1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static enum ice_status 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 enum ice_status status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 enum ice_status 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_get_elem *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 enum ice_status 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_sched_node *parent; 153 struct ice_aqc_get_elem elem; 154 struct ice_sched_node *node; 155 enum ice_status status; 156 struct ice_hw *hw; 157 158 if (!pi) 159 return ICE_ERR_PARAM; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, 168 "Parent Node not found for parent_teid=0x%x\n", 169 le32_to_cpu(info->parent_teid)); 170 return ICE_ERR_PARAM; 171 } 172 173 /* query the current node information from FW before additing it 174 * to the SW DB 175 */ 176 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 177 if (status) 178 return status; 179 180 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 181 if (!node) 182 return ICE_ERR_NO_MEMORY; 183 if (hw->max_children[layer]) { 184 /* coverity[suspicious_sizeof] */ 185 node->children = devm_kcalloc(ice_hw_to_dev(hw), 186 hw->max_children[layer], 187 sizeof(*node), GFP_KERNEL); 188 if (!node->children) { 189 devm_kfree(ice_hw_to_dev(hw), node); 190 return ICE_ERR_NO_MEMORY; 191 } 192 } 193 194 node->in_use = true; 195 node->parent = parent; 196 node->tx_sched_layer = layer; 197 parent->children[parent->num_children++] = node; 198 memcpy(&node->info, &elem.generic[0], sizeof(node->info)); 199 return 0; 200 } 201 202 /** 203 * ice_aq_delete_sched_elems - delete scheduler elements 204 * @hw: pointer to the HW struct 205 * @grps_req: number of groups to delete 206 * @buf: pointer to buffer 207 * @buf_size: buffer size in bytes 208 * @grps_del: returns total number of elements deleted 209 * @cd: pointer to command details structure or NULL 210 * 211 * Delete scheduling elements (0x040F) 212 */ 213 static enum ice_status 214 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 215 struct ice_aqc_delete_elem *buf, u16 buf_size, 216 u16 *grps_del, struct ice_sq_cd *cd) 217 { 218 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 219 grps_req, (void *)buf, buf_size, 220 grps_del, cd); 221 } 222 223 /** 224 * ice_sched_remove_elems - remove nodes from HW 225 * @hw: pointer to the HW struct 226 * @parent: pointer to the parent node 227 * @num_nodes: number of nodes 228 * @node_teids: array of node teids to be deleted 229 * 230 * This function remove nodes from HW 231 */ 232 static enum ice_status 233 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 234 u16 num_nodes, u32 *node_teids) 235 { 236 struct ice_aqc_delete_elem *buf; 237 u16 i, num_groups_removed = 0; 238 enum ice_status status; 239 u16 buf_size; 240 241 buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1); 242 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 243 if (!buf) 244 return ICE_ERR_NO_MEMORY; 245 246 buf->hdr.parent_teid = parent->info.node_teid; 247 buf->hdr.num_elems = cpu_to_le16(num_nodes); 248 for (i = 0; i < num_nodes; i++) 249 buf->teid[i] = cpu_to_le32(node_teids[i]); 250 251 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 252 &num_groups_removed, NULL); 253 if (status || num_groups_removed != 1) 254 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 255 hw->adminq.sq_last_status); 256 257 devm_kfree(ice_hw_to_dev(hw), buf); 258 return status; 259 } 260 261 /** 262 * ice_sched_get_first_node - get the first node of the given layer 263 * @pi: port information structure 264 * @parent: pointer the base node of the subtree 265 * @layer: layer number 266 * 267 * This function retrieves the first node of the given layer from the subtree 268 */ 269 static struct ice_sched_node * 270 ice_sched_get_first_node(struct ice_port_info *pi, 271 struct ice_sched_node *parent, u8 layer) 272 { 273 return pi->sib_head[parent->tc_num][layer]; 274 } 275 276 /** 277 * ice_sched_get_tc_node - get pointer to TC node 278 * @pi: port information structure 279 * @tc: TC number 280 * 281 * This function returns the TC node pointer 282 */ 283 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 284 { 285 u8 i; 286 287 if (!pi || !pi->root) 288 return NULL; 289 for (i = 0; i < pi->root->num_children; i++) 290 if (pi->root->children[i]->tc_num == tc) 291 return pi->root->children[i]; 292 return NULL; 293 } 294 295 /** 296 * ice_free_sched_node - Free a Tx scheduler node from SW DB 297 * @pi: port information structure 298 * @node: pointer to the ice_sched_node struct 299 * 300 * This function frees up a node from SW DB as well as from HW 301 * 302 * This function needs to be called with the port_info->sched_lock held 303 */ 304 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 305 { 306 struct ice_sched_node *parent; 307 struct ice_hw *hw = pi->hw; 308 u8 i, j; 309 310 /* Free the children before freeing up the parent node 311 * The parent array is updated below and that shifts the nodes 312 * in the array. So always pick the first child if num children > 0 313 */ 314 while (node->num_children) 315 ice_free_sched_node(pi, node->children[0]); 316 317 /* Leaf, TC and root nodes can't be deleted by SW */ 318 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 321 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 322 u32 teid = le32_to_cpu(node->info.node_teid); 323 324 ice_sched_remove_elems(hw, node->parent, 1, &teid); 325 } 326 parent = node->parent; 327 /* root has no parent */ 328 if (parent) { 329 struct ice_sched_node *p; 330 331 /* update the parent */ 332 for (i = 0; i < parent->num_children; i++) 333 if (parent->children[i] == node) { 334 for (j = i + 1; j < parent->num_children; j++) 335 parent->children[j - 1] = 336 parent->children[j]; 337 parent->num_children--; 338 break; 339 } 340 341 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 342 while (p) { 343 if (p->sibling == node) { 344 p->sibling = node->sibling; 345 break; 346 } 347 p = p->sibling; 348 } 349 350 /* update the sibling head if head is getting removed */ 351 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 352 pi->sib_head[node->tc_num][node->tx_sched_layer] = 353 node->sibling; 354 } 355 356 /* leaf nodes have no children */ 357 if (node->children) 358 devm_kfree(ice_hw_to_dev(hw), node->children); 359 devm_kfree(ice_hw_to_dev(hw), node); 360 } 361 362 /** 363 * ice_aq_get_dflt_topo - gets default scheduler topology 364 * @hw: pointer to the HW struct 365 * @lport: logical port number 366 * @buf: pointer to buffer 367 * @buf_size: buffer size in bytes 368 * @num_branches: returns total number of queue to port branches 369 * @cd: pointer to command details structure or NULL 370 * 371 * Get default scheduler topology (0x400) 372 */ 373 static enum ice_status 374 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 375 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 376 u8 *num_branches, struct ice_sq_cd *cd) 377 { 378 struct ice_aqc_get_topo *cmd; 379 struct ice_aq_desc desc; 380 enum ice_status status; 381 382 cmd = &desc.params.get_topo; 383 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 384 cmd->port_num = lport; 385 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 386 if (!status && num_branches) 387 *num_branches = cmd->num_branches; 388 389 return status; 390 } 391 392 /** 393 * ice_aq_add_sched_elems - adds scheduling element 394 * @hw: pointer to the HW struct 395 * @grps_req: the number of groups that are requested to be added 396 * @buf: pointer to buffer 397 * @buf_size: buffer size in bytes 398 * @grps_added: returns total number of groups added 399 * @cd: pointer to command details structure or NULL 400 * 401 * Add scheduling elements (0x0401) 402 */ 403 static enum ice_status 404 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 405 struct ice_aqc_add_elem *buf, u16 buf_size, 406 u16 *grps_added, struct ice_sq_cd *cd) 407 { 408 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 409 grps_req, (void *)buf, buf_size, 410 grps_added, cd); 411 } 412 413 /** 414 * ice_aq_cfg_sched_elems - configures scheduler elements 415 * @hw: pointer to the HW struct 416 * @elems_req: number of elements to configure 417 * @buf: pointer to buffer 418 * @buf_size: buffer size in bytes 419 * @elems_cfgd: returns total number of elements configured 420 * @cd: pointer to command details structure or NULL 421 * 422 * Configure scheduling elements (0x0403) 423 */ 424 static enum ice_status 425 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 426 struct ice_aqc_conf_elem *buf, u16 buf_size, 427 u16 *elems_cfgd, struct ice_sq_cd *cd) 428 { 429 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 430 elems_req, (void *)buf, buf_size, 431 elems_cfgd, cd); 432 } 433 434 /** 435 * ice_aq_suspend_sched_elems - suspend scheduler elements 436 * @hw: pointer to the HW struct 437 * @elems_req: number of elements to suspend 438 * @buf: pointer to buffer 439 * @buf_size: buffer size in bytes 440 * @elems_ret: returns total number of elements suspended 441 * @cd: pointer to command details structure or NULL 442 * 443 * Suspend scheduling elements (0x0409) 444 */ 445 static enum ice_status 446 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, 447 struct ice_aqc_suspend_resume_elem *buf, 448 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 449 { 450 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 451 elems_req, (void *)buf, buf_size, 452 elems_ret, cd); 453 } 454 455 /** 456 * ice_aq_resume_sched_elems - resume scheduler elements 457 * @hw: pointer to the HW struct 458 * @elems_req: number of elements to resume 459 * @buf: pointer to buffer 460 * @buf_size: buffer size in bytes 461 * @elems_ret: returns total number of elements resumed 462 * @cd: pointer to command details structure or NULL 463 * 464 * resume scheduling elements (0x040A) 465 */ 466 static enum ice_status 467 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, 468 struct ice_aqc_suspend_resume_elem *buf, 469 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 470 { 471 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 472 elems_req, (void *)buf, buf_size, 473 elems_ret, cd); 474 } 475 476 /** 477 * ice_aq_query_sched_res - query scheduler resource 478 * @hw: pointer to the HW struct 479 * @buf_size: buffer size in bytes 480 * @buf: pointer to buffer 481 * @cd: pointer to command details structure or NULL 482 * 483 * Query scheduler resource allocation (0x0412) 484 */ 485 static enum ice_status 486 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 487 struct ice_aqc_query_txsched_res_resp *buf, 488 struct ice_sq_cd *cd) 489 { 490 struct ice_aq_desc desc; 491 492 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 493 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 494 } 495 496 /** 497 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 498 * @hw: pointer to the HW struct 499 * @num_nodes: number of nodes 500 * @node_teids: array of node teids to be suspended or resumed 501 * @suspend: true means suspend / false means resume 502 * 503 * This function suspends or resumes HW nodes 504 */ 505 static enum ice_status 506 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 507 bool suspend) 508 { 509 struct ice_aqc_suspend_resume_elem *buf; 510 u16 i, buf_size, num_elem_ret = 0; 511 enum ice_status status; 512 513 buf_size = sizeof(*buf) * num_nodes; 514 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 515 if (!buf) 516 return ICE_ERR_NO_MEMORY; 517 518 for (i = 0; i < num_nodes; i++) 519 buf->teid[i] = cpu_to_le32(node_teids[i]); 520 521 if (suspend) 522 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 523 buf_size, &num_elem_ret, 524 NULL); 525 else 526 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 527 buf_size, &num_elem_ret, 528 NULL); 529 if (status || num_elem_ret != num_nodes) 530 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 531 532 devm_kfree(ice_hw_to_dev(hw), buf); 533 return status; 534 } 535 536 /** 537 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 538 * @hw: pointer to the HW struct 539 * @vsi_handle: VSI handle 540 * @tc: TC number 541 * @new_numqs: number of queues 542 */ 543 static enum ice_status 544 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 545 { 546 struct ice_vsi_ctx *vsi_ctx; 547 struct ice_q_ctx *q_ctx; 548 549 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 550 if (!vsi_ctx) 551 return ICE_ERR_PARAM; 552 /* allocate LAN queue contexts */ 553 if (!vsi_ctx->lan_q_ctx[tc]) { 554 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 555 new_numqs, 556 sizeof(*q_ctx), 557 GFP_KERNEL); 558 if (!vsi_ctx->lan_q_ctx[tc]) 559 return ICE_ERR_NO_MEMORY; 560 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 561 return 0; 562 } 563 /* num queues are increased, update the queue contexts */ 564 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 565 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 566 567 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 568 sizeof(*q_ctx), GFP_KERNEL); 569 if (!q_ctx) 570 return ICE_ERR_NO_MEMORY; 571 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 572 prev_num * sizeof(*q_ctx)); 573 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 574 vsi_ctx->lan_q_ctx[tc] = q_ctx; 575 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 576 } 577 return 0; 578 } 579 580 /** 581 * ice_aq_rl_profile - performs a rate limiting task 582 * @hw: pointer to the HW struct 583 * @opcode:opcode for add, query, or remove profile(s) 584 * @num_profiles: the number of profiles 585 * @buf: pointer to buffer 586 * @buf_size: buffer size in bytes 587 * @num_processed: number of processed add or remove profile(s) to return 588 * @cd: pointer to command details structure 589 * 590 * RL profile function to add, query, or remove profile(s) 591 */ 592 static enum ice_status 593 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 594 u16 num_profiles, struct ice_aqc_rl_profile_generic_elem *buf, 595 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 596 { 597 struct ice_aqc_rl_profile *cmd; 598 struct ice_aq_desc desc; 599 enum ice_status status; 600 601 cmd = &desc.params.rl_profile; 602 603 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 604 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 605 cmd->num_profiles = cpu_to_le16(num_profiles); 606 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 607 if (!status && num_processed) 608 *num_processed = le16_to_cpu(cmd->num_processed); 609 return status; 610 } 611 612 /** 613 * ice_aq_add_rl_profile - adds rate limiting profile(s) 614 * @hw: pointer to the HW struct 615 * @num_profiles: the number of profile(s) to be add 616 * @buf: pointer to buffer 617 * @buf_size: buffer size in bytes 618 * @num_profiles_added: total number of profiles added to return 619 * @cd: pointer to command details structure 620 * 621 * Add RL profile (0x0410) 622 */ 623 static enum ice_status 624 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 625 struct ice_aqc_rl_profile_generic_elem *buf, 626 u16 buf_size, u16 *num_profiles_added, 627 struct ice_sq_cd *cd) 628 { 629 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, 630 num_profiles, buf, 631 buf_size, num_profiles_added, cd); 632 } 633 634 /** 635 * ice_aq_remove_rl_profile - removes RL profile(s) 636 * @hw: pointer to the HW struct 637 * @num_profiles: the number of profile(s) to remove 638 * @buf: pointer to buffer 639 * @buf_size: buffer size in bytes 640 * @num_profiles_removed: total number of profiles removed to return 641 * @cd: pointer to command details structure or NULL 642 * 643 * Remove RL profile (0x0415) 644 */ 645 static enum ice_status 646 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 647 struct ice_aqc_rl_profile_generic_elem *buf, 648 u16 buf_size, u16 *num_profiles_removed, 649 struct ice_sq_cd *cd) 650 { 651 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 652 num_profiles, buf, 653 buf_size, num_profiles_removed, cd); 654 } 655 656 /** 657 * ice_sched_del_rl_profile - remove RL profile 658 * @hw: pointer to the HW struct 659 * @rl_info: rate limit profile information 660 * 661 * If the profile ID is not referenced anymore, it removes profile ID with 662 * its associated parameters from HW DB,and locally. The caller needs to 663 * hold scheduler lock. 664 */ 665 static enum ice_status 666 ice_sched_del_rl_profile(struct ice_hw *hw, 667 struct ice_aqc_rl_profile_info *rl_info) 668 { 669 struct ice_aqc_rl_profile_generic_elem *buf; 670 u16 num_profiles_removed; 671 enum ice_status status; 672 u16 num_profiles = 1; 673 674 if (rl_info->prof_id_ref != 0) 675 return ICE_ERR_IN_USE; 676 677 /* Safe to remove profile ID */ 678 buf = (struct ice_aqc_rl_profile_generic_elem *) 679 &rl_info->profile; 680 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 681 &num_profiles_removed, NULL); 682 if (status || num_profiles_removed != num_profiles) 683 return ICE_ERR_CFG; 684 685 /* Delete stale entry now */ 686 list_del(&rl_info->list_entry); 687 devm_kfree(ice_hw_to_dev(hw), rl_info); 688 return status; 689 } 690 691 /** 692 * ice_sched_clear_rl_prof - clears RL prof entries 693 * @pi: port information structure 694 * 695 * This function removes all RL profile from HW as well as from SW DB. 696 */ 697 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 698 { 699 u16 ln; 700 701 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 702 struct ice_aqc_rl_profile_info *rl_prof_elem; 703 struct ice_aqc_rl_profile_info *rl_prof_tmp; 704 705 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 706 &pi->rl_prof_list[ln], list_entry) { 707 struct ice_hw *hw = pi->hw; 708 enum ice_status status; 709 710 rl_prof_elem->prof_id_ref = 0; 711 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 712 if (status) { 713 ice_debug(hw, ICE_DBG_SCHED, 714 "Remove rl profile failed\n"); 715 /* On error, free mem required */ 716 list_del(&rl_prof_elem->list_entry); 717 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 718 } 719 } 720 } 721 } 722 723 /** 724 * ice_sched_clear_agg - clears the aggregator related information 725 * @hw: pointer to the hardware structure 726 * 727 * This function removes aggregator list and free up aggregator related memory 728 * previously allocated. 729 */ 730 void ice_sched_clear_agg(struct ice_hw *hw) 731 { 732 struct ice_sched_agg_info *agg_info; 733 struct ice_sched_agg_info *atmp; 734 735 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 736 struct ice_sched_agg_vsi_info *agg_vsi_info; 737 struct ice_sched_agg_vsi_info *vtmp; 738 739 list_for_each_entry_safe(agg_vsi_info, vtmp, 740 &agg_info->agg_vsi_list, list_entry) { 741 list_del(&agg_vsi_info->list_entry); 742 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 743 } 744 list_del(&agg_info->list_entry); 745 devm_kfree(ice_hw_to_dev(hw), agg_info); 746 } 747 } 748 749 /** 750 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 751 * @pi: port information structure 752 * 753 * This function removes all the nodes from HW as well as from SW DB. 754 */ 755 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 756 { 757 if (!pi) 758 return; 759 /* remove RL profiles related lists */ 760 ice_sched_clear_rl_prof(pi); 761 if (pi->root) { 762 ice_free_sched_node(pi, pi->root); 763 pi->root = NULL; 764 } 765 } 766 767 /** 768 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 769 * @pi: port information structure 770 * 771 * Cleanup scheduling elements from SW DB 772 */ 773 void ice_sched_clear_port(struct ice_port_info *pi) 774 { 775 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 776 return; 777 778 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 779 mutex_lock(&pi->sched_lock); 780 ice_sched_clear_tx_topo(pi); 781 mutex_unlock(&pi->sched_lock); 782 mutex_destroy(&pi->sched_lock); 783 } 784 785 /** 786 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 787 * @hw: pointer to the HW struct 788 * 789 * Cleanup scheduling elements from SW DB for all the ports 790 */ 791 void ice_sched_cleanup_all(struct ice_hw *hw) 792 { 793 if (!hw) 794 return; 795 796 if (hw->layer_info) { 797 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 798 hw->layer_info = NULL; 799 } 800 801 ice_sched_clear_port(hw->port_info); 802 803 hw->num_tx_sched_layers = 0; 804 hw->num_tx_sched_phys_layers = 0; 805 hw->flattened_layers = 0; 806 hw->max_cgds = 0; 807 } 808 809 /** 810 * ice_sched_add_elems - add nodes to HW and SW DB 811 * @pi: port information structure 812 * @tc_node: pointer to the branch node 813 * @parent: pointer to the parent node 814 * @layer: layer number to add nodes 815 * @num_nodes: number of nodes 816 * @num_nodes_added: pointer to num nodes added 817 * @first_node_teid: if new nodes are added then return the TEID of first node 818 * 819 * This function add nodes to HW as well as to SW DB for a given layer 820 */ 821 static enum ice_status 822 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 823 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 824 u16 *num_nodes_added, u32 *first_node_teid) 825 { 826 struct ice_sched_node *prev, *new_node; 827 struct ice_aqc_add_elem *buf; 828 u16 i, num_groups_added = 0; 829 enum ice_status status = 0; 830 struct ice_hw *hw = pi->hw; 831 size_t buf_size; 832 u32 teid; 833 834 buf_size = struct_size(buf, generic, num_nodes - 1); 835 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 836 if (!buf) 837 return ICE_ERR_NO_MEMORY; 838 839 buf->hdr.parent_teid = parent->info.node_teid; 840 buf->hdr.num_elems = cpu_to_le16(num_nodes); 841 for (i = 0; i < num_nodes; i++) { 842 buf->generic[i].parent_teid = parent->info.node_teid; 843 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 844 buf->generic[i].data.valid_sections = 845 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 