1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include <net/devlink.h> 5 #include "ice_sched.h" 6 7 /** 8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 9 * @pi: port information structure 10 * @info: Scheduler element information from firmware 11 * 12 * This function inserts the root node of the scheduling tree topology 13 * to the SW DB. 14 */ 15 static int 16 ice_sched_add_root_node(struct ice_port_info *pi, 17 struct ice_aqc_txsched_elem_data *info) 18 { 19 struct ice_sched_node *root; 20 struct ice_hw *hw; 21 22 if (!pi) 23 return -EINVAL; 24 25 hw = pi->hw; 26 27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 28 if (!root) 29 return -ENOMEM; 30 31 /* coverity[suspicious_sizeof] */ 32 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 33 sizeof(*root), GFP_KERNEL); 34 if (!root->children) { 35 devm_kfree(ice_hw_to_dev(hw), root); 36 return -ENOMEM; 37 } 38 39 memcpy(&root->info, info, sizeof(*info)); 40 pi->root = root; 41 return 0; 42 } 43 44 /** 45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 47 * @teid: node TEID to search 48 * 49 * This function searches for a node matching the TEID in the scheduling tree 50 * from the SW DB. The search is recursive and is restricted by the number of 51 * layers it has searched through; stopping at the max supported layer. 52 * 53 * This function needs to be called when holding the port_info->sched_lock 54 */ 55 struct ice_sched_node * 56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 57 { 58 u16 i; 59 60 /* The TEID is same as that of the start_node */ 61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 62 return start_node; 63 64 /* The node has no children or is at the max layer */ 65 if (!start_node->num_children || 66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 68 return NULL; 69 70 /* Check if TEID matches to any of the children nodes */ 71 for (i = 0; i < start_node->num_children; i++) 72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 73 return start_node->children[i]; 74 75 /* Search within each child's sub-tree */ 76 for (i = 0; i < start_node->num_children; i++) { 77 struct ice_sched_node *tmp; 78 79 tmp = ice_sched_find_node_by_teid(start_node->children[i], 80 teid); 81 if (tmp) 82 return tmp; 83 } 84 85 return NULL; 86 } 87 88 /** 89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 90 * @hw: pointer to the HW struct 91 * @cmd_opc: cmd opcode 92 * @elems_req: number of elements to request 93 * @buf: pointer to buffer 94 * @buf_size: buffer size in bytes 95 * @elems_resp: returns total number of elements response 96 * @cd: pointer to command details structure or NULL 97 * 98 * This function sends a scheduling elements cmd (cmd_opc) 99 */ 100 static int 101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 102 u16 elems_req, void *buf, u16 buf_size, 103 u16 *elems_resp, struct ice_sq_cd *cd) 104 { 105 struct ice_aqc_sched_elem_cmd *cmd; 106 struct ice_aq_desc desc; 107 int status; 108 109 cmd = &desc.params.sched_elem_cmd; 110 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 111 cmd->num_elem_req = cpu_to_le16(elems_req); 112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 113 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 114 if (!status && elems_resp) 115 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 116 117 return status; 118 } 119 120 /** 121 * ice_aq_query_sched_elems - query scheduler elements 122 * @hw: pointer to the HW struct 123 * @elems_req: number of elements to query 124 * @buf: pointer to buffer 125 * @buf_size: buffer size in bytes 126 * @elems_ret: returns total number of elements returned 127 * @cd: pointer to command details structure or NULL 128 * 129 * Query scheduling elements (0x0404) 130 */ 131 int 132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 134 u16 *elems_ret, struct ice_sq_cd *cd) 135 { 136 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 137 elems_req, (void *)buf, buf_size, 138 elems_ret, cd); 139 } 140 141 /** 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 143 * @pi: port information structure 144 * @layer: Scheduler layer of the node 145 * @info: Scheduler element information from firmware 146 * @prealloc_node: preallocated ice_sched_node struct for SW DB 147 * 148 * This function inserts a scheduler node to the SW DB. 149 */ 150 int 151 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 152 struct ice_aqc_txsched_elem_data *info, 153 struct ice_sched_node *prealloc_node) 154 { 155 struct ice_aqc_txsched_elem_data elem; 156 struct ice_sched_node *parent; 157 struct ice_sched_node *node; 158 struct ice_hw *hw; 159 int status; 160 161 if (!pi) 162 return -EINVAL; 163 164 hw = pi->hw; 165 166 /* A valid parent node should be there */ 167 parent = ice_sched_find_node_by_teid(pi->root, 168 le32_to_cpu(info->parent_teid)); 169 if (!parent) { 170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 171 le32_to_cpu(info->parent_teid)); 172 return -EINVAL; 173 } 174 175 /* query the current node information from FW before adding it 176 * to the SW DB 177 */ 178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 179 if (status) 180 return status; 181 182 if (prealloc_node) 183 node = prealloc_node; 184 else 185 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 186 if (!node) 187 return -ENOMEM; 188 if (hw->max_children[layer]) { 189 /* coverity[suspicious_sizeof] */ 190 node->children = devm_kcalloc(ice_hw_to_dev(hw), 191 hw->max_children[layer], 192 sizeof(*node), GFP_KERNEL); 193 if (!node->children) { 194 devm_kfree(ice_hw_to_dev(hw), node); 195 return -ENOMEM; 196 } 197 } 198 199 node->in_use = true; 200 node->parent = parent; 201 node->tx_sched_layer = layer; 202 parent->children[parent->num_children++] = node; 203 node->info = elem; 204 return 0; 205 } 206 207 /** 208 * ice_aq_delete_sched_elems - delete scheduler elements 209 * @hw: pointer to the HW struct 210 * @grps_req: number of groups to delete 211 * @buf: pointer to buffer 212 * @buf_size: buffer size in bytes 213 * @grps_del: returns total number of elements deleted 214 * @cd: pointer to command details structure or NULL 215 * 216 * Delete scheduling elements (0x040F) 217 */ 218 static int 219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 220 struct ice_aqc_delete_elem *buf, u16 buf_size, 221 u16 *grps_del, struct ice_sq_cd *cd) 222 { 223 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 224 grps_req, (void *)buf, buf_size, 225 grps_del, cd); 226 } 227 228 /** 229 * ice_sched_remove_elems - remove nodes from HW 230 * @hw: pointer to the HW struct 231 * @parent: pointer to the parent node 232 * @num_nodes: number of nodes 233 * @node_teids: array of node teids to be deleted 234 * 235 * This function remove nodes from HW 236 */ 237 static int 238 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 239 u16 num_nodes, u32 *node_teids) 240 { 241 struct ice_aqc_delete_elem *buf; 242 u16 i, num_groups_removed = 0; 243 u16 buf_size; 244 int status; 245 246 buf_size = struct_size(buf, teid, num_nodes); 247 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 248 if (!buf) 249 return -ENOMEM; 250 251 buf->hdr.parent_teid = parent->info.node_teid; 252 buf->hdr.num_elems = cpu_to_le16(num_nodes); 253 for (i = 0; i < num_nodes; i++) 254 buf->teid[i] = cpu_to_le32(node_teids[i]); 255 256 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 257 &num_groups_removed, NULL); 258 if (status || num_groups_removed != 1) 259 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 260 hw->adminq.sq_last_status); 261 262 devm_kfree(ice_hw_to_dev(hw), buf); 263 return status; 264 } 265 266 /** 267 * ice_sched_get_first_node - get the first node of the given layer 268 * @pi: port information structure 269 * @parent: pointer the base node of the subtree 270 * @layer: layer number 271 * 272 * This function retrieves the first node of the given layer from the subtree 273 */ 274 static struct ice_sched_node * 275 ice_sched_get_first_node(struct ice_port_info *pi, 276 struct ice_sched_node *parent, u8 layer) 277 { 278 return pi->sib_head[parent->tc_num][layer]; 279 } 280 281 /** 282 * ice_sched_get_tc_node - get pointer to TC node 283 * @pi: port information structure 284 * @tc: TC number 285 * 286 * This function returns the TC node pointer 287 */ 288 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 289 { 290 u8 i; 291 292 if (!pi || !pi->root) 293 return NULL; 294 for (i = 0; i < pi->root->num_children; i++) 295 if (pi->root->children[i]->tc_num == tc) 296 return pi->root->children[i]; 297 return NULL; 298 } 299 300 /** 301 * ice_free_sched_node - Free a Tx scheduler node from SW DB 302 * @pi: port information structure 303 * @node: pointer to the ice_sched_node struct 304 * 305 * This function frees up a node from SW DB as well as from HW 306 * 307 * This function needs to be called with the port_info->sched_lock held 308 */ 309 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 310 { 311 struct ice_sched_node *parent; 312 struct ice_hw *hw = pi->hw; 313 u8 i, j; 314 315 /* Free the children before freeing up the parent node 316 * The parent array is updated below and that shifts the nodes 317 * in the array. So always pick the first child if num children > 0 318 */ 319 while (node->num_children) 320 ice_free_sched_node(pi, node->children[0]); 321 322 /* Leaf, TC and root nodes can't be deleted by SW */ 323 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 324 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 325 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 326 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 327 u32 teid = le32_to_cpu(node->info.node_teid); 328 329 ice_sched_remove_elems(hw, node->parent, 1, &teid); 330 } 331 parent = node->parent; 332 /* root has no parent */ 333 if (parent) { 334 struct ice_sched_node *p; 335 336 /* update the parent */ 337 for (i = 0; i < parent->num_children; i++) 338 if (parent->children[i] == node) { 339 for (j = i + 1; j < parent->num_children; j++) 340 parent->children[j - 1] = 341 parent->children[j]; 342 parent->num_children--; 343 break; 344 } 345 346 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 347 while (p) { 348 if (p->sibling == node) { 349 p->sibling = node->sibling; 350 break; 351 } 352 p = p->sibling; 353 } 354 355 /* update the sibling head if head is getting removed */ 356 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 357 pi->sib_head[node->tc_num][node->tx_sched_layer] = 358 node->sibling; 359 } 360 361 devm_kfree(ice_hw_to_dev(hw), node->children); 362 kfree(node->name); 363 xa_erase(&pi->sched_node_ids, node->id); 364 devm_kfree(ice_hw_to_dev(hw), node); 365 } 366 367 /** 368 * ice_aq_get_dflt_topo - gets default scheduler topology 369 * @hw: pointer to the HW struct 370 * @lport: logical port number 371 * @buf: pointer to buffer 372 * @buf_size: buffer size in bytes 373 * @num_branches: returns total number of queue to port branches 374 * @cd: pointer to command details structure or NULL 375 * 376 * Get default scheduler topology (0x400) 377 */ 378 static int 379 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 380 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 381 u8 *num_branches, struct ice_sq_cd *cd) 382 { 383 struct ice_aqc_get_topo *cmd; 384 struct ice_aq_desc desc; 385 int status; 386 387 cmd = &desc.params.get_topo; 388 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 389 cmd->port_num = lport; 390 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 391 if (!status && num_branches) 392 *num_branches = cmd->num_branches; 393 394 return status; 395 } 396 397 /** 398 * ice_aq_add_sched_elems - adds scheduling element 399 * @hw: pointer to the HW struct 400 * @grps_req: the number of groups that are requested to be added 401 * @buf: pointer to buffer 402 * @buf_size: buffer size in bytes 403 * @grps_added: returns total number of groups added 404 * @cd: pointer to command details structure or NULL 405 * 406 * Add scheduling elements (0x0401) 407 */ 408 static int 409 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 410 struct ice_aqc_add_elem *buf, u16 buf_size, 411 u16 *grps_added, struct ice_sq_cd *cd) 412 { 413 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 414 grps_req, (void *)buf, buf_size, 415 grps_added, cd); 416 } 417 418 /** 419 * ice_aq_cfg_sched_elems - configures scheduler elements 420 * @hw: pointer to the HW struct 421 * @elems_req: number of elements to configure 422 * @buf: pointer to buffer 423 * @buf_size: buffer size in bytes 424 * @elems_cfgd: returns total number of elements configured 425 * @cd: pointer to command details structure or NULL 426 * 427 * Configure scheduling elements (0x0403) 428 */ 429 static int 430 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 431 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 432 u16 *elems_cfgd, struct ice_sq_cd *cd) 433 { 434 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 435 elems_req, (void *)buf, buf_size, 436 elems_cfgd, cd); 437 } 438 439 /** 440 * ice_aq_move_sched_elems - move scheduler elements 441 * @hw: pointer to the HW struct 442 * @grps_req: number of groups to move 443 * @buf: pointer to buffer 444 * @buf_size: buffer size in bytes 445 * @grps_movd: returns total number of groups moved 446 * @cd: pointer to command details structure or NULL 447 * 448 * Move scheduling elements (0x0408) 449 */ 450 static int 451 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 452 struct ice_aqc_move_elem *buf, u16 buf_size, 453 u16 *grps_movd, struct ice_sq_cd *cd) 454 { 455 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 456 grps_req, (void *)buf, buf_size, 457 grps_movd, cd); 458 } 459 460 /** 461 * ice_aq_suspend_sched_elems - suspend scheduler elements 462 * @hw: pointer to the HW struct 463 * @elems_req: number of elements to suspend 464 * @buf: pointer to buffer 465 * @buf_size: buffer size in bytes 466 * @elems_ret: returns total number of elements suspended 467 * @cd: pointer to command details structure or NULL 468 * 469 * Suspend scheduling elements (0x0409) 470 */ 471 static int 472 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 473 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 474 { 475 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 476 elems_req, (void *)buf, buf_size, 477 elems_ret, cd); 478 } 479 480 /** 481 * ice_aq_resume_sched_elems - resume scheduler elements 482 * @hw: pointer to the HW struct 483 * @elems_req: number of elements to resume 484 * @buf: pointer to buffer 485 * @buf_size: buffer size in bytes 486 * @elems_ret: returns total number of elements resumed 487 * @cd: pointer to command details structure or NULL 488 * 489 * resume scheduling elements (0x040A) 490 */ 491 static int 492 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 493 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 494 { 495 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 496 elems_req, (void *)buf, buf_size, 497 elems_ret, cd); 498 } 499 500 /** 501 * ice_aq_query_sched_res - query scheduler resource 502 * @hw: pointer to the HW struct 503 * @buf_size: buffer size in bytes 504 * @buf: pointer to buffer 505 * @cd: pointer to command details structure or NULL 506 * 507 * Query scheduler resource allocation (0x0412) 508 */ 509 static int 510 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 511 struct ice_aqc_query_txsched_res_resp *buf, 512 struct ice_sq_cd *cd) 513 { 514 struct ice_aq_desc desc; 515 516 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 517 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 518 } 519 520 /** 521 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 522 * @hw: pointer to the HW struct 523 * @num_nodes: number of nodes 524 * @node_teids: array of node teids to be suspended or resumed 525 * @suspend: true means suspend / false means resume 526 * 527 * This function suspends or resumes HW nodes 528 */ 529 static int 530 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 531 bool suspend) 532 { 533 u16 i, buf_size, num_elem_ret = 0; 534 __le32 *buf; 535 int status; 536 537 buf_size = sizeof(*buf) * num_nodes; 538 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 539 if (!buf) 540 return -ENOMEM; 541 542 for (i = 0; i < num_nodes; i++) 543 buf[i] = cpu_to_le32(node_teids[i]); 544 545 if (suspend) 546 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 547 buf_size, &num_elem_ret, 548 NULL); 549 else 550 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 551 buf_size, &num_elem_ret, 552 NULL); 553 if (status || num_elem_ret != num_nodes) 554 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 555 556 