1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static enum ice_status 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 enum ice_status status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 enum ice_status 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_get_elem *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 enum ice_status 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_sched_node *parent; 153 struct ice_aqc_get_elem elem; 154 struct ice_sched_node *node; 155 enum ice_status status; 156 struct ice_hw *hw; 157 158 if (!pi) 159 return ICE_ERR_PARAM; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, 168 "Parent Node not found for parent_teid=0x%x\n", 169 le32_to_cpu(info->parent_teid)); 170 return ICE_ERR_PARAM; 171 } 172 173 /* query the current node information from FW before additing it 174 * to the SW DB 175 */ 176 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 177 if (status) 178 return status; 179 180 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 181 if (!node) 182 return ICE_ERR_NO_MEMORY; 183 if (hw->max_children[layer]) { 184 /* coverity[suspicious_sizeof] */ 185 node->children = devm_kcalloc(ice_hw_to_dev(hw), 186 hw->max_children[layer], 187 sizeof(*node), GFP_KERNEL); 188 if (!node->children) { 189 devm_kfree(ice_hw_to_dev(hw), node); 190 return ICE_ERR_NO_MEMORY; 191 } 192 } 193 194 node->in_use = true; 195 node->parent = parent; 196 node->tx_sched_layer = layer; 197 parent->children[parent->num_children++] = node; 198 memcpy(&node->info, &elem.generic[0], sizeof(node->info)); 199 return 0; 200 } 201 202 /** 203 * ice_aq_delete_sched_elems - delete scheduler elements 204 * @hw: pointer to the HW struct 205 * @grps_req: number of groups to delete 206 * @buf: pointer to buffer 207 * @buf_size: buffer size in bytes 208 * @grps_del: returns total number of elements deleted 209 * @cd: pointer to command details structure or NULL 210 * 211 * Delete scheduling elements (0x040F) 212 */ 213 static enum ice_status 214 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 215 struct ice_aqc_delete_elem *buf, u16 buf_size, 216 u16 *grps_del, struct ice_sq_cd *cd) 217 { 218 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 219 grps_req, (void *)buf, buf_size, 220 grps_del, cd); 221 } 222 223 /** 224 * ice_sched_remove_elems - remove nodes from HW 225 * @hw: pointer to the HW struct 226 * @parent: pointer to the parent node 227 * @num_nodes: number of nodes 228 * @node_teids: array of node teids to be deleted 229 * 230 * This function remove nodes from HW 231 */ 232 static enum ice_status 233 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 234 u16 num_nodes, u32 *node_teids) 235 { 236 struct ice_aqc_delete_elem *buf; 237 u16 i, num_groups_removed = 0; 238 enum ice_status status; 239 u16 buf_size; 240 241 buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1); 242 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 243 if (!buf) 244 return ICE_ERR_NO_MEMORY; 245 246 buf->hdr.parent_teid = parent->info.node_teid; 247 buf->hdr.num_elems = cpu_to_le16(num_nodes); 248 for (i = 0; i < num_nodes; i++) 249 buf->teid[i] = cpu_to_le32(node_teids[i]); 250 251 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 252 &num_groups_removed, NULL); 253 if (status || num_groups_removed != 1) 254 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 255 hw->adminq.sq_last_status); 256 257 devm_kfree(ice_hw_to_dev(hw), buf); 258 return status; 259 } 260 261 /** 262 * ice_sched_get_first_node - get the first node of the given layer 263 * @hw: pointer to the HW struct 264 * @parent: pointer the base node of the subtree 265 * @layer: layer number 266 * 267 * This function retrieves the first node of the given layer from the subtree 268 */ 269 static struct ice_sched_node * 270 ice_sched_get_first_node(struct ice_hw *hw, struct ice_sched_node *parent, 271 u8 layer) 272 { 273 u8 i; 274 275 if (layer < hw->sw_entry_point_layer) 276 return NULL; 277 for (i = 0; i < parent->num_children; i++) { 278 struct ice_sched_node *node = parent->children[i]; 279 280 if (node) { 281 if (node->tx_sched_layer == layer) 282 return node; 283 /* this recursion is intentional, and wouldn't 284 * go more than 9 calls 285 */ 286 return ice_sched_get_first_node(hw, node, layer); 287 } 288 } 289 return NULL; 290 } 291 292 /** 293 * ice_sched_get_tc_node - get pointer to TC node 294 * @pi: port information structure 295 * @tc: TC number 296 * 297 * This function returns the TC node pointer 298 */ 299 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 300 { 301 u8 i; 302 303 if (!pi) 304 return NULL; 305 for (i = 0; i < pi->root->num_children; i++) 306 if (pi->root->children[i]->tc_num == tc) 307 return pi->root->children[i]; 308 return NULL; 309 } 310 311 /** 312 * ice_free_sched_node - Free a Tx scheduler node from SW DB 313 * @pi: port information structure 314 * @node: pointer to the ice_sched_node struct 315 * 316 * This function frees up a node from SW DB as well as from HW 317 * 318 * This function needs to be called with the port_info->sched_lock held 319 */ 320 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 321 { 322 struct ice_sched_node *parent; 323 struct ice_hw *hw = pi->hw; 324 u8 i, j; 325 326 /* Free the children before freeing up the parent node 327 * The parent array is updated below and that shifts the nodes 328 * in the array. So always pick the first child if num children > 0 329 */ 330 while (node->num_children) 331 ice_free_sched_node(pi, node->children[0]); 332 333 /* Leaf, TC and root nodes can't be deleted by SW */ 334 