1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include <net/devlink.h> 5 #include "ice_sched.h" 6 7 /** 8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 9 * @pi: port information structure 10 * @info: Scheduler element information from firmware 11 * 12 * This function inserts the root node of the scheduling tree topology 13 * to the SW DB. 14 */ 15 static int 16 ice_sched_add_root_node(struct ice_port_info *pi, 17 struct ice_aqc_txsched_elem_data *info) 18 { 19 struct ice_sched_node *root; 20 struct ice_hw *hw; 21 22 if (!pi) 23 return -EINVAL; 24 25 hw = pi->hw; 26 27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 28 if (!root) 29 return -ENOMEM; 30 31 /* coverity[suspicious_sizeof] */ 32 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 33 sizeof(*root), GFP_KERNEL); 34 if (!root->children) { 35 devm_kfree(ice_hw_to_dev(hw), root); 36 return -ENOMEM; 37 } 38 39 memcpy(&root->info, info, sizeof(*info)); 40 pi->root = root; 41 return 0; 42 } 43 44 /** 45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 47 * @teid: node TEID to search 48 * 49 * This function searches for a node matching the TEID in the scheduling tree 50 * from the SW DB. The search is recursive and is restricted by the number of 51 * layers it has searched through; stopping at the max supported layer. 52 * 53 * This function needs to be called when holding the port_info->sched_lock 54 */ 55 struct ice_sched_node * 56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 57 { 58 u16 i; 59 60 /* The TEID is same as that of the start_node */ 61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 62 return start_node; 63 64 /* The node has no children or is at the max layer */ 65 if (!start_node->num_children || 66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 68 return NULL; 69 70 /* Check if TEID matches to any of the children nodes */ 71 for (i = 0; i < start_node->num_children; i++) 72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 73 return start_node->children[i]; 74 75 /* Search within each child's sub-tree */ 76 for (i = 0; i < start_node->num_children; i++) { 77 struct ice_sched_node *tmp; 78 79 tmp = ice_sched_find_node_by_teid(start_node->children[i], 80 teid); 81 if (tmp) 82 return tmp; 83 } 84 85 return NULL; 86 } 87 88 /** 89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 90 * @hw: pointer to the HW struct 91 * @cmd_opc: cmd opcode 92 * @elems_req: number of elements to request 93 * @buf: pointer to buffer 94 * @buf_size: buffer size in bytes 95 * @elems_resp: returns total number of elements response 96 * @cd: pointer to command details structure or NULL 97 * 98 * This function sends a scheduling elements cmd (cmd_opc) 99 */ 100 static int 101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 102 u16 elems_req, void *buf, u16 buf_size, 103 u16 *elems_resp, struct ice_sq_cd *cd) 104 { 105 struct ice_aqc_sched_elem_cmd *cmd; 106 struct ice_aq_desc desc; 107 int status; 108 109 cmd = &desc.params.sched_elem_cmd; 110 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 111 cmd->num_elem_req = cpu_to_le16(elems_req); 112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 113 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 114 if (!status && elems_resp) 115 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 116 117 return status; 118 } 119 120 /** 121 * ice_aq_query_sched_elems - query scheduler elements 122 * @hw: pointer to the HW struct 123 * @elems_req: number of elements to query 124 * @buf: pointer to buffer 125 * @buf_size: buffer size in bytes 126 * @elems_ret: returns total number of elements returned 127 * @cd: pointer to command details structure or NULL 128 * 129 * Query scheduling elements (0x0404) 130 */ 131 int 132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 134 u16 *elems_ret, struct ice_sq_cd *cd) 135 { 136 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 137 elems_req, (void *)buf, buf_size, 138 elems_ret, cd); 139 } 140 141 /** 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 143 * @pi: port information structure 144 * @layer: Scheduler layer of the node 145 * @info: Scheduler element information from firmware 146 * @prealloc_node: preallocated ice_sched_node struct for SW DB 147 * 148 * This function inserts a scheduler node to the SW DB. 149 */ 150 int 151 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 152 struct ice_aqc_txsched_elem_data *info, 153 struct ice_sched_node *prealloc_node) 154 { 155 struct ice_aqc_txsched_elem_data elem; 156 struct ice_sched_node *parent; 157 struct ice_sched_node *node; 158 struct ice_hw *hw; 159 int status; 160 161 if (!pi) 162 return -EINVAL; 163 164 hw = pi->hw; 165 166 /* A valid parent node should be there */ 167 parent = ice_sched_find_node_by_teid(pi->root, 168 le32_to_cpu(info->parent_teid)); 169 if (!parent) { 170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 171 le32_to_cpu(info->parent_teid)); 172 return -EINVAL; 173 } 174 175 /* query the current node information from FW before adding it 176 * to the SW DB 177 */ 178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 179 if (status) 180 return status; 181 182 if (prealloc_node) 183 node = prealloc_node; 184 else 185 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 186 if (!node) 187 return -ENOMEM; 188 if (hw->max_children[layer]) { 189 /* coverity[suspicious_sizeof] */ 190 node->children = devm_kcalloc(ice_hw_to_dev(hw), 191 hw->max_children[layer], 192 sizeof(*node), GFP_KERNEL); 193 if (!node->children) { 194 devm_kfree(ice_hw_to_dev(hw), node); 195 return -ENOMEM; 196 } 197 } 198 199 node->in_use = true; 200 node->parent = parent; 201 node->tx_sched_layer = layer; 202 parent->children[parent->num_children++] = node; 203 node->info = elem; 204 return 0; 205 } 206 207 /** 208 * ice_aq_delete_sched_elems - delete scheduler elements 209 * @hw: pointer to the HW struct 210 * @grps_req: number of groups to delete 211 * @buf: pointer to buffer 212 * @buf_size: buffer size in bytes 213 * @grps_del: returns total number of elements deleted 214 * @cd: pointer to command details structure or NULL 215 * 216 * Delete scheduling elements (0x040F) 217 */ 218 static int 219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 220 struct ice_aqc_delete_elem *buf, u16 buf_size, 221 u16 *grps_del, struct ice_sq_cd *cd) 222 { 223 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 224 grps_req, (void *)buf, buf_size, 225 grps_del, cd); 226 } 227 228 /** 229 * ice_sched_remove_elems - remove nodes from HW 230 * @hw: pointer to the HW struct 231 * @parent: pointer to the parent node 232 * @num_nodes: number of nodes 233 * @node_teids: array of node teids to be deleted 234 * 235 * This function remove nodes from HW 236 */ 237 static int 238 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 239 u16 num_nodes, u32 *node_teids) 240 { 241 struct ice_aqc_delete_elem *buf; 242 u16 i, num_groups_removed = 0; 243 u16 buf_size; 244 int status; 245 246 buf_size = struct_size(buf, teid, num_nodes); 247 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 248 if (!buf) 249 return -ENOMEM; 250 251 buf->hdr.parent_teid = parent->info.node_teid; 252 buf->hdr.num_elems = cpu_to_le16(num_nodes); 253 for (i = 0; i < num_nodes; i++) 254 buf->teid[i] = cpu_to_le32(node_teids[i]); 255 256 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 257 &num_groups_removed, NULL); 258 if (status || num_groups_removed != 1) 259 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 260 hw->adminq.sq_last_status); 261 262 devm_kfree(ice_hw_to_dev(hw), buf); 263 return status; 264 } 265 266 /** 267 * ice_sched_get_first_node - get the first node of the given layer 268 * @pi: port information structure 269 * @parent: pointer the base node of the subtree 270 * @layer: layer number 271 * 272 * This function retrieves the first node of the given layer from the subtree 273 */ 274 static struct ice_sched_node * 275 ice_sched_get_first_node(struct ice_port_info *pi, 276 struct ice_sched_node *parent, u8 layer) 277 { 278 return pi->sib_head[parent->tc_num][layer]; 279 } 280 281 /** 282 * ice_sched_get_tc_node - get pointer to TC node 283 * @pi: port information structure 284 * @tc: TC number 285 * 286 * This function returns the TC node pointer 287 */ 288 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 289 { 290 u8 i; 291 292 if (!pi || !pi->root) 293 return NULL; 294 for (i = 0; i < pi->root->num_children; i++) 295 if (pi->root->children[i]->tc_num == tc) 296 return pi->root->children[i]; 297 return NULL; 298 } 299 300 /** 301 * ice_free_sched_node - Free a Tx scheduler node from SW DB 302 * @pi: port information structure 303 * @node: pointer to the ice_sched_node struct 304 * 305 * This function frees up a node from SW DB as well as from HW 306 * 307 * This function needs to be called with the port_info->sched_lock held 308 */ 309 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 310 { 311 struct ice_sched_node *parent; 312 struct ice_hw *hw = pi->hw; 313 u8 i, j; 314 315 /* Free the children before freeing up the parent node 316 * The parent array is updated below and that shifts the nodes 317 * in the array. So always pick the first child if num children > 0 318 */ 319 while (node->num_children) 320 ice_free_sched_node(pi, node->children[0]); 321 322 /* Leaf, TC and root nodes can't be deleted by SW */ 323 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 324 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 325 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 326 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 327 u32 teid = le32_to_cpu(node->info.node_teid); 328 329 ice_sched_remove_elems(hw, node->parent, 1, &teid); 330 } 331 parent = node->parent; 332 /* root has no parent */ 333 if (parent) { 334 struct ice_sched_node *p; 335 336 /* update the parent */ 337 for (i = 0; i < parent->num_children; i++) 338 if (parent->children[i] == node) { 339 for (j = i + 1; j < parent->num_children; j++) 340 parent->children[j - 1] = 341 parent->children[j]; 342 parent->num_children--; 343 break; 344 } 345 346 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 347 while (p) { 348 if (p->sibling == node) { 349 p->sibling = node->sibling; 350 break; 351 } 352 p = p->sibling; 353 } 354 355 /* update the sibling head if head is getting removed */ 356 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 357 pi->sib_head[node->tc_num][node->tx_sched_layer] = 358 node->sibling; 359 } 360 361 devm_kfree(ice_hw_to_dev(hw), node->children); 362 kfree(node->name); 363 xa_erase(&pi->sched_node_ids, node->id); 364 devm_kfree(ice_hw_to_dev(hw), node); 365 } 366 367 /** 368 * ice_aq_get_dflt_topo - gets default scheduler topology 369 * @hw: pointer to the HW struct 370 * @lport: logical port number 371 * @buf: pointer to buffer 372 * @buf_size: buffer size in bytes 373 * @num_branches: returns total number of queue to port branches 374 * @cd: pointer to command details structure or NULL 375 * 376 * Get default scheduler topology (0x400) 377 */ 378 static int 379 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 380 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 381 u8 *num_branches, struct ice_sq_cd *cd) 382 { 383 struct ice_aqc_get_topo *cmd; 384 struct ice_aq_desc desc; 385 int status; 386 387 cmd = &desc.params.get_topo; 388 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 389 cmd->port_num = lport; 390 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 391 if (!status && num_branches) 392 *num_branches = cmd->num_branches; 393 394 return status; 395 } 396 397 /** 398 * ice_aq_add_sched_elems - adds scheduling element 399 * @hw: pointer to the HW struct 400 * @grps_req: the number of groups that are requested to be added 401 * @buf: pointer to buffer 402 * @buf_size: buffer size in bytes 403 * @grps_added: returns total number of groups added 404 * @cd: pointer to command details structure or NULL 405 * 406 * Add scheduling elements (0x0401) 407 */ 408 static int 409 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 410 struct ice_aqc_add_elem *buf, u16 buf_size, 411 u16 *grps_added, struct ice_sq_cd *cd) 412 { 413 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 414 grps_req, (void *)buf, buf_size, 415 grps_added, cd); 416 } 417 418 /** 419 * ice_aq_cfg_sched_elems - configures scheduler elements 420 * @hw: pointer to the HW struct 421 * @elems_req: number of elements to configure 422 * @buf: pointer to buffer 423 * @buf_size: buffer size in bytes 424 * @elems_cfgd: returns total number of elements configured 425 * @cd: pointer to command details structure or NULL 426 * 427 * Configure scheduling elements (0x0403) 428 */ 429 static int 430 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 431 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 432 u16 *elems_cfgd, struct ice_sq_cd *cd) 433 { 434 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 435 elems_req, (void *)buf, buf_size, 436 elems_cfgd, cd); 437 } 438 439 /** 440 * ice_aq_move_sched_elems - move scheduler elements 441 * @hw: pointer to the HW struct 442 * @grps_req: number of groups to move 443 * @buf: pointer to buffer 444 * @buf_size: buffer size in bytes 445 * @grps_movd: returns total number of groups moved 446 * @cd: pointer to command details structure or NULL 447 * 448 * Move scheduling elements (0x0408) 449 */ 450 int 451 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 452 struct ice_aqc_move_elem *buf, u16 buf_size, 453 u16 *grps_movd, struct ice_sq_cd *cd) 454 { 455 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 456 grps_req, (void *)buf, buf_size, 457 grps_movd, cd); 458 } 459 460 /** 461 * ice_aq_suspend_sched_elems - suspend scheduler elements 462 * @hw: pointer to the HW struct 463 * @elems_req: number of elements to suspend 464 * @buf: pointer to buffer 465 * @buf_size: buffer size in bytes 466 * @elems_ret: returns total number of elements suspended 467 * @cd: pointer to command details structure or NULL 468 * 469 * Suspend scheduling elements (0x0409) 470 */ 471 static int 472 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 473 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 474 { 475 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 476 elems_req, (void *)buf, buf_size, 477 elems_ret, cd); 478 } 479 480 /** 481 * ice_aq_resume_sched_elems - resume scheduler elements 482 * @hw: pointer to the HW struct 483 * @elems_req: number of elements to resume 484 * @buf: pointer to buffer 485 * @buf_size: buffer size in bytes 486 * @elems_ret: returns total number of elements resumed 487 * @cd: pointer to command details structure or NULL 488 * 489 * resume scheduling elements (0x040A) 490 */ 491 static int 492 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 493 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 494 { 495 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 496 elems_req, (void *)buf, buf_size, 497 elems_ret, cd); 498 } 499 500 /** 501 * ice_aq_query_sched_res - query scheduler resource 502 * @hw: pointer to the HW struct 503 * @buf_size: buffer size in bytes 504 * @buf: pointer to buffer 505 * @cd: pointer to command details structure or NULL 506 * 507 * Query scheduler resource allocation (0x0412) 508 */ 509 static int 510 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 511 struct ice_aqc_query_txsched_res_resp *buf, 512 struct ice_sq_cd *cd) 513 { 514 struct ice_aq_desc desc; 515 516 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 517 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 518 } 519 520 /** 521 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 522 * @hw: pointer to the HW struct 523 * @num_nodes: number of nodes 524 * @node_teids: array of node teids to be suspended or resumed 525 * @suspend: true means suspend / false means resume 526 * 527 * This function suspends or resumes HW nodes 528 */ 529 int 530 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 531 bool suspend) 532 { 533 u16 i, buf_size, num_elem_ret = 0; 534 __le32 *buf; 535 int status; 536 537 buf_size = sizeof(*buf) * num_nodes; 538 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 539 if (!buf) 540 return -ENOMEM; 541 542 for (i = 0; i < num_nodes; i++) 543 buf[i] = cpu_to_le32(node_teids[i]); 544 545 if (suspend) 546 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 547 buf_size, &num_elem_ret, 548 NULL); 549 else 550 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 551 buf_size, &num_elem_ret, 552 NULL); 553 if (status || num_elem_ret != num_nodes) 554 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 555 556 devm_kfree(ice_hw_to_dev(hw), buf); 557 return status; 