846 ICE_AQC_ELEM_VALID_EIR; 847 buf->generic[i].data.generic = 0; 848 buf->generic[i].data.cir_bw.bw_profile_idx = 849 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 850 buf->generic[i].data.cir_bw.bw_alloc = 851 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 852 buf->generic[i].data.eir_bw.bw_profile_idx = 853 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 854 buf->generic[i].data.eir_bw.bw_alloc = 855 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 856 } 857 858 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 859 &num_groups_added, NULL); 860 if (status || num_groups_added != 1) { 861 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 862 hw->adminq.sq_last_status); 863 devm_kfree(ice_hw_to_dev(hw), buf); 864 return ICE_ERR_CFG; 865 } 866 867 *num_nodes_added = num_nodes; 868 /* add nodes to the SW DB */ 869 for (i = 0; i < num_nodes; i++) { 870 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 871 if (status) { 872 ice_debug(hw, ICE_DBG_SCHED, 873 "add nodes in SW DB failed status =%d\n", 874 status); 875 break; 876 } 877 878 teid = le32_to_cpu(buf->generic[i].node_teid); 879 new_node = ice_sched_find_node_by_teid(parent, teid); 880 if (!new_node) { 881 ice_debug(hw, ICE_DBG_SCHED, 882 "Node is missing for teid =%d\n", teid); 883 break; 884 } 885 886 new_node->sibling = NULL; 887 new_node->tc_num = tc_node->tc_num; 888 889 /* add it to previous node sibling pointer */ 890 /* Note: siblings are not linked across branches */ 891 prev = ice_sched_get_first_node(pi, tc_node, layer); 892 if (prev && prev != new_node) { 893 while (prev->sibling) 894 prev = prev->sibling; 895 prev->sibling = new_node; 896 } 897 898 /* initialize the sibling head */ 899 if (!pi->sib_head[tc_node->tc_num][layer]) 900 pi->sib_head[tc_node->tc_num][layer] = new_node; 901 902 if (i == 0) 903 *first_node_teid = teid; 904 } 905 906 devm_kfree(ice_hw_to_dev(hw), buf); 907 return status; 908 } 909 910 /** 911 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 912 * @pi: port information structure 913 * @tc_node: pointer to TC node 914 * @parent: pointer to parent node 915 * @layer: layer number to add nodes 916 * @num_nodes: number of nodes to be added 917 * @first_node_teid: pointer to the first node TEID 918 * @num_nodes_added: pointer to number of nodes added 919 * 920 * This function add nodes to a given layer. 921 */ 922 static enum ice_status 923 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 924 struct ice_sched_node *tc_node, 925 struct ice_sched_node *parent, u8 layer, 926 u16 num_nodes, u32 *first_node_teid, 927 u16 *num_nodes_added) 928 { 929 u32 *first_teid_ptr = first_node_teid; 930 u16 new_num_nodes, max_child_nodes; 931 enum ice_status status = 0; 932 struct ice_hw *hw = pi->hw; 933 u16 num_added = 0; 934 u32 temp; 935 936 *num_nodes_added = 0; 937 938 if (!num_nodes) 939 return status; 940 941 if (!parent || layer < hw->sw_entry_point_layer) 942 return ICE_ERR_PARAM; 943 944 /* max children per node per layer */ 945 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 946 947 /* current number of children + required nodes exceed max children ? */ 948 if ((parent->num_children + num_nodes) > max_child_nodes) { 949 /* Fail if the parent is a TC node */ 950 if (parent == tc_node) 951 return ICE_ERR_CFG; 952 953 /* utilize all the spaces if the parent is not full */ 954 if (parent->num_children < max_child_nodes) { 955 new_num_nodes = max_child_nodes - parent->num_children; 956 /* this recursion is intentional, and wouldn't 957 * go more than 2 calls 958 */ 959 status = ice_sched_add_nodes_to_layer(pi, tc_node, 960 parent, layer, 961 new_num_nodes, 962 first_node_teid, 963 &num_added); 964 if (status) 965 return status; 966 967 *num_nodes_added += num_added; 968 } 969 /* Don't modify the first node TEID memory if the first node was 970 * added already in the above call. Instead send some temp 971 * memory for all other recursive calls. 972 */ 973 if (num_added) 974 first_teid_ptr = &temp; 975 976 new_num_nodes = num_nodes - num_added; 977 978 /* This parent is full, try the next sibling */ 979 parent = parent->sibling; 980 981 /* this recursion is intentional, for 1024 queues 982 * per VSI, it goes max of 16 iterations. 983 * 1024 / 8 = 128 layer 8 nodes 984 * 128 /8 = 16 (add 8 nodes per iteration) 985 */ 986 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 987 layer, new_num_nodes, 988 first_teid_ptr, 989 &num_added); 990 *num_nodes_added += num_added; 991 return status; 992 } 993 994 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 995 num_nodes_added, first_node_teid); 996 return status; 997 } 998 999 /** 1000 * ice_sched_get_qgrp_layer - get the current queue group layer number 1001 * @hw: pointer to the HW struct 1002 * 1003 * This function returns the current queue group layer number 1004 */ 1005 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1006 { 1007 /* It's always total layers - 1, the array is 0 relative so -2 */ 1008 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1009 } 1010 1011 /** 1012 * ice_sched_get_vsi_layer - get the current VSI layer number 1013 * @hw: pointer to the HW struct 1014 * 1015 * This function returns the current VSI layer number 1016 */ 1017 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1018 { 1019 /* Num Layers VSI layer 1020 * 9 6 1021 * 7 4 1022 * 5 or less sw_entry_point_layer 1023 */ 1024 /* calculate the VSI layer based on number of layers. */ 1025 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1026 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1027 1028 if (layer > hw->sw_entry_point_layer) 1029 return layer; 1030 } 1031 return hw->sw_entry_point_layer; 1032 } 1033 1034 /** 1035 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1036 * @pi: port information structure 1037 * 1038 * This function removes the leaf node that was created by the FW 1039 * during initialization 1040 */ 1041 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1042 { 1043 struct ice_sched_node *node; 1044 1045 node = pi->root; 1046 while (node) { 1047 if (!node->num_children) 1048 break; 1049 node = node->children[0]; 1050 } 1051 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1052 u32 teid = le32_to_cpu(node->info.node_teid); 1053 enum ice_status status; 1054 1055 /* remove the default leaf node */ 1056 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1057 if (!status) 1058 ice_free_sched_node(pi, node); 1059 } 1060 } 1061 1062 /** 1063 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1064 * @pi: port information structure 1065 * 1066 * This function frees all the nodes except root and TC that were created by 1067 * the FW during initialization 1068 */ 1069 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1070 { 1071 struct ice_sched_node *node; 1072 1073 ice_rm_dflt_leaf_node(pi); 1074 1075 /* remove the default nodes except TC and root nodes */ 1076 node = pi->root; 1077 while (node) { 1078 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1079 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1080 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1081 ice_free_sched_node(pi, node); 1082 break; 1083 } 1084 1085 if (!node->num_children) 1086 break; 1087 node = node->children[0]; 1088 } 1089 } 1090 1091 /** 1092 * ice_sched_init_port - Initialize scheduler by querying information from FW 1093 * @pi: port info structure for the tree to cleanup 1094 * 1095 * This function is the initial call to find the total number of Tx scheduler 1096 * resources, default topology created by firmware and storing the information 1097 * in SW DB. 1098 */ 1099 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 1100 { 1101 struct ice_aqc_get_topo_elem *buf; 1102 enum ice_status status; 1103 struct ice_hw *hw; 1104 u8 num_branches; 1105 u16 num_elems; 1106 u8 i, j; 1107 1108 if (!pi) 1109 return ICE_ERR_PARAM; 1110 hw = pi->hw; 1111 1112 /* Query the Default Topology from FW */ 1113 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1114 if (!buf) 1115 return ICE_ERR_NO_MEMORY; 1116 1117 /* Query default scheduling tree topology */ 1118 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1119 &num_branches, NULL); 1120 if (status) 1121 goto err_init_port; 1122 1123 /* num_branches should be between 1-8 */ 1124 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1125 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1126 num_branches); 1127 status = ICE_ERR_PARAM; 1128 goto err_init_port; 1129 } 1130 1131 /* get the number of elements on the default/first branch */ 1132 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1133 1134 /* num_elems should always be between 1-9 */ 1135 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1136 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1137 num_elems); 1138 status = ICE_ERR_PARAM; 1139 goto err_init_port; 1140 } 1141 1142 /* If the last node is a leaf node then the index of the queue group 1143 * layer is two less than the number of elements. 1144 */ 1145 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1146 ICE_AQC_ELEM_TYPE_LEAF) 1147 pi->last_node_teid = 1148 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1149 else 1150 pi->last_node_teid = 1151 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1152 1153 /* Insert the Tx Sched root node */ 1154 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1155 if (status) 1156 goto err_init_port; 1157 1158 /* Parse the default tree and cache the information */ 1159 for (i = 0; i < num_branches; i++) { 1160 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1161 1162 /* Skip root element as already inserted */ 1163 for (j = 1; j < num_elems; j++) { 1164 /* update the sw entry point */ 1165 if (buf[0].generic[j].data.elem_type == 1166 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1167 hw->sw_entry_point_layer = j; 1168 1169 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1170 if (status) 1171 goto err_init_port; 1172 } 1173 } 1174 1175 /* Remove the default nodes. */ 1176 if (pi->root) 1177 ice_sched_rm_dflt_nodes(pi); 1178 1179 /* initialize the port for handling the scheduler tree */ 1180 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1181 mutex_init(&pi->sched_lock); 1182 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1183 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1184 1185 err_init_port: 1186 if (status && pi->root) { 1187 ice_free_sched_node(pi, pi->root); 1188 pi->root = NULL; 1189 } 1190 1191 devm_kfree(ice_hw_to_dev(hw), buf); 1192 return status; 1193 } 1194 1195 /** 1196 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1197 * @hw: pointer to the HW struct 1198 * 1199 * query FW for allocated scheduler resources and store in HW struct 1200 */ 1201 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1202 { 1203 struct ice_aqc_query_txsched_res_resp *buf; 1204 enum ice_status status = 0; 1205 __le16 max_sibl; 1206 u16 i; 1207 1208 if (hw->layer_info) 1209 return status; 1210 1211 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1212 if (!buf) 1213 return ICE_ERR_NO_MEMORY; 1214 1215 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1216 if (status) 1217 goto sched_query_out; 1218 1219 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1220 hw->num_tx_sched_phys_layers = 1221 le16_to_cpu(buf->sched_props.phys_levels); 1222 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1223 hw->max_cgds = buf->sched_props.max_pf_cgds; 1224 1225 /* max sibling group size of current layer refers to the max children 1226 * of the below layer node. 1227 * layer 1 node max children will be layer 2 max sibling group size 1228 * layer 2 node max children will be layer 3 max sibling group size 1229 * and so on. This array will be populated from root (index 0) to 1230 * qgroup layer 7. Leaf node has no children. 