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 335 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 336 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 337 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 338 u32 teid = le32_to_cpu(node->info.node_teid); 339 340 ice_sched_remove_elems(hw, node->parent, 1, &teid); 341 } 342 parent = node->parent; 343 /* root has no parent */ 344 if (parent) { 345 struct ice_sched_node *p, *tc_node; 346 347 /* update the parent */ 348 for (i = 0; i < parent->num_children; i++) 349 if (parent->children[i] == node) { 350 for (j = i + 1; j < parent->num_children; j++) 351 parent->children[j - 1] = 352 parent->children[j]; 353 parent->num_children--; 354 break; 355 } 356 357 /* search for previous sibling that points to this node and 358 * remove the reference 359 */ 360 tc_node = ice_sched_get_tc_node(pi, node->tc_num); 361 if (!tc_node) { 362 ice_debug(hw, ICE_DBG_SCHED, 363 "Invalid TC number %d\n", node->tc_num); 364 goto err_exit; 365 } 366 p = ice_sched_get_first_node(hw, tc_node, node->tx_sched_layer); 367 while (p) { 368 if (p->sibling == node) { 369 p->sibling = node->sibling; 370 break; 371 } 372 p = p->sibling; 373 } 374 } 375 err_exit: 376 /* leaf nodes have no children */ 377 if (node->children) 378 devm_kfree(ice_hw_to_dev(hw), node->children); 379 devm_kfree(ice_hw_to_dev(hw), node); 380 } 381 382 /** 383 * ice_aq_get_dflt_topo - gets default scheduler topology 384 * @hw: pointer to the HW struct 385 * @lport: logical port number 386 * @buf: pointer to buffer 387 * @buf_size: buffer size in bytes 388 * @num_branches: returns total number of queue to port branches 389 * @cd: pointer to command details structure or NULL 390 * 391 * Get default scheduler topology (0x400) 392 */ 393 static enum ice_status 394 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 395 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 396 u8 *num_branches, struct ice_sq_cd *cd) 397 { 398 struct ice_aqc_get_topo *cmd; 399 struct ice_aq_desc desc; 400 enum ice_status status; 401 402 cmd = &desc.params.get_topo; 403 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 404 cmd->port_num = lport; 405 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 406 if (!status && num_branches) 407 *num_branches = cmd->num_branches; 408 409 return status; 410 } 411 412 /** 413 * ice_aq_add_sched_elems - adds scheduling element 414 * @hw: pointer to the HW struct 415 * @grps_req: the number of groups that are requested to be added 416 * @buf: pointer to buffer 417 * @buf_size: buffer size in bytes 418 * @grps_added: returns total number of groups added 419 * @cd: pointer to command details structure or NULL 420 * 421 * Add scheduling elements (0x0401) 422 */ 423 static enum ice_status 424 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 425 struct ice_aqc_add_elem *buf, u16 buf_size, 426 u16 *grps_added, struct ice_sq_cd *cd) 427 { 428 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 429 grps_req, (void *)buf, buf_size, 430 grps_added, cd); 431 } 432 433 /** 434 * ice_aq_suspend_sched_elems - suspend scheduler elements 435 * @hw: pointer to the HW struct 436 * @elems_req: number of elements to suspend 437 * @buf: pointer to buffer 438 * @buf_size: buffer size in bytes 439 * @elems_ret: returns total number of elements suspended 440 * @cd: pointer to command details structure or NULL 441 * 442 * Suspend scheduling elements (0x0409) 443 */ 444 static enum ice_status 445 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, 446 struct ice_aqc_suspend_resume_elem *buf, 447 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 448 { 449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 450 elems_req, (void *)buf, buf_size, 451 elems_ret, cd); 452 } 453 454 /** 455 * ice_aq_resume_sched_elems - resume scheduler elements 456 * @hw: pointer to the HW struct 457 * @elems_req: number of elements to resume 458 * @buf: pointer to buffer 459 * @buf_size: buffer size in bytes 460 * @elems_ret: returns total number of elements resumed 461 * @cd: pointer to command details structure or NULL 462 * 463 * resume scheduling elements (0x040A) 464 */ 465 static enum ice_status 466 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, 467 struct ice_aqc_suspend_resume_elem *buf, 468 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 469 { 470 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 471 elems_req, (void *)buf, buf_size, 472 elems_ret, cd); 473 } 474 475 /** 476 * ice_aq_query_sched_res - query scheduler resource 477 * @hw: pointer to the HW struct 478 * @buf_size: buffer size in bytes 479 * @buf: pointer to buffer 480 * @cd: pointer to command details structure or NULL 481 * 482 * Query scheduler resource allocation (0x0412) 483 */ 484 static enum ice_status 485 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 486 struct ice_aqc_query_txsched_res_resp *buf, 487 struct ice_sq_cd *cd) 488 { 489 struct ice_aq_desc desc; 490 491 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 492 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 493 } 494 495 /** 496 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 497 * @hw: pointer to the HW struct 498 * @num_nodes: number of nodes 499 * @node_teids: array of node teids to be suspended or resumed 500 * @suspend: true means suspend / false means resume 501 * 502 * This function suspends or resumes HW nodes 503 */ 504 static enum ice_status 505 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 506 bool suspend) 507 { 508 struct ice_aqc_suspend_resume_elem *buf; 509 u16 i, buf_size, num_elem_ret = 0; 510 enum ice_status