devm_kfree(ice_hw_to_dev(hw), buf); 557 return status; 558 } 559 560 /** 561 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 562 * @hw: pointer to the HW struct 563 * @vsi_handle: VSI handle 564 * @tc: TC number 565 * @new_numqs: number of queues 566 */ 567 static int 568 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 569 { 570 struct ice_vsi_ctx *vsi_ctx; 571 struct ice_q_ctx *q_ctx; 572 573 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 574 if (!vsi_ctx) 575 return -EINVAL; 576 /* allocate LAN queue contexts */ 577 if (!vsi_ctx->lan_q_ctx[tc]) { 578 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 579 new_numqs, 580 sizeof(*q_ctx), 581 GFP_KERNEL); 582 if (!vsi_ctx->lan_q_ctx[tc]) 583 return -ENOMEM; 584 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 585 return 0; 586 } 587 /* num queues are increased, update the queue contexts */ 588 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 589 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 590 591 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 592 sizeof(*q_ctx), GFP_KERNEL); 593 if (!q_ctx) 594 return -ENOMEM; 595 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 596 prev_num * sizeof(*q_ctx)); 597 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 598 vsi_ctx->lan_q_ctx[tc] = q_ctx; 599 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 600 } 601 return 0; 602 } 603 604 /** 605 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 606 * @hw: pointer to the HW struct 607 * @vsi_handle: VSI handle 608 * @tc: TC number 609 * @new_numqs: number of queues 610 */ 611 static int 612 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 613 { 614 struct ice_vsi_ctx *vsi_ctx; 615 struct ice_q_ctx *q_ctx; 616 617 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 618 if (!vsi_ctx) 619 return -EINVAL; 620 /* allocate RDMA queue contexts */ 621 if (!vsi_ctx->rdma_q_ctx[tc]) { 622 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 623 new_numqs, 624 sizeof(*q_ctx), 625 GFP_KERNEL); 626 if (!vsi_ctx->rdma_q_ctx[tc]) 627 return -ENOMEM; 628 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 629 return 0; 630 } 631 /* num queues are increased, update the queue contexts */ 632 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 633 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 634 635 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 636 sizeof(*q_ctx), GFP_KERNEL); 637 if (!q_ctx) 638 return -ENOMEM; 639 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 640 prev_num * sizeof(*q_ctx)); 641 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 642 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 643 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 644 } 645 return 0; 646 } 647 648 /** 649 * ice_aq_rl_profile - performs a rate limiting task 650 * @hw: pointer to the HW struct 651 * @opcode: opcode for add, query, or remove profile(s) 652 * @num_profiles: the number of profiles 653 * @buf: pointer to buffer 654 * @buf_size: buffer size in bytes 655 * @num_processed: number of processed add or remove profile(s) to return 656 * @cd: pointer to command details structure 657 * 658 * RL profile function to add, query, or remove profile(s) 659 */ 660 static int 661 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 662 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 663 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 664 { 665 struct ice_aqc_rl_profile *cmd; 666 struct ice_aq_desc desc; 667 int status; 668 669 cmd = &desc.params.rl_profile; 670 671 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 672 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 673 cmd->num_profiles = cpu_to_le16(num_profiles); 674 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 675 if (!status && num_processed) 676 *num_processed = le16_to_cpu(cmd->num_processed); 677 return status; 678 } 679 680 /** 681 * ice_aq_add_rl_profile - adds rate limiting profile(s) 682 * @hw: pointer to the HW struct 683 * @num_profiles: the number of profile(s) to be add 684 * @buf: pointer to buffer 685 * @buf_size: buffer size in bytes 686 * @num_profiles_added: total number of profiles added to return 687 * @cd: pointer to command details structure 688 * 689 * Add RL profile (0x0410) 690 */ 691 static int 692 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 693 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 694 u16 *num_profiles_added, struct ice_sq_cd *cd) 695 { 696 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 697 buf, buf_size, num_profiles_added, cd); 698 } 699 700 /** 701 * ice_aq_remove_rl_profile - removes RL profile(s) 702 * @hw: pointer to the HW struct 703 * @num_profiles: the number of profile(s) to remove 704 * @buf: pointer to buffer 705 * @buf_size: buffer size in bytes 706 * @num_profiles_removed: total number of profiles removed to return 707 * @cd: pointer to command details structure or NULL 708 * 709 * Remove RL profile (0x0415) 710 */ 711 static int 712 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 713 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 714 u16 *num_profiles_removed, struct ice_sq_cd *cd) 715 { 716 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 717 num_profiles, buf, buf_size, 718 num_profiles_removed, cd); 719 } 720 721 /** 722 * ice_sched_del_rl_profile - remove RL profile 723 * @hw: pointer to the HW struct 724 * @rl_info: rate limit profile information 725 * 726 * If the profile ID is not referenced anymore, it removes profile ID with 727 * its associated parameters from HW DB,and locally. The caller needs to 728 * hold scheduler lock. 729 */ 730 static int 731 ice_sched_del_rl_profile(struct ice_hw *hw, 732 struct ice_aqc_rl_profile_info *rl_info) 733 { 734 struct ice_aqc_rl_profile_elem *buf; 735 u16 num_profiles_removed; 736 u16 num_profiles = 1; 737 int status; 738 739 if (rl_info->prof_id_ref != 0) 740 return -EBUSY; 741 742 /* Safe to remove profile ID */ 743 buf = &rl_info->profile; 744 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 745 &num_profiles_removed, NULL); 746 if (status || num_profiles_removed != num_profiles) 747 return -EIO; 748 749 /* Delete stale entry now */ 750 list_del(&rl_info->list_entry); 751 devm_kfree(ice_hw_to_dev(hw), rl_info); 752 return status; 753 } 754 755 /** 756 * ice_sched_clear_rl_prof - clears RL prof entries 757 * @pi: port information structure 758 * 759 * This function removes all RL profile from HW as well as from SW DB. 760 */ 761 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 762 { 763 u16 ln; 764 765 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 766 struct ice_aqc_rl_profile_info *rl_prof_elem; 767 struct ice_aqc_rl_profile_info *rl_prof_tmp; 768 769 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 770 &pi->rl_prof_list[ln], list_entry) { 771 struct ice_hw *hw = pi->hw; 772 int status; 773 774 rl_prof_elem->prof_id_ref = 0; 775 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 776 if (status) { 777 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 778 /* On error, free mem required */ 779 list_del(&rl_prof_elem->list_entry); 780 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 781 } 782 } 783 } 784 } 785 786 /** 787 * ice_sched_clear_agg - clears the aggregator related information 788 * @hw: pointer to the hardware structure 789 * 790 * This function removes aggregator list and free up aggregator related memory 791 * previously allocated. 792 */ 793 void ice_sched_clear_agg(struct ice_hw *hw) 794 { 795 struct ice_sched_agg_info *agg_info; 796 struct ice_sched_agg_info *atmp; 797 798 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 799 struct ice_sched_agg_vsi_info *agg_vsi_info; 800 struct ice_sched_agg_vsi_info *vtmp; 801 802 list_for_each_entry_safe(agg_vsi_info, vtmp, 803 &agg_info->agg_vsi_list, list_entry) { 804 list_del(&agg_vsi_info->list_entry); 805 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 806 } 807 list_del(&agg_info->list_entry); 808 devm_kfree(ice_hw_to_dev(hw), agg_info); 809 } 810 } 811 812 /** 813 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 814 * @pi: port information structure 815 * 816 * This function removes all the nodes from HW as well as from SW DB. 817 */ 818 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 819 { 820 if (!pi) 821 return; 822 /* remove RL profiles related lists */ 823 ice_sched_clear_rl_prof(pi); 824 if (pi->root) { 825 ice_free_sched_node(pi, pi->root); 826 pi->root = NULL; 827 } 828 } 829 830 /** 831 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 832 * @pi: port information structure 833 * 834 * Cleanup scheduling elements from SW DB 835 */ 836 void ice_sched_clear_port(struct ice_port_info *pi) 837 { 838 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 839 return; 840 841 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 842 mutex_lock(&pi->sched_lock); 843 ice_sched_clear_tx_topo(pi); 844 mutex_unlock(&pi->sched_lock); 845 mutex_destroy(&pi->sched_lock); 846 } 847 848 /** 849 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 850 * @hw: pointer to the HW struct 851 * 852 * Cleanup scheduling elements from SW DB for all the ports 853 */ 854 void ice_sched_cleanup_all(struct ice_hw *hw) 855 { 856 if (!hw) 857 return; 858 859 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 860 hw->layer_info = NULL; 861 862 ice_sched_clear_port(hw->port_info); 863 864 hw->num_tx_sched_layers = 0; 865 hw->num_tx_sched_phys_layers = 0; 866 hw->flattened_layers = 0; 867 hw->max_cgds = 0; 868 } 869 870 /** 871 * ice_sched_add_elems - add nodes to HW and SW DB 872 * @pi: port information structure 873 * @tc_node: pointer to the branch node 874 * @parent: pointer to the parent node 875 * @layer: layer number to add nodes 876 * @num_nodes: number of nodes 877 * @num_nodes_added: pointer to num nodes added 878 * @first_node_teid: if new nodes are added then return the TEID of first node 879 * @prealloc_nodes: preallocated nodes struct for software DB 880 * 881 * This function add nodes to HW as well as to SW DB for a given layer 882 */ 883 int 884 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 885 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 886 u16 *num_nodes_added, u32 *first_node_teid, 887 struct ice_sched_node **prealloc_nodes) 888 { 889 struct ice_sched_node *prev, *new_node; 890 struct ice_aqc_add_elem *buf; 891 u16 i, num_groups_added = 0; 892 struct ice_hw *hw = pi->hw; 893 size_t buf_size; 894 int status = 0; 895 u32 teid; 896 897 buf_size = struct_size(buf, generic, num_nodes); 898 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 899 if (!buf) 900 return -ENOMEM; 901 902 buf->hdr.parent_teid = parent->info.node_teid; 903 buf->hdr.num_elems = cpu_to_le16(num_nodes); 904 for (i = 0; i < num_nodes; i++) { 905 buf->generic[i].parent_teid = parent->info.node_teid; 906 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 907 buf->generic[i].data.valid_sections = 908 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 909 ICE_AQC_ELEM_VALID_EIR; 910 buf->generic[i].data.generic = 0; 911 buf->generic[i].data.cir_bw.bw_profile_idx = 912 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 913 buf->generic[i].data.cir_bw.bw_alloc = 914 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 915 buf->generic[i].data.eir_bw.bw_profile_idx = 916 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 917 buf->generic[i].data.eir_bw.bw_alloc = 918 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 919 } 920 921 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 922 &num_groups_added, NULL); 923 if (status || num_groups_added != 1) { 924 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 925 hw->adminq.sq_last_status); 926 devm_kfree(ice_hw_to_dev(hw), buf); 927 return -EIO; 928 } 929 930 *num_nodes_added = num_nodes; 931 /* add nodes to the SW DB */ 932 for (i = 0; i < num_nodes; i++) { 933 if (prealloc_nodes) 934 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); 935 else 936 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); 937 938 if (status) { 939 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 940 status); 941 break; 942 } 943 944 teid = le32_to_cpu(buf->generic[i].node_teid); 945 new_node = ice_sched_find_node_by_teid(parent, teid); 946 if (!new_node) { 947 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 948 break; 949 } 950 951 new_node->sibling = NULL; 952 new_node->tc_num = tc_node->tc_num; 953 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; 954 new_node->tx_share = ICE_SCHED_DFLT_BW; 955 new_node->tx_max = ICE_SCHED_DFLT_BW; 956 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); 957 if (!new_node->name) 958 return -ENOMEM; 959 960 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), 961 GFP_KERNEL); 962 if (status) { 963 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", 964 status); 965 break; 966 } 967 968 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); 969 970 /* add it to previous node sibling pointer */ 971 /* Note: siblings are not linked across branches */ 972 prev = ice_sched_get_first_node(pi, tc_node, layer); 973 if (prev && prev != new_node) { 974 while (prev->sibling) 975 prev = prev->sibling; 976 prev->sibling = new_node; 977 } 978 979 /* initialize the sibling head */ 980 if (!pi->sib_head[tc_node->tc_num][layer]) 981 pi->sib_head[tc_node->tc_num][layer] = new_node; 982 983 if (i == 0) 984 *first_node_teid = teid; 985 } 986 987 devm_kfree(ice_hw_to_dev(hw), buf); 988 return status; 989 } 990 991 /** 992 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 993 * @pi: port information structure 994 * @tc_node: pointer to TC node 995 * @parent: pointer to parent node 996 * @layer: layer number to add nodes 997 * @num_nodes: number of nodes to be added 998 * @first_node_teid: pointer to the first node TEID 999 * @num_nodes_added: pointer to number of nodes added 1000 * 1001 * Add nodes into specific HW layer. 1002 */ 1003 static int 1004 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 1005 struct ice_sched_node *tc_node, 1006 struct ice_sched_node *parent, u8 layer, 1007 u16 num_nodes, u32 *first_node_teid, 1008 u16 *num_nodes_added) 1009 { 1010 u16 max_child_nodes; 1011 1012 *num_nodes_added = 0; 1013 1014 if (!num_nodes) 1015 return 0; 1016 1017 if (!parent || layer < pi->hw->sw_entry_point_layer) 1018 return -EINVAL; 1019 1020 /* max children per node per layer */ 1021 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1022 1023 /* current number of children + required nodes exceed max children */ 1024 if ((parent->num_children + num_nodes) > max_child_nodes) { 1025 /* Fail if the parent is a TC node */ 1026 if (parent == tc_node) 1027 return -EIO; 1028 return -ENOSPC; 1029 } 1030 1031 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1032 num_nodes_added, first_node_teid, NULL); 1033 } 1034 1035 /** 1036 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1037 * @pi: port information structure 1038 * @tc_node: pointer to TC node 1039 * @parent: pointer to parent node 1040 * @layer: layer number to add nodes 1041 * @num_nodes: number of nodes to be added 1042 * @first_node_teid: pointer to the first node TEID 1043 * @num_nodes_added: pointer to number of nodes added 1044 * 1045 * This function add nodes to a given layer. 1046 */ 1047 static int 1048 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1049 struct ice_sched_node *tc_node, 1050 struct ice_sched_node *parent, u8 layer, 1051 u16 num_nodes, u32 *first_node_teid, 1052 u16 *num_nodes_added) 1053 { 1054 u32 *first_teid_ptr = first_node_teid; 1055 u16 new_num_nodes = num_nodes; 1056 int status = 0; 1057 1058 *num_nodes_added = 0; 1059 while (*num_nodes_added < num_nodes) { 1060 u16 max_child_nodes, num_added = 0; 1061 u32 temp; 1062 1063 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1064 layer, new_num_nodes, 1065 first_teid_ptr, 1066 &num_added); 1067 if (!status) 1068 *num_nodes_added += num_added; 1069 /* added more nodes than requested ? */ 1070 if (*num_nodes_added > num_nodes) { 1071 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1072 *num_nodes_added); 1073 status = -EIO; 1074 break; 1075 } 1076 /* break if all the nodes are added successfully */ 1077 if (!status && (*num_nodes_added == num_nodes)) 1078 break; 1079 /* break if the error is not max limit */ 1080 if (status && status != -ENOSPC) 1081 break; 1082 /* Exceeded the max children */ 1083 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1084 /* utilize all the spaces if the parent is not full */ 1085 if (parent->num_children < max_child_nodes) { 1086 new_num_nodes = max_child_nodes - parent->num_children; 1087 } else { 1088 /* This parent is full, try the next sibling */ 1089 parent = parent->sibling; 1090 /* Don't modify the first node TEID memory if the 1091 * first node was added already in the above call. 1092 * Instead send some temp memory for all other 1093 * recursive calls. 