1231 */ 1232 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1233 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1234 hw->max_children[i] = le16_to_cpu(max_sibl); 1235 } 1236 1237 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1238 (hw->num_tx_sched_layers * 1239 sizeof(*hw->layer_info)), 1240 GFP_KERNEL); 1241 if (!hw->layer_info) { 1242 status = ICE_ERR_NO_MEMORY; 1243 goto sched_query_out; 1244 } 1245 1246 sched_query_out: 1247 devm_kfree(ice_hw_to_dev(hw), buf); 1248 return status; 1249 } 1250 1251 /** 1252 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1253 * @hw: pointer to the HW struct 1254 * @base: pointer to the base node 1255 * @node: pointer to the node to search 1256 * 1257 * This function checks whether a given node is part of the base node 1258 * subtree or not 1259 */ 1260 static bool 1261 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1262 struct ice_sched_node *node) 1263 { 1264 u8 i; 1265 1266 for (i = 0; i < base->num_children; i++) { 1267 struct ice_sched_node *child = base->children[i]; 1268 1269 if (node == child) 1270 return true; 1271 1272 if (child->tx_sched_layer > node->tx_sched_layer) 1273 return false; 1274 1275 /* this recursion is intentional, and wouldn't 1276 * go more than 8 calls 1277 */ 1278 if (ice_sched_find_node_in_subtree(hw, child, node)) 1279 return true; 1280 } 1281 return false; 1282 } 1283 1284 /** 1285 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1286 * @pi: port information structure 1287 * @vsi_handle: software VSI handle 1288 * @tc: branch number 1289 * @owner: LAN or RDMA 1290 * 1291 * This function retrieves a free LAN or RDMA queue group node 1292 */ 1293 struct ice_sched_node * 1294 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1295 u8 owner) 1296 { 1297 struct ice_sched_node *vsi_node, *qgrp_node = NULL; 1298 struct ice_vsi_ctx *vsi_ctx; 1299 u16 max_children; 1300 u8 qgrp_layer; 1301 1302 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1303 max_children = pi->hw->max_children[qgrp_layer]; 1304 1305 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1306 if (!vsi_ctx) 1307 return NULL; 1308 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1309 /* validate invalid VSI ID */ 1310 if (!vsi_node) 1311 goto lan_q_exit; 1312 1313 /* get the first queue group node from VSI sub-tree */ 1314 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1315 while (qgrp_node) { 1316 /* make sure the qgroup node is part of the VSI subtree */ 1317 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1318 if (qgrp_node->num_children < max_children && 1319 qgrp_node->owner == owner) 1320 break; 1321 qgrp_node = qgrp_node->sibling; 1322 } 1323 1324 lan_q_exit: 1325 return qgrp_node; 1326 } 1327 1328 /** 1329 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1330 * @hw: pointer to the HW struct 1331 * @tc_node: pointer to the TC node 1332 * @vsi_handle: software VSI handle 1333 * 1334 * This function retrieves a VSI node for a given VSI ID from a given 1335 * TC branch 1336 */ 1337 static struct ice_sched_node * 1338 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, 1339 u16 vsi_handle) 1340 { 1341 struct ice_sched_node *node; 1342 u8 vsi_layer; 1343 1344 vsi_layer = ice_sched_get_vsi_layer(hw); 1345 node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer); 1346 1347 /* Check whether it already exists */ 1348 while (node) { 1349 if (node->vsi_handle == vsi_handle) 1350 return node; 1351 node = node->sibling; 1352 } 1353 1354 return node; 1355 } 1356 1357 /** 1358 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1359 * @hw: pointer to the HW struct 1360 * @num_qs: number of queues 1361 * @num_nodes: num nodes array 1362 * 1363 * This function calculates the number of VSI child nodes based on the 1364 * number of queues. 1365 */ 1366 static void 1367 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1368 { 1369 u16 num = num_qs; 1370 u8 i, qgl, vsil; 1371 1372 qgl = ice_sched_get_qgrp_layer(hw); 1373 vsil = ice_sched_get_vsi_layer(hw); 1374 1375 /* calculate num nodes from queue group to VSI layer */ 1376 for (i = qgl; i > vsil; i--) { 1377 /* round to the next integer if there is a remainder */ 1378 num = DIV_ROUND_UP(num, hw->max_children[i]); 1379 1380 /* need at least one node */ 1381 num_nodes[i] = num ? num : 1; 1382 } 1383 } 1384 1385 /** 1386 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1387 * @pi: port information structure 1388 * @vsi_handle: software VSI handle 1389 * @tc_node: pointer to the TC node 1390 * @num_nodes: pointer to the num nodes that needs to be added per layer 1391 * @owner: node owner (LAN or RDMA) 1392 * 1393 * This function adds the VSI child nodes to tree. It gets called for 1394 * LAN and RDMA separately. 1395 */ 1396 static enum ice_status 1397 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1398 struct ice_sched_node *tc_node, u16 *num_nodes, 1399 u8 owner) 1400 { 1401 struct ice_sched_node *parent, *node; 1402 struct ice_hw *hw = pi->hw; 1403 enum ice_status status; 1404 u32 first_node_teid; 1405 u16 num_added = 0; 1406 u8 i, qgl, vsil; 1407 1408 qgl = ice_sched_get_qgrp_layer(hw); 1409 vsil = ice_sched_get_vsi_layer(hw); 1410 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1411 for (i = vsil + 1; i <= qgl; i++) { 1412 if (!parent) 1413 return ICE_ERR_CFG; 1414 1415 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1416 num_nodes[i], 1417 &first_node_teid, 1418 &num_added); 1419 if (status || num_nodes[i] != num_added) 1420 return ICE_ERR_CFG; 1421 1422 /* The newly added node can be a new parent for the next 1423 * layer nodes 1424 */ 1425 if (num_added) { 1426 parent = ice_sched_find_node_by_teid(tc_node, 1427 first_node_teid); 1428 node = parent; 1429 while (node) { 1430 node->owner = owner; 1431 node = node->sibling; 1432 } 1433 } else { 1434 parent = parent->children[0]; 1435 } 1436 } 1437 1438 return 0; 1439 } 1440 1441 /** 1442 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1443 * @hw: pointer to the HW struct 1444 * @tc_node: pointer to TC node 1445 * @num_nodes: pointer to num nodes array 1446 * 1447 * This function calculates the number of supported nodes needed to add this 1448 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1449 * layers 1450 */ 1451 static void 1452 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, 1453 struct ice_sched_node *tc_node, u16 *num_nodes) 1454 { 1455 struct ice_sched_node *node; 1456 u8 vsil; 1457 int i; 1458 1459 vsil = ice_sched_get_vsi_layer(hw); 1460 for (i = vsil; i >= hw->sw_entry_point_layer; i--) 1461 /* Add intermediate nodes if TC has no children and 1462 * need at least one node for VSI 1463 */ 1464 if (!tc_node->num_children || i == vsil) { 1465 num_nodes[i]++; 1466 } else { 1467 /* If intermediate nodes are reached max children 1468 * then add a new one. 1469 */ 1470 node = ice_sched_get_first_node(hw->port_info, tc_node, 1471 (u8)i); 1472 /* scan all the siblings */ 1473 while (node) { 1474 if (node->num_children < hw->max_children[i]) 1475 break; 1476 node = node->sibling; 1477 } 1478 1479 /* tree has one intermediate node to add this new VSI. 1480 * So no need to calculate supported nodes for below 1481 * layers. 1482 */ 1483 if (node) 1484 break; 1485 /* all the nodes are full, allocate a new one */ 1486 num_nodes[i]++; 1487 } 1488 } 1489 1490 /** 1491 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1492 * @pi: port information structure 1493 * @vsi_handle: software VSI handle 1494 * @tc_node: pointer to TC node 1495 * @num_nodes: pointer to num nodes array 1496 * 1497 * This function adds the VSI supported nodes into Tx tree including the 1498 * VSI, its parent and intermediate nodes in below layers 1499 */ 1500 static enum ice_status 1501 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1502 struct ice_sched_node *tc_node, u16 *num_nodes) 1503 { 1504 struct ice_sched_node *parent = tc_node; 1505 enum ice_status status; 1506 u32 first_node_teid; 1507 u16 num_added = 0; 1508 u8 i, vsil; 1509 1510 if (!pi) 1511 return ICE_ERR_PARAM; 1512 1513 vsil = ice_sched_get_vsi_layer(pi->hw); 1514 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1515 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1516 i, num_nodes[i], 1517 &first_node_teid, 1518 &num_added); 1519 if (status || num_nodes[i] != num_added) 1520 return ICE_ERR_CFG; 1521 1522 /* The newly added node can be a new parent for the next 1523 * layer nodes 1524 */ 1525 if (num_added) 1526 parent = ice_sched_find_node_by_teid(tc_node, 1527 first_node_teid); 1528 else 1529 parent = parent->children[0]; 1530 1531 if (!parent) 1532 return ICE_ERR_CFG; 1533 1534 if (i == vsil) 1535 parent->vsi_handle = vsi_handle; 1536 } 1537 1538 return 0; 1539 } 1540 1541 /** 1542 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1543 * @pi: port information structure 1544 * @vsi_handle: software VSI handle 1545 * @tc: TC number 1546 * 1547 * This function adds a new VSI into scheduler tree 1548 */ 1549 static enum ice_status 1550 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1551 { 1552 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1553 struct ice_sched_node *tc_node; 1554 struct ice_hw *hw = pi->hw; 1555 1556 tc_node = ice_sched_get_tc_node(pi, tc); 1557 if (!tc_node) 1558 return ICE_ERR_PARAM; 1559 1560 /* calculate number of supported nodes needed for this VSI */ 1561 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); 1562 1563 /* add VSI supported nodes to TC subtree */ 1564 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1565 num_nodes); 1566 } 1567 1568 /** 1569 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1570 * @pi: port information structure 1571 * @vsi_handle: software VSI handle 1572 * @tc: TC number 1573 * @new_numqs: new number of max queues 1574 * @owner: owner of this subtree 1575 * 1576 * This function updates the VSI child nodes based on the number of queues 1577 */ 1578 static enum ice_status 1579 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1580 u8 tc, u16 new_numqs, u8 owner) 1581 { 1582 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1583 struct ice_sched_node *vsi_node; 1584 struct ice_sched_node *tc_node; 1585 struct ice_vsi_ctx *vsi_ctx; 1586 enum ice_status status = 0; 1587 struct ice_hw *hw = pi->hw; 1588 u16 prev_numqs; 1589 1590 tc_node = ice_sched_get_tc_node(pi, tc); 1591 if (!tc_node) 1592 return ICE_ERR_CFG; 1593 1594 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1595 if (!vsi_node) 1596 return ICE_ERR_CFG; 1597 1598 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1599 if (!vsi_ctx) 1600 return ICE_ERR_PARAM; 1601 1602 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1603 /* num queues are not changed or less than the previous number */ 1604 if (new_numqs <= prev_numqs) 1605 return status; 1606 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1607 if (status) 1608 return status; 1609 1610 if (new_numqs) 1611 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1612 /* Keep the max number of queue configuration all the time. Update the 1613 * tree only if number of queues > previous number of queues. This may 1614 * leave some extra nodes in the tree if number of queues < previous 1615 * number but that wouldn't harm anything. Removing those extra nodes 1616 * may complicate the code if those nodes are part of SRL or 1617 * individually rate limited. 