status; 511 512 buf_size = sizeof(*buf) * num_nodes; 513 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 514 if (!buf) 515 return ICE_ERR_NO_MEMORY; 516 517 for (i = 0; i < num_nodes; i++) 518 buf->teid[i] = cpu_to_le32(node_teids[i]); 519 520 if (suspend) 521 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 522 buf_size, &num_elem_ret, 523 NULL); 524 else 525 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 526 buf_size, &num_elem_ret, 527 NULL); 528 if (status || num_elem_ret != num_nodes) 529 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 530 531 devm_kfree(ice_hw_to_dev(hw), buf); 532 return status; 533 } 534 535 /** 536 * ice_sched_clear_agg - clears the aggregator related information 537 * @hw: pointer to the hardware structure 538 * 539 * This function removes aggregator list and free up aggregator related memory 540 * previously allocated. 541 */ 542 void ice_sched_clear_agg(struct ice_hw *hw) 543 { 544 struct ice_sched_agg_info *agg_info; 545 struct ice_sched_agg_info *atmp; 546 547 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 548 struct ice_sched_agg_vsi_info *agg_vsi_info; 549 struct ice_sched_agg_vsi_info *vtmp; 550 551 list_for_each_entry_safe(agg_vsi_info, vtmp, 552 &agg_info->agg_vsi_list, list_entry) { 553 list_del(&agg_vsi_info->list_entry); 554 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 555 } 556 list_del(&agg_info->list_entry); 557 devm_kfree(ice_hw_to_dev(hw), agg_info); 558 } 559 } 560 561 /** 562 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 563 * @pi: port information structure 564 * 565 * This function removes all the nodes from HW as well as from SW DB. 566 */ 567 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 568 { 569 if (!pi) 570 return; 571 if (pi->root) { 572 ice_free_sched_node(pi, pi->root); 573 pi->root = NULL; 574 } 575 } 576 577 /** 578 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 579 * @pi: port information structure 580 * 581 * Cleanup scheduling elements from SW DB 582 */ 583 void ice_sched_clear_port(struct ice_port_info *pi) 584 { 585 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 586 return; 587 588 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 589 mutex_lock(&pi->sched_lock); 590 ice_sched_clear_tx_topo(pi); 591 mutex_unlock(&pi->sched_lock); 592 mutex_destroy(&pi->sched_lock); 593 } 594 595 /** 596 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 597 * @hw: pointer to the HW struct 598 * 599 * Cleanup scheduling elements from SW DB for all the ports 600 */ 601 void ice_sched_cleanup_all(struct ice_hw *hw) 602 { 603 if (!hw) 604 return; 605 606 if (hw->layer_info) { 607 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 608 hw->layer_info = NULL; 609 } 610 611 if (hw->port_info) 612 ice_sched_clear_port(hw->port_info); 613 614 hw->num_tx_sched_layers = 0; 615 hw->num_tx_sched_phys_layers = 0; 616 hw->flattened_layers = 0; 617 hw->max_cgds = 0; 618 } 619 620 /** 621 * ice_sched_add_elems - add nodes to HW and SW DB 622 * @pi: port information structure 623 * @tc_node: pointer to the branch node 624 * @parent: pointer to the parent node 625 * @layer: layer number to add nodes 626 * @num_nodes: number of nodes 627 * @num_nodes_added: pointer to num nodes added 628 * @first_node_teid: if new nodes are added then return the TEID of first node 629 * 630 * This function add nodes to HW as well as to SW DB for a given layer 631 */ 632 static enum ice_status 633 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 634 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 635 u16 *num_nodes_added, u32 *first_node_teid) 636 { 637 struct ice_sched_node *prev, *new_node; 638 struct ice_aqc_add_elem *buf; 639 u16 i, num_groups_added = 0; 640 enum ice_status status = 0; 641 struct ice_hw *hw = pi->hw; 642 u16 buf_size; 643 u32 teid; 644 645 buf_size = sizeof(*buf) + sizeof(*buf->generic) * (num_nodes - 1); 646 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 647 if (!buf) 648 return ICE_ERR_NO_MEMORY; 649 650 buf->hdr.parent_teid = parent->info.node_teid; 651 buf->hdr.num_elems = cpu_to_le16(num_nodes); 652 for (i = 0; i < num_nodes; i++) { 653 buf->generic[i].parent_teid = parent->info.node_teid; 654 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 655 buf->generic[i].data.valid_sections = 656 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 657 ICE_AQC_ELEM_VALID_EIR; 658 buf->generic[i].data.generic = 0; 659 buf->generic[i].data.cir_bw.bw_profile_idx = 660 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 661 buf->generic[i].data.cir_bw.bw_alloc = 662 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 663 buf->generic[i].data.eir_bw.bw_profile_idx = 664 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 665 buf->generic[i].data.eir_bw.bw_alloc = 666 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 667 } 668 669 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 670 &num_groups_added, NULL); 671 if (status || num_groups_added != 1) { 672 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 673 hw->adminq.sq_last_status); 674 devm_kfree(ice_hw_to_dev(hw), buf); 675 return ICE_ERR_CFG; 676 } 677 678 *num_nodes_added = num_nodes; 679 /* add nodes to the SW DB */ 680 for (i = 0; i < num_nodes; i++) { 681 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 682 if (status) { 683 ice_debug(hw, ICE_DBG_SCHED, 684 "add nodes in SW DB failed status =%d\n", 685 status); 686 break; 687 } 688 689 teid = le32_to_cpu(buf->generic[i].node_teid); 690 new_node = ice_sched_find_node_by_teid(parent, teid); 691 if (!new_node) { 692 ice_debug(hw, ICE_DBG_SCHED, 