1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6 
7 /**
8  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9  * @pi: port information structure
10  * @info: Scheduler element information from firmware
11  *
12  * This function inserts the root node of the scheduling tree topology
13  * to the SW DB.
14  */
15 static int
16 ice_sched_add_root_node(struct ice_port_info *pi,
17 			struct ice_aqc_txsched_elem_data *info)
18 {
19 	struct ice_sched_node *root;
20 	struct ice_hw *hw;
21 
22 	if (!pi)
23 		return -EINVAL;
24 
25 	hw = pi->hw;
26 
27 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 	if (!root)
29 		return -ENOMEM;
30 
31 	/* coverity[suspicious_sizeof] */
32 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
33 				      sizeof(*root), GFP_KERNEL);
34 	if (!root->children) {
35 		devm_kfree(ice_hw_to_dev(hw), root);
36 		return -ENOMEM;
37 	}
38 
39 	memcpy(&root->info, info, sizeof(*info));
40 	pi->root = root;
41 	return 0;
42 }
43 
44 /**
45  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47  * @teid: node TEID to search
48  *
49  * This function searches for a node matching the TEID in the scheduling tree
50  * from the SW DB. The search is recursive and is restricted by the number of
51  * layers it has searched through; stopping at the max supported layer.
52  *
53  * This function needs to be called when holding the port_info->sched_lock
54  */
55 struct ice_sched_node *
56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57 {
58 	u16 i;
59 
60 	/* The TEID is same as that of the start_node */
61 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62 		return start_node;
63 
64 	/* The node has no children or is at the max layer */
65 	if (!start_node->num_children ||
66 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68 		return NULL;
69 
70 	/* Check if TEID matches to any of the children nodes */
71 	for (i = 0; i < start_node->num_children; i++)
72 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73 			return start_node->children[i];
74 
75 	/* Search within each child's sub-tree */
76 	for (i = 0; i < start_node->num_children; i++) {
77 		struct ice_sched_node *tmp;
78 
79 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
80 						  teid);
81 		if (tmp)
82 			return tmp;
83 	}
84 
85 	return NULL;
86 }
87 
88 /**
89  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90  * @hw: pointer to the HW struct
91  * @cmd_opc: cmd opcode
92  * @elems_req: number of elements to request
93  * @buf: pointer to buffer
94  * @buf_size: buffer size in bytes
95  * @elems_resp: returns total number of elements response
96  * @cd: pointer to command details structure or NULL
97  *
98  * This function sends a scheduling elements cmd (cmd_opc)
99  */
100 static int
101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102 			    u16 elems_req, void *buf, u16 buf_size,
103 			    u16 *elems_resp, struct ice_sq_cd *cd)
104 {
105 	struct ice_aqc_sched_elem_cmd *cmd;
106 	struct ice_aq_desc desc;
107 	int status;
108 
109 	cmd = &desc.params.sched_elem_cmd;
110 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
111 	cmd->num_elem_req = cpu_to_le16(elems_req);
112 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
114 	if (!status && elems_resp)
115 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
116 
117 	return status;
118 }
119 
120 /**
121  * ice_aq_query_sched_elems - query scheduler elements
122  * @hw: pointer to the HW struct
123  * @elems_req: number of elements to query
124  * @buf: pointer to buffer
125  * @buf_size: buffer size in bytes
126  * @elems_ret: returns total number of elements returned
127  * @cd: pointer to command details structure or NULL
128  *
129  * Query scheduling elements (0x0404)
130  */
131 int
132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134 			 u16 *elems_ret, struct ice_sq_cd *cd)
135 {
136 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
137 					   elems_req, (void *)buf, buf_size,
138 					   elems_ret, cd);
139 }
140 
141 /**
142  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143  * @pi: port information structure
144  * @layer: Scheduler layer of the node
145  * @info: Scheduler element information from firmware
146  * @prealloc_node: preallocated ice_sched_node struct for SW DB
147  *
148  * This function inserts a scheduler node to the SW DB.
149  */
150 int
151 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152 		   struct ice_aqc_txsched_elem_data *info,
153 		   struct ice_sched_node *prealloc_node)
154 {
155 	struct ice_aqc_txsched_elem_data elem;
156 	struct ice_sched_node *parent;
157 	struct ice_sched_node *node;
158 	struct ice_hw *hw;
159 	int status;
160 
161 	if (!pi)
162 		return -EINVAL;
163 
164 	hw = pi->hw;
165 
166 	/* A valid parent node should be there */
167 	parent = ice_sched_find_node_by_teid(pi->root,
168 					     le32_to_cpu(info->parent_teid));
169 	if (!parent) {
170 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171 			  le32_to_cpu(info->parent_teid));
172 		return -EINVAL;
173 	}
174 
175 	/* query the current node information from FW before adding it
176 	 * to the SW DB
177 	 */
178 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
179 	if (status)
180 		return status;
181 
182 	if (prealloc_node)
183 		node = prealloc_node;
184 	else
185 		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
186 	if (!node)
187 		return -ENOMEM;
188 	if (hw->max_children[layer]) {
189 		/* coverity[suspicious_sizeof] */
190 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
191 					      hw->max_children[layer],
192 					      sizeof(*node), GFP_KERNEL);
193 		if (!node->children) {
194 			devm_kfree(ice_hw_to_dev(hw), node);
195 			return -ENOMEM;
196 		}
197 	}
198 
199 	node->in_use = true;
200 	node->parent = parent;
201 	node->tx_sched_layer = layer;
202 	parent->children[parent->num_children++] = node;
203 	node->info = elem;
204 	return 0;
205 }
206 
207 /**
208  * ice_aq_delete_sched_elems - delete scheduler elements
209  * @hw: pointer to the HW struct
210  * @grps_req: number of groups to delete
211  * @buf: pointer to buffer
212  * @buf_size: buffer size in bytes
213  * @grps_del: returns total number of elements deleted
214  * @cd: pointer to command details structure or NULL
215  *
216  * Delete scheduling elements (0x040F)
217  */
218 static int
219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
221 			  u16 *grps_del, struct ice_sq_cd *cd)
222 {
223 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
224 					   grps_req, (void *)buf, buf_size,
225 					   grps_del, cd);
226 }
227 
228 /**
229  * ice_sched_remove_elems - remove nodes from HW
230  * @hw: pointer to the HW struct
231  * @parent: pointer to the parent node
232  * @num_nodes: number of nodes
233  * @node_teids: array of node teids to be deleted
234  *
235  * This function remove nodes from HW
236  */
237 static int
238 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
239 		       u16 num_nodes, u32 *node_teids)
240 {
241 	struct ice_aqc_delete_elem *buf;
242 	u16 i, num_groups_removed = 0;
243 	u16 buf_size;
244 	int status;
245 
246 	buf_size = struct_size(buf, teid, num_nodes);
247 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
248 	if (!buf)
249 		return -ENOMEM;
250 
251 	buf->hdr.parent_teid = parent->info.node_teid;
252 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
253 	for (i = 0; i < num_nodes; i++)
254 		buf->teid[i] = cpu_to_le32(node_teids[i]);
255 
256 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
257 					   &num_groups_removed, NULL);
258 	if (status || num_groups_removed != 1)
259 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
260 			  hw->adminq.sq_last_status);
261 
262 	devm_kfree(ice_hw_to_dev(hw), buf);
263 	return status;
264 }
265 
266 /**
267  * ice_sched_get_first_node - get the first node of the given layer
268  * @pi: port information structure
269  * @parent: pointer the base node of the subtree
270  * @layer: layer number
271  *
272  * This function retrieves the first node of the given layer from the subtree
273  */
274 static struct ice_sched_node *
275 ice_sched_get_first_node(struct ice_port_info *pi,
276 			 struct ice_sched_node *parent, u8 layer)
277 {
278 	return pi->sib_head[parent->tc_num][layer];
279 }
280 
281 /**
282  * ice_sched_get_tc_node - get pointer to TC node
283  * @pi: port information structure
284  * @tc: TC number
285  *
286  * This function returns the TC node pointer
287  */
288 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
289 {
290 	u8 i;
291 
292 	if (!pi || !pi->root)
293 		return NULL;
294 	for (i = 0; i < pi->root->num_children; i++)
295 		if (pi->root->children[i]->tc_num == tc)
296 			return pi->root->children[i];
297 	return NULL;
298 }
299 
300 /**
301  * ice_free_sched_node - Free a Tx scheduler node from SW DB
302  * @pi: port information structure
303  * @node: pointer to the ice_sched_node struct
304  *
305  * This function frees up a node from SW DB as well as from HW
306  *
307  * This function needs to be called with the port_info->sched_lock held
308  */
309 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
310 {
311 	struct ice_sched_node *parent;
312 	struct ice_hw *hw = pi->hw;
313 	u8 i, j;
314 
315 	/* Free the children before freeing up the parent node
316 	 * The parent array is updated below and that shifts the nodes
317 	 * in the array. So always pick the first child if num children > 0
318 	 */
319 	while (node->num_children)
320 		ice_free_sched_node(pi, node->children[0]);
321 
322 	/* Leaf, TC and root nodes can't be deleted by SW */
323 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
324 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
325 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
326 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
327 		u32 teid = le32_to_cpu(node->info.node_teid);
328 
329 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
330 	}
331 	parent = node->parent;
332 	/* root has no parent */
333 	if (parent) {
334 		struct ice_sched_node *p;
335 
336 		/* update the parent */
337 		for (i = 0; i < parent->num_children; i++)
338 			if (parent->children[i] == node) {
339 				for (j = i + 1; j < parent->num_children; j++)
340 					parent->children[j - 1] =
341 						parent->children[j];
342 				parent->num_children--;
343 				break;
344 			}
345 
346 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
347 		while (p) {
348 			if (p->sibling == node) {
349 				p->sibling = node->sibling;
350 				break;
351 			}
352 			p = p->sibling;
353 		}
354 
355 		/* update the sibling head if head is getting removed */
356 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
357 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
358 				node->sibling;
359 	}
360 
361 	devm_kfree(ice_hw_to_dev(hw), node->children);
362 	kfree(node->name);
363 	xa_erase(&pi->sched_node_ids, node->id);
364 	devm_kfree(ice_hw_to_dev(hw), node);
365 }
366 
367 /**
368  * ice_aq_get_dflt_topo - gets default scheduler topology
369  * @hw: pointer to the HW struct
370  * @lport: logical port number
371  * @buf: pointer to buffer
372  * @buf_size: buffer size in bytes
373  * @num_branches: returns total number of queue to port branches
374  * @cd: pointer to command details structure or NULL
375  *
376  * Get default scheduler topology (0x400)
377  */
378 static int
379 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
380 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
381 		     u8 *num_branches, struct ice_sq_cd *cd)
382 {
383 	struct ice_aqc_get_topo *cmd;
384 	struct ice_aq_desc desc;
385 	int status;
386 
387 	cmd = &desc.params.get_topo;
388 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
389 	cmd->port_num = lport;
390 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
391 	if (!status && num_branches)
392 		*num_branches = cmd->num_branches;
393 
394 	return status;
395 }
396 
397 /**
398  * ice_aq_add_sched_elems - adds scheduling element
399  * @hw: pointer to the HW struct
400  * @grps_req: the number of groups that are requested to be added
401  * @buf: pointer to buffer
402  * @buf_size: buffer size in bytes
403  * @grps_added: returns total number of groups added
404  * @cd: pointer to command details structure or NULL
405  *
406  * Add scheduling elements (0x0401)
407  */
408 static int
409 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
410 		       struct ice_aqc_add_elem *buf, u16 buf_size,
411 		       u16 *grps_added, struct ice_sq_cd *cd)
412 {
413 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
414 					   grps_req, (void *)buf, buf_size,
415 					   grps_added, cd);
416 }
417 
418 /**
419  * ice_aq_cfg_sched_elems - configures scheduler elements
420  * @hw: pointer to the HW struct
421  * @elems_req: number of elements to configure
422  * @buf: pointer to buffer
423  * @buf_size: buffer size in bytes
424  * @elems_cfgd: returns total number of elements configured
425  * @cd: pointer to command details structure or NULL
426  *
427  * Configure scheduling elements (0x0403)
428  */
429 static int
430 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
431 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
432 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
433 {
434 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
435 					   elems_req, (void *)buf, buf_size,
436 					   elems_cfgd, cd);
437 }
438 
439 /**
440  * ice_aq_move_sched_elems - move scheduler elements
441  * @hw: pointer to the HW struct
442  * @grps_req: number of groups to move
443  * @buf: pointer to buffer
444  * @buf_size: buffer size in bytes
445  * @grps_movd: returns total number of groups moved
446  * @cd: pointer to command details structure or NULL
447  *
448  * Move scheduling elements (0x0408)
449  */
450 static int
451 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
452 			struct ice_aqc_move_elem *buf, u16 buf_size,
453 			u16 *grps_movd, struct ice_sq_cd *cd)
454 {
455 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
456 					   grps_req, (void *)buf, buf_size,
457 					   grps_movd, cd);
458 }
459 
460 /**
461  * ice_aq_suspend_sched_elems - suspend scheduler elements
462  * @hw: pointer to the HW struct
463  * @elems_req: number of elements to suspend
464  * @buf: pointer to buffer
465  * @buf_size: buffer size in bytes
466  * @elems_ret: returns total number of elements suspended
467  * @cd: pointer to command details structure or NULL
468  *
469  * Suspend scheduling elements (0x0409)
470  */
471 static int
472 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
473 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
474 {
475 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
476 					   elems_req, (void *)buf, buf_size,
477 					   elems_ret, cd);
478 }
479 
480 /**
481  * ice_aq_resume_sched_elems - resume scheduler elements
482  * @hw: pointer to the HW struct
483  * @elems_req: number of elements to resume
484  * @buf: pointer to buffer
485  * @buf_size: buffer size in bytes
486  * @elems_ret: returns total number of elements resumed
487  * @cd: pointer to command details structure or NULL
488  *
489  * resume scheduling elements (0x040A)
490  */
491 static int
492 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
493 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
494 {
495 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
496 					   elems_req, (void *)buf, buf_size,
497 					   elems_ret, cd);
498 }
499 
500 /**
501  * ice_aq_query_sched_res - query scheduler resource
502  * @hw: pointer to the HW struct
503  * @buf_size: buffer size in bytes
504  * @buf: pointer to buffer
505  * @cd: pointer to command details structure or NULL
506  *
507  * Query scheduler resource allocation (0x0412)
508  */
509 static int
510 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
511 		       struct ice_aqc_query_txsched_res_resp *buf,
512 		       struct ice_sq_cd *cd)
513 {
514 	struct ice_aq_desc desc;
515 
516 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
517 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
518 }
519 
520 /**
521  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
522  * @hw: pointer to the HW struct
523  * @num_nodes: number of nodes
524  * @node_teids: array of node teids to be suspended or resumed
525  * @suspend: true means suspend / false means resume
526  *
527  * This function suspends or resumes HW nodes
528  */
529 static int
530 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
531 			       bool suspend)
532 {
533 	u16 i, buf_size, num_elem_ret = 0;
534 	__le32 *buf;
535 	int status;
536 
537 	buf_size = sizeof(*buf) * num_nodes;
538 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
539 	if (!buf)
540 		return -ENOMEM;
541 
542 	for (i = 0; i < num_nodes; i++)
543 		buf[i] = cpu_to_le32(node_teids[i]);
544 
545 	if (suspend)
546 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
547 						    buf_size, &num_elem_ret,
548 						    NULL);
549 	else
550 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
551 						   buf_size, &num_elem_ret,
552 						   NULL);
553 	if (status || num_elem_ret != num_nodes)
554 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
555 
556 	devm_kfree(ice_hw_to_dev(hw), buf);
557 	return status;
558 }
559 
560 /**
561  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
562  * @hw: pointer to the HW struct
563  * @vsi_handle: VSI handle