1094 */ 1095 if (num_added) 1096 first_teid_ptr = &temp; 1097 1098 new_num_nodes = num_nodes - *num_nodes_added; 1099 } 1100 } 1101 return status; 1102 } 1103 1104 /** 1105 * ice_sched_get_qgrp_layer - get the current queue group layer number 1106 * @hw: pointer to the HW struct 1107 * 1108 * This function returns the current queue group layer number 1109 */ 1110 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1111 { 1112 /* It's always total layers - 1, the array is 0 relative so -2 */ 1113 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1114 } 1115 1116 /** 1117 * ice_sched_get_vsi_layer - get the current VSI layer number 1118 * @hw: pointer to the HW struct 1119 * 1120 * This function returns the current VSI layer number 1121 */ 1122 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1123 { 1124 /* Num Layers VSI layer 1125 * 9 6 1126 * 7 4 1127 * 5 or less sw_entry_point_layer 1128 */ 1129 /* calculate the VSI layer based on number of layers. */ 1130 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1131 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1132 1133 if (layer > hw->sw_entry_point_layer) 1134 return layer; 1135 } 1136 return hw->sw_entry_point_layer; 1137 } 1138 1139 /** 1140 * ice_sched_get_agg_layer - get the current aggregator layer number 1141 * @hw: pointer to the HW struct 1142 * 1143 * This function returns the current aggregator layer number 1144 */ 1145 static u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1146 { 1147 /* Num Layers aggregator layer 1148 * 9 4 1149 * 7 or less sw_entry_point_layer 1150 */ 1151 /* calculate the aggregator layer based on number of layers. */ 1152 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1153 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1154 1155 if (layer > hw->sw_entry_point_layer) 1156 return layer; 1157 } 1158 return hw->sw_entry_point_layer; 1159 } 1160 1161 /** 1162 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1163 * @pi: port information structure 1164 * 1165 * This function removes the leaf node that was created by the FW 1166 * during initialization 1167 */ 1168 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1169 { 1170 struct ice_sched_node *node; 1171 1172 node = pi->root; 1173 while (node) { 1174 if (!node->num_children) 1175 break; 1176 node = node->children[0]; 1177 } 1178 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1179 u32 teid = le32_to_cpu(node->info.node_teid); 1180 int status; 1181 1182 /* remove the default leaf node */ 1183 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1184 if (!status) 1185 ice_free_sched_node(pi, node); 1186 } 1187 } 1188 1189 /** 1190 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1191 * @pi: port information structure 1192 * 1193 * This function frees all the nodes except root and TC that were created by 1194 * the FW during initialization 1195 */ 1196 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1197 { 1198 struct ice_sched_node *node; 1199 1200 ice_rm_dflt_leaf_node(pi); 1201 1202 /* remove the default nodes except TC and root nodes */ 1203 node = pi->root; 1204 while (node) { 1205 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1206 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1207 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1208 ice_free_sched_node(pi, node); 1209 break; 1210 } 1211 1212 if (!node->num_children) 1213 break; 1214 node = node->children[0]; 1215 } 1216 } 1217 1218 /** 1219 * ice_sched_init_port - Initialize scheduler by querying information from FW 1220 * @pi: port info structure for the tree to cleanup 1221 * 1222 * This function is the initial call to find the total number of Tx scheduler 1223 * resources, default topology created by firmware and storing the information 1224 * in SW DB. 1225 */ 1226 int ice_sched_init_port(struct ice_port_info *pi) 1227 { 1228 struct ice_aqc_get_topo_elem *buf; 1229 struct ice_hw *hw; 1230 u8 num_branches; 1231 u16 num_elems; 1232 int status; 1233 u8 i, j; 1234 1235 if (!pi) 1236 return -EINVAL; 1237 hw = pi->hw; 1238 1239 /* Query the Default Topology from FW */ 1240 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1241 if (!buf) 1242 return -ENOMEM; 1243 1244 /* Query default scheduling tree topology */ 1245 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1246 &num_branches, NULL); 1247 if (status) 1248 goto err_init_port; 1249 1250 /* num_branches should be between 1-8 */ 1251 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1252 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1253 num_branches); 1254 status = -EINVAL; 1255 goto err_init_port; 1256 } 1257 1258 /* get the number of elements on the default/first branch */ 1259 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1260 1261 /* num_elems should always be between 1-9 */ 1262 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1263 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1264 num_elems); 1265 status = -EINVAL; 1266 goto err_init_port; 1267 } 1268 1269 /* If the last node is a leaf node then the index of the queue group 1270 * layer is two less than the number of elements. 1271 */ 1272 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1273 ICE_AQC_ELEM_TYPE_LEAF) 1274 pi->last_node_teid = 1275 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1276 else 1277 pi->last_node_teid = 1278 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1279 1280 /* Insert the Tx Sched root node */ 1281 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1282 if (status) 1283 goto err_init_port; 1284 1285 /* Parse the default tree and cache the information */ 1286 for (i = 0; i < num_branches; i++) { 1287 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1288 1289 /* Skip root element as already inserted */ 1290 for (j = 1; j < num_elems; j++) { 1291 /* update the sw entry point */ 1292 if (buf[0].generic[j].data.elem_type == 1293 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1294 hw->sw_entry_point_layer = j; 1295 1296 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); 1297 if (status) 1298 goto err_init_port; 1299 } 1300 } 1301 1302 /* Remove the default nodes. */ 1303 if (pi->root) 1304 ice_sched_rm_dflt_nodes(pi); 1305 1306 /* initialize the port for handling the scheduler tree */ 1307 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1308 mutex_init(&pi->sched_lock); 1309 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1310 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1311 1312 err_init_port: 1313 if (status && pi->root) { 1314 ice_free_sched_node(pi, pi->root); 1315 pi->root = NULL; 1316 } 1317 1318 kfree(buf); 1319 return status; 1320 } 1321 1322 /** 1323 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1324 * @hw: pointer to the HW struct 1325 * 1326 * query FW for allocated scheduler resources and store in HW struct 1327 */ 1328 int ice_sched_query_res_alloc(struct ice_hw *hw) 1329 { 1330 struct ice_aqc_query_txsched_res_resp *buf; 1331 __le16 max_sibl; 1332 int status = 0; 1333 u16 i; 1334 1335 if (hw->layer_info) 1336 return status; 1337 1338 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1339 if (!buf) 1340 return -ENOMEM; 1341 1342 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1343 if (status) 1344 goto sched_query_out; 1345 1346 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1347 hw->num_tx_sched_phys_layers = 1348 le16_to_cpu(buf->sched_props.phys_levels); 1349 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1350 hw->max_cgds = buf->sched_props.max_pf_cgds; 1351 1352 /* max sibling group size of current layer refers to the max children 1353 * of the below layer node. 1354 * layer 1 node max children will be layer 2 max sibling group size 1355 * layer 2 node max children will be layer 3 max sibling group size 1356 * and so on. This array will be populated from root (index 0) to 1357 * qgroup layer 7. Leaf node has no children. 1358 */ 1359 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1360 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1361 hw->max_children[i] = le16_to_cpu(max_sibl); 1362 } 1363 1364 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1365 (hw->num_tx_sched_layers * 1366 sizeof(*hw->layer_info)), 1367 GFP_KERNEL); 1368 if (!hw->layer_info) { 1369 status = -ENOMEM; 1370 goto sched_query_out; 1371 } 1372 1373 sched_query_out: 1374 devm_kfree(ice_hw_to_dev(hw), buf); 1375 return status; 1376 } 1377 1378 /** 1379 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1380 * @hw: pointer to the HW struct 1381 * 1382 * Determine the PSM clock frequency and store in HW struct 1383 */ 1384 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1385 { 1386 u32 val, clk_src; 1387 1388 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1389 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1390 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1391 1392 #define PSM_CLK_SRC_367_MHZ 0x0 1393 #define PSM_CLK_SRC_416_MHZ 0x1 1394 #define PSM_CLK_SRC_446_MHZ 0x2 1395 #define PSM_CLK_SRC_390_MHZ 0x3 1396 1397 switch (clk_src) { 1398 case PSM_CLK_SRC_367_MHZ: 1399 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1400 break; 1401 case PSM_CLK_SRC_416_MHZ: 1402 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1403 break; 1404 case PSM_CLK_SRC_446_MHZ: 1405 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1406 break; 1407 case PSM_CLK_SRC_390_MHZ: 1408 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1409 break; 1410 default: 1411 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1412 clk_src); 1413 /* fall back to a safe default */ 1414 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1415 } 1416 } 1417 1418 /** 1419 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1420 * @hw: pointer to the HW struct 1421 * @base: pointer to the base node 1422 * @node: pointer to the node to search 1423 * 1424 * This function checks whether a given node is part of the base node 1425 * subtree or not 1426 */ 1427 static bool 1428 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1429 struct ice_sched_node *node) 1430 { 1431 u8 i; 1432 1433 for (i = 0; i < base->num_children; i++) { 1434 struct ice_sched_node *child = base->children[i]; 1435 1436 if (node == child) 1437 return true; 1438 1439 if (child->tx_sched_layer > node->tx_sched_layer) 1440 return false; 1441 1442 /* this recursion is intentional, and wouldn't 1443 * go more than 8 calls 1444 */ 1445 if (ice_sched_find_node_in_subtree(hw, child, node)) 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 /** 1452 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1453 * @pi: port information structure 1454 * @vsi_node: software VSI handle 1455 * @qgrp_node: first queue group node identified for scanning 1456 * @owner: LAN or RDMA 1457 * 1458 * This function retrieves a free LAN or RDMA queue group node by scanning 1459 * qgrp_node and its siblings for the queue group with the fewest number 1460 * of queues currently assigned. 1461 */ 1462 static struct ice_sched_node * 1463 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1464 struct ice_sched_node *vsi_node, 1465 struct ice_sched_node *qgrp_node, u8 owner) 1466 { 1467 struct ice_sched_node *min_qgrp; 1468 u8 min_children; 1469 1470 if (!qgrp_node) 1471 return qgrp_node; 1472 min_children = qgrp_node->num_children; 1473 if (!min_children) 1474 return qgrp_node; 1475 min_qgrp = qgrp_node; 1476 /* scan all queue groups until find a node which has less than the 1477 * minimum number of children. This way all queue group nodes get 1478 * equal number of shares and active. The bandwidth will be equally 1479 * distributed across all queues. 1480 */ 1481 while (qgrp_node) { 1482 /* make sure the qgroup node is part of the VSI subtree */ 1483 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1484 if (qgrp_node->num_children < min_children && 1485 qgrp_node->owner == owner) { 1486 /* replace the new min queue group node */ 1487 min_qgrp = qgrp_node; 1488 min_children = min_qgrp->num_children; 1489 /* break if it has no children, */ 1490 if (!min_children) 1491 break; 1492 } 1493 qgrp_node = qgrp_node->sibling; 1494 } 1495 return min_qgrp; 1496 } 1497 1498 /** 1499 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1500 * @pi: port information structure 1501 * @vsi_handle: software VSI handle 1502 * @tc: branch number 1503 * @owner: LAN or RDMA 1504 * 1505 * This function retrieves a free LAN or RDMA queue group node 1506 */ 1507 struct ice_sched_node * 1508 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1509 u8 owner) 1510 { 1511 struct ice_sched_node *vsi_node, *qgrp_node; 1512 struct ice_vsi_ctx *vsi_ctx; 1513 u16 max_children; 1514 u8 qgrp_layer; 1515 1516 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1517 max_children = pi->hw->max_children[qgrp_layer]; 1518 1519 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1520 if (!vsi_ctx) 1521 return NULL; 1522 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1523 /* validate invalid VSI ID */ 1524 if (!vsi_node) 1525 return NULL; 1526 1527 /* get the first queue group node from VSI sub-tree */ 1528 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1529 while (qgrp_node) { 1530 /* make sure the qgroup node is part of the VSI subtree */ 1531 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1532 if (qgrp_node->num_children < max_children && 1533 qgrp_node->owner == owner) 1534 break; 1535 qgrp_node = qgrp_node->sibling; 1536 } 1537 1538 /* Select the best queue group */ 1539 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1540 } 1541 1542 /** 1543 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1544 * @pi: pointer to the port information structure 1545 * @tc_node: pointer to the TC node 1546 * @vsi_handle: software VSI handle 1547 * 1548 * This function retrieves a VSI node for a given VSI ID from a given 1549 * TC branch 1550 */ 1551 static struct ice_sched_node * 1552 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1553 u16 vsi_handle) 1554 { 1555 struct ice_sched_node *node; 1556 u8 vsi_layer; 1557 1558 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1559 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1560 1561 /* Check whether it already exists */ 1562 while (node) { 1563 if (node->vsi_handle == vsi_handle) 1564 return node; 1565 node = node->sibling; 1566 } 1567 1568 return node; 1569 } 1570 1571 /** 1572 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1573 * @pi: pointer to the port information structure 1574 * @tc_node: pointer to the TC node 1575 * @agg_id: aggregator ID 1576 * 1577 * This function retrieves an aggregator node for a given aggregator ID from 1578 * a given TC branch 1579 */ 1580 static struct ice_sched_node * 1581 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1582 u32 agg_id) 1583 { 1584 struct ice_sched_node *node; 1585 struct ice_hw *hw = pi->hw; 1586 u8 agg_layer; 1587 1588 if (!hw) 1589 return NULL; 1590 agg_layer = ice_sched_get_agg_layer(hw); 1591 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1592 1593 /* Check whether it already exists */ 1594 while (node) { 1595 if (node->agg_id == agg_id) 1596 return node; 1597 node = node->sibling; 1598 } 1599 1600 return node; 1601 } 1602 1603 /** 1604 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1605 * @hw: pointer to the HW struct 1606 * @num_qs: number of queues 1607 * @num_nodes: num nodes array 1608 * 1609 * This function calculates the number of VSI child nodes based on the 1610 * number of queues. 1611 */ 1612 static void 1613 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1614 { 1615 u16 num = num_qs; 1616 u8 i, qgl, vsil; 1617 1618 qgl = ice_sched_get_qgrp_layer(hw); 1619 vsil = ice_sched_get_vsi_layer(hw); 1620 1621 /* calculate num nodes from queue group to VSI layer */ 1622 for (i = qgl; i > vsil; i--) { 1623 /* round to the next integer if there is a remainder */ 1624 num = DIV_ROUND_UP(num, hw->max_children[i]); 1625 1626 /* need at least one node */ 1627 num_nodes[i] = num ? num : 1; 1628 } 1629 } 1630 1631 /** 1632 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1633 * @pi: port information structure 1634 * @vsi_handle: software VSI handle 1635 * @tc_node: pointer to the TC node 1636 * @num_nodes: pointer to the num nodes that needs to be added per layer 1637 * @owner: node owner (LAN or RDMA) 1638 * 1639 * This function adds the VSI child nodes to tree. It gets called for 1640 * LAN and RDMA separately. 