693 "Node is missing for teid =%d\n", teid); 694 break; 695 } 696 697 new_node->sibling = NULL; 698 new_node->tc_num = tc_node->tc_num; 699 700 /* add it to previous node sibling pointer */ 701 /* Note: siblings are not linked across branches */ 702 prev = ice_sched_get_first_node(hw, tc_node, layer); 703 if (prev && prev != new_node) { 704 while (prev->sibling) 705 prev = prev->sibling; 706 prev->sibling = new_node; 707 } 708 709 if (i == 0) 710 *first_node_teid = teid; 711 } 712 713 devm_kfree(ice_hw_to_dev(hw), buf); 714 return status; 715 } 716 717 /** 718 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 719 * @pi: port information structure 720 * @tc_node: pointer to TC node 721 * @parent: pointer to parent node 722 * @layer: layer number to add nodes 723 * @num_nodes: number of nodes to be added 724 * @first_node_teid: pointer to the first node TEID 725 * @num_nodes_added: pointer to number of nodes added 726 * 727 * This function add nodes to a given layer. 728 */ 729 static enum ice_status 730 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 731 struct ice_sched_node *tc_node, 732 struct ice_sched_node *parent, u8 layer, 733 u16 num_nodes, u32 *first_node_teid, 734 u16 *num_nodes_added) 735 { 736 u32 *first_teid_ptr = first_node_teid; 737 u16 new_num_nodes, max_child_nodes; 738 enum ice_status status = 0; 739 struct ice_hw *hw = pi->hw; 740 u16 num_added = 0; 741 u32 temp; 742 743 *num_nodes_added = 0; 744 745 if (!num_nodes) 746 return status; 747 748 if (!parent || layer < hw->sw_entry_point_layer) 749 return ICE_ERR_PARAM; 750 751 /* max children per node per layer */ 752 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 753 754 /* current number of children + required nodes exceed max children ? */ 755 if ((parent->num_children + num_nodes) > max_child_nodes) { 756 /* Fail if the parent is a TC node */ 757 if (parent == tc_node) 758 return ICE_ERR_CFG; 759 760 /* utilize all the spaces if the parent is not full */ 761 if (parent->num_children < max_child_nodes) { 762 new_num_nodes = max_child_nodes - parent->num_children; 763 /* this recursion is intentional, and wouldn't 764 * go more than 2 calls 765 */ 766 status = ice_sched_add_nodes_to_layer(pi, tc_node, 767 parent, layer, 768 new_num_nodes, 769 first_node_teid, 770 &num_added); 771 if (status) 772 return status; 773 774 *num_nodes_added += num_added; 775 } 776 /* Don't modify the first node TEID memory if the first node was 777 * added already in the above call. Instead send some temp 778 * memory for all other recursive calls. 779 */ 780 if (num_added) 781 first_teid_ptr = &temp; 782 783 new_num_nodes = num_nodes - num_added; 784 785 /* This parent is full, try the next sibling */ 786 parent = parent->sibling; 787 788 /* this recursion is intentional, for 1024 queues 789 * per VSI, it goes max of 16 iterations. 790 * 1024 / 8 = 128 layer 8 nodes 791 * 128 /8 = 16 (add 8 nodes per iteration) 792 */ 793 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 794 layer, new_num_nodes, 795 first_teid_ptr, 796 &num_added); 797 *num_nodes_added += num_added; 798 return status; 799 } 800 801 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 802 num_nodes_added, first_node_teid); 803 return status; 804 } 805 806 /** 807 * ice_sched_get_qgrp_layer - get the current queue group layer number 808 * @hw: pointer to the HW struct 809 * 810 * This function returns the current queue group layer number 811 */ 812 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 813 { 814 /* It's always total layers - 1, the array is 0 relative so -2 */ 815 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 816 } 817 818 /** 819 * ice_sched_get_vsi_layer - get the current VSI layer number 820 * @hw: pointer to the HW struct 821 * 822 * This function returns the current VSI layer number 823 */ 824 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 825 { 826 /* Num Layers VSI layer 827 * 9 6 828 * 7 4 829 * 5 or less sw_entry_point_layer 830 */ 831 /* calculate the VSI layer based on number of layers. */ 832 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 833 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 834 835 if (layer > hw->sw_entry_point_layer) 836 return layer; 837 } 838 return hw->sw_entry_point_layer; 839 } 840 841 /** 842 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 843 * @pi: port information structure 844 * 845 * This function removes the leaf node that was created by the FW 846 * during initialization 847 */ 848 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 849 { 850 struct ice_sched_node *node; 851 852 node = pi->root; 853 while (node) { 854 if (!node->num_children) 855 break; 856 node = node->children[0]; 857 } 858 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 859 u32 teid = le32_to_cpu(node->info.node_teid); 860 enum ice_status status; 861 862 /* remove the default leaf node */ 863 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 864 if (!status) 865 ice_free_sched_node(pi, node); 866 } 867 } 868 869 /** 870 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 871 * @pi: port information structure 872 * 873 * This function frees all the nodes except root and TC that were created by 874 * the FW during initialization 875 */ 876 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 877 { 878 struct ice_sched_node *node; 879 880 ice_rm_dflt_leaf_node(pi); 881 882 /* remove the default nodes except TC and root nodes */ 883 node = pi->root; 884 while (node) { 885 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 886 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 887 