1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include <net/devlink.h> 5 #include "ice_sched.h" 6 7 /** 8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 9 * @pi: port information structure 10 * @info: Scheduler element information from firmware 11 * 12 * This function inserts the root node of the scheduling tree topology 13 * to the SW DB. 14 */ 15 static int 16 ice_sched_add_root_node(struct ice_port_info *pi, 17 struct ice_aqc_txsched_elem_data *info) 18 { 19 struct ice_sched_node *root; 20 struct ice_hw *hw; 21 22 if (!pi) 23 return -EINVAL; 24 25 hw = pi->hw; 26 27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 28 if (!root) 29 return -ENOMEM; 30 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root->children), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return -ENOMEM; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static int 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 int status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 int 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * @prealloc_node: preallocated ice_sched_node struct for SW DB 146 * 147 * This function inserts a scheduler node to the SW DB. 148 */ 149 int 150 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 151 struct ice_aqc_txsched_elem_data *info, 152 struct ice_sched_node *prealloc_node) 153 { 154 struct ice_aqc_txsched_elem_data elem; 155 struct ice_sched_node *parent; 156 struct ice_sched_node *node; 157 struct ice_hw *hw; 158 int status; 159 160 if (!pi) 161 return -EINVAL; 162 163 hw = pi->hw; 164 165 /* A valid parent node should be there */ 166 parent = ice_sched_find_node_by_teid(pi->root, 167 le32_to_cpu(info->parent_teid)); 168 if (!parent) { 169 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 170 le32_to_cpu(info->parent_teid)); 171 return -EINVAL; 172 } 173 174 /* query the current node information from FW before adding it 175 * to the SW DB 176 */ 177 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 178 if (status) 179 return status; 180 181 if (prealloc_node) 182 node = prealloc_node; 183 else 184 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 185 if (!node) 186 return -ENOMEM; 187 if (hw->max_children[layer]) { 188 node->children = devm_kcalloc(ice_hw_to_dev(hw), 189 hw->max_children[layer], 190 sizeof(*node->children), GFP_KERNEL); 191 if (!node->children) { 192 devm_kfree(ice_hw_to_dev(hw), node); 193 return -ENOMEM; 194 } 195 } 196 197 node->in_use = true; 198 node->parent = parent; 199 node->tx_sched_layer = layer; 200 parent->children[parent->num_children++] = node; 201 node->info = elem; 202 return 0; 203 } 204 205 /** 206 * ice_aq_delete_sched_elems - delete scheduler elements 207 * @hw: pointer to the HW struct 208 * @grps_req: number of groups to delete 209 * @buf: pointer to buffer 210 * @buf_size: buffer size in bytes 211 * @grps_del: returns total number of elements deleted 212 * @cd: pointer to command details structure or NULL 213 * 214 * Delete scheduling elements (0x040F) 215 */ 216 static int 217 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 218 struct ice_aqc_delete_elem *buf, u16 buf_size, 219 u16 *grps_del, struct ice_sq_cd *cd) 220 { 221 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 222 grps_req, (void *)buf, buf_size, 223 grps_del, cd); 224 } 225 226 /** 227 * ice_sched_remove_elems - remove nodes from HW 228 * @hw: pointer to the HW struct 229 * @parent: pointer to the parent node 230 * @num_nodes: number of nodes 231 * @node_teids: array of node teids to be deleted 232 * 233 * This function remove nodes from HW 234 */ 235 static int 236 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 237 u16 num_nodes, u32 *node_teids) 238 { 239 struct ice_aqc_delete_elem *buf; 240 u16 i, num_groups_removed = 0; 241 u16 buf_size; 242 int status; 243 244 buf_size = struct_size(buf, teid, num_nodes); 245 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 246 if (!buf) 247 return -ENOMEM; 248 249 buf->hdr.parent_teid = parent->info.node_teid; 250 buf->hdr.num_elems = cpu_to_le16(num_nodes); 251 for (i = 0; i < num_nodes; i++) 252 buf->teid[i] = cpu_to_le32(node_teids[i]); 253 254 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 255 &num_groups_removed, NULL); 256 if (status || num_groups_removed != 1) 257 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 258 hw->adminq.sq_last_status); 259 260 devm_kfree(ice_hw_to_dev(hw), buf); 261 return status; 262 } 263 264 /** 265 * ice_sched_get_first_node - get the first node of the given layer 266 * @pi: port information structure 267 * @parent: pointer the base node of the subtree 268 * @layer: layer number 269 * 270 * This function retrieves the first node of the given layer from the subtree 271 */ 272 static struct ice_sched_node * 273 ice_sched_get_first_node(struct ice_port_info *pi, 274 struct ice_sched_node *parent, u8 layer) 275 { 276 return pi->sib_head[parent->tc_num][layer]; 277 } 278 279 /** 280 * ice_sched_get_tc_node - get pointer to TC node 281 * @pi: port information structure 282 * @tc: TC number 283 * 284 * This function returns the TC node pointer 285 */ 286 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 287 { 288 u8 i; 289 290 if (!pi || !pi->root) 291 return NULL; 292 for (i = 0; i < pi->root->num_children; i++) 293 if (pi->root->children[i]->tc_num == tc) 294 return pi->root->children[i]; 295 return NULL; 296 } 297 298 /** 299 * ice_free_sched_node - Free a Tx scheduler node from SW DB 300 * @pi: port information structure 301 * @node: pointer to the ice_sched_node struct 302 * 303 * This function frees up a node from SW DB as well as from HW 304 * 305 * This function needs to be called with the port_info->sched_lock held 306 */ 307 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 308 { 309 struct ice_sched_node *parent; 310 struct ice_hw *hw = pi->hw; 311 u8 i, j; 312 313 /* Free the children before freeing up the parent node 314 * The parent array is updated below and that shifts the nodes 315 * in the array. So always pick the first child if num children > 0 316 */ 317 while (node->num_children) 318 ice_free_sched_node(pi, node->children[0]); 319 320 /* Leaf, TC and root nodes can't be deleted by SW */ 321 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 322 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 323 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 324 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 325 u32 teid = le32_to_cpu(node->info.node_teid); 326 327 ice_sched_remove_elems(hw, node->parent, 1, &teid); 328 } 329 parent = node->parent; 330 /* root has no parent */ 331 if (parent) { 332 struct ice_sched_node *p; 333 334 /* update the parent */ 335 for (i = 0; i < parent->num_children; i++) 336 if (parent->children[i] == node) { 337 for (j = i + 1; j < parent->num_children; j++) 338 parent->children[j - 1] = 339 parent->children[j]; 340 parent->num_children--; 341 break; 342 } 343 344 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 345 while (p) { 346 if (p->sibling == node) { 347 p->sibling = node->sibling; 348 break; 349 } 350 p = p->sibling; 351 } 352 353 /* update the sibling head if head is getting removed */ 354 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 355 pi->sib_head[node->tc_num][node->tx_sched_layer] = 356 node->sibling; 357 } 358 359 devm_kfree(ice_hw_to_dev(hw), node->children); 360 kfree(node->name); 361 xa_erase(&pi->sched_node_ids, node->id); 362 devm_kfree(ice_hw_to_dev(hw), node); 363 } 364 365 /** 366 * ice_aq_get_dflt_topo - gets default scheduler topology 367 * @hw: pointer to the HW struct 368 * @lport: logical port number 369 * @buf: pointer to buffer 370 * @buf_size: buffer size in bytes 371 * @num_branches: returns total number of queue to port branches 372 * @cd: pointer to command details structure or NULL 373 * 374 * Get default scheduler topology (0x400) 375 */ 376 static int 377 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 378 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 379 u8 *num_branches, struct ice_sq_cd *cd) 380 { 381 struct ice_aqc_get_topo *cmd; 382 struct ice_aq_desc desc; 383 int status; 384 385 cmd = &desc.params.get_topo; 386 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 387 cmd->port_num = lport; 388 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 389 if (!status && num_branches) 390 *num_branches = cmd->num_branches; 391 392 return status; 393 } 394 395 /** 396 * ice_aq_add_sched_elems - adds scheduling element 397 * @hw: pointer to the HW struct 398 * @grps_req: the number of groups that are requested to be added 399 * @buf: pointer to buffer 400 * @buf_size: buffer size in bytes 401 * @grps_added: returns total number of groups added 402 * @cd: pointer to command details structure or NULL 403 * 404 * Add scheduling elements (0x0401) 405 */ 406 static int 407 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 408 struct ice_aqc_add_elem *buf, u16 buf_size, 409 u16 *grps_added, struct ice_sq_cd *cd) 410 { 411 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 412 grps_req, (void *)buf, buf_size, 413 grps_added, cd); 414 } 415 416 /** 417 * ice_aq_cfg_sched_elems - configures scheduler elements 418 * @hw: pointer to the HW struct 419 * @elems_req: number of elements to configure 420 * @buf: pointer to buffer 421 * @buf_size: buffer size in bytes 422 * @elems_cfgd: returns total number of elements configured 423 * @cd: pointer to command details structure or NULL 424 * 425 * Configure scheduling elements (0x0403) 426 */ 427 static int 428 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 429 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 430 u16 *elems_cfgd, struct ice_sq_cd *cd) 431 { 432 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 433 elems_req, (void *)buf, buf_size, 434 elems_cfgd, cd); 435 } 436 437 /** 438 * ice_aq_move_sched_elems - move scheduler elements 439 * @hw: pointer to the HW struct 440 * @grps_req: number of groups to move 441 * @buf: pointer to buffer 442 * @buf_size: buffer size in bytes 443 * @grps_movd: returns total number of groups moved 444 * @cd: pointer to command details structure or NULL 445 * 446 * Move scheduling elements (0x0408) 447 */ 448 int 449 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 450 struct ice_aqc_move_elem *buf, u16 buf_size, 451 u16 *grps_movd, struct ice_sq_cd *cd) 452 { 453 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 454 grps_req, (void *)buf, buf_size, 455 grps_movd, cd); 456 } 457 458 /** 459 * ice_aq_suspend_sched_elems - suspend scheduler elements 460 * @hw: pointer to the HW struct 461 * @elems_req: number of elements to suspend 462 * @buf: pointer to buffer 463 * @buf_size: buffer size in bytes 464 * @elems_ret: returns total number of elements suspended 465 * @cd: pointer to command details structure or NULL 466 * 467 * Suspend scheduling elements (0x0409) 468 */ 469 static int 470 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 471 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 472 { 473 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 474 elems_req, (void *)buf, buf_size, 475 elems_ret, cd); 476 } 477 478 /** 479 * ice_aq_resume_sched_elems - resume scheduler elements 480 * @hw: pointer to the HW struct 481 * @elems_req: number of elements to resume 482 * @buf: pointer to buffer 483 * @buf_size: buffer size in bytes 484 * @elems_ret: returns total number of elements resumed 485 * @cd: pointer to command details structure or NULL 486 * 487 * resume scheduling elements (0x040A) 488 */ 489 static int 490 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 491 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 492 { 493 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 494 elems_req, (void *)buf, buf_size, 495 elems_ret, cd); 496 } 497 498 /** 499 * ice_aq_query_sched_res - query scheduler resource 500 * @hw: pointer to the HW struct 501 * @buf_size: buffer size in bytes 502 * @buf: pointer to buffer 503 * @cd: pointer to command details structure or NULL 504 * 505 * Query scheduler resource allocation (0x0412) 506 */ 507 static int 508 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 509 struct ice_aqc_query_txsched_res_resp *buf, 510 struct ice_sq_cd *cd) 511 { 512 struct ice_aq_desc desc; 513 514 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 515 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 516 } 517 518 /** 519 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 520 * @hw: pointer to the HW struct 521 * @num_nodes: number of nodes 522 * @node_teids: array of node teids to be suspended or resumed 523 * @suspend: true means suspend / false means resume 524 * 525 * This function suspends or resumes HW nodes 526 */ 527 int 528 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 529 bool suspend) 530 { 531 u16 i, buf_size, num_elem_ret = 0; 532 __le32 *buf; 533 int status; 534 535 buf_size = sizeof(*buf) * num_nodes; 536 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 537 if (!buf) 538 return -ENOMEM; 539 540 for (i = 0; i < num_nodes; i++) 541 buf[i] = cpu_to_le32(node_teids[i]); 542 543 if (suspend) 544 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 545 buf_size, &num_elem_ret, 546 NULL); 547 else 548 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 549 buf_size, &num_elem_ret, 550 NULL); 551 if (status || num_elem_ret != num_nodes) 552 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 553 554 devm_kfree(ice_hw_to_dev(hw), buf); 555 return status; 556 } 557 558 /** 559 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 560 * @hw: pointer to the HW struct 561 * @vsi_handle: VSI handle 562 * @tc: TC number 563 * @new_numqs: number of queues 564 */ 565 static int 566 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 567 { 568 struct ice_vsi_ctx *vsi_ctx; 569 struct ice_q_ctx *q_ctx; 570 u16 idx; 571 572 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 573 if (!vsi_ctx) 574 return -EINVAL; 575 /* allocate LAN queue contexts */ 576 if (!vsi_ctx->lan_q_ctx[tc]) { 577 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 578 sizeof(*q_ctx), GFP_KERNEL); 579 if (!q_ctx) 580 return -ENOMEM; 581 582 for (idx = 0; idx < new_numqs; idx++) { 583 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 584 q_ctx[idx].q_teid = ICE_INVAL_TEID; 585 } 586 587 vsi_ctx->lan_q_ctx[tc] = q_ctx; 588 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 589 return 0; 590 } 591 /* num queues are increased, update the queue contexts */ 592 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 593 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 594 595 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 596 sizeof(*q_ctx), GFP_KERNEL); 597 if (!q_ctx) 598 return -ENOMEM; 599 600 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 601 prev_num * sizeof(*q_ctx)); 602 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 603 604 for (idx = prev_num; idx < new_numqs; idx++) { 605 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 606 q_ctx[idx].q_teid = ICE_INVAL_TEID; 607 } 608 609 vsi_ctx->lan_q_ctx[tc] = q_ctx; 610 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 611 } 612 return 0; 613 } 614 615 /** 616 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 617 * @hw: pointer to the HW struct 618 * @vsi_handle: VSI handle 619 * @tc: TC number 620 * @new_numqs: number of queues 621 */ 622 static int 623 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 624 { 625 struct ice_vsi_ctx *vsi_ctx; 626 struct ice_q_ctx *q_ctx; 627 628 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 629 if (!vsi_ctx) 630 return -EINVAL; 631 /* allocate RDMA queue contexts */ 632 if (!vsi_ctx->rdma_q_ctx[tc]) { 633 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 634 new_numqs, 635 sizeof(*q_ctx), 636 GFP_KERNEL); 637 if (!vsi_ctx->rdma_q_ctx[tc]) 638 return -ENOMEM; 639 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 640 return 0; 641 } 642 /* num queues are increased, update the queue contexts */ 643 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 644 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 645 646 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 647 sizeof(*q_ctx), GFP_KERNEL); 648 if (!q_ctx) 649 return -ENOMEM; 650 