564  * @tc: TC number
565  * @new_numqs: number of queues
566  */
567 static int
568 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
569 {
570 	struct ice_vsi_ctx *vsi_ctx;
571 	struct ice_q_ctx *q_ctx;
572 
573 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
574 	if (!vsi_ctx)
575 		return -EINVAL;
576 	/* allocate LAN queue contexts */
577 	if (!vsi_ctx->lan_q_ctx[tc]) {
578 		vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
579 						      new_numqs,
580 						      sizeof(*q_ctx),
581 						      GFP_KERNEL);
582 		if (!vsi_ctx->lan_q_ctx[tc])
583 			return -ENOMEM;
584 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
585 		return 0;
586 	}
587 	/* num queues are increased, update the queue contexts */
588 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
589 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
590 
591 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
592 				     sizeof(*q_ctx), GFP_KERNEL);
593 		if (!q_ctx)
594 			return -ENOMEM;
595 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
596 		       prev_num * sizeof(*q_ctx));
597 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
598 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
599 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
600 	}
601 	return 0;
602 }
603 
604 /**
605  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
606  * @hw: pointer to the HW struct
607  * @vsi_handle: VSI handle
608  * @tc: TC number
609  * @new_numqs: number of queues
610  */
611 static int
612 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
613 {
614 	struct ice_vsi_ctx *vsi_ctx;
615 	struct ice_q_ctx *q_ctx;
616 
617 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
618 	if (!vsi_ctx)
619 		return -EINVAL;
620 	/* allocate RDMA queue contexts */
621 	if (!vsi_ctx->rdma_q_ctx[tc]) {
622 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
623 						       new_numqs,
624 						       sizeof(*q_ctx),
625 						       GFP_KERNEL);
626 		if (!vsi_ctx->rdma_q_ctx[tc])
627 			return -ENOMEM;
628 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
629 		return 0;
630 	}
631 	/* num queues are increased, update the queue contexts */
632 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
633 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
634 
635 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
636 				     sizeof(*q_ctx), GFP_KERNEL);
637 		if (!q_ctx)
638 			return -ENOMEM;
639 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
640 		       prev_num * sizeof(*q_ctx));
641 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
642 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
643 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
644 	}
645 	return 0;
646 }
647 
648 /**
649  * ice_aq_rl_profile - performs a rate limiting task
650  * @hw: pointer to the HW struct
651  * @opcode: opcode for add, query, or remove profile(s)
652  * @num_profiles: the number of profiles
653  * @buf: pointer to buffer
654  * @buf_size: buffer size in bytes
655  * @num_processed: number of processed add or remove profile(s) to return
656  * @cd: pointer to command details structure
657  *
658  * RL profile function to add, query, or remove profile(s)
659  */
660 static int
661 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
662 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
663 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
664 {
665 	struct ice_aqc_rl_profile *cmd;
666 	struct ice_aq_desc desc;
667 	int status;
668 
669 	cmd = &desc.params.rl_profile;
670 
671 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
672 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
673 	cmd->num_profiles = cpu_to_le16(num_profiles);
674 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
675 	if (!status && num_processed)
676 		*num_processed = le16_to_cpu(cmd->num_processed);
677 	return status;
678 }
679 
680 /**
681  * ice_aq_add_rl_profile - adds rate limiting profile(s)
682  * @hw: pointer to the HW struct
683  * @num_profiles: the number of profile(s) to be add
684  * @buf: pointer to buffer
685  * @buf_size: buffer size in bytes
686  * @num_profiles_added: total number of profiles added to return
687  * @cd: pointer to command details structure
688  *
689  * Add RL profile (0x0410)
690  */
691 static int
692 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
693 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
694 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
695 {
696 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
697 				 buf, buf_size, num_profiles_added, cd);
698 }
699 
700 /**
701  * ice_aq_remove_rl_profile - removes RL profile(s)
702  * @hw: pointer to the HW struct
703  * @num_profiles: the number of profile(s) to remove
704  * @buf: pointer to buffer
705  * @buf_size: buffer size in bytes
706  * @num_profiles_removed: total number of profiles removed to return
707  * @cd: pointer to command details structure or NULL
708  *
709  * Remove RL profile (0x0415)
710  */
711 static int
712 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
713 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
714 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
715 {
716 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
717 				 num_profiles, buf, buf_size,
718 				 num_profiles_removed, cd);
719 }
720 
721 /**
722  * ice_sched_del_rl_profile - remove RL profile
723  * @hw: pointer to the HW struct
724  * @rl_info: rate limit profile information
725  *
726  * If the profile ID is not referenced anymore, it removes profile ID with
727  * its associated parameters from HW DB,and locally. The caller needs to
728  * hold scheduler lock.
729  */
730 static int
731 ice_sched_del_rl_profile(struct ice_hw *hw,
732 			 struct ice_aqc_rl_profile_info *rl_info)
733 {
734 	struct ice_aqc_rl_profile_elem *buf;
735 	u16 num_profiles_removed;
736 	u16 num_profiles = 1;
737 	int status;
738 
739 	if (rl_info->prof_id_ref != 0)
740 		return -EBUSY;
741 
742 	/* Safe to remove profile ID */
743 	buf = &rl_info->profile;
744 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
745 					  &num_profiles_removed, NULL);
746 	if (status || num_profiles_removed != num_profiles)
747 		return -EIO;
748 
749 	/* Delete stale entry now */
750 	list_del(&rl_info->list_entry);
751 	devm_kfree(ice_hw_to_dev(hw), rl_info);
752 	return status;
753 }
754 
755 /**
756  * ice_sched_clear_rl_prof - clears RL prof entries
757  * @pi: port information structure
758  *
759  * This function removes all RL profile from HW as well as from SW DB.
760  */
761 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
762 {
763 	u16 ln;
764 
765 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
766 		struct ice_aqc_rl_profile_info *rl_prof_elem;
767 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
768 
769 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
770 					 &pi->rl_prof_list[ln], list_entry) {
771 			struct ice_hw *hw = pi->hw;
772 			int status;
773 
774 			rl_prof_elem->prof_id_ref = 0;
775 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
776 			if (status) {
777 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
778 				/* On error, free mem required */
779 				list_del(&rl_prof_elem->list_entry);
780 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
781 			}
782 		}
783 	}
784 }
785 
786 /**
787  * ice_sched_clear_agg - clears the aggregator related information
788  * @hw: pointer to the hardware structure
789  *
790  * This function removes aggregator list and free up aggregator related memory
791  * previously allocated.
792  */
793 void ice_sched_clear_agg(struct ice_hw *hw)
794 {
795 	struct ice_sched_agg_info *agg_info;
796 	struct ice_sched_agg_info *atmp;
797 
798 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
799 		struct ice_sched_agg_vsi_info *agg_vsi_info;
800 		struct ice_sched_agg_vsi_info *vtmp;
801 
802 		list_for_each_entry_safe(agg_vsi_info, vtmp,
803 					 &agg_info->agg_vsi_list, list_entry) {
804 			list_del(&agg_vsi_info->list_entry);
805 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
806 		}
807 		list_del(&agg_info->list_entry);
808 		devm_kfree(ice_hw_to_dev(hw), agg_info);
809 	}
810 }
811 
812 /**
813  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
814  * @pi: port information structure
815  *
816  * This function removes all the nodes from HW as well as from SW DB.
817  */
818 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
819 {
820 	if (!pi)
821 		return;
822 	/* remove RL profiles related lists */
823 	ice_sched_clear_rl_prof(pi);
824 	if (pi->root) {
825 		ice_free_sched_node(pi, pi->root);
826 		pi->root = NULL;
827 	}
828 }
829 
830 /**
831  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
832  * @pi: port information structure
833  *
834  * Cleanup scheduling elements from SW DB
835  */
836 void ice_sched_clear_port(struct ice_port_info *pi)
837 {
838 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
839 		return;
840 
841 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
842 	mutex_lock(&pi->sched_lock);
843 	ice_sched_clear_tx_topo(pi);
844 	mutex_unlock(&pi->sched_lock);
845 	mutex_destroy(&pi->sched_lock);
846 }
847 
848 /**
849  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
850  * @hw: pointer to the HW struct
851  *
852  * Cleanup scheduling elements from SW DB for all the ports
853  */
854 void ice_sched_cleanup_all(struct ice_hw *hw)
855 {
856 	if (!hw)
857 		return;
858 
859 	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
860 	hw->layer_info = NULL;
861 
862 	ice_sched_clear_port(hw->port_info);
863 
864 	hw->num_tx_sched_layers = 0;
865 	hw->num_tx_sched_phys_layers = 0;
866 	hw->flattened_layers = 0;
867 	hw->max_cgds = 0;
868 }
869 
870 /**
871  * ice_sched_add_elems - add nodes to HW and SW DB
872  * @pi: port information structure
873  * @tc_node: pointer to the branch node
874  * @parent: pointer to the parent node
875  * @layer: layer number to add nodes
876  * @num_nodes: number of nodes
877  * @num_nodes_added: pointer to num nodes added
878  * @first_node_teid: if new nodes are added then return the TEID of first node
879  * @prealloc_nodes: preallocated nodes struct for software DB
880  *
881  * This function add nodes to HW as well as to SW DB for a given layer
882  */
883 int
884 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
885 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
886 		    u16 *num_nodes_added, u32 *first_node_teid,
887 		    struct ice_sched_node **prealloc_nodes)
888 {
889 	struct ice_sched_node *prev, *new_node;
890 	struct ice_aqc_add_elem *buf;
891 	u16 i, num_groups_added = 0;
892 	struct ice_hw *hw = pi->hw;
893 	size_t buf_size;
894 	int status = 0;
895 	u32 teid;
896 
897 	buf_size = struct_size(buf, generic, num_nodes);
898 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
899 	if (!buf)
900 		return -ENOMEM;
901 
902 	buf->hdr.parent_teid = parent->info.node_teid;
903 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
904 	for (i = 0; i < num_nodes; i++) {
905 		buf->generic[i].parent_teid = parent->info.node_teid;
906 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
907 		buf->generic[i].data.valid_sections =
908 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
909 			ICE_AQC_ELEM_VALID_EIR;
910 		buf->generic[i].data.generic = 0;
911 		buf->generic[i].data.cir_bw.bw_profile_idx =
912 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
913 		buf->generic[i].data.cir_bw.bw_alloc =
914 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
915 		buf->generic[i].data.eir_bw.bw_profile_idx =
916 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
917 		buf->generic[i].data.eir_bw.bw_alloc =
918 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
919 	}
920 
921 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
922 					&num_groups_added, NULL);
923 	if (status || num_groups_added != 1) {
924 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
925 			  hw->adminq.sq_last_status);
926 		devm_kfree(ice_hw_to_dev(hw), buf);
927 		return -EIO;
928 	}
929 
930 	*num_nodes_added = num_nodes;
931 	/* add nodes to the SW DB */
932 	for (i = 0; i < num_nodes; i++) {
933 		if (prealloc_nodes)
934 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
935 		else
936 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
937 
938 		if (status) {
939 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
940 				  status);
941 			break;
942 		}
943 
944 		teid = le32_to_cpu(buf->generic[i].node_teid);
945 		new_node = ice_sched_find_node_by_teid(parent, teid);
946 		if (!new_node) {
947 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
948 			break;
949 		}
950 
951 		new_node->sibling = NULL;
952 		new_node->tc_num = tc_node->tc_num;
953 		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
954 		new_node->tx_share = ICE_SCHED_DFLT_BW;
955 		new_node->tx_max = ICE_SCHED_DFLT_BW;
956 		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
957 		if (!new_node->name)
958 			return -ENOMEM;
959 
960 		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
961 				  GFP_KERNEL);
962 		if (status) {
963 			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
964 				  status);
965 			break;
966 		}
967 
968 		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
969 
970 		/* add it to previous node sibling pointer */
971 		/* Note: siblings are not linked across branches */
972 		prev = ice_sched_get_first_node(pi, tc_node, layer);
973 		if (prev && prev != new_node) {
974 			while (prev->sibling)
975 				prev = prev->sibling;
976 			prev->sibling = new_node;
977 		}
978 
979 		/* initialize the sibling head */
980 		if (!pi->sib_head[tc_node->tc_num][layer])
981 			pi->sib_head[tc_node->tc_num][layer] = new_node;
982 
983 		if (i == 0)
984 			*first_node_teid = teid;
985 	}
986 
987 	devm_kfree(ice_hw_to_dev(hw), buf);
988 	return status;
989 }
990 
991 /**
992  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
993  * @pi: port information structure
994  * @tc_node: pointer to TC node
995  * @parent: pointer to parent node
996  * @layer: layer number to add nodes
997  * @num_nodes: number of nodes to be added
998  * @first_node_teid: pointer to the first node TEID
999  * @num_nodes_added: pointer to number of nodes added
1000  *
1001  * Add nodes into specific HW layer.
1002  */
1003 static int
1004 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1005 				struct ice_sched_node *tc_node,
1006 				struct ice_sched_node *parent, u8 layer,
1007 				u16 num_nodes, u32 *first_node_teid,
1008 				u16 *num_nodes_added)
1009 {
1010 	u16 max_child_nodes;
1011 
1012 	*num_nodes_added = 0;
1013 
1014 	if (!num_nodes)
1015 		return 0;
1016 
1017 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1018 		return -EINVAL;
1019 
1020 	/* max children per node per layer */
1021 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1022 
1023 	/* current number of children + required nodes exceed max children */
1024 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1025 		/* Fail if the parent is a TC node */
1026 		if (parent == tc_node)
1027 			return -EIO;
1028 		return -ENOSPC;
1029 	}
1030 
1031 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1032 				   num_nodes_added, first_node_teid, NULL);
1033 }
1034 
1035 /**
1036  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1037  * @pi: port information structure
1038  * @tc_node: pointer to TC node
1039  * @parent: pointer to parent node
1040  * @layer: layer number to add nodes
1041  * @num_nodes: number of nodes to be added
1042  * @first_node_teid: pointer to the first node TEID
1043  * @num_nodes_added: pointer to number of nodes added
1044  *
1045  * This function add nodes to a given layer.
1046  */
1047 static int
1048 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1049 			     struct ice_sched_node *tc_node,
1050 			     struct ice_sched_node *parent, u8 layer,
1051 			     u16 num_nodes, u32 *first_node_teid,
1052 			     u16 *num_nodes_added)
1053 {
1054 	u32 *first_teid_ptr = first_node_teid;
1055 	u16 new_num_nodes = num_nodes;
1056 	int status = 0;
1057 
1058 	*num_nodes_added = 0;
1059 	while (*num_nodes_added < num_nodes) {
1060 		u16 max_child_nodes, num_added = 0;
1061 		u32 temp;
1062 
1063 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1064 							 layer,	new_num_nodes,
1065 							 first_teid_ptr,
1066 							 &num_added);
1067 		if (!status)
1068 			*num_nodes_added += num_added;
1069 		/* added more nodes than requested ? */
1070 		if (*num_nodes_added > num_nodes) {
1071 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1072 				  *num_nodes_added);
1073 			status = -EIO;
1074 			break;
1075 		}
1076 		/* break if all the nodes are added successfully */
1077 		if (!status && (*num_nodes_added == num_nodes))
1078 			break;
1079 		/* break if the error is not max limit */
1080 		if (status && status != -ENOSPC)
1081 			break;
1082 		/* Exceeded the max children */
1083 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1084 		/* utilize all the spaces if the parent is not full */
1085 		if (parent->num_children < max_child_nodes) {
1086 			new_num_nodes = max_child_nodes - parent->num_children;
1087 		} else {
1088 			/* This parent is full, try the next sibling */
1089 			parent = parent->sibling;
1090 			/* Don't modify the first node TEID memory if the
1091 			 * first node was added already in the above call.