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 888 ice_free_sched_node(pi, node); 889 break; 890 } 891 892 if (!node->num_children) 893 break; 894 node = node->children[0]; 895 } 896 } 897 898 /** 899 * ice_sched_init_port - Initialize scheduler by querying information from FW 900 * @pi: port info structure for the tree to cleanup 901 * 902 * This function is the initial call to find the total number of Tx scheduler 903 * resources, default topology created by firmware and storing the information 904 * in SW DB. 905 */ 906 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 907 { 908 struct ice_aqc_get_topo_elem *buf; 909 enum ice_status status; 910 struct ice_hw *hw; 911 u8 num_branches; 912 u16 num_elems; 913 u8 i, j; 914 915 if (!pi) 916 return ICE_ERR_PARAM; 917 hw = pi->hw; 918 919 /* Query the Default Topology from FW */ 920 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 921 if (!buf) 922 return ICE_ERR_NO_MEMORY; 923 924 /* Query default scheduling tree topology */ 925 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 926 &num_branches, NULL); 927 if (status) 928 goto err_init_port; 929 930 /* num_branches should be between 1-8 */ 931 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 932 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 933 num_branches); 934 status = ICE_ERR_PARAM; 935 goto err_init_port; 936 } 937 938 /* get the number of elements on the default/first branch */ 939 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 940 941 /* num_elems should always be between 1-9 */ 942 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 943 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 944 num_elems); 945 status = ICE_ERR_PARAM; 946 goto err_init_port; 947 } 948 949 /* If the last node is a leaf node then the index of the queue group 950 * layer is two less than the number of elements. 951 */ 952 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 953 ICE_AQC_ELEM_TYPE_LEAF) 954 pi->last_node_teid = 955 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 956 else 957 pi->last_node_teid = 958 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 959 960 /* Insert the Tx Sched root node */ 961 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 962 if (status) 963 goto err_init_port; 964 965 /* Parse the default tree and cache the information */ 966 for (i = 0; i < num_branches; i++) { 967 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 968 969 /* Skip root element as already inserted */ 970 for (j = 1; j < num_elems; j++) { 971 /* update the sw entry point */ 972 if (buf[0].generic[j].data.elem_type == 973 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 974 hw->sw_entry_point_layer = j; 975 976 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 977 if (status) 978 goto err_init_port; 979 } 980 } 981 982 /* Remove the default nodes. */ 983 if (pi->root) 984 ice_sched_rm_dflt_nodes(pi); 985 986 /* initialize the port for handling the scheduler tree */ 987 pi->port_state = ICE_SCHED_PORT_STATE_READY; 988 mutex_init(&pi->sched_lock); 989 990 err_init_port: 991 if (status && pi->root) { 992 ice_free_sched_node(pi, pi->root); 993 pi->root = NULL; 994 } 995 996 devm_kfree(ice_hw_to_dev(hw), buf); 997 return status; 998 } 999 1000 /** 1001 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1002 * @hw: pointer to the HW struct 1003 * 1004 * query FW for allocated scheduler resources and store in HW struct 1005 */ 1006 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1007 { 1008 struct ice_aqc_query_txsched_res_resp *buf; 1009 enum ice_status status = 0; 1010 __le16 max_sibl; 1011 u8 i; 1012 1013 if (hw->layer_info) 1014 return status; 1015 1016 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1017 if (!buf) 1018 return ICE_ERR_NO_MEMORY; 1019 1020 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1021 if (status) 1022 goto sched_query_out; 1023 1024 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1025 hw->num_tx_sched_phys_layers = 1026 le16_to_cpu(buf->sched_props.phys_levels); 1027 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1028 hw->max_cgds = buf->sched_props.max_pf_cgds; 1029 1030 /* max sibling group size of current layer refers to the max children 1031 * of the below layer node. 1032 * layer 1 node max children will be layer 2 max sibling group size 1033 * layer 2 node max children will be layer 3 max sibling group size 1034 * and so on. This array will be populated from root (index 0) to 1035 * qgroup layer 7. Leaf node has no children. 1036 */ 1037 for (i = 0; i < hw->num_tx_sched_layers; i++) { 1038 max_sibl = buf->layer_props[i].max_sibl_grp_sz; 1039 hw->max_children[i] = le16_to_cpu(max_sibl); 1040 } 1041 1042 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1043 (hw->num_tx_sched_layers * 1044 sizeof(*hw->layer_info)), 1045 GFP_KERNEL); 1046 if (!hw->layer_info) { 1047 status = ICE_ERR_NO_MEMORY; 1048 goto sched_query_out; 1049 } 1050 1051 sched_query_out: 1052 devm_kfree(ice_hw_to_dev(hw), buf); 1053 return status; 1054 } 1055 1056 /** 1057 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1058 * @hw: pointer to the HW struct 1059 * @base: pointer to the base node 1060 * @node: pointer to the node to search 1061 * 1062 * This function checks whether a given node is part of the base node 1063 * subtree or not 1064 */ 1065 static bool 1066 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1067 struct ice_sched_node *node) 1068 { 1069 u8 i; 1070 1071 for (i = 0; i < base->num_children; i++) { 1072 struct ice_sched_node *child = base->children[i]; 1073 1074 if (node == child) 1075 return