1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static enum ice_status 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 enum ice_status status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 enum ice_status 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_get_elem *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 enum ice_status 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_sched_node *parent; 153 struct ice_aqc_get_elem elem; 154 struct ice_sched_node *node; 155 enum ice_status status; 156 struct ice_hw *hw; 157 158 if (!pi) 159 return ICE_ERR_PARAM; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, 168 "Parent Node not found for parent_teid=0x%x\n", 169 le32_to_cpu(info->parent_teid)); 170 return ICE_ERR_PARAM; 171 } 172 173 /* query the current node information from FW before additing it 174 * to the SW DB 175 */ 176 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 177 if (status) 178 return status; 179 180 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 181 if (!node) 182 return ICE_ERR_NO_MEMORY; 183 if (hw->max_children[layer]) { 184 /* coverity[suspicious_sizeof] */ 185 node->children = devm_kcalloc(ice_hw_to_dev(hw), 186 hw->max_children[layer], 187 sizeof(*node), GFP_KERNEL); 188 if (!node->children) { 189 devm_kfree(ice_hw_to_dev(hw), node); 190 return ICE_ERR_NO_MEMORY; 191 } 192 } 193 194 node->in_use = true; 195 node->parent = parent; 196 node->tx_sched_layer = layer; 197 parent->children[parent->num_children++] = node; 198 memcpy(&node->info, &elem.generic[0], sizeof(node->info)); 199 return 0; 200 } 201 202 /** 203 * ice_aq_delete_sched_elems - delete scheduler elements 204 * @hw: pointer to the HW struct 205 * @grps_req: number of groups to delete 206 * @buf: pointer to buffer 207 * @buf_size: buffer size in bytes 208 * @grps_del: returns total number of elements deleted 209 * @cd: pointer to command details structure or NULL 210 * 211 * Delete scheduling elements (0x040F) 212 */ 213 static enum ice_status 214 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 215 struct ice_aqc_delete_elem *buf, u16 buf_size, 216 u16 *grps_del, struct ice_sq_cd *cd) 217 { 218 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 219 grps_req, (void *)buf, buf_size, 220 grps_del, cd); 221 } 222 223 /** 224 * ice_sched_remove_elems - remove nodes from HW 225 * @hw: pointer to the HW struct 226 * @parent: pointer to the parent node 227 * @num_nodes: number of nodes 228 * @node_teids: array of node teids to be deleted 229 * 230 * This function remove nodes from HW 231 */ 232 static enum ice_status 233 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 234 u16 num_nodes, u32 *node_teids) 235 { 236 struct ice_aqc_delete_elem *buf; 237 u16 i, num_groups_removed = 0; 238 enum ice_status status; 239 u16 buf_size; 240 241 buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1); 242 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 243 if (!buf) 244 return ICE_ERR_NO_MEMORY; 245 246 buf->hdr.parent_teid = parent->info.node_teid; 247 buf->hdr.num_elems = cpu_to_le16(num_nodes); 248 for (i = 0; i < num_nodes; i++) 249 buf->teid[i] = cpu_to_le32(node_teids[i]); 250 251 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 252 &num_groups_removed, NULL); 253 if (status || num_groups_removed != 1) 254 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 255 hw->adminq.sq_last_status); 256 257 devm_kfree(ice_hw_to_dev(hw), buf); 258 return status; 259 } 260 261 /** 262 * ice_sched_get_first_node - get the first node of the given layer 263 * @hw: pointer to the HW struct 264 * @parent: pointer the base node of the subtree 265 * @layer: layer number 266 * 267 * This function retrieves the first node of the given layer from the subtree 268 */ 269 static struct ice_sched_node * 270 ice_sched_get_first_node(struct ice_hw *hw, struct ice_sched_node *parent, 271 u8 layer) 272 { 273 u8 i; 274 275 if (layer < hw->sw_entry_point_layer) 276 return NULL; 277 for (i = 0; i < parent->num_children; i++) { 278 struct ice_sched_node *node = parent->children[i]; 279 280 if (node) { 281 if (node->tx_sched_layer == layer) 282 return node; 283 /* this recursion is intentional, and wouldn't 284 * go more than 9 calls 285 */ 286 return ice_sched_get_first_node(hw, node, layer); 287 } 288 } 289 return NULL; 290 } 291 292 /** 293 * ice_sched_get_tc_node - get pointer to TC node 294 * @pi: port information structure 295 * @tc: TC number 296 * 297 * This function returns the TC node pointer 298 */ 299 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 300 { 301 u8 i; 302 303 if (!pi) 304 return NULL; 305 for (i = 0; i < pi->root->num_children; i++) 306 if (pi->root->children[i]->tc_num == tc) 307 return pi->root->children[i]; 308 return NULL; 309 } 310 311 /** 312 * ice_free_sched_node - Free a Tx scheduler node from SW DB 313 * @pi: port information structure 314 * @node: pointer to the ice_sched_node struct 315 * 316 * This function frees up a node from SW DB as well as from HW 317 * 318 * This function needs to be called with the port_info->sched_lock held 319 */ 320 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 321 { 322 struct ice_sched_node *parent; 323 struct ice_hw *hw = pi->hw; 324 u8 i, j; 325 326 /* Free the children before freeing up the parent node 327 * The parent array is updated below and that shifts the nodes 328 * in the array. So always pick the first child if num children > 0 329 */ 330 while (node->num_children) 331 ice_free_sched_node(pi, node->children[0]); 332 333 /* Leaf, TC and root nodes can't be deleted by SW */ 334 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 335 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 336 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 337 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 338 u32 teid = le32_to_cpu(node->info.node_teid); 339 340 ice_sched_remove_elems(hw, node->parent, 1, &teid); 341 } 342 parent = node->parent; 343 /* root has no parent */ 344 if (parent) { 345 struct ice_sched_node *p, *tc_node; 346 347 /* update the parent */ 348 for (i = 0; i < parent->num_children; i++) 349 if (parent->children[i] == node) { 350 for (j = i + 1; j < parent->num_children; j++) 351 parent->children[j - 1] = 352 parent->children[j]; 353 parent->num_children--; 354 break; 355 } 356 357 /* search for previous sibling that points to this node and 358 * remove the reference 359 */ 360 tc_node = ice_sched_get_tc_node(pi, node->tc_num); 361 if (!tc_node) { 362 ice_debug(hw, ICE_DBG_SCHED, 363 "Invalid TC number %d\n", node->tc_num); 364 goto err_exit; 365 } 366 p = ice_sched_get_first_node(hw, tc_node, node->tx_sched_layer); 367 while (p) { 368 if (p->sibling == node) { 369 p->sibling = node->sibling; 370 break; 371 } 372 p = p->sibling; 373 } 374 } 375 err_exit: 376 /* leaf nodes have no children */ 377 if (node->children) 378 devm_kfree(ice_hw_to_dev(hw), node->children); 379 devm_kfree(ice_hw_to_dev(hw), node); 380 } 381 382 /** 383 * ice_aq_get_dflt_topo - gets default scheduler topology 384 * @hw: pointer to the HW struct 385 * @lport: logical port number 386 * @buf: pointer to buffer 387 * @buf_size: buffer size in bytes 388 * @num_branches: returns total number of queue to port branches 389 * @cd: pointer to command details structure or NULL 390 * 391 * Get default scheduler topology (0x400) 392 */ 393 static enum ice_status 394 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 395 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 396 u8 *num_branches, struct ice_sq_cd *cd) 397 { 398 struct ice_aqc_get_topo *cmd; 399 struct ice_aq_desc desc; 400 enum ice_status status; 401 402 cmd = &desc.params.get_topo; 403 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 404 cmd->port_num = lport; 405 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 406 if (!status && num_branches) 407 *num_branches = cmd->num_branches; 408 409 return status; 410 } 411 412 /** 413 * ice_aq_add_sched_elems - adds scheduling element 414 * @hw: pointer to the HW struct 415 * @grps_req: the number of groups that are requested to be added 416 * @buf: pointer to buffer 417 * @buf_size: buffer size in bytes 418 * @grps_added: returns total number of groups added 419 * @cd: pointer to command details structure or NULL 420 * 421 * Add scheduling elements (0x0401) 422 */ 423 static enum ice_status 424 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 425 struct ice_aqc_add_elem *buf, u16 buf_size, 426 u16 *grps_added, struct ice_sq_cd *cd) 427 { 428 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 429 grps_req, (void *)buf, buf_size, 430 grps_added, cd); 431 } 432 433 /** 434 * ice_aq_suspend_sched_elems - suspend scheduler elements 435 * @hw: pointer to the HW struct 436 * @elems_req: number of elements to suspend 437 * @buf: pointer to buffer 438 * @buf_size: buffer size in bytes 