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 651 prev_num * sizeof(*q_ctx)); 652 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 653 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 654 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 655 } 656 return 0; 657 } 658 659 /** 660 * ice_aq_rl_profile - performs a rate limiting task 661 * @hw: pointer to the HW struct 662 * @opcode: opcode for add, query, or remove profile(s) 663 * @num_profiles: the number of profiles 664 * @buf: pointer to buffer 665 * @buf_size: buffer size in bytes 666 * @num_processed: number of processed add or remove profile(s) to return 667 * @cd: pointer to command details structure 668 * 669 * RL profile function to add, query, or remove profile(s) 670 */ 671 static int 672 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 673 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 674 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 675 { 676 struct ice_aqc_rl_profile *cmd; 677 struct ice_aq_desc desc; 678 int status; 679 680 cmd = &desc.params.rl_profile; 681 682 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 683 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 684 cmd->num_profiles = cpu_to_le16(num_profiles); 685 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 686 if (!status && num_processed) 687 *num_processed = le16_to_cpu(cmd->num_processed); 688 return status; 689 } 690 691 /** 692 * ice_aq_add_rl_profile - adds rate limiting profile(s) 693 * @hw: pointer to the HW struct 694 * @num_profiles: the number of profile(s) to be add 695 * @buf: pointer to buffer 696 * @buf_size: buffer size in bytes 697 * @num_profiles_added: total number of profiles added to return 698 * @cd: pointer to command details structure 699 * 700 * Add RL profile (0x0410) 701 */ 702 static int 703 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 704 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 705 u16 *num_profiles_added, struct ice_sq_cd *cd) 706 { 707 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 708 buf, buf_size, num_profiles_added, cd); 709 } 710 711 /** 712 * ice_aq_remove_rl_profile - removes RL profile(s) 713 * @hw: pointer to the HW struct 714 * @num_profiles: the number of profile(s) to remove 715 * @buf: pointer to buffer 716 * @buf_size: buffer size in bytes 717 * @num_profiles_removed: total number of profiles removed to return 718 * @cd: pointer to command details structure or NULL 719 * 720 * Remove RL profile (0x0415) 721 */ 722 static int 723 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 724 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 725 u16 *num_profiles_removed, struct ice_sq_cd *cd) 726 { 727 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 728 num_profiles, buf, buf_size, 729 num_profiles_removed, cd); 730 } 731 732 /** 733 * ice_sched_del_rl_profile - remove RL profile 734 * @hw: pointer to the HW struct 735 * @rl_info: rate limit profile information 736 * 737 * If the profile ID is not referenced anymore, it removes profile ID with 738 * its associated parameters from HW DB,and locally. The caller needs to 739 * hold scheduler lock. 740 */ 741 static int 742 ice_sched_del_rl_profile(struct ice_hw *hw, 743 struct ice_aqc_rl_profile_info *rl_info) 744 { 745 struct ice_aqc_rl_profile_elem *buf; 746 u16 num_profiles_removed; 747 u16 num_profiles = 1; 748 int status; 749 750 if (rl_info->prof_id_ref != 0) 751 return -EBUSY; 752 753 /* Safe to remove profile ID */ 754 buf = &rl_info->profile; 755 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 756 &num_profiles_removed, NULL); 757 if (status || num_profiles_removed != num_profiles) 758 return -EIO; 759 760 /* Delete stale entry now */ 761 list_del(&rl_info->list_entry); 762 devm_kfree(ice_hw_to_dev(hw), rl_info); 763 return status; 764 } 765 766 /** 767 * ice_sched_clear_rl_prof - clears RL prof entries 768 * @pi: port information structure 769 * 770 * This function removes all RL profile from HW as well as from SW DB. 771 */ 772 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 773 { 774 u16 ln; 775 776 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 777 struct ice_aqc_rl_profile_info *rl_prof_elem; 778 struct ice_aqc_rl_profile_info *rl_prof_tmp; 779 780 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 781 &pi->rl_prof_list[ln], list_entry) { 782 struct ice_hw *hw = pi->hw; 783 int status; 784 785 rl_prof_elem->prof_id_ref = 0; 786 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 787 if (status) { 788 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 789 /* On error, free mem required */ 790 list_del(&rl_prof_elem->list_entry); 791 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 792 } 793 } 794 } 795 } 796 797 /** 798 * ice_sched_clear_agg - clears the aggregator related information 799 * @hw: pointer to the hardware structure 800 * 801 * This function removes aggregator list and free up aggregator related memory 802 * previously allocated. 803 */ 804 void ice_sched_clear_agg(struct ice_hw *hw) 805 { 806 struct ice_sched_agg_info *agg_info; 807 struct ice_sched_agg_info *atmp; 808 809 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 810 struct ice_sched_agg_vsi_info *agg_vsi_info; 811 struct ice_sched_agg_vsi_info *vtmp; 812 813 list_for_each_entry_safe(agg_vsi_info, vtmp, 814 &agg_info->agg_vsi_list, list_entry) { 815 list_del(&agg_vsi_info->list_entry); 816 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 817 } 818 list_del(&agg_info->list_entry); 819 devm_kfree(ice_hw_to_dev(hw), agg_info); 820 } 821 } 822 823 /** 824 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 825 * @pi: port information structure 826 * 827 * This function removes all the nodes from HW as well as from SW DB. 828 */ 829 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 830 { 831 if (!pi) 832 return; 833 /* remove RL profiles related lists */ 834 ice_sched_clear_rl_prof(pi); 835 if (pi->root) { 836 ice_free_sched_node(pi, pi->root); 837 pi->root = NULL; 838 } 839 } 840 841 /** 842 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 843 * @pi: port information structure 844 * 845 * Cleanup scheduling elements from SW DB 846 */ 847 void ice_sched_clear_port(struct ice_port_info *pi) 848 { 849 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 850 return; 851 852 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 853 mutex_lock(&pi->sched_lock); 854 ice_sched_clear_tx_topo(pi); 855 mutex_unlock(&pi->sched_lock); 856 mutex_destroy(&pi->sched_lock); 857 } 858 859 /** 860 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 861 * @hw: pointer to the HW struct 862 * 863 * Cleanup scheduling elements from SW DB for all the ports 864 */ 865 void ice_sched_cleanup_all(struct ice_hw *hw) 866 { 867 if (!hw) 868 return; 869 870 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 871 hw->layer_info = NULL; 872 873 ice_sched_clear_port(hw->port_info); 874 875 hw->num_tx_sched_layers = 0; 876 hw->num_tx_sched_phys_layers = 0; 877 hw->flattened_layers = 0; 878 hw->max_cgds = 0; 879 } 880 881 /** 882 * ice_sched_add_elems - add nodes to HW and SW DB 883 * @pi: port information structure 884 * @tc_node: pointer to the branch node 885 * @parent: pointer to the parent node 886 * @layer: layer number to add nodes 887 * @num_nodes: number of nodes 888 * @num_nodes_added: pointer to num nodes added 889 * @first_node_teid: if new nodes are added then return the TEID of first node 890 * @prealloc_nodes: preallocated nodes struct for software DB 891 * 892 * This function add nodes to HW as well as to SW DB for a given layer 893 */ 894 int 895 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 896 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 897 u16 *num_nodes_added, u32 *first_node_teid, 898 struct ice_sched_node **prealloc_nodes) 899 { 900 struct ice_sched_node *prev, *new_node; 901 struct ice_aqc_add_elem *buf; 902 u16 i, num_groups_added = 0; 903 struct ice_hw *hw = pi->hw; 904 size_t buf_size; 905 int status = 0; 906 u32 teid; 907 908 buf_size = struct_size(buf, generic, num_nodes); 909 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 910 if (!buf) 911 return -ENOMEM; 912 913 buf->hdr.parent_teid = parent->info.node_teid; 914 buf->hdr.num_elems = cpu_to_le16(num_nodes); 915 for (i = 0; i < num_nodes; i++) { 916 buf->generic[i].parent_teid = parent->info.node_teid; 917 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 918 buf->generic[i].data.valid_sections = 919 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 920 ICE_AQC_ELEM_VALID_EIR; 921 buf->generic[i].data.generic = 0; 922 buf->generic[i].data.cir_bw.bw_profile_idx = 923 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 924 buf->generic[i].data.cir_bw.bw_alloc = 925 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 926 buf->generic[i].data.eir_bw.bw_profile_idx = 927 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 928 buf->generic[i].data.eir_bw.bw_alloc = 929 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 930 } 931 932 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 933 &num_groups_added, NULL); 934 if (status || num_groups_added != 1) { 935 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 936 hw->adminq.sq_last_status); 937 devm_kfree(ice_hw_to_dev(hw), buf); 938 return -EIO; 939 } 940 941 *num_nodes_added = num_nodes; 942 /* add nodes to the SW DB */ 943 for (i = 0; i < num_nodes; i++) { 944 if (prealloc_nodes) 945 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); 946 else 947 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); 948 949 if (status) { 950 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 951 status); 952 break; 953 } 954 955 teid = le32_to_cpu(buf->generic[i].node_teid); 956 new_node = ice_sched_find_node_by_teid(parent, teid); 957 if (!new_node) { 958 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 959 break; 960 } 961 962 new_node->sibling = NULL; 963 new_node->tc_num = tc_node->tc_num; 964 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; 965 new_node->tx_share = ICE_SCHED_DFLT_BW; 966 new_node->tx_max = ICE_SCHED_DFLT_BW; 967 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); 968 if (!new_node->name) 969 return -ENOMEM; 970 971 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), 972 GFP_KERNEL); 973 if (status) { 974 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", 975 status); 976 break; 977 } 978 979 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); 980 981 /* add it to previous node sibling pointer */ 982 /* Note: siblings are not linked across branches */ 983 prev = ice_sched_get_first_node(pi, tc_node, layer); 984 if (prev && prev != new_node) { 985 while (prev->sibling) 986 prev = prev->sibling; 987 prev->sibling = new_node; 988 } 989 990 /* initialize the sibling head */ 991 if (!pi->sib_head[tc_node->tc_num][layer]) 992 pi->sib_head[tc_node->tc_num][layer] = new_node; 993 994 if (i == 0) 995 *first_node_teid = teid; 996 } 997 998 devm_kfree(ice_hw_to_dev(hw), buf); 999 return status; 1000 } 1001 1002 /** 1003 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 1004 * @pi: port information structure 1005 * @tc_node: pointer to TC node 1006 * @parent: pointer to parent node 1007 * @layer: layer number to add nodes 1008 * @num_nodes: number of nodes to be added 1009 * @first_node_teid: pointer to the first node TEID 1010 * @num_nodes_added: pointer to number of nodes added 1011 * 1012 * Add nodes into specific HW layer. 1013 */ 1014 static int 1015 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 1016 struct ice_sched_node *tc_node, 1017 struct ice_sched_node *parent, u8 layer, 1018 u16 num_nodes, u32 *first_node_teid, 1019 u16 *num_nodes_added) 1020 { 1021 u16 max_child_nodes; 1022 1023 *num_nodes_added = 0; 1024 1025 if (!num_nodes) 1026 return 0; 1027 1028 if (!parent || layer < pi->hw->sw_entry_point_layer) 1029 return -EINVAL; 1030 1031 /* max children per node per layer */ 1032 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1033 1034 /* current number of children + required nodes exceed max children */ 1035 if ((parent->num_children + num_nodes) > max_child_nodes) { 1036 /* Fail if the parent is a TC node */ 1037 if (parent == tc_node) 1038 return -EIO; 1039 return -ENOSPC; 1040 } 1041 1042 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1043 num_nodes_added, first_node_teid, NULL); 1044 } 1045 1046 /** 1047 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1048 * @pi: port information structure 1049 * @tc_node: pointer to TC node 1050 * @parent: pointer to parent node 1051 * @layer: layer number to add nodes 1052 * @num_nodes: number of nodes to be added 1053 * @first_node_teid: pointer to the first node TEID 1054 * @num_nodes_added: pointer to number of nodes added 1055 * 1056 * This function add nodes to a given layer. 1057 */ 1058 int 1059 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1060 struct ice_sched_node *tc_node, 1061 struct ice_sched_node *parent, u8 layer, 1062 u16 num_nodes, u32 *first_node_teid, 1063 u16 *num_nodes_added) 1064 { 1065 u32 *first_teid_ptr = first_node_teid; 1066 u16 new_num_nodes = num_nodes; 1067 int status = 0; 1068 1069 *num_nodes_added = 0; 1070 while (*num_nodes_added < num_nodes) { 1071 u16 max_child_nodes, num_added = 0; 1072 u32 temp; 1073 1074 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1075 layer, new_num_nodes, 1076 first_teid_ptr, 1077 &num_added); 1078 if (!status) 1079 *num_nodes_added += num_added; 1080 /* added more nodes than requested ? */ 1081 if (*num_nodes_added > num_nodes) { 1082 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1083 *num_nodes_added); 1084 status = -EIO; 1085 break; 1086 } 1087 /* break if all the nodes are added successfully */ 1088 if (!status && (*num_nodes_added == num_nodes)) 1089 break; 1090 /* break if the error is not max limit */ 1091 if (status && status != -ENOSPC) 1092 break; 1093 /* Exceeded the max children */ 1094 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1095 /* utilize all the spaces if the parent is not full */ 1096 if (parent->num_children < max_child_nodes) { 1097 new_num_nodes = max_child_nodes - parent->num_children; 1098 } else { 1099 /* This parent is full, try the next sibling */ 1100 parent = parent->sibling; 1101 /* Don't modify the first node TEID memory if the 1102 * first node was added already in the above call. 1103 * Instead send some temp memory for all other 1104 * recursive calls. 