true; 1076 1077 if (child->tx_sched_layer > node->tx_sched_layer) 1078 return false; 1079 1080 /* this recursion is intentional, and wouldn't 1081 * go more than 8 calls 1082 */ 1083 if (ice_sched_find_node_in_subtree(hw, child, node)) 1084 return true; 1085 } 1086 return false; 1087 } 1088 1089 /** 1090 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1091 * @pi: port information structure 1092 * @vsi_handle: software VSI handle 1093 * @tc: branch number 1094 * @owner: LAN or RDMA 1095 * 1096 * This function retrieves a free LAN or RDMA queue group node 1097 */ 1098 struct ice_sched_node * 1099 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1100 u8 owner) 1101 { 1102 struct ice_sched_node *vsi_node, *qgrp_node = NULL; 1103 struct ice_vsi_ctx *vsi_ctx; 1104 u16 max_children; 1105 u8 qgrp_layer; 1106 1107 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1108 max_children = pi->hw->max_children[qgrp_layer]; 1109 1110 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1111 if (!vsi_ctx) 1112 return NULL; 1113 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1114 /* validate invalid VSI ID */ 1115 if (!vsi_node) 1116 goto lan_q_exit; 1117 1118 /* get the first queue group node from VSI sub-tree */ 1119 qgrp_node = ice_sched_get_first_node(pi->hw, vsi_node, qgrp_layer); 1120 while (qgrp_node) { 1121 /* make sure the qgroup node is part of the VSI subtree */ 1122 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1123 if (qgrp_node->num_children < max_children && 1124 qgrp_node->owner == owner) 1125 break; 1126 qgrp_node = qgrp_node->sibling; 1127 } 1128 1129 lan_q_exit: 1130 return qgrp_node; 1131 } 1132 1133 /** 1134 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1135 * @hw: pointer to the HW struct 1136 * @tc_node: pointer to the TC node 1137 * @vsi_handle: software VSI handle 1138 * 1139 * This function retrieves a VSI node for a given VSI ID from a given 1140 * TC branch 1141 */ 1142 static struct ice_sched_node * 1143 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, 1144 u16 vsi_handle) 1145 { 1146 struct ice_sched_node *node; 1147 u8 vsi_layer; 1148 1149 vsi_layer = ice_sched_get_vsi_layer(hw); 1150 node = ice_sched_get_first_node(hw, tc_node, vsi_layer); 1151 1152 /* Check whether it already exists */ 1153 while (node) { 1154 if (node->vsi_handle == vsi_handle) 1155 return node; 1156 node = node->sibling; 1157 } 1158 1159 return node; 1160 } 1161 1162 /** 1163 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1164 * @hw: pointer to the HW struct 1165 * @num_qs: number of queues 1166 * @num_nodes: num nodes array 1167 * 1168 * This function calculates the number of VSI child nodes based on the 1169 * number of queues. 1170 */ 1171 static void 1172 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1173 { 1174 u16 num = num_qs; 1175 u8 i, qgl, vsil; 1176 1177 qgl = ice_sched_get_qgrp_layer(hw); 1178 vsil = ice_sched_get_vsi_layer(hw); 1179 1180 /* calculate num nodes from queue group to VSI layer */ 1181 for (i = qgl; i > vsil; i--) { 1182 /* round to the next integer if there is a remainder */ 1183 num = DIV_ROUND_UP(num, hw->max_children[i]); 1184 1185 /* need at least one node */ 1186 num_nodes[i] = num ? num : 1; 1187 } 1188 } 1189 1190 /** 1191 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1192 * @pi: port information structure 1193 * @vsi_handle: software VSI handle 1194 * @tc_node: pointer to the TC node 1195 * @num_nodes: pointer to the num nodes that needs to be added per layer 1196 * @owner: node owner (LAN or RDMA) 1197 * 1198 * This function adds the VSI child nodes to tree. It gets called for 1199 * LAN and RDMA separately. 1200 */ 1201 static enum ice_status 1202 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1203 struct ice_sched_node *tc_node, u16 *num_nodes, 1204 u8 owner) 1205 { 1206 struct ice_sched_node *parent, *node; 1207 struct ice_hw *hw = pi->hw; 1208 enum ice_status status; 1209 u32 first_node_teid; 1210 u16 num_added = 0; 1211 u8 i, qgl, vsil; 1212 1213 qgl = ice_sched_get_qgrp_layer(hw); 1214 vsil = ice_sched_get_vsi_layer(hw); 1215 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1216 for (i = vsil + 1; i <= qgl; i++) { 1217 if (!parent) 1218 return ICE_ERR_CFG; 1219 1220 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1221 num_nodes[i], 1222 &first_node_teid, 1223 &num_added); 1224 if (status || num_nodes[i] != num_added) 1225 return ICE_ERR_CFG; 1226 1227 /* The newly added node can be a new parent for the next 1228 * layer nodes 1229 */ 1230 if (num_added) { 1231 parent = ice_sched_find_node_by_teid(tc_node, 1232 first_node_teid); 1233 node = parent; 1234 while (node) { 1235 node->owner = owner; 1236 node = node->sibling; 1237 } 1238 } else { 1239 parent = parent->children[0]; 1240 } 1241 } 1242 1243 return 0; 1244 } 1245 1246 /** 1247 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1248 * @hw: pointer to the HW struct 1249 * @tc_node: pointer to TC node 1250 * @num_nodes: pointer to num nodes array 1251 * 1252 * This function calculates the number of supported nodes needed to add this 1253 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1254 * layers 1255 */ 1256 static void 1257 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, 1258 struct ice_sched_node *tc_node, u16 *num_nodes) 1259 { 1260 struct ice_sched_node *node; 1261 u8 vsil; 1262 int i; 1263 1264 vsil = ice_sched_get_vsi_layer(hw); 1265 for (i = vsil; i >= hw->sw_entry_point_layer; i--) 1266 /* Add intermediate nodes if TC has no children and 1267 * need at least one node for VSI 1268 */ 1269 if (!tc_node->num_children || i == vsil) { 1270 num_nodes[i]++; 1271 } else { 1272 /* If intermediate nodes are reached max children 1273 * then add a new one. 1274 */ 1275 node = ice_sched_get_first_node(hw, tc_node, (u8)i); 1276 /* scan all the siblings */ 1277 while (node) { 1278 if (node->num_children < hw->max_children[i]) 1279 break; 1280 node = node->sibling; 1281 } 1282 1283 /* tree has one intermediate node to add this new VSI. 1284 * So no need to calculate supported nodes for below 1285 * layers. 