558 } 559 560 /** 561 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 562 * @hw: pointer to the HW struct 563 * @vsi_handle: VSI handle 564 * @tc: TC number 565 * @new_numqs: number of queues 566 */ 567 static int 568 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 569 { 570 struct ice_vsi_ctx *vsi_ctx; 571 struct ice_q_ctx *q_ctx; 572 u16 idx; 573 574 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 575 if (!vsi_ctx) 576 return -EINVAL; 577 /* allocate LAN queue contexts */ 578 if (!vsi_ctx->lan_q_ctx[tc]) { 579 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 580 sizeof(*q_ctx), GFP_KERNEL); 581 if (!q_ctx) 582 return -ENOMEM; 583 584 for (idx = 0; idx < new_numqs; idx++) { 585 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 586 q_ctx[idx].q_teid = ICE_INVAL_TEID; 587 } 588 589 vsi_ctx->lan_q_ctx[tc] = q_ctx; 590 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 591 return 0; 592 } 593 /* num queues are increased, update the queue contexts */ 594 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 595 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 596 597 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 598 sizeof(*q_ctx), GFP_KERNEL); 599 if (!q_ctx) 600 return -ENOMEM; 601 602 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 603 prev_num * sizeof(*q_ctx)); 604 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 605 606 for (idx = prev_num; idx < new_numqs; idx++) { 607 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 608 q_ctx[idx].q_teid = ICE_INVAL_TEID; 609 } 610 611 vsi_ctx->lan_q_ctx[tc] = q_ctx; 612 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 613 } 614 return 0; 615 } 616 617 /** 618 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 619 * @hw: pointer to the HW struct 620 * @vsi_handle: VSI handle 621 * @tc: TC number 622 * @new_numqs: number of queues 623 */ 624 static int 625 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 626 { 627 struct ice_vsi_ctx *vsi_ctx; 628 struct ice_q_ctx *q_ctx; 629 630 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 631 if (!vsi_ctx) 632 return -EINVAL; 633 /* allocate RDMA queue contexts */ 634 if (!vsi_ctx->rdma_q_ctx[tc]) { 635 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 636 new_numqs, 637 sizeof(*q_ctx), 638 GFP_KERNEL); 639 if (!vsi_ctx->rdma_q_ctx[tc]) 640 return -ENOMEM; 641 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 642 return 0; 643 } 644 /* num queues are increased, update the queue contexts */ 645 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 646 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 647 648 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 649 sizeof(*q_ctx), GFP_KERNEL); 650 if (!q_ctx) 651 return -ENOMEM; 652 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 653 prev_num * sizeof(*q_ctx)); 654 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 655 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 656 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 657 } 658 return 0; 659 } 660 661 /** 662 * ice_aq_rl_profile - performs a rate limiting task 663 * @hw: pointer to the HW struct 664 * @opcode: opcode for add, query, or remove profile(s) 665 * @num_profiles: the number of profiles 666 * @buf: pointer to buffer 667 * @buf_size: buffer size in bytes 668 * @num_processed: number of processed add or remove profile(s) to return 669 * @cd: pointer to command details structure 670 * 671 * RL profile function to add, query, or remove profile(s) 672 */ 673 static int 674 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 675 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 676 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 677 { 678 struct ice_aqc_rl_profile *cmd; 679 struct ice_aq_desc desc; 680 int status; 681 682 cmd = &desc.params.rl_profile; 683 684 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 685 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 686 cmd->num_profiles = cpu_to_le16(num_profiles); 687 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 688 if (!status && num_processed) 689 *num_processed = le16_to_cpu(cmd->num_processed); 690 return status; 691 } 692 693 /** 694 * ice_aq_add_rl_profile - adds rate limiting profile(s) 695 * @hw: pointer to the HW struct 696 * @num_profiles: the number of profile(s) to be add 697 * @buf: pointer to buffer 698 * @buf_size: buffer size in bytes 699 * @num_profiles_added: total number of profiles added to return 700 * @cd: pointer to command details structure 701 * 702 * Add RL profile (0x0410) 703 */ 704 static int 705 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 706 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 707 u16 *num_profiles_added, struct ice_sq_cd *cd) 708 { 709 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 710 buf, buf_size, num_profiles_added, cd); 711 } 712 713 /** 714 * ice_aq_remove_rl_profile - removes RL profile(s) 715 * @hw: pointer to the HW struct 716 * @num_profiles: the number of profile(s) to remove 717 * @buf: pointer to buffer 718 * @buf_size: buffer size in bytes 719 * @num_profiles_removed: total number of profiles removed to return 720 * @cd: pointer to command details structure or NULL 721 * 722 * Remove RL profile (0x0415) 723 */ 724 static int 725 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 726 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 727 u16 *num_profiles_removed, struct ice_sq_cd *cd) 728 { 729 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 730 num_profiles, buf, buf_size, 731 num_profiles_removed, cd); 732 } 733 734 /** 735 * ice_sched_del_rl_profile - remove RL profile 736 * @hw: pointer to the HW struct 737 * @rl_info: rate limit profile information 738 * 739 * If the profile ID is not referenced anymore, it removes profile ID with 740 * its associated parameters from HW DB,and locally. The caller needs to 741 * hold scheduler lock. 742 */ 743 static int 744 ice_sched_del_rl_profile(struct ice_hw *hw, 745 struct ice_aqc_rl_profile_info *rl_info) 746 { 747 struct ice_aqc_rl_profile_elem *buf; 748 u16 num_profiles_removed; 749 u16 num_profiles = 1; 750 int status; 751 752 if (rl_info->prof_id_ref != 0) 753 return -EBUSY; 754 755 /* Safe to remove profile ID */ 756 buf = &rl_info->profile; 757 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 758 &num_profiles_removed, NULL); 759 if (status || num_profiles_removed != num_profiles) 760 return -EIO; 761 762 /* Delete stale entry now */ 763 list_del(&rl_info->list_entry); 764 devm_kfree(ice_hw_to_dev(hw), rl_info); 765 return status; 766 } 767 768 /** 769 * ice_sched_clear_rl_prof - clears RL prof entries 770 * @pi: port information structure 771 * 772 * This function removes all RL profile from HW as well as from SW DB. 773 */ 774 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 775 { 776 u16 ln; 777 778 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 779 struct ice_aqc_rl_profile_info *rl_prof_elem; 780 struct ice_aqc_rl_profile_info *rl_prof_tmp; 781 782 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 783 &pi->rl_prof_list[ln], list_entry) { 784 struct ice_hw *hw = pi->hw; 785 int status; 786 787 rl_prof_elem->prof_id_ref = 0; 788 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 789 if (status) { 790 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 791 /* On error, free mem required */ 792 list_del(&rl_prof_elem->list_entry); 793 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 794 } 795 } 796 } 797 } 798 799 /** 800 * ice_sched_clear_agg - clears the aggregator related information 801 * @hw: pointer to the hardware structure 802 * 803 * This function removes aggregator list and free up aggregator related memory 804 * previously allocated. 805 */ 806 void ice_sched_clear_agg(struct ice_hw *hw) 807 { 808 struct ice_sched_agg_info *agg_info; 809 struct ice_sched_agg_info *atmp; 810 811 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 812 struct ice_sched_agg_vsi_info *agg_vsi_info; 813 struct ice_sched_agg_vsi_info *vtmp; 814 815 list_for_each_entry_safe(agg_vsi_info, vtmp, 816 &agg_info->agg_vsi_list, list_entry) { 817 list_del(&agg_vsi_info->list_entry); 818 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 819 } 820 list_del(&agg_info->list_entry); 821 devm_kfree(ice_hw_to_dev(hw), agg_info); 822 } 823 } 824 825 /** 826 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 827 * @pi: port information structure 828 * 829 * This function removes all the nodes from HW as well as from SW DB. 830 */ 831 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 832 { 833 if (!pi) 834 return; 835 /* remove RL profiles related lists */ 836 ice_sched_clear_rl_prof(pi); 837 if (pi->root) { 838 ice_free_sched_node(pi, pi->root); 839 pi->root = NULL; 840 } 841 } 842 843 /** 844 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 845 * @pi: port information structure 846 * 847 * Cleanup scheduling elements from SW DB 848 */ 849 void ice_sched_clear_port(struct ice_port_info *pi) 850 { 851 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 852 return; 853 854 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 855 mutex_lock(&pi->sched_lock); 856 ice_sched_clear_tx_topo(pi); 857 mutex_unlock(&pi->sched_lock); 858 mutex_destroy(&pi->sched_lock); 859 } 860 861 /** 862 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 863 * @hw: pointer to the HW struct 864 * 865 * Cleanup scheduling elements from SW DB for all the ports 866 */ 867 void ice_sched_cleanup_all(struct ice_hw *hw) 868 { 869 if (!hw) 870 return; 871 872 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 873 hw->layer_info = NULL; 874 875 ice_sched_clear_port(hw->port_info); 876 877 hw->num_tx_sched_layers = 0; 878 hw->num_tx_sched_phys_layers = 0; 879 hw->flattened_layers = 0; 880 hw->max_cgds = 0; 881 } 882 883 /** 884 * ice_sched_add_elems - add nodes to HW and SW DB 885 * @pi: port information structure 886 * @tc_node: pointer to the branch node 887 * @parent: pointer to the parent node 888 * @layer: layer number to add nodes 889 * @num_nodes: number of nodes 890 * @num_nodes_added: pointer to num nodes added 891 * @first_node_teid: if new nodes are added then return the TEID of first node 892 * @prealloc_nodes: preallocated nodes struct for software DB 893 * 894 * This function add nodes to HW as well as to SW DB for a given layer 895 */ 896 int 897 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 898 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 899 u16 *num_nodes_added, u32 *first_node_teid, 900 struct ice_sched_node **prealloc_nodes) 901 { 902 struct ice_sched_node *prev, *new_node; 903 struct ice_aqc_add_elem *buf; 904 u16 i, num_groups_added = 0; 905 struct ice_hw *hw = pi->hw; 906 size_t buf_size; 907 int status = 0; 908 u32 teid; 909 910 buf_size = struct_size(buf, generic, num_nodes); 911 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 912 if (!buf) 913 return -ENOMEM; 914 915 buf->hdr.parent_teid = parent->info.node_teid; 916 buf->hdr.num_elems = cpu_to_le16(num_nodes); 917 for (i = 0; i < num_nodes; i++) { 918 buf->generic[i].parent_teid = parent->info.node_teid; 919 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 920 buf->generic[i].data.valid_sections = 921 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 922 ICE_AQC_ELEM_VALID_EIR; 923 buf->generic[i].data.generic = 0; 924 buf->generic[i].data.cir_bw.bw_profile_idx = 925 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 926 buf->generic[i].data.cir_bw.bw_alloc = 927 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 928 buf->generic[i].data.eir_bw.bw_profile_idx = 929 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 930 buf->generic[i].data.eir_bw.bw_alloc = 931 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 932 } 933 934 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 935 &num_groups_added, NULL); 936 if (status || num_groups_added != 1) { 937 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 938 hw->adminq.sq_last_status); 939 devm_kfree(ice_hw_to_dev(hw), buf); 940 return -EIO; 941 } 942 943 *num_nodes_added = num_nodes; 944 /* add nodes to the SW DB */ 945 for (i = 0; i < num_nodes; i++) { 946 if (prealloc_nodes) 947 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); 948 else 949 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); 950 951 if (status) { 952 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 953 status); 954 break; 955 } 956 957 teid = le32_to_cpu(buf->generic[i].node_teid); 958 new_node = ice_sched_find_node_by_teid(parent, teid); 959 if (!new_node) { 960 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 961 break; 962 } 963 964 new_node->sibling = NULL; 965 new_node->tc_num = tc_node->tc_num; 966 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; 967 new_node->tx_share = ICE_SCHED_DFLT_BW; 968 new_node->tx_max = ICE_SCHED_DFLT_BW; 969 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); 970 if (!new_node->name) 971 return -ENOMEM; 972 973 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), 974 GFP_KERNEL); 975 if (status) { 976 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", 977 status); 978 break; 979 } 980 981 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); 982 983 /* add it to previous node sibling pointer */ 984 /* Note: siblings are not linked across branches */ 985 prev = ice_sched_get_first_node(pi, tc_node, layer); 986 if (prev && prev != new_node) { 987 while (prev->sibling) 988 prev = prev->sibling; 989 prev->sibling = new_node; 990 } 991 992 /* initialize the sibling head */ 993 if (!pi->sib_head[tc_node->tc_num][layer]) 994 pi->sib_head[tc_node->tc_num][layer] = new_node; 995 996 if (i == 0) 997 *first_node_teid = teid; 998 } 999 1000 devm_kfree(ice_hw_to_dev(hw), buf); 1001 return status; 1002 } 1003 1004 /** 1005 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 1006 * @pi: port information structure 1007 * @tc_node: pointer to TC node 1008 * @parent: pointer to parent node 1009 * @layer: layer number to add nodes 1010 * @num_nodes: number of nodes to be added 1011 * @first_node_teid: pointer to the first node TEID 1012 * @num_nodes_added: pointer to number of nodes added 1013 * 1014 * Add nodes into specific HW layer. 1015 */ 1016 static int 1017 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 1018 struct ice_sched_node *tc_node, 1019 struct ice_sched_node *parent, u8 layer, 1020 u16 num_nodes, u32 *first_node_teid, 1021 u16 *num_nodes_added) 1022 { 1023 u16 max_child_nodes; 1024 1025 *num_nodes_added = 0; 1026 1027 if (!num_nodes) 1028 return 0; 1029 1030 if (!parent || layer < pi->hw->sw_entry_point_layer) 1031 return -EINVAL; 1032 1033 /* max children per node per layer */ 1034 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1035 1036 /* current number of children + required nodes exceed max children */ 1037 if ((parent->num_children + num_nodes) > max_child_nodes) { 1038 /* Fail if the parent is a TC node */ 1039 if (parent == tc_node) 1040 return -EIO; 1041 return -ENOSPC; 1042 } 1043 1044 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1045 num_nodes_added, first_node_teid, NULL); 1046 } 1047 1048 /** 1049 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1050 * @pi: port information structure 1051 * @tc_node: pointer to TC node 1052 * @parent: pointer to parent node 1053 * @layer: layer number to add nodes 1054 * @num_nodes: number of nodes to be added 1055 * @first_node_teid: pointer to the first node TEID 1056 * @num_nodes_added: pointer to number of nodes added 1057 * 1058 * This function add nodes to a given layer. 1059 */ 1060 int 1061 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1062 struct ice_sched_node *tc_node, 1063 struct ice_sched_node *parent, u8 layer, 1064 u16 num_nodes, u32 *first_node_teid, 1065 u16 *num_nodes_added) 1066 { 1067 u32 *first_teid_ptr = first_node_teid; 1068 u16 new_num_nodes = num_nodes; 1069 int status = 0; 1070 1071 *num_nodes_added = 0; 1072 while (*num_nodes_added < num_nodes) { 1073 u16 max_child_nodes, num_added = 0; 1074 u32 temp; 1075 1076 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1077 layer, new_num_nodes, 1078 first_teid_ptr, 1079 &num_added); 1080 if (!status) 1081 *num_nodes_added += num_added; 1082 /* added more nodes than requested ? */ 1083 if (*num_nodes_added > num_nodes) { 1084 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1085 *num_nodes_added); 1086 status = -EIO; 1087 break; 1088 } 1089 /* break if all the nodes are added successfully */ 1090 if (!status && (*num_nodes_added == num_nodes)) 1091 break; 1092 /* break if the error is not max limit */ 1093 if (status && status != -ENOSPC) 1094 break; 1095 /* Exceeded the max children */ 1096 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1097 /* utilize all the spaces if the parent is not full */ 1098 if (parent->num_children < max_child_nodes) { 1099 new_num_nodes = max_child_nodes - parent->num_children; 1100 } else { 1101 /* This parent is full, try the next sibling */ 1102 parent = parent->sibling; 1103 /* Don't modify the first node TEID memory if the 1104 * first node was added already in the above call. 1105 * Instead send some temp memory for all other 1106 * recursive calls. 