1641 */ 1642 static int 1643 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1644 struct ice_sched_node *tc_node, u16 *num_nodes, 1645 u8 owner) 1646 { 1647 struct ice_sched_node *parent, *node; 1648 struct ice_hw *hw = pi->hw; 1649 u32 first_node_teid; 1650 u16 num_added = 0; 1651 u8 i, qgl, vsil; 1652 1653 qgl = ice_sched_get_qgrp_layer(hw); 1654 vsil = ice_sched_get_vsi_layer(hw); 1655 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1656 for (i = vsil + 1; i <= qgl; i++) { 1657 int status; 1658 1659 if (!parent) 1660 return -EIO; 1661 1662 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1663 num_nodes[i], 1664 &first_node_teid, 1665 &num_added); 1666 if (status || num_nodes[i] != num_added) 1667 return -EIO; 1668 1669 /* The newly added node can be a new parent for the next 1670 * layer nodes 1671 */ 1672 if (num_added) { 1673 parent = ice_sched_find_node_by_teid(tc_node, 1674 first_node_teid); 1675 node = parent; 1676 while (node) { 1677 node->owner = owner; 1678 node = node->sibling; 1679 } 1680 } else { 1681 parent = parent->children[0]; 1682 } 1683 } 1684 1685 return 0; 1686 } 1687 1688 /** 1689 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1690 * @pi: pointer to the port info structure 1691 * @tc_node: pointer to TC node 1692 * @num_nodes: pointer to num nodes array 1693 * 1694 * This function calculates the number of supported nodes needed to add this 1695 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1696 * layers 1697 */ 1698 static void 1699 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1700 struct ice_sched_node *tc_node, u16 *num_nodes) 1701 { 1702 struct ice_sched_node *node; 1703 u8 vsil; 1704 int i; 1705 1706 vsil = ice_sched_get_vsi_layer(pi->hw); 1707 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1708 /* Add intermediate nodes if TC has no children and 1709 * need at least one node for VSI 1710 */ 1711 if (!tc_node->num_children || i == vsil) { 1712 num_nodes[i]++; 1713 } else { 1714 /* If intermediate nodes are reached max children 1715 * then add a new one. 1716 */ 1717 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1718 /* scan all the siblings */ 1719 while (node) { 1720 if (node->num_children < pi->hw->max_children[i]) 1721 break; 1722 node = node->sibling; 1723 } 1724 1725 /* tree has one intermediate node to add this new VSI. 1726 * So no need to calculate supported nodes for below 1727 * layers. 1728 */ 1729 if (node) 1730 break; 1731 /* all the nodes are full, allocate a new one */ 1732 num_nodes[i]++; 1733 } 1734 } 1735 1736 /** 1737 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1738 * @pi: port information structure 1739 * @vsi_handle: software VSI handle 1740 * @tc_node: pointer to TC node 1741 * @num_nodes: pointer to num nodes array 1742 * 1743 * This function adds the VSI supported nodes into Tx tree including the 1744 * VSI, its parent and intermediate nodes in below layers 1745 */ 1746 static int 1747 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1748 struct ice_sched_node *tc_node, u16 *num_nodes) 1749 { 1750 struct ice_sched_node *parent = tc_node; 1751 u32 first_node_teid; 1752 u16 num_added = 0; 1753 u8 i, vsil; 1754 1755 if (!pi) 1756 return -EINVAL; 1757 1758 vsil = ice_sched_get_vsi_layer(pi->hw); 1759 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1760 int status; 1761 1762 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1763 i, num_nodes[i], 1764 &first_node_teid, 1765 &num_added); 1766 if (status || num_nodes[i] != num_added) 1767 return -EIO; 1768 1769 /* The newly added node can be a new parent for the next 1770 * layer nodes 1771 */ 1772 if (num_added) 1773 parent = ice_sched_find_node_by_teid(tc_node, 1774 first_node_teid); 1775 else 1776 parent = parent->children[0]; 1777 1778 if (!parent) 1779 return -EIO; 1780 1781 if (i == vsil) 1782 parent->vsi_handle = vsi_handle; 1783 } 1784 1785 return 0; 1786 } 1787 1788 /** 1789 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1790 * @pi: port information structure 1791 * @vsi_handle: software VSI handle 1792 * @tc: TC number 1793 * 1794 * This function adds a new VSI into scheduler tree 1795 */ 1796 static int 1797 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1798 { 1799 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1800 struct ice_sched_node *tc_node; 1801 1802 tc_node = ice_sched_get_tc_node(pi, tc); 1803 if (!tc_node) 1804 return -EINVAL; 1805 1806 /* calculate number of supported nodes needed for this VSI */ 1807 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1808 1809 /* add VSI supported nodes to TC subtree */ 1810 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1811 num_nodes); 1812 } 1813 1814 /** 1815 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1816 * @pi: port information structure 1817 * @vsi_handle: software VSI handle 1818 * @tc: TC number 1819 * @new_numqs: new number of max queues 1820 * @owner: owner of this subtree 1821 * 1822 * This function updates the VSI child nodes based on the number of queues 1823 */ 1824 static int 1825 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1826 u8 tc, u16 new_numqs, u8 owner) 1827 { 1828 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1829 struct ice_sched_node *vsi_node; 1830 struct ice_sched_node *tc_node; 1831 struct ice_vsi_ctx *vsi_ctx; 1832 struct ice_hw *hw = pi->hw; 1833 u16 prev_numqs; 1834 int status = 0; 1835 1836 tc_node = ice_sched_get_tc_node(pi, tc); 1837 if (!tc_node) 1838 return -EIO; 1839 1840 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1841 if (!vsi_node) 1842 return -EIO; 1843 1844 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1845 if (!vsi_ctx) 1846 return -EINVAL; 1847 1848 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1849 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1850 else 1851 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1852 /* num queues are not changed or less than the previous number */ 1853 if (new_numqs <= prev_numqs) 1854 return status; 1855 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1856 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1857 if (status) 1858 return status; 1859 } else { 1860 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1861 if (status) 1862 return status; 1863 } 1864 1865 if (new_numqs) 1866 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1867 /* Keep the max number of queue configuration all the time. Update the 1868 * tree only if number of queues > previous number of queues. This may 1869 * leave some extra nodes in the tree if number of queues < previous 1870 * number but that wouldn't harm anything. Removing those extra nodes 1871 * may complicate the code if those nodes are part of SRL or 1872 * individually rate limited. 1873 */ 1874 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1875 new_num_nodes, owner); 1876 if (status) 1877 return status; 1878 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1879 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1880 else 1881 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * ice_sched_cfg_vsi - configure the new/existing VSI 1888 * @pi: port information structure 1889 * @vsi_handle: software VSI handle 1890 * @tc: TC number 1891 * @maxqs: max number of queues 1892 * @owner: LAN or RDMA 1893 * @enable: TC enabled or disabled 1894 * 1895 * This function adds/updates VSI nodes based on the number of queues. If TC is 1896 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1897 * disabled then suspend the VSI if it is not already. 1898 */ 1899 int 1900 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1901 u8 owner, bool enable) 1902 { 1903 struct ice_sched_node *vsi_node, *tc_node; 1904 struct ice_vsi_ctx *vsi_ctx; 1905 struct ice_hw *hw = pi->hw; 1906 int status = 0; 1907 1908 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1909 tc_node = ice_sched_get_tc_node(pi, tc); 1910 if (!tc_node) 1911 return -EINVAL; 1912 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1913 if (!vsi_ctx) 1914 return -EINVAL; 1915 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1916 1917 /* suspend the VSI if TC is not enabled */ 1918 if (!enable) { 1919 if (vsi_node && vsi_node->in_use) { 1920 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1921 1922 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1923 true); 1924 if (!status) 1925 vsi_node->in_use = false; 1926 } 1927 return status; 1928 } 1929 1930 /* TC is enabled, if it is a new VSI then add it to the tree */ 1931 if (!vsi_node) { 1932 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1933 if (status) 1934 return status; 1935 1936 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1937 if (!vsi_node) 1938 return -EIO; 1939 1940 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1941 vsi_node->in_use = true; 1942 /* invalidate the max queues whenever VSI gets added first time 1943 * into the scheduler tree (boot or after reset). We need to 1944 * recreate the child nodes all the time in these cases. 1945 */ 1946 vsi_ctx->sched.max_lanq[tc] = 0; 1947 vsi_ctx->sched.max_rdmaq[tc] = 0; 1948 } 1949 1950 /* update the VSI child nodes */ 1951 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1952 owner); 1953 if (status) 1954 return status; 1955 1956 /* TC is enabled, resume the VSI if it is in the suspend state */ 1957 if (!vsi_node->in_use) { 1958 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1959 1960 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1961 if (!status) 1962 vsi_node->in_use = true; 1963 } 1964 1965 return status; 1966 } 1967 1968 /** 1969 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1970 * @pi: port information structure 1971 * @vsi_handle: software VSI handle 1972 * 1973 * This function removes single aggregator VSI info entry from 1974 * aggregator list. 1975 */ 1976 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1977 { 1978 struct ice_sched_agg_info *agg_info; 1979 struct ice_sched_agg_info *atmp; 1980 1981 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1982 list_entry) { 1983 struct ice_sched_agg_vsi_info *agg_vsi_info; 1984 struct ice_sched_agg_vsi_info *vtmp; 1985 1986 list_for_each_entry_safe(agg_vsi_info, vtmp, 1987 &agg_info->agg_vsi_list, list_entry) 1988 if (agg_vsi_info->vsi_handle == vsi_handle) { 1989 list_del(&agg_vsi_info->list_entry); 1990 devm_kfree(ice_hw_to_dev(pi->hw), 1991 agg_vsi_info); 1992 return; 1993 } 1994 } 1995 } 1996 1997 /** 1998 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1999 * @node: pointer to the sub-tree node 2000 * 2001 * This function checks for a leaf node presence in a given sub-tree node. 2002 */ 2003 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 2004 { 2005 u8 i; 2006 2007 for (i = 0; i < node->num_children; i++) 2008 if (ice_sched_is_leaf_node_present(node->children[i])) 2009 return true; 2010 /* check for a leaf node */ 2011 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 2012 } 2013 2014 /** 2015 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 2016 * @pi: port information structure 2017 * @vsi_handle: software VSI handle 2018 * @owner: LAN or RDMA 2019 * 2020 * This function removes the VSI and its LAN or RDMA children nodes from the 2021 * scheduler tree. 2022 */ 2023 static int 2024 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 2025 { 2026 struct ice_vsi_ctx *vsi_ctx; 2027 int status = -EINVAL; 2028 u8 i; 2029 2030 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2031 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2032 return status; 2033 mutex_lock(&pi->sched_lock); 2034 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2035 if (!vsi_ctx) 2036 goto exit_sched_rm_vsi_cfg; 2037 2038 ice_for_each_traffic_class(i) { 2039 struct ice_sched_node *vsi_node, *tc_node; 2040 u8 j = 0; 2041 2042 tc_node = ice_sched_get_tc_node(pi, i); 2043 if (!tc_node) 2044 continue; 2045 2046 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2047 if (!vsi_node) 2048 continue; 2049 2050 if (ice_sched_is_leaf_node_present(vsi_node)) { 2051 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2052 status = -EBUSY; 2053 goto exit_sched_rm_vsi_cfg; 2054 } 2055 while (j < vsi_node->num_children) { 2056 if (vsi_node->children[j]->owner == owner) { 2057 ice_free_sched_node(pi, vsi_node->children[j]); 2058 2059 /* reset the counter again since the num 2060 * children will be updated after node removal 2061 */ 2062 j = 0; 2063 } else { 2064 j++; 2065 } 2066 } 2067 /* remove the VSI if it has no children */ 2068 if (!vsi_node->num_children) { 2069 ice_free_sched_node(pi, vsi_node); 2070 vsi_ctx->sched.vsi_node[i] = NULL; 2071 2072 /* clean up aggregator related VSI info if any */ 2073 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2074 } 2075 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2076 vsi_ctx->sched.max_lanq[i] = 0; 2077 else 2078 vsi_ctx->sched.max_rdmaq[i] = 0; 2079 } 2080 status = 0; 2081 2082 exit_sched_rm_vsi_cfg: 2083 mutex_unlock(&pi->sched_lock); 2084 return status; 2085 } 2086 2087 /** 2088 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2089 * @pi: port information structure 2090 * @vsi_handle: software VSI handle 2091 * 2092 * This function clears the VSI and its LAN children nodes from scheduler tree 2093 * for all TCs. 2094 */ 2095 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2096 { 2097 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2098 } 2099 2100 /** 2101 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2102 * @pi: port information structure 2103 * @vsi_handle: software VSI handle 2104 * 2105 * This function clears the VSI and its RDMA children nodes from scheduler tree 2106 * for all TCs. 2107 */ 2108 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2109 { 2110 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2111 } 2112 2113 /** 2114 * ice_get_agg_info - get the aggregator ID 2115 * @hw: pointer to the hardware structure 2116 * @agg_id: aggregator ID 2117 * 2118 * This function validates aggregator ID. The function returns info if 2119 * aggregator ID is present in list otherwise it returns null. 2120 */ 2121 static struct ice_sched_agg_info * 2122 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2123 { 2124 struct ice_sched_agg_info *agg_info; 2125 2126 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2127 if (agg_info->agg_id == agg_id) 2128 return agg_info; 2129 2130 return NULL; 2131 } 2132 2133 /** 2134 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2135 * @hw: pointer to the HW struct 2136 * @node: pointer to a child node 2137 * @num_nodes: num nodes count array 2138 * 2139 * This function walks through the aggregator subtree to find a free parent 2140 * node 2141 */ 2142 static struct ice_sched_node * 2143 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2144 u16 *num_nodes) 2145 { 2146 u8 l = node->tx_sched_layer; 2147 u8 vsil, i; 2148 2149 vsil = ice_sched_get_vsi_layer(hw); 2150 2151 /* Is it VSI parent layer ? */ 2152 if (l == vsil - 1) 2153 return (node->num_children < hw->max_children[l]) ? node : NULL; 2154 2155 /* We have intermediate nodes. Let's walk through the subtree. If the 2156 * intermediate node has space to add a new node then clear the count 2157 */ 2158 if (node->num_children < hw->max_children[l]) 2159 num_nodes[l] = 0; 2160 /* The below recursive call is intentional and wouldn't go more than 2161 * 2 or 3 iterations. 2162 */ 2163 2164 for (i = 0; i < node->num_children; i++) { 2165 struct ice_sched_node *parent; 2166 2167 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2168 num_nodes); 2169 if (parent) 2170 return parent; 2171 } 2172 2173 return NULL; 2174 } 2175 2176 /** 2177 * ice_sched_update_parent - update the new parent in SW DB 2178 * @new_parent: pointer to a new parent node 2179 * @node: pointer to a child node 2180 * 2181 * This function removes the child from the old parent and adds it to a new 2182 * parent 2183 */ 2184 void 2185 ice_sched_update_parent(struct ice_sched_node *new_parent, 2186 struct ice_sched_node *node) 2187 { 2188 struct ice_sched_node *old_parent; 2189 u8 i, j; 2190 2191 old_parent = node->parent; 2192 2193 /* update the old parent children */ 2194 for (i = 0; i < old_parent->num_children; i++) 2195 if (old_parent->children[i] == node) { 2196 for (j = i + 1; j < old_parent->num_children; j++) 2197 old_parent->children[j - 1] = 2198 old_parent->children[j]; 2199 old_parent->num_children--; 2200 break; 2201 } 2202 2203 /* now move the node to a new parent */ 2204 new_parent->children[new_parent->num_children++] = node; 2205 node->parent = new_parent; 2206 node->info.parent_teid = new_parent->info.node_teid; 2207 } 2208 2209 /** 2210 * ice_sched_move_nodes - move child nodes to a given parent 2211 * @pi: port information structure 2212 * @parent: pointer to parent node 2213 * @num_items: number of child nodes to be moved 2214 * @list: pointer to child node teids 2215 * 2216 * This function move the child nodes to a given parent. 