1105 */ 1106 if (num_added) 1107 first_teid_ptr = &temp; 1108 1109 new_num_nodes = num_nodes - *num_nodes_added; 1110 } 1111 } 1112 return status; 1113 } 1114 1115 /** 1116 * ice_sched_get_qgrp_layer - get the current queue group layer number 1117 * @hw: pointer to the HW struct 1118 * 1119 * This function returns the current queue group layer number 1120 */ 1121 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1122 { 1123 /* It's always total layers - 1, the array is 0 relative so -2 */ 1124 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1125 } 1126 1127 /** 1128 * ice_sched_get_vsi_layer - get the current VSI layer number 1129 * @hw: pointer to the HW struct 1130 * 1131 * This function returns the current VSI layer number 1132 */ 1133 u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1134 { 1135 /* Num Layers VSI layer 1136 * 9 6 1137 * 7 4 1138 * 5 or less sw_entry_point_layer 1139 */ 1140 /* calculate the VSI layer based on number of layers. */ 1141 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1142 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1143 1144 if (layer > hw->sw_entry_point_layer) 1145 return layer; 1146 } 1147 return hw->sw_entry_point_layer; 1148 } 1149 1150 /** 1151 * ice_sched_get_agg_layer - get the current aggregator layer number 1152 * @hw: pointer to the HW struct 1153 * 1154 * This function returns the current aggregator layer number 1155 */ 1156 u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1157 { 1158 /* Num Layers aggregator layer 1159 * 9 4 1160 * 7 or less sw_entry_point_layer 1161 */ 1162 /* calculate the aggregator layer based on number of layers. */ 1163 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1164 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1165 1166 if (layer > hw->sw_entry_point_layer) 1167 return layer; 1168 } 1169 return hw->sw_entry_point_layer; 1170 } 1171 1172 /** 1173 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1174 * @pi: port information structure 1175 * 1176 * This function removes the leaf node that was created by the FW 1177 * during initialization 1178 */ 1179 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1180 { 1181 struct ice_sched_node *node; 1182 1183 node = pi->root; 1184 while (node) { 1185 if (!node->num_children) 1186 break; 1187 node = node->children[0]; 1188 } 1189 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1190 u32 teid = le32_to_cpu(node->info.node_teid); 1191 int status; 1192 1193 /* remove the default leaf node */ 1194 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1195 if (!status) 1196 ice_free_sched_node(pi, node); 1197 } 1198 } 1199 1200 /** 1201 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1202 * @pi: port information structure 1203 * 1204 * This function frees all the nodes except root and TC that were created by 1205 * the FW during initialization 1206 */ 1207 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1208 { 1209 struct ice_sched_node *node; 1210 1211 ice_rm_dflt_leaf_node(pi); 1212 1213 /* remove the default nodes except TC and root nodes */ 1214 node = pi->root; 1215 while (node) { 1216 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1217 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1218 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1219 ice_free_sched_node(pi, node); 1220 break; 1221 } 1222 1223 if (!node->num_children) 1224 break; 1225 node = node->children[0]; 1226 } 1227 } 1228 1229 /** 1230 * ice_sched_init_port - Initialize scheduler by querying information from FW 1231 * @pi: port info structure for the tree to cleanup 1232 * 1233 * This function is the initial call to find the total number of Tx scheduler 1234 * resources, default topology created by firmware and storing the information 1235 * in SW DB. 1236 */ 1237 int ice_sched_init_port(struct ice_port_info *pi) 1238 { 1239 struct ice_aqc_get_topo_elem *buf; 1240 struct ice_hw *hw; 1241 u8 num_branches; 1242 u16 num_elems; 1243 int status; 1244 u8 i, j; 1245 1246 if (!pi) 1247 return -EINVAL; 1248 hw = pi->hw; 1249 1250 /* Query the Default Topology from FW */ 1251 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1252 if (!buf) 1253 return -ENOMEM; 1254 1255 /* Query default scheduling tree topology */ 1256 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1257 &num_branches, NULL); 1258 if (status) 1259 goto err_init_port; 1260 1261 /* num_branches should be between 1-8 */ 1262 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1263 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1264 num_branches); 1265 status = -EINVAL; 1266 goto err_init_port; 1267 } 1268 1269 /* get the number of elements on the default/first branch */ 1270 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1271 1272 /* num_elems should always be between 1-9 */ 1273 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1274 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1275 num_elems); 1276 status = -EINVAL; 1277 goto err_init_port; 1278 } 1279 1280 /* If the last node is a leaf node then the index of the queue group 1281 * layer is two less than the number of elements. 1282 */ 1283 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1284 ICE_AQC_ELEM_TYPE_LEAF) 1285 pi->last_node_teid = 1286 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1287 else 1288 pi->last_node_teid = 1289 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1290 1291 /* Insert the Tx Sched root node */ 1292 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1293 if (status) 1294 goto err_init_port; 1295 1296 /* Parse the default tree and cache the information */ 1297 for (i = 0; i < num_branches; i++) { 1298 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1299 1300 /* Skip root element as already inserted */ 1301 for (j = 1; j < num_elems; j++) { 1302 /* update the sw entry point */ 1303 if (buf[0].generic[j].data.elem_type == 1304 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1305 hw->sw_entry_point_layer = j; 1306 1307 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); 1308 if (status) 1309 goto err_init_port; 1310 } 1311 } 1312 1313 /* Remove the default nodes. */ 1314 if (pi->root) 1315 ice_sched_rm_dflt_nodes(pi); 1316 1317 /* initialize the port for handling the scheduler tree */ 1318 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1319 mutex_init(&pi->sched_lock); 1320 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1321 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1322 1323 err_init_port: 1324 if (status && pi->root) { 1325 ice_free_sched_node(pi, pi->root); 1326 pi->root = NULL; 1327 } 1328 1329 kfree(buf); 1330 return status; 1331 } 1332 1333 /** 1334 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1335 * @hw: pointer to the HW struct 1336 * 1337 * query FW for allocated scheduler resources and store in HW struct 1338 */ 1339 int ice_sched_query_res_alloc(struct ice_hw *hw) 1340 { 1341 struct ice_aqc_query_txsched_res_resp *buf; 1342 __le16 max_sibl; 1343 int status = 0; 1344 u16 i; 1345 1346 if (hw->layer_info) 1347 return status; 1348 1349 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1350 if (!buf) 1351 return -ENOMEM; 1352 1353 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1354 if (status) 1355 goto sched_query_out; 1356 1357 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1358 hw->num_tx_sched_phys_layers = 1359 le16_to_cpu(buf->sched_props.phys_levels); 1360 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1361 hw->max_cgds = buf->sched_props.max_pf_cgds; 1362 1363 /* max sibling group size of current layer refers to the max children 1364 * of the below layer node. 1365 * layer 1 node max children will be layer 2 max sibling group size 1366 * layer 2 node max children will be layer 3 max sibling group size 1367 * and so on. This array will be populated from root (index 0) to 1368 * qgroup layer 7. Leaf node has no children. 1369 */ 1370 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1371 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1372 hw->max_children[i] = le16_to_cpu(max_sibl); 1373 } 1374 1375 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1376 (hw->num_tx_sched_layers * 1377 sizeof(*hw->layer_info)), 1378 GFP_KERNEL); 1379 if (!hw->layer_info) { 1380 status = -ENOMEM; 1381 goto sched_query_out; 1382 } 1383 1384 sched_query_out: 1385 devm_kfree(ice_hw_to_dev(hw), buf); 1386 return status; 1387 } 1388 1389 /** 1390 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1391 * @hw: pointer to the HW struct 1392 * 1393 * Determine the PSM clock frequency and store in HW struct 1394 */ 1395 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1396 { 1397 u32 val, clk_src; 1398 1399 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1400 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1401 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1402 1403 #define PSM_CLK_SRC_367_MHZ 0x0 1404 #define PSM_CLK_SRC_416_MHZ 0x1 1405 #define PSM_CLK_SRC_446_MHZ 0x2 1406 #define PSM_CLK_SRC_390_MHZ 0x3 1407 1408 switch (clk_src) { 1409 case PSM_CLK_SRC_367_MHZ: 1410 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1411 break; 1412 case PSM_CLK_SRC_416_MHZ: 1413 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1414 break; 1415 case PSM_CLK_SRC_446_MHZ: 1416 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1417 break; 1418 case PSM_CLK_SRC_390_MHZ: 1419 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1420 break; 1421 default: 1422 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1423 clk_src); 1424 /* fall back to a safe default */ 1425 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1426 } 1427 } 1428 1429 /** 1430 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1431 * @hw: pointer to the HW struct 1432 * @base: pointer to the base node 1433 * @node: pointer to the node to search 1434 * 1435 * This function checks whether a given node is part of the base node 1436 * subtree or not 1437 */ 1438 static bool 1439 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1440 struct ice_sched_node *node) 1441 { 1442 u8 i; 1443 1444 for (i = 0; i < base->num_children; i++) { 1445 struct ice_sched_node *child = base->children[i]; 1446 1447 if (node == child) 1448 return true; 1449 1450 if (child->tx_sched_layer > node->tx_sched_layer) 1451 return false; 1452 1453 /* this recursion is intentional, and wouldn't 1454 * go more than 8 calls 1455 */ 1456 if (ice_sched_find_node_in_subtree(hw, child, node)) 1457 return true; 1458 } 1459 return false; 1460 } 1461 1462 /** 1463 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1464 * @pi: port information structure 1465 * @vsi_node: software VSI handle 1466 * @qgrp_node: first queue group node identified for scanning 1467 * @owner: LAN or RDMA 1468 * 1469 * This function retrieves a free LAN or RDMA queue group node by scanning 1470 * qgrp_node and its siblings for the queue group with the fewest number 1471 * of queues currently assigned. 1472 */ 1473 static struct ice_sched_node * 1474 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1475 struct ice_sched_node *vsi_node, 1476 struct ice_sched_node *qgrp_node, u8 owner) 1477 { 1478 struct ice_sched_node *min_qgrp; 1479 u8 min_children; 1480 1481 if (!qgrp_node) 1482 return qgrp_node; 1483 min_children = qgrp_node->num_children; 1484 if (!min_children) 1485 return qgrp_node; 1486 min_qgrp = qgrp_node; 1487 /* scan all queue groups until find a node which has less than the 1488 * minimum number of children. This way all queue group nodes get 1489 * equal number of shares and active. The bandwidth will be equally 1490 * distributed across all queues. 1491 */ 1492 while (qgrp_node) { 1493 /* make sure the qgroup node is part of the VSI subtree */ 1494 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1495 if (qgrp_node->num_children < min_children && 1496 qgrp_node->owner == owner) { 1497 /* replace the new min queue group node */ 1498 min_qgrp = qgrp_node; 1499 min_children = min_qgrp->num_children; 1500 /* break if it has no children, */ 1501 if (!min_children) 1502 break; 1503 } 1504 qgrp_node = qgrp_node->sibling; 1505 } 1506 return min_qgrp; 1507 } 1508 1509 /** 1510 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1511 * @pi: port information structure 1512 * @vsi_handle: software VSI handle 1513 * @tc: branch number 1514 * @owner: LAN or RDMA 1515 * 1516 * This function retrieves a free LAN or RDMA queue group node 1517 */ 1518 struct ice_sched_node * 1519 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1520 u8 owner) 1521 { 1522 struct ice_sched_node *vsi_node, *qgrp_node; 1523 struct ice_vsi_ctx *vsi_ctx; 1524 u16 max_children; 1525 u8 qgrp_layer; 1526 1527 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1528 max_children = pi->hw->max_children[qgrp_layer]; 1529 1530 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1531 if (!vsi_ctx) 1532 return NULL; 1533 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1534 /* validate invalid VSI ID */ 1535 if (!vsi_node) 1536 return NULL; 1537 1538 /* get the first queue group node from VSI sub-tree */ 1539 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1540 while (qgrp_node) { 1541 /* make sure the qgroup node is part of the VSI subtree */ 1542 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1543 if (qgrp_node->num_children < max_children && 1544 qgrp_node->owner == owner) 1545 break; 1546 qgrp_node = qgrp_node->sibling; 1547 } 1548 1549 /* Select the best queue group */ 1550 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1551 } 1552 1553 /** 1554 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1555 * @pi: pointer to the port information structure 1556 * @tc_node: pointer to the TC node 1557 * @vsi_handle: software VSI handle 1558 * 1559 * This function retrieves a VSI node for a given VSI ID from a given 1560 * TC branch 1561 */ 1562 static struct ice_sched_node * 1563 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1564 u16 vsi_handle) 1565 { 1566 struct ice_sched_node *node; 1567 u8 vsi_layer; 1568 1569 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1570 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1571 1572 /* Check whether it already exists */ 1573 while (node) { 1574 if (node->vsi_handle == vsi_handle) 1575 return node; 1576 node = node->sibling; 1577 } 1578 1579 return node; 1580 } 1581 1582 /** 1583 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1584 * @pi: pointer to the port information structure 1585 * @tc_node: pointer to the TC node 1586 * @agg_id: aggregator ID 1587 * 1588 * This function retrieves an aggregator node for a given aggregator ID from 1589 * a given TC branch 1590 */ 1591 struct ice_sched_node * 1592 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1593 u32 agg_id) 1594 { 1595 struct ice_sched_node *node; 1596 struct ice_hw *hw = pi->hw; 1597 u8 agg_layer; 1598 1599 if (!hw) 1600 return NULL; 1601 agg_layer = ice_sched_get_agg_layer(hw); 1602 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1603 1604 /* Check whether it already exists */ 1605 while (node) { 1606 if (node->agg_id == agg_id) 1607 return node; 1608 node = node->sibling; 1609 } 1610 1611 return node; 1612 } 1613 1614 /** 1615 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1616 * @hw: pointer to the HW struct 1617 * @num_qs: number of queues 1618 * @num_nodes: num nodes array 1619 * 1620 * This function calculates the number of VSI child nodes based on the 1621 * number of queues. 1622 */ 1623 static void 1624 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1625 { 1626 u16 num = num_qs; 1627 u8 i, qgl, vsil; 1628 1629 qgl = ice_sched_get_qgrp_layer(hw); 1630 vsil = ice_sched_get_vsi_layer(hw); 1631 1632 /* calculate num nodes from queue group to VSI layer */ 1633 for (i = qgl; i > vsil; i--) { 1634 /* round to the next integer if there is a remainder */ 1635 num = DIV_ROUND_UP(num, hw->max_children[i]); 1636 1637 /* need at least one node */ 1638 num_nodes[i] = num ? num : 1; 1639 } 1640 } 1641 1642 /** 1643 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1644 * @pi: port information structure 1645 * @vsi_handle: software VSI handle 1646 * @tc_node: pointer to the TC node 1647 * @num_nodes: pointer to the num nodes that needs to be added per layer 1648 * @owner: node owner (LAN or RDMA) 1649 * 1650 * This function adds the VSI child nodes to tree. It gets called for 1651 * LAN and RDMA separately. 1652 */ 1653 static int 1654 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1655 struct ice_sched_node *tc_node, u16 *num_nodes, 1656 u8 owner) 1657 { 1658 struct ice_sched_node *parent, *node; 1659 struct ice_hw *hw = pi->hw; 1660 u32 first_node_teid; 1661 u16 num_added = 0; 1662 u8 i, qgl, vsil; 1663 1664 qgl = ice_sched_get_qgrp_layer(hw); 1665 vsil = ice_sched_get_vsi_layer(hw); 1666 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1667 for (i = vsil + 1; i <= qgl; i++) { 1668 int status; 1669 1670 if (!parent) 1671 return -EIO; 1672 1673 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1674 num_nodes[i], 1675 &first_node_teid, 1676 &num_added); 1677 if (status || num_nodes[i] != num_added) 1678 return -EIO; 1679 1680 /* The newly added node can be a new parent for the next 1681 * layer nodes 1682 */ 1683 if (num_added) { 1684 parent = ice_sched_find_node_by_teid(tc_node, 1685 first_node_teid); 1686 node = parent; 1687 while (node) { 1688 node->owner = owner; 1689 node = node->sibling; 1690 } 1691 } else { 1692 parent = parent->children[0]; 1693 } 1694 } 1695 1696 return 0; 1697 } 1698 1699 /** 1700 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1701 * @pi: pointer to the port info structure 1702 * @tc_node: pointer to TC node 1703 * @num_nodes: pointer to num nodes array 1704 * 1705 * This function calculates the number of supported nodes needed to add this 1706 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1707 * layers 1708 */ 1709 static void 1710 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1711 struct ice_sched_node *tc_node, u16 *num_nodes) 1712 { 1713 struct ice_sched_node *node; 1714 u8 vsil; 1715 int i; 1716 1717 vsil = ice_sched_get_vsi_layer(pi->hw); 1718 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1719 /* Add intermediate nodes if TC has no children and 1720 * need at least one node for VSI 1721 */ 1722 if (!tc_node->num_children || i == vsil) { 1723 num_nodes[i]++; 1724 } else { 1725 /* If intermediate nodes are reached max children 1726 * then add a new one. 1727 */ 1728 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1729 /* scan all the siblings */ 1730 while (node) { 1731 if (node->num_children < pi->hw->max_children[i]) 1732 break; 1733 node = node->sibling; 1734 } 1735 1736 /* tree has one intermediate node to add this new VSI. 1737 * So no need to calculate supported nodes for below 1738 * layers. 