1107 */ 1108 if (num_added) 1109 first_teid_ptr = &temp; 1110 1111 new_num_nodes = num_nodes - *num_nodes_added; 1112 } 1113 } 1114 return status; 1115 } 1116 1117 /** 1118 * ice_sched_get_qgrp_layer - get the current queue group layer number 1119 * @hw: pointer to the HW struct 1120 * 1121 * This function returns the current queue group layer number 1122 */ 1123 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1124 { 1125 /* It's always total layers - 1, the array is 0 relative so -2 */ 1126 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1127 } 1128 1129 /** 1130 * ice_sched_get_vsi_layer - get the current VSI layer number 1131 * @hw: pointer to the HW struct 1132 * 1133 * This function returns the current VSI layer number 1134 */ 1135 u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1136 { 1137 /* Num Layers VSI layer 1138 * 9 6 1139 * 7 4 1140 * 5 or less sw_entry_point_layer 1141 */ 1142 /* calculate the VSI layer based on number of layers. */ 1143 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1144 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1145 1146 if (layer > hw->sw_entry_point_layer) 1147 return layer; 1148 } 1149 return hw->sw_entry_point_layer; 1150 } 1151 1152 /** 1153 * ice_sched_get_agg_layer - get the current aggregator layer number 1154 * @hw: pointer to the HW struct 1155 * 1156 * This function returns the current aggregator layer number 1157 */ 1158 u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1159 { 1160 /* Num Layers aggregator layer 1161 * 9 4 1162 * 7 or less sw_entry_point_layer 1163 */ 1164 /* calculate the aggregator layer based on number of layers. */ 1165 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1166 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1167 1168 if (layer > hw->sw_entry_point_layer) 1169 return layer; 1170 } 1171 return hw->sw_entry_point_layer; 1172 } 1173 1174 /** 1175 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1176 * @pi: port information structure 1177 * 1178 * This function removes the leaf node that was created by the FW 1179 * during initialization 1180 */ 1181 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1182 { 1183 struct ice_sched_node *node; 1184 1185 node = pi->root; 1186 while (node) { 1187 if (!node->num_children) 1188 break; 1189 node = node->children[0]; 1190 } 1191 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1192 u32 teid = le32_to_cpu(node->info.node_teid); 1193 int status; 1194 1195 /* remove the default leaf node */ 1196 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1197 if (!status) 1198 ice_free_sched_node(pi, node); 1199 } 1200 } 1201 1202 /** 1203 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1204 * @pi: port information structure 1205 * 1206 * This function frees all the nodes except root and TC that were created by 1207 * the FW during initialization 1208 */ 1209 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1210 { 1211 struct ice_sched_node *node; 1212 1213 ice_rm_dflt_leaf_node(pi); 1214 1215 /* remove the default nodes except TC and root nodes */ 1216 node = pi->root; 1217 while (node) { 1218 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1219 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1220 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1221 ice_free_sched_node(pi, node); 1222 break; 1223 } 1224 1225 if (!node->num_children) 1226 break; 1227 node = node->children[0]; 1228 } 1229 } 1230 1231 /** 1232 * ice_sched_init_port - Initialize scheduler by querying information from FW 1233 * @pi: port info structure for the tree to cleanup 1234 * 1235 * This function is the initial call to find the total number of Tx scheduler 1236 * resources, default topology created by firmware and storing the information 1237 * in SW DB. 1238 */ 1239 int ice_sched_init_port(struct ice_port_info *pi) 1240 { 1241 struct ice_aqc_get_topo_elem *buf; 1242 struct ice_hw *hw; 1243 u8 num_branches; 1244 u16 num_elems; 1245 int status; 1246 u8 i, j; 1247 1248 if (!pi) 1249 return -EINVAL; 1250 hw = pi->hw; 1251 1252 /* Query the Default Topology from FW */ 1253 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1254 if (!buf) 1255 return -ENOMEM; 1256 1257 /* Query default scheduling tree topology */ 1258 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1259 &num_branches, NULL); 1260 if (status) 1261 goto err_init_port; 1262 1263 /* num_branches should be between 1-8 */ 1264 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1265 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1266 num_branches); 1267 status = -EINVAL; 1268 goto err_init_port; 1269 } 1270 1271 /* get the number of elements on the default/first branch */ 1272 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1273 1274 /* num_elems should always be between 1-9 */ 1275 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1276 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1277 num_elems); 1278 status = -EINVAL; 1279 goto err_init_port; 1280 } 1281 1282 /* If the last node is a leaf node then the index of the queue group 1283 * layer is two less than the number of elements. 1284 */ 1285 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1286 ICE_AQC_ELEM_TYPE_LEAF) 1287 pi->last_node_teid = 1288 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1289 else 1290 pi->last_node_teid = 1291 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1292 1293 /* Insert the Tx Sched root node */ 1294 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1295 if (status) 1296 goto err_init_port; 1297 1298 /* Parse the default tree and cache the information */ 1299 for (i = 0; i < num_branches; i++) { 1300 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1301 1302 /* Skip root element as already inserted */ 1303 for (j = 1; j < num_elems; j++) { 1304 /* update the sw entry point */ 1305 if (buf[0].generic[j].data.elem_type == 1306 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1307 hw->sw_entry_point_layer = j; 1308 1309 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); 1310 if (status) 1311 goto err_init_port; 1312 } 1313 } 1314 1315 /* Remove the default nodes. */ 1316 if (pi->root) 1317 ice_sched_rm_dflt_nodes(pi); 1318 1319 /* initialize the port for handling the scheduler tree */ 1320 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1321 mutex_init(&pi->sched_lock); 1322 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1323 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1324 1325 err_init_port: 1326 if (status && pi->root) { 1327 ice_free_sched_node(pi, pi->root); 1328 pi->root = NULL; 1329 } 1330 1331 kfree(buf); 1332 return status; 1333 } 1334 1335 /** 1336 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1337 * @hw: pointer to the HW struct 1338 * 1339 * query FW for allocated scheduler resources and store in HW struct 1340 */ 1341 int ice_sched_query_res_alloc(struct ice_hw *hw) 1342 { 1343 struct ice_aqc_query_txsched_res_resp *buf; 1344 __le16 max_sibl; 1345 int status = 0; 1346 u16 i; 1347 1348 if (hw->layer_info) 1349 return status; 1350 1351 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1352 if (!buf) 1353 return -ENOMEM; 1354 1355 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1356 if (status) 1357 goto sched_query_out; 1358 1359 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1360 hw->num_tx_sched_phys_layers = 1361 le16_to_cpu(buf->sched_props.phys_levels); 1362 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1363 hw->max_cgds = buf->sched_props.max_pf_cgds; 1364 1365 /* max sibling group size of current layer refers to the max children 1366 * of the below layer node. 1367 * layer 1 node max children will be layer 2 max sibling group size 1368 * layer 2 node max children will be layer 3 max sibling group size 1369 * and so on. This array will be populated from root (index 0) to 1370 * qgroup layer 7. Leaf node has no children. 1371 */ 1372 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1373 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1374 hw->max_children[i] = le16_to_cpu(max_sibl); 1375 } 1376 1377 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1378 (hw->num_tx_sched_layers * 1379 sizeof(*hw->layer_info)), 1380 GFP_KERNEL); 1381 if (!hw->layer_info) { 1382 status = -ENOMEM; 1383 goto sched_query_out; 1384 } 1385 1386 sched_query_out: 1387 devm_kfree(ice_hw_to_dev(hw), buf); 1388 return status; 1389 } 1390 1391 /** 1392 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1393 * @hw: pointer to the HW struct 1394 * 1395 * Determine the PSM clock frequency and store in HW struct 1396 */ 1397 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1398 { 1399 u32 val, clk_src; 1400 1401 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1402 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1403 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1404 1405 #define PSM_CLK_SRC_367_MHZ 0x0 1406 #define PSM_CLK_SRC_416_MHZ 0x1 1407 #define PSM_CLK_SRC_446_MHZ 0x2 1408 #define PSM_CLK_SRC_390_MHZ 0x3 1409 1410 switch (clk_src) { 1411 case PSM_CLK_SRC_367_MHZ: 1412 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1413 break; 1414 case PSM_CLK_SRC_416_MHZ: 1415 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1416 break; 1417 case PSM_CLK_SRC_446_MHZ: 1418 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1419 break; 1420 case PSM_CLK_SRC_390_MHZ: 1421 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1422 break; 1423 default: 1424 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1425 clk_src); 1426 /* fall back to a safe default */ 1427 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1428 } 1429 } 1430 1431 /** 1432 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1433 * @hw: pointer to the HW struct 1434 * @base: pointer to the base node 1435 * @node: pointer to the node to search 1436 * 1437 * This function checks whether a given node is part of the base node 1438 * subtree or not 1439 */ 1440 static bool 1441 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1442 struct ice_sched_node *node) 1443 { 1444 u8 i; 1445 1446 for (i = 0; i < base->num_children; i++) { 1447 struct ice_sched_node *child = base->children[i]; 1448 1449 if (node == child) 1450 return true; 1451 1452 if (child->tx_sched_layer > node->tx_sched_layer) 1453 return false; 1454 1455 /* this recursion is intentional, and wouldn't 1456 * go more than 8 calls 1457 */ 1458 if (ice_sched_find_node_in_subtree(hw, child, node)) 1459 return true; 1460 } 1461 return false; 1462 } 1463 1464 /** 1465 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1466 * @pi: port information structure 1467 * @vsi_node: software VSI handle 1468 * @qgrp_node: first queue group node identified for scanning 1469 * @owner: LAN or RDMA 1470 * 1471 * This function retrieves a free LAN or RDMA queue group node by scanning 1472 * qgrp_node and its siblings for the queue group with the fewest number 1473 * of queues currently assigned. 1474 */ 1475 static struct ice_sched_node * 1476 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1477 struct ice_sched_node *vsi_node, 1478 struct ice_sched_node *qgrp_node, u8 owner) 1479 { 1480 struct ice_sched_node *min_qgrp; 1481 u8 min_children; 1482 1483 if (!qgrp_node) 1484 return qgrp_node; 1485 min_children = qgrp_node->num_children; 1486 if (!min_children) 1487 return qgrp_node; 1488 min_qgrp = qgrp_node; 1489 /* scan all queue groups until find a node which has less than the 1490 * minimum number of children. This way all queue group nodes get 1491 * equal number of shares and active. The bandwidth will be equally 1492 * distributed across all queues. 1493 */ 1494 while (qgrp_node) { 1495 /* make sure the qgroup node is part of the VSI subtree */ 1496 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1497 if (qgrp_node->num_children < min_children && 1498 qgrp_node->owner == owner) { 1499 /* replace the new min queue group node */ 1500 min_qgrp = qgrp_node; 1501 min_children = min_qgrp->num_children; 1502 /* break if it has no children, */ 1503 if (!min_children) 1504 break; 1505 } 1506 qgrp_node = qgrp_node->sibling; 1507 } 1508 return min_qgrp; 1509 } 1510 1511 /** 1512 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1513 * @pi: port information structure 1514 * @vsi_handle: software VSI handle 1515 * @tc: branch number 1516 * @owner: LAN or RDMA 1517 * 1518 * This function retrieves a free LAN or RDMA queue group node 1519 */ 1520 struct ice_sched_node * 1521 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1522 u8 owner) 1523 { 1524 struct ice_sched_node *vsi_node, *qgrp_node; 1525 struct ice_vsi_ctx *vsi_ctx; 1526 u16 max_children; 1527 u8 qgrp_layer; 1528 1529 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1530 max_children = pi->hw->max_children[qgrp_layer]; 1531 1532 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1533 if (!vsi_ctx) 1534 return NULL; 1535 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1536 /* validate invalid VSI ID */ 1537 if (!vsi_node) 1538 return NULL; 1539 1540 /* get the first queue group node from VSI sub-tree */ 1541 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1542 while (qgrp_node) { 1543 /* make sure the qgroup node is part of the VSI subtree */ 1544 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1545 if (qgrp_node->num_children < max_children && 1546 qgrp_node->owner == owner) 1547 break; 1548 qgrp_node = qgrp_node->sibling; 1549 } 1550 1551 /* Select the best queue group */ 1552 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1553 } 1554 1555 /** 1556 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1557 * @pi: pointer to the port information structure 1558 * @tc_node: pointer to the TC node 1559 * @vsi_handle: software VSI handle 1560 * 1561 * This function retrieves a VSI node for a given VSI ID from a given 1562 * TC branch 1563 */ 1564 static struct ice_sched_node * 1565 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1566 u16 vsi_handle) 1567 { 1568 struct ice_sched_node *node; 1569 u8 vsi_layer; 1570 1571 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1572 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1573 1574 /* Check whether it already exists */ 1575 while (node) { 1576 if (node->vsi_handle == vsi_handle) 1577 return node; 1578 node = node->sibling; 1579 } 1580 1581 return node; 1582 } 1583 1584 /** 1585 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1586 * @pi: pointer to the port information structure 1587 * @tc_node: pointer to the TC node 1588 * @agg_id: aggregator ID 1589 * 1590 * This function retrieves an aggregator node for a given aggregator ID from 1591 * a given TC branch 1592 */ 1593 struct ice_sched_node * 1594 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1595 u32 agg_id) 1596 { 1597 struct ice_sched_node *node; 1598 struct ice_hw *hw = pi->hw; 1599 u8 agg_layer; 1600 1601 if (!hw) 1602 return NULL; 1603 agg_layer = ice_sched_get_agg_layer(hw); 1604 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1605 1606 /* Check whether it already exists */ 1607 while (node) { 1608 if (node->agg_id == agg_id) 1609 return node; 1610 node = node->sibling; 1611 } 1612 1613 return node; 1614 } 1615 1616 /** 1617 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1618 * @hw: pointer to the HW struct 1619 * @num_qs: number of queues 1620 * @num_nodes: num nodes array 1621 * 1622 * This function calculates the number of VSI child nodes based on the 1623 * number of queues. 1624 */ 1625 static void 1626 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1627 { 1628 u16 num = num_qs; 1629 u8 i, qgl, vsil; 1630 1631 qgl = ice_sched_get_qgrp_layer(hw); 1632 vsil = ice_sched_get_vsi_layer(hw); 1633 1634 /* calculate num nodes from queue group to VSI layer */ 1635 for (i = qgl; i > vsil; i--) { 1636 /* round to the next integer if there is a remainder */ 1637 num = DIV_ROUND_UP(num, hw->max_children[i]); 1638 1639 /* need at least one node */ 1640 num_nodes[i] = num ? num : 1; 1641 } 1642 } 1643 1644 /** 1645 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1646 * @pi: port information structure 1647 * @vsi_handle: software VSI handle 1648 * @tc_node: pointer to the TC node 1649 * @num_nodes: pointer to the num nodes that needs to be added per layer 1650 * @owner: node owner (LAN or RDMA) 1651 * 1652 * This function adds the VSI child nodes to tree. It gets called for 1653 * LAN and RDMA separately. 