1092 			 * Instead send some temp memory for all other
1093 			 * recursive calls.
1094 			 */
1095 			if (num_added)
1096 				first_teid_ptr = &temp;
1097 
1098 			new_num_nodes = num_nodes - *num_nodes_added;
1099 		}
1100 	}
1101 	return status;
1102 }
1103 
1104 /**
1105  * ice_sched_get_qgrp_layer - get the current queue group layer number
1106  * @hw: pointer to the HW struct
1107  *
1108  * This function returns the current queue group layer number
1109  */
1110 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1111 {
1112 	/* It's always total layers - 1, the array is 0 relative so -2 */
1113 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1114 }
1115 
1116 /**
1117  * ice_sched_get_vsi_layer - get the current VSI layer number
1118  * @hw: pointer to the HW struct
1119  *
1120  * This function returns the current VSI layer number
1121  */
1122 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1123 {
1124 	/* Num Layers       VSI layer
1125 	 *     9               6
1126 	 *     7               4
1127 	 *     5 or less       sw_entry_point_layer
1128 	 */
1129 	/* calculate the VSI layer based on number of layers. */
1130 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1131 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1132 
1133 		if (layer > hw->sw_entry_point_layer)
1134 			return layer;
1135 	}
1136 	return hw->sw_entry_point_layer;
1137 }
1138 
1139 /**
1140  * ice_sched_get_agg_layer - get the current aggregator layer number
1141  * @hw: pointer to the HW struct
1142  *
1143  * This function returns the current aggregator layer number
1144  */
1145 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1146 {
1147 	/* Num Layers       aggregator layer
1148 	 *     9               4
1149 	 *     7 or less       sw_entry_point_layer
1150 	 */
1151 	/* calculate the aggregator layer based on number of layers. */
1152 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1153 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1154 
1155 		if (layer > hw->sw_entry_point_layer)
1156 			return layer;
1157 	}
1158 	return hw->sw_entry_point_layer;
1159 }
1160 
1161 /**
1162  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1163  * @pi: port information structure
1164  *
1165  * This function removes the leaf node that was created by the FW
1166  * during initialization
1167  */
1168 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1169 {
1170 	struct ice_sched_node *node;
1171 
1172 	node = pi->root;
1173 	while (node) {
1174 		if (!node->num_children)
1175 			break;
1176 		node = node->children[0];
1177 	}
1178 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1179 		u32 teid = le32_to_cpu(node->info.node_teid);
1180 		int status;
1181 
1182 		/* remove the default leaf node */
1183 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1184 		if (!status)
1185 			ice_free_sched_node(pi, node);
1186 	}
1187 }
1188 
1189 /**
1190  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1191  * @pi: port information structure
1192  *
1193  * This function frees all the nodes except root and TC that were created by
1194  * the FW during initialization
1195  */
1196 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1197 {
1198 	struct ice_sched_node *node;
1199 
1200 	ice_rm_dflt_leaf_node(pi);
1201 
1202 	/* remove the default nodes except TC and root nodes */
1203 	node = pi->root;
1204 	while (node) {
1205 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1206 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1207 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1208 			ice_free_sched_node(pi, node);
1209 			break;
1210 		}
1211 
1212 		if (!node->num_children)
1213 			break;
1214 		node = node->children[0];
1215 	}
1216 }
1217 
1218 /**
1219  * ice_sched_init_port - Initialize scheduler by querying information from FW
1220  * @pi: port info structure for the tree to cleanup
1221  *
1222  * This function is the initial call to find the total number of Tx scheduler
1223  * resources, default topology created by firmware and storing the information
1224  * in SW DB.
1225  */
1226 int ice_sched_init_port(struct ice_port_info *pi)
1227 {
1228 	struct ice_aqc_get_topo_elem *buf;
1229 	struct ice_hw *hw;
1230 	u8 num_branches;
1231 	u16 num_elems;
1232 	int status;
1233 	u8 i, j;
1234 
1235 	if (!pi)
1236 		return -EINVAL;
1237 	hw = pi->hw;
1238 
1239 	/* Query the Default Topology from FW */
1240 	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1241 	if (!buf)
1242 		return -ENOMEM;
1243 
1244 	/* Query default scheduling tree topology */
1245 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1246 				      &num_branches, NULL);
1247 	if (status)
1248 		goto err_init_port;
1249 
1250 	/* num_branches should be between 1-8 */
1251 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1252 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1253 			  num_branches);
1254 		status = -EINVAL;
1255 		goto err_init_port;
1256 	}
1257 
1258 	/* get the number of elements on the default/first branch */
1259 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1260 
1261 	/* num_elems should always be between 1-9 */
1262 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1263 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1264 			  num_elems);
1265 		status = -EINVAL;
1266 		goto err_init_port;
1267 	}
1268 
1269 	/* If the last node is a leaf node then the index of the queue group
1270 	 * layer is two less than the number of elements.
1271 	 */
1272 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1273 	    ICE_AQC_ELEM_TYPE_LEAF)
1274 		pi->last_node_teid =
1275 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1276 	else
1277 		pi->last_node_teid =
1278 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1279 
1280 	/* Insert the Tx Sched root node */
1281 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1282 	if (status)
1283 		goto err_init_port;
1284 
1285 	/* Parse the default tree and cache the information */
1286 	for (i = 0; i < num_branches; i++) {
1287 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1288 
1289 		/* Skip root element as already inserted */
1290 		for (j = 1; j < num_elems; j++) {
1291 			/* update the sw entry point */
1292 			if (buf[0].generic[j].data.elem_type ==
1293 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1294 				hw->sw_entry_point_layer = j;
1295 
1296 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1297 			if (status)
1298 				goto err_init_port;
1299 		}
1300 	}
1301 
1302 	/* Remove the default nodes. */
1303 	if (pi->root)
1304 		ice_sched_rm_dflt_nodes(pi);
1305 
1306 	/* initialize the port for handling the scheduler tree */
1307 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1308 	mutex_init(&pi->sched_lock);
1309 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1310 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1311 
1312 err_init_port:
1313 	if (status && pi->root) {
1314 		ice_free_sched_node(pi, pi->root);
1315 		pi->root = NULL;
1316 	}
1317 
1318 	kfree(buf);
1319 	return status;
1320 }
1321 
1322 /**
1323  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1324  * @hw: pointer to the HW struct
1325  *
1326  * query FW for allocated scheduler resources and store in HW struct
1327  */
1328 int ice_sched_query_res_alloc(struct ice_hw *hw)
1329 {
1330 	struct ice_aqc_query_txsched_res_resp *buf;
1331 	__le16 max_sibl;
1332 	int status = 0;
1333 	u16 i;
1334 
1335 	if (hw->layer_info)
1336 		return status;
1337 
1338 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1339 	if (!buf)
1340 		return -ENOMEM;
1341 
1342 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1343 	if (status)
1344 		goto sched_query_out;
1345 
1346 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1347 	hw->num_tx_sched_phys_layers =
1348 		le16_to_cpu(buf->sched_props.phys_levels);
1349 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1350 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1351 
1352 	/* max sibling group size of current layer refers to the max children
1353 	 * of the below layer node.
1354 	 * layer 1 node max children will be layer 2 max sibling group size
1355 	 * layer 2 node max children will be layer 3 max sibling group size
1356 	 * and so on. This array will be populated from root (index 0) to
1357 	 * qgroup layer 7. Leaf node has no children.
1358 	 */
1359 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1360 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1361 		hw->max_children[i] = le16_to_cpu(max_sibl);
1362 	}
1363 
1364 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1365 				      (hw->num_tx_sched_layers *
1366 				       sizeof(*hw->layer_info)),
1367 				      GFP_KERNEL);
1368 	if (!hw->layer_info) {
1369 		status = -ENOMEM;
1370 		goto sched_query_out;
1371 	}
1372 
1373 sched_query_out:
1374 	devm_kfree(ice_hw_to_dev(hw), buf);
1375 	return status;
1376 }
1377 
1378 /**
1379  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1380  * @hw: pointer to the HW struct
1381  *
1382  * Determine the PSM clock frequency and store in HW struct
1383  */
1384 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1385 {
1386 	u32 val, clk_src;
1387 
1388 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1389 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1390 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1391 
1392 #define PSM_CLK_SRC_367_MHZ 0x0
1393 #define PSM_CLK_SRC_416_MHZ 0x1
1394 #define PSM_CLK_SRC_446_MHZ 0x2
1395 #define PSM_CLK_SRC_390_MHZ 0x3
1396 
1397 	switch (clk_src) {
1398 	case PSM_CLK_SRC_367_MHZ:
1399 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1400 		break;
1401 	case PSM_CLK_SRC_416_MHZ:
1402 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1403 		break;
1404 	case PSM_CLK_SRC_446_MHZ:
1405 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1406 		break;
1407 	case PSM_CLK_SRC_390_MHZ:
1408 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1409 		break;
1410 	default:
1411 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1412 			  clk_src);
1413 		/* fall back to a safe default */
1414 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1415 	}
1416 }
1417 
1418 /**
1419  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1420  * @hw: pointer to the HW struct
1421  * @base: pointer to the base node
1422  * @node: pointer to the node to search
1423  *
1424  * This function checks whether a given node is part of the base node
1425  * subtree or not
1426  */
1427 static bool
1428 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1429 			       struct ice_sched_node *node)
1430 {
1431 	u8 i;
1432 
1433 	for (i = 0; i < base->num_children; i++) {
1434 		struct ice_sched_node *child = base->children[i];
1435 
1436 		if (node == child)
1437 			return true;
1438 
1439 		if (child->tx_sched_layer > node->tx_sched_layer)
1440 			return false;
1441 
1442 		/* this recursion is intentional, and wouldn't
1443 		 * go more than 8 calls
1444 		 */
1445 		if (ice_sched_find_node_in_subtree(hw, child, node))
1446 			return true;
1447 	}
1448 	return false;
1449 }
1450 
1451 /**
1452  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1453  * @pi: port information structure
1454  * @vsi_node: software VSI handle
1455  * @qgrp_node: first queue group node identified for scanning
1456  * @owner: LAN or RDMA
1457  *
1458  * This function retrieves a free LAN or RDMA queue group node by scanning
1459  * qgrp_node and its siblings for the queue group with the fewest number
1460  * of queues currently assigned.
1461  */
1462 static struct ice_sched_node *
1463 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1464 			struct ice_sched_node *vsi_node,
1465 			struct ice_sched_node *qgrp_node, u8 owner)
1466 {
1467 	struct ice_sched_node *min_qgrp;
1468 	u8 min_children;
1469 
1470 	if (!qgrp_node)
1471 		return qgrp_node;
1472 	min_children = qgrp_node->num_children;
1473 	if (!min_children)
1474 		return qgrp_node;
1475 	min_qgrp = qgrp_node;
1476 	/* scan all queue groups until find a node which has less than the
1477 	 * minimum number of children. This way all queue group nodes get
1478 	 * equal number of shares and active. The bandwidth will be equally
1479 	 * distributed across all queues.
1480 	 */
1481 	while (qgrp_node) {
1482 		/* make sure the qgroup node is part of the VSI subtree */
1483 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1484 			if (qgrp_node->num_children < min_children &&
1485 			    qgrp_node->owner == owner) {
1486 				/* replace the new min queue group node */
1487 				min_qgrp = qgrp_node;
1488 				min_children = min_qgrp->num_children;
1489 				/* break if it has no children, */
1490 				if (!min_children)
1491 					break;
1492 			}
1493 		qgrp_node = qgrp_node->sibling;
1494 	}
1495 	return min_qgrp;
1496 }
1497 
1498 /**
1499  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1500  * @pi: port information structure
1501  * @vsi_handle: software VSI handle
1502  * @tc: branch number
1503  * @owner: LAN or RDMA
1504  *
1505  * This function retrieves a free LAN or RDMA queue group node
1506  */
1507 struct ice_sched_node *
1508 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1509 			   u8 owner)
1510 {
1511 	struct ice_sched_node *vsi_node, *qgrp_node;
1512 	struct ice_vsi_ctx *vsi_ctx;
1513 	u16 max_children;
1514 	u8 qgrp_layer;
1515 
1516 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1517 	max_children = pi->hw->max_children[qgrp_layer];
1518 
1519 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1520 	if (!vsi_ctx)
1521 		return NULL;
1522 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1523 	/* validate invalid VSI ID */
1524 	if (!vsi_node)
1525 		return NULL;
1526 
1527 	/* get the first queue group node from VSI sub-tree */
1528 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1529 	while (qgrp_node) {
1530 		/* make sure the qgroup node is part of the VSI subtree */
1531 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1532 			if (qgrp_node->num_children < max_children &&
1533 			    qgrp_node->owner == owner)
1534 				break;
1535 		qgrp_node = qgrp_node->sibling;
1536 	}
1537 
1538 	/* Select the best queue group */
1539 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1540 }
1541 
1542 /**
1543  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1544  * @pi: pointer to the port information structure
1545  * @tc_node: pointer to the TC node
1546  * @vsi_handle: software VSI handle
1547  *
1548  * This function retrieves a VSI node for a given VSI ID from a given
1549  * TC branch
1550  */
1551 static struct ice_sched_node *
1552 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1553 		       u16 vsi_handle)
1554 {
1555 	struct ice_sched_node *node;
1556 	u8 vsi_layer;
1557 
1558 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1559 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1560 
1561 	/* Check whether it already exists */
1562 	while (node) {
1563 		if (node->vsi_handle == vsi_handle)
1564 			return node;
1565 		node = node->sibling;
1566 	}
1567 
1568 	return node;
1569 }
1570 
1571 /**
1572  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1573  * @pi: pointer to the port information structure
1574  * @tc_node: pointer to the TC node
1575  * @agg_id: aggregator ID
1576  *
1577  * This function retrieves an aggregator node for a given aggregator ID from
1578  * a given TC branch
1579  */
1580 static struct ice_sched_node *
1581 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1582 		       u32 agg_id)
1583 {
1584 	struct ice_sched_node *node;
1585 	struct ice_hw *hw = pi->hw;
1586 	u8 agg_layer;
1587 
1588 	if (!hw)
1589 		return NULL;
1590 	agg_layer = ice_sched_get_agg_layer(hw);
1591 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1592 
1593 	/* Check whether it already exists */
1594 	while (node) {
1595 		if (node->agg_id == agg_id)
1596 			return node;
1597 		node = node->sibling;
1598 	}
1599 
1600 	return node;
1601 }
1602 
1603 /**
1604  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1605  * @hw: pointer to the HW struct
1606  * @num_qs: number of queues
1607  * @num_nodes: num nodes array
1608  *
1609  * This function calculates the number of VSI child nodes based on the
1610  * number of queues.
1611  */
1612 static void
1613 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1614 {
1615 	u16 num = num_qs;
1616 	u8 i, qgl, vsil;
1617 
1618 	qgl = ice_sched_get_qgrp_layer(hw);
1619 	vsil = ice_sched_get_vsi_layer(hw);
1620 
1621 	/* calculate num nodes from queue group to VSI layer */
1622 	for (i = qgl; i > vsil; i--) {
1623 		/* round to the next integer if there is a remainder */
1624 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1625 
1626 		/* need at least one node */
1627 		num_nodes[i] = num ? num : 1;
1628 	}
1629 }
1630 
1631 /**
1632  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1633  * @pi: port information structure
1634  * @vsi_handle: software VSI handle
1635  * @tc_node: pointer to the TC node
1636  * @num_nodes: pointer to the num nodes that needs to be added per layer
1637  * @owner: node owner (LAN or RDMA)
1638  *
1639  * This function adds the VSI child nodes to tree. It gets called for
1640  * LAN and RDMA separately.