439 * @elems_ret: returns total number of elements suspended 440 * @cd: pointer to command details structure or NULL 441 * 442 * Suspend scheduling elements (0x0409) 443 */ 444 static enum ice_status 445 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, 446 struct ice_aqc_suspend_resume_elem *buf, 447 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 448 { 449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 450 elems_req, (void *)buf, buf_size, 451 elems_ret, cd); 452 } 453 454 /** 455 * ice_aq_resume_sched_elems - resume scheduler elements 456 * @hw: pointer to the HW struct 457 * @elems_req: number of elements to resume 458 * @buf: pointer to buffer 459 * @buf_size: buffer size in bytes 460 * @elems_ret: returns total number of elements resumed 461 * @cd: pointer to command details structure or NULL 462 * 463 * resume scheduling elements (0x040A) 464 */ 465 static enum ice_status 466 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, 467 struct ice_aqc_suspend_resume_elem *buf, 468 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 469 { 470 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 471 elems_req, (void *)buf, buf_size, 472 elems_ret, cd); 473 } 474 475 /** 476 * ice_aq_query_sched_res - query scheduler resource 477 * @hw: pointer to the HW struct 478 * @buf_size: buffer size in bytes 479 * @buf: pointer to buffer 480 * @cd: pointer to command details structure or NULL 481 * 482 * Query scheduler resource allocation (0x0412) 483 */ 484 static enum ice_status 485 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 486 struct ice_aqc_query_txsched_res_resp *buf, 487 struct ice_sq_cd *cd) 488 { 489 struct ice_aq_desc desc; 490 491 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 492 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 493 } 494 495 /** 496 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 497 * @hw: pointer to the HW struct 498 * @num_nodes: number of nodes 499 * @node_teids: array of node teids to be suspended or resumed 500 * @suspend: true means suspend / false means resume 501 * 502 * This function suspends or resumes HW nodes 503 */ 504 static enum ice_status 505 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 506 bool suspend) 507 { 508 struct ice_aqc_suspend_resume_elem *buf; 509 u16 i, buf_size, num_elem_ret = 0; 510 enum ice_status status; 511 512 buf_size = sizeof(*buf) * num_nodes; 513 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 514 if (!buf) 515 return ICE_ERR_NO_MEMORY; 516 517 for (i = 0; i < num_nodes; i++) 518 buf->teid[i] = cpu_to_le32(node_teids[i]); 519 520 if (suspend) 521 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 522 buf_size, &num_elem_ret, 523 NULL); 524 else 525 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 526 buf_size, &num_elem_ret, 527 NULL); 528 if (status || num_elem_ret != num_nodes) 529 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 530 531 devm_kfree(ice_hw_to_dev(hw), buf); 532 return status; 533 } 534 535 /** 536 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 537 * @hw: pointer to the HW struct 538 * @vsi_handle: VSI handle 539 * @tc: TC number 540 * @new_numqs: number of queues 541 */ 542 static enum ice_status 543 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 544 { 545 struct ice_vsi_ctx *vsi_ctx; 546 struct ice_q_ctx *q_ctx; 547 548 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 549 if (!vsi_ctx) 550 return ICE_ERR_PARAM; 551 /* allocate LAN queue contexts */ 552 if (!vsi_ctx->lan_q_ctx[tc]) { 553 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 554 new_numqs, 555 sizeof(*q_ctx), 556 GFP_KERNEL); 557 if (!vsi_ctx->lan_q_ctx[tc]) 558 return ICE_ERR_NO_MEMORY; 559 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 560 return 0; 561 } 562 /* num queues are increased, update the queue contexts */ 563 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 564 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 565 566 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 567 sizeof(*q_ctx), GFP_KERNEL); 568 if (!q_ctx) 569 return ICE_ERR_NO_MEMORY; 570 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 571 prev_num * sizeof(*q_ctx)); 572 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 573 vsi_ctx->lan_q_ctx[tc] = q_ctx; 574 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 575 } 576 return 0; 577 } 578 579 /** 580 * ice_sched_clear_agg - clears the aggregator related information 581 * @hw: pointer to the hardware structure 582 * 583 * This function removes aggregator list and free up aggregator related memory 584 * previously allocated. 