1654 */ 1655 static int 1656 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1657 struct ice_sched_node *tc_node, u16 *num_nodes, 1658 u8 owner) 1659 { 1660 struct ice_sched_node *parent, *node; 1661 struct ice_hw *hw = pi->hw; 1662 u32 first_node_teid; 1663 u16 num_added = 0; 1664 u8 i, qgl, vsil; 1665 1666 qgl = ice_sched_get_qgrp_layer(hw); 1667 vsil = ice_sched_get_vsi_layer(hw); 1668 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1669 for (i = vsil + 1; i <= qgl; i++) { 1670 int status; 1671 1672 if (!parent) 1673 return -EIO; 1674 1675 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1676 num_nodes[i], 1677 &first_node_teid, 1678 &num_added); 1679 if (status || num_nodes[i] != num_added) 1680 return -EIO; 1681 1682 /* The newly added node can be a new parent for the next 1683 * layer nodes 1684 */ 1685 if (num_added) { 1686 parent = ice_sched_find_node_by_teid(tc_node, 1687 first_node_teid); 1688 node = parent; 1689 while (node) { 1690 node->owner = owner; 1691 node = node->sibling; 1692 } 1693 } else { 1694 parent = parent->children[0]; 1695 } 1696 } 1697 1698 return 0; 1699 } 1700 1701 /** 1702 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1703 * @pi: pointer to the port info structure 1704 * @tc_node: pointer to TC node 1705 * @num_nodes: pointer to num nodes array 1706 * 1707 * This function calculates the number of supported nodes needed to add this 1708 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1709 * layers 1710 */ 1711 static void 1712 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1713 struct ice_sched_node *tc_node, u16 *num_nodes) 1714 { 1715 struct ice_sched_node *node; 1716 u8 vsil; 1717 int i; 1718 1719 vsil = ice_sched_get_vsi_layer(pi->hw); 1720 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1721 /* Add intermediate nodes if TC has no children and 1722 * need at least one node for VSI 1723 */ 1724 if (!tc_node->num_children || i == vsil) { 1725 num_nodes[i]++; 1726 } else { 1727 /* If intermediate nodes are reached max children 1728 * then add a new one. 1729 */ 1730 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1731 /* scan all the siblings */ 1732 while (node) { 1733 if (node->num_children < pi->hw->max_children[i]) 1734 break; 1735 node = node->sibling; 1736 } 1737 1738 /* tree has one intermediate node to add this new VSI. 1739 * So no need to calculate supported nodes for below 1740 * layers. 1741 */ 1742 if (node) 1743 break; 1744 /* all the nodes are full, allocate a new one */ 1745 num_nodes[i]++; 1746 } 1747 } 1748 1749 /** 1750 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1751 * @pi: port information structure 1752 * @vsi_handle: software VSI handle 1753 * @tc_node: pointer to TC node 1754 * @num_nodes: pointer to num nodes array 1755 * 1756 * This function adds the VSI supported nodes into Tx tree including the 1757 * VSI, its parent and intermediate nodes in below layers 1758 */ 1759 static int 1760 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1761 struct ice_sched_node *tc_node, u16 *num_nodes) 1762 { 1763 struct ice_sched_node *parent = tc_node; 1764 u32 first_node_teid; 1765 u16 num_added = 0; 1766 u8 i, vsil; 1767 1768 if (!pi) 1769 return -EINVAL; 1770 1771 vsil = ice_sched_get_vsi_layer(pi->hw); 1772 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1773 int status; 1774 1775 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1776 i, num_nodes[i], 1777 &first_node_teid, 1778 &num_added); 1779 if (status || num_nodes[i] != num_added) 1780 return -EIO; 1781 1782 /* The newly added node can be a new parent for the next 1783 * layer nodes 1784 */ 1785 if (num_added) 1786 parent = ice_sched_find_node_by_teid(tc_node, 1787 first_node_teid); 1788 else 1789 parent = parent->children[0]; 1790 1791 if (!parent) 1792 return -EIO; 1793 1794 if (i == vsil) 1795 parent->vsi_handle = vsi_handle; 1796 } 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1803 * @pi: port information structure 1804 * @vsi_handle: software VSI handle 1805 * @tc: TC number 1806 * 1807 * This function adds a new VSI into scheduler tree 1808 */ 1809 static int 1810 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1811 { 1812 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1813 struct ice_sched_node *tc_node; 1814 1815 tc_node = ice_sched_get_tc_node(pi, tc); 1816 if (!tc_node) 1817 return -EINVAL; 1818 1819 /* calculate number of supported nodes needed for this VSI */ 1820 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1821 1822 /* add VSI supported nodes to TC subtree */ 1823 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1824 num_nodes); 1825 } 1826 1827 /** 1828 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1829 * @pi: port information structure 1830 * @vsi_handle: software VSI handle 1831 * @tc: TC number 1832 * @new_numqs: new number of max queues 1833 * @owner: owner of this subtree 1834 * 1835 * This function updates the VSI child nodes based on the number of queues 1836 */ 1837 static int 1838 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1839 u8 tc, u16 new_numqs, u8 owner) 1840 { 1841 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1842 struct ice_sched_node *vsi_node; 1843 struct ice_sched_node *tc_node; 1844 struct ice_vsi_ctx *vsi_ctx; 1845 struct ice_hw *hw = pi->hw; 1846 u16 prev_numqs; 1847 int status = 0; 1848 1849 tc_node = ice_sched_get_tc_node(pi, tc); 1850 if (!tc_node) 1851 return -EIO; 1852 1853 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1854 if (!vsi_node) 1855 return -EIO; 1856 1857 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1858 if (!vsi_ctx) 1859 return -EINVAL; 1860 1861 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1862 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1863 else 1864 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1865 /* num queues are not changed or less than the previous number */ 1866 if (new_numqs <= prev_numqs) 1867 return status; 1868 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1869 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1870 if (status) 1871 return status; 1872 } else { 1873 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1874 if (status) 1875 return status; 1876 } 1877 1878 if (new_numqs) 1879 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1880 /* Keep the max number of queue configuration all the time. Update the 1881 * tree only if number of queues > previous number of queues. This may 1882 * leave some extra nodes in the tree if number of queues < previous 1883 * number but that wouldn't harm anything. Removing those extra nodes 1884 * may complicate the code if those nodes are part of SRL or 1885 * individually rate limited. 1886 */ 1887 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1888 new_num_nodes, owner); 1889 if (status) 1890 return status; 1891 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1892 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1893 else 1894 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1895 1896 return 0; 1897 } 1898 1899 /** 1900 * ice_sched_cfg_vsi - configure the new/existing VSI 1901 * @pi: port information structure 1902 * @vsi_handle: software VSI handle 1903 * @tc: TC number 1904 * @maxqs: max number of queues 1905 * @owner: LAN or RDMA 1906 * @enable: TC enabled or disabled 1907 * 1908 * This function adds/updates VSI nodes based on the number of queues. If TC is 1909 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1910 * disabled then suspend the VSI if it is not already. 1911 */ 1912 int 1913 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1914 u8 owner, bool enable) 1915 { 1916 struct ice_sched_node *vsi_node, *tc_node; 1917 struct ice_vsi_ctx *vsi_ctx; 1918 struct ice_hw *hw = pi->hw; 1919 int status = 0; 1920 1921 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1922 tc_node = ice_sched_get_tc_node(pi, tc); 1923 if (!tc_node) 1924 return -EINVAL; 1925 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1926 if (!vsi_ctx) 1927 return -EINVAL; 1928 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1929 1930 /* suspend the VSI if TC is not enabled */ 1931 if (!enable) { 1932 if (vsi_node && vsi_node->in_use) { 1933 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1934 1935 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1936 true); 1937 if (!status) 1938 vsi_node->in_use = false; 1939 } 1940 return status; 1941 } 1942 1943 /* TC is enabled, if it is a new VSI then add it to the tree */ 1944 if (!vsi_node) { 1945 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1946 if (status) 1947 return status; 1948 1949 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1950 if (!vsi_node) 1951 return -EIO; 1952 1953 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1954 vsi_node->in_use = true; 1955 /* invalidate the max queues whenever VSI gets added first time 1956 * into the scheduler tree (boot or after reset). We need to 1957 * recreate the child nodes all the time in these cases. 1958 */ 1959 vsi_ctx->sched.max_lanq[tc] = 0; 1960 vsi_ctx->sched.max_rdmaq[tc] = 0; 1961 } 1962 1963 /* update the VSI child nodes */ 1964 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1965 owner); 1966 if (status) 1967 return status; 1968 1969 /* TC is enabled, resume the VSI if it is in the suspend state */ 1970 if (!vsi_node->in_use) { 1971 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1972 1973 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1974 if (!status) 1975 vsi_node->in_use = true; 1976 } 1977 1978 return status; 1979 } 1980 1981 /** 1982 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1983 * @pi: port information structure 1984 * @vsi_handle: software VSI handle 1985 * 1986 * This function removes single aggregator VSI info entry from 1987 * aggregator list. 1988 */ 1989 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1990 { 1991 struct ice_sched_agg_info *agg_info; 1992 struct ice_sched_agg_info *atmp; 1993 1994 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1995 list_entry) { 1996 struct ice_sched_agg_vsi_info *agg_vsi_info; 1997 struct ice_sched_agg_vsi_info *vtmp; 1998 1999 list_for_each_entry_safe(agg_vsi_info, vtmp, 2000 &agg_info->agg_vsi_list, list_entry) 2001 if (agg_vsi_info->vsi_handle == vsi_handle) { 2002 list_del(&agg_vsi_info->list_entry); 2003 devm_kfree(ice_hw_to_dev(pi->hw), 2004 agg_vsi_info); 2005 return; 2006 } 2007 } 2008 } 2009 2010 /** 2011 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 2012 * @node: pointer to the sub-tree node 2013 * 2014 * This function checks for a leaf node presence in a given sub-tree node. 2015 */ 2016 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 2017 { 2018 u8 i; 2019 2020 for (i = 0; i < node->num_children; i++) 2021 if (ice_sched_is_leaf_node_present(node->children[i])) 2022 return true; 2023 /* check for a leaf node */ 2024 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 2025 } 2026 2027 /** 2028 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 2029 * @pi: port information structure 2030 * @vsi_handle: software VSI handle 2031 * @owner: LAN or RDMA 2032 * 2033 * This function removes the VSI and its LAN or RDMA children nodes from the 2034 * scheduler tree. 2035 */ 2036 static int 2037 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 2038 { 2039 struct ice_vsi_ctx *vsi_ctx; 2040 int status = -EINVAL; 2041 u8 i; 2042 2043 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2044 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2045 return status; 2046 mutex_lock(&pi->sched_lock); 2047 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2048 if (!vsi_ctx) 2049 goto exit_sched_rm_vsi_cfg; 2050 2051 ice_for_each_traffic_class(i) { 2052 struct ice_sched_node *vsi_node, *tc_node; 2053 u8 j = 0; 2054 2055 tc_node = ice_sched_get_tc_node(pi, i); 2056 if (!tc_node) 2057 continue; 2058 2059 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2060 if (!vsi_node) 2061 continue; 2062 2063 if (ice_sched_is_leaf_node_present(vsi_node)) { 2064 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2065 status = -EBUSY; 2066 goto exit_sched_rm_vsi_cfg; 2067 } 2068 while (j < vsi_node->num_children) { 2069 if (vsi_node->children[j]->owner == owner) { 2070 ice_free_sched_node(pi, vsi_node->children[j]); 2071 2072 /* reset the counter again since the num 2073 * children will be updated after node removal 2074 */ 2075 j = 0; 2076 } else { 2077 j++; 2078 } 2079 } 2080 /* remove the VSI if it has no children */ 2081 if (!vsi_node->num_children) { 2082 ice_free_sched_node(pi, vsi_node); 2083 vsi_ctx->sched.vsi_node[i] = NULL; 2084 2085 /* clean up aggregator related VSI info if any */ 2086 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2087 } 2088 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2089 vsi_ctx->sched.max_lanq[i] = 0; 2090 else 2091 vsi_ctx->sched.max_rdmaq[i] = 0; 2092 } 2093 status = 0; 2094 2095 exit_sched_rm_vsi_cfg: 2096 mutex_unlock(&pi->sched_lock); 2097 return status; 2098 } 2099 2100 /** 2101 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2102 * @pi: port information structure 2103 * @vsi_handle: software VSI handle 2104 * 2105 * This function clears the VSI and its LAN children nodes from scheduler tree 2106 * for all TCs. 2107 */ 2108 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2109 { 2110 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2111 } 2112 2113 /** 2114 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2115 * @pi: port information structure 2116 * @vsi_handle: software VSI handle 2117 * 2118 * This function clears the VSI and its RDMA children nodes from scheduler tree 2119 * for all TCs. 2120 */ 2121 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2122 { 2123 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2124 } 2125 2126 /** 2127 * ice_get_agg_info - get the aggregator ID 2128 * @hw: pointer to the hardware structure 2129 * @agg_id: aggregator ID 2130 * 2131 * This function validates aggregator ID. The function returns info if 2132 * aggregator ID is present in list otherwise it returns null. 2133 */ 2134 static struct ice_sched_agg_info * 2135 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2136 { 2137 struct ice_sched_agg_info *agg_info; 2138 2139 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2140 if (agg_info->agg_id == agg_id) 2141 return agg_info; 2142 2143 return NULL; 2144 } 2145 2146 /** 2147 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2148 * @hw: pointer to the HW struct 2149 * @node: pointer to a child node 2150 * @num_nodes: num nodes count array 2151 * 2152 * This function walks through the aggregator subtree to find a free parent 2153 * node 2154 */ 2155 struct ice_sched_node * 2156 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2157 u16 *num_nodes) 2158 { 2159 u8 l = node->tx_sched_layer; 2160 u8 vsil, i; 2161 2162 vsil = ice_sched_get_vsi_layer(hw); 2163 2164 /* Is it VSI parent layer ? */ 2165 if (l == vsil - 1) 2166 return (node->num_children < hw->max_children[l]) ? node : NULL; 2167 2168 /* We have intermediate nodes. Let's walk through the subtree. If the 2169 * intermediate node has space to add a new node then clear the count 2170 */ 2171 if (node->num_children < hw->max_children[l]) 2172 num_nodes[l] = 0; 2173 /* The below recursive call is intentional and wouldn't go more than 2174 * 2 or 3 iterations. 2175 */ 2176 2177 for (i = 0; i < node->num_children; i++) { 2178 struct ice_sched_node *parent; 2179 2180 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2181 num_nodes); 2182 if (parent) 2183 return parent; 2184 } 2185 2186 return NULL; 2187 } 2188 2189 /** 2190 * ice_sched_update_parent - update the new parent in SW DB 2191 * @new_parent: pointer to a new parent node 2192 * @node: pointer to a child node 2193 * 2194 * This function removes the child from the old parent and adds it to a new 2195 * parent 2196 */ 2197 void 2198 ice_sched_update_parent(struct ice_sched_node *new_parent, 2199 struct ice_sched_node *node) 2200 { 2201 struct ice_sched_node *old_parent; 2202 u8 i, j; 2203 2204 old_parent = node->parent; 2205 2206 /* update the old parent children */ 2207 for (i = 0; i < old_parent->num_children; i++) 2208 if (old_parent->children[i] == node) { 2209 for (j = i + 1; j < old_parent->num_children; j++) 2210 old_parent->children[j - 1] = 2211 old_parent->children[j]; 2212 old_parent->num_children--; 2213 break; 2214 } 2215 2216 /* now move the node to a new parent */ 2217 new_parent->children[new_parent->num_children++] = node; 2218 node->parent = new_parent; 2219 node->info.parent_teid = new_parent->info.node_teid; 2220 } 2221 2222 /** 2223 * ice_sched_move_nodes - move child nodes to a given parent 2224 * @pi: port information structure 2225 * @parent: pointer to parent node 2226 * @num_items: number of child nodes to be moved 2227 * @list: pointer to child node teids 2228 * 2229 * This function move the child nodes to a given parent. 