1641  */
1642 static int
1643 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1644 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1645 			      u8 owner)
1646 {
1647 	struct ice_sched_node *parent, *node;
1648 	struct ice_hw *hw = pi->hw;
1649 	u32 first_node_teid;
1650 	u16 num_added = 0;
1651 	u8 i, qgl, vsil;
1652 
1653 	qgl = ice_sched_get_qgrp_layer(hw);
1654 	vsil = ice_sched_get_vsi_layer(hw);
1655 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1656 	for (i = vsil + 1; i <= qgl; i++) {
1657 		int status;
1658 
1659 		if (!parent)
1660 			return -EIO;
1661 
1662 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1663 						      num_nodes[i],
1664 						      &first_node_teid,
1665 						      &num_added);
1666 		if (status || num_nodes[i] != num_added)
1667 			return -EIO;
1668 
1669 		/* The newly added node can be a new parent for the next
1670 		 * layer nodes
1671 		 */
1672 		if (num_added) {
1673 			parent = ice_sched_find_node_by_teid(tc_node,
1674 							     first_node_teid);
1675 			node = parent;
1676 			while (node) {
1677 				node->owner = owner;
1678 				node = node->sibling;
1679 			}
1680 		} else {
1681 			parent = parent->children[0];
1682 		}
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1690  * @pi: pointer to the port info structure
1691  * @tc_node: pointer to TC node
1692  * @num_nodes: pointer to num nodes array
1693  *
1694  * This function calculates the number of supported nodes needed to add this
1695  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1696  * layers
1697  */
1698 static void
1699 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1700 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1701 {
1702 	struct ice_sched_node *node;
1703 	u8 vsil;
1704 	int i;
1705 
1706 	vsil = ice_sched_get_vsi_layer(pi->hw);
1707 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1708 		/* Add intermediate nodes if TC has no children and
1709 		 * need at least one node for VSI
1710 		 */
1711 		if (!tc_node->num_children || i == vsil) {
1712 			num_nodes[i]++;
1713 		} else {
1714 			/* If intermediate nodes are reached max children
1715 			 * then add a new one.
1716 			 */
1717 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1718 			/* scan all the siblings */
1719 			while (node) {
1720 				if (node->num_children < pi->hw->max_children[i])
1721 					break;
1722 				node = node->sibling;
1723 			}
1724 
1725 			/* tree has one intermediate node to add this new VSI.
1726 			 * So no need to calculate supported nodes for below
1727 			 * layers.
1728 			 */
1729 			if (node)
1730 				break;
1731 			/* all the nodes are full, allocate a new one */
1732 			num_nodes[i]++;
1733 		}
1734 }
1735 
1736 /**
1737  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1738  * @pi: port information structure
1739  * @vsi_handle: software VSI handle
1740  * @tc_node: pointer to TC node
1741  * @num_nodes: pointer to num nodes array
1742  *
1743  * This function adds the VSI supported nodes into Tx tree including the
1744  * VSI, its parent and intermediate nodes in below layers
1745  */
1746 static int
1747 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1748 				struct ice_sched_node *tc_node, u16 *num_nodes)
1749 {
1750 	struct ice_sched_node *parent = tc_node;
1751 	u32 first_node_teid;
1752 	u16 num_added = 0;
1753 	u8 i, vsil;
1754 
1755 	if (!pi)
1756 		return -EINVAL;
1757 
1758 	vsil = ice_sched_get_vsi_layer(pi->hw);
1759 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1760 		int status;
1761 
1762 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1763 						      i, num_nodes[i],
1764 						      &first_node_teid,
1765 						      &num_added);
1766 		if (status || num_nodes[i] != num_added)
1767 			return -EIO;
1768 
1769 		/* The newly added node can be a new parent for the next
1770 		 * layer nodes
1771 		 */
1772 		if (num_added)
1773 			parent = ice_sched_find_node_by_teid(tc_node,
1774 							     first_node_teid);
1775 		else
1776 			parent = parent->children[0];
1777 
1778 		if (!parent)
1779 			return -EIO;
1780 
1781 		if (i == vsil)
1782 			parent->vsi_handle = vsi_handle;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 /**
1789  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1790  * @pi: port information structure
1791  * @vsi_handle: software VSI handle
1792  * @tc: TC number
1793  *
1794  * This function adds a new VSI into scheduler tree
1795  */
1796 static int
1797 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1798 {
1799 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1800 	struct ice_sched_node *tc_node;
1801 
1802 	tc_node = ice_sched_get_tc_node(pi, tc);
1803 	if (!tc_node)
1804 		return -EINVAL;
1805 
1806 	/* calculate number of supported nodes needed for this VSI */
1807 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1808 
1809 	/* add VSI supported nodes to TC subtree */
1810 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1811 					       num_nodes);
1812 }
1813 
1814 /**
1815  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1816  * @pi: port information structure
1817  * @vsi_handle: software VSI handle
1818  * @tc: TC number
1819  * @new_numqs: new number of max queues
1820  * @owner: owner of this subtree
1821  *
1822  * This function updates the VSI child nodes based on the number of queues
1823  */
1824 static int
1825 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1826 				 u8 tc, u16 new_numqs, u8 owner)
1827 {
1828 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1829 	struct ice_sched_node *vsi_node;
1830 	struct ice_sched_node *tc_node;
1831 	struct ice_vsi_ctx *vsi_ctx;
1832 	struct ice_hw *hw = pi->hw;
1833 	u16 prev_numqs;
1834 	int status = 0;
1835 
1836 	tc_node = ice_sched_get_tc_node(pi, tc);
1837 	if (!tc_node)
1838 		return -EIO;
1839 
1840 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1841 	if (!vsi_node)
1842 		return -EIO;
1843 
1844 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1845 	if (!vsi_ctx)
1846 		return -EINVAL;
1847 
1848 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1849 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1850 	else
1851 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1852 	/* num queues are not changed or less than the previous number */
1853 	if (new_numqs <= prev_numqs)
1854 		return status;
1855 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1856 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1857 		if (status)
1858 			return status;
1859 	} else {
1860 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1861 		if (status)
1862 			return status;
1863 	}
1864 
1865 	if (new_numqs)
1866 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1867 	/* Keep the max number of queue configuration all the time. Update the
1868 	 * tree only if number of queues > previous number of queues. This may
1869 	 * leave some extra nodes in the tree if number of queues < previous
1870 	 * number but that wouldn't harm anything. Removing those extra nodes
1871 	 * may complicate the code if those nodes are part of SRL or
1872 	 * individually rate limited.
1873 	 */
1874 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1875 					       new_num_nodes, owner);
1876 	if (status)
1877 		return status;
1878 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1879 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1880 	else
1881 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  * ice_sched_cfg_vsi - configure the new/existing VSI
1888  * @pi: port information structure
1889  * @vsi_handle: software VSI handle
1890  * @tc: TC number
1891  * @maxqs: max number of queues
1892  * @owner: LAN or RDMA
1893  * @enable: TC enabled or disabled
1894  *
1895  * This function adds/updates VSI nodes based on the number of queues. If TC is
1896  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1897  * disabled then suspend the VSI if it is not already.
1898  */
1899 int
1900 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1901 		  u8 owner, bool enable)
1902 {
1903 	struct ice_sched_node *vsi_node, *tc_node;
1904 	struct ice_vsi_ctx *vsi_ctx;
1905 	struct ice_hw *hw = pi->hw;
1906 	int status = 0;
1907 
1908 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1909 	tc_node = ice_sched_get_tc_node(pi, tc);
1910 	if (!tc_node)
1911 		return -EINVAL;
1912 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1913 	if (!vsi_ctx)
1914 		return -EINVAL;
1915 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1916 
1917 	/* suspend the VSI if TC is not enabled */
1918 	if (!enable) {
1919 		if (vsi_node && vsi_node->in_use) {
1920 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1921 
1922 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1923 								true);
1924 			if (!status)
1925 				vsi_node->in_use = false;
1926 		}
1927 		return status;
1928 	}
1929 
1930 	/* TC is enabled, if it is a new VSI then add it to the tree */
1931 	if (!vsi_node) {
1932 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1933 		if (status)
1934 			return status;
1935 
1936 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1937 		if (!vsi_node)
1938 			return -EIO;
1939 
1940 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1941 		vsi_node->in_use = true;
1942 		/* invalidate the max queues whenever VSI gets added first time
1943 		 * into the scheduler tree (boot or after reset). We need to
1944 		 * recreate the child nodes all the time in these cases.
1945 		 */
1946 		vsi_ctx->sched.max_lanq[tc] = 0;
1947 		vsi_ctx->sched.max_rdmaq[tc] = 0;
1948 	}
1949 
1950 	/* update the VSI child nodes */
1951 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1952 						  owner);
1953 	if (status)
1954 		return status;
1955 
1956 	/* TC is enabled, resume the VSI if it is in the suspend state */
1957 	if (!vsi_node->in_use) {
1958 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1959 
1960 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1961 		if (!status)
1962 			vsi_node->in_use = true;
1963 	}
1964 
1965 	return status;
1966 }
1967 
1968 /**
1969  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1970  * @pi: port information structure
1971  * @vsi_handle: software VSI handle
1972  *
1973  * This function removes single aggregator VSI info entry from
1974  * aggregator list.
1975  */
1976 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1977 {
1978 	struct ice_sched_agg_info *agg_info;
1979 	struct ice_sched_agg_info *atmp;
1980 
1981 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1982 				 list_entry) {
1983 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1984 		struct ice_sched_agg_vsi_info *vtmp;
1985 
1986 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1987 					 &agg_info->agg_vsi_list, list_entry)
1988 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1989 				list_del(&agg_vsi_info->list_entry);
1990 				devm_kfree(ice_hw_to_dev(pi->hw),
1991 					   agg_vsi_info);
1992 				return;
1993 			}
1994 	}
1995 }
1996 
1997 /**
1998  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1999  * @node: pointer to the sub-tree node
2000  *
2001  * This function checks for a leaf node presence in a given sub-tree node.
2002  */
2003 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2004 {
2005 	u8 i;
2006 
2007 	for (i = 0; i < node->num_children; i++)
2008 		if (ice_sched_is_leaf_node_present(node->children[i]))
2009 			return true;
2010 	/* check for a leaf node */
2011 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2012 }
2013 
2014 /**
2015  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2016  * @pi: port information structure
2017  * @vsi_handle: software VSI handle
2018  * @owner: LAN or RDMA
2019  *
2020  * This function removes the VSI and its LAN or RDMA children nodes from the
2021  * scheduler tree.
2022  */
2023 static int
2024 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2025 {
2026 	struct ice_vsi_ctx *vsi_ctx;
2027 	int status = -EINVAL;
2028 	u8 i;
2029 
2030 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2031 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2032 		return status;
2033 	mutex_lock(&pi->sched_lock);
2034 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2035 	if (!vsi_ctx)
2036 		goto exit_sched_rm_vsi_cfg;
2037 
2038 	ice_for_each_traffic_class(i) {
2039 		struct ice_sched_node *vsi_node, *tc_node;
2040 		u8 j = 0;
2041 
2042 		tc_node = ice_sched_get_tc_node(pi, i);
2043 		if (!tc_node)
2044 			continue;
2045 
2046 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2047 		if (!vsi_node)
2048 			continue;
2049 
2050 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2051 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2052 			status = -EBUSY;
2053 			goto exit_sched_rm_vsi_cfg;
2054 		}
2055 		while (j < vsi_node->num_children) {
2056 			if (vsi_node->children[j]->owner == owner) {
2057 				ice_free_sched_node(pi, vsi_node->children[j]);
2058 
2059 				/* reset the counter again since the num
2060 				 * children will be updated after node removal
2061 				 */
2062 				j = 0;
2063 			} else {
2064 				j++;
2065 			}
2066 		}
2067 		/* remove the VSI if it has no children */
2068 		if (!vsi_node->num_children) {
2069 			ice_free_sched_node(pi, vsi_node);
2070 			vsi_ctx->sched.vsi_node[i] = NULL;
2071 
2072 			/* clean up aggregator related VSI info if any */
2073 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2074 		}
2075 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2076 			vsi_ctx->sched.max_lanq[i] = 0;
2077 		else
2078 			vsi_ctx->sched.max_rdmaq[i] = 0;
2079 	}
2080 	status = 0;
2081 
2082 exit_sched_rm_vsi_cfg:
2083 	mutex_unlock(&pi->sched_lock);
2084 	return status;
2085 }
2086 
2087 /**
2088  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2089  * @pi: port information structure
2090  * @vsi_handle: software VSI handle
2091  *
2092  * This function clears the VSI and its LAN children nodes from scheduler tree
2093  * for all TCs.
2094  */
2095 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2096 {
2097 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2098 }
2099 
2100 /**
2101  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2102  * @pi: port information structure
2103  * @vsi_handle: software VSI handle
2104  *
2105  * This function clears the VSI and its RDMA children nodes from scheduler tree
2106  * for all TCs.
2107  */
2108 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2109 {
2110 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2111 }
2112 
2113 /**
2114  * ice_get_agg_info - get the aggregator ID
2115  * @hw: pointer to the hardware structure
2116  * @agg_id: aggregator ID
2117  *
2118  * This function validates aggregator ID. The function returns info if
2119  * aggregator ID is present in list otherwise it returns null.
2120  */
2121 static struct ice_sched_agg_info *
2122 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2123 {
2124 	struct ice_sched_agg_info *agg_info;
2125 
2126 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2127 		if (agg_info->agg_id == agg_id)
2128 			return agg_info;
2129 
2130 	return NULL;
2131 }
2132 
2133 /**
2134  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2135  * @hw: pointer to the HW struct
2136  * @node: pointer to a child node
2137  * @num_nodes: num nodes count array
2138  *
2139  * This function walks through the aggregator subtree to find a free parent
2140  * node
2141  */
2142 static struct ice_sched_node *
2143 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2144 			      u16 *num_nodes)
2145 {
2146 	u8 l = node->tx_sched_layer;
2147 	u8 vsil, i;
2148 
2149 	vsil = ice_sched_get_vsi_layer(hw);
2150 
2151 	/* Is it VSI parent layer ? */
2152 	if (l == vsil - 1)
2153 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2154 
2155 	/* We have intermediate nodes. Let's walk through the subtree. If the
2156 	 * intermediate node has space to add a new node then clear the count
2157 	 */
2158 	if (node->num_children < hw->max_children[l])
2159 		num_nodes[l] = 0;
2160 	/* The below recursive call is intentional and wouldn't go more than
2161 	 * 2 or 3 iterations.
2162 	 */
2163 
2164 	for (i = 0; i < node->num_children; i++) {
2165 		struct ice_sched_node *parent;
2166 
2167 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2168 						       num_nodes);
2169 		if (parent)
2170 			return parent;
2171 	}
2172 
2173 	return NULL;
2174 }
2175 
2176 /**
2177  * ice_sched_update_parent - update the new parent in SW DB
2178  * @new_parent: pointer to a new parent node
2179  * @node: pointer to a child node
2180  *
2181  * This function removes the child from the old parent and adds it to a new
2182  * parent
2183  */
2184 void
2185 ice_sched_update_parent(struct ice_sched_node *new_parent,
2186 			struct ice_sched_node *node)
2187 {
2188 	struct ice_sched_node *old_parent;
2189 	u8 i, j;
2190 
2191 	old_parent = node->parent;
2192 
2193 	/* update the old parent children */
2194 	for (i = 0; i < old_parent->num_children; i++)
2195 		if (old_parent->children[i] == node) {
2196 			for (j = i + 1; j < old_parent->num_children; j++)
2197 				old_parent->children[j - 1] =
2198 					old_parent->children[j];
2199 			old_parent->num_children--;
2200 			break;
2201 		}
2202 
2203 	/* now move the node to a new parent */
2204 	new_parent->children[new_parent->num_children++] = node;
2205 	node->parent = new_parent;
2206 	node->info.parent_teid = new_parent->info.node_teid;
2207 }
2208 
2209 /**
2210  * ice_sched_move_nodes - move child nodes to a given parent
2211  * @pi: port information structure
2212  * @parent: pointer to parent node
2213  * @num_items: number of child nodes to be moved
2214  * @list: pointer to child node teids
2215  *
2216  * This function move the child nodes to a given parent.