1286 */ 1287 if (node) 1288 break; 1289 /* all the nodes are full, allocate a new one */ 1290 num_nodes[i]++; 1291 } 1292 } 1293 1294 /** 1295 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1296 * @pi: port information structure 1297 * @vsi_handle: software VSI handle 1298 * @tc_node: pointer to TC node 1299 * @num_nodes: pointer to num nodes array 1300 * 1301 * This function adds the VSI supported nodes into Tx tree including the 1302 * VSI, its parent and intermediate nodes in below layers 1303 */ 1304 static enum ice_status 1305 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1306 struct ice_sched_node *tc_node, u16 *num_nodes) 1307 { 1308 struct ice_sched_node *parent = tc_node; 1309 enum ice_status status; 1310 u32 first_node_teid; 1311 u16 num_added = 0; 1312 u8 i, vsil; 1313 1314 if (!pi) 1315 return ICE_ERR_PARAM; 1316 1317 vsil = ice_sched_get_vsi_layer(pi->hw); 1318 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1319 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1320 i, num_nodes[i], 1321 &first_node_teid, 1322 &num_added); 1323 if (status || num_nodes[i] != num_added) 1324 return ICE_ERR_CFG; 1325 1326 /* The newly added node can be a new parent for the next 1327 * layer nodes 1328 */ 1329 if (num_added) 1330 parent = ice_sched_find_node_by_teid(tc_node, 1331 first_node_teid); 1332 else 1333 parent = parent->children[0]; 1334 1335 if (!parent) 1336 return ICE_ERR_CFG; 1337 1338 if (i == vsil) 1339 parent->vsi_handle = vsi_handle; 1340 } 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1347 * @pi: port information structure 1348 * @vsi_handle: software VSI handle 1349 * @tc: TC number 1350 * 1351 * This function adds a new VSI into scheduler tree 1352 */ 1353 static enum ice_status 1354 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1355 { 1356 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1357 struct ice_sched_node *tc_node; 1358 struct ice_hw *hw = pi->hw; 1359 1360 tc_node = ice_sched_get_tc_node(pi, tc); 1361 if (!tc_node) 1362 return ICE_ERR_PARAM; 1363 1364 /* calculate number of supported nodes needed for this VSI */ 1365 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); 1366 1367 /* add VSI supported nodes to TC subtree */ 1368 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1369 num_nodes); 1370 } 1371 1372 /** 1373 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1374 * @pi: port information structure 1375 * @vsi_handle: software VSI handle 1376 * @tc: TC number 1377 * @new_numqs: new number of max queues 1378 * @owner: owner of this subtree 1379 * 1380 * This function updates the VSI child nodes based on the number of queues 1381 */ 1382 static enum ice_status 1383 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1384 u8 tc, u16 new_numqs, u8 owner) 1385 { 1386 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1387 struct ice_sched_node *vsi_node; 1388 struct ice_sched_node *tc_node; 1389 struct ice_vsi_ctx *vsi_ctx; 1390 enum ice_status status = 0; 1391 struct ice_hw *hw = pi->hw; 1392 u16 prev_numqs; 1393 1394 tc_node = ice_sched_get_tc_node(pi, tc); 1395 if (!tc_node) 1396 return ICE_ERR_CFG; 1397 1398 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1399 if (!vsi_node) 1400 return ICE_ERR_CFG; 1401 1402 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1403 if (!vsi_ctx) 1404 return ICE_ERR_PARAM; 1405 1406 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1407 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1408 else 1409 return ICE_ERR_PARAM; 1410 1411 /* num queues are not changed or less than the previous number */ 1412 if (new_numqs <= prev_numqs) 1413 return status; 1414 if (new_numqs) 1415 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1416 /* Keep the max number of queue configuration all the time. Update the 1417 * tree only if number of queues > previous number of queues. This may 1418 * leave some extra nodes in the tree if number of queues < previous 1419 * number but that wouldn't harm anything. Removing those extra nodes 1420 * may complicate the code if those nodes are part of SRL or 1421 * individually rate limited. 1422 */ 1423 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1424 new_num_nodes, owner); 1425 if (status) 1426 return status; 1427 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1428 1429 return 0; 1430 } 1431 1432 /** 1433 * ice_sched_cfg_vsi - configure the new/existing VSI 1434 * @pi: port information structure 1435 * @vsi_handle: software VSI handle 1436 * @tc: TC number 1437 * @maxqs: max number of queues 1438 * @owner: LAN or RDMA 1439 * @enable: TC enabled or disabled 1440 * 1441 * This function adds/updates VSI nodes based on the number of queues. If TC is 1442 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1443 * disabled then suspend the VSI if it is not already. 