2230 */ 2231 int 2232 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2233 u16 num_items, u32 *list) 2234 { 2235 struct ice_aqc_move_elem *buf; 2236 struct ice_sched_node *node; 2237 u16 i, grps_movd = 0; 2238 struct ice_hw *hw; 2239 int status = 0; 2240 u16 buf_len; 2241 2242 hw = pi->hw; 2243 2244 if (!parent || !num_items) 2245 return -EINVAL; 2246 2247 /* Does parent have enough space */ 2248 if (parent->num_children + num_items > 2249 hw->max_children[parent->tx_sched_layer]) 2250 return -ENOSPC; 2251 2252 buf_len = struct_size(buf, teid, 1); 2253 buf = kzalloc(buf_len, GFP_KERNEL); 2254 if (!buf) 2255 return -ENOMEM; 2256 2257 for (i = 0; i < num_items; i++) { 2258 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2259 if (!node) { 2260 status = -EINVAL; 2261 goto move_err_exit; 2262 } 2263 2264 buf->hdr.src_parent_teid = node->info.parent_teid; 2265 buf->hdr.dest_parent_teid = parent->info.node_teid; 2266 buf->teid[0] = node->info.node_teid; 2267 buf->hdr.num_elems = cpu_to_le16(1); 2268 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2269 &grps_movd, NULL); 2270 if (status && grps_movd != 1) { 2271 status = -EIO; 2272 goto move_err_exit; 2273 } 2274 2275 /* update the SW DB */ 2276 ice_sched_update_parent(parent, node); 2277 } 2278 2279 move_err_exit: 2280 kfree(buf); 2281 return status; 2282 } 2283 2284 /** 2285 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2286 * @pi: port information structure 2287 * @vsi_handle: software VSI handle 2288 * @agg_id: aggregator ID 2289 * @tc: TC number 2290 * 2291 * This function moves a VSI to an aggregator node or its subtree. 2292 * Intermediate nodes may be created if required. 2293 */ 2294 static int 2295 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2296 u8 tc) 2297 { 2298 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2299 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2300 u32 first_node_teid, vsi_teid; 2301 u16 num_nodes_added; 2302 u8 aggl, vsil, i; 2303 int status; 2304 2305 tc_node = ice_sched_get_tc_node(pi, tc); 2306 if (!tc_node) 2307 return -EIO; 2308 2309 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2310 if (!agg_node) 2311 return -ENOENT; 2312 2313 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2314 if (!vsi_node) 2315 return -ENOENT; 2316 2317 /* Is this VSI already part of given aggregator? */ 2318 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2319 return 0; 2320 2321 aggl = ice_sched_get_agg_layer(pi->hw); 2322 vsil = ice_sched_get_vsi_layer(pi->hw); 2323 2324 /* set intermediate node count to 1 between aggregator and VSI layers */ 2325 for (i = aggl + 1; i < vsil; i++) 2326 num_nodes[i] = 1; 2327 2328 /* Check if the aggregator subtree has any free node to add the VSI */ 2329 for (i = 0; i < agg_node->num_children; i++) { 2330 parent = ice_sched_get_free_vsi_parent(pi->hw, 2331 agg_node->children[i], 2332 num_nodes); 2333 if (parent) 2334 goto move_nodes; 2335 } 2336 2337 /* add new nodes */ 2338 parent = agg_node; 2339 for (i = aggl + 1; i < vsil; i++) { 2340 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2341 num_nodes[i], 2342 &first_node_teid, 2343 &num_nodes_added); 2344 if (status || num_nodes[i] != num_nodes_added) 2345 return -EIO; 2346 2347 /* The newly added node can be a new parent for the next 2348 * layer nodes 2349 */ 2350 if (num_nodes_added) 2351 parent = ice_sched_find_node_by_teid(tc_node, 2352 first_node_teid); 2353 else 2354 parent = parent->children[0]; 2355 2356 if (!parent) 2357 return -EIO; 2358 } 2359 2360 move_nodes: 2361 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2362 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2363 } 2364 2365 /** 2366 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2367 * @pi: port information structure 2368 * @agg_info: aggregator info 2369 * @tc: traffic class number 2370 * @rm_vsi_info: true or false 2371 * 2372 * This function move all the VSI(s) to the default aggregator and delete 2373 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2374 * caller holds the scheduler lock. 2375 */ 2376 static int 2377 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2378 struct ice_sched_agg_info *agg_info, u8 tc, 2379 bool rm_vsi_info) 2380 { 2381 struct ice_sched_agg_vsi_info *agg_vsi_info; 2382 struct ice_sched_agg_vsi_info *tmp; 2383 int status = 0; 2384 2385 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2386 list_entry) { 2387 u16 vsi_handle = agg_vsi_info->vsi_handle; 2388 2389 /* Move VSI to default aggregator */ 2390 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2391 continue; 2392 2393 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2394 ICE_DFLT_AGG_ID, tc); 2395 if (status) 2396 break; 2397 2398 clear_bit(tc, agg_vsi_info->tc_bitmap); 2399 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2400 list_del(&agg_vsi_info->list_entry); 2401 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2402 } 2403 } 2404 2405 return status; 2406 } 2407 2408 /** 2409 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2410 * @pi: port information structure 2411 * @node: node pointer 2412 * 2413 * This function checks whether the aggregator is attached with any VSI or not. 2414 */ 2415 static bool 2416 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2417 { 2418 u8 vsil, i; 2419 2420 vsil = ice_sched_get_vsi_layer(pi->hw); 2421 if (node->tx_sched_layer < vsil - 1) { 2422 for (i = 0; i < node->num_children; i++) 2423 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2424 return true; 2425 return false; 2426 } else { 2427 return node->num_children ? true : false; 2428 } 2429 } 2430 2431 /** 2432 * ice_sched_rm_agg_cfg - remove the aggregator node 2433 * @pi: port information structure 2434 * @agg_id: aggregator ID 2435 * @tc: TC number 2436 * 2437 * This function removes the aggregator node and intermediate nodes if any 2438 * from the given TC 2439 */ 2440 static int 2441 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2442 { 2443 struct ice_sched_node *tc_node, *agg_node; 2444 struct ice_hw *hw = pi->hw; 2445 2446 tc_node = ice_sched_get_tc_node(pi, tc); 2447 if (!tc_node) 2448 return -EIO; 2449 2450 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2451 if (!agg_node) 2452 return -ENOENT; 2453 2454 /* Can't remove the aggregator node if it has children */ 2455 if (ice_sched_is_agg_inuse(pi, agg_node)) 2456 return -EBUSY; 2457 2458 /* need to remove the whole subtree if aggregator node is the 2459 * only child. 2460 */ 2461 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2462 struct ice_sched_node *parent = agg_node->parent; 2463 2464 if (!parent) 2465 return -EIO; 2466 2467 if (parent->num_children > 1) 2468 break; 2469 2470 agg_node = parent; 2471 } 2472 2473 ice_free_sched_node(pi, agg_node); 2474 return 0; 2475 } 2476 2477 /** 2478 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2479 * @pi: port information structure 2480 * @agg_info: aggregator ID 2481 * @tc: TC number 2482 * @rm_vsi_info: bool value true or false 2483 * 2484 * This function removes aggregator reference to VSI of given TC. It removes 2485 * the aggregator configuration completely for requested TC. The caller needs 2486 * to hold the scheduler lock. 2487 */ 2488 static int 2489 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2490 u8 tc, bool rm_vsi_info) 2491 { 2492 int status = 0; 2493 2494 /* If nothing to remove - return success */ 2495 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2496 goto exit_rm_agg_cfg_tc; 2497 2498 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2499 if (status) 2500 goto exit_rm_agg_cfg_tc; 2501 2502 /* Delete aggregator node(s) */ 2503 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2504 if (status) 2505 goto exit_rm_agg_cfg_tc; 2506 2507 clear_bit(tc, agg_info->tc_bitmap); 2508 exit_rm_agg_cfg_tc: 2509 return status; 2510 } 2511 2512 /** 2513 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2514 * @pi: port information structure 2515 * @agg_id: aggregator ID 2516 * @tc_bitmap: 8 bits TC bitmap 2517 * 2518 * Save aggregator TC bitmap. This function needs to be called with scheduler 2519 * lock held. 2520 */ 2521 static int 2522 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2523 unsigned long *tc_bitmap) 2524 { 2525 struct ice_sched_agg_info *agg_info; 2526 2527 agg_info = ice_get_agg_info(pi->hw, agg_id); 2528 if (!agg_info) 2529 return -EINVAL; 2530 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2531 ICE_MAX_TRAFFIC_CLASS); 2532 return 0; 2533 } 2534 2535 /** 2536 * ice_sched_add_agg_cfg - create an aggregator node 2537 * @pi: port information structure 2538 * @agg_id: aggregator ID 2539 * @tc: TC number 2540 * 2541 * This function creates an aggregator node and intermediate nodes if required 2542 * for the given TC 2543 */ 2544 static int 2545 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2546 { 2547 struct ice_sched_node *parent, *agg_node, *tc_node; 2548 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2549 struct ice_hw *hw = pi->hw; 2550 u32 first_node_teid; 2551 u16 num_nodes_added; 2552 int status = 0; 2553 u8 i, aggl; 2554 2555 tc_node = ice_sched_get_tc_node(pi, tc); 2556 if (!tc_node) 2557 return -EIO; 2558 2559 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2560 /* Does Agg node already exist ? */ 2561 if (agg_node) 2562 return status; 2563 2564 aggl = ice_sched_get_agg_layer(hw); 2565 2566 /* need one node in Agg layer */ 2567 num_nodes[aggl] = 1; 2568 2569 /* Check whether the intermediate nodes have space to add the 2570 * new aggregator. If they are full, then SW needs to allocate a new 2571 * intermediate node on those layers 2572 */ 2573 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2574 parent = ice_sched_get_first_node(pi, tc_node, i); 2575 2576 /* scan all the siblings */ 2577 while (parent) { 2578 if (parent->num_children < hw->max_children[i]) 2579 break; 2580 parent = parent->sibling; 2581 } 2582 2583 /* all the nodes are full, reserve one for this layer */ 2584 if (!parent) 2585 num_nodes[i]++; 2586 } 2587 2588 /* add the aggregator node */ 2589 parent = tc_node; 2590 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2591 if (!parent) 2592 return -EIO; 2593 2594 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2595 num_nodes[i], 2596 &first_node_teid, 2597 &num_nodes_added); 2598 if (status || num_nodes[i] != num_nodes_added) 2599 return -EIO; 2600 2601 /* The newly added node can be a new parent for the next 2602 * layer nodes 2603 */ 2604 if (num_nodes_added) { 2605 parent = ice_sched_find_node_by_teid(tc_node, 2606 first_node_teid); 2607 /* register aggregator ID with the aggregator node */ 2608 if (parent && i == aggl) 2609 parent->agg_id = agg_id; 2610 } else { 2611 parent = parent->children[0]; 2612 } 2613 } 2614 2615 return 0; 2616 } 2617 2618 /** 2619 * ice_sched_cfg_agg - configure aggregator node 2620 * @pi: port information structure 2621 * @agg_id: aggregator ID 2622 * @agg_type: aggregator type queue, VSI, or aggregator group 2623 * @tc_bitmap: bits TC bitmap 2624 * 2625 * It registers a unique aggregator node into scheduler services. It 2626 * allows a user to register with a unique ID to track it's resources. 2627 * The aggregator type determines if this is a queue group, VSI group 2628 * or aggregator group. It then creates the aggregator node(s) for requested 2629 * TC(s) or removes an existing aggregator node including its configuration 2630 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2631 * resources and remove aggregator ID. 2632 * This function needs to be called with scheduler lock held. 2633 */ 2634 static int 2635 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2636 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2637 { 2638 struct ice_sched_agg_info *agg_info; 2639 struct ice_hw *hw = pi->hw; 2640 int status = 0; 2641 u8 tc; 2642 2643 agg_info = ice_get_agg_info(hw, agg_id); 2644 if (!agg_info) { 2645 /* Create new entry for new aggregator ID */ 2646 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2647 GFP_KERNEL); 2648 if (!agg_info) 2649 return -ENOMEM; 2650 2651 agg_info->agg_id = agg_id; 2652 agg_info->agg_type = agg_type; 2653 agg_info->tc_bitmap[0] = 0; 2654 2655 /* Initialize the aggregator VSI list head */ 2656 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2657 2658 /* Add new entry in aggregator list */ 2659 list_add(&agg_info->list_entry, &hw->agg_list); 2660 } 2661 /* Create aggregator node(s) for requested TC(s) */ 2662 ice_for_each_traffic_class(tc) { 2663 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2664 /* Delete aggregator cfg TC if it exists previously */ 2665 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2666 if (status) 2667 break; 2668 continue; 2669 } 2670 2671 /* Check if aggregator node for TC already exists */ 2672 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2673 continue; 2674 2675 /* Create new aggregator node for TC */ 2676 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2677 if (status) 2678 break; 2679 2680 /* Save aggregator node's TC information */ 2681 set_bit(tc, agg_info->tc_bitmap); 2682 } 2683 2684 return status; 2685 } 2686 2687 /** 2688 * ice_cfg_agg - config aggregator node 2689 * @pi: port information structure 2690 * @agg_id: aggregator ID 2691 * @agg_type: aggregator type queue, VSI, or aggregator group 2692 * @tc_bitmap: bits TC bitmap 2693 * 2694 * This function configures aggregator node(s). 2695 */ 2696 int 2697 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2698 u8 tc_bitmap) 2699 { 2700 unsigned long bitmap = tc_bitmap; 2701 int status; 2702 2703 mutex_lock(&pi->sched_lock); 2704 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2705 if (!status) 2706 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2707 mutex_unlock(&pi->sched_lock); 2708 return status; 2709 } 2710 2711 /** 2712 * ice_get_agg_vsi_info - get the aggregator ID 2713 * @agg_info: aggregator info 2714 * @vsi_handle: software VSI handle 2715 * 2716 * The function returns aggregator VSI info based on VSI handle. This function 2717 * needs to be called with scheduler lock held. 2718 */ 2719 static struct ice_sched_agg_vsi_info * 2720 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2721 { 2722 struct ice_sched_agg_vsi_info *agg_vsi_info; 2723 2724 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2725 if (agg_vsi_info->vsi_handle == vsi_handle) 2726 return agg_vsi_info; 2727 2728 return NULL; 2729 } 2730 2731 /** 2732 * ice_get_vsi_agg_info - get the aggregator info of VSI 2733 * @hw: pointer to the hardware structure 2734 * @vsi_handle: Sw VSI handle 2735 * 2736 * The function returns aggregator info of VSI represented via vsi_handle. The 2737 * VSI has in this case a different aggregator than the default one. This 2738 * function needs to be called with scheduler lock held. 2739 */ 2740 static struct ice_sched_agg_info * 2741 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2742 { 2743 struct ice_sched_agg_info *agg_info; 2744 2745 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2746 struct ice_sched_agg_vsi_info *agg_vsi_info; 2747 2748 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2749 if (agg_vsi_info) 2750 return agg_info; 2751 } 2752 return NULL; 2753 } 2754 2755 /** 2756 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2757 * @pi: port information structure 2758 * @agg_id: aggregator ID 2759 * @vsi_handle: software VSI handle 2760 * @tc_bitmap: TC bitmap of enabled TC(s) 2761 * 2762 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2763 * lock held. 2764 */ 2765 static int 2766 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2767 unsigned long *tc_bitmap) 2768 { 2769 struct ice_sched_agg_vsi_info *agg_vsi_info; 2770 struct ice_sched_agg_info *agg_info; 2771 2772 agg_info = ice_get_agg_info(pi->hw, agg_id); 2773 if (!agg_info) 2774 return -EINVAL; 2775 /* check if entry already exist */ 2776 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2777 if (!agg_vsi_info) 2778 return -EINVAL; 2779 