2217  */
2218 int
2219 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2220 		     u16 num_items, u32 *list)
2221 {
2222 	struct ice_aqc_move_elem *buf;
2223 	struct ice_sched_node *node;
2224 	u16 i, grps_movd = 0;
2225 	struct ice_hw *hw;
2226 	int status = 0;
2227 	u16 buf_len;
2228 
2229 	hw = pi->hw;
2230 
2231 	if (!parent || !num_items)
2232 		return -EINVAL;
2233 
2234 	/* Does parent have enough space */
2235 	if (parent->num_children + num_items >
2236 	    hw->max_children[parent->tx_sched_layer])
2237 		return -ENOSPC;
2238 
2239 	buf_len = struct_size(buf, teid, 1);
2240 	buf = kzalloc(buf_len, GFP_KERNEL);
2241 	if (!buf)
2242 		return -ENOMEM;
2243 
2244 	for (i = 0; i < num_items; i++) {
2245 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2246 		if (!node) {
2247 			status = -EINVAL;
2248 			goto move_err_exit;
2249 		}
2250 
2251 		buf->hdr.src_parent_teid = node->info.parent_teid;
2252 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2253 		buf->teid[0] = node->info.node_teid;
2254 		buf->hdr.num_elems = cpu_to_le16(1);
2255 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2256 						 &grps_movd, NULL);
2257 		if (status && grps_movd != 1) {
2258 			status = -EIO;
2259 			goto move_err_exit;
2260 		}
2261 
2262 		/* update the SW DB */
2263 		ice_sched_update_parent(parent, node);
2264 	}
2265 
2266 move_err_exit:
2267 	kfree(buf);
2268 	return status;
2269 }
2270 
2271 /**
2272  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2273  * @pi: port information structure
2274  * @vsi_handle: software VSI handle
2275  * @agg_id: aggregator ID
2276  * @tc: TC number
2277  *
2278  * This function moves a VSI to an aggregator node or its subtree.
2279  * Intermediate nodes may be created if required.
2280  */
2281 static int
2282 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2283 			  u8 tc)
2284 {
2285 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2286 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2287 	u32 first_node_teid, vsi_teid;
2288 	u16 num_nodes_added;
2289 	u8 aggl, vsil, i;
2290 	int status;
2291 
2292 	tc_node = ice_sched_get_tc_node(pi, tc);
2293 	if (!tc_node)
2294 		return -EIO;
2295 
2296 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2297 	if (!agg_node)
2298 		return -ENOENT;
2299 
2300 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2301 	if (!vsi_node)
2302 		return -ENOENT;
2303 
2304 	/* Is this VSI already part of given aggregator? */
2305 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2306 		return 0;
2307 
2308 	aggl = ice_sched_get_agg_layer(pi->hw);
2309 	vsil = ice_sched_get_vsi_layer(pi->hw);
2310 
2311 	/* set intermediate node count to 1 between aggregator and VSI layers */
2312 	for (i = aggl + 1; i < vsil; i++)
2313 		num_nodes[i] = 1;
2314 
2315 	/* Check if the aggregator subtree has any free node to add the VSI */
2316 	for (i = 0; i < agg_node->num_children; i++) {
2317 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2318 						       agg_node->children[i],
2319 						       num_nodes);
2320 		if (parent)
2321 			goto move_nodes;
2322 	}
2323 
2324 	/* add new nodes */
2325 	parent = agg_node;
2326 	for (i = aggl + 1; i < vsil; i++) {
2327 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2328 						      num_nodes[i],
2329 						      &first_node_teid,
2330 						      &num_nodes_added);
2331 		if (status || num_nodes[i] != num_nodes_added)
2332 			return -EIO;
2333 
2334 		/* The newly added node can be a new parent for the next
2335 		 * layer nodes
2336 		 */
2337 		if (num_nodes_added)
2338 			parent = ice_sched_find_node_by_teid(tc_node,
2339 							     first_node_teid);
2340 		else
2341 			parent = parent->children[0];
2342 
2343 		if (!parent)
2344 			return -EIO;
2345 	}
2346 
2347 move_nodes:
2348 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2349 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2350 }
2351 
2352 /**
2353  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2354  * @pi: port information structure
2355  * @agg_info: aggregator info
2356  * @tc: traffic class number
2357  * @rm_vsi_info: true or false
2358  *
2359  * This function move all the VSI(s) to the default aggregator and delete
2360  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2361  * caller holds the scheduler lock.
2362  */
2363 static int
2364 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2365 			     struct ice_sched_agg_info *agg_info, u8 tc,
2366 			     bool rm_vsi_info)
2367 {
2368 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2369 	struct ice_sched_agg_vsi_info *tmp;
2370 	int status = 0;
2371 
2372 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2373 				 list_entry) {
2374 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2375 
2376 		/* Move VSI to default aggregator */
2377 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2378 			continue;
2379 
2380 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2381 						   ICE_DFLT_AGG_ID, tc);
2382 		if (status)
2383 			break;
2384 
2385 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2386 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2387 			list_del(&agg_vsi_info->list_entry);
2388 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2389 		}
2390 	}
2391 
2392 	return status;
2393 }
2394 
2395 /**
2396  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2397  * @pi: port information structure
2398  * @node: node pointer
2399  *
2400  * This function checks whether the aggregator is attached with any VSI or not.
2401  */
2402 static bool
2403 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2404 {
2405 	u8 vsil, i;
2406 
2407 	vsil = ice_sched_get_vsi_layer(pi->hw);
2408 	if (node->tx_sched_layer < vsil - 1) {
2409 		for (i = 0; i < node->num_children; i++)
2410 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2411 				return true;
2412 		return false;
2413 	} else {
2414 		return node->num_children ? true : false;
2415 	}
2416 }
2417 
2418 /**
2419  * ice_sched_rm_agg_cfg - remove the aggregator node
2420  * @pi: port information structure
2421  * @agg_id: aggregator ID
2422  * @tc: TC number
2423  *
2424  * This function removes the aggregator node and intermediate nodes if any
2425  * from the given TC
2426  */
2427 static int
2428 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2429 {
2430 	struct ice_sched_node *tc_node, *agg_node;
2431 	struct ice_hw *hw = pi->hw;
2432 
2433 	tc_node = ice_sched_get_tc_node(pi, tc);
2434 	if (!tc_node)
2435 		return -EIO;
2436 
2437 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2438 	if (!agg_node)
2439 		return -ENOENT;
2440 
2441 	/* Can't remove the aggregator node if it has children */
2442 	if (ice_sched_is_agg_inuse(pi, agg_node))
2443 		return -EBUSY;
2444 
2445 	/* need to remove the whole subtree if aggregator node is the
2446 	 * only child.
2447 	 */
2448 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2449 		struct ice_sched_node *parent = agg_node->parent;
2450 
2451 		if (!parent)
2452 			return -EIO;
2453 
2454 		if (parent->num_children > 1)
2455 			break;
2456 
2457 		agg_node = parent;
2458 	}
2459 
2460 	ice_free_sched_node(pi, agg_node);
2461 	return 0;
2462 }
2463 
2464 /**
2465  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2466  * @pi: port information structure
2467  * @agg_info: aggregator ID
2468  * @tc: TC number
2469  * @rm_vsi_info: bool value true or false
2470  *
2471  * This function removes aggregator reference to VSI of given TC. It removes
2472  * the aggregator configuration completely for requested TC. The caller needs
2473  * to hold the scheduler lock.
2474  */
2475 static int
2476 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2477 		  u8 tc, bool rm_vsi_info)
2478 {
2479 	int status = 0;
2480 
2481 	/* If nothing to remove - return success */
2482 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2483 		goto exit_rm_agg_cfg_tc;
2484 
2485 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2486 	if (status)
2487 		goto exit_rm_agg_cfg_tc;
2488 
2489 	/* Delete aggregator node(s) */
2490 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2491 	if (status)
2492 		goto exit_rm_agg_cfg_tc;
2493 
2494 	clear_bit(tc, agg_info->tc_bitmap);
2495 exit_rm_agg_cfg_tc:
2496 	return status;
2497 }
2498 
2499 /**
2500  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2501  * @pi: port information structure
2502  * @agg_id: aggregator ID
2503  * @tc_bitmap: 8 bits TC bitmap
2504  *
2505  * Save aggregator TC bitmap. This function needs to be called with scheduler
2506  * lock held.
2507  */
2508 static int
2509 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2510 		       unsigned long *tc_bitmap)
2511 {
2512 	struct ice_sched_agg_info *agg_info;
2513 
2514 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2515 	if (!agg_info)
2516 		return -EINVAL;
2517 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2518 		    ICE_MAX_TRAFFIC_CLASS);
2519 	return 0;
2520 }
2521 
2522 /**
2523  * ice_sched_add_agg_cfg - create an aggregator node
2524  * @pi: port information structure
2525  * @agg_id: aggregator ID
2526  * @tc: TC number
2527  *
2528  * This function creates an aggregator node and intermediate nodes if required
2529  * for the given TC
2530  */
2531 static int
2532 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2533 {
2534 	struct ice_sched_node *parent, *agg_node, *tc_node;
2535 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2536 	struct ice_hw *hw = pi->hw;
2537 	u32 first_node_teid;
2538 	u16 num_nodes_added;
2539 	int status = 0;
2540 	u8 i, aggl;
2541 
2542 	tc_node = ice_sched_get_tc_node(pi, tc);
2543 	if (!tc_node)
2544 		return -EIO;
2545 
2546 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2547 	/* Does Agg node already exist ? */
2548 	if (agg_node)
2549 		return status;
2550 
2551 	aggl = ice_sched_get_agg_layer(hw);
2552 
2553 	/* need one node in Agg layer */
2554 	num_nodes[aggl] = 1;
2555 
2556 	/* Check whether the intermediate nodes have space to add the
2557 	 * new aggregator. If they are full, then SW needs to allocate a new
2558 	 * intermediate node on those layers
2559 	 */
2560 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2561 		parent = ice_sched_get_first_node(pi, tc_node, i);
2562 
2563 		/* scan all the siblings */
2564 		while (parent) {
2565 			if (parent->num_children < hw->max_children[i])
2566 				break;
2567 			parent = parent->sibling;
2568 		}
2569 
2570 		/* all the nodes are full, reserve one for this layer */
2571 		if (!parent)
2572 			num_nodes[i]++;
2573 	}
2574 
2575 	/* add the aggregator node */
2576 	parent = tc_node;
2577 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2578 		if (!parent)
2579 			return -EIO;
2580 
2581 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2582 						      num_nodes[i],
2583 						      &first_node_teid,
2584 						      &num_nodes_added);
2585 		if (status || num_nodes[i] != num_nodes_added)
2586 			return -EIO;
2587 
2588 		/* The newly added node can be a new parent for the next
2589 		 * layer nodes
2590 		 */
2591 		if (num_nodes_added) {
2592 			parent = ice_sched_find_node_by_teid(tc_node,
2593 							     first_node_teid);
2594 			/* register aggregator ID with the aggregator node */
2595 			if (parent && i == aggl)
2596 				parent->agg_id = agg_id;
2597 		} else {
2598 			parent = parent->children[0];
2599 		}
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 /**
2606  * ice_sched_cfg_agg - configure aggregator node
2607  * @pi: port information structure
2608  * @agg_id: aggregator ID
2609  * @agg_type: aggregator type queue, VSI, or aggregator group
2610  * @tc_bitmap: bits TC bitmap
2611  *
2612  * It registers a unique aggregator node into scheduler services. It
2613  * allows a user to register with a unique ID to track it's resources.
2614  * The aggregator type determines if this is a queue group, VSI group
2615  * or aggregator group. It then creates the aggregator node(s) for requested
2616  * TC(s) or removes an existing aggregator node including its configuration
2617  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2618  * resources and remove aggregator ID.
2619  * This function needs to be called with scheduler lock held.
2620  */
2621 static int
2622 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2623 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2624 {
2625 	struct ice_sched_agg_info *agg_info;
2626 	struct ice_hw *hw = pi->hw;
2627 	int status = 0;
2628 	u8 tc;
2629 
2630 	agg_info = ice_get_agg_info(hw, agg_id);
2631 	if (!agg_info) {
2632 		/* Create new entry for new aggregator ID */
2633 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2634 					GFP_KERNEL);
2635 		if (!agg_info)
2636 			return -ENOMEM;
2637 
2638 		agg_info->agg_id = agg_id;
2639 		agg_info->agg_type = agg_type;
2640 		agg_info->tc_bitmap[0] = 0;
2641 
2642 		/* Initialize the aggregator VSI list head */
2643 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2644 
2645 		/* Add new entry in aggregator list */
2646 		list_add(&agg_info->list_entry, &hw->agg_list);
2647 	}
2648 	/* Create aggregator node(s) for requested TC(s) */
2649 	ice_for_each_traffic_class(tc) {
2650 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2651 			/* Delete aggregator cfg TC if it exists previously */
2652 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2653 			if (status)
2654 				break;
2655 			continue;
2656 		}
2657 
2658 		/* Check if aggregator node for TC already exists */
2659 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2660 			continue;
2661 
2662 		/* Create new aggregator node for TC */
2663 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2664 		if (status)
2665 			break;
2666 
2667 		/* Save aggregator node's TC information */
2668 		set_bit(tc, agg_info->tc_bitmap);
2669 	}
2670 
2671 	return status;
2672 }
2673 
2674 /**
2675  * ice_cfg_agg - config aggregator node
2676  * @pi: port information structure
2677  * @agg_id: aggregator ID
2678  * @agg_type: aggregator type queue, VSI, or aggregator group
2679  * @tc_bitmap: bits TC bitmap
2680  *
2681  * This function configures aggregator node(s).
2682  */
2683 int
2684 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2685 	    u8 tc_bitmap)
2686 {
2687 	unsigned long bitmap = tc_bitmap;
2688 	int status;
2689 
2690 	mutex_lock(&pi->sched_lock);
2691 	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2692 	if (!status)
2693 		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2694 	mutex_unlock(&pi->sched_lock);
2695 	return status;
2696 }
2697 
2698 /**
2699  * ice_get_agg_vsi_info - get the aggregator ID
2700  * @agg_info: aggregator info
2701  * @vsi_handle: software VSI handle
2702  *
2703  * The function returns aggregator VSI info based on VSI handle. This function
2704  * needs to be called with scheduler lock held.
2705  */
2706 static struct ice_sched_agg_vsi_info *
2707 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2708 {
2709 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2710 
2711 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2712 		if (agg_vsi_info->vsi_handle == vsi_handle)
2713 			return agg_vsi_info;
2714 
2715 	return NULL;
2716 }
2717 
2718 /**
2719  * ice_get_vsi_agg_info - get the aggregator info of VSI
2720  * @hw: pointer to the hardware structure
2721  * @vsi_handle: Sw VSI handle
2722  *
2723  * The function returns aggregator info of VSI represented via vsi_handle. The
2724  * VSI has in this case a different aggregator than the default one. This
2725  * function needs to be called with scheduler lock held.