1618 */ 1619 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1620 new_num_nodes, owner); 1621 if (status) 1622 return status; 1623 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1624 1625 return 0; 1626 } 1627 1628 /** 1629 * ice_sched_cfg_vsi - configure the new/existing VSI 1630 * @pi: port information structure 1631 * @vsi_handle: software VSI handle 1632 * @tc: TC number 1633 * @maxqs: max number of queues 1634 * @owner: LAN or RDMA 1635 * @enable: TC enabled or disabled 1636 * 1637 * This function adds/updates VSI nodes based on the number of queues. If TC is 1638 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1639 * disabled then suspend the VSI if it is not already. 1640 */ 1641 enum ice_status 1642 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1643 u8 owner, bool enable) 1644 { 1645 struct ice_sched_node *vsi_node, *tc_node; 1646 struct ice_vsi_ctx *vsi_ctx; 1647 enum ice_status status = 0; 1648 struct ice_hw *hw = pi->hw; 1649 1650 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1651 tc_node = ice_sched_get_tc_node(pi, tc); 1652 if (!tc_node) 1653 return ICE_ERR_PARAM; 1654 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1655 if (!vsi_ctx) 1656 return ICE_ERR_PARAM; 1657 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1658 1659 /* suspend the VSI if TC is not enabled */ 1660 if (!enable) { 1661 if (vsi_node && vsi_node->in_use) { 1662 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1663 1664 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1665 true); 1666 if (!status) 1667 vsi_node->in_use = false; 1668 } 1669 return status; 1670 } 1671 1672 /* TC is enabled, if it is a new VSI then add it to the tree */ 1673 if (!vsi_node) { 1674 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1675 if (status) 1676 return status; 1677 1678 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1679 if (!vsi_node) 1680 return ICE_ERR_CFG; 1681 1682 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1683 vsi_node->in_use = true; 1684 /* invalidate the max queues whenever VSI gets added first time 1685 * into the scheduler tree (boot or after reset). We need to 1686 * recreate the child nodes all the time in these cases. 1687 */ 1688 vsi_ctx->sched.max_lanq[tc] = 0; 1689 } 1690 1691 /* update the VSI child nodes */ 1692 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1693 owner); 1694 if (status) 1695 return status; 1696 1697 /* TC is enabled, resume the VSI if it is in the suspend state */ 1698 if (!vsi_node->in_use) { 1699 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1700 1701 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1702 if (!status) 1703 vsi_node->in_use = true; 1704 } 1705 1706 return status; 1707 } 1708 1709 /** 1710 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry 1711 * @pi: port information structure 1712 * @vsi_handle: software VSI handle 1713 * 1714 * This function removes single aggregator VSI info entry from 1715 * aggregator list. 1716 */ 1717 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1718 { 1719 struct ice_sched_agg_info *agg_info; 1720 struct ice_sched_agg_info *atmp; 1721 1722 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1723 list_entry) { 1724 struct ice_sched_agg_vsi_info *agg_vsi_info; 1725 struct ice_sched_agg_vsi_info *vtmp; 1726 1727 list_for_each_entry_safe(agg_vsi_info, vtmp, 1728 &agg_info->agg_vsi_list, list_entry) 1729 if (agg_vsi_info->vsi_handle == vsi_handle) { 1730 list_del(&agg_vsi_info->list_entry); 1731 devm_kfree(ice_hw_to_dev(pi->hw), 1732 agg_vsi_info); 1733 return; 1734 } 1735 } 1736 } 1737 1738 /** 1739 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1740 * @node: pointer to the sub-tree node 1741 * 1742 * This function checks for a leaf node presence in a given sub-tree node. 1743 */ 1744 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1745 { 1746 u8 i; 1747 1748 for (i = 0; i < node->num_children; i++) 1749 if (ice_sched_is_leaf_node_present(node->children[i])) 1750 return true; 1751 /* check for a leaf node */ 1752 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1753 } 1754 1755 /** 1756 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1757 * @pi: port information structure 1758 * @vsi_handle: software VSI handle 1759 * @owner: LAN or RDMA 1760 * 1761 * This function removes the VSI and its LAN or RDMA children nodes from the 1762 * scheduler tree. 1763 */ 1764 static enum ice_status 1765 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1766 { 1767 enum ice_status status = ICE_ERR_PARAM; 1768 struct ice_vsi_ctx *vsi_ctx; 1769 u8 i; 1770 1771 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 1772 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 1773 return status; 1774 mutex_lock(&pi->sched_lock); 1775 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1776 if (!vsi_ctx) 1777 goto exit_sched_rm_vsi_cfg; 1778 1779 ice_for_each_traffic_class(i) { 1780 struct ice_sched_node *vsi_node, *tc_node; 1781 u8 j = 0; 1782 1783 tc_node = ice_sched_get_tc_node(pi, i); 1784 if (!tc_node) 1785 continue; 1786 1787 vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle); 1788 if (!vsi_node) 1789 continue; 1790 1791 if (ice_sched_is_leaf_node_present(vsi_node)) { 1792 ice_debug(pi->hw, ICE_DBG_SCHED, 1793 "VSI has leaf nodes in TC %d\n", i); 1794 status = ICE_ERR_IN_USE; 1795 goto exit_sched_rm_vsi_cfg; 1796 } 1797 while (j < vsi_node->num_children) { 1798 if (vsi_node->children[j]->owner == owner) { 1799 ice_free_sched_node(pi, vsi_node->children[j]); 1800 1801 /* reset the counter again since the num 1802 * children will be updated after node removal 1803 */ 1804 j = 0; 1805 } else { 1806 j++; 1807 } 1808 } 1809 /* remove the VSI if it has no children */ 1810 if (!vsi_node->num_children) { 1811 ice_free_sched_node(pi, vsi_node); 1812 vsi_ctx->sched.vsi_node[i] = NULL; 1813 1814 /* clean up aggregator related VSI info if any */ 1815 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 1816 } 1817 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1818 vsi_ctx->sched.max_lanq[i] = 0; 1819 } 1820 status = 0; 1821 1822 exit_sched_rm_vsi_cfg: 1823 mutex_unlock(&pi->sched_lock); 1824 return status; 1825 } 1826 1827 /** 1828 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 1829 * @pi: port information structure 1830 * @vsi_handle: software VSI handle 1831 * 1832 * This function clears the VSI and its LAN children nodes from scheduler tree 1833 * for all TCs. 1834 */ 1835 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 1836 { 1837 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 1838 } 1839 1840 /** 1841 * ice_sched_rm_unused_rl_prof - remove unused RL profile 1842 * @pi: port information structure 1843 * 1844 * This function removes unused rate limit profiles from the HW and 1845 * SW DB. The caller needs to hold scheduler lock. 1846 */ 1847 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 1848 { 1849 u16 ln; 1850 1851 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 1852 struct ice_aqc_rl_profile_info *rl_prof_elem; 1853 struct ice_aqc_rl_profile_info *rl_prof_tmp; 1854 1855 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 1856 &pi->rl_prof_list[ln], list_entry) { 1857 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 1858 ice_debug(pi->hw, ICE_DBG_SCHED, 1859 "Removed rl profile\n"); 1860 } 1861 } 1862 } 1863 1864 /** 1865 * ice_sched_update_elem - update element 1866 * @hw: pointer to the HW struct 1867 * @node: pointer to node 1868 * @info: node info to update 1869 * 1870 * It updates the HW DB, and local SW DB of node. It updates the scheduling 1871 * parameters of node from argument info data buffer (Info->data buf) and 1872 * returns success or error on config sched element failure. The caller 1873 * needs to hold scheduler lock. 1874 */ 1875 static enum ice_status 1876 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 1877 struct ice_aqc_txsched_elem_data *info) 1878 { 1879 struct ice_aqc_conf_elem buf; 1880 enum ice_status status; 1881 u16 elem_cfgd = 0; 1882 u16 num_elems = 1; 1883 1884 buf.generic[0] = *info; 1885 /* Parent TEID is reserved field in this aq call */ 1886 buf.generic[0].parent_teid = 0; 1887 /* Element type is reserved field in this aq call */ 1888 buf.generic[0].data.elem_type = 0; 1889 /* Flags is reserved field in this aq call */ 1890 buf.generic[0].data.flags = 0; 1891 1892 /* Update HW DB */ 1893 /* Configure element node */ 1894 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 1895 &elem_cfgd, NULL); 1896 if (status || elem_cfgd != num_elems) { 1897 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 1898 return ICE_ERR_CFG; 1899 } 1900 1901 /* Config success case */ 1902 /* Now update local SW DB */ 1903 /* Only copy the data portion of info buffer */ 1904 node->info.data = info->data; 1905 return status; 1906 } 1907 1908 /** 1909 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 1910 * @hw: pointer to the HW struct 1911 * @node: sched node to configure 1912 * @rl_type: rate limit type CIR, EIR, or shared 1913 * @bw_alloc: BW weight/allocation 1914 * 1915 * This function configures node element's BW allocation. 