1444 */ 1445 enum ice_status 1446 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1447 u8 owner, bool enable) 1448 { 1449 struct ice_sched_node *vsi_node, *tc_node; 1450 struct ice_vsi_ctx *vsi_ctx; 1451 enum ice_status status = 0; 1452 struct ice_hw *hw = pi->hw; 1453 1454 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1455 tc_node = ice_sched_get_tc_node(pi, tc); 1456 if (!tc_node) 1457 return ICE_ERR_PARAM; 1458 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1459 if (!vsi_ctx) 1460 return ICE_ERR_PARAM; 1461 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1462 1463 /* suspend the VSI if TC is not enabled */ 1464 if (!enable) { 1465 if (vsi_node && vsi_node->in_use) { 1466 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1467 1468 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1469 true); 1470 if (!status) 1471 vsi_node->in_use = false; 1472 } 1473 return status; 1474 } 1475 1476 /* TC is enabled, if it is a new VSI then add it to the tree */ 1477 if (!vsi_node) { 1478 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1479 if (status) 1480 return status; 1481 1482 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1483 if (!vsi_node) 1484 return ICE_ERR_CFG; 1485 1486 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1487 vsi_node->in_use = true; 1488 /* invalidate the max queues whenever VSI gets added first time 1489 * into the scheduler tree (boot or after reset). We need to 1490 * recreate the child nodes all the time in these cases. 1491 */ 1492 vsi_ctx->sched.max_lanq[tc] = 0; 1493 } 1494 1495 /* update the VSI child nodes */ 1496 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1497 owner); 1498 if (status) 1499 return status; 1500 1501 /* TC is enabled, resume the VSI if it is in the suspend state */ 1502 if (!vsi_node->in_use) { 1503 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1504 1505 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1506 if (!status) 1507 vsi_node->in_use = true; 1508 } 1509 1510 return status; 1511 } 1512 1513 /** 1514 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry 1515 * @pi: port information structure 1516 * @vsi_handle: software VSI handle 1517 * 1518 * This function removes single aggregator VSI info entry from 1519 * aggregator list. 1520 */ 1521 static void 1522 ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1523 { 1524 struct ice_sched_agg_info *agg_info; 1525 struct ice_sched_agg_info *atmp; 1526 1527 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1528 list_entry) { 1529 struct ice_sched_agg_vsi_info *agg_vsi_info; 1530 struct ice_sched_agg_vsi_info *vtmp; 1531 1532 list_for_each_entry_safe(agg_vsi_info, vtmp, 1533 &agg_info->agg_vsi_list, list_entry) 1534 if (agg_vsi_info->vsi_handle == vsi_handle) { 1535 list_del(&agg_vsi_info->list_entry); 1536 devm_kfree(ice_hw_to_dev(pi->hw), 1537 agg_vsi_info); 1538 return; 1539 } 1540 } 1541 } 1542 1543 /** 1544 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1545 * @node: pointer to the sub-tree node 1546 * 1547 * This function checks for a leaf node presence in a given sub-tree node. 1548 */ 1549 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1550 { 1551 u8 i; 1552 1553 for (i = 0; i < node->num_children; i++) 1554 if (ice_sched_is_leaf_node_present(node->children[i])) 1555 return true; 1556 /* check for a leaf node */ 1557 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1558 } 1559 1560 /** 1561 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1562 * @pi: port information structure 1563 * @vsi_handle: software VSI handle 1564 * @owner: LAN or RDMA 1565 * 1566 * This function removes the VSI and its LAN or RDMA children nodes from the 1567 * scheduler tree. 1568 */ 1569 static enum ice_status 1570 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1571 { 1572 enum ice_status status = ICE_ERR_PARAM; 1573 struct ice_vsi_ctx *vsi_ctx; 1574 u8 i; 1575 1576 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 1577 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 1578 return status; 1579 mutex_lock(&pi->sched_lock); 1580 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1581 if (!vsi_ctx) 1582 goto exit_sched_rm_vsi_cfg; 1583 1584 ice_for_each_traffic_class(i) { 1585 struct ice_sched_node *vsi_node, *tc_node; 1586 u8 j = 0; 1587 1588 tc_node = ice_sched_get_tc_node(pi, i); 1589 if (!tc_node) 1590 continue; 1591 1592 vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle); 1593 if (!vsi_node) 1594 continue; 1595 1596 if (ice_sched_is_leaf_node_present(vsi_node)) { 1597 ice_debug(pi->hw, ICE_DBG_SCHED, 1598 "VSI has leaf nodes in TC %d\n", i); 1599 status = ICE_ERR_IN_USE; 1600 goto exit_sched_rm_vsi_cfg; 1601 } 1602 while (j < vsi_node->num_children) { 1603 if (vsi_node->children[j]->owner == owner) { 1604 ice_free_sched_node(pi, vsi_node->children[j]); 1605 1606 /* reset the counter again since the num 1607 * children will be updated after node removal 1608 */ 1609 j = 0; 1610 } else { 1611 j++; 1612 } 1613 } 1614 /* remove the VSI if it has no children */ 1615 if (!vsi_node->num_children) { 1616 ice_free_sched_node(pi, vsi_node); 1617 vsi_ctx->sched.vsi_node[i] = NULL; 1618 1619 /* clean up aggregator related VSI info if any */ 1620 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 1621 } 1622 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1623 vsi_ctx->sched.max_lanq[i] = 0; 1624 } 1625 status = 0; 1626 1627 exit_sched_rm_vsi_cfg: 1628 mutex_unlock(&pi->sched_lock); 1629 return status; 1630 } 1631 1632 /** 1633 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 1634 * @pi: port information structure 1635 * @vsi_handle: software VSI handle 1636 * 1637 * This function clears the VSI and its LAN children nodes from scheduler tree 1638 * for all TCs. 1639 */ 1640 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 1641 { 1642 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 1643 } 1644