1739 */ 1740 if (node) 1741 break; 1742 /* all the nodes are full, allocate a new one */ 1743 num_nodes[i]++; 1744 } 1745 } 1746 1747 /** 1748 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1749 * @pi: port information structure 1750 * @vsi_handle: software VSI handle 1751 * @tc_node: pointer to TC node 1752 * @num_nodes: pointer to num nodes array 1753 * 1754 * This function adds the VSI supported nodes into Tx tree including the 1755 * VSI, its parent and intermediate nodes in below layers 1756 */ 1757 static int 1758 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1759 struct ice_sched_node *tc_node, u16 *num_nodes) 1760 { 1761 struct ice_sched_node *parent = tc_node; 1762 u32 first_node_teid; 1763 u16 num_added = 0; 1764 u8 i, vsil; 1765 1766 if (!pi) 1767 return -EINVAL; 1768 1769 vsil = ice_sched_get_vsi_layer(pi->hw); 1770 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1771 int status; 1772 1773 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1774 i, num_nodes[i], 1775 &first_node_teid, 1776 &num_added); 1777 if (status || num_nodes[i] != num_added) 1778 return -EIO; 1779 1780 /* The newly added node can be a new parent for the next 1781 * layer nodes 1782 */ 1783 if (num_added) 1784 parent = ice_sched_find_node_by_teid(tc_node, 1785 first_node_teid); 1786 else 1787 parent = parent->children[0]; 1788 1789 if (!parent) 1790 return -EIO; 1791 1792 if (i == vsil) 1793 parent->vsi_handle = vsi_handle; 1794 } 1795 1796 return 0; 1797 } 1798 1799 /** 1800 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1801 * @pi: port information structure 1802 * @vsi_handle: software VSI handle 1803 * @tc: TC number 1804 * 1805 * This function adds a new VSI into scheduler tree 1806 */ 1807 static int 1808 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1809 { 1810 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1811 struct ice_sched_node *tc_node; 1812 1813 tc_node = ice_sched_get_tc_node(pi, tc); 1814 if (!tc_node) 1815 return -EINVAL; 1816 1817 /* calculate number of supported nodes needed for this VSI */ 1818 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1819 1820 /* add VSI supported nodes to TC subtree */ 1821 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1822 num_nodes); 1823 } 1824 1825 /** 1826 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1827 * @pi: port information structure 1828 * @vsi_handle: software VSI handle 1829 * @tc: TC number 1830 * @new_numqs: new number of max queues 1831 * @owner: owner of this subtree 1832 * 1833 * This function updates the VSI child nodes based on the number of queues 1834 */ 1835 static int 1836 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1837 u8 tc, u16 new_numqs, u8 owner) 1838 { 1839 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1840 struct ice_sched_node *vsi_node; 1841 struct ice_sched_node *tc_node; 1842 struct ice_vsi_ctx *vsi_ctx; 1843 struct ice_hw *hw = pi->hw; 1844 u16 prev_numqs; 1845 int status = 0; 1846 1847 tc_node = ice_sched_get_tc_node(pi, tc); 1848 if (!tc_node) 1849 return -EIO; 1850 1851 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1852 if (!vsi_node) 1853 return -EIO; 1854 1855 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1856 if (!vsi_ctx) 1857 return -EINVAL; 1858 1859 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1860 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1861 else 1862 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1863 /* num queues are not changed or less than the previous number */ 1864 if (new_numqs <= prev_numqs) 1865 return status; 1866 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1867 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1868 if (status) 1869 return status; 1870 } else { 1871 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1872 if (status) 1873 return status; 1874 } 1875 1876 if (new_numqs) 1877 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1878 /* Keep the max number of queue configuration all the time. Update the 1879 * tree only if number of queues > previous number of queues. This may 1880 * leave some extra nodes in the tree if number of queues < previous 1881 * number but that wouldn't harm anything. Removing those extra nodes 1882 * may complicate the code if those nodes are part of SRL or 1883 * individually rate limited. 1884 */ 1885 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1886 new_num_nodes, owner); 1887 if (status) 1888 return status; 1889 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1890 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1891 else 1892 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1893 1894 return 0; 1895 } 1896 1897 /** 1898 * ice_sched_cfg_vsi - configure the new/existing VSI 1899 * @pi: port information structure 1900 * @vsi_handle: software VSI handle 1901 * @tc: TC number 1902 * @maxqs: max number of queues 1903 * @owner: LAN or RDMA 1904 * @enable: TC enabled or disabled 1905 * 1906 * This function adds/updates VSI nodes based on the number of queues. If TC is 1907 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1908 * disabled then suspend the VSI if it is not already. 1909 */ 1910 int 1911 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1912 u8 owner, bool enable) 1913 { 1914 struct ice_sched_node *vsi_node, *tc_node; 1915 struct ice_vsi_ctx *vsi_ctx; 1916 struct ice_hw *hw = pi->hw; 1917 int status = 0; 1918 1919 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1920 tc_node = ice_sched_get_tc_node(pi, tc); 1921 if (!tc_node) 1922 return -EINVAL; 1923 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1924 if (!vsi_ctx) 1925 return -EINVAL; 1926 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1927 1928 /* suspend the VSI if TC is not enabled */ 1929 if (!enable) { 1930 if (vsi_node && vsi_node->in_use) { 1931 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1932 1933 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1934 true); 1935 if (!status) 1936 vsi_node->in_use = false; 1937 } 1938 return status; 1939 } 1940 1941 /* TC is enabled, if it is a new VSI then add it to the tree */ 1942 if (!vsi_node) { 1943 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1944 if (status) 1945 return status; 1946 1947 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1948 if (!vsi_node) 1949 return -EIO; 1950 1951 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1952 vsi_node->in_use = true; 1953 /* invalidate the max queues whenever VSI gets added first time 1954 * into the scheduler tree (boot or after reset). We need to 1955 * recreate the child nodes all the time in these cases. 1956 */ 1957 vsi_ctx->sched.max_lanq[tc] = 0; 1958 vsi_ctx->sched.max_rdmaq[tc] = 0; 1959 } 1960 1961 /* update the VSI child nodes */ 1962 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1963 owner); 1964 if (status) 1965 return status; 1966 1967 /* TC is enabled, resume the VSI if it is in the suspend state */ 1968 if (!vsi_node->in_use) { 1969 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1970 1971 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1972 if (!status) 1973 vsi_node->in_use = true; 1974 } 1975 1976 return status; 1977 } 1978 1979 /** 1980 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1981 * @pi: port information structure 1982 * @vsi_handle: software VSI handle 1983 * 1984 * This function removes single aggregator VSI info entry from 1985 * aggregator list. 1986 */ 1987 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1988 { 1989 struct ice_sched_agg_info *agg_info; 1990 struct ice_sched_agg_info *atmp; 1991 1992 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1993 list_entry) { 1994 struct ice_sched_agg_vsi_info *agg_vsi_info; 1995 struct ice_sched_agg_vsi_info *vtmp; 1996 1997 list_for_each_entry_safe(agg_vsi_info, vtmp, 1998 &agg_info->agg_vsi_list, list_entry) 1999 if (agg_vsi_info->vsi_handle == vsi_handle) { 2000 list_del(&agg_vsi_info->list_entry); 2001 devm_kfree(ice_hw_to_dev(pi->hw), 2002 agg_vsi_info); 2003 return; 2004 } 2005 } 2006 } 2007 2008 /** 2009 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 2010 * @node: pointer to the sub-tree node 2011 * 2012 * This function checks for a leaf node presence in a given sub-tree node. 2013 */ 2014 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 2015 { 2016 u8 i; 2017 2018 for (i = 0; i < node->num_children; i++) 2019 if (ice_sched_is_leaf_node_present(node->children[i])) 2020 return true; 2021 /* check for a leaf node */ 2022 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 2023 } 2024 2025 /** 2026 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 2027 * @pi: port information structure 2028 * @vsi_handle: software VSI handle 2029 * @owner: LAN or RDMA 2030 * 2031 * This function removes the VSI and its LAN or RDMA children nodes from the 2032 * scheduler tree. 2033 */ 2034 static int 2035 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 2036 { 2037 struct ice_vsi_ctx *vsi_ctx; 2038 int status = -EINVAL; 2039 u8 i; 2040 2041 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2042 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2043 return status; 2044 mutex_lock(&pi->sched_lock); 2045 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2046 if (!vsi_ctx) 2047 goto exit_sched_rm_vsi_cfg; 2048 2049 ice_for_each_traffic_class(i) { 2050 struct ice_sched_node *vsi_node, *tc_node; 2051 u8 j = 0; 2052 2053 tc_node = ice_sched_get_tc_node(pi, i); 2054 if (!tc_node) 2055 continue; 2056 2057 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2058 if (!vsi_node) 2059 continue; 2060 2061 if (ice_sched_is_leaf_node_present(vsi_node)) { 2062 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2063 status = -EBUSY; 2064 goto exit_sched_rm_vsi_cfg; 2065 } 2066 while (j < vsi_node->num_children) { 2067 if (vsi_node->children[j]->owner == owner) { 2068 ice_free_sched_node(pi, vsi_node->children[j]); 2069 2070 /* reset the counter again since the num 2071 * children will be updated after node removal 2072 */ 2073 j = 0; 2074 } else { 2075 j++; 2076 } 2077 } 2078 /* remove the VSI if it has no children */ 2079 if (!vsi_node->num_children) { 2080 ice_free_sched_node(pi, vsi_node); 2081 vsi_ctx->sched.vsi_node[i] = NULL; 2082 2083 /* clean up aggregator related VSI info if any */ 2084 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2085 } 2086 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2087 vsi_ctx->sched.max_lanq[i] = 0; 2088 else 2089 vsi_ctx->sched.max_rdmaq[i] = 0; 2090 } 2091 status = 0; 2092 2093 exit_sched_rm_vsi_cfg: 2094 mutex_unlock(&pi->sched_lock); 2095 return status; 2096 } 2097 2098 /** 2099 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2100 * @pi: port information structure 2101 * @vsi_handle: software VSI handle 2102 * 2103 * This function clears the VSI and its LAN children nodes from scheduler tree 2104 * for all TCs. 2105 */ 2106 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2107 { 2108 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2109 } 2110 2111 /** 2112 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2113 * @pi: port information structure 2114 * @vsi_handle: software VSI handle 2115 * 2116 * This function clears the VSI and its RDMA children nodes from scheduler tree 2117 * for all TCs. 2118 */ 2119 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2120 { 2121 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2122 } 2123 2124 /** 2125 * ice_get_agg_info - get the aggregator ID 2126 * @hw: pointer to the hardware structure 2127 * @agg_id: aggregator ID 2128 * 2129 * This function validates aggregator ID. The function returns info if 2130 * aggregator ID is present in list otherwise it returns null. 2131 */ 2132 static struct ice_sched_agg_info * 2133 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2134 { 2135 struct ice_sched_agg_info *agg_info; 2136 2137 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2138 if (agg_info->agg_id == agg_id) 2139 return agg_info; 2140 2141 return NULL; 2142 } 2143 2144 /** 2145 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2146 * @hw: pointer to the HW struct 2147 * @node: pointer to a child node 2148 * @num_nodes: num nodes count array 2149 * 2150 * This function walks through the aggregator subtree to find a free parent 2151 * node 2152 */ 2153 struct ice_sched_node * 2154 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2155 u16 *num_nodes) 2156 { 2157 u8 l = node->tx_sched_layer; 2158 u8 vsil, i; 2159 2160 vsil = ice_sched_get_vsi_layer(hw); 2161 2162 /* Is it VSI parent layer ? */ 2163 if (l == vsil - 1) 2164 return (node->num_children < hw->max_children[l]) ? node : NULL; 2165 2166 /* We have intermediate nodes. Let's walk through the subtree. If the 2167 * intermediate node has space to add a new node then clear the count 2168 */ 2169 if (node->num_children < hw->max_children[l]) 2170 num_nodes[l] = 0; 2171 /* The below recursive call is intentional and wouldn't go more than 2172 * 2 or 3 iterations. 2173 */ 2174 2175 for (i = 0; i < node->num_children; i++) { 2176 struct ice_sched_node *parent; 2177 2178 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2179 num_nodes); 2180 if (parent) 2181 return parent; 2182 } 2183 2184 return NULL; 2185 } 2186 2187 /** 2188 * ice_sched_update_parent - update the new parent in SW DB 2189 * @new_parent: pointer to a new parent node 2190 * @node: pointer to a child node 2191 * 2192 * This function removes the child from the old parent and adds it to a new 2193 * parent 2194 */ 2195 void 2196 ice_sched_update_parent(struct ice_sched_node *new_parent, 2197 struct ice_sched_node *node) 2198 { 2199 struct ice_sched_node *old_parent; 2200 u8 i, j; 2201 2202 old_parent = node->parent; 2203 2204 /* update the old parent children */ 2205 for (i = 0; i < old_parent->num_children; i++) 2206 if (old_parent->children[i] == node) { 2207 for (j = i + 1; j < old_parent->num_children; j++) 2208 old_parent->children[j - 1] = 2209 old_parent->children[j]; 2210 old_parent->num_children--; 2211 break; 2212 } 2213 2214 /* now move the node to a new parent */ 2215 new_parent->children[new_parent->num_children++] = node; 2216 node->parent = new_parent; 2217 node->info.parent_teid = new_parent->info.node_teid; 2218 } 2219 2220 /** 2221 * ice_sched_move_nodes - move child nodes to a given parent 2222 * @pi: port information structure 2223 * @parent: pointer to parent node 2224 * @num_items: number of child nodes to be moved 2225 * @list: pointer to child node teids 2226 * 2227 * This function move the child nodes to a given parent. 2228 */ 2229 int 2230 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2231 u16 num_items, u32 *list) 2232 { 2233 struct ice_aqc_move_elem *buf; 2234 struct ice_sched_node *node; 2235 u16 i, grps_movd = 0; 2236 struct ice_hw *hw; 2237 int status = 0; 2238 u16 buf_len; 2239 2240 hw = pi->hw; 2241 2242 if (!parent || !num_items) 2243 return -EINVAL; 2244 2245 /* Does parent have enough space */ 2246 if (parent->num_children + num_items > 2247 hw->max_children[parent->tx_sched_layer]) 2248 return -ENOSPC; 2249 2250 buf_len = struct_size(buf, teid, 1); 2251 buf = kzalloc(buf_len, GFP_KERNEL); 2252 if (!buf) 2253 return -ENOMEM; 2254 2255 for (i = 0; i < num_items; i++) { 2256 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2257 if (!node) { 2258 status = -EINVAL; 2259 goto move_err_exit; 2260 } 2261 2262 buf->hdr.src_parent_teid = node->info.parent_teid; 2263 buf->hdr.dest_parent_teid = parent->info.node_teid; 2264 buf->teid[0] = node->info.node_teid; 2265 buf->hdr.num_elems = cpu_to_le16(1); 2266 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2267 &grps_movd, NULL); 2268 if (status && grps_movd != 1) { 2269 status = -EIO; 2270 goto move_err_exit; 2271 } 2272 2273 /* update the SW DB */ 2274 ice_sched_update_parent(parent, node); 2275 } 2276 2277 move_err_exit: 2278 kfree(buf); 2279 return status; 2280 } 2281 2282 /** 2283 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2284 * @pi: port information structure 2285 * @vsi_handle: software VSI handle 2286 * @agg_id: aggregator ID 2287 * @tc: TC number 2288 * 2289 * This function moves a VSI to an aggregator node or its subtree. 