1916 */ 1917 static enum ice_status 1918 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 1919 enum ice_rl_type rl_type, u16 bw_alloc) 1920 { 1921 struct ice_aqc_txsched_elem_data buf; 1922 struct ice_aqc_txsched_elem *data; 1923 enum ice_status status; 1924 1925 buf = node->info; 1926 data = &buf.data; 1927 if (rl_type == ICE_MIN_BW) { 1928 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 1929 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 1930 } else if (rl_type == ICE_MAX_BW) { 1931 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 1932 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 1933 } else { 1934 return ICE_ERR_PARAM; 1935 } 1936 1937 /* Configure element */ 1938 status = ice_sched_update_elem(hw, node, &buf); 1939 return status; 1940 } 1941 1942 /** 1943 * ice_set_clear_cir_bw - set or clear CIR BW 1944 * @bw_t_info: bandwidth type information structure 1945 * @bw: bandwidth in Kbps - Kilo bits per sec 1946 * 1947 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 1948 */ 1949 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 1950 { 1951 if (bw == ICE_SCHED_DFLT_BW) { 1952 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 1953 bw_t_info->cir_bw.bw = 0; 1954 } else { 1955 /* Save type of BW information */ 1956 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 1957 bw_t_info->cir_bw.bw = bw; 1958 } 1959 } 1960 1961 /** 1962 * ice_set_clear_eir_bw - set or clear EIR BW 1963 * @bw_t_info: bandwidth type information structure 1964 * @bw: bandwidth in Kbps - Kilo bits per sec 1965 * 1966 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 1967 */ 1968 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 1969 { 1970 if (bw == ICE_SCHED_DFLT_BW) { 1971 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 1972 bw_t_info->eir_bw.bw = 0; 1973 } else { 1974 /* EIR BW and Shared BW profiles are mutually exclusive and 1975 * hence only one of them may be set for any given element. 1976 * First clear earlier saved shared BW information. 1977 */ 1978 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 1979 bw_t_info->shared_bw = 0; 1980 /* save EIR BW information */ 1981 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 1982 bw_t_info->eir_bw.bw = bw; 1983 } 1984 } 1985 1986 /** 1987 * ice_set_clear_shared_bw - set or clear shared BW 1988 * @bw_t_info: bandwidth type information structure 1989 * @bw: bandwidth in Kbps - Kilo bits per sec 1990 * 1991 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 1992 */ 1993 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 1994 { 1995 if (bw == ICE_SCHED_DFLT_BW) { 1996 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 1997 bw_t_info->shared_bw = 0; 1998 } else { 1999 /* EIR BW and Shared BW profiles are mutually exclusive and 2000 * hence only one of them may be set for any given element. 2001 * First clear earlier saved EIR BW information. 2002 */ 2003 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2004 bw_t_info->eir_bw.bw = 0; 2005 /* save shared BW information */ 2006 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2007 bw_t_info->shared_bw = bw; 2008 } 2009 } 2010 2011 /** 2012 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 2013 * @bw: bandwidth in Kbps 2014 * 2015 * This function calculates the wakeup parameter of RL profile. 2016 */ 2017 static u16 ice_sched_calc_wakeup(s32 bw) 2018 { 2019 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 2020 s32 wakeup_f_int; 2021 u16 wakeup = 0; 2022 2023 /* Get the wakeup integer value */ 2024 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2025 wakeup_int = div64_long(ICE_RL_PROF_FREQUENCY, bytes_per_sec); 2026 if (wakeup_int > 63) { 2027 wakeup = (u16)((1 << 15) | wakeup_int); 2028 } else { 2029 /* Calculate fraction value up to 4 decimals 2030 * Convert Integer value to a constant multiplier 2031 */ 2032 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 2033 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 2034 ICE_RL_PROF_FREQUENCY, 2035 bytes_per_sec); 2036 2037 /* Get Fraction value */ 2038 wakeup_f = wakeup_a - wakeup_b; 2039 2040 /* Round up the Fractional value via Ceil(Fractional value) */ 2041 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 2042 wakeup_f += 1; 2043 2044 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 2045 ICE_RL_PROF_MULTIPLIER); 2046 wakeup |= (u16)(wakeup_int << 9); 2047 wakeup |= (u16)(0x1ff & wakeup_f_int); 2048 } 2049 2050 return wakeup; 2051 } 2052 2053 /** 2054 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 2055 * @bw: bandwidth in Kbps 2056 * @profile: profile parameters to return 2057 * 2058 * This function converts the BW to profile structure format. 2059 */ 2060 static enum ice_status 2061 ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile) 2062 { 2063 enum ice_status status = ICE_ERR_PARAM; 2064 s64 bytes_per_sec, ts_rate, mv_tmp; 2065 bool found = false; 2066 s32 encode = 0; 2067 s64 mv = 0; 2068 s32 i; 2069 2070 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 2071 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 2072 return status; 2073 2074 /* Bytes per second from Kbps */ 2075 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2076 2077 /* encode is 6 bits but really useful are 5 bits */ 2078 for (i = 0; i < 64; i++) { 2079 u64 pow_result = BIT_ULL(i); 2080 2081 ts_rate = div64_long((s64)ICE_RL_PROF_FREQUENCY, 2082 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 2083 if (ts_rate <= 0) 2084 continue; 2085 2086 /* Multiplier value */ 2087 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 2088 ts_rate); 2089 2090 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 2091 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 2092 2093 /* First multiplier value greater than the given 2094 * accuracy bytes 2095 */ 2096 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 2097 encode = i; 2098 found = true; 2099 break; 2100 } 2101 } 2102 if (found) { 2103 u16 wm; 2104 2105 wm = ice_sched_calc_wakeup(bw); 2106 profile->rl_multiply = cpu_to_le16(mv); 2107 profile->wake_up_calc = cpu_to_le16(wm); 2108 profile->rl_encode = cpu_to_le16(encode); 2109 status = 0; 2110 } else { 2111 status = ICE_ERR_DOES_NOT_EXIST; 2112 } 2113 2114 return status; 2115 } 2116 2117 /** 2118 * ice_sched_add_rl_profile - add RL profile 2119 * @pi: port information structure 2120 * @rl_type: type of rate limit BW - min, max, or shared 2121 * @bw: bandwidth in Kbps - Kilo bits per sec 2122 * @layer_num: specifies in which layer to create profile 2123 * 2124 * This function first checks the existing list for corresponding BW 2125 * parameter. If it exists, it returns the associated profile otherwise 2126 * it creates a new rate limit profile for requested BW, and adds it to 2127 * the HW DB and local list. It returns the new profile or null on error. 2128 * The caller needs to hold the scheduler lock. 2129 */ 2130 static struct ice_aqc_rl_profile_info * 2131 ice_sched_add_rl_profile(struct ice_port_info *pi, 2132 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 2133 { 2134 struct ice_aqc_rl_profile_generic_elem *buf; 2135 struct ice_aqc_rl_profile_info *rl_prof_elem; 2136 u16 profiles_added = 0, num_profiles = 1; 2137 enum ice_status status; 2138 struct ice_hw *hw; 2139 u8 profile_type; 2140 2141 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 2142 return NULL; 2143 switch (rl_type) { 2144 case ICE_MIN_BW: 2145 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 2146 break; 2147 case ICE_MAX_BW: 2148 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 2149 break; 2150 case ICE_SHARED_BW: 2151 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 2152 break; 2153 default: 2154 return NULL; 2155 } 2156 2157 if (!pi) 2158 return NULL; 2159 hw = pi->hw; 2160 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 2161 list_entry) 2162 if (rl_prof_elem->profile.flags == profile_type && 2163 rl_prof_elem->bw == bw) 2164 /* Return existing profile ID info */ 2165 return rl_prof_elem; 2166 2167 /* Create new profile ID */ 2168 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 2169 GFP_KERNEL); 2170 2171 if (!rl_prof_elem) 2172 return NULL; 2173 2174 status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile); 2175 if (status) 2176 goto exit_add_rl_prof; 2177 2178 rl_prof_elem->bw = bw; 2179 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 2180 rl_prof_elem->profile.level = layer_num + 1; 2181 rl_prof_elem->profile.flags = profile_type; 2182 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 2183 2184 /* Create new entry in HW DB */ 2185 buf = (struct ice_aqc_rl_profile_generic_elem *) 2186 &rl_prof_elem->profile; 2187 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 2188 &profiles_added, NULL); 2189 if (status || profiles_added != num_profiles) 2190 goto exit_add_rl_prof; 2191 2192 /* Good entry - add in the list */ 2193 rl_prof_elem->prof_id_ref = 0; 2194 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 2195 return rl_prof_elem; 2196 2197 exit_add_rl_prof: 2198 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 2199 return NULL; 2200 } 2201 2202 /** 2203 * ice_sched_cfg_node_bw_lmt - configure node sched params 2204 * @hw: pointer to the HW struct 2205 * @node: sched node to configure 2206 * @rl_type: rate limit type CIR, EIR, or shared 2207 * @rl_prof_id: rate limit profile ID 2208 * 2209 * This function configures node element's BW limit. 2210 */ 2211 static enum ice_status 2212 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 2213 enum ice_rl_type rl_type, u16 rl_prof_id) 2214 { 2215 struct ice_aqc_txsched_elem_data buf; 2216 struct ice_aqc_txsched_elem *data; 2217 2218 buf = node->info; 2219 data = &buf.data; 2220 switch (rl_type) { 2221 case ICE_MIN_BW: 2222 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2223 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 2224 break; 2225 case ICE_MAX_BW: 2226 /* EIR BW and Shared BW profiles are mutually exclusive and 2227 * hence only one of them may be set for any given element 2228 */ 2229 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 2230 return ICE_ERR_CFG; 2231 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2232 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 2233 break; 2234 case ICE_SHARED_BW: 2235 /* Check for removing shared BW */ 2236 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 2237 /* remove shared profile */ 2238 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 2239 data->srl_id = 0; /* clear SRL field */ 2240 2241 /* enable back EIR to default profile */ 2242 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2243 data->eir_bw.bw_profile_idx = 2244 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 2245 break; 2246 } 2247 /* EIR BW and Shared BW profiles are mutually exclusive and 2248 * hence only one of them may be set for any given element 2249 */ 2250 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 2251 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 2252 ICE_SCHED_DFLT_RL_PROF_ID)) 2253 return ICE_ERR_CFG; 2254 /* EIR BW is set to default, disable it */ 2255 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 2256 /* Okay to enable shared BW now */ 2257 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 2258 data->srl_id = cpu_to_le16(rl_prof_id); 2259 break; 2260 default: 2261 /* Unknown rate limit type */ 2262 return ICE_ERR_PARAM; 2263 } 2264 2265 /* Configure element */ 2266 return ice_sched_update_elem(hw, node, &buf); 2267 } 2268 2269 /** 2270 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 2271 * @node: sched node 2272 * @rl_type: rate limit type 2273 * 2274 * If existing profile matches, it returns the corresponding rate 2275 * limit profile ID, otherwise it returns an invalid ID as error. 