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2780 ICE_MAX_TRAFFIC_CLASS); 2781 return 0; 2782 } 2783 2784 /** 2785 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2786 * @pi: port information structure 2787 * @agg_id: aggregator ID 2788 * @vsi_handle: software VSI handle 2789 * @tc_bitmap: TC bitmap of enabled TC(s) 2790 * 2791 * This function moves VSI to a new or default aggregator node. If VSI is 2792 * already associated to the aggregator node then no operation is performed on 2793 * the tree. This function needs to be called with scheduler lock held. 2794 */ 2795 static int 2796 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2797 u16 vsi_handle, unsigned long *tc_bitmap) 2798 { 2799 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL; 2800 struct ice_sched_agg_info *agg_info, *old_agg_info; 2801 struct ice_hw *hw = pi->hw; 2802 int status = 0; 2803 u8 tc; 2804 2805 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2806 return -EINVAL; 2807 agg_info = ice_get_agg_info(hw, agg_id); 2808 if (!agg_info) 2809 return -EINVAL; 2810 /* If the VSI is already part of another aggregator then update 2811 * its VSI info list 2812 */ 2813 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2814 if (old_agg_info && old_agg_info != agg_info) { 2815 struct ice_sched_agg_vsi_info *vtmp; 2816 2817 list_for_each_entry_safe(iter, vtmp, 2818 &old_agg_info->agg_vsi_list, 2819 list_entry) 2820 if (iter->vsi_handle == vsi_handle) { 2821 old_agg_vsi_info = iter; 2822 break; 2823 } 2824 } 2825 2826 /* check if entry already exist */ 2827 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2828 if (!agg_vsi_info) { 2829 /* Create new entry for VSI under aggregator list */ 2830 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2831 sizeof(*agg_vsi_info), GFP_KERNEL); 2832 if (!agg_vsi_info) 2833 return -EINVAL; 2834 2835 /* add VSI ID into the aggregator list */ 2836 agg_vsi_info->vsi_handle = vsi_handle; 2837 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2838 } 2839 /* Move VSI node to new aggregator node for requested TC(s) */ 2840 ice_for_each_traffic_class(tc) { 2841 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2842 continue; 2843 2844 /* Move VSI to new aggregator */ 2845 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2846 if (status) 2847 break; 2848 2849 set_bit(tc, agg_vsi_info->tc_bitmap); 2850 if (old_agg_vsi_info) 2851 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2852 } 2853 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2854 list_del(&old_agg_vsi_info->list_entry); 2855 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2856 } 2857 return status; 2858 } 2859 2860 /** 2861 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2862 * @pi: port information structure 2863 * 2864 * This function removes unused rate limit profiles from the HW and 2865 * SW DB. The caller needs to hold scheduler lock. 2866 */ 2867 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2868 { 2869 u16 ln; 2870 2871 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2872 struct ice_aqc_rl_profile_info *rl_prof_elem; 2873 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2874 2875 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2876 &pi->rl_prof_list[ln], list_entry) { 2877 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2878 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2879 } 2880 } 2881 } 2882 2883 /** 2884 * ice_sched_update_elem - update element 2885 * @hw: pointer to the HW struct 2886 * @node: pointer to node 2887 * @info: node info to update 2888 * 2889 * Update the HW DB, and local SW DB of node. Update the scheduling 2890 * parameters of node from argument info data buffer (Info->data buf) and 2891 * returns success or error on config sched element failure. The caller 2892 * needs to hold scheduler lock. 2893 */ 2894 static int 2895 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2896 struct ice_aqc_txsched_elem_data *info) 2897 { 2898 struct ice_aqc_txsched_elem_data buf; 2899 u16 elem_cfgd = 0; 2900 u16 num_elems = 1; 2901 int status; 2902 2903 buf = *info; 2904 /* Parent TEID is reserved field in this aq call */ 2905 buf.parent_teid = 0; 2906 /* Element type is reserved field in this aq call */ 2907 buf.data.elem_type = 0; 2908 /* Flags is reserved field in this aq call */ 2909 buf.data.flags = 0; 2910 2911 /* Update HW DB */ 2912 /* Configure element node */ 2913 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2914 &elem_cfgd, NULL); 2915 if (status || elem_cfgd != num_elems) { 2916 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2917 return -EIO; 2918 } 2919 2920 /* Config success case */ 2921 /* Now update local SW DB */ 2922 /* Only copy the data portion of info buffer */ 2923 node->info.data = info->data; 2924 return status; 2925 } 2926 2927 /** 2928 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2929 * @hw: pointer to the HW struct 2930 * @node: sched node to configure 2931 * @rl_type: rate limit type CIR, EIR, or shared 2932 * @bw_alloc: BW weight/allocation 2933 * 2934 * This function configures node element's BW allocation. 2935 */ 2936 static int 2937 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2938 enum ice_rl_type rl_type, u16 bw_alloc) 2939 { 2940 struct ice_aqc_txsched_elem_data buf; 2941 struct ice_aqc_txsched_elem *data; 2942 2943 buf = node->info; 2944 data = &buf.data; 2945 if (rl_type == ICE_MIN_BW) { 2946 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2947 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2948 } else if (rl_type == ICE_MAX_BW) { 2949 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2950 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2951 } else { 2952 return -EINVAL; 2953 } 2954 2955 /* Configure element */ 2956 return ice_sched_update_elem(hw, node, &buf); 2957 } 2958 2959 /** 2960 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2961 * @pi: port information structure 2962 * @agg_id: aggregator ID 2963 * @vsi_handle: software VSI handle 2964 * @tc_bitmap: TC bitmap of enabled TC(s) 2965 * 2966 * Move or associate VSI to a new or default aggregator node. 2967 */ 2968 int 2969 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2970 u8 tc_bitmap) 2971 { 2972 unsigned long bitmap = tc_bitmap; 2973 int status; 2974 2975 mutex_lock(&pi->sched_lock); 2976 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2977 (unsigned long *)&bitmap); 2978 if (!status) 2979 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2980 (unsigned long *)&bitmap); 2981 mutex_unlock(&pi->sched_lock); 2982 return status; 2983 } 2984 2985 /** 2986 * ice_set_clear_cir_bw - set or clear CIR BW 2987 * @bw_t_info: bandwidth type information structure 2988 * @bw: bandwidth in Kbps - Kilo bits per sec 2989 * 2990 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2991 */ 2992 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2993 { 2994 if (bw == ICE_SCHED_DFLT_BW) { 2995 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2996 bw_t_info->cir_bw.bw = 0; 2997 } else { 2998 /* Save type of BW information */ 2999 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 3000 bw_t_info->cir_bw.bw = bw; 3001 } 3002 } 3003 3004 /** 3005 * ice_set_clear_eir_bw - set or clear EIR BW 3006 * @bw_t_info: bandwidth type information structure 3007 * @bw: bandwidth in Kbps - Kilo bits per sec 3008 * 3009 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 3010 */ 3011 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3012 { 3013 if (bw == ICE_SCHED_DFLT_BW) { 3014 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3015 bw_t_info->eir_bw.bw = 0; 3016 } else { 3017 /* EIR BW and Shared BW profiles are mutually exclusive and 3018 * hence only one of them may be set for any given element. 3019 * First clear earlier saved shared BW information. 3020 */ 3021 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3022 bw_t_info->shared_bw = 0; 3023 /* save EIR BW information */ 3024 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3025 bw_t_info->eir_bw.bw = bw; 3026 } 3027 } 3028 3029 /** 3030 * ice_set_clear_shared_bw - set or clear shared BW 3031 * @bw_t_info: bandwidth type information structure 3032 * @bw: bandwidth in Kbps - Kilo bits per sec 3033 * 3034 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 3035 */ 3036 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3037 { 3038 if (bw == ICE_SCHED_DFLT_BW) { 3039 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3040 bw_t_info->shared_bw = 0; 3041 } else { 3042 /* EIR BW and Shared BW profiles are mutually exclusive and 3043 * hence only one of them may be set for any given element. 3044 * First clear earlier saved EIR BW information. 3045 */ 3046 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3047 bw_t_info->eir_bw.bw = 0; 3048 /* save shared BW information */ 3049 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3050 bw_t_info->shared_bw = bw; 3051 } 3052 } 3053 3054 /** 3055 * ice_sched_save_vsi_bw - save VSI node's BW information 3056 * @pi: port information structure 3057 * @vsi_handle: sw VSI handle 3058 * @tc: traffic class 3059 * @rl_type: rate limit type min, max, or shared 3060 * @bw: bandwidth in Kbps - Kilo bits per sec 3061 * 3062 * Save BW information of VSI type node for post replay use. 3063 */ 3064 static int 3065 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3066 enum ice_rl_type rl_type, u32 bw) 3067 { 3068 struct ice_vsi_ctx *vsi_ctx; 3069 3070 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3071 return -EINVAL; 3072 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3073 if (!vsi_ctx) 3074 return -EINVAL; 3075 switch (rl_type) { 3076 case ICE_MIN_BW: 3077 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3078 break; 3079 case ICE_MAX_BW: 3080 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3081 break; 3082 case ICE_SHARED_BW: 3083 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3084 break; 3085 default: 3086 return -EINVAL; 3087 } 3088 return 0; 3089 } 3090 3091 /** 3092 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3093 * @hw: pointer to the HW struct 3094 * @bw: bandwidth in Kbps 3095 * 3096 * This function calculates the wakeup parameter of RL profile. 3097 */ 3098 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3099 { 3100 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3101 s32 wakeup_f_int; 3102 u16 wakeup = 0; 3103 3104 /* Get the wakeup integer value */ 3105 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3106 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3107 if (wakeup_int > 63) { 3108 wakeup = (u16)((1 << 15) | wakeup_int); 3109 } else { 3110 /* Calculate fraction value up to 4 decimals 3111 * Convert Integer value to a constant multiplier 3112 */ 3113 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3114 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3115 hw->psm_clk_freq, bytes_per_sec); 3116 3117 /* Get Fraction value */ 3118 wakeup_f = wakeup_a - wakeup_b; 3119 3120 /* Round up the Fractional value via Ceil(Fractional value) */ 3121 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3122 wakeup_f += 1; 3123 3124 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3125 ICE_RL_PROF_MULTIPLIER); 3126 wakeup |= (u16)(wakeup_int << 9); 3127 wakeup |= (u16)(0x1ff & wakeup_f_int); 3128 } 3129 3130 return wakeup; 3131 } 3132 3133 /** 3134 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3135 * @hw: pointer to the HW struct 3136 * @bw: bandwidth in Kbps 3137 * @profile: profile parameters to return 3138 * 3139 * This function converts the BW to profile structure format. 3140 */ 3141 static int 3142 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3143 struct ice_aqc_rl_profile_elem *profile) 3144 { 3145 s64 bytes_per_sec, ts_rate, mv_tmp; 3146 int status = -EINVAL; 3147 bool found = false; 3148 s32 encode = 0; 3149 s64 mv = 0; 3150 s32 i; 3151 3152 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3153 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3154 return status; 3155 3156 /* Bytes per second from Kbps */ 3157 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3158 3159 /* encode is 6 bits but really useful are 5 bits */ 3160 for (i = 0; i < 64; i++) { 3161 u64 pow_result = BIT_ULL(i); 3162 3163 ts_rate = div64_long((s64)hw->psm_clk_freq, 3164 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3165 if (ts_rate <= 0) 3166 continue; 3167 3168 /* Multiplier value */ 3169 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3170 ts_rate); 3171 3172 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3173 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3174 3175 /* First multiplier value greater than the given 3176 * accuracy bytes 3177 */ 3178 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3179 encode = i; 3180 found = true; 3181 break; 3182 } 3183 } 3184 if (found) { 3185 u16 wm; 3186 3187 wm = ice_sched_calc_wakeup(hw, bw); 3188 profile->rl_multiply = cpu_to_le16(mv); 3189 profile->wake_up_calc = cpu_to_le16(wm); 3190 profile->rl_encode = cpu_to_le16(encode); 3191 status = 0; 3192 } else { 3193 status = -ENOENT; 3194 } 3195 3196 return status; 3197 } 3198 3199 /** 3200 * ice_sched_add_rl_profile - add RL profile 3201 * @pi: port information structure 3202 * @rl_type: type of rate limit BW - min, max, or shared 3203 * @bw: bandwidth in Kbps - Kilo bits per sec 3204 * @layer_num: specifies in which layer to create profile 3205 * 3206 * This function first checks the existing list for corresponding BW 3207 * parameter. If it exists, it returns the associated profile otherwise 3208 * it creates a new rate limit profile for requested BW, and adds it to 3209 * the HW DB and local list. It returns the new profile or null on error. 3210 * The caller needs to hold the scheduler lock. 3211 */ 3212 static struct ice_aqc_rl_profile_info * 3213 ice_sched_add_rl_profile(struct ice_port_info *pi, 3214 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3215 { 3216 struct ice_aqc_rl_profile_info *rl_prof_elem; 3217 u16 profiles_added = 0, num_profiles = 1; 3218 struct ice_aqc_rl_profile_elem *buf; 3219 struct ice_hw *hw; 3220 u8 profile_type; 3221 int status; 3222 3223 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3224 return NULL; 3225 switch (rl_type) { 3226 case ICE_MIN_BW: 3227 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3228 break; 3229 case ICE_MAX_BW: 3230 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3231 break; 3232 case ICE_SHARED_BW: 3233 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3234 break; 3235 default: 3236 return NULL; 3237 } 3238 3239 if (!pi) 3240 return NULL; 3241 hw = pi->hw; 3242 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3243 list_entry) 3244 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3245 profile_type && rl_prof_elem->bw == bw) 3246 /* Return existing profile ID info */ 3247 return rl_prof_elem; 3248 3249 /* Create new profile ID */ 3250 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3251 GFP_KERNEL); 3252 3253 if (!rl_prof_elem) 3254 return NULL; 3255 3256 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3257 if (status) 3258 goto exit_add_rl_prof; 3259 3260 rl_prof_elem->bw = bw; 3261 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3262 rl_prof_elem->profile.level = layer_num + 1; 3263 rl_prof_elem->profile.flags = profile_type; 3264 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3265 3266 /* Create new entry in HW DB */ 3267 buf = &rl_prof_elem->profile; 3268 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3269 &profiles_added, NULL); 3270 if (status || profiles_added != num_profiles) 3271 goto exit_add_rl_prof; 3272 3273 /* Good entry - add in the list */ 3274 rl_prof_elem->prof_id_ref = 0; 3275 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3276 return rl_prof_elem; 3277 3278 exit_add_rl_prof: 3279 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3280 return NULL; 3281 } 3282 3283 /** 3284 * ice_sched_cfg_node_bw_lmt - configure node sched params 3285 * @hw: pointer to the HW struct 3286 * @node: sched node to configure 3287 * @rl_type: rate limit type CIR, EIR, or shared 3288 * @rl_prof_id: rate limit profile ID 3289 * 3290 * This function configures node element's BW limit. 