585 */ 586 void ice_sched_clear_agg(struct ice_hw *hw) 587 { 588 struct ice_sched_agg_info *agg_info; 589 struct ice_sched_agg_info *atmp; 590 591 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 592 struct ice_sched_agg_vsi_info *agg_vsi_info; 593 struct ice_sched_agg_vsi_info *vtmp; 594 595 list_for_each_entry_safe(agg_vsi_info, vtmp, 596 &agg_info->agg_vsi_list, list_entry) { 597 list_del(&agg_vsi_info->list_entry); 598 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 599 } 600 list_del(&agg_info->list_entry); 601 devm_kfree(ice_hw_to_dev(hw), agg_info); 602 } 603 } 604 605 /** 606 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 607 * @pi: port information structure 608 * 609 * This function removes all the nodes from HW as well as from SW DB. 610 */ 611 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 612 { 613 if (!pi) 614 return; 615 if (pi->root) { 616 ice_free_sched_node(pi, pi->root); 617 pi->root = NULL; 618 } 619 } 620 621 /** 622 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 623 * @pi: port information structure 624 * 625 * Cleanup scheduling elements from SW DB 626 */ 627 void ice_sched_clear_port(struct ice_port_info *pi) 628 { 629 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 630 return; 631 632 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 633 mutex_lock(&pi->sched_lock); 634 ice_sched_clear_tx_topo(pi); 635 mutex_unlock(&pi->sched_lock); 636 mutex_destroy(&pi->sched_lock); 637 } 638 639 /** 640 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 641 * @hw: pointer to the HW struct 642 * 643 * Cleanup scheduling elements from SW DB for all the ports 644 */ 645 void ice_sched_cleanup_all(struct ice_hw *hw) 646 { 647 if (!hw) 648 return; 649 650 if (hw->layer_info) { 651 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 652 hw->layer_info = NULL; 653 } 654 655 if (hw->port_info) 656 ice_sched_clear_port(hw->port_info); 657 658 hw->num_tx_sched_layers = 0; 659 hw->num_tx_sched_phys_layers = 0; 660 hw->flattened_layers = 0; 661 hw->max_cgds = 0; 662 } 663 664 /** 665 * ice_sched_add_elems - add nodes to HW and SW DB 666 * @pi: port information structure 667 * @tc_node: pointer to the branch node 668 * @parent: pointer to the parent node 669 * @layer: layer number to add nodes 670 * @num_nodes: number of nodes 671 * @num_nodes_added: pointer to num nodes added 672 * @first_node_teid: if new nodes are added then return the TEID of first node 673 * 674 * This function add nodes to HW as well as to SW DB for a given layer 675 */ 676 static enum ice_status 677 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 678 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 679 u16 *num_nodes_added, u32 *first_node_teid) 680 { 681 struct ice_sched_node *prev, *new_node; 682 struct ice_aqc_add_elem *buf; 683 u16 i, num_groups_added = 0; 684 enum ice_status status = 0; 685 struct ice_hw *hw = pi->hw; 686 u16 buf_size; 687 u32 teid; 688 689 buf_size = sizeof(*buf) + sizeof(*buf->generic) * (num_nodes - 1); 690 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 691 if (!buf) 692 return ICE_ERR_NO_MEMORY; 693 694 buf->hdr.parent_teid = parent->info.node_teid; 695 buf->hdr.num_elems = cpu_to_le16(num_nodes); 696 for (i = 0; i < num_nodes; i++) { 697 buf->generic[i].parent_teid = parent->info.node_teid; 698 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 699 buf->generic[i].data.valid_sections = 700 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 701 ICE_AQC_ELEM_VALID_EIR; 702 buf->generic[i].data.generic = 0; 703 buf->generic[i].data.cir_bw.bw_profile_idx = 704 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 705 buf->generic[i].data.cir_bw.bw_alloc = 706 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 707 buf->generic[i].data.eir_bw.bw_profile_idx = 708 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 709 buf->generic[i].data.eir_bw.bw_alloc = 710 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 711 } 712 713 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 714 &num_groups_added, NULL); 715 if (status || num_groups_added != 1) { 716 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 717 hw->adminq.sq_last_status); 718 devm_kfree(ice_hw_to_dev(hw), buf); 719 return ICE_ERR_CFG; 