2290 * Intermediate nodes may be created if required. 2291 */ 2292 static int 2293 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2294 u8 tc) 2295 { 2296 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2297 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2298 u32 first_node_teid, vsi_teid; 2299 u16 num_nodes_added; 2300 u8 aggl, vsil, i; 2301 int status; 2302 2303 tc_node = ice_sched_get_tc_node(pi, tc); 2304 if (!tc_node) 2305 return -EIO; 2306 2307 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2308 if (!agg_node) 2309 return -ENOENT; 2310 2311 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2312 if (!vsi_node) 2313 return -ENOENT; 2314 2315 /* Is this VSI already part of given aggregator? */ 2316 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2317 return 0; 2318 2319 aggl = ice_sched_get_agg_layer(pi->hw); 2320 vsil = ice_sched_get_vsi_layer(pi->hw); 2321 2322 /* set intermediate node count to 1 between aggregator and VSI layers */ 2323 for (i = aggl + 1; i < vsil; i++) 2324 num_nodes[i] = 1; 2325 2326 /* Check if the aggregator subtree has any free node to add the VSI */ 2327 for (i = 0; i < agg_node->num_children; i++) { 2328 parent = ice_sched_get_free_vsi_parent(pi->hw, 2329 agg_node->children[i], 2330 num_nodes); 2331 if (parent) 2332 goto move_nodes; 2333 } 2334 2335 /* add new nodes */ 2336 parent = agg_node; 2337 for (i = aggl + 1; i < vsil; i++) { 2338 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2339 num_nodes[i], 2340 &first_node_teid, 2341 &num_nodes_added); 2342 if (status || num_nodes[i] != num_nodes_added) 2343 return -EIO; 2344 2345 /* The newly added node can be a new parent for the next 2346 * layer nodes 2347 */ 2348 if (num_nodes_added) 2349 parent = ice_sched_find_node_by_teid(tc_node, 2350 first_node_teid); 2351 else 2352 parent = parent->children[0]; 2353 2354 if (!parent) 2355 return -EIO; 2356 } 2357 2358 move_nodes: 2359 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2360 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2361 } 2362 2363 /** 2364 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2365 * @pi: port information structure 2366 * @agg_info: aggregator info 2367 * @tc: traffic class number 2368 * @rm_vsi_info: true or false 2369 * 2370 * This function move all the VSI(s) to the default aggregator and delete 2371 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2372 * caller holds the scheduler lock. 2373 */ 2374 static int 2375 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2376 struct ice_sched_agg_info *agg_info, u8 tc, 2377 bool rm_vsi_info) 2378 { 2379 struct ice_sched_agg_vsi_info *agg_vsi_info; 2380 struct ice_sched_agg_vsi_info *tmp; 2381 int status = 0; 2382 2383 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2384 list_entry) { 2385 u16 vsi_handle = agg_vsi_info->vsi_handle; 2386 2387 /* Move VSI to default aggregator */ 2388 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2389 continue; 2390 2391 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2392 ICE_DFLT_AGG_ID, tc); 2393 if (status) 2394 break; 2395 2396 clear_bit(tc, agg_vsi_info->tc_bitmap); 2397 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2398 list_del(&agg_vsi_info->list_entry); 2399 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2400 } 2401 } 2402 2403 return status; 2404 } 2405 2406 /** 2407 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2408 * @pi: port information structure 2409 * @node: node pointer 2410 * 2411 * This function checks whether the aggregator is attached with any VSI or not. 2412 */ 2413 static bool 2414 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2415 { 2416 u8 vsil, i; 2417 2418 vsil = ice_sched_get_vsi_layer(pi->hw); 2419 if (node->tx_sched_layer < vsil - 1) { 2420 for (i = 0; i < node->num_children; i++) 2421 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2422 return true; 2423 return false; 2424 } else { 2425 return node->num_children ? true : false; 2426 } 2427 } 2428 2429 /** 2430 * ice_sched_rm_agg_cfg - remove the aggregator node 2431 * @pi: port information structure 2432 * @agg_id: aggregator ID 2433 * @tc: TC number 2434 * 2435 * This function removes the aggregator node and intermediate nodes if any 2436 * from the given TC 2437 */ 2438 static int 2439 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2440 { 2441 struct ice_sched_node *tc_node, *agg_node; 2442 struct ice_hw *hw = pi->hw; 2443 2444 tc_node = ice_sched_get_tc_node(pi, tc); 2445 if (!tc_node) 2446 return -EIO; 2447 2448 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2449 if (!agg_node) 2450 return -ENOENT; 2451 2452 /* Can't remove the aggregator node if it has children */ 2453 if (ice_sched_is_agg_inuse(pi, agg_node)) 2454 return -EBUSY; 2455 2456 /* need to remove the whole subtree if aggregator node is the 2457 * only child. 2458 */ 2459 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2460 struct ice_sched_node *parent = agg_node->parent; 2461 2462 if (!parent) 2463 return -EIO; 2464 2465 if (parent->num_children > 1) 2466 break; 2467 2468 agg_node = parent; 2469 } 2470 2471 ice_free_sched_node(pi, agg_node); 2472 return 0; 2473 } 2474 2475 /** 2476 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2477 * @pi: port information structure 2478 * @agg_info: aggregator ID 2479 * @tc: TC number 2480 * @rm_vsi_info: bool value true or false 2481 * 2482 * This function removes aggregator reference to VSI of given TC. It removes 2483 * the aggregator configuration completely for requested TC. The caller needs 2484 * to hold the scheduler lock. 2485 */ 2486 static int 2487 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2488 u8 tc, bool rm_vsi_info) 2489 { 2490 int status = 0; 2491 2492 /* If nothing to remove - return success */ 2493 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2494 goto exit_rm_agg_cfg_tc; 2495 2496 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2497 if (status) 2498 goto exit_rm_agg_cfg_tc; 2499 2500 /* Delete aggregator node(s) */ 2501 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2502 if (status) 2503 goto exit_rm_agg_cfg_tc; 2504 2505 clear_bit(tc, agg_info->tc_bitmap); 2506 exit_rm_agg_cfg_tc: 2507 return status; 2508 } 2509 2510 /** 2511 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2512 * @pi: port information structure 2513 * @agg_id: aggregator ID 2514 * @tc_bitmap: 8 bits TC bitmap 2515 * 2516 * Save aggregator TC bitmap. This function needs to be called with scheduler 2517 * lock held. 2518 */ 2519 static int 2520 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2521 unsigned long *tc_bitmap) 2522 { 2523 struct ice_sched_agg_info *agg_info; 2524 2525 agg_info = ice_get_agg_info(pi->hw, agg_id); 2526 if (!agg_info) 2527 return -EINVAL; 2528 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2529 ICE_MAX_TRAFFIC_CLASS); 2530 return 0; 2531 } 2532 2533 /** 2534 * ice_sched_add_agg_cfg - create an aggregator node 2535 * @pi: port information structure 2536 * @agg_id: aggregator ID 2537 * @tc: TC number 2538 * 2539 * This function creates an aggregator node and intermediate nodes if required 2540 * for the given TC 2541 */ 2542 static int 2543 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2544 { 2545 struct ice_sched_node *parent, *agg_node, *tc_node; 2546 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2547 struct ice_hw *hw = pi->hw; 2548 u32 first_node_teid; 2549 u16 num_nodes_added; 2550 int status = 0; 2551 u8 i, aggl; 2552 2553 tc_node = ice_sched_get_tc_node(pi, tc); 2554 if (!tc_node) 2555 return -EIO; 2556 2557 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2558 /* Does Agg node already exist ? */ 2559 if (agg_node) 2560 return status; 2561 2562 aggl = ice_sched_get_agg_layer(hw); 2563 2564 /* need one node in Agg layer */ 2565 num_nodes[aggl] = 1; 2566 2567 /* Check whether the intermediate nodes have space to add the 2568 * new aggregator. If they are full, then SW needs to allocate a new 2569 * intermediate node on those layers 2570 */ 2571 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2572 parent = ice_sched_get_first_node(pi, tc_node, i); 2573 2574 /* scan all the siblings */ 2575 while (parent) { 2576 if (parent->num_children < hw->max_children[i]) 2577 break; 2578 parent = parent->sibling; 2579 } 2580 2581 /* all the nodes are full, reserve one for this layer */ 2582 if (!parent) 2583 num_nodes[i]++; 2584 } 2585 2586 /* add the aggregator node */ 2587 parent = tc_node; 2588 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2589 if (!parent) 2590 return -EIO; 2591 2592 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2593 num_nodes[i], 2594 &first_node_teid, 2595 &num_nodes_added); 2596 if (status || num_nodes[i] != num_nodes_added) 2597 return -EIO; 2598 2599 /* The newly added node can be a new parent for the next 2600 * layer nodes 2601 */ 2602 if (num_nodes_added) { 2603 parent = ice_sched_find_node_by_teid(tc_node, 2604 first_node_teid); 2605 /* register aggregator ID with the aggregator node */ 2606 if (parent && i == aggl) 2607 parent->agg_id = agg_id; 2608 } else { 2609 parent = parent->children[0]; 2610 } 2611 } 2612 2613 return 0; 2614 } 2615 2616 /** 2617 * ice_sched_cfg_agg - configure aggregator node 2618 * @pi: port information structure 2619 * @agg_id: aggregator ID 2620 * @agg_type: aggregator type queue, VSI, or aggregator group 2621 * @tc_bitmap: bits TC bitmap 2622 * 2623 * It registers a unique aggregator node into scheduler services. It 2624 * allows a user to register with a unique ID to track it's resources. 2625 * The aggregator type determines if this is a queue group, VSI group 2626 * or aggregator group. It then creates the aggregator node(s) for requested 2627 * TC(s) or removes an existing aggregator node including its configuration 2628 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2629 * resources and remove aggregator ID. 2630 * This function needs to be called with scheduler lock held. 2631 */ 2632 static int 2633 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2634 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2635 { 2636 struct ice_sched_agg_info *agg_info; 2637 struct ice_hw *hw = pi->hw; 2638 int status = 0; 2639 u8 tc; 2640 2641 agg_info = ice_get_agg_info(hw, agg_id); 2642 if (!agg_info) { 2643 /* Create new entry for new aggregator ID */ 2644 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2645 GFP_KERNEL); 2646 if (!agg_info) 2647 return -ENOMEM; 2648 2649 agg_info->agg_id = agg_id; 2650 agg_info->agg_type = agg_type; 2651 agg_info->tc_bitmap[0] = 0; 2652 2653 /* Initialize the aggregator VSI list head */ 2654 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2655 2656 /* Add new entry in aggregator list */ 2657 list_add(&agg_info->list_entry, &hw->agg_list); 2658 } 2659 /* Create aggregator node(s) for requested TC(s) */ 2660 ice_for_each_traffic_class(tc) { 2661 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2662 /* Delete aggregator cfg TC if it exists previously */ 2663 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2664 if (status) 2665 break; 2666 continue; 2667 } 2668 2669 /* Check if aggregator node for TC already exists */ 2670 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2671 continue; 2672 2673 /* Create new aggregator node for TC */ 2674 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2675 if (status) 2676 break; 2677 2678 /* Save aggregator node's TC information */ 2679 set_bit(tc, agg_info->tc_bitmap); 2680 } 2681 2682 return status; 2683 } 2684 2685 /** 2686 * ice_cfg_agg - config aggregator node 2687 * @pi: port information structure 2688 * @agg_id: aggregator ID 2689 * @agg_type: aggregator type queue, VSI, or aggregator group 2690 * @tc_bitmap: bits TC bitmap 2691 * 2692 * This function configures aggregator node(s). 2693 */ 2694 int 2695 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2696 u8 tc_bitmap) 2697 { 2698 unsigned long bitmap = tc_bitmap; 2699 int status; 2700 2701 mutex_lock(&pi->sched_lock); 2702 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2703 if (!status) 2704 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2705 mutex_unlock(&pi->sched_lock); 2706 return status; 2707 } 2708 2709 /** 2710 * ice_get_agg_vsi_info - get the aggregator ID 2711 * @agg_info: aggregator info 2712 * @vsi_handle: software VSI handle 2713 * 2714 * The function returns aggregator VSI info based on VSI handle. This function 2715 * needs to be called with scheduler lock held. 2716 */ 2717 static struct ice_sched_agg_vsi_info * 2718 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2719 { 2720 struct ice_sched_agg_vsi_info *agg_vsi_info; 2721 2722 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2723 if (agg_vsi_info->vsi_handle == vsi_handle) 2724 return agg_vsi_info; 2725 2726 return NULL; 2727 } 2728 2729 /** 2730 * ice_get_vsi_agg_info - get the aggregator info of VSI 2731 * @hw: pointer to the hardware structure 2732 * @vsi_handle: Sw VSI handle 2733 * 2734 * The function returns aggregator info of VSI represented via vsi_handle. The 2735 * VSI has in this case a different aggregator than the default one. This 2736 * function needs to be called with scheduler lock held. 2737 */ 2738 static struct ice_sched_agg_info * 2739 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2740 { 2741 struct ice_sched_agg_info *agg_info; 2742 2743 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2744 struct ice_sched_agg_vsi_info *agg_vsi_info; 2745 2746 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2747 if (agg_vsi_info) 2748 return agg_info; 2749 } 2750 return NULL; 2751 } 2752 2753 /** 2754 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2755 * @pi: port information structure 2756 * @agg_id: aggregator ID 2757 * @vsi_handle: software VSI handle 2758 * @tc_bitmap: TC bitmap of enabled TC(s) 2759 * 2760 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2761 * lock held. 2762 */ 2763 static int 2764 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2765 unsigned long *tc_bitmap) 2766 { 2767 struct ice_sched_agg_vsi_info *agg_vsi_info; 2768 struct ice_sched_agg_info *agg_info; 2769 2770 agg_info = ice_get_agg_info(pi->hw, agg_id); 2771 if (!agg_info) 2772 return -EINVAL; 2773 /* check if entry already exist */ 2774 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2775 if (!agg_vsi_info) 2776 return -EINVAL; 2777 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2778 ICE_MAX_TRAFFIC_CLASS); 2779 return 0; 2780 } 2781 2782 /** 2783 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2784 * @pi: port information structure 2785 * @agg_id: aggregator ID 2786 * @vsi_handle: software VSI handle 2787 * @tc_bitmap: TC bitmap of enabled TC(s) 2788 * 2789 * This function moves VSI to a new or default aggregator node. If VSI is 2790 * already associated to the aggregator node then no operation is performed on 2791 * the tree. This function needs to be called with scheduler lock held. 2792 */ 2793 static int 2794 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2795 u16 vsi_handle, unsigned long *tc_bitmap) 2796 { 2797 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL; 2798 struct ice_sched_agg_info *agg_info, *old_agg_info; 2799 struct ice_hw *hw = pi->hw; 2800 int status = 0; 2801 u8 tc; 2802 2803 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2804 return -EINVAL; 2805 agg_info = ice_get_agg_info(hw, agg_id); 2806 if (!agg_info) 2807 return -EINVAL; 2808 /* If the VSI is already part of another aggregator then update 2809 * its VSI info list 