2276 */ 2277 static u16 2278 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 2279 enum ice_rl_type rl_type) 2280 { 2281 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 2282 struct ice_aqc_txsched_elem *data; 2283 2284 data = &node->info.data; 2285 switch (rl_type) { 2286 case ICE_MIN_BW: 2287 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 2288 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 2289 break; 2290 case ICE_MAX_BW: 2291 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 2292 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 2293 break; 2294 case ICE_SHARED_BW: 2295 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 2296 rl_prof_id = le16_to_cpu(data->srl_id); 2297 break; 2298 default: 2299 break; 2300 } 2301 2302 return rl_prof_id; 2303 } 2304 2305 /** 2306 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 2307 * @pi: port information structure 2308 * @rl_type: type of rate limit BW - min, max, or shared 2309 * @layer_index: layer index 2310 * 2311 * This function returns requested profile creation layer. 2312 */ 2313 static u8 2314 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 2315 u8 layer_index) 2316 { 2317 struct ice_hw *hw = pi->hw; 2318 2319 if (layer_index >= hw->num_tx_sched_layers) 2320 return ICE_SCHED_INVAL_LAYER_NUM; 2321 switch (rl_type) { 2322 case ICE_MIN_BW: 2323 if (hw->layer_info[layer_index].max_cir_rl_profiles) 2324 return layer_index; 2325 break; 2326 case ICE_MAX_BW: 2327 if (hw->layer_info[layer_index].max_eir_rl_profiles) 2328 return layer_index; 2329 break; 2330 case ICE_SHARED_BW: 2331 /* if current layer doesn't support SRL profile creation 2332 * then try a layer up or down. 2333 */ 2334 if (hw->layer_info[layer_index].max_srl_profiles) 2335 return layer_index; 2336 else if (layer_index < hw->num_tx_sched_layers - 1 && 2337 hw->layer_info[layer_index + 1].max_srl_profiles) 2338 return layer_index + 1; 2339 else if (layer_index > 0 && 2340 hw->layer_info[layer_index - 1].max_srl_profiles) 2341 return layer_index - 1; 2342 break; 2343 default: 2344 break; 2345 } 2346 return ICE_SCHED_INVAL_LAYER_NUM; 2347 } 2348 2349 /** 2350 * ice_sched_get_srl_node - get shared rate limit node 2351 * @node: tree node 2352 * @srl_layer: shared rate limit layer 2353 * 2354 * This function returns SRL node to be used for shared rate limit purpose. 2355 * The caller needs to hold scheduler lock. 2356 */ 2357 static struct ice_sched_node * 2358 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 2359 { 2360 if (srl_layer > node->tx_sched_layer) 2361 return node->children[0]; 2362 else if (srl_layer < node->tx_sched_layer) 2363 /* Node can't be created without a parent. It will always 2364 * have a valid parent except root node. 2365 */ 2366 return node->parent; 2367 else 2368 return node; 2369 } 2370 2371 /** 2372 * ice_sched_rm_rl_profile - remove RL profile ID 2373 * @pi: port information structure 2374 * @layer_num: layer number where profiles are saved 2375 * @profile_type: profile type like EIR, CIR, or SRL 2376 * @profile_id: profile ID to remove 2377 * 2378 * This function removes rate limit profile from layer 'layer_num' of type 2379 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 2380 * scheduler lock. 2381 */ 2382 static enum ice_status 2383 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 2384 u16 profile_id) 2385 { 2386 struct ice_aqc_rl_profile_info *rl_prof_elem; 2387 enum ice_status status = 0; 2388 2389 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 2390 return ICE_ERR_PARAM; 2391 /* Check the existing list for RL profile */ 2392 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 2393 list_entry) 2394 if (rl_prof_elem->profile.flags == profile_type && 2395 le16_to_cpu(rl_prof_elem->profile.profile_id) == 2396 profile_id) { 2397 if (rl_prof_elem->prof_id_ref) 2398 rl_prof_elem->prof_id_ref--; 2399 2400 /* Remove old profile ID from database */ 2401 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 2402 if (status && status != ICE_ERR_IN_USE) 2403 ice_debug(pi->hw, ICE_DBG_SCHED, 2404 "Remove rl profile failed\n"); 2405 break; 2406 } 2407 if (status == ICE_ERR_IN_USE) 2408 status = 0; 2409 return status; 2410 } 2411 2412 /** 2413 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 2414 * @pi: port information structure 2415 * @node: pointer to node structure 2416 * @rl_type: rate limit type min, max, or shared 2417 * @layer_num: layer number where RL profiles are saved 2418 * 2419 * This function configures node element's BW rate limit profile ID of 2420 * type CIR, EIR, or SRL to default. This function needs to be called 2421 * with the scheduler lock held. 2422 */ 2423 static enum ice_status 2424 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 2425 struct ice_sched_node *node, 2426 enum ice_rl_type rl_type, u8 layer_num) 2427 { 2428 enum ice_status status; 2429 struct ice_hw *hw; 2430 u8 profile_type; 2431 u16 rl_prof_id; 2432 u16 old_id; 2433 2434 hw = pi->hw; 2435 switch (rl_type) { 2436 case ICE_MIN_BW: 2437 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 2438 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 2439 break; 2440 case ICE_MAX_BW: 2441 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 2442 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 2443 break; 2444 case ICE_SHARED_BW: 2445 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 2446 /* No SRL is configured for default case */ 2447 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 2448 break; 2449 default: 2450 return ICE_ERR_PARAM; 2451 } 2452 /* Save existing RL prof ID for later clean up */ 2453 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 2454 /* Configure BW scheduling parameters */ 2455 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 2456 if (status) 2457 return status; 2458 2459 /* Remove stale RL profile ID */ 2460 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 2461 old_id == ICE_SCHED_INVAL_PROF_ID) 2462 return 0; 2463 2464 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 2465 } 2466 2467 /** 2468 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 2469 * @pi: port information structure 2470 * @node: pointer to node structure 2471 * @layer_num: layer number where rate limit profiles are saved 2472 * @rl_type: rate limit type min, max, or shared 2473 * @bw: bandwidth value 2474 * 2475 * This function prepares node element's bandwidth to SRL or EIR exclusively. 2476 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 2477 * them may be set for any given element. This function needs to be called 2478 * with the scheduler lock held. 2479 */ 2480 static enum ice_status 2481 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 2482 struct ice_sched_node *node, 2483 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 2484 { 2485 if (rl_type == ICE_SHARED_BW) { 2486 /* SRL node passed in this case, it may be different node */ 2487 if (bw == ICE_SCHED_DFLT_BW) 2488 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 2489 * enables EIR to default. EIR is not set in this 2490 * case, so no additional action is required. 2491 */ 2492 return 0; 2493 2494 /* SRL being configured, set EIR to default here. 2495 * ice_sched_cfg_node_bw_lmt() disables EIR when it 2496 * configures SRL 2497 */ 2498 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 2499 layer_num); 2500 } else if (rl_type == ICE_MAX_BW && 2501 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 2502 /* Remove Shared profile. Set default shared BW call 2503 * removes shared profile for a node. 2504 */ 2505 return ice_sched_set_node_bw_dflt(pi, node, 2506 ICE_SHARED_BW, 2507 layer_num); 2508 } 2509 return 0; 2510 } 2511 2512 /** 2513 * ice_sched_set_node_bw - set node's bandwidth 2514 * @pi: port information structure 2515 * @node: tree node 2516 * @rl_type: rate limit type min, max, or shared 2517 * @bw: bandwidth in Kbps - Kilo bits per sec 2518 * @layer_num: layer number 2519 * 2520 * This function adds new profile corresponding to requested BW, configures 2521 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 2522 * ID from local database. The caller needs to hold scheduler lock. 2523 */ 2524 static enum ice_status 2525 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 2526 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 2527 { 2528 struct ice_aqc_rl_profile_info *rl_prof_info; 2529 enum ice_status status = ICE_ERR_PARAM; 2530 struct ice_hw *hw = pi->hw; 2531 u16 old_id, rl_prof_id; 2532 2533 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 2534 if (!rl_prof_info) 2535 return status; 2536 2537 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 2538 2539 /* Save existing RL prof ID for later clean up */ 2540 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 2541 /* Configure BW scheduling parameters */ 2542 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 2543 if (status) 2544 return status; 2545 2546 /* New changes has been applied */ 2547 /* Increment the profile ID reference count */ 2548 rl_prof_info->prof_id_ref++; 2549 2550 /* Check for old ID removal */ 2551 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 2552 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 2553 return 0; 2554 2555 return ice_sched_rm_rl_profile(pi, layer_num, 2556 rl_prof_info->profile.flags, 2557 old_id); 2558 } 2559 2560 /** 2561 * ice_sched_set_node_bw_lmt - set node's BW limit 2562 * @pi: port information structure 2563 * @node: tree node 2564 * @rl_type: rate limit type min, max, or shared 2565 * @bw: bandwidth in Kbps - Kilo bits per sec 2566 * 2567 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 2568 * EIR, or SRL. The caller needs to hold scheduler lock. 2569 */ 2570 static enum ice_status 2571 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 2572 enum ice_rl_type rl_type, u32 bw) 2573 { 2574 struct ice_sched_node *cfg_node = node; 2575 enum ice_status status; 2576 2577 struct ice_hw *hw; 2578 u8 layer_num; 2579 2580 if (!pi) 2581 return ICE_ERR_PARAM; 2582 hw = pi->hw; 2583 /* Remove unused RL profile IDs from HW and SW DB */ 2584 ice_sched_rm_unused_rl_prof(pi); 2585 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 2586 node->tx_sched_layer); 2587 if (layer_num >= hw->num_tx_sched_layers) 2588 return ICE_ERR_PARAM; 2589 2590 if (rl_type == ICE_SHARED_BW) { 2591 /* SRL node may be different */ 2592 cfg_node = ice_sched_get_srl_node(node, layer_num); 2593 if (!cfg_node) 2594 return ICE_ERR_CFG; 2595 } 2596 /* EIR BW and Shared BW profiles are mutually exclusive and 2597 * hence only one of them may be set for any given element 2598 */ 2599 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 2600 bw); 2601 if (status) 2602 return status; 2603 if (bw == ICE_SCHED_DFLT_BW) 2604 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 2605 layer_num); 2606 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 2607 } 2608 2609 /** 2610 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 2611 * @pi: port information structure 2612 * @node: pointer to node structure 2613 * @rl_type: rate limit type min, max, or shared 2614 * 2615 * This function configures node element's BW rate limit profile ID of 2616 * type CIR, EIR, or SRL to default. This function needs to be called 2617 * with the scheduler lock held. 2618 */ 2619 static enum ice_status 2620 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 2621 struct ice_sched_node *node, 2622 enum ice_rl_type rl_type) 2623 { 2624 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 2625 ICE_SCHED_DFLT_BW); 2626 } 2627 2628 /** 2629 * ice_sched_validate_srl_node - Check node for SRL applicability 2630 * @node: sched node to configure 2631 * @sel_layer: selected SRL layer 2632 * 2633 * This function checks if the SRL can be applied to a selected layer node on 2634 * behalf of the requested node (first argument). This function needs to be 2635 * called with scheduler lock held. 2636 */ 2637 static enum ice_status 2638 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 2639 { 2640 /* SRL profiles are not available on all layers. Check if the 2641 * SRL profile can be applied to a node above or below the 2642 * requested node. SRL configuration is possible only if the 2643 * selected layer's node has single child. 2644 */ 2645 if (sel_layer == node->tx_sched_layer || 2646 ((sel_layer == node->tx_sched_layer + 1) && 2647 node->num_children == 1) || 2648 ((sel_layer == node->tx_sched_layer - 1) && 2649 (node->parent && node->parent->num_children == 1))) 2650 return 0; 2651 2652 return ICE_ERR_CFG; 2653 } 2654 2655 /** 2656 * ice_sched_save_q_bw - save queue node's BW information 2657 * @q_ctx: queue context structure 2658 * @rl_type: rate limit type min, max, or shared 2659 * @bw: bandwidth in Kbps - Kilo bits per sec 2660 * 2661 * Save BW information of queue type node for post replay use. 2662 */ 2663 static enum ice_status 2664 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 2665 { 2666 switch (rl_type) { 2667 case ICE_MIN_BW: 2668 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 2669 break; 2670 case ICE_MAX_BW: 2671 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 2672 break; 2673 case ICE_SHARED_BW: 2674 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 2675 break; 2676 default: 2677 return ICE_ERR_PARAM; 2678 } 2679 return 0; 2680 } 2681 2682 /** 2683 * ice_sched_set_q_bw_lmt - sets queue BW limit 2684 * @pi: port information structure 2685 * @vsi_handle: sw VSI handle 2686 * @tc: traffic class 2687 * @q_handle: software queue handle 2688 * @rl_type: min, max, or shared 2689 * @bw: bandwidth in Kbps 2690 * 2691 * This function sets BW limit of queue scheduling node. 2692 */ 2693 static enum ice_status 2694 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 2695 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 2696 { 2697 enum ice_status status = ICE_ERR_PARAM; 2698 struct ice_sched_node *node; 2699 struct ice_q_ctx *q_ctx; 2700 2701 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2702 return ICE_ERR_PARAM; 2703 mutex_lock(&pi->sched_lock); 2704 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 2705 if (!q_ctx) 2706 goto exit_q_bw_lmt; 2707 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 2708 if (!node) { 2709 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 2710 goto exit_q_bw_lmt; 2711 } 2712 2713 /* Return error if it is not a leaf node */ 2714 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 2715 goto exit_q_bw_lmt; 2716 2717 /* SRL bandwidth layer selection */ 2718 if (rl_type == ICE_SHARED_BW) { 2719 u8 sel_layer; /* selected layer */ 2720 2721 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 2722 node->tx_sched_layer); 2723 if (sel_layer >= pi->hw->num_tx_sched_layers) { 2724 status = ICE_ERR_PARAM; 2725 goto exit_q_bw_lmt; 2726 } 2727 status = ice_sched_validate_srl_node(node, sel_layer); 2728 if (status) 2729 goto exit_q_bw_lmt; 2730 } 2731 2732 if (bw == ICE_SCHED_DFLT_BW) 2733 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 2734 else 2735 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 2736 2737 if (!status) 2738 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 2739 2740 exit_q_bw_lmt: 2741 mutex_unlock(&pi->sched_lock); 2742 return status; 2743 } 2744 2745 /** 2746 * ice_cfg_q_bw_lmt - configure queue BW limit 2747 * @pi: port information structure 2748 * @vsi_handle: sw VSI handle 2749 * @tc: traffic class 2750 * @q_handle: software queue handle 2751 * @rl_type: min, max, or shared 2752 * @bw: bandwidth in Kbps 2753 * 2754 * This function configures BW limit of queue scheduling node. 2755 */ 2756 enum ice_status 2757 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 2758 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 2759 { 2760 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 2761 bw); 2762 } 2763 2764 /** 2765 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 2766 * @pi: port information structure 2767 * @vsi_handle: sw VSI handle 2768 * @tc: traffic class 2769 * @q_handle: software queue handle 2770 * @rl_type: min, max, or shared 2771 * 2772 * This function configures BW default limit of queue scheduling node. 2773 */ 2774 enum ice_status 2775 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 2776 u16 q_handle, enum ice_rl_type rl_type) 2777 { 2778 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 2779 ICE_SCHED_DFLT_BW); 2780 } 2781 2782 /** 2783 * ice_cfg_rl_burst_size - Set burst size value 2784 * @hw: pointer to the HW struct 2785 * @bytes: burst size in bytes 2786 * 2787 * This function configures/set the burst size to requested new value. The new 2788 * burst size value is used for future rate limit calls. It doesn't change the 2789 * existing or previously created RL profiles. 2790 */ 2791 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 2792 { 2793 u16 burst_size_to_prog; 2794 2795 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 2796 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 2797 return ICE_ERR_PARAM; 2798 if (ice_round_to_num(bytes, 64) <= 2799 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 2800 /* 64 byte granularity case */ 2801 /* Disable MSB granularity bit */ 2802 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 2803 /* round number to nearest 64 byte granularity */ 2804 bytes = ice_round_to_num(bytes, 64); 2805 /* The value is in 64 byte chunks */ 2806 burst_size_to_prog |= (u16)(bytes / 64); 2807 } else { 2808 /* k bytes granularity case */ 2809 /* Enable MSB granularity bit */ 2810 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 2811 /* round number to nearest 1024 granularity */ 2812 bytes = ice_round_to_num(bytes, 1024); 2813 /* check rounding doesn't go beyond allowed */ 2814 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 2815 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 2816 /* The value is in k bytes */ 2817 burst_size_to_prog |= (u16)(bytes / 1024); 2818 } 2819 hw->max_burst_size = burst_size_to_prog; 2820 return 0; 2821 } 2822 2823 /** 2824 * ice_sched_replay_node_prio - re-configure node priority 2825 * @hw: pointer to the HW struct 2826 * @node: sched node to configure 2827 * @priority: priority value 2828 * 2829 * This function configures node element's priority value. It 2830 * needs to be called with scheduler lock held. 2831 */ 2832 static enum ice_status 2833 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 2834 u8 priority) 2835 { 2836 struct ice_aqc_txsched_elem_data buf; 2837 struct ice_aqc_txsched_elem *data; 2838 enum ice_status status; 2839 2840 buf = node->info; 2841 data = &buf.data; 2842 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 2843 data->generic = priority; 2844 2845 /* Configure element */ 2846 status = ice_sched_update_elem(hw, node, &buf); 2847 return status; 2848 } 2849 2850 /** 2851 * ice_sched_replay_node_bw - replay node(s) BW 2852 * @hw: pointer to the HW struct 2853 * @node: sched node to configure 2854 * @bw_t_info: BW type information 2855 * 2856 * This function restores node's BW from bw_t_info. The caller needs 2857 * to hold the scheduler lock. 2858 */ 2859 static enum ice_status 2860 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 2861 struct ice_bw_type_info *bw_t_info) 2862 { 2863 struct ice_port_info *pi = hw->port_info; 2864 enum ice_status status = ICE_ERR_PARAM; 2865 u16 bw_alloc; 2866 2867 if (!node) 2868 return status; 2869 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 2870 return 0; 2871 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 2872 status = ice_sched_replay_node_prio(hw, node, 2873 bw_t_info->generic); 2874 if (status) 2875 return status; 2876 } 2877 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 2878 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 2879 bw_t_info->cir_bw.bw); 2880 if (status) 2881 return status; 2882 } 2883 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 2884 bw_alloc = bw_t_info->cir_bw.bw_alloc; 2885 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 2886 bw_alloc); 2887 if (status) 2888 return status; 2889 } 2890 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 2891 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 2892 bw_t_info->eir_bw.bw); 2893 if (status) 2894 return status; 2895 } 2896 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 2897 bw_alloc = bw_t_info->eir_bw.bw_alloc; 2898 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 2899 bw_alloc); 2900 if (status) 2901 return status; 2902 } 2903 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 2904 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 2905 bw_t_info->shared_bw); 2906 return status; 2907 } 2908 2909 /** 2910 * ice_sched_replay_q_bw - replay queue type node BW 2911 * @pi: port information structure 2912 * @q_ctx: queue context structure 2913 * 2914 * This function replays queue type node bandwidth. This function needs to be 2915 * called with scheduler lock held. 2916 */ 2917 enum ice_status 2918 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 2919 { 2920 struct ice_sched_node *q_node; 2921 2922 /* Following also checks the presence of node in tree */ 2923 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 2924 if (!q_node) 2925 return ICE_ERR_PARAM; 2926 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 2927 } 2928