2217 */ 2218 int 2219 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2220 u16 num_items, u32 *list) 2221 { 2222 struct ice_aqc_move_elem *buf; 2223 struct ice_sched_node *node; 2224 u16 i, grps_movd = 0; 2225 struct ice_hw *hw; 2226 int status = 0; 2227 u16 buf_len; 2228 2229 hw = pi->hw; 2230 2231 if (!parent || !num_items) 2232 return -EINVAL; 2233 2234 /* Does parent have enough space */ 2235 if (parent->num_children + num_items > 2236 hw->max_children[parent->tx_sched_layer]) 2237 return -ENOSPC; 2238 2239 buf_len = struct_size(buf, teid, 1); 2240 buf = kzalloc(buf_len, GFP_KERNEL); 2241 if (!buf) 2242 return -ENOMEM; 2243 2244 for (i = 0; i < num_items; i++) { 2245 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2246 if (!node) { 2247 status = -EINVAL; 2248 goto move_err_exit; 2249 } 2250 2251 buf->hdr.src_parent_teid = node->info.parent_teid; 2252 buf->hdr.dest_parent_teid = parent->info.node_teid; 2253 buf->teid[0] = node->info.node_teid; 2254 buf->hdr.num_elems = cpu_to_le16(1); 2255 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2256 &grps_movd, NULL); 2257 if (status && grps_movd != 1) { 2258 status = -EIO; 2259 goto move_err_exit; 2260 } 2261 2262 /* update the SW DB */ 2263 ice_sched_update_parent(parent, node); 2264 } 2265 2266 move_err_exit: 2267 kfree(buf); 2268 return status; 2269 } 2270 2271 /** 2272 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2273 * @pi: port information structure 2274 * @vsi_handle: software VSI handle 2275 * @agg_id: aggregator ID 2276 * @tc: TC number 2277 * 2278 * This function moves a VSI to an aggregator node or its subtree. 2279 * Intermediate nodes may be created if required. 2280 */ 2281 static int 2282 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2283 u8 tc) 2284 { 2285 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2286 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2287 u32 first_node_teid, vsi_teid; 2288 u16 num_nodes_added; 2289 u8 aggl, vsil, i; 2290 int status; 2291 2292 tc_node = ice_sched_get_tc_node(pi, tc); 2293 if (!tc_node) 2294 return -EIO; 2295 2296 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2297 if (!agg_node) 2298 return -ENOENT; 2299 2300 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2301 if (!vsi_node) 2302 return -ENOENT; 2303 2304 /* Is this VSI already part of given aggregator? */ 2305 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2306 return 0; 2307 2308 aggl = ice_sched_get_agg_layer(pi->hw); 2309 vsil = ice_sched_get_vsi_layer(pi->hw); 2310 2311 /* set intermediate node count to 1 between aggregator and VSI layers */ 2312 for (i = aggl + 1; i < vsil; i++) 2313 num_nodes[i] = 1; 2314 2315 /* Check if the aggregator subtree has any free node to add the VSI */ 2316 for (i = 0; i < agg_node->num_children; i++) { 2317 parent = ice_sched_get_free_vsi_parent(pi->hw, 2318 agg_node->children[i], 2319 num_nodes); 2320 if (parent) 2321 goto move_nodes; 2322 } 2323 2324 /* add new nodes */ 2325 parent = agg_node; 2326 for (i = aggl + 1; i < vsil; i++) { 2327 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2328 num_nodes[i], 2329 &first_node_teid, 2330 &num_nodes_added); 2331 if (status || num_nodes[i] != num_nodes_added) 2332 return -EIO; 2333 2334 /* The newly added node can be a new parent for the next 2335 * layer nodes 2336 */ 2337 if (num_nodes_added) 2338 parent = ice_sched_find_node_by_teid(tc_node, 2339 first_node_teid); 2340 else 2341 parent = parent->children[0]; 2342 2343 if (!parent) 2344 return -EIO; 2345 } 2346 2347 move_nodes: 2348 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2349 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2350 } 2351 2352 /** 2353 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2354 * @pi: port information structure 2355 * @agg_info: aggregator info 2356 * @tc: traffic class number 2357 * @rm_vsi_info: true or false 2358 * 2359 * This function move all the VSI(s) to the default aggregator and delete 2360 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2361 * caller holds the scheduler lock. 2362 */ 2363 static int 2364 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2365 struct ice_sched_agg_info *agg_info, u8 tc, 2366 bool rm_vsi_info) 2367 { 2368 struct ice_sched_agg_vsi_info *agg_vsi_info; 2369 struct ice_sched_agg_vsi_info *tmp; 2370 int status = 0; 2371 2372 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2373 list_entry) { 2374 u16 vsi_handle = agg_vsi_info->vsi_handle; 2375 2376 /* Move VSI to default aggregator */ 2377 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2378 continue; 2379 2380 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2381 ICE_DFLT_AGG_ID, tc); 2382 if (status) 2383 break; 2384 2385 clear_bit(tc, agg_vsi_info->tc_bitmap); 2386 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2387 list_del(&agg_vsi_info->list_entry); 2388 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2389 } 2390 } 2391 2392 return status; 2393 } 2394 2395 /** 2396 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2397 * @pi: port information structure 2398 * @node: node pointer 2399 * 2400 * This function checks whether the aggregator is attached with any VSI or not. 2401 */ 2402 static bool 2403 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2404 { 2405 u8 vsil, i; 2406 2407 vsil = ice_sched_get_vsi_layer(pi->hw); 2408 if (node->tx_sched_layer < vsil - 1) { 2409 for (i = 0; i < node->num_children; i++) 2410 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2411 return true; 2412 return false; 2413 } else { 2414 return node->num_children ? true : false; 2415 } 2416 } 2417 2418 /** 2419 * ice_sched_rm_agg_cfg - remove the aggregator node 2420 * @pi: port information structure 2421 * @agg_id: aggregator ID 2422 * @tc: TC number 2423 * 2424 * This function removes the aggregator node and intermediate nodes if any 2425 * from the given TC 2426 */ 2427 static int 2428 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2429 { 2430 struct ice_sched_node *tc_node, *agg_node; 2431 struct ice_hw *hw = pi->hw; 2432 2433 tc_node = ice_sched_get_tc_node(pi, tc); 2434 if (!tc_node) 2435 return -EIO; 2436 2437 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2438 if (!agg_node) 2439 return -ENOENT; 2440 2441 /* Can't remove the aggregator node if it has children */ 2442 if (ice_sched_is_agg_inuse(pi, agg_node)) 2443 return -EBUSY; 2444 2445 /* need to remove the whole subtree if aggregator node is the 2446 * only child. 2447 */ 2448 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2449 struct ice_sched_node *parent = agg_node->parent; 2450 2451 if (!parent) 2452 return -EIO; 2453 2454 if (parent->num_children > 1) 2455 break; 2456 2457 agg_node = parent; 2458 } 2459 2460 ice_free_sched_node(pi, agg_node); 2461 return 0; 2462 } 2463 2464 /** 2465 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2466 * @pi: port information structure 2467 * @agg_info: aggregator ID 2468 * @tc: TC number 2469 * @rm_vsi_info: bool value true or false 2470 * 2471 * This function removes aggregator reference to VSI of given TC. It removes 2472 * the aggregator configuration completely for requested TC. The caller needs 2473 * to hold the scheduler lock. 2474 */ 2475 static int 2476 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2477 u8 tc, bool rm_vsi_info) 2478 { 2479 int status = 0; 2480 2481 /* If nothing to remove - return success */ 2482 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2483 goto exit_rm_agg_cfg_tc; 2484 2485 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2486 if (status) 2487 goto exit_rm_agg_cfg_tc; 2488 2489 /* Delete aggregator node(s) */ 2490 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2491 if (status) 2492 goto exit_rm_agg_cfg_tc; 2493 2494 clear_bit(tc, agg_info->tc_bitmap); 2495 exit_rm_agg_cfg_tc: 2496 return status; 2497 } 2498 2499 /** 2500 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2501 * @pi: port information structure 2502 * @agg_id: aggregator ID 2503 * @tc_bitmap: 8 bits TC bitmap 2504 * 2505 * Save aggregator TC bitmap. This function needs to be called with scheduler 2506 * lock held. 2507 */ 2508 static int 2509 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2510 unsigned long *tc_bitmap) 2511 { 2512 struct ice_sched_agg_info *agg_info; 2513 2514 agg_info = ice_get_agg_info(pi->hw, agg_id); 2515 if (!agg_info) 2516 return -EINVAL; 2517 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2518 ICE_MAX_TRAFFIC_CLASS); 2519 return 0; 2520 } 2521 2522 /** 2523 * ice_sched_add_agg_cfg - create an aggregator node 2524 * @pi: port information structure 2525 * @agg_id: aggregator ID 2526 * @tc: TC number 2527 * 2528 * This function creates an aggregator node and intermediate nodes if required 2529 * for the given TC 2530 */ 2531 static int 2532 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2533 { 2534 struct ice_sched_node *parent, *agg_node, *tc_node; 2535 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2536 struct ice_hw *hw = pi->hw; 2537 u32 first_node_teid; 2538 u16 num_nodes_added; 2539 int status = 0; 2540 u8 i, aggl; 2541 2542 tc_node = ice_sched_get_tc_node(pi, tc); 2543 if (!tc_node) 2544 return -EIO; 2545 2546 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2547 /* Does Agg node already exist ? */ 2548 if (agg_node) 2549 return status; 2550 2551 aggl = ice_sched_get_agg_layer(hw); 2552 2553 /* need one node in Agg layer */ 2554 num_nodes[aggl] = 1; 2555 2556 /* Check whether the intermediate nodes have space to add the 2557 * new aggregator. If they are full, then SW needs to allocate a new 2558 * intermediate node on those layers 2559 */ 2560 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2561 parent = ice_sched_get_first_node(pi, tc_node, i); 2562 2563 /* scan all the siblings */ 2564 while (parent) { 2565 if (parent->num_children < hw->max_children[i]) 2566 break; 2567 parent = parent->sibling; 2568 } 2569 2570 /* all the nodes are full, reserve one for this layer */ 2571 if (!parent) 2572 num_nodes[i]++; 2573 } 2574 2575 /* add the aggregator node */ 2576 parent = tc_node; 2577 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2578 if (!parent) 2579 return -EIO; 2580 2581 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2582 num_nodes[i], 2583 &first_node_teid, 2584 &num_nodes_added); 2585 if (status || num_nodes[i] != num_nodes_added) 2586 return -EIO; 2587 2588 /* The newly added node can be a new parent for the next 2589 * layer nodes 2590 */ 2591 if (num_nodes_added) { 2592 parent = ice_sched_find_node_by_teid(tc_node, 2593 first_node_teid); 2594 /* register aggregator ID with the aggregator node */ 2595 if (parent && i == aggl) 2596 parent->agg_id = agg_id; 2597 } else { 2598 parent = parent->children[0]; 2599 } 2600 } 2601 2602 return 0; 2603 } 2604 2605 /** 2606 * ice_sched_cfg_agg - configure aggregator node 2607 * @pi: port information structure 2608 * @agg_id: aggregator ID 2609 * @agg_type: aggregator type queue, VSI, or aggregator group 2610 * @tc_bitmap: bits TC bitmap 2611 * 2612 * It registers a unique aggregator node into scheduler services. It 2613 * allows a user to register with a unique ID to track it's resources. 2614 * The aggregator type determines if this is a queue group, VSI group 2615 * or aggregator group. It then creates the aggregator node(s) for requested 2616 * TC(s) or removes an existing aggregator node including its configuration 2617 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2618 * resources and remove aggregator ID. 2619 * This function needs to be called with scheduler lock held. 2620 */ 2621 static int 2622 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2623 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2624 { 2625 struct ice_sched_agg_info *agg_info; 2626 struct ice_hw *hw = pi->hw; 2627 int status = 0; 2628 u8 tc; 2629 2630 agg_info = ice_get_agg_info(hw, agg_id); 2631 if (!agg_info) { 2632 /* Create new entry for new aggregator ID */ 2633 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2634 GFP_KERNEL); 2635 if (!agg_info) 2636 return -ENOMEM; 2637 2638 agg_info->agg_id = agg_id; 2639 agg_info->agg_type = agg_type; 2640 agg_info->tc_bitmap[0] = 0; 2641 2642 /* Initialize the aggregator VSI list head */ 2643 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2644 2645 /* Add new entry in aggregator list */ 2646 list_add(&agg_info->list_entry, &hw->agg_list); 2647 } 2648 /* Create aggregator node(s) for requested TC(s) */ 2649 ice_for_each_traffic_class(tc) { 2650 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2651 /* Delete aggregator cfg TC if it exists previously */ 2652 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2653 if (status) 2654 break; 2655 continue; 2656 } 2657 2658 /* Check if aggregator node for TC already exists */ 2659 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2660 continue; 2661 2662 /* Create new aggregator node for TC */ 2663 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2664 if (status) 2665 break; 2666 2667 /* Save aggregator node's TC information */ 2668 set_bit(tc, agg_info->tc_bitmap); 2669 } 2670 2671 return status; 2672 } 2673 2674 /** 2675 * ice_cfg_agg - config aggregator node 2676 * @pi: port information structure 2677 * @agg_id: aggregator ID 2678 * @agg_type: aggregator type queue, VSI, or aggregator group 2679 * @tc_bitmap: bits TC bitmap 2680 * 2681 * This function configures aggregator node(s). 2682 */ 2683 int 2684 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2685 u8 tc_bitmap) 2686 { 2687 unsigned long bitmap = tc_bitmap; 2688 int status; 2689 2690 mutex_lock(&pi->sched_lock); 2691 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2692 if (!status) 2693 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2694 mutex_unlock(&pi->sched_lock); 2695 return status; 2696 } 2697 2698 /** 2699 * ice_get_agg_vsi_info - get the aggregator ID 2700 * @agg_info: aggregator info 2701 * @vsi_handle: software VSI handle 2702 * 2703 * The function returns aggregator VSI info based on VSI handle. This function 2704 * needs to be called with scheduler lock held. 2705 */ 2706 static struct ice_sched_agg_vsi_info * 2707 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2708 { 2709 struct ice_sched_agg_vsi_info *agg_vsi_info; 2710 2711 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2712 if (agg_vsi_info->vsi_handle == vsi_handle) 2713 return agg_vsi_info; 2714 2715 return NULL; 2716 } 2717 2718 /** 2719 * ice_get_vsi_agg_info - get the aggregator info of VSI 2720 * @hw: pointer to the hardware structure 2721 * @vsi_handle: Sw VSI handle 2722 * 2723 * The function returns aggregator info of VSI represented via vsi_handle. The 2724 * VSI has in this case a different aggregator than the default one. This 2725 * function needs to be called with scheduler lock held. 2726 */ 2727 static struct ice_sched_agg_info * 2728 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2729 { 2730 struct ice_sched_agg_info *agg_info; 2731 2732 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2733 struct ice_sched_agg_vsi_info *agg_vsi_info; 2734 2735 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2736 if (agg_vsi_info) 2737 return agg_info; 2738 } 2739 return NULL; 2740 } 2741 2742 /** 2743 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2744 * @pi: port information structure 2745 * @agg_id: aggregator ID 2746 * @vsi_handle: software VSI handle 2747 * @tc_bitmap: TC bitmap of enabled TC(s) 2748 * 2749 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2750 * lock held. 2751 */ 2752 static int 2753 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2754 unsigned long *tc_bitmap) 2755 { 2756 struct ice_sched_agg_vsi_info *agg_vsi_info; 2757 struct ice_sched_agg_info *agg_info; 2758 2759 agg_info = ice_get_agg_info(pi->hw, agg_id); 2760 if (!agg_info) 2761 return -EINVAL; 2762 /* check if entry already exist */ 2763 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2764 if (!agg_vsi_info) 2765 return -EINVAL; 2766 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2767 ICE_MAX_TRAFFIC_CLASS); 2768 return 0; 2769 } 2770 2771 /** 