2810 */ 2811 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2812 if (old_agg_info && old_agg_info != agg_info) { 2813 struct ice_sched_agg_vsi_info *vtmp; 2814 2815 list_for_each_entry_safe(iter, vtmp, 2816 &old_agg_info->agg_vsi_list, 2817 list_entry) 2818 if (iter->vsi_handle == vsi_handle) { 2819 old_agg_vsi_info = iter; 2820 break; 2821 } 2822 } 2823 2824 /* check if entry already exist */ 2825 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2826 if (!agg_vsi_info) { 2827 /* Create new entry for VSI under aggregator list */ 2828 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2829 sizeof(*agg_vsi_info), GFP_KERNEL); 2830 if (!agg_vsi_info) 2831 return -EINVAL; 2832 2833 /* add VSI ID into the aggregator list */ 2834 agg_vsi_info->vsi_handle = vsi_handle; 2835 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2836 } 2837 /* Move VSI node to new aggregator node for requested TC(s) */ 2838 ice_for_each_traffic_class(tc) { 2839 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2840 continue; 2841 2842 /* Move VSI to new aggregator */ 2843 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2844 if (status) 2845 break; 2846 2847 set_bit(tc, agg_vsi_info->tc_bitmap); 2848 if (old_agg_vsi_info) 2849 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2850 } 2851 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2852 list_del(&old_agg_vsi_info->list_entry); 2853 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2854 } 2855 return status; 2856 } 2857 2858 /** 2859 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2860 * @pi: port information structure 2861 * 2862 * This function removes unused rate limit profiles from the HW and 2863 * SW DB. The caller needs to hold scheduler lock. 2864 */ 2865 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2866 { 2867 u16 ln; 2868 2869 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2870 struct ice_aqc_rl_profile_info *rl_prof_elem; 2871 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2872 2873 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2874 &pi->rl_prof_list[ln], list_entry) { 2875 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2876 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2877 } 2878 } 2879 } 2880 2881 /** 2882 * ice_sched_update_elem - update element 2883 * @hw: pointer to the HW struct 2884 * @node: pointer to node 2885 * @info: node info to update 2886 * 2887 * Update the HW DB, and local SW DB of node. Update the scheduling 2888 * parameters of node from argument info data buffer (Info->data buf) and 2889 * returns success or error on config sched element failure. The caller 2890 * needs to hold scheduler lock. 2891 */ 2892 static int 2893 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2894 struct ice_aqc_txsched_elem_data *info) 2895 { 2896 struct ice_aqc_txsched_elem_data buf; 2897 u16 elem_cfgd = 0; 2898 u16 num_elems = 1; 2899 int status; 2900 2901 buf = *info; 2902 /* Parent TEID is reserved field in this aq call */ 2903 buf.parent_teid = 0; 2904 /* Element type is reserved field in this aq call */ 2905 buf.data.elem_type = 0; 2906 /* Flags is reserved field in this aq call */ 2907 buf.data.flags = 0; 2908 2909 /* Update HW DB */ 2910 /* Configure element node */ 2911 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2912 &elem_cfgd, NULL); 2913 if (status || elem_cfgd != num_elems) { 2914 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2915 return -EIO; 2916 } 2917 2918 /* Config success case */ 2919 /* Now update local SW DB */ 2920 /* Only copy the data portion of info buffer */ 2921 node->info.data = info->data; 2922 return status; 2923 } 2924 2925 /** 2926 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2927 * @hw: pointer to the HW struct 2928 * @node: sched node to configure 2929 * @rl_type: rate limit type CIR, EIR, or shared 2930 * @bw_alloc: BW weight/allocation 2931 * 2932 * This function configures node element's BW allocation. 2933 */ 2934 static int 2935 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2936 enum ice_rl_type rl_type, u16 bw_alloc) 2937 { 2938 struct ice_aqc_txsched_elem_data buf; 2939 struct ice_aqc_txsched_elem *data; 2940 2941 buf = node->info; 2942 data = &buf.data; 2943 if (rl_type == ICE_MIN_BW) { 2944 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2945 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2946 } else if (rl_type == ICE_MAX_BW) { 2947 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2948 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2949 } else { 2950 return -EINVAL; 2951 } 2952 2953 /* Configure element */ 2954 return ice_sched_update_elem(hw, node, &buf); 2955 } 2956 2957 /** 2958 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2959 * @pi: port information structure 2960 * @agg_id: aggregator ID 2961 * @vsi_handle: software VSI handle 2962 * @tc_bitmap: TC bitmap of enabled TC(s) 2963 * 2964 * Move or associate VSI to a new or default aggregator node. 2965 */ 2966 int 2967 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2968 u8 tc_bitmap) 2969 { 2970 unsigned long bitmap = tc_bitmap; 2971 int status; 2972 2973 mutex_lock(&pi->sched_lock); 2974 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2975 (unsigned long *)&bitmap); 2976 if (!status) 2977 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2978 (unsigned long *)&bitmap); 2979 mutex_unlock(&pi->sched_lock); 2980 return status; 2981 } 2982 2983 /** 2984 * ice_set_clear_cir_bw - set or clear CIR BW 2985 * @bw_t_info: bandwidth type information structure 2986 * @bw: bandwidth in Kbps - Kilo bits per sec 2987 * 2988 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2989 */ 2990 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2991 { 2992 if (bw == ICE_SCHED_DFLT_BW) { 2993 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2994 bw_t_info->cir_bw.bw = 0; 2995 } else { 2996 /* Save type of BW information */ 2997 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2998 bw_t_info->cir_bw.bw = bw; 2999 } 3000 } 3001 3002 /** 3003 * ice_set_clear_eir_bw - set or clear EIR BW 3004 * @bw_t_info: bandwidth type information structure 3005 * @bw: bandwidth in Kbps - Kilo bits per sec 3006 * 3007 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 3008 */ 3009 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3010 { 3011 if (bw == ICE_SCHED_DFLT_BW) { 3012 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3013 bw_t_info->eir_bw.bw = 0; 3014 } else { 3015 /* EIR BW and Shared BW profiles are mutually exclusive and 3016 * hence only one of them may be set for any given element. 3017 * First clear earlier saved shared BW information. 3018 */ 3019 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3020 bw_t_info->shared_bw = 0; 3021 /* save EIR BW information */ 3022 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3023 bw_t_info->eir_bw.bw = bw; 3024 } 3025 } 3026 3027 /** 3028 * ice_set_clear_shared_bw - set or clear shared BW 3029 * @bw_t_info: bandwidth type information structure 3030 * @bw: bandwidth in Kbps - Kilo bits per sec 3031 * 3032 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 3033 */ 3034 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3035 { 3036 if (bw == ICE_SCHED_DFLT_BW) { 3037 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3038 bw_t_info->shared_bw = 0; 3039 } else { 3040 /* EIR BW and Shared BW profiles are mutually exclusive and 3041 * hence only one of them may be set for any given element. 3042 * First clear earlier saved EIR BW information. 3043 */ 3044 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3045 bw_t_info->eir_bw.bw = 0; 3046 /* save shared BW information */ 3047 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3048 bw_t_info->shared_bw = bw; 3049 } 3050 } 3051 3052 /** 3053 * ice_sched_save_vsi_bw - save VSI node's BW information 3054 * @pi: port information structure 3055 * @vsi_handle: sw VSI handle 3056 * @tc: traffic class 3057 * @rl_type: rate limit type min, max, or shared 3058 * @bw: bandwidth in Kbps - Kilo bits per sec 3059 * 3060 * Save BW information of VSI type node for post replay use. 3061 */ 3062 static int 3063 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3064 enum ice_rl_type rl_type, u32 bw) 3065 { 3066 struct ice_vsi_ctx *vsi_ctx; 3067 3068 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3069 return -EINVAL; 3070 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3071 if (!vsi_ctx) 3072 return -EINVAL; 3073 switch (rl_type) { 3074 case ICE_MIN_BW: 3075 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3076 break; 3077 case ICE_MAX_BW: 3078 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3079 break; 3080 case ICE_SHARED_BW: 3081 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3082 break; 3083 default: 3084 return -EINVAL; 3085 } 3086 return 0; 3087 } 3088 3089 /** 3090 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3091 * @hw: pointer to the HW struct 3092 * @bw: bandwidth in Kbps 3093 * 3094 * This function calculates the wakeup parameter of RL profile. 3095 */ 3096 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3097 { 3098 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3099 s32 wakeup_f_int; 3100 u16 wakeup = 0; 3101 3102 /* Get the wakeup integer value */ 3103 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3104 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3105 if (wakeup_int > 63) { 3106 wakeup = (u16)((1 << 15) | wakeup_int); 3107 } else { 3108 /* Calculate fraction value up to 4 decimals 3109 * Convert Integer value to a constant multiplier 3110 */ 3111 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3112 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3113 hw->psm_clk_freq, bytes_per_sec); 3114 3115 /* Get Fraction value */ 3116 wakeup_f = wakeup_a - wakeup_b; 3117 3118 /* Round up the Fractional value via Ceil(Fractional value) */ 3119 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3120 wakeup_f += 1; 3121 3122 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3123 ICE_RL_PROF_MULTIPLIER); 3124 wakeup |= (u16)(wakeup_int << 9); 3125 wakeup |= (u16)(0x1ff & wakeup_f_int); 3126 } 3127 3128 return wakeup; 3129 } 3130 3131 /** 3132 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3133 * @hw: pointer to the HW struct 3134 * @bw: bandwidth in Kbps 3135 * @profile: profile parameters to return 3136 * 3137 * This function converts the BW to profile structure format. 3138 */ 3139 static int 3140 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3141 struct ice_aqc_rl_profile_elem *profile) 3142 { 3143 s64 bytes_per_sec, ts_rate, mv_tmp; 3144 int status = -EINVAL; 3145 bool found = false; 3146 s32 encode = 0; 3147 s64 mv = 0; 3148 s32 i; 3149 3150 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3151 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3152 return status; 3153 3154 /* Bytes per second from Kbps */ 3155 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3156 3157 /* encode is 6 bits but really useful are 5 bits */ 3158 for (i = 0; i < 64; i++) { 3159 u64 pow_result = BIT_ULL(i); 3160 3161 ts_rate = div64_long((s64)hw->psm_clk_freq, 3162 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3163 if (ts_rate <= 0) 3164 continue; 3165 3166 /* Multiplier value */ 3167 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3168 ts_rate); 3169 3170 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3171 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3172 3173 /* First multiplier value greater than the given 3174 * accuracy bytes 3175 */ 3176 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3177 encode = i; 3178 found = true; 3179 break; 3180 } 3181 } 3182 if (found) { 3183 u16 wm; 3184 3185 wm = ice_sched_calc_wakeup(hw, bw); 3186 profile->rl_multiply = cpu_to_le16(mv); 3187 profile->wake_up_calc = cpu_to_le16(wm); 3188 profile->rl_encode = cpu_to_le16(encode); 3189 status = 0; 3190 } else { 3191 status = -ENOENT; 3192 } 3193 3194 return status; 3195 } 3196 3197 /** 3198 * ice_sched_add_rl_profile - add RL profile 3199 * @pi: port information structure 3200 * @rl_type: type of rate limit BW - min, max, or shared 3201 * @bw: bandwidth in Kbps - Kilo bits per sec 3202 * @layer_num: specifies in which layer to create profile 3203 * 3204 * This function first checks the existing list for corresponding BW 3205 * parameter. If it exists, it returns the associated profile otherwise 3206 * it creates a new rate limit profile for requested BW, and adds it to 3207 * the HW DB and local list. It returns the new profile or null on error. 3208 * The caller needs to hold the scheduler lock. 3209 */ 3210 static struct ice_aqc_rl_profile_info * 3211 ice_sched_add_rl_profile(struct ice_port_info *pi, 3212 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3213 { 3214 struct ice_aqc_rl_profile_info *rl_prof_elem; 3215 u16 profiles_added = 0, num_profiles = 1; 3216 struct ice_aqc_rl_profile_elem *buf; 3217 struct ice_hw *hw; 3218 u8 profile_type; 3219 int status; 3220 3221 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3222 return NULL; 3223 switch (rl_type) { 3224 case ICE_MIN_BW: 3225 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3226 break; 3227 case ICE_MAX_BW: 3228 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3229 break; 3230 case ICE_SHARED_BW: 3231 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3232 break; 3233 default: 3234 return NULL; 3235 } 3236 3237 if (!pi) 3238 return NULL; 3239 hw = pi->hw; 3240 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3241 list_entry) 3242 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3243 profile_type && rl_prof_elem->bw == bw) 3244 /* Return existing profile ID info */ 3245 return rl_prof_elem; 3246 3247 /* Create new profile ID */ 3248 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3249 GFP_KERNEL); 3250 3251 if (!rl_prof_elem) 3252 return NULL; 3253 3254 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3255 if (status) 3256 goto exit_add_rl_prof; 3257 3258 rl_prof_elem->bw = bw; 3259 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3260 rl_prof_elem->profile.level = layer_num + 1; 3261 rl_prof_elem->profile.flags = profile_type; 3262 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3263 3264 /* Create new entry in HW DB */ 3265 buf = &rl_prof_elem->profile; 3266 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3267 &profiles_added, NULL); 3268 if (status || profiles_added != num_profiles) 3269 goto exit_add_rl_prof; 3270 3271 /* Good entry - add in the list */ 3272 rl_prof_elem->prof_id_ref = 0; 3273 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3274 return rl_prof_elem; 3275 3276 exit_add_rl_prof: 3277 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3278 return NULL; 3279 } 3280 3281 /** 3282 * ice_sched_cfg_node_bw_lmt - configure node sched params 3283 * @hw: pointer to the HW struct 3284 * @node: sched node to configure 3285 * @rl_type: rate limit type CIR, EIR, or shared 3286 * @rl_prof_id: rate limit profile ID 3287 * 3288 * This function configures node element's BW limit. 3289 */ 3290 static int 3291 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3292 enum ice_rl_type rl_type, u16 rl_prof_id) 3293 { 3294 struct ice_aqc_txsched_elem_data buf; 3295 struct ice_aqc_txsched_elem *data; 3296 3297 buf = node->info; 3298 data = &buf.data; 3299 switch (rl_type) { 3300 case ICE_MIN_BW: 3301 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3302 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3303 break; 3304 case ICE_MAX_BW: 3305 /* EIR BW and Shared BW profiles are mutually exclusive and 3306 * hence only one of them may be set for any given element 3307 */ 3308 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3309 return -EIO; 3310 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3311 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3312 break; 3313 case ICE_SHARED_BW: 3314 /* Check for removing shared BW */ 3315 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3316 /* remove shared profile */ 3317 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3318 data->srl_id = 0; /* clear SRL field */ 3319 3320 /* enable back EIR to default profile */ 3321 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3322 data->eir_bw.bw_profile_idx = 3323 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3324 break; 3325 } 3326 /* EIR BW and Shared BW profiles are mutually exclusive and 3327 * hence only one of them may be set for any given element 3328 */ 3329 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3330 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3331 ICE_SCHED_DFLT_RL_PROF_ID)) 3332 return -EIO; 3333 /* EIR BW is set to default, disable it */ 3334 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3335 /* Okay to enable shared BW now */ 3336 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3337 data->srl_id = cpu_to_le16(rl_prof_id); 3338 break; 3339 default: 3340 /* Unknown rate limit type */ 3341 return -EINVAL; 3342 } 3343 3344 /* Configure element */ 3345 return ice_sched_update_elem(hw, node, &buf); 3346 } 3347 3348 /** 3349 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3350 * @node: sched node 3351 * @rl_type: rate limit type 3352 * 3353 * If existing profile matches, it returns the corresponding rate 3354 * limit profile ID, otherwise it returns an invalid ID as error. 