case */ 4206 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4207 if (!agg_vsi_info) 4208 return 0; /* Not present in list - default Agg case */ 4209 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4210 replay_bitmap); 4211 /* Replay aggregator node associated to vsi_handle */ 4212 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4213 ICE_AGG_TYPE_AGG, replay_bitmap); 4214 if (status) 4215 return status; 4216 4217 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4218 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4219 replay_bitmap); 4220 /* Move this VSI (vsi_handle) to above aggregator */ 4221 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4222 replay_bitmap); 4223 } 4224 4225 /** 4226 * ice_replay_vsi_agg - replay VSI to aggregator node 4227 * @hw: pointer to the HW struct 4228 * @vsi_handle: software VSI handle 4229 * 4230 * This function replays association of VSI to aggregator type nodes, and 4231 * node bandwidth information. 4232 */ 4233 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4234 { 4235 struct ice_port_info *pi = hw->port_info; 4236 int status; 4237 4238 mutex_lock(&pi->sched_lock); 4239 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4240 mutex_unlock(&pi->sched_lock); 4241 return status; 4242 } 4243 4244 /** 4245 * ice_sched_replay_q_bw - replay queue type node BW 4246 * @pi: port information structure 4247 * @q_ctx: queue context structure 4248 * 4249 * This function replays queue type node bandwidth. This function needs to be 4250 * called with scheduler lock held. 4251 */ 4252 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4253 { 4254 struct ice_sched_node *q_node; 4255 4256 /* Following also checks the presence of node in tree */ 4257 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4258 if (!q_node) 4259 return -EINVAL; 4260 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4261 } 4262