2772 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2773 * @pi: port information structure 2774 * @agg_id: aggregator ID 2775 * @vsi_handle: software VSI handle 2776 * @tc_bitmap: TC bitmap of enabled TC(s) 2777 * 2778 * This function moves VSI to a new or default aggregator node. If VSI is 2779 * already associated to the aggregator node then no operation is performed on 2780 * the tree. This function needs to be called with scheduler lock held. 2781 */ 2782 static int 2783 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2784 u16 vsi_handle, unsigned long *tc_bitmap) 2785 { 2786 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL; 2787 struct ice_sched_agg_info *agg_info, *old_agg_info; 2788 struct ice_hw *hw = pi->hw; 2789 int status = 0; 2790 u8 tc; 2791 2792 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2793 return -EINVAL; 2794 agg_info = ice_get_agg_info(hw, agg_id); 2795 if (!agg_info) 2796 return -EINVAL; 2797 /* If the VSI is already part of another aggregator then update 2798 * its VSI info list 2799 */ 2800 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2801 if (old_agg_info && old_agg_info != agg_info) { 2802 struct ice_sched_agg_vsi_info *vtmp; 2803 2804 list_for_each_entry_safe(iter, vtmp, 2805 &old_agg_info->agg_vsi_list, 2806 list_entry) 2807 if (iter->vsi_handle == vsi_handle) { 2808 old_agg_vsi_info = iter; 2809 break; 2810 } 2811 } 2812 2813 /* check if entry already exist */ 2814 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2815 if (!agg_vsi_info) { 2816 /* Create new entry for VSI under aggregator list */ 2817 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2818 sizeof(*agg_vsi_info), GFP_KERNEL); 2819 if (!agg_vsi_info) 2820 return -EINVAL; 2821 2822 /* add VSI ID into the aggregator list */ 2823 agg_vsi_info->vsi_handle = vsi_handle; 2824 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2825 } 2826 /* Move VSI node to new aggregator node for requested TC(s) */ 2827 ice_for_each_traffic_class(tc) { 2828 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2829 continue; 2830 2831 /* Move VSI to new aggregator */ 2832 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2833 if (status) 2834 break; 2835 2836 set_bit(tc, agg_vsi_info->tc_bitmap); 2837 if (old_agg_vsi_info) 2838 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2839 } 2840 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2841 list_del(&old_agg_vsi_info->list_entry); 2842 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2843 } 2844 return status; 2845 } 2846 2847 /** 2848 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2849 * @pi: port information structure 2850 * 2851 * This function removes unused rate limit profiles from the HW and 2852 * SW DB. The caller needs to hold scheduler lock. 2853 */ 2854 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2855 { 2856 u16 ln; 2857 2858 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2859 struct ice_aqc_rl_profile_info *rl_prof_elem; 2860 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2861 2862 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2863 &pi->rl_prof_list[ln], list_entry) { 2864 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2865 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2866 } 2867 } 2868 } 2869 2870 /** 2871 * ice_sched_update_elem - update element 2872 * @hw: pointer to the HW struct 2873 * @node: pointer to node 2874 * @info: node info to update 2875 * 2876 * Update the HW DB, and local SW DB of node. Update the scheduling 2877 * parameters of node from argument info data buffer (Info->data buf) and 2878 * returns success or error on config sched element failure. The caller 2879 * needs to hold scheduler lock. 2880 */ 2881 static int 2882 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2883 struct ice_aqc_txsched_elem_data *info) 2884 { 2885 struct ice_aqc_txsched_elem_data buf; 2886 u16 elem_cfgd = 0; 2887 u16 num_elems = 1; 2888 int status; 2889 2890 buf = *info; 2891 /* Parent TEID is reserved field in this aq call */ 2892 buf.parent_teid = 0; 2893 /* Element type is reserved field in this aq call */ 2894 buf.data.elem_type = 0; 2895 /* Flags is reserved field in this aq call */ 2896 buf.data.flags = 0; 2897 2898 /* Update HW DB */ 2899 /* Configure element node */ 2900 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2901 &elem_cfgd, NULL); 2902 if (status || elem_cfgd != num_elems) { 2903 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2904 return -EIO; 2905 } 2906 2907 /* Config success case */ 2908 /* Now update local SW DB */ 2909 /* Only copy the data portion of info buffer */ 2910 node->info.data = info->data; 2911 return status; 2912 } 2913 2914 /** 2915 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2916 * @hw: pointer to the HW struct 2917 * @node: sched node to configure 2918 * @rl_type: rate limit type CIR, EIR, or shared 2919 * @bw_alloc: BW weight/allocation 2920 * 2921 * This function configures node element's BW allocation. 2922 */ 2923 static int 2924 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2925 enum ice_rl_type rl_type, u16 bw_alloc) 2926 { 2927 struct ice_aqc_txsched_elem_data buf; 2928 struct ice_aqc_txsched_elem *data; 2929 2930 buf = node->info; 2931 data = &buf.data; 2932 if (rl_type == ICE_MIN_BW) { 2933 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2934 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2935 } else if (rl_type == ICE_MAX_BW) { 2936 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2937 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2938 } else { 2939 return -EINVAL; 2940 } 2941 2942 /* Configure element */ 2943 return ice_sched_update_elem(hw, node, &buf); 2944 } 2945 2946 /** 2947 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2948 * @pi: port information structure 2949 * @agg_id: aggregator ID 2950 * @vsi_handle: software VSI handle 2951 * @tc_bitmap: TC bitmap of enabled TC(s) 2952 * 2953 * Move or associate VSI to a new or default aggregator node. 2954 */ 2955 int 2956 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2957 u8 tc_bitmap) 2958 { 2959 unsigned long bitmap = tc_bitmap; 2960 int status; 2961 2962 mutex_lock(&pi->sched_lock); 2963 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2964 (unsigned long *)&bitmap); 2965 if (!status) 2966 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2967 (unsigned long *)&bitmap); 2968 mutex_unlock(&pi->sched_lock); 2969 return status; 2970 } 2971 2972 /** 2973 * ice_set_clear_cir_bw - set or clear CIR BW 2974 * @bw_t_info: bandwidth type information structure 2975 * @bw: bandwidth in Kbps - Kilo bits per sec 2976 * 2977 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2978 */ 2979 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2980 { 2981 if (bw == ICE_SCHED_DFLT_BW) { 2982 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2983 bw_t_info->cir_bw.bw = 0; 2984 } else { 2985 /* Save type of BW information */ 2986 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2987 bw_t_info->cir_bw.bw = bw; 2988 } 2989 } 2990 2991 /** 2992 * ice_set_clear_eir_bw - set or clear EIR BW 2993 * @bw_t_info: bandwidth type information structure 2994 * @bw: bandwidth in Kbps - Kilo bits per sec 2995 * 2996 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2997 */ 2998 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2999 { 3000 if (bw == ICE_SCHED_DFLT_BW) { 3001 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3002 bw_t_info->eir_bw.bw = 0; 3003 } else { 3004 /* EIR BW and Shared BW profiles are mutually exclusive and 3005 * hence only one of them may be set for any given element. 3006 * First clear earlier saved shared BW information. 3007 */ 3008 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3009 bw_t_info->shared_bw = 0; 3010 /* save EIR BW information */ 3011 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3012 bw_t_info->eir_bw.bw = bw; 3013 } 3014 } 3015 3016 /** 3017 * ice_set_clear_shared_bw - set or clear shared BW 3018 * @bw_t_info: bandwidth type information structure 3019 * @bw: bandwidth in Kbps - Kilo bits per sec 3020 * 3021 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 3022 */ 3023 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3024 { 3025 if (bw == ICE_SCHED_DFLT_BW) { 3026 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3027 bw_t_info->shared_bw = 0; 3028 } else { 3029 /* EIR BW and Shared BW profiles are mutually exclusive and 3030 * hence only one of them may be set for any given element. 3031 * First clear earlier saved EIR BW information. 3032 */ 3033 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3034 bw_t_info->eir_bw.bw = 0; 3035 /* save shared BW information */ 3036 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3037 bw_t_info->shared_bw = bw; 3038 } 3039 } 3040 3041 /** 3042 * ice_sched_save_vsi_bw - save VSI node's BW information 3043 * @pi: port information structure 3044 * @vsi_handle: sw VSI handle 3045 * @tc: traffic class 3046 * @rl_type: rate limit type min, max, or shared 3047 * @bw: bandwidth in Kbps - Kilo bits per sec 3048 * 3049 * Save BW information of VSI type node for post replay use. 3050 */ 3051 static int 3052 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3053 enum ice_rl_type rl_type, u32 bw) 3054 { 3055 struct ice_vsi_ctx *vsi_ctx; 3056 3057 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3058 return -EINVAL; 3059 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3060 if (!vsi_ctx) 3061 return -EINVAL; 3062 switch (rl_type) { 3063 case ICE_MIN_BW: 3064 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3065 break; 3066 case ICE_MAX_BW: 3067 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3068 break; 3069 case ICE_SHARED_BW: 3070 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3071 break; 3072 default: 3073 return -EINVAL; 3074 } 3075 return 0; 3076 } 3077 3078 /** 3079 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3080 * @hw: pointer to the HW struct 3081 * @bw: bandwidth in Kbps 3082 * 3083 * This function calculates the wakeup parameter of RL profile. 3084 */ 3085 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3086 { 3087 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3088 s32 wakeup_f_int; 3089 u16 wakeup = 0; 3090 3091 /* Get the wakeup integer value */ 3092 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3093 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3094 if (wakeup_int > 63) { 3095 wakeup = (u16)((1 << 15) | wakeup_int); 3096 } else { 3097 /* Calculate fraction value up to 4 decimals 3098 * Convert Integer value to a constant multiplier 3099 */ 3100 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3101 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3102 hw->psm_clk_freq, bytes_per_sec); 3103 3104 /* Get Fraction value */ 3105 wakeup_f = wakeup_a - wakeup_b; 3106 3107 /* Round up the Fractional value via Ceil(Fractional value) */ 3108 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3109 wakeup_f += 1; 3110 3111 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3112 ICE_RL_PROF_MULTIPLIER); 3113 wakeup |= (u16)(wakeup_int << 9); 3114 wakeup |= (u16)(0x1ff & wakeup_f_int); 3115 } 3116 3117 return wakeup; 3118 } 3119 3120 /** 3121 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3122 * @hw: pointer to the HW struct 3123 * @bw: bandwidth in Kbps 3124 * @profile: profile parameters to return 3125 * 3126 * This function converts the BW to profile structure format. 3127 */ 3128 static int 3129 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3130 struct ice_aqc_rl_profile_elem *profile) 3131 { 3132 s64 bytes_per_sec, ts_rate, mv_tmp; 3133 int status = -EINVAL; 3134 bool found = false; 3135 s32 encode = 0; 3136 s64 mv = 0; 3137 s32 i; 3138 3139 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3140 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3141 return status; 3142 3143 /* Bytes per second from Kbps */ 3144 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3145 3146 /* encode is 6 bits but really useful are 5 bits */ 3147 for (i = 0; i < 64; i++) { 3148 u64 pow_result = BIT_ULL(i); 3149 3150 ts_rate = div64_long((s64)hw->psm_clk_freq, 3151 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3152 if (ts_rate <= 0) 3153 continue; 3154 3155 /* Multiplier value */ 3156 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3157 ts_rate); 3158 3159 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3160 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3161 3162 /* First multiplier value greater than the given 3163 * accuracy bytes 3164 */ 3165 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3166 encode = i; 3167 found = true; 3168 break; 3169 } 3170 } 3171 if (found) { 3172 u16 wm; 3173 3174 wm = ice_sched_calc_wakeup(hw, bw); 3175 profile->rl_multiply = cpu_to_le16(mv); 3176 profile->wake_up_calc = cpu_to_le16(wm); 3177 profile->rl_encode = cpu_to_le16(encode); 3178 status = 0; 3179 } else { 3180 status = -ENOENT; 3181 } 3182 3183 return status; 3184 } 3185 3186 /** 3187 * ice_sched_add_rl_profile - add RL profile 3188 * @pi: port information structure 3189 * @rl_type: type of rate limit BW - min, max, or shared 3190 * @bw: bandwidth in Kbps - Kilo bits per sec 3191 * @layer_num: specifies in which layer to create profile 3192 * 3193 * This function first checks the existing list for corresponding BW 3194 * parameter. If it exists, it returns the associated profile otherwise 3195 * it creates a new rate limit profile for requested BW, and adds it to 3196 * the HW DB and local list. It returns the new profile or null on error. 3197 * The caller needs to hold the scheduler lock. 3198 */ 3199 static struct ice_aqc_rl_profile_info * 3200 ice_sched_add_rl_profile(struct ice_port_info *pi, 3201 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3202 { 3203 struct ice_aqc_rl_profile_info *rl_prof_elem; 3204 u16 profiles_added = 0, num_profiles = 1; 3205 struct ice_aqc_rl_profile_elem *buf; 3206 struct ice_hw *hw; 3207 u8 profile_type; 3208 int status; 3209 3210 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3211 return NULL; 3212 switch (rl_type) { 3213 case ICE_MIN_BW: 3214 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3215 break; 3216 case ICE_MAX_BW: 3217 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3218 break; 3219 case ICE_SHARED_BW: 3220 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3221 break; 3222 default: 3223 return NULL; 3224 } 3225 3226 if (!pi) 3227 return NULL; 3228 hw = pi->hw; 3229 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3230 list_entry) 3231 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3232 profile_type && rl_prof_elem->bw == bw) 3233 /* Return existing profile ID info */ 3234 return rl_prof_elem; 3235 3236 /* Create new profile ID */ 3237 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3238 GFP_KERNEL); 3239 3240 if (!rl_prof_elem) 3241 return NULL; 3242 3243 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3244 if (status) 3245 goto exit_add_rl_prof; 3246 3247 rl_prof_elem->bw = bw; 3248 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3249 rl_prof_elem->profile.level = layer_num + 1; 3250 rl_prof_elem->profile.flags = profile_type; 3251 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3252 3253 /* Create new entry in HW DB */ 3254 buf = &rl_prof_elem->profile; 3255 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3256 &profiles_added, NULL); 3257 if (status || profiles_added != num_profiles) 3258 goto exit_add_rl_prof; 3259 3260 /* Good entry - add in the list */ 3261 rl_prof_elem->prof_id_ref = 0; 3262 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3263 return rl_prof_elem; 3264 3265 exit_add_rl_prof: 3266 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3267 return NULL; 3268 } 3269 3270 /** 3271 * ice_sched_cfg_node_bw_lmt - configure node sched params 3272 * @hw: pointer to the HW struct 3273 * @node: sched node to configure 3274 * @rl_type: rate limit type CIR, EIR, or shared 3275 * @rl_prof_id: rate limit profile ID 3276 * 3277 * This function configures node element's BW limit. 