3355 */ 3356 static u16 3357 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3358 enum ice_rl_type rl_type) 3359 { 3360 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3361 struct ice_aqc_txsched_elem *data; 3362 3363 data = &node->info.data; 3364 switch (rl_type) { 3365 case ICE_MIN_BW: 3366 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3367 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3368 break; 3369 case ICE_MAX_BW: 3370 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3371 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3372 break; 3373 case ICE_SHARED_BW: 3374 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3375 rl_prof_id = le16_to_cpu(data->srl_id); 3376 break; 3377 default: 3378 break; 3379 } 3380 3381 return rl_prof_id; 3382 } 3383 3384 /** 3385 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3386 * @pi: port information structure 3387 * @rl_type: type of rate limit BW - min, max, or shared 3388 * @layer_index: layer index 3389 * 3390 * This function returns requested profile creation layer. 3391 */ 3392 static u8 3393 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3394 u8 layer_index) 3395 { 3396 struct ice_hw *hw = pi->hw; 3397 3398 if (layer_index >= hw->num_tx_sched_layers) 3399 return ICE_SCHED_INVAL_LAYER_NUM; 3400 switch (rl_type) { 3401 case ICE_MIN_BW: 3402 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3403 return layer_index; 3404 break; 3405 case ICE_MAX_BW: 3406 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3407 return layer_index; 3408 break; 3409 case ICE_SHARED_BW: 3410 /* if current layer doesn't support SRL profile creation 3411 * then try a layer up or down. 3412 */ 3413 if (hw->layer_info[layer_index].max_srl_profiles) 3414 return layer_index; 3415 else if (layer_index < hw->num_tx_sched_layers - 1 && 3416 hw->layer_info[layer_index + 1].max_srl_profiles) 3417 return layer_index + 1; 3418 else if (layer_index > 0 && 3419 hw->layer_info[layer_index - 1].max_srl_profiles) 3420 return layer_index - 1; 3421 break; 3422 default: 3423 break; 3424 } 3425 return ICE_SCHED_INVAL_LAYER_NUM; 3426 } 3427 3428 /** 3429 * ice_sched_get_srl_node - get shared rate limit node 3430 * @node: tree node 3431 * @srl_layer: shared rate limit layer 3432 * 3433 * This function returns SRL node to be used for shared rate limit purpose. 3434 * The caller needs to hold scheduler lock. 3435 */ 3436 static struct ice_sched_node * 3437 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3438 { 3439 if (srl_layer > node->tx_sched_layer) 3440 return node->children[0]; 3441 else if (srl_layer < node->tx_sched_layer) 3442 /* Node can't be created without a parent. It will always 3443 * have a valid parent except root node. 3444 */ 3445 return node->parent; 3446 else 3447 return node; 3448 } 3449 3450 /** 3451 * ice_sched_rm_rl_profile - remove RL profile ID 3452 * @pi: port information structure 3453 * @layer_num: layer number where profiles are saved 3454 * @profile_type: profile type like EIR, CIR, or SRL 3455 * @profile_id: profile ID to remove 3456 * 3457 * This function removes rate limit profile from layer 'layer_num' of type 3458 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3459 * scheduler lock. 3460 */ 3461 static int 3462 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3463 u16 profile_id) 3464 { 3465 struct ice_aqc_rl_profile_info *rl_prof_elem; 3466 int status = 0; 3467 3468 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3469 return -EINVAL; 3470 /* Check the existing list for RL profile */ 3471 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3472 list_entry) 3473 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3474 profile_type && 3475 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3476 profile_id) { 3477 if (rl_prof_elem->prof_id_ref) 3478 rl_prof_elem->prof_id_ref--; 3479 3480 /* Remove old profile ID from database */ 3481 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3482 if (status && status != -EBUSY) 3483 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3484 break; 3485 } 3486 if (status == -EBUSY) 3487 status = 0; 3488 return status; 3489 } 3490 3491 /** 3492 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3493 * @pi: port information structure 3494 * @node: pointer to node structure 3495 * @rl_type: rate limit type min, max, or shared 3496 * @layer_num: layer number where RL profiles are saved 3497 * 3498 * This function configures node element's BW rate limit profile ID of 3499 * type CIR, EIR, or SRL to default. This function needs to be called 3500 * with the scheduler lock held. 3501 */ 3502 static int 3503 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3504 struct ice_sched_node *node, 3505 enum ice_rl_type rl_type, u8 layer_num) 3506 { 3507 struct ice_hw *hw; 3508 u8 profile_type; 3509 u16 rl_prof_id; 3510 u16 old_id; 3511 int status; 3512 3513 hw = pi->hw; 3514 switch (rl_type) { 3515 case ICE_MIN_BW: 3516 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3517 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3518 break; 3519 case ICE_MAX_BW: 3520 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3521 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3522 break; 3523 case ICE_SHARED_BW: 3524 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3525 /* No SRL is configured for default case */ 3526 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3527 break; 3528 default: 3529 return -EINVAL; 3530 } 3531 /* Save existing RL prof ID for later clean up */ 3532 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3533 /* Configure BW scheduling parameters */ 3534 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3535 if (status) 3536 return status; 3537 3538 /* Remove stale RL profile ID */ 3539 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3540 old_id == ICE_SCHED_INVAL_PROF_ID) 3541 return 0; 3542 3543 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3544 } 3545 3546 /** 3547 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3548 * @pi: port information structure 3549 * @node: pointer to node structure 3550 * @layer_num: layer number where rate limit profiles are saved 3551 * @rl_type: rate limit type min, max, or shared 3552 * @bw: bandwidth value 3553 * 3554 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3555 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3556 * them may be set for any given element. This function needs to be called 3557 * with the scheduler lock held. 3558 */ 3559 static int 3560 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3561 struct ice_sched_node *node, 3562 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3563 { 3564 if (rl_type == ICE_SHARED_BW) { 3565 /* SRL node passed in this case, it may be different node */ 3566 if (bw == ICE_SCHED_DFLT_BW) 3567 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3568 * enables EIR to default. EIR is not set in this 3569 * case, so no additional action is required. 3570 */ 3571 return 0; 3572 3573 /* SRL being configured, set EIR to default here. 3574 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3575 * configures SRL 3576 */ 3577 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3578 layer_num); 3579 } else if (rl_type == ICE_MAX_BW && 3580 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3581 /* Remove Shared profile. Set default shared BW call 3582 * removes shared profile for a node. 3583 */ 3584 return ice_sched_set_node_bw_dflt(pi, node, 3585 ICE_SHARED_BW, 3586 layer_num); 3587 } 3588 return 0; 3589 } 3590 3591 /** 3592 * ice_sched_set_node_bw - set node's bandwidth 3593 * @pi: port information structure 3594 * @node: tree node 3595 * @rl_type: rate limit type min, max, or shared 3596 * @bw: bandwidth in Kbps - Kilo bits per sec 3597 * @layer_num: layer number 3598 * 3599 * This function adds new profile corresponding to requested BW, configures 3600 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3601 * ID from local database. The caller needs to hold scheduler lock. 3602 */ 3603 int 3604 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3605 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3606 { 3607 struct ice_aqc_rl_profile_info *rl_prof_info; 3608 struct ice_hw *hw = pi->hw; 3609 u16 old_id, rl_prof_id; 3610 int status = -EINVAL; 3611 3612 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3613 if (!rl_prof_info) 3614 return status; 3615 3616 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3617 3618 /* Save existing RL prof ID for later clean up */ 3619 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3620 /* Configure BW scheduling parameters */ 3621 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3622 if (status) 3623 return status; 3624 3625 /* New changes has been applied */ 3626 /* Increment the profile ID reference count */ 3627 rl_prof_info->prof_id_ref++; 3628 3629 /* Check for old ID removal */ 3630 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3631 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3632 return 0; 3633 3634 return ice_sched_rm_rl_profile(pi, layer_num, 3635 rl_prof_info->profile.flags & 3636 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3637 } 3638 3639 /** 3640 * ice_sched_set_node_priority - set node's priority 3641 * @pi: port information structure 3642 * @node: tree node 3643 * @priority: number 0-7 representing priority among siblings 3644 * 3645 * This function sets priority of a node among it's siblings. 3646 */ 3647 int 3648 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, 3649 u16 priority) 3650 { 3651 struct ice_aqc_txsched_elem_data buf; 3652 struct ice_aqc_txsched_elem *data; 3653 3654 buf = node->info; 3655 data = &buf.data; 3656 3657 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3658 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); 3659 3660 return ice_sched_update_elem(pi->hw, node, &buf); 3661 } 3662 3663 /** 3664 * ice_sched_set_node_weight - set node's weight 3665 * @pi: port information structure 3666 * @node: tree node 3667 * @weight: number 1-200 representing weight for WFQ 3668 * 3669 * This function sets weight of the node for WFQ algorithm. 3670 */ 3671 int 3672 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) 3673 { 3674 struct ice_aqc_txsched_elem_data buf; 3675 struct ice_aqc_txsched_elem *data; 3676 3677 buf = node->info; 3678 data = &buf.data; 3679 3680 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | 3681 ICE_AQC_ELEM_VALID_GENERIC; 3682 data->cir_bw.bw_alloc = cpu_to_le16(weight); 3683 data->eir_bw.bw_alloc = cpu_to_le16(weight); 3684 3685 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); 3686 3687 return ice_sched_update_elem(pi->hw, node, &buf); 3688 } 3689 3690 /** 3691 * ice_sched_set_node_bw_lmt - set node's BW limit 3692 * @pi: port information structure 3693 * @node: tree node 3694 * @rl_type: rate limit type min, max, or shared 3695 * @bw: bandwidth in Kbps - Kilo bits per sec 3696 * 3697 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3698 * EIR, or SRL. The caller needs to hold scheduler lock. 3699 */ 3700 int 3701 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3702 enum ice_rl_type rl_type, u32 bw) 3703 { 3704 struct ice_sched_node *cfg_node = node; 3705 int status; 3706 3707 struct ice_hw *hw; 3708 u8 layer_num; 3709 3710 if (!pi) 3711 return -EINVAL; 3712 hw = pi->hw; 3713 /* Remove unused RL profile IDs from HW and SW DB */ 3714 ice_sched_rm_unused_rl_prof(pi); 3715 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3716 node->tx_sched_layer); 3717 if (layer_num >= hw->num_tx_sched_layers) 3718 return -EINVAL; 3719 3720 if (rl_type == ICE_SHARED_BW) { 3721 /* SRL node may be different */ 3722 cfg_node = ice_sched_get_srl_node(node, layer_num); 3723 if (!cfg_node) 3724 return -EIO; 3725 } 3726 /* EIR BW and Shared BW profiles are mutually exclusive and 3727 * hence only one of them may be set for any given element 3728 */ 3729 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3730 bw); 3731 if (status) 3732 return status; 3733 if (bw == ICE_SCHED_DFLT_BW) 3734 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3735 layer_num); 3736 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3737 } 3738 3739 /** 3740 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3741 * @pi: port information structure 3742 * @node: pointer to node structure 3743 * @rl_type: rate limit type min, max, or shared 3744 * 3745 * This function configures node element's BW rate limit profile ID of 3746 * type CIR, EIR, or SRL to default. This function needs to be called 3747 * with the scheduler lock held. 3748 */ 3749 static int 3750 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3751 struct ice_sched_node *node, 3752 enum ice_rl_type rl_type) 3753 { 3754 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3755 ICE_SCHED_DFLT_BW); 3756 } 3757 3758 /** 3759 * ice_sched_validate_srl_node - Check node for SRL applicability 3760 * @node: sched node to configure 3761 * @sel_layer: selected SRL layer 3762 * 3763 * This function checks if the SRL can be applied to a selected layer node on 3764 * behalf of the requested node (first argument). This function needs to be 3765 * called with scheduler lock held. 3766 */ 3767 static int 3768 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3769 { 3770 /* SRL profiles are not available on all layers. Check if the 3771 * SRL profile can be applied to a node above or below the 3772 * requested node. SRL configuration is possible only if the 3773 * selected layer's node has single child. 