2726  */
2727 static struct ice_sched_agg_info *
2728 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2729 {
2730 	struct ice_sched_agg_info *agg_info;
2731 
2732 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2733 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2734 
2735 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2736 		if (agg_vsi_info)
2737 			return agg_info;
2738 	}
2739 	return NULL;
2740 }
2741 
2742 /**
2743  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2744  * @pi: port information structure
2745  * @agg_id: aggregator ID
2746  * @vsi_handle: software VSI handle
2747  * @tc_bitmap: TC bitmap of enabled TC(s)
2748  *
2749  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2750  * lock held.
2751  */
2752 static int
2753 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2754 			   unsigned long *tc_bitmap)
2755 {
2756 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2757 	struct ice_sched_agg_info *agg_info;
2758 
2759 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2760 	if (!agg_info)
2761 		return -EINVAL;
2762 	/* check if entry already exist */
2763 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2764 	if (!agg_vsi_info)
2765 		return -EINVAL;
2766 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2767 		    ICE_MAX_TRAFFIC_CLASS);
2768 	return 0;
2769 }
2770 
2771 /**
2772  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2773  * @pi: port information structure
2774  * @agg_id: aggregator ID
2775  * @vsi_handle: software VSI handle
2776  * @tc_bitmap: TC bitmap of enabled TC(s)
2777  *
2778  * This function moves VSI to a new or default aggregator node. If VSI is
2779  * already associated to the aggregator node then no operation is performed on
2780  * the tree. This function needs to be called with scheduler lock held.
2781  */
2782 static int
2783 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2784 			   u16 vsi_handle, unsigned long *tc_bitmap)
2785 {
2786 	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2787 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2788 	struct ice_hw *hw = pi->hw;
2789 	int status = 0;
2790 	u8 tc;
2791 
2792 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2793 		return -EINVAL;
2794 	agg_info = ice_get_agg_info(hw, agg_id);
2795 	if (!agg_info)
2796 		return -EINVAL;
2797 	/* If the VSI is already part of another aggregator then update
2798 	 * its VSI info list
2799 	 */
2800 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2801 	if (old_agg_info && old_agg_info != agg_info) {
2802 		struct ice_sched_agg_vsi_info *vtmp;
2803 
2804 		list_for_each_entry_safe(iter, vtmp,
2805 					 &old_agg_info->agg_vsi_list,
2806 					 list_entry)
2807 			if (iter->vsi_handle == vsi_handle) {
2808 				old_agg_vsi_info = iter;
2809 				break;
2810 			}
2811 	}
2812 
2813 	/* check if entry already exist */
2814 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2815 	if (!agg_vsi_info) {
2816 		/* Create new entry for VSI under aggregator list */
2817 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2818 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2819 		if (!agg_vsi_info)
2820 			return -EINVAL;
2821 
2822 		/* add VSI ID into the aggregator list */
2823 		agg_vsi_info->vsi_handle = vsi_handle;
2824 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2825 	}
2826 	/* Move VSI node to new aggregator node for requested TC(s) */
2827 	ice_for_each_traffic_class(tc) {
2828 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2829 			continue;
2830 
2831 		/* Move VSI to new aggregator */
2832 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2833 		if (status)
2834 			break;
2835 
2836 		set_bit(tc, agg_vsi_info->tc_bitmap);
2837 		if (old_agg_vsi_info)
2838 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2839 	}
2840 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2841 		list_del(&old_agg_vsi_info->list_entry);
2842 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2843 	}
2844 	return status;
2845 }
2846 
2847 /**
2848  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2849  * @pi: port information structure
2850  *
2851  * This function removes unused rate limit profiles from the HW and
2852  * SW DB. The caller needs to hold scheduler lock.
2853  */
2854 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2855 {
2856 	u16 ln;
2857 
2858 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2859 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2860 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2861 
2862 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2863 					 &pi->rl_prof_list[ln], list_entry) {
2864 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2865 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2866 		}
2867 	}
2868 }
2869 
2870 /**
2871  * ice_sched_update_elem - update element
2872  * @hw: pointer to the HW struct
2873  * @node: pointer to node
2874  * @info: node info to update
2875  *
2876  * Update the HW DB, and local SW DB of node. Update the scheduling
2877  * parameters of node from argument info data buffer (Info->data buf) and
2878  * returns success or error on config sched element failure. The caller
2879  * needs to hold scheduler lock.
2880  */
2881 static int
2882 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2883 		      struct ice_aqc_txsched_elem_data *info)
2884 {
2885 	struct ice_aqc_txsched_elem_data buf;
2886 	u16 elem_cfgd = 0;
2887 	u16 num_elems = 1;
2888 	int status;
2889 
2890 	buf = *info;
2891 	/* Parent TEID is reserved field in this aq call */
2892 	buf.parent_teid = 0;
2893 	/* Element type is reserved field in this aq call */
2894 	buf.data.elem_type = 0;
2895 	/* Flags is reserved field in this aq call */
2896 	buf.data.flags = 0;
2897 
2898 	/* Update HW DB */
2899 	/* Configure element node */
2900 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2901 					&elem_cfgd, NULL);
2902 	if (status || elem_cfgd != num_elems) {
2903 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2904 		return -EIO;
2905 	}
2906 
2907 	/* Config success case */
2908 	/* Now update local SW DB */
2909 	/* Only copy the data portion of info buffer */
2910 	node->info.data = info->data;
2911 	return status;
2912 }
2913 
2914 /**
2915  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2916  * @hw: pointer to the HW struct
2917  * @node: sched node to configure
2918  * @rl_type: rate limit type CIR, EIR, or shared
2919  * @bw_alloc: BW weight/allocation
2920  *
2921  * This function configures node element's BW allocation.
2922  */
2923 static int
2924 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2925 			    enum ice_rl_type rl_type, u16 bw_alloc)
2926 {
2927 	struct ice_aqc_txsched_elem_data buf;
2928 	struct ice_aqc_txsched_elem *data;
2929 
2930 	buf = node->info;
2931 	data = &buf.data;
2932 	if (rl_type == ICE_MIN_BW) {
2933 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2934 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2935 	} else if (rl_type == ICE_MAX_BW) {
2936 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2937 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2938 	} else {
2939 		return -EINVAL;
2940 	}
2941 
2942 	/* Configure element */
2943 	return ice_sched_update_elem(hw, node, &buf);
2944 }
2945 
2946 /**
2947  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2948  * @pi: port information structure
2949  * @agg_id: aggregator ID
2950  * @vsi_handle: software VSI handle
2951  * @tc_bitmap: TC bitmap of enabled TC(s)
2952  *
2953  * Move or associate VSI to a new or default aggregator node.
2954  */
2955 int
2956 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2957 		    u8 tc_bitmap)
2958 {
2959 	unsigned long bitmap = tc_bitmap;
2960 	int status;
2961 
2962 	mutex_lock(&pi->sched_lock);
2963 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2964 					    (unsigned long *)&bitmap);
2965 	if (!status)
2966 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2967 						    (unsigned long *)&bitmap);
2968 	mutex_unlock(&pi->sched_lock);
2969 	return status;
2970 }
2971 
2972 /**
2973  * ice_set_clear_cir_bw - set or clear CIR BW
2974  * @bw_t_info: bandwidth type information structure
2975  * @bw: bandwidth in Kbps - Kilo bits per sec
2976  *
2977  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2978  */
2979 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2980 {
2981 	if (bw == ICE_SCHED_DFLT_BW) {
2982 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2983 		bw_t_info->cir_bw.bw = 0;
2984 	} else {
2985 		/* Save type of BW information */
2986 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2987 		bw_t_info->cir_bw.bw = bw;
2988 	}
2989 }
2990 
2991 /**
2992  * ice_set_clear_eir_bw - set or clear EIR BW
2993  * @bw_t_info: bandwidth type information structure
2994  * @bw: bandwidth in Kbps - Kilo bits per sec
2995  *
2996  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2997  */
2998 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2999 {
3000 	if (bw == ICE_SCHED_DFLT_BW) {
3001 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3002 		bw_t_info->eir_bw.bw = 0;
3003 	} else {
3004 		/* EIR BW and Shared BW profiles are mutually exclusive and
3005 		 * hence only one of them may be set for any given element.
3006 		 * First clear earlier saved shared BW information.
3007 		 */
3008 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3009 		bw_t_info->shared_bw = 0;
3010 		/* save EIR BW information */
3011 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3012 		bw_t_info->eir_bw.bw = bw;
3013 	}
3014 }
3015 
3016 /**
3017  * ice_set_clear_shared_bw - set or clear shared BW
3018  * @bw_t_info: bandwidth type information structure
3019  * @bw: bandwidth in Kbps - Kilo bits per sec
3020  *
3021  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3022  */
3023 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3024 {
3025 	if (bw == ICE_SCHED_DFLT_BW) {
3026 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3027 		bw_t_info->shared_bw = 0;
3028 	} else {
3029 		/* EIR BW and Shared BW profiles are mutually exclusive and
3030 		 * hence only one of them may be set for any given element.
3031 		 * First clear earlier saved EIR BW information.
3032 		 */
3033 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3034 		bw_t_info->eir_bw.bw = 0;
3035 		/* save shared BW information */
3036 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3037 		bw_t_info->shared_bw = bw;
3038 	}
3039 }
3040 
3041 /**
3042  * ice_sched_save_vsi_bw - save VSI node's BW information
3043  * @pi: port information structure
3044  * @vsi_handle: sw VSI handle
3045  * @tc: traffic class
3046  * @rl_type: rate limit type min, max, or shared
3047  * @bw: bandwidth in Kbps - Kilo bits per sec
3048  *
3049  * Save BW information of VSI type node for post replay use.
3050  */
3051 static int
3052 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3053 		      enum ice_rl_type rl_type, u32 bw)
3054 {
3055 	struct ice_vsi_ctx *vsi_ctx;
3056 
3057 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3058 		return -EINVAL;
3059 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3060 	if (!vsi_ctx)
3061 		return -EINVAL;
3062 	switch (rl_type) {
3063 	case ICE_MIN_BW:
3064 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3065 		break;
3066 	case ICE_MAX_BW:
3067 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3068 		break;
3069 	case ICE_SHARED_BW:
3070 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3071 		break;
3072 	default:
3073 		return -EINVAL;
3074 	}
3075 	return 0;
3076 }
3077 
3078 /**
3079  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3080  * @hw: pointer to the HW struct
3081  * @bw: bandwidth in Kbps
3082  *
3083  * This function calculates the wakeup parameter of RL profile.
3084  */
3085 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3086 {
3087 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3088 	s32 wakeup_f_int;
3089 	u16 wakeup = 0;
3090 
3091 	/* Get the wakeup integer value */
3092 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3093 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3094 	if (wakeup_int > 63) {
3095 		wakeup = (u16)((1 << 15) | wakeup_int);
3096 	} else {
3097 		/* Calculate fraction value up to 4 decimals
3098 		 * Convert Integer value to a constant multiplier
3099 		 */
3100 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3101 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3102 					   hw->psm_clk_freq, bytes_per_sec);
3103 
3104 		/* Get Fraction value */
3105 		wakeup_f = wakeup_a - wakeup_b;
3106 
3107 		/* Round up the Fractional value via Ceil(Fractional value) */
3108 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3109 			wakeup_f += 1;
3110 
3111 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3112 					       ICE_RL_PROF_MULTIPLIER);
3113 		wakeup |= (u16)(wakeup_int << 9);
3114 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3115 	}
3116 
3117 	return wakeup;
3118 }
3119 
3120 /**
3121  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3122  * @hw: pointer to the HW struct
3123  * @bw: bandwidth in Kbps
3124  * @profile: profile parameters to return
3125  *
3126  * This function converts the BW to profile structure format.
3127  */
3128 static int
3129 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3130 			   struct ice_aqc_rl_profile_elem *profile)
3131 {
3132 	s64 bytes_per_sec, ts_rate, mv_tmp;
3133 	int status = -EINVAL;
3134 	bool found = false;
3135 	s32 encode = 0;
3136 	s64 mv = 0;
3137 	s32 i;
3138 
3139 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3140 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3141 		return status;
3142 
3143 	/* Bytes per second from Kbps */
3144 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3145 
3146 	/* encode is 6 bits but really useful are 5 bits */
3147 	for (i = 0; i < 64; i++) {
3148 		u64 pow_result = BIT_ULL(i);
3149 
3150 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3151 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3152 		if (ts_rate <= 0)
3153 			continue;
3154 
3155 		/* Multiplier value */
3156 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3157 				    ts_rate);
3158 
3159 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3160 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3161 
3162 		/* First multiplier value greater than the given
3163 		 * accuracy bytes
3164 		 */
3165 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3166 			encode = i;
3167 			found = true;
3168 			break;
3169 		}
3170 	}
3171 	if (found) {
3172 		u16 wm;
3173 
3174 		wm = ice_sched_calc_wakeup(hw, bw);
3175 		profile->rl_multiply = cpu_to_le16(mv);
3176 		profile->wake_up_calc = cpu_to_le16(wm);
3177 		profile->rl_encode = cpu_to_le16(encode);
3178 		status = 0;
3179 	} else {
3180 		status = -ENOENT;
3181 	}
3182 
3183 	return status;
3184 }
3185 
3186 /**
3187  * ice_sched_add_rl_profile - add RL profile
3188  * @pi: port information structure
3189  * @rl_type: type of rate limit BW - min, max, or shared
3190  * @bw: bandwidth in Kbps - Kilo bits per sec
3191  * @layer_num: specifies in which layer to create profile
3192  *
3193  * This function first checks the existing list for corresponding BW
3194  * parameter. If it exists, it returns the associated profile otherwise
3195  * it creates a new rate limit profile for requested BW, and adds it to
3196  * the HW DB and local list. It returns the new profile or null on error.
3197  * The caller needs to hold the scheduler lock.
3198  */
3199 static struct ice_aqc_rl_profile_info *
3200 ice_sched_add_rl_profile(struct ice_port_info *pi,
3201 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3202 {
3203 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3204 	u16 profiles_added = 0, num_profiles = 1;
3205 	struct ice_aqc_rl_profile_elem *buf;
3206 	struct ice_hw *hw;
3207 	u8 profile_type;
3208 	int status;
3209 
3210 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3211 		return NULL;
3212 	switch (rl_type) {
3213 	case ICE_MIN_BW:
3214 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3215 		break;
3216 	case ICE_MAX_BW:
3217 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3218 		break;
3219 	case ICE_SHARED_BW:
3220 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3221 		break;
3222 	default:
3223 		return NULL;
3224 	}
3225 
3226 	if (!pi)
3227 		return NULL;
3228 	hw = pi->hw;
3229 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3230 			    list_entry)
3231 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3232 		    profile_type && rl_prof_elem->bw == bw)
3233 			/* Return existing profile ID info */
3234 			return rl_prof_elem;
3235 
3236 	/* Create new profile ID */
3237 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3238 				    GFP_KERNEL);
3239 
3240 	if (!rl_prof_elem)
3241 		return NULL;
3242 
3243 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3244 	if (status)
3245 		goto exit_add_rl_prof;
3246 
3247 	rl_prof_elem->bw = bw;
3248 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3249 	rl_prof_elem->profile.level = layer_num + 1;
3250 	rl_prof_elem->profile.flags = profile_type;
3251 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3252 
3253 	/* Create new entry in HW DB */
3254 	buf = &rl_prof_elem->profile;
3255 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3256 				       &profiles_added, NULL);
3257 	if (status || profiles_added != num_profiles)
3258 		goto exit_add_rl_prof;
3259 
3260 	/* Good entry - add in the list */
3261 	rl_prof_elem->prof_id_ref = 0;
3262 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3263 	return rl_prof_elem;
3264 
3265 exit_add_rl_prof:
3266 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3267 	return NULL;
3268 }
3269 
3270 /**
3271  * ice_sched_cfg_node_bw_lmt - configure node sched params
3272  * @hw: pointer to the HW struct
3273  * @node: sched node to configure
3274  * @rl_type: rate limit type CIR, EIR, or shared
3275  * @rl_prof_id: rate limit profile ID
3276  *
3277  * This function configures node element's BW limit.