3278 */ 3279 static int 3280 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3281 enum ice_rl_type rl_type, u16 rl_prof_id) 3282 { 3283 struct ice_aqc_txsched_elem_data buf; 3284 struct ice_aqc_txsched_elem *data; 3285 3286 buf = node->info; 3287 data = &buf.data; 3288 switch (rl_type) { 3289 case ICE_MIN_BW: 3290 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3291 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3292 break; 3293 case ICE_MAX_BW: 3294 /* EIR BW and Shared BW profiles are mutually exclusive and 3295 * hence only one of them may be set for any given element 3296 */ 3297 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3298 return -EIO; 3299 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3300 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3301 break; 3302 case ICE_SHARED_BW: 3303 /* Check for removing shared BW */ 3304 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3305 /* remove shared profile */ 3306 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3307 data->srl_id = 0; /* clear SRL field */ 3308 3309 /* enable back EIR to default profile */ 3310 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3311 data->eir_bw.bw_profile_idx = 3312 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3313 break; 3314 } 3315 /* EIR BW and Shared BW profiles are mutually exclusive and 3316 * hence only one of them may be set for any given element 3317 */ 3318 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3319 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3320 ICE_SCHED_DFLT_RL_PROF_ID)) 3321 return -EIO; 3322 /* EIR BW is set to default, disable it */ 3323 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3324 /* Okay to enable shared BW now */ 3325 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3326 data->srl_id = cpu_to_le16(rl_prof_id); 3327 break; 3328 default: 3329 /* Unknown rate limit type */ 3330 return -EINVAL; 3331 } 3332 3333 /* Configure element */ 3334 return ice_sched_update_elem(hw, node, &buf); 3335 } 3336 3337 /** 3338 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3339 * @node: sched node 3340 * @rl_type: rate limit type 3341 * 3342 * If existing profile matches, it returns the corresponding rate 3343 * limit profile ID, otherwise it returns an invalid ID as error. 3344 */ 3345 static u16 3346 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3347 enum ice_rl_type rl_type) 3348 { 3349 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3350 struct ice_aqc_txsched_elem *data; 3351 3352 data = &node->info.data; 3353 switch (rl_type) { 3354 case ICE_MIN_BW: 3355 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3356 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3357 break; 3358 case ICE_MAX_BW: 3359 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3360 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3361 break; 3362 case ICE_SHARED_BW: 3363 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3364 rl_prof_id = le16_to_cpu(data->srl_id); 3365 break; 3366 default: 3367 break; 3368 } 3369 3370 return rl_prof_id; 3371 } 3372 3373 /** 3374 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3375 * @pi: port information structure 3376 * @rl_type: type of rate limit BW - min, max, or shared 3377 * @layer_index: layer index 3378 * 3379 * This function returns requested profile creation layer. 3380 */ 3381 static u8 3382 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3383 u8 layer_index) 3384 { 3385 struct ice_hw *hw = pi->hw; 3386 3387 if (layer_index >= hw->num_tx_sched_layers) 3388 return ICE_SCHED_INVAL_LAYER_NUM; 3389 switch (rl_type) { 3390 case ICE_MIN_BW: 3391 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3392 return layer_index; 3393 break; 3394 case ICE_MAX_BW: 3395 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3396 return layer_index; 3397 break; 3398 case ICE_SHARED_BW: 3399 /* if current layer doesn't support SRL profile creation 3400 * then try a layer up or down. 3401 */ 3402 if (hw->layer_info[layer_index].max_srl_profiles) 3403 return layer_index; 3404 else if (layer_index < hw->num_tx_sched_layers - 1 && 3405 hw->layer_info[layer_index + 1].max_srl_profiles) 3406 return layer_index + 1; 3407 else if (layer_index > 0 && 3408 hw->layer_info[layer_index - 1].max_srl_profiles) 3409 return layer_index - 1; 3410 break; 3411 default: 3412 break; 3413 } 3414 return ICE_SCHED_INVAL_LAYER_NUM; 3415 } 3416 3417 /** 3418 * ice_sched_get_srl_node - get shared rate limit node 3419 * @node: tree node 3420 * @srl_layer: shared rate limit layer 3421 * 3422 * This function returns SRL node to be used for shared rate limit purpose. 3423 * The caller needs to hold scheduler lock. 3424 */ 3425 static struct ice_sched_node * 3426 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3427 { 3428 if (srl_layer > node->tx_sched_layer) 3429 return node->children[0]; 3430 else if (srl_layer < node->tx_sched_layer) 3431 /* Node can't be created without a parent. It will always 3432 * have a valid parent except root node. 3433 */ 3434 return node->parent; 3435 else 3436 return node; 3437 } 3438 3439 /** 3440 * ice_sched_rm_rl_profile - remove RL profile ID 3441 * @pi: port information structure 3442 * @layer_num: layer number where profiles are saved 3443 * @profile_type: profile type like EIR, CIR, or SRL 3444 * @profile_id: profile ID to remove 3445 * 3446 * This function removes rate limit profile from layer 'layer_num' of type 3447 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3448 * scheduler lock. 3449 */ 3450 static int 3451 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3452 u16 profile_id) 3453 { 3454 struct ice_aqc_rl_profile_info *rl_prof_elem; 3455 int status = 0; 3456 3457 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3458 return -EINVAL; 3459 /* Check the existing list for RL profile */ 3460 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3461 list_entry) 3462 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3463 profile_type && 3464 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3465 profile_id) { 3466 if (rl_prof_elem->prof_id_ref) 3467 rl_prof_elem->prof_id_ref--; 3468 3469 /* Remove old profile ID from database */ 3470 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3471 if (status && status != -EBUSY) 3472 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3473 break; 3474 } 3475 if (status == -EBUSY) 3476 status = 0; 3477 return status; 3478 } 3479 3480 /** 3481 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3482 * @pi: port information structure 3483 * @node: pointer to node structure 3484 * @rl_type: rate limit type min, max, or shared 3485 * @layer_num: layer number where RL profiles are saved 3486 * 3487 * This function configures node element's BW rate limit profile ID of 3488 * type CIR, EIR, or SRL to default. This function needs to be called 3489 * with the scheduler lock held. 3490 */ 3491 static int 3492 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3493 struct ice_sched_node *node, 3494 enum ice_rl_type rl_type, u8 layer_num) 3495 { 3496 struct ice_hw *hw; 3497 u8 profile_type; 3498 u16 rl_prof_id; 3499 u16 old_id; 3500 int status; 3501 3502 hw = pi->hw; 3503 switch (rl_type) { 3504 case ICE_MIN_BW: 3505 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3506 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3507 break; 3508 case ICE_MAX_BW: 3509 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3510 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3511 break; 3512 case ICE_SHARED_BW: 3513 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3514 /* No SRL is configured for default case */ 3515 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3516 break; 3517 default: 3518 return -EINVAL; 3519 } 3520 /* Save existing RL prof ID for later clean up */ 3521 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3522 /* Configure BW scheduling parameters */ 3523 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3524 if (status) 3525 return status; 3526 3527 /* Remove stale RL profile ID */ 3528 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3529 old_id == ICE_SCHED_INVAL_PROF_ID) 3530 return 0; 3531 3532 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3533 } 3534 3535 /** 3536 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3537 * @pi: port information structure 3538 * @node: pointer to node structure 3539 * @layer_num: layer number where rate limit profiles are saved 3540 * @rl_type: rate limit type min, max, or shared 3541 * @bw: bandwidth value 3542 * 3543 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3544 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3545 * them may be set for any given element. This function needs to be called 3546 * with the scheduler lock held. 3547 */ 3548 static int 3549 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3550 struct ice_sched_node *node, 3551 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3552 { 3553 if (rl_type == ICE_SHARED_BW) { 3554 /* SRL node passed in this case, it may be different node */ 3555 if (bw == ICE_SCHED_DFLT_BW) 3556 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3557 * enables EIR to default. EIR is not set in this 3558 * case, so no additional action is required. 3559 */ 3560 return 0; 3561 3562 /* SRL being configured, set EIR to default here. 3563 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3564 * configures SRL 3565 */ 3566 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3567 layer_num); 3568 } else if (rl_type == ICE_MAX_BW && 3569 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3570 /* Remove Shared profile. Set default shared BW call 3571 * removes shared profile for a node. 3572 */ 3573 return ice_sched_set_node_bw_dflt(pi, node, 3574 ICE_SHARED_BW, 3575 layer_num); 3576 } 3577 return 0; 3578 } 3579 3580 /** 3581 * ice_sched_set_node_bw - set node's bandwidth 3582 * @pi: port information structure 3583 * @node: tree node 3584 * @rl_type: rate limit type min, max, or shared 3585 * @bw: bandwidth in Kbps - Kilo bits per sec 3586 * @layer_num: layer number 3587 * 3588 * This function adds new profile corresponding to requested BW, configures 3589 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3590 * ID from local database. The caller needs to hold scheduler lock. 3591 */ 3592 int 3593 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3594 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3595 { 3596 struct ice_aqc_rl_profile_info *rl_prof_info; 3597 struct ice_hw *hw = pi->hw; 3598 u16 old_id, rl_prof_id; 3599 int status = -EINVAL; 3600 3601 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3602 if (!rl_prof_info) 3603 return status; 3604 3605 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3606 3607 /* Save existing RL prof ID for later clean up */ 3608 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3609 /* Configure BW scheduling parameters */ 3610 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3611 if (status) 3612 return status; 3613 3614 /* New changes has been applied */ 3615 /* Increment the profile ID reference count */ 3616 rl_prof_info->prof_id_ref++; 3617 3618 /* Check for old ID removal */ 3619 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3620 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3621 return 0; 3622 3623 return ice_sched_rm_rl_profile(pi, layer_num, 3624 rl_prof_info->profile.flags & 3625 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3626 } 3627 3628 /** 3629 * ice_sched_set_node_priority - set node's priority 3630 * @pi: port information structure 3631 * @node: tree node 3632 * @priority: number 0-7 representing priority among siblings 3633 * 3634 * This function sets priority of a node among it's siblings. 3635 */ 3636 int 3637 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, 3638 u16 priority) 3639 { 3640 struct ice_aqc_txsched_elem_data buf; 3641 struct ice_aqc_txsched_elem *data; 3642 3643 buf = node->info; 3644 data = &buf.data; 3645 3646 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3647 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); 3648 3649 return ice_sched_update_elem(pi->hw, node, &buf); 3650 } 3651 3652 /** 3653 * ice_sched_set_node_weight - set node's weight 3654 * @pi: port information structure 3655 * @node: tree node 3656 * @weight: number 1-200 representing weight for WFQ 3657 * 3658 * This function sets weight of the node for WFQ algorithm. 3659 */ 3660 int 3661 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) 3662 { 3663 struct ice_aqc_txsched_elem_data buf; 3664 struct ice_aqc_txsched_elem *data; 3665 3666 buf = node->info; 3667 data = &buf.data; 3668 3669 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | 3670 ICE_AQC_ELEM_VALID_GENERIC; 3671 data->cir_bw.bw_alloc = cpu_to_le16(weight); 3672 data->eir_bw.bw_alloc = cpu_to_le16(weight); 3673 3674 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); 3675 3676 return ice_sched_update_elem(pi->hw, node, &buf); 3677 } 3678 3679 /** 3680 * ice_sched_set_node_bw_lmt - set node's BW limit 3681 * @pi: port information structure 3682 * @node: tree node 3683 * @rl_type: rate limit type min, max, or shared 3684 * @bw: bandwidth in Kbps - Kilo bits per sec 3685 * 3686 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3687 * EIR, or SRL. The caller needs to hold scheduler lock. 3688 */ 3689 int 3690 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3691 enum ice_rl_type rl_type, u32 bw) 3692 { 3693 struct ice_sched_node *cfg_node = node; 3694 int status; 3695 3696 struct ice_hw *hw; 3697 u8 layer_num; 3698 3699 if (!pi) 3700 return -EINVAL; 3701 hw = pi->hw; 3702 /* Remove unused RL profile IDs from HW and SW DB */ 3703 ice_sched_rm_unused_rl_prof(pi); 3704 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3705 node->tx_sched_layer); 3706 if (layer_num >= hw->num_tx_sched_layers) 3707 return -EINVAL; 3708 3709 if (rl_type == ICE_SHARED_BW) { 3710 /* SRL node may be different */ 3711 cfg_node = ice_sched_get_srl_node(node, layer_num); 3712 if (!cfg_node) 3713 return -EIO; 3714 } 3715 /* EIR BW and Shared BW profiles are mutually exclusive and 3716 * hence only one of them may be set for any given element 3717 */ 3718 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3719 bw); 3720 if (status) 3721 return status; 3722 if (bw == ICE_SCHED_DFLT_BW) 3723 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3724 layer_num); 3725 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3726 } 3727 3728 /** 3729 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3730 * @pi: port information structure 3731 * @node: pointer to node structure 3732 * @rl_type: rate limit type min, max, or shared 3733 * 3734 * This function configures node element's BW rate limit profile ID of 3735 * type CIR, EIR, or SRL to default. This function needs to be called 3736 * with the scheduler lock held. 3737 */ 3738 static int 3739 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3740 struct ice_sched_node *node, 3741 enum ice_rl_type rl_type) 3742 { 3743 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3744 ICE_SCHED_DFLT_BW); 3745 } 3746 3747 /** 3748 * ice_sched_validate_srl_node - Check node for SRL applicability 3749 * @node: sched node to configure 3750 * @sel_layer: selected SRL layer 3751 * 3752 * This function checks if the SRL can be applied to a selected layer node on 3753 * behalf of the requested node (first argument). This function needs to be 3754 * called with scheduler lock held. 3755 */ 3756 static int 3757 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3758 { 3759 /* SRL profiles are not available on all layers. Check if the 3760 * SRL profile can be applied to a node above or below the 3761 * requested node. SRL configuration is possible only if the 3762 * selected layer's node has single child. 