3291 */ 3292 static int 3293 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3294 enum ice_rl_type rl_type, u16 rl_prof_id) 3295 { 3296 struct ice_aqc_txsched_elem_data buf; 3297 struct ice_aqc_txsched_elem *data; 3298 3299 buf = node->info; 3300 data = &buf.data; 3301 switch (rl_type) { 3302 case ICE_MIN_BW: 3303 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3304 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3305 break; 3306 case ICE_MAX_BW: 3307 /* EIR BW and Shared BW profiles are mutually exclusive and 3308 * hence only one of them may be set for any given element 3309 */ 3310 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3311 return -EIO; 3312 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3313 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3314 break; 3315 case ICE_SHARED_BW: 3316 /* Check for removing shared BW */ 3317 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3318 /* remove shared profile */ 3319 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3320 data->srl_id = 0; /* clear SRL field */ 3321 3322 /* enable back EIR to default profile */ 3323 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3324 data->eir_bw.bw_profile_idx = 3325 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3326 break; 3327 } 3328 /* EIR BW and Shared BW profiles are mutually exclusive and 3329 * hence only one of them may be set for any given element 3330 */ 3331 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3332 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3333 ICE_SCHED_DFLT_RL_PROF_ID)) 3334 return -EIO; 3335 /* EIR BW is set to default, disable it */ 3336 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3337 /* Okay to enable shared BW now */ 3338 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3339 data->srl_id = cpu_to_le16(rl_prof_id); 3340 break; 3341 default: 3342 /* Unknown rate limit type */ 3343 return -EINVAL; 3344 } 3345 3346 /* Configure element */ 3347 return ice_sched_update_elem(hw, node, &buf); 3348 } 3349 3350 /** 3351 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3352 * @node: sched node 3353 * @rl_type: rate limit type 3354 * 3355 * If existing profile matches, it returns the corresponding rate 3356 * limit profile ID, otherwise it returns an invalid ID as error. 3357 */ 3358 static u16 3359 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3360 enum ice_rl_type rl_type) 3361 { 3362 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3363 struct ice_aqc_txsched_elem *data; 3364 3365 data = &node->info.data; 3366 switch (rl_type) { 3367 case ICE_MIN_BW: 3368 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3369 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3370 break; 3371 case ICE_MAX_BW: 3372 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3373 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3374 break; 3375 case ICE_SHARED_BW: 3376 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3377 rl_prof_id = le16_to_cpu(data->srl_id); 3378 break; 3379 default: 3380 break; 3381 } 3382 3383 return rl_prof_id; 3384 } 3385 3386 /** 3387 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3388 * @pi: port information structure 3389 * @rl_type: type of rate limit BW - min, max, or shared 3390 * @layer_index: layer index 3391 * 3392 * This function returns requested profile creation layer. 3393 */ 3394 static u8 3395 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3396 u8 layer_index) 3397 { 3398 struct ice_hw *hw = pi->hw; 3399 3400 if (layer_index >= hw->num_tx_sched_layers) 3401 return ICE_SCHED_INVAL_LAYER_NUM; 3402 switch (rl_type) { 3403 case ICE_MIN_BW: 3404 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3405 return layer_index; 3406 break; 3407 case ICE_MAX_BW: 3408 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3409 return layer_index; 3410 break; 3411 case ICE_SHARED_BW: 3412 /* if current layer doesn't support SRL profile creation 3413 * then try a layer up or down. 3414 */ 3415 if (hw->layer_info[layer_index].max_srl_profiles) 3416 return layer_index; 3417 else if (layer_index < hw->num_tx_sched_layers - 1 && 3418 hw->layer_info[layer_index + 1].max_srl_profiles) 3419 return layer_index + 1; 3420 else if (layer_index > 0 && 3421 hw->layer_info[layer_index - 1].max_srl_profiles) 3422 return layer_index - 1; 3423 break; 3424 default: 3425 break; 3426 } 3427 return ICE_SCHED_INVAL_LAYER_NUM; 3428 } 3429 3430 /** 3431 * ice_sched_get_srl_node - get shared rate limit node 3432 * @node: tree node 3433 * @srl_layer: shared rate limit layer 3434 * 3435 * This function returns SRL node to be used for shared rate limit purpose. 3436 * The caller needs to hold scheduler lock. 3437 */ 3438 static struct ice_sched_node * 3439 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3440 { 3441 if (srl_layer > node->tx_sched_layer) 3442 return node->children[0]; 3443 else if (srl_layer < node->tx_sched_layer) 3444 /* Node can't be created without a parent. It will always 3445 * have a valid parent except root node. 3446 */ 3447 return node->parent; 3448 else 3449 return node; 3450 } 3451 3452 /** 3453 * ice_sched_rm_rl_profile - remove RL profile ID 3454 * @pi: port information structure 3455 * @layer_num: layer number where profiles are saved 3456 * @profile_type: profile type like EIR, CIR, or SRL 3457 * @profile_id: profile ID to remove 3458 * 3459 * This function removes rate limit profile from layer 'layer_num' of type 3460 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3461 * scheduler lock. 3462 */ 3463 static int 3464 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3465 u16 profile_id) 3466 { 3467 struct ice_aqc_rl_profile_info *rl_prof_elem; 3468 int status = 0; 3469 3470 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3471 return -EINVAL; 3472 /* Check the existing list for RL profile */ 3473 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3474 list_entry) 3475 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3476 profile_type && 3477 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3478 profile_id) { 3479 if (rl_prof_elem->prof_id_ref) 3480 rl_prof_elem->prof_id_ref--; 3481 3482 /* Remove old profile ID from database */ 3483 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3484 if (status && status != -EBUSY) 3485 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3486 break; 3487 } 3488 if (status == -EBUSY) 3489 status = 0; 3490 return status; 3491 } 3492 3493 /** 3494 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3495 * @pi: port information structure 3496 * @node: pointer to node structure 3497 * @rl_type: rate limit type min, max, or shared 3498 * @layer_num: layer number where RL profiles are saved 3499 * 3500 * This function configures node element's BW rate limit profile ID of 3501 * type CIR, EIR, or SRL to default. This function needs to be called 3502 * with the scheduler lock held. 3503 */ 3504 static int 3505 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3506 struct ice_sched_node *node, 3507 enum ice_rl_type rl_type, u8 layer_num) 3508 { 3509 struct ice_hw *hw; 3510 u8 profile_type; 3511 u16 rl_prof_id; 3512 u16 old_id; 3513 int status; 3514 3515 hw = pi->hw; 3516 switch (rl_type) { 3517 case ICE_MIN_BW: 3518 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3519 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3520 break; 3521 case ICE_MAX_BW: 3522 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3523 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3524 break; 3525 case ICE_SHARED_BW: 3526 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3527 /* No SRL is configured for default case */ 3528 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3529 break; 3530 default: 3531 return -EINVAL; 3532 } 3533 /* Save existing RL prof ID for later clean up */ 3534 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3535 /* Configure BW scheduling parameters */ 3536 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3537 if (status) 3538 return status; 3539 3540 /* Remove stale RL profile ID */ 3541 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3542 old_id == ICE_SCHED_INVAL_PROF_ID) 3543 return 0; 3544 3545 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3546 } 3547 3548 /** 3549 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3550 * @pi: port information structure 3551 * @node: pointer to node structure 3552 * @layer_num: layer number where rate limit profiles are saved 3553 * @rl_type: rate limit type min, max, or shared 3554 * @bw: bandwidth value 3555 * 3556 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3557 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3558 * them may be set for any given element. This function needs to be called 3559 * with the scheduler lock held. 3560 */ 3561 static int 3562 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3563 struct ice_sched_node *node, 3564 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3565 { 3566 if (rl_type == ICE_SHARED_BW) { 3567 /* SRL node passed in this case, it may be different node */ 3568 if (bw == ICE_SCHED_DFLT_BW) 3569 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3570 * enables EIR to default. EIR is not set in this 3571 * case, so no additional action is required. 3572 */ 3573 return 0; 3574 3575 /* SRL being configured, set EIR to default here. 3576 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3577 * configures SRL 3578 */ 3579 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3580 layer_num); 3581 } else if (rl_type == ICE_MAX_BW && 3582 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3583 /* Remove Shared profile. Set default shared BW call 3584 * removes shared profile for a node. 3585 */ 3586 return ice_sched_set_node_bw_dflt(pi, node, 3587 ICE_SHARED_BW, 3588 layer_num); 3589 } 3590 return 0; 3591 } 3592 3593 /** 3594 * ice_sched_set_node_bw - set node's bandwidth 3595 * @pi: port information structure 3596 * @node: tree node 3597 * @rl_type: rate limit type min, max, or shared 3598 * @bw: bandwidth in Kbps - Kilo bits per sec 3599 * @layer_num: layer number 3600 * 3601 * This function adds new profile corresponding to requested BW, configures 3602 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3603 * ID from local database. The caller needs to hold scheduler lock. 3604 */ 3605 int 3606 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3607 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3608 { 3609 struct ice_aqc_rl_profile_info *rl_prof_info; 3610 struct ice_hw *hw = pi->hw; 3611 u16 old_id, rl_prof_id; 3612 int status = -EINVAL; 3613 3614 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3615 if (!rl_prof_info) 3616 return status; 3617 3618 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3619 3620 /* Save existing RL prof ID for later clean up */ 3621 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3622 /* Configure BW scheduling parameters */ 3623 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3624 if (status) 3625 return status; 3626 3627 /* New changes has been applied */ 3628 /* Increment the profile ID reference count */ 3629 rl_prof_info->prof_id_ref++; 3630 3631 /* Check for old ID removal */ 3632 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3633 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3634 return 0; 3635 3636 return ice_sched_rm_rl_profile(pi, layer_num, 3637 rl_prof_info->profile.flags & 3638 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3639 } 3640 3641 /** 3642 * ice_sched_set_node_priority - set node's priority 3643 * @pi: port information structure 3644 * @node: tree node 3645 * @priority: number 0-7 representing priority among siblings 3646 * 3647 * This function sets priority of a node among it's siblings. 3648 */ 3649 int 3650 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, 3651 u16 priority) 3652 { 3653 struct ice_aqc_txsched_elem_data buf; 3654 struct ice_aqc_txsched_elem *data; 3655 3656 buf = node->info; 3657 data = &buf.data; 3658 3659 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3660 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); 3661 3662 return ice_sched_update_elem(pi->hw, node, &buf); 3663 } 3664 3665 /** 3666 * ice_sched_set_node_weight - set node's weight 3667 * @pi: port information structure 3668 * @node: tree node 3669 * @weight: number 1-200 representing weight for WFQ 3670 * 3671 * This function sets weight of the node for WFQ algorithm. 3672 */ 3673 int 3674 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) 3675 { 3676 struct ice_aqc_txsched_elem_data buf; 3677 struct ice_aqc_txsched_elem *data; 3678 3679 buf = node->info; 3680 data = &buf.data; 3681 3682 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | 3683 ICE_AQC_ELEM_VALID_GENERIC; 3684 data->cir_bw.bw_alloc = cpu_to_le16(weight); 3685 data->eir_bw.bw_alloc = cpu_to_le16(weight); 3686 3687 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); 3688 3689 return ice_sched_update_elem(pi->hw, node, &buf); 3690 } 3691 3692 /** 3693 * ice_sched_set_node_bw_lmt - set node's BW limit 3694 * @pi: port information structure 3695 * @node: tree node 3696 * @rl_type: rate limit type min, max, or shared 3697 * @bw: bandwidth in Kbps - Kilo bits per sec 3698 * 3699 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3700 * EIR, or SRL. The caller needs to hold scheduler lock. 3701 */ 3702 int 3703 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3704 enum ice_rl_type rl_type, u32 bw) 3705 { 3706 struct ice_sched_node *cfg_node = node; 3707 int status; 3708 3709 struct ice_hw *hw; 3710 u8 layer_num; 3711 3712 if (!pi) 3713 return -EINVAL; 3714 hw = pi->hw; 3715 /* Remove unused RL profile IDs from HW and SW DB */ 3716 ice_sched_rm_unused_rl_prof(pi); 3717 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3718 node->tx_sched_layer); 3719 if (layer_num >= hw->num_tx_sched_layers) 3720 return -EINVAL; 3721 3722 if (rl_type == ICE_SHARED_BW) { 3723 /* SRL node may be different */ 3724 cfg_node = ice_sched_get_srl_node(node, layer_num); 3725 if (!cfg_node) 3726 return -EIO; 3727 } 3728 /* EIR BW and Shared BW profiles are mutually exclusive and 3729 * hence only one of them may be set for any given element 3730 */ 3731 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3732 bw); 3733 if (status) 3734 return status; 3735 if (bw == ICE_SCHED_DFLT_BW) 3736 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3737 layer_num); 3738 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3739 } 3740 3741 /** 3742 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3743 * @pi: port information structure 3744 * @node: pointer to node structure 3745 * @rl_type: rate limit type min, max, or shared 3746 * 3747 * This function configures node element's BW rate limit profile ID of 3748 * type CIR, EIR, or SRL to default. This function needs to be called 3749 * with the scheduler lock held. 3750 */ 3751 static int 3752 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3753 struct ice_sched_node *node, 3754 enum ice_rl_type rl_type) 3755 { 3756 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3757 ICE_SCHED_DFLT_BW); 3758 } 3759 3760 /** 3761 * ice_sched_validate_srl_node - Check node for SRL applicability 3762 * @node: sched node to configure 3763 * @sel_layer: selected SRL layer 3764 * 3765 * This function checks if the SRL can be applied to a selected layer node on 3766 * behalf of the requested node (first argument). This function needs to be 3767 * called with scheduler lock held. 3768 */ 3769 static int 3770 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3771 { 3772 /* SRL profiles are not available on all layers. Check if the 3773 * SRL profile can be applied to a node above or below the 3774 * requested node. SRL configuration is possible only if the 3775 * selected layer's node has single child. 