3278  */
3279 static int
3280 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3281 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3282 {
3283 	struct ice_aqc_txsched_elem_data buf;
3284 	struct ice_aqc_txsched_elem *data;
3285 
3286 	buf = node->info;
3287 	data = &buf.data;
3288 	switch (rl_type) {
3289 	case ICE_MIN_BW:
3290 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3291 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3292 		break;
3293 	case ICE_MAX_BW:
3294 		/* EIR BW and Shared BW profiles are mutually exclusive and
3295 		 * hence only one of them may be set for any given element
3296 		 */
3297 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3298 			return -EIO;
3299 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3300 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3301 		break;
3302 	case ICE_SHARED_BW:
3303 		/* Check for removing shared BW */
3304 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3305 			/* remove shared profile */
3306 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3307 			data->srl_id = 0; /* clear SRL field */
3308 
3309 			/* enable back EIR to default profile */
3310 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3311 			data->eir_bw.bw_profile_idx =
3312 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3313 			break;
3314 		}
3315 		/* EIR BW and Shared BW profiles are mutually exclusive and
3316 		 * hence only one of them may be set for any given element
3317 		 */
3318 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3319 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3320 			    ICE_SCHED_DFLT_RL_PROF_ID))
3321 			return -EIO;
3322 		/* EIR BW is set to default, disable it */
3323 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3324 		/* Okay to enable shared BW now */
3325 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3326 		data->srl_id = cpu_to_le16(rl_prof_id);
3327 		break;
3328 	default:
3329 		/* Unknown rate limit type */
3330 		return -EINVAL;
3331 	}
3332 
3333 	/* Configure element */
3334 	return ice_sched_update_elem(hw, node, &buf);
3335 }
3336 
3337 /**
3338  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3339  * @node: sched node
3340  * @rl_type: rate limit type
3341  *
3342  * If existing profile matches, it returns the corresponding rate
3343  * limit profile ID, otherwise it returns an invalid ID as error.
3344  */
3345 static u16
3346 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3347 			      enum ice_rl_type rl_type)
3348 {
3349 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3350 	struct ice_aqc_txsched_elem *data;
3351 
3352 	data = &node->info.data;
3353 	switch (rl_type) {
3354 	case ICE_MIN_BW:
3355 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3356 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3357 		break;
3358 	case ICE_MAX_BW:
3359 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3360 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3361 		break;
3362 	case ICE_SHARED_BW:
3363 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3364 			rl_prof_id = le16_to_cpu(data->srl_id);
3365 		break;
3366 	default:
3367 		break;
3368 	}
3369 
3370 	return rl_prof_id;
3371 }
3372 
3373 /**
3374  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3375  * @pi: port information structure
3376  * @rl_type: type of rate limit BW - min, max, or shared
3377  * @layer_index: layer index
3378  *
3379  * This function returns requested profile creation layer.
3380  */
3381 static u8
3382 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3383 			    u8 layer_index)
3384 {
3385 	struct ice_hw *hw = pi->hw;
3386 
3387 	if (layer_index >= hw->num_tx_sched_layers)
3388 		return ICE_SCHED_INVAL_LAYER_NUM;
3389 	switch (rl_type) {
3390 	case ICE_MIN_BW:
3391 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3392 			return layer_index;
3393 		break;
3394 	case ICE_MAX_BW:
3395 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3396 			return layer_index;
3397 		break;
3398 	case ICE_SHARED_BW:
3399 		/* if current layer doesn't support SRL profile creation
3400 		 * then try a layer up or down.
3401 		 */
3402 		if (hw->layer_info[layer_index].max_srl_profiles)
3403 			return layer_index;
3404 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3405 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3406 			return layer_index + 1;
3407 		else if (layer_index > 0 &&
3408 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3409 			return layer_index - 1;
3410 		break;
3411 	default:
3412 		break;
3413 	}
3414 	return ICE_SCHED_INVAL_LAYER_NUM;
3415 }
3416 
3417 /**
3418  * ice_sched_get_srl_node - get shared rate limit node
3419  * @node: tree node
3420  * @srl_layer: shared rate limit layer
3421  *
3422  * This function returns SRL node to be used for shared rate limit purpose.
3423  * The caller needs to hold scheduler lock.
3424  */
3425 static struct ice_sched_node *
3426 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3427 {
3428 	if (srl_layer > node->tx_sched_layer)
3429 		return node->children[0];
3430 	else if (srl_layer < node->tx_sched_layer)
3431 		/* Node can't be created without a parent. It will always
3432 		 * have a valid parent except root node.
3433 		 */
3434 		return node->parent;
3435 	else
3436 		return node;
3437 }
3438 
3439 /**
3440  * ice_sched_rm_rl_profile - remove RL profile ID
3441  * @pi: port information structure
3442  * @layer_num: layer number where profiles are saved
3443  * @profile_type: profile type like EIR, CIR, or SRL
3444  * @profile_id: profile ID to remove
3445  *
3446  * This function removes rate limit profile from layer 'layer_num' of type
3447  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3448  * scheduler lock.
3449  */
3450 static int
3451 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3452 			u16 profile_id)
3453 {
3454 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3455 	int status = 0;
3456 
3457 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3458 		return -EINVAL;
3459 	/* Check the existing list for RL profile */
3460 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3461 			    list_entry)
3462 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3463 		    profile_type &&
3464 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3465 		    profile_id) {
3466 			if (rl_prof_elem->prof_id_ref)
3467 				rl_prof_elem->prof_id_ref--;
3468 
3469 			/* Remove old profile ID from database */
3470 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3471 			if (status && status != -EBUSY)
3472 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3473 			break;
3474 		}
3475 	if (status == -EBUSY)
3476 		status = 0;
3477 	return status;
3478 }
3479 
3480 /**
3481  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3482  * @pi: port information structure
3483  * @node: pointer to node structure
3484  * @rl_type: rate limit type min, max, or shared
3485  * @layer_num: layer number where RL profiles are saved
3486  *
3487  * This function configures node element's BW rate limit profile ID of
3488  * type CIR, EIR, or SRL to default. This function needs to be called
3489  * with the scheduler lock held.
3490  */
3491 static int
3492 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3493 			   struct ice_sched_node *node,
3494 			   enum ice_rl_type rl_type, u8 layer_num)
3495 {
3496 	struct ice_hw *hw;
3497 	u8 profile_type;
3498 	u16 rl_prof_id;
3499 	u16 old_id;
3500 	int status;
3501 
3502 	hw = pi->hw;
3503 	switch (rl_type) {
3504 	case ICE_MIN_BW:
3505 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3506 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3507 		break;
3508 	case ICE_MAX_BW:
3509 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3510 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3511 		break;
3512 	case ICE_SHARED_BW:
3513 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3514 		/* No SRL is configured for default case */
3515 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3516 		break;
3517 	default:
3518 		return -EINVAL;
3519 	}
3520 	/* Save existing RL prof ID for later clean up */
3521 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3522 	/* Configure BW scheduling parameters */
3523 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3524 	if (status)
3525 		return status;
3526 
3527 	/* Remove stale RL profile ID */
3528 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3529 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3530 		return 0;
3531 
3532 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3533 }
3534 
3535 /**
3536  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3537  * @pi: port information structure
3538  * @node: pointer to node structure
3539  * @layer_num: layer number where rate limit profiles are saved
3540  * @rl_type: rate limit type min, max, or shared
3541  * @bw: bandwidth value
3542  *
3543  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3544  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3545  * them may be set for any given element. This function needs to be called
3546  * with the scheduler lock held.
3547  */
3548 static int
3549 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3550 			   struct ice_sched_node *node,
3551 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3552 {
3553 	if (rl_type == ICE_SHARED_BW) {
3554 		/* SRL node passed in this case, it may be different node */
3555 		if (bw == ICE_SCHED_DFLT_BW)
3556 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3557 			 * enables EIR to default. EIR is not set in this
3558 			 * case, so no additional action is required.
3559 			 */
3560 			return 0;
3561 
3562 		/* SRL being configured, set EIR to default here.
3563 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3564 		 * configures SRL
3565 		 */
3566 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3567 						  layer_num);
3568 	} else if (rl_type == ICE_MAX_BW &&
3569 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3570 		/* Remove Shared profile. Set default shared BW call
3571 		 * removes shared profile for a node.
3572 		 */
3573 		return ice_sched_set_node_bw_dflt(pi, node,
3574 						  ICE_SHARED_BW,
3575 						  layer_num);
3576 	}
3577 	return 0;
3578 }
3579 
3580 /**
3581  * ice_sched_set_node_bw - set node's bandwidth
3582  * @pi: port information structure
3583  * @node: tree node
3584  * @rl_type: rate limit type min, max, or shared
3585  * @bw: bandwidth in Kbps - Kilo bits per sec
3586  * @layer_num: layer number
3587  *
3588  * This function adds new profile corresponding to requested BW, configures
3589  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3590  * ID from local database. The caller needs to hold scheduler lock.
3591  */
3592 int
3593 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3594 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3595 {
3596 	struct ice_aqc_rl_profile_info *rl_prof_info;
3597 	struct ice_hw *hw = pi->hw;
3598 	u16 old_id, rl_prof_id;
3599 	int status = -EINVAL;
3600 
3601 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3602 	if (!rl_prof_info)
3603 		return status;
3604 
3605 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3606 
3607 	/* Save existing RL prof ID for later clean up */
3608 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3609 	/* Configure BW scheduling parameters */
3610 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3611 	if (status)
3612 		return status;
3613 
3614 	/* New changes has been applied */
3615 	/* Increment the profile ID reference count */
3616 	rl_prof_info->prof_id_ref++;
3617 
3618 	/* Check for old ID removal */
3619 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3620 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3621 		return 0;
3622 
3623 	return ice_sched_rm_rl_profile(pi, layer_num,
3624 				       rl_prof_info->profile.flags &
3625 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3626 }
3627 
3628 /**
3629  * ice_sched_set_node_priority - set node's priority
3630  * @pi: port information structure
3631  * @node: tree node
3632  * @priority: number 0-7 representing priority among siblings
3633  *
3634  * This function sets priority of a node among it's siblings.
3635  */
3636 int
3637 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3638 			    u16 priority)
3639 {
3640 	struct ice_aqc_txsched_elem_data buf;
3641 	struct ice_aqc_txsched_elem *data;
3642 
3643 	buf = node->info;
3644 	data = &buf.data;
3645 
3646 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3647 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3648 
3649 	return ice_sched_update_elem(pi->hw, node, &buf);
3650 }
3651 
3652 /**
3653  * ice_sched_set_node_weight - set node's weight
3654  * @pi: port information structure
3655  * @node: tree node
3656  * @weight: number 1-200 representing weight for WFQ
3657  *
3658  * This function sets weight of the node for WFQ algorithm.
3659  */
3660 int
3661 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3662 {
3663 	struct ice_aqc_txsched_elem_data buf;
3664 	struct ice_aqc_txsched_elem *data;
3665 
3666 	buf = node->info;
3667 	data = &buf.data;
3668 
3669 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3670 			       ICE_AQC_ELEM_VALID_GENERIC;
3671 	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3672 	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3673 
3674 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3675 
3676 	return ice_sched_update_elem(pi->hw, node, &buf);
3677 }
3678 
3679 /**
3680  * ice_sched_set_node_bw_lmt - set node's BW limit
3681  * @pi: port information structure
3682  * @node: tree node
3683  * @rl_type: rate limit type min, max, or shared
3684  * @bw: bandwidth in Kbps - Kilo bits per sec
3685  *
3686  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3687  * EIR, or SRL. The caller needs to hold scheduler lock.
3688  */
3689 int
3690 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3691 			  enum ice_rl_type rl_type, u32 bw)
3692 {
3693 	struct ice_sched_node *cfg_node = node;
3694 	int status;
3695 
3696 	struct ice_hw *hw;
3697 	u8 layer_num;
3698 
3699 	if (!pi)
3700 		return -EINVAL;
3701 	hw = pi->hw;
3702 	/* Remove unused RL profile IDs from HW and SW DB */
3703 	ice_sched_rm_unused_rl_prof(pi);
3704 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3705 						node->tx_sched_layer);
3706 	if (layer_num >= hw->num_tx_sched_layers)
3707 		return -EINVAL;
3708 
3709 	if (rl_type == ICE_SHARED_BW) {
3710 		/* SRL node may be different */
3711 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3712 		if (!cfg_node)
3713 			return -EIO;
3714 	}
3715 	/* EIR BW and Shared BW profiles are mutually exclusive and
3716 	 * hence only one of them may be set for any given element
3717 	 */
3718 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3719 					    bw);
3720 	if (status)
3721 		return status;
3722 	if (bw == ICE_SCHED_DFLT_BW)
3723 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3724 						  layer_num);
3725 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3726 }
3727 
3728 /**
3729  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3730  * @pi: port information structure
3731  * @node: pointer to node structure
3732  * @rl_type: rate limit type min, max, or shared
3733  *
3734  * This function configures node element's BW rate limit profile ID of
3735  * type CIR, EIR, or SRL to default. This function needs to be called
3736  * with the scheduler lock held.
3737  */
3738 static int
3739 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3740 			       struct ice_sched_node *node,
3741 			       enum ice_rl_type rl_type)
3742 {
3743 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3744 					 ICE_SCHED_DFLT_BW);
3745 }
3746 
3747 /**
3748  * ice_sched_validate_srl_node - Check node for SRL applicability
3749  * @node: sched node to configure
3750  * @sel_layer: selected SRL layer
3751  *
3752  * This function checks if the SRL can be applied to a selected layer node on
3753  * behalf of the requested node (first argument). This function needs to be
3754  * called with scheduler lock held.
3755  */
3756 static int
3757 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3758 {
3759 	/* SRL profiles are not available on all layers. Check if the
3760 	 * SRL profile can be applied to a node above or below the
3761 	 * requested node. SRL configuration is possible only if the
3762 	 * selected layer's node has single child.
3763 	 */
3764 	if (sel_layer == node->tx_sched_layer ||
3765 	    ((sel_layer == node->tx_sched_layer + 1) &&
3766 	    node->num_children == 1) ||
3767 	    ((sel_layer == node->tx_sched_layer - 1) &&
3768 	    (node->parent && node->parent->num_children == 1)))
3769 		return 0;
3770 
3771 	return -EIO;
3772 }
3773 
3774 /**
3775  * ice_sched_save_q_bw - save queue node's BW information
3776  * @q_ctx: queue context structure
3777  * @rl_type: rate limit type min, max, or shared
3778  * @bw: bandwidth in Kbps - Kilo bits per sec
3779  *
3780  * Save BW information of queue type node for post replay use.
3781  */
3782 static int
3783 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3784 {
3785 	switch (rl_type) {
3786 	case ICE_MIN_BW:
3787 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3788 		break;
3789 	case ICE_MAX_BW:
3790 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3791 		break;
3792 	case ICE_SHARED_BW:
3793 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3794 		break;
3795 	default:
3796 		return -EINVAL;
3797 	}
3798 	return 0;
3799 }
3800 
3801 /**
3802  * ice_sched_set_q_bw_lmt - sets queue BW limit
3803  * @pi: port information structure
3804  * @vsi_handle: sw VSI handle
3805  * @tc: traffic class
3806  * @q_handle: software queue handle
3807  * @rl_type: min, max, or shared
3808  * @bw: bandwidth in Kbps
3809  *
3810  * This function sets BW limit of queue scheduling node.