3763 */ 3764 if (sel_layer == node->tx_sched_layer || 3765 ((sel_layer == node->tx_sched_layer + 1) && 3766 node->num_children == 1) || 3767 ((sel_layer == node->tx_sched_layer - 1) && 3768 (node->parent && node->parent->num_children == 1))) 3769 return 0; 3770 3771 return -EIO; 3772 } 3773 3774 /** 3775 * ice_sched_save_q_bw - save queue node's BW information 3776 * @q_ctx: queue context structure 3777 * @rl_type: rate limit type min, max, or shared 3778 * @bw: bandwidth in Kbps - Kilo bits per sec 3779 * 3780 * Save BW information of queue type node for post replay use. 3781 */ 3782 static int 3783 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3784 { 3785 switch (rl_type) { 3786 case ICE_MIN_BW: 3787 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3788 break; 3789 case ICE_MAX_BW: 3790 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3791 break; 3792 case ICE_SHARED_BW: 3793 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3794 break; 3795 default: 3796 return -EINVAL; 3797 } 3798 return 0; 3799 } 3800 3801 /** 3802 * ice_sched_set_q_bw_lmt - sets queue BW limit 3803 * @pi: port information structure 3804 * @vsi_handle: sw VSI handle 3805 * @tc: traffic class 3806 * @q_handle: software queue handle 3807 * @rl_type: min, max, or shared 3808 * @bw: bandwidth in Kbps 3809 * 3810 * This function sets BW limit of queue scheduling node. 3811 */ 3812 static int 3813 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3814 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3815 { 3816 struct ice_sched_node *node; 3817 struct ice_q_ctx *q_ctx; 3818 int status = -EINVAL; 3819 3820 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3821 return -EINVAL; 3822 mutex_lock(&pi->sched_lock); 3823 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3824 if (!q_ctx) 3825 goto exit_q_bw_lmt; 3826 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3827 if (!node) { 3828 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3829 goto exit_q_bw_lmt; 3830 } 3831 3832 /* Return error if it is not a leaf node */ 3833 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3834 goto exit_q_bw_lmt; 3835 3836 /* SRL bandwidth layer selection */ 3837 if (rl_type == ICE_SHARED_BW) { 3838 u8 sel_layer; /* selected layer */ 3839 3840 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3841 node->tx_sched_layer); 3842 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3843 status = -EINVAL; 3844 goto exit_q_bw_lmt; 3845 } 3846 status = ice_sched_validate_srl_node(node, sel_layer); 3847 if (status) 3848 goto exit_q_bw_lmt; 3849 } 3850 3851 if (bw == ICE_SCHED_DFLT_BW) 3852 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3853 else 3854 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3855 3856 if (!status) 3857 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3858 3859 exit_q_bw_lmt: 3860 mutex_unlock(&pi->sched_lock); 3861 return status; 3862 } 3863 3864 /** 3865 * ice_cfg_q_bw_lmt - configure queue BW limit 3866 * @pi: port information structure 3867 * @vsi_handle: sw VSI handle 3868 * @tc: traffic class 3869 * @q_handle: software queue handle 3870 * @rl_type: min, max, or shared 3871 * @bw: bandwidth in Kbps 3872 * 3873 * This function configures BW limit of queue scheduling node. 3874 */ 3875 int 3876 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3877 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3878 { 3879 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3880 bw); 3881 } 3882 3883 /** 3884 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3885 * @pi: port information structure 3886 * @vsi_handle: sw VSI handle 3887 * @tc: traffic class 3888 * @q_handle: software queue handle 3889 * @rl_type: min, max, or shared 3890 * 3891 * This function configures BW default limit of queue scheduling node. 3892 */ 3893 int 3894 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3895 u16 q_handle, enum ice_rl_type rl_type) 3896 { 3897 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3898 ICE_SCHED_DFLT_BW); 3899 } 3900 3901 /** 3902 * ice_sched_get_node_by_id_type - get node from ID type 3903 * @pi: port information structure 3904 * @id: identifier 3905 * @agg_type: type of aggregator 3906 * @tc: traffic class 3907 * 3908 * This function returns node identified by ID of type aggregator, and 3909 * based on traffic class (TC). This function needs to be called with 3910 * the scheduler lock held. 3911 */ 3912 static struct ice_sched_node * 3913 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3914 enum ice_agg_type agg_type, u8 tc) 3915 { 3916 struct ice_sched_node *node = NULL; 3917 3918 switch (agg_type) { 3919 case ICE_AGG_TYPE_VSI: { 3920 struct ice_vsi_ctx *vsi_ctx; 3921 u16 vsi_handle = (u16)id; 3922 3923 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3924 break; 3925 /* Get sched_vsi_info */ 3926 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3927 if (!vsi_ctx) 3928 break; 3929 node = vsi_ctx->sched.vsi_node[tc]; 3930 break; 3931 } 3932 3933 case ICE_AGG_TYPE_AGG: { 3934 struct ice_sched_node *tc_node; 3935 3936 tc_node = ice_sched_get_tc_node(pi, tc); 3937 if (tc_node) 3938 node = ice_sched_get_agg_node(pi, tc_node, id); 3939 break; 3940 } 3941 3942 default: 3943 break; 3944 } 3945 3946 return node; 3947 } 3948 3949 /** 3950 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3951 * @pi: port information structure 3952 * @id: ID (software VSI handle or AGG ID) 3953 * @agg_type: aggregator type (VSI or AGG type node) 3954 * @tc: traffic class 3955 * @rl_type: min or max 3956 * @bw: bandwidth in Kbps 3957 * 3958 * This function sets BW limit of VSI or Aggregator scheduling node 3959 * based on TC information from passed in argument BW. 3960 */ 3961 int 3962 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3963 enum ice_agg_type agg_type, u8 tc, 3964 enum ice_rl_type rl_type, u32 bw) 3965 { 3966 struct ice_sched_node *node; 3967 int status = -EINVAL; 3968 3969 if (!pi) 3970 return status; 3971 3972 if (rl_type == ICE_UNKNOWN_BW) 3973 return status; 3974 3975 mutex_lock(&pi->sched_lock); 3976 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3977 if (!node) { 3978 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3979 goto exit_set_node_bw_lmt_per_tc; 3980 } 3981 if (bw == ICE_SCHED_DFLT_BW) 3982 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3983 else 3984 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3985 3986 exit_set_node_bw_lmt_per_tc: 3987 mutex_unlock(&pi->sched_lock); 3988 return status; 3989 } 3990 3991 /** 3992 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 3993 * @pi: port information structure 3994 * @vsi_handle: software VSI handle 3995 * @tc: traffic class 3996 * @rl_type: min or max 3997 * @bw: bandwidth in Kbps 3998 * 3999 * This function configures BW limit of VSI scheduling node based on TC 4000 * information. 4001 */ 4002 int 4003 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4004 enum ice_rl_type rl_type, u32 bw) 4005 { 4006 int status; 4007 4008 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4009 ICE_AGG_TYPE_VSI, 4010 tc, rl_type, bw); 4011 if (!status) { 4012 mutex_lock(&pi->sched_lock); 4013 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 4014 mutex_unlock(&pi->sched_lock); 4015 } 4016 return status; 4017 } 4018 4019 /** 4020 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 4021 * @pi: port information structure 4022 * @vsi_handle: software VSI handle 4023 * @tc: traffic class 4024 * @rl_type: min or max 4025 * 4026 * This function configures default BW limit of VSI scheduling node based on TC 4027 * information. 4028 */ 4029 int 4030 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4031 enum ice_rl_type rl_type) 4032 { 4033 int status; 4034 4035 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4036 ICE_AGG_TYPE_VSI, 4037 tc, rl_type, 4038 ICE_SCHED_DFLT_BW); 4039 if (!status) { 4040 mutex_lock(&pi->sched_lock); 4041 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 4042 ICE_SCHED_DFLT_BW); 4043 mutex_unlock(&pi->sched_lock); 4044 } 4045 return status; 4046 } 4047 4048 /** 4049 * ice_cfg_rl_burst_size - Set burst size value 4050 * @hw: pointer to the HW struct 4051 * @bytes: burst size in bytes 4052 * 4053 * This function configures/set the burst size to requested new value. The new 4054 * burst size value is used for future rate limit calls. It doesn't change the 4055 * existing or previously created RL profiles. 4056 */ 4057 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 4058 { 4059 u16 burst_size_to_prog; 4060 4061 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 4062 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 4063 return -EINVAL; 4064 if (ice_round_to_num(bytes, 64) <= 4065 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 4066 /* 64 byte granularity case */ 4067 /* Disable MSB granularity bit */ 4068 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 4069 /* round number to nearest 64 byte granularity */ 4070 bytes = ice_round_to_num(bytes, 64); 4071 /* The value is in 64 byte chunks */ 4072 burst_size_to_prog |= (u16)(bytes / 64); 4073 } else { 4074 /* k bytes granularity case */ 4075 /* Enable MSB granularity bit */ 4076 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 4077 /* round number to nearest 1024 granularity */ 4078 bytes = ice_round_to_num(bytes, 1024); 4079 /* check rounding doesn't go beyond allowed */ 4080 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4081 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4082 /* The value is in k bytes */ 4083 burst_size_to_prog |= (u16)(bytes / 1024); 4084 } 4085 hw->max_burst_size = burst_size_to_prog; 4086 return 0; 4087 } 4088 4089 /** 4090 * ice_sched_replay_node_prio - re-configure node priority 4091 * @hw: pointer to the HW struct 4092 * @node: sched node to configure 4093 * @priority: priority value 4094 * 4095 * This function configures node element's priority value. It 4096 * needs to be called with scheduler lock held. 4097 */ 4098 static int 4099 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4100 u8 priority) 4101 { 4102 struct ice_aqc_txsched_elem_data buf; 4103 struct ice_aqc_txsched_elem *data; 4104 int status; 4105 4106 buf = node->info; 4107 data = &buf.data; 4108 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4109 data->generic = priority; 4110 4111 /* Configure element */ 4112 status = ice_sched_update_elem(hw, node, &buf); 4113 return status; 4114 } 4115 4116 /** 4117 * ice_sched_replay_node_bw - replay node(s) BW 4118 * @hw: pointer to the HW struct 4119 * @node: sched node to configure 4120 * @bw_t_info: BW type information 4121 * 4122 * This function restores node's BW from bw_t_info. The caller needs 4123 * to hold the scheduler lock. 4124 */ 4125 static int 4126 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4127 struct ice_bw_type_info *bw_t_info) 4128 { 4129 struct ice_port_info *pi = hw->port_info; 4130 int status = -EINVAL; 4131 u16 bw_alloc; 4132 4133 if (!node) 4134 return status; 4135 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4136 return 0; 4137 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4138 status = ice_sched_replay_node_prio(hw, node, 4139 bw_t_info->generic); 4140 if (status) 4141 return status; 4142 } 4143 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4144 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4145 bw_t_info->cir_bw.bw); 4146 if (status) 4147 return status; 4148 } 4149 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4150 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4151 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4152 bw_alloc); 4153 if (status) 4154 return status; 4155 } 4156 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4157 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4158 bw_t_info->eir_bw.bw); 4159 if (status) 4160 return status; 4161 } 4162 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4163 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4164 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4165 bw_alloc); 4166 if (status) 4167 return status; 4168 } 4169 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4170 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4171 bw_t_info->shared_bw); 4172 return status; 4173 } 4174 4175 /** 4176 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4177 * @pi: port info struct 4178 * @tc_bitmap: 8 bits TC bitmap to check 4179 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4180 * 4181 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4182 * may be missing, it returns enabled TCs. This function needs to be called with 4183 * scheduler lock held. 4184 */ 4185 static void 4186 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4187 unsigned long *tc_bitmap, 4188 unsigned long *ena_tc_bitmap) 4189 { 4190 u8 tc; 4191 4192 /* Some TC(s) may be missing after reset, adjust for replay */ 4193 ice_for_each_traffic_class(tc) 4194 if (ice_is_tc_ena(*tc_bitmap, tc) && 4195 (ice_sched_get_tc_node(pi, tc))) 4196 set_bit(tc, ena_tc_bitmap); 4197 } 4198 4199 /** 4200 * ice_sched_replay_agg - recreate aggregator node(s) 4201 * @hw: pointer to the HW struct 4202 * 4203 * This function recreate aggregator type nodes which are not replayed earlier. 4204 * It also replay aggregator BW information. These aggregator nodes are not 4205 * associated with VSI type node yet. 4206 */ 4207 void ice_sched_replay_agg(struct ice_hw *hw) 4208 { 4209 struct ice_port_info *pi = hw->port_info; 4210 struct ice_sched_agg_info *agg_info; 4211 4212 mutex_lock(&pi->sched_lock); 4213 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4214 /* replay aggregator (re-create aggregator node) */ 4215 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4216 ICE_MAX_TRAFFIC_CLASS)) { 4217 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4218 int status; 4219 4220 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4221 ice_sched_get_ena_tc_bitmap(pi, 4222 agg_info->replay_tc_bitmap, 4223 replay_bitmap); 4224 status = ice_sched_cfg_agg(hw->port_info, 4225 agg_info->agg_id, 4226 ICE_AGG_TYPE_AGG, 4227 replay_bitmap); 4228 if (status) { 4229 dev_info(ice_hw_to_dev(hw), 4230 "Replay agg id[%d] failed\n", 4231 agg_info->agg_id); 4232 /* Move on to next one */ 4233 continue; 4234 } 4235 } 4236 mutex_unlock(&pi->sched_lock); 4237 } 4238 4239 /** 4240 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4241 * @hw: pointer to the HW struct 4242 * 4243 * This function initialize aggregator(s) TC bitmap to zero. A required 4244 * preinit step for replaying aggregators. 4245 */ 4246 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4247 { 4248 struct ice_port_info *pi = hw->port_info; 4249 struct ice_sched_agg_info *agg_info; 4250 4251 mutex_lock(&pi->sched_lock); 4252 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4253 struct ice_sched_agg_vsi_info *agg_vsi_info; 4254 4255 agg_info->tc_bitmap[0] = 0; 4256 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4257 list_entry) 4258 agg_vsi_info->tc_bitmap[0] = 0; 4259 } 4260 mutex_unlock(&pi->sched_lock); 4261 } 4262 4263 /** 4264 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4265 * @hw: pointer to the HW struct 4266 * @vsi_handle: software VSI handle 4267 * 4268 * This function replays aggregator node, VSI to aggregator type nodes, and 4269 * their node bandwidth information. This function needs to be called with 4270 * scheduler lock held. 4271 */ 4272 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4273 { 4274 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4275 struct ice_sched_agg_vsi_info *agg_vsi_info; 4276 struct ice_port_info *pi = hw->port_info; 4277 struct ice_sched_agg_info *agg_info; 4278 int status; 4279 4280 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4281 if (!ice_is_vsi_valid(hw, vsi_handle)) 4282 return -EINVAL; 4283 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4284 if (!agg_info) 4285 return 0; /* Not present in list - default Agg case */ 4286 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4287 if (!agg_vsi_info) 4288 return 0; /* Not present in list - default Agg case */ 4289 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4290 replay_bitmap); 4291 /* Replay aggregator node associated to vsi_handle */ 4292 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4293 ICE_AGG_TYPE_AGG, replay_bitmap); 4294 if (status) 4295 return status; 4296 4297 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4298 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4299 replay_bitmap); 4300 /* Move this VSI (vsi_handle) to above aggregator */ 4301 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4302 replay_bitmap); 4303 } 4304 4305 /** 4306 * ice_replay_vsi_agg - replay VSI to aggregator node 4307 * @hw: pointer to the HW struct 4308 * @vsi_handle: software VSI handle 4309 * 4310 * This function replays association of VSI to aggregator type nodes, and 4311 * node bandwidth information. 4312 */ 4313 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4314 { 4315 struct ice_port_info *pi = hw->port_info; 4316 int status; 4317 4318 mutex_lock(&pi->sched_lock); 4319 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4320 mutex_unlock(&pi->sched_lock); 4321 return status; 4322 } 4323 4324 /** 4325 * ice_sched_replay_q_bw - replay queue type node BW 4326 * @pi: port information structure 4327 * @q_ctx: queue context structure 4328 * 4329 * This function replays queue type node bandwidth. This function needs to be 4330 * called with scheduler lock held. 4331 */ 4332 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4333 { 4334 struct ice_sched_node *q_node; 4335 4336 /* Following also checks the presence of node in tree */ 4337 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4338 if (!q_node) 4339 return -EINVAL; 4340 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4341 } 4342