3776 */ 3777 if (sel_layer == node->tx_sched_layer || 3778 ((sel_layer == node->tx_sched_layer + 1) && 3779 node->num_children == 1) || 3780 ((sel_layer == node->tx_sched_layer - 1) && 3781 (node->parent && node->parent->num_children == 1))) 3782 return 0; 3783 3784 return -EIO; 3785 } 3786 3787 /** 3788 * ice_sched_save_q_bw - save queue node's BW information 3789 * @q_ctx: queue context structure 3790 * @rl_type: rate limit type min, max, or shared 3791 * @bw: bandwidth in Kbps - Kilo bits per sec 3792 * 3793 * Save BW information of queue type node for post replay use. 3794 */ 3795 static int 3796 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3797 { 3798 switch (rl_type) { 3799 case ICE_MIN_BW: 3800 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3801 break; 3802 case ICE_MAX_BW: 3803 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3804 break; 3805 case ICE_SHARED_BW: 3806 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3807 break; 3808 default: 3809 return -EINVAL; 3810 } 3811 return 0; 3812 } 3813 3814 /** 3815 * ice_sched_set_q_bw_lmt - sets queue BW limit 3816 * @pi: port information structure 3817 * @vsi_handle: sw VSI handle 3818 * @tc: traffic class 3819 * @q_handle: software queue handle 3820 * @rl_type: min, max, or shared 3821 * @bw: bandwidth in Kbps 3822 * 3823 * This function sets BW limit of queue scheduling node. 3824 */ 3825 static int 3826 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3827 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3828 { 3829 struct ice_sched_node *node; 3830 struct ice_q_ctx *q_ctx; 3831 int status = -EINVAL; 3832 3833 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3834 return -EINVAL; 3835 mutex_lock(&pi->sched_lock); 3836 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3837 if (!q_ctx) 3838 goto exit_q_bw_lmt; 3839 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3840 if (!node) { 3841 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3842 goto exit_q_bw_lmt; 3843 } 3844 3845 /* Return error if it is not a leaf node */ 3846 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3847 goto exit_q_bw_lmt; 3848 3849 /* SRL bandwidth layer selection */ 3850 if (rl_type == ICE_SHARED_BW) { 3851 u8 sel_layer; /* selected layer */ 3852 3853 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3854 node->tx_sched_layer); 3855 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3856 status = -EINVAL; 3857 goto exit_q_bw_lmt; 3858 } 3859 status = ice_sched_validate_srl_node(node, sel_layer); 3860 if (status) 3861 goto exit_q_bw_lmt; 3862 } 3863 3864 if (bw == ICE_SCHED_DFLT_BW) 3865 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3866 else 3867 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3868 3869 if (!status) 3870 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3871 3872 exit_q_bw_lmt: 3873 mutex_unlock(&pi->sched_lock); 3874 return status; 3875 } 3876 3877 /** 3878 * ice_cfg_q_bw_lmt - configure queue BW limit 3879 * @pi: port information structure 3880 * @vsi_handle: sw VSI handle 3881 * @tc: traffic class 3882 * @q_handle: software queue handle 3883 * @rl_type: min, max, or shared 3884 * @bw: bandwidth in Kbps 3885 * 3886 * This function configures BW limit of queue scheduling node. 3887 */ 3888 int 3889 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3890 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3891 { 3892 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3893 bw); 3894 } 3895 3896 /** 3897 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3898 * @pi: port information structure 3899 * @vsi_handle: sw VSI handle 3900 * @tc: traffic class 3901 * @q_handle: software queue handle 3902 * @rl_type: min, max, or shared 3903 * 3904 * This function configures BW default limit of queue scheduling node. 3905 */ 3906 int 3907 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3908 u16 q_handle, enum ice_rl_type rl_type) 3909 { 3910 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3911 ICE_SCHED_DFLT_BW); 3912 } 3913 3914 /** 3915 * ice_sched_get_node_by_id_type - get node from ID type 3916 * @pi: port information structure 3917 * @id: identifier 3918 * @agg_type: type of aggregator 3919 * @tc: traffic class 3920 * 3921 * This function returns node identified by ID of type aggregator, and 3922 * based on traffic class (TC). This function needs to be called with 3923 * the scheduler lock held. 3924 */ 3925 static struct ice_sched_node * 3926 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3927 enum ice_agg_type agg_type, u8 tc) 3928 { 3929 struct ice_sched_node *node = NULL; 3930 3931 switch (agg_type) { 3932 case ICE_AGG_TYPE_VSI: { 3933 struct ice_vsi_ctx *vsi_ctx; 3934 u16 vsi_handle = (u16)id; 3935 3936 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3937 break; 3938 /* Get sched_vsi_info */ 3939 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3940 if (!vsi_ctx) 3941 break; 3942 node = vsi_ctx->sched.vsi_node[tc]; 3943 break; 3944 } 3945 3946 case ICE_AGG_TYPE_AGG: { 3947 struct ice_sched_node *tc_node; 3948 3949 tc_node = ice_sched_get_tc_node(pi, tc); 3950 if (tc_node) 3951 node = ice_sched_get_agg_node(pi, tc_node, id); 3952 break; 3953 } 3954 3955 default: 3956 break; 3957 } 3958 3959 return node; 3960 } 3961 3962 /** 3963 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3964 * @pi: port information structure 3965 * @id: ID (software VSI handle or AGG ID) 3966 * @agg_type: aggregator type (VSI or AGG type node) 3967 * @tc: traffic class 3968 * @rl_type: min or max 3969 * @bw: bandwidth in Kbps 3970 * 3971 * This function sets BW limit of VSI or Aggregator scheduling node 3972 * based on TC information from passed in argument BW. 3973 */ 3974 int 3975 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3976 enum ice_agg_type agg_type, u8 tc, 3977 enum ice_rl_type rl_type, u32 bw) 3978 { 3979 struct ice_sched_node *node; 3980 int status = -EINVAL; 3981 3982 if (!pi) 3983 return status; 3984 3985 if (rl_type == ICE_UNKNOWN_BW) 3986 return status; 3987 3988 mutex_lock(&pi->sched_lock); 3989 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3990 if (!node) { 3991 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3992 goto exit_set_node_bw_lmt_per_tc; 3993 } 3994 if (bw == ICE_SCHED_DFLT_BW) 3995 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3996 else 3997 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3998 3999 exit_set_node_bw_lmt_per_tc: 4000 mutex_unlock(&pi->sched_lock); 4001 return status; 4002 } 4003 4004 /** 4005 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 4006 * @pi: port information structure 4007 * @vsi_handle: software VSI handle 4008 * @tc: traffic class 4009 * @rl_type: min or max 4010 * @bw: bandwidth in Kbps 4011 * 4012 * This function configures BW limit of VSI scheduling node based on TC 4013 * information. 4014 */ 4015 int 4016 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4017 enum ice_rl_type rl_type, u32 bw) 4018 { 4019 int status; 4020 4021 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4022 ICE_AGG_TYPE_VSI, 4023 tc, rl_type, bw); 4024 if (!status) { 4025 mutex_lock(&pi->sched_lock); 4026 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 4027 mutex_unlock(&pi->sched_lock); 4028 } 4029 return status; 4030 } 4031 4032 /** 4033 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 4034 * @pi: port information structure 4035 * @vsi_handle: software VSI handle 4036 * @tc: traffic class 4037 * @rl_type: min or max 4038 * 4039 * This function configures default BW limit of VSI scheduling node based on TC 4040 * information. 4041 */ 4042 int 4043 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4044 enum ice_rl_type rl_type) 4045 { 4046 int status; 4047 4048 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4049 ICE_AGG_TYPE_VSI, 4050 tc, rl_type, 4051 ICE_SCHED_DFLT_BW); 4052 if (!status) { 4053 mutex_lock(&pi->sched_lock); 4054 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 4055 ICE_SCHED_DFLT_BW); 4056 mutex_unlock(&pi->sched_lock); 4057 } 4058 return status; 4059 } 4060 4061 /** 4062 * ice_cfg_rl_burst_size - Set burst size value 4063 * @hw: pointer to the HW struct 4064 * @bytes: burst size in bytes 4065 * 4066 * This function configures/set the burst size to requested new value. The new 4067 * burst size value is used for future rate limit calls. It doesn't change the 4068 * existing or previously created RL profiles. 4069 */ 4070 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 4071 { 4072 u16 burst_size_to_prog; 4073 4074 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 4075 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 4076 return -EINVAL; 4077 if (ice_round_to_num(bytes, 64) <= 4078 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 4079 /* 64 byte granularity case */ 4080 /* Disable MSB granularity bit */ 4081 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 4082 /* round number to nearest 64 byte granularity */ 4083 bytes = ice_round_to_num(bytes, 64); 4084 /* The value is in 64 byte chunks */ 4085 burst_size_to_prog |= (u16)(bytes / 64); 4086 } else { 4087 /* k bytes granularity case */ 4088 /* Enable MSB granularity bit */ 4089 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 4090 /* round number to nearest 1024 granularity */ 4091 bytes = ice_round_to_num(bytes, 1024); 4092 /* check rounding doesn't go beyond allowed */ 4093 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4094 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4095 /* The value is in k bytes */ 4096 burst_size_to_prog |= (u16)(bytes / 1024); 4097 } 4098 hw->max_burst_size = burst_size_to_prog; 4099 return 0; 4100 } 4101 4102 /** 4103 * ice_sched_replay_node_prio - re-configure node priority 4104 * @hw: pointer to the HW struct 4105 * @node: sched node to configure 4106 * @priority: priority value 4107 * 4108 * This function configures node element's priority value. It 4109 * needs to be called with scheduler lock held. 4110 */ 4111 static int 4112 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4113 u8 priority) 4114 { 4115 struct ice_aqc_txsched_elem_data buf; 4116 struct ice_aqc_txsched_elem *data; 4117 int status; 4118 4119 buf = node->info; 4120 data = &buf.data; 4121 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4122 data->generic = priority; 4123 4124 /* Configure element */ 4125 status = ice_sched_update_elem(hw, node, &buf); 4126 return status; 4127 } 4128 4129 /** 4130 * ice_sched_replay_node_bw - replay node(s) BW 4131 * @hw: pointer to the HW struct 4132 * @node: sched node to configure 4133 * @bw_t_info: BW type information 4134 * 4135 * This function restores node's BW from bw_t_info. The caller needs 4136 * to hold the scheduler lock. 4137 */ 4138 static int 4139 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4140 struct ice_bw_type_info *bw_t_info) 4141 { 4142 struct ice_port_info *pi = hw->port_info; 4143 int status = -EINVAL; 4144 u16 bw_alloc; 4145 4146 if (!node) 4147 return status; 4148 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4149 return 0; 4150 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4151 status = ice_sched_replay_node_prio(hw, node, 4152 bw_t_info->generic); 4153 if (status) 4154 return status; 4155 } 4156 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4157 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4158 bw_t_info->cir_bw.bw); 4159 if (status) 4160 return status; 4161 } 4162 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4163 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4164 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4165 bw_alloc); 4166 if (status) 4167 return status; 4168 } 4169 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4170 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4171 bw_t_info->eir_bw.bw); 4172 if (status) 4173 return status; 4174 } 4175 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4176 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4177 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4178 bw_alloc); 4179 if (status) 4180 return status; 4181 } 4182 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4183 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4184 bw_t_info->shared_bw); 4185 return status; 4186 } 4187 4188 /** 4189 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4190 * @pi: port info struct 4191 * @tc_bitmap: 8 bits TC bitmap to check 4192 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4193 * 4194 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4195 * may be missing, it returns enabled TCs. This function needs to be called with 4196 * scheduler lock held. 4197 */ 4198 static void 4199 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4200 unsigned long *tc_bitmap, 4201 unsigned long *ena_tc_bitmap) 4202 { 4203 u8 tc; 4204 4205 /* Some TC(s) may be missing after reset, adjust for replay */ 4206 ice_for_each_traffic_class(tc) 4207 if (ice_is_tc_ena(*tc_bitmap, tc) && 4208 (ice_sched_get_tc_node(pi, tc))) 4209 set_bit(tc, ena_tc_bitmap); 4210 } 4211 4212 /** 4213 * ice_sched_replay_agg - recreate aggregator node(s) 4214 * @hw: pointer to the HW struct 4215 * 4216 * This function recreate aggregator type nodes which are not replayed earlier. 4217 * It also replay aggregator BW information. These aggregator nodes are not 4218 * associated with VSI type node yet. 4219 */ 4220 void ice_sched_replay_agg(struct ice_hw *hw) 4221 { 4222 struct ice_port_info *pi = hw->port_info; 4223 struct ice_sched_agg_info *agg_info; 4224 4225 mutex_lock(&pi->sched_lock); 4226 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4227 /* replay aggregator (re-create aggregator node) */ 4228 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4229 ICE_MAX_TRAFFIC_CLASS)) { 4230 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4231 int status; 4232 4233 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4234 ice_sched_get_ena_tc_bitmap(pi, 4235 agg_info->replay_tc_bitmap, 4236 replay_bitmap); 4237 status = ice_sched_cfg_agg(hw->port_info, 4238 agg_info->agg_id, 4239 ICE_AGG_TYPE_AGG, 4240 replay_bitmap); 4241 if (status) { 4242 dev_info(ice_hw_to_dev(hw), 4243 "Replay agg id[%d] failed\n", 4244 agg_info->agg_id); 4245 /* Move on to next one */ 4246 continue; 4247 } 4248 } 4249 mutex_unlock(&pi->sched_lock); 4250 } 4251 4252 /** 4253 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4254 * @hw: pointer to the HW struct 4255 * 4256 * This function initialize aggregator(s) TC bitmap to zero. A required 4257 * preinit step for replaying aggregators. 4258 */ 4259 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4260 { 4261 struct ice_port_info *pi = hw->port_info; 4262 struct ice_sched_agg_info *agg_info; 4263 4264 mutex_lock(&pi->sched_lock); 4265 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4266 struct ice_sched_agg_vsi_info *agg_vsi_info; 4267 4268 agg_info->tc_bitmap[0] = 0; 4269 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4270 list_entry) 4271 agg_vsi_info->tc_bitmap[0] = 0; 4272 } 4273 mutex_unlock(&pi->sched_lock); 4274 } 4275 4276 /** 4277 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4278 * @hw: pointer to the HW struct 4279 * @vsi_handle: software VSI handle 4280 * 4281 * This function replays aggregator node, VSI to aggregator type nodes, and 4282 * their node bandwidth information. This function needs to be called with 4283 * scheduler lock held. 4284 */ 4285 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4286 { 4287 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4288 struct ice_sched_agg_vsi_info *agg_vsi_info; 4289 struct ice_port_info *pi = hw->port_info; 4290 struct ice_sched_agg_info *agg_info; 4291 int status; 4292 4293 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4294 if (!ice_is_vsi_valid(hw, vsi_handle)) 4295 return -EINVAL; 4296 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4297 if (!agg_info) 4298 return 0; /* Not present in list - default Agg case */ 4299 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4300 if (!agg_vsi_info) 4301 return 0; /* Not present in list - default Agg case */ 4302 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4303 replay_bitmap); 4304 /* Replay aggregator node associated to vsi_handle */ 4305 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4306 ICE_AGG_TYPE_AGG, replay_bitmap); 4307 if (status) 4308 return status; 4309 4310 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4311 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4312 replay_bitmap); 4313 /* Move this VSI (vsi_handle) to above aggregator */ 4314 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4315 replay_bitmap); 4316 } 4317 4318 /** 4319 * ice_replay_vsi_agg - replay VSI to aggregator node 4320 * @hw: pointer to the HW struct 4321 * @vsi_handle: software VSI handle 4322 * 4323 * This function replays association of VSI to aggregator type nodes, and 4324 * node bandwidth information. 4325 */ 4326 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4327 { 4328 struct ice_port_info *pi = hw->port_info; 4329 int status; 4330 4331 mutex_lock(&pi->sched_lock); 4332 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4333 mutex_unlock(&pi->sched_lock); 4334 return status; 4335 } 4336 4337 /** 4338 * ice_sched_replay_q_bw - replay queue type node BW 4339 * @pi: port information structure 4340 * @q_ctx: queue context structure 4341 * 4342 * This function replays queue type node bandwidth. This function needs to be 4343 * called with scheduler lock held. 4344 */ 4345 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4346 { 4347 struct ice_sched_node *q_node; 4348 4349 /* Following also checks the presence of node in tree */ 4350 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4351 if (!q_node) 4352 return -EINVAL; 4353 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4354 } 4355