3811  */
3812 static int
3813 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3814 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3815 {
3816 	struct ice_sched_node *node;
3817 	struct ice_q_ctx *q_ctx;
3818 	int status = -EINVAL;
3819 
3820 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3821 		return -EINVAL;
3822 	mutex_lock(&pi->sched_lock);
3823 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3824 	if (!q_ctx)
3825 		goto exit_q_bw_lmt;
3826 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3827 	if (!node) {
3828 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3829 		goto exit_q_bw_lmt;
3830 	}
3831 
3832 	/* Return error if it is not a leaf node */
3833 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3834 		goto exit_q_bw_lmt;
3835 
3836 	/* SRL bandwidth layer selection */
3837 	if (rl_type == ICE_SHARED_BW) {
3838 		u8 sel_layer; /* selected layer */
3839 
3840 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3841 							node->tx_sched_layer);
3842 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3843 			status = -EINVAL;
3844 			goto exit_q_bw_lmt;
3845 		}
3846 		status = ice_sched_validate_srl_node(node, sel_layer);
3847 		if (status)
3848 			goto exit_q_bw_lmt;
3849 	}
3850 
3851 	if (bw == ICE_SCHED_DFLT_BW)
3852 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3853 	else
3854 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3855 
3856 	if (!status)
3857 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3858 
3859 exit_q_bw_lmt:
3860 	mutex_unlock(&pi->sched_lock);
3861 	return status;
3862 }
3863 
3864 /**
3865  * ice_cfg_q_bw_lmt - configure queue BW limit
3866  * @pi: port information structure
3867  * @vsi_handle: sw VSI handle
3868  * @tc: traffic class
3869  * @q_handle: software queue handle
3870  * @rl_type: min, max, or shared
3871  * @bw: bandwidth in Kbps
3872  *
3873  * This function configures BW limit of queue scheduling node.
3874  */
3875 int
3876 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3877 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3878 {
3879 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3880 				      bw);
3881 }
3882 
3883 /**
3884  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3885  * @pi: port information structure
3886  * @vsi_handle: sw VSI handle
3887  * @tc: traffic class
3888  * @q_handle: software queue handle
3889  * @rl_type: min, max, or shared
3890  *
3891  * This function configures BW default limit of queue scheduling node.
3892  */
3893 int
3894 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3895 		      u16 q_handle, enum ice_rl_type rl_type)
3896 {
3897 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3898 				      ICE_SCHED_DFLT_BW);
3899 }
3900 
3901 /**
3902  * ice_sched_get_node_by_id_type - get node from ID type
3903  * @pi: port information structure
3904  * @id: identifier
3905  * @agg_type: type of aggregator
3906  * @tc: traffic class
3907  *
3908  * This function returns node identified by ID of type aggregator, and
3909  * based on traffic class (TC). This function needs to be called with
3910  * the scheduler lock held.
3911  */
3912 static struct ice_sched_node *
3913 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3914 			      enum ice_agg_type agg_type, u8 tc)
3915 {
3916 	struct ice_sched_node *node = NULL;
3917 
3918 	switch (agg_type) {
3919 	case ICE_AGG_TYPE_VSI: {
3920 		struct ice_vsi_ctx *vsi_ctx;
3921 		u16 vsi_handle = (u16)id;
3922 
3923 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3924 			break;
3925 		/* Get sched_vsi_info */
3926 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3927 		if (!vsi_ctx)
3928 			break;
3929 		node = vsi_ctx->sched.vsi_node[tc];
3930 		break;
3931 	}
3932 
3933 	case ICE_AGG_TYPE_AGG: {
3934 		struct ice_sched_node *tc_node;
3935 
3936 		tc_node = ice_sched_get_tc_node(pi, tc);
3937 		if (tc_node)
3938 			node = ice_sched_get_agg_node(pi, tc_node, id);
3939 		break;
3940 	}
3941 
3942 	default:
3943 		break;
3944 	}
3945 
3946 	return node;
3947 }
3948 
3949 /**
3950  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3951  * @pi: port information structure
3952  * @id: ID (software VSI handle or AGG ID)
3953  * @agg_type: aggregator type (VSI or AGG type node)
3954  * @tc: traffic class
3955  * @rl_type: min or max
3956  * @bw: bandwidth in Kbps
3957  *
3958  * This function sets BW limit of VSI or Aggregator scheduling node
3959  * based on TC information from passed in argument BW.
3960  */
3961 int
3962 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3963 				 enum ice_agg_type agg_type, u8 tc,
3964 				 enum ice_rl_type rl_type, u32 bw)
3965 {
3966 	struct ice_sched_node *node;
3967 	int status = -EINVAL;
3968 
3969 	if (!pi)
3970 		return status;
3971 
3972 	if (rl_type == ICE_UNKNOWN_BW)
3973 		return status;
3974 
3975 	mutex_lock(&pi->sched_lock);
3976 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3977 	if (!node) {
3978 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3979 		goto exit_set_node_bw_lmt_per_tc;
3980 	}
3981 	if (bw == ICE_SCHED_DFLT_BW)
3982 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3983 	else
3984 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3985 
3986 exit_set_node_bw_lmt_per_tc:
3987 	mutex_unlock(&pi->sched_lock);
3988 	return status;
3989 }
3990 
3991 /**
3992  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3993  * @pi: port information structure
3994  * @vsi_handle: software VSI handle
3995  * @tc: traffic class
3996  * @rl_type: min or max
3997  * @bw: bandwidth in Kbps
3998  *
3999  * This function configures BW limit of VSI scheduling node based on TC
4000  * information.
4001  */
4002 int
4003 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4004 			  enum ice_rl_type rl_type, u32 bw)
4005 {
4006 	int status;
4007 
4008 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4009 						  ICE_AGG_TYPE_VSI,
4010 						  tc, rl_type, bw);
4011 	if (!status) {
4012 		mutex_lock(&pi->sched_lock);
4013 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4014 		mutex_unlock(&pi->sched_lock);
4015 	}
4016 	return status;
4017 }
4018 
4019 /**
4020  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4021  * @pi: port information structure
4022  * @vsi_handle: software VSI handle
4023  * @tc: traffic class
4024  * @rl_type: min or max
4025  *
4026  * This function configures default BW limit of VSI scheduling node based on TC
4027  * information.
4028  */
4029 int
4030 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4031 			       enum ice_rl_type rl_type)
4032 {
4033 	int status;
4034 
4035 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4036 						  ICE_AGG_TYPE_VSI,
4037 						  tc, rl_type,
4038 						  ICE_SCHED_DFLT_BW);
4039 	if (!status) {
4040 		mutex_lock(&pi->sched_lock);
4041 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4042 					       ICE_SCHED_DFLT_BW);
4043 		mutex_unlock(&pi->sched_lock);
4044 	}
4045 	return status;
4046 }
4047 
4048 /**
4049  * ice_cfg_rl_burst_size - Set burst size value
4050  * @hw: pointer to the HW struct
4051  * @bytes: burst size in bytes
4052  *
4053  * This function configures/set the burst size to requested new value. The new
4054  * burst size value is used for future rate limit calls. It doesn't change the
4055  * existing or previously created RL profiles.
4056  */
4057 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4058 {
4059 	u16 burst_size_to_prog;
4060 
4061 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4062 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4063 		return -EINVAL;
4064 	if (ice_round_to_num(bytes, 64) <=
4065 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4066 		/* 64 byte granularity case */
4067 		/* Disable MSB granularity bit */
4068 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4069 		/* round number to nearest 64 byte granularity */
4070 		bytes = ice_round_to_num(bytes, 64);
4071 		/* The value is in 64 byte chunks */
4072 		burst_size_to_prog |= (u16)(bytes / 64);
4073 	} else {
4074 		/* k bytes granularity case */
4075 		/* Enable MSB granularity bit */
4076 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4077 		/* round number to nearest 1024 granularity */
4078 		bytes = ice_round_to_num(bytes, 1024);
4079 		/* check rounding doesn't go beyond allowed */
4080 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4081 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4082 		/* The value is in k bytes */
4083 		burst_size_to_prog |= (u16)(bytes / 1024);
4084 	}
4085 	hw->max_burst_size = burst_size_to_prog;
4086 	return 0;
4087 }
4088 
4089 /**
4090  * ice_sched_replay_node_prio - re-configure node priority
4091  * @hw: pointer to the HW struct
4092  * @node: sched node to configure
4093  * @priority: priority value
4094  *
4095  * This function configures node element's priority value. It
4096  * needs to be called with scheduler lock held.
4097  */
4098 static int
4099 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4100 			   u8 priority)
4101 {
4102 	struct ice_aqc_txsched_elem_data buf;
4103 	struct ice_aqc_txsched_elem *data;
4104 	int status;
4105 
4106 	buf = node->info;
4107 	data = &buf.data;
4108 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4109 	data->generic = priority;
4110 
4111 	/* Configure element */
4112 	status = ice_sched_update_elem(hw, node, &buf);
4113 	return status;
4114 }
4115 
4116 /**
4117  * ice_sched_replay_node_bw - replay node(s) BW
4118  * @hw: pointer to the HW struct
4119  * @node: sched node to configure
4120  * @bw_t_info: BW type information
4121  *
4122  * This function restores node's BW from bw_t_info. The caller needs
4123  * to hold the scheduler lock.
4124  */
4125 static int
4126 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4127 			 struct ice_bw_type_info *bw_t_info)
4128 {
4129 	struct ice_port_info *pi = hw->port_info;
4130 	int status = -EINVAL;
4131 	u16 bw_alloc;
4132 
4133 	if (!node)
4134 		return status;
4135 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4136 		return 0;
4137 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4138 		status = ice_sched_replay_node_prio(hw, node,
4139 						    bw_t_info->generic);
4140 		if (status)
4141 			return status;
4142 	}
4143 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4144 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4145 						   bw_t_info->cir_bw.bw);
4146 		if (status)
4147 			return status;
4148 	}
4149 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4150 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4151 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4152 						     bw_alloc);
4153 		if (status)
4154 			return status;
4155 	}
4156 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4157 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4158 						   bw_t_info->eir_bw.bw);
4159 		if (status)
4160 			return status;
4161 	}
4162 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4163 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4164 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4165 						     bw_alloc);
4166 		if (status)
4167 			return status;
4168 	}
4169 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4170 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4171 						   bw_t_info->shared_bw);
4172 	return status;
4173 }
4174 
4175 /**
4176  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4177  * @pi: port info struct
4178  * @tc_bitmap: 8 bits TC bitmap to check
4179  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4180  *
4181  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4182  * may be missing, it returns enabled TCs. This function needs to be called with
4183  * scheduler lock held.
4184  */
4185 static void
4186 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4187 			    unsigned long *tc_bitmap,
4188 			    unsigned long *ena_tc_bitmap)
4189 {
4190 	u8 tc;
4191 
4192 	/* Some TC(s) may be missing after reset, adjust for replay */
4193 	ice_for_each_traffic_class(tc)
4194 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4195 		    (ice_sched_get_tc_node(pi, tc)))
4196 			set_bit(tc, ena_tc_bitmap);
4197 }
4198 
4199 /**
4200  * ice_sched_replay_agg - recreate aggregator node(s)
4201  * @hw: pointer to the HW struct
4202  *
4203  * This function recreate aggregator type nodes which are not replayed earlier.
4204  * It also replay aggregator BW information. These aggregator nodes are not
4205  * associated with VSI type node yet.
4206  */
4207 void ice_sched_replay_agg(struct ice_hw *hw)
4208 {
4209 	struct ice_port_info *pi = hw->port_info;
4210 	struct ice_sched_agg_info *agg_info;
4211 
4212 	mutex_lock(&pi->sched_lock);
4213 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4214 		/* replay aggregator (re-create aggregator node) */
4215 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4216 				  ICE_MAX_TRAFFIC_CLASS)) {
4217 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4218 			int status;
4219 
4220 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4221 			ice_sched_get_ena_tc_bitmap(pi,
4222 						    agg_info->replay_tc_bitmap,
4223 						    replay_bitmap);
4224 			status = ice_sched_cfg_agg(hw->port_info,
4225 						   agg_info->agg_id,
4226 						   ICE_AGG_TYPE_AGG,
4227 						   replay_bitmap);
4228 			if (status) {
4229 				dev_info(ice_hw_to_dev(hw),
4230 					 "Replay agg id[%d] failed\n",
4231 					 agg_info->agg_id);
4232 				/* Move on to next one */
4233 				continue;
4234 			}
4235 		}
4236 	mutex_unlock(&pi->sched_lock);
4237 }
4238 
4239 /**
4240  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4241  * @hw: pointer to the HW struct
4242  *
4243  * This function initialize aggregator(s) TC bitmap to zero. A required
4244  * preinit step for replaying aggregators.
4245  */
4246 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4247 {
4248 	struct ice_port_info *pi = hw->port_info;
4249 	struct ice_sched_agg_info *agg_info;
4250 
4251 	mutex_lock(&pi->sched_lock);
4252 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4253 		struct ice_sched_agg_vsi_info *agg_vsi_info;
4254 
4255 		agg_info->tc_bitmap[0] = 0;
4256 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4257 				    list_entry)
4258 			agg_vsi_info->tc_bitmap[0] = 0;
4259 	}
4260 	mutex_unlock(&pi->sched_lock);
4261 }
4262 
4263 /**
4264  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4265  * @hw: pointer to the HW struct
4266  * @vsi_handle: software VSI handle
4267  *
4268  * This function replays aggregator node, VSI to aggregator type nodes, and
4269  * their node bandwidth information. This function needs to be called with
4270  * scheduler lock held.
4271  */
4272 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4273 {
4274 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4275 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4276 	struct ice_port_info *pi = hw->port_info;
4277 	struct ice_sched_agg_info *agg_info;
4278 	int status;
4279 
4280 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4281 	if (!ice_is_vsi_valid(hw, vsi_handle))
4282 		return -EINVAL;
4283 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4284 	if (!agg_info)
4285 		return 0; /* Not present in list - default Agg case */
4286 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4287 	if (!agg_vsi_info)
4288 		return 0; /* Not present in list - default Agg case */
4289 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4290 				    replay_bitmap);
4291 	/* Replay aggregator node associated to vsi_handle */
4292 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4293 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4294 	if (status)
4295 		return status;
4296 
4297 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4298 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4299 				    replay_bitmap);
4300 	/* Move this VSI (vsi_handle) to above aggregator */
4301 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4302 					  replay_bitmap);
4303 }
4304 
4305 /**
4306  * ice_replay_vsi_agg - replay VSI to aggregator node
4307  * @hw: pointer to the HW struct
4308  * @vsi_handle: software VSI handle
4309  *
4310  * This function replays association of VSI to aggregator type nodes, and
4311  * node bandwidth information.
4312  */
4313 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4314 {
4315 	struct ice_port_info *pi = hw->port_info;
4316 	int status;
4317 
4318 	mutex_lock(&pi->sched_lock);
4319 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4320 	mutex_unlock(&pi->sched_lock);
4321 	return status;
4322 }
4323 
4324 /**
4325  * ice_sched_replay_q_bw - replay queue type node BW
4326  * @pi: port information structure
4327  * @q_ctx: queue context structure
4328  *
4329  * This function replays queue type node bandwidth. This function needs to be
4330  * called with scheduler lock held.
4331  */
4332 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4333 {
4334 	struct ice_sched_node *q_node;
4335 
4336 	/* Following also checks the presence of node in tree */
4337 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4338 	if (!q_node)
4339 		return -EINVAL;
4340 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4341 }
4342