3774 */ 3775 if (sel_layer == node->tx_sched_layer || 3776 ((sel_layer == node->tx_sched_layer + 1) && 3777 node->num_children == 1) || 3778 ((sel_layer == node->tx_sched_layer - 1) && 3779 (node->parent && node->parent->num_children == 1))) 3780 return 0; 3781 3782 return -EIO; 3783 } 3784 3785 /** 3786 * ice_sched_save_q_bw - save queue node's BW information 3787 * @q_ctx: queue context structure 3788 * @rl_type: rate limit type min, max, or shared 3789 * @bw: bandwidth in Kbps - Kilo bits per sec 3790 * 3791 * Save BW information of queue type node for post replay use. 3792 */ 3793 static int 3794 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3795 { 3796 switch (rl_type) { 3797 case ICE_MIN_BW: 3798 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3799 break; 3800 case ICE_MAX_BW: 3801 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3802 break; 3803 case ICE_SHARED_BW: 3804 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3805 break; 3806 default: 3807 return -EINVAL; 3808 } 3809 return 0; 3810 } 3811 3812 /** 3813 * ice_sched_set_q_bw_lmt - sets queue BW limit 3814 * @pi: port information structure 3815 * @vsi_handle: sw VSI handle 3816 * @tc: traffic class 3817 * @q_handle: software queue handle 3818 * @rl_type: min, max, or shared 3819 * @bw: bandwidth in Kbps 3820 * 3821 * This function sets BW limit of queue scheduling node. 3822 */ 3823 static int 3824 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3825 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3826 { 3827 struct ice_sched_node *node; 3828 struct ice_q_ctx *q_ctx; 3829 int status = -EINVAL; 3830 3831 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3832 return -EINVAL; 3833 mutex_lock(&pi->sched_lock); 3834 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3835 if (!q_ctx) 3836 goto exit_q_bw_lmt; 3837 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3838 if (!node) { 3839 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3840 goto exit_q_bw_lmt; 3841 } 3842 3843 /* Return error if it is not a leaf node */ 3844 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3845 goto exit_q_bw_lmt; 3846 3847 /* SRL bandwidth layer selection */ 3848 if (rl_type == ICE_SHARED_BW) { 3849 u8 sel_layer; /* selected layer */ 3850 3851 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3852 node->tx_sched_layer); 3853 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3854 status = -EINVAL; 3855 goto exit_q_bw_lmt; 3856 } 3857 status = ice_sched_validate_srl_node(node, sel_layer); 3858 if (status) 3859 goto exit_q_bw_lmt; 3860 } 3861 3862 if (bw == ICE_SCHED_DFLT_BW) 3863 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3864 else 3865 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3866 3867 if (!status) 3868 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3869 3870 exit_q_bw_lmt: 3871 mutex_unlock(&pi->sched_lock); 3872 return status; 3873 } 3874 3875 /** 3876 * ice_cfg_q_bw_lmt - configure queue BW limit 3877 * @pi: port information structure 3878 * @vsi_handle: sw VSI handle 3879 * @tc: traffic class 3880 * @q_handle: software queue handle 3881 * @rl_type: min, max, or shared 3882 * @bw: bandwidth in Kbps 3883 * 3884 * This function configures BW limit of queue scheduling node. 3885 */ 3886 int 3887 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3888 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3889 { 3890 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3891 bw); 3892 } 3893 3894 /** 3895 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3896 * @pi: port information structure 3897 * @vsi_handle: sw VSI handle 3898 * @tc: traffic class 3899 * @q_handle: software queue handle 3900 * @rl_type: min, max, or shared 3901 * 3902 * This function configures BW default limit of queue scheduling node. 3903 */ 3904 int 3905 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3906 u16 q_handle, enum ice_rl_type rl_type) 3907 { 3908 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3909 ICE_SCHED_DFLT_BW); 3910 } 3911 3912 /** 3913 * ice_sched_get_node_by_id_type - get node from ID type 3914 * @pi: port information structure 3915 * @id: identifier 3916 * @agg_type: type of aggregator 3917 * @tc: traffic class 3918 * 3919 * This function returns node identified by ID of type aggregator, and 3920 * based on traffic class (TC). This function needs to be called with 3921 * the scheduler lock held. 3922 */ 3923 static struct ice_sched_node * 3924 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3925 enum ice_agg_type agg_type, u8 tc) 3926 { 3927 struct ice_sched_node *node = NULL; 3928 3929 switch (agg_type) { 3930 case ICE_AGG_TYPE_VSI: { 3931 struct ice_vsi_ctx *vsi_ctx; 3932 u16 vsi_handle = (u16)id; 3933 3934 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3935 break; 3936 /* Get sched_vsi_info */ 3937 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3938 if (!vsi_ctx) 3939 break; 3940 node = vsi_ctx->sched.vsi_node[tc]; 3941 break; 3942 } 3943 3944 case ICE_AGG_TYPE_AGG: { 3945 struct ice_sched_node *tc_node; 3946 3947 tc_node = ice_sched_get_tc_node(pi, tc); 3948 if (tc_node) 3949 node = ice_sched_get_agg_node(pi, tc_node, id); 3950 break; 3951 } 3952 3953 default: 3954 break; 3955 } 3956 3957 return node; 3958 } 3959 3960 /** 3961 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3962 * @pi: port information structure 3963 * @id: ID (software VSI handle or AGG ID) 3964 * @agg_type: aggregator type (VSI or AGG type node) 3965 * @tc: traffic class 3966 * @rl_type: min or max 3967 * @bw: bandwidth in Kbps 3968 * 3969 * This function sets BW limit of VSI or Aggregator scheduling node 3970 * based on TC information from passed in argument BW. 3971 */ 3972 static int 3973 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3974 enum ice_agg_type agg_type, u8 tc, 3975 enum ice_rl_type rl_type, u32 bw) 3976 { 3977 struct ice_sched_node *node; 3978 int status = -EINVAL; 3979 3980 if (!pi) 3981 return status; 3982 3983 if (rl_type == ICE_UNKNOWN_BW) 3984 return status; 3985 3986 mutex_lock(&pi->sched_lock); 3987 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3988 if (!node) { 3989 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3990 goto exit_set_node_bw_lmt_per_tc; 3991 } 3992 if (bw == ICE_SCHED_DFLT_BW) 3993 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3994 else 3995 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3996 3997 exit_set_node_bw_lmt_per_tc: 3998 mutex_unlock(&pi->sched_lock); 3999 return status; 4000 } 4001 4002 /** 4003 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 4004 * @pi: port information structure 4005 * @vsi_handle: software VSI handle 4006 * @tc: traffic class 4007 * @rl_type: min or max 4008 * @bw: bandwidth in Kbps 4009 * 4010 * This function configures BW limit of VSI scheduling node based on TC 4011 * information. 4012 */ 4013 int 4014 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4015 enum ice_rl_type rl_type, u32 bw) 4016 { 4017 int status; 4018 4019 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4020 ICE_AGG_TYPE_VSI, 4021 tc, rl_type, bw); 4022 if (!status) { 4023 mutex_lock(&pi->sched_lock); 4024 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 4025 mutex_unlock(&pi->sched_lock); 4026 } 4027 return status; 4028 } 4029 4030 /** 4031 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 4032 * @pi: port information structure 4033 * @vsi_handle: software VSI handle 4034 * @tc: traffic class 4035 * @rl_type: min or max 4036 * 4037 * This function configures default BW limit of VSI scheduling node based on TC 4038 * information. 4039 */ 4040 int 4041 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4042 enum ice_rl_type rl_type) 4043 { 4044 int status; 4045 4046 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4047 ICE_AGG_TYPE_VSI, 4048 tc, rl_type, 4049 ICE_SCHED_DFLT_BW); 4050 if (!status) { 4051 mutex_lock(&pi->sched_lock); 4052 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 4053 ICE_SCHED_DFLT_BW); 4054 mutex_unlock(&pi->sched_lock); 4055 } 4056 return status; 4057 } 4058 4059 /** 4060 * ice_cfg_rl_burst_size - Set burst size value 4061 * @hw: pointer to the HW struct 4062 * @bytes: burst size in bytes 4063 * 4064 * This function configures/set the burst size to requested new value. The new 4065 * burst size value is used for future rate limit calls. It doesn't change the 4066 * existing or previously created RL profiles. 4067 */ 4068 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 4069 { 4070 u16 burst_size_to_prog; 4071 4072 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 4073 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 4074 return -EINVAL; 4075 if (ice_round_to_num(bytes, 64) <= 4076 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 4077 /* 64 byte granularity case */ 4078 /* Disable MSB granularity bit */ 4079 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 4080 /* round number to nearest 64 byte granularity */ 4081 bytes = ice_round_to_num(bytes, 64); 4082 /* The value is in 64 byte chunks */ 4083 burst_size_to_prog |= (u16)(bytes / 64); 4084 } else { 4085 /* k bytes granularity case */ 4086 /* Enable MSB granularity bit */ 4087 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 4088 /* round number to nearest 1024 granularity */ 4089 bytes = ice_round_to_num(bytes, 1024); 4090 /* check rounding doesn't go beyond allowed */ 4091 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4092 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4093 /* The value is in k bytes */ 4094 burst_size_to_prog |= (u16)(bytes / 1024); 4095 } 4096 hw->max_burst_size = burst_size_to_prog; 4097 return 0; 4098 } 4099 4100 /** 4101 * ice_sched_replay_node_prio - re-configure node priority 4102 * @hw: pointer to the HW struct 4103 * @node: sched node to configure 4104 * @priority: priority value 4105 * 4106 * This function configures node element's priority value. It 4107 * needs to be called with scheduler lock held. 4108 */ 4109 static int 4110 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4111 u8 priority) 4112 { 4113 struct ice_aqc_txsched_elem_data buf; 4114 struct ice_aqc_txsched_elem *data; 4115 int status; 4116 4117 buf = node->info; 4118 data = &buf.data; 4119 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4120 data->generic = priority; 4121 4122 /* Configure element */ 4123 status = ice_sched_update_elem(hw, node, &buf); 4124 return status; 4125 } 4126 4127 /** 4128 * ice_sched_replay_node_bw - replay node(s) BW 4129 * @hw: pointer to the HW struct 4130 * @node: sched node to configure 4131 * @bw_t_info: BW type information 4132 * 4133 * This function restores node's BW from bw_t_info. The caller needs 4134 * to hold the scheduler lock. 4135 */ 4136 static int 4137 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4138 struct ice_bw_type_info *bw_t_info) 4139 { 4140 struct ice_port_info *pi = hw->port_info; 4141 int status = -EINVAL; 4142 u16 bw_alloc; 4143 4144 if (!node) 4145 return status; 4146 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4147 return 0; 4148 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4149 status = ice_sched_replay_node_prio(hw, node, 4150 bw_t_info->generic); 4151 if (status) 4152 return status; 4153 } 4154 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4155 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4156 bw_t_info->cir_bw.bw); 4157 if (status) 4158 return status; 4159 } 4160 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4161 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4162 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4163 bw_alloc); 4164 if (status) 4165 return status; 4166 } 4167 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4168 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4169 bw_t_info->eir_bw.bw); 4170 if (status) 4171 return status; 4172 } 4173 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4174 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4175 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4176 bw_alloc); 4177 if (status) 4178 return status; 4179 } 4180 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4181 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4182 bw_t_info->shared_bw); 4183 return status; 4184 } 4185 4186 /** 4187 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4188 * @pi: port info struct 4189 * @tc_bitmap: 8 bits TC bitmap to check 4190 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4191 * 4192 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4193 * may be missing, it returns enabled TCs. This function needs to be called with 4194 * scheduler lock held. 4195 */ 4196 static void 4197 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4198 unsigned long *tc_bitmap, 4199 unsigned long *ena_tc_bitmap) 4200 { 4201 u8 tc; 4202 4203 /* Some TC(s) may be missing after reset, adjust for replay */ 4204 ice_for_each_traffic_class(tc) 4205 if (ice_is_tc_ena(*tc_bitmap, tc) && 4206 (ice_sched_get_tc_node(pi, tc))) 4207 set_bit(tc, ena_tc_bitmap); 4208 } 4209 4210 /** 4211 * ice_sched_replay_agg - recreate aggregator node(s) 4212 * @hw: pointer to the HW struct 4213 * 4214 * This function recreate aggregator type nodes which are not replayed earlier. 4215 * It also replay aggregator BW information. These aggregator nodes are not 4216 * associated with VSI type node yet. 4217 */ 4218 void ice_sched_replay_agg(struct ice_hw *hw) 4219 { 4220 struct ice_port_info *pi = hw->port_info; 4221 struct ice_sched_agg_info *agg_info; 4222 4223 mutex_lock(&pi->sched_lock); 4224 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4225 /* replay aggregator (re-create aggregator node) */ 4226 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4227 ICE_MAX_TRAFFIC_CLASS)) { 4228 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4229 int status; 4230 4231 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4232 ice_sched_get_ena_tc_bitmap(pi, 4233 agg_info->replay_tc_bitmap, 4234 replay_bitmap); 4235 status = ice_sched_cfg_agg(hw->port_info, 4236 agg_info->agg_id, 4237 ICE_AGG_TYPE_AGG, 4238 replay_bitmap); 4239 if (status) { 4240 dev_info(ice_hw_to_dev(hw), 4241 "Replay agg id[%d] failed\n", 4242 agg_info->agg_id); 4243 /* Move on to next one */ 4244 continue; 4245 } 4246 } 4247 mutex_unlock(&pi->sched_lock); 4248 } 4249 4250 /** 4251 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4252 * @hw: pointer to the HW struct 4253 * 4254 * This function initialize aggregator(s) TC bitmap to zero. A required 4255 * preinit step for replaying aggregators. 4256 */ 4257 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4258 { 4259 struct ice_port_info *pi = hw->port_info; 4260 struct ice_sched_agg_info *agg_info; 4261 4262 mutex_lock(&pi->sched_lock); 4263 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4264 struct ice_sched_agg_vsi_info *agg_vsi_info; 4265 4266 agg_info->tc_bitmap[0] = 0; 4267 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4268 list_entry) 4269 agg_vsi_info->tc_bitmap[0] = 0; 4270 } 4271 mutex_unlock(&pi->sched_lock); 4272 } 4273 4274 /** 4275 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4276 * @hw: pointer to the HW struct 4277 * @vsi_handle: software VSI handle 4278 * 4279 * This function replays aggregator node, VSI to aggregator type nodes, and 4280 * their node bandwidth information. This function needs to be called with 4281 * scheduler lock held. 4282 */ 4283 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4284 { 4285 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4286 struct ice_sched_agg_vsi_info *agg_vsi_info; 4287 struct ice_port_info *pi = hw->port_info; 4288 struct ice_sched_agg_info *agg_info; 4289 int status; 4290 4291 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4292 if (!ice_is_vsi_valid(hw, vsi_handle)) 4293 return -EINVAL; 4294 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4295 if (!agg_info) 4296 return 0; /* Not present in list - default Agg case */ 4297 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4298 if (!agg_vsi_info) 4299 return 0; /* Not present in list - default Agg case */ 4300 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4301 replay_bitmap); 4302 /* Replay aggregator node associated to vsi_handle */ 4303 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4304 ICE_AGG_TYPE_AGG, replay_bitmap); 4305 if (status) 4306 return status; 4307 4308 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4309 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4310 replay_bitmap); 4311 /* Move this VSI (vsi_handle) to above aggregator */ 4312 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4313 replay_bitmap); 4314 } 4315 4316 /** 4317 * ice_replay_vsi_agg - replay VSI to aggregator node 4318 * @hw: pointer to the HW struct 4319 * @vsi_handle: software VSI handle 4320 * 4321 * This function replays association of VSI to aggregator type nodes, and 4322 * node bandwidth information. 4323 */ 4324 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4325 { 4326 struct ice_port_info *pi = hw->port_info; 4327 int status; 4328 4329 mutex_lock(&pi->sched_lock); 4330 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4331 mutex_unlock(&pi->sched_lock); 4332 return status; 4333 } 4334 4335 /** 4336 * ice_sched_replay_q_bw - replay queue type node BW 4337 * @pi: port information structure 4338 * @q_ctx: queue context structure 4339 * 4340 * This function replays queue type node bandwidth. This function needs to be 4341 * called with scheduler lock held. 4342 */ 4343 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4344 { 4345 struct ice_sched_node *q_node; 4346 4347 /* Following also checks the presence of node in tree */ 4348 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4349 if (!q_node) 4350 return -EINVAL; 4351 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4352 } 4353