720 } 721 722 *num_nodes_added = num_nodes; 723 /* add nodes to the SW DB */ 724 for (i = 0; i < num_nodes; i++) { 725 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 726 if (status) { 727 ice_debug(hw, ICE_DBG_SCHED, 728 "add nodes in SW DB failed status =%d\n", 729 status); 730 break; 731 } 732 733 teid = le32_to_cpu(buf->generic[i].node_teid); 734 new_node = ice_sched_find_node_by_teid(parent, teid); 735 if (!new_node) { 736 ice_debug(hw, ICE_DBG_SCHED, 737 "Node is missing for teid =%d\n", teid); 738 break; 739 } 740 741 new_node->sibling = NULL; 742 new_node->tc_num = tc_node->tc_num; 743 744 /* add it to previous node sibling pointer */ 745 /* Note: siblings are not linked across branches */ 746 prev = ice_sched_get_first_node(hw, tc_node, layer); 747 if (prev && prev != new_node) { 748 while (prev->sibling) 749 prev = prev->sibling; 750 prev->sibling = new_node; 751 } 752 753 if (i == 0) 754 *first_node_teid = teid; 755 } 756 757 devm_kfree(ice_hw_to_dev(hw), buf); 758 return status; 759 } 760 761 /** 762 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 763 * @pi: port information structure 764 * @tc_node: pointer to TC node 765 * @parent: pointer to parent node 766 * @layer: layer number to add nodes 767 * @num_nodes: number of nodes to be added 768 * @first_node_teid: pointer to the first node TEID 769 * @num_nodes_added: pointer to number of nodes added 770 * 771 * This function add nodes to a given layer. 772 */ 773 static enum ice_status 774 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 775 struct ice_sched_node *tc_node, 776 struct ice_sched_node *parent, u8 layer, 777 u16 num_nodes, u32 *first_node_teid, 778 u16 *num_nodes_added) 779 { 780 u32 *first_teid_ptr = first_node_teid; 781 u16 new_num_nodes, max_child_nodes; 782 enum ice_status status = 0; 783 struct ice_hw *hw = pi->hw; 784 u16 num_added = 0; 785 u32 temp; 786 787 *num_nodes_added = 0; 788 789 if (!num_nodes) 790 return status; 791 792 if (!parent || layer < hw->sw_entry_point_layer) 793 return ICE_ERR_PARAM; 794 795 /* max children per node per layer */ 796 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 797 798 /* current number of children + required nodes exceed max children ? */ 799 if ((parent->num_children + num_nodes) > max_child_nodes) { 800 /* Fail if the parent is a TC node */ 801 if (parent == tc_node) 802 return ICE_ERR_CFG; 803 804 /* utilize all the spaces if the parent is not full */ 805 if (parent->num_children < max_child_nodes) { 806 new_num_nodes = max_child_nodes - parent->num_children; 807 /* this recursion is intentional, and wouldn't 808 * go more than 2 calls 809 */ 810 status = ice_sched_add_nodes_to_layer(pi, tc_node, 811 parent, layer, 812 new_num_nodes, 813 first_node_teid, 814 &num_added); 815 if (status) 816 return status; 817 818 *num_nodes_added += num_added; 819 } 820 /* Don't modify the first node TEID memory if the first node was 821 * added already in the above call. Instead send some temp 822 * memory for all other recursive calls. 823 */ 824 if (num_added) 825 first_teid_ptr = &temp; 826 827 new_num_nodes = num_nodes - num_added; 828 829 /* This parent is full, try the next sibling */ 830 parent = parent->sibling; 831 832 /* this recursion is intentional, for 1024 queues 833 * per VSI, it goes max of 16 iterations. 834 * 1024 / 8 = 128 layer 8 nodes 835 * 128 /8 = 16 (add 8 nodes per iteration) 836 */ 837 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 838 layer, new_num_nodes, 839 first_teid_ptr, 840 &num_added); 841 *num_nodes_added += num_added; 842 return status; 843 } 844 845 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 846 num_nodes_added, first_node_teid); 847 return status; 848 } 849 850 /** 851 * ice_sched_get_qgrp_layer - get the current queue group layer number 852 * @hw: pointer to the HW struct 853 * 854 * This function returns the current queue group layer number 855 */ 856 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 857 { 858 /* It's always total layers - 1, the array is 0 relative so -2 */ 859 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 860 } 861 862 /** 863 * ice_sched_get_vsi_layer - get the current VSI layer number 864 * @hw: pointer to the HW struct 865 * 866 * This function returns the current VSI layer number 867 */ 868 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 869 { 870 /* Num Layers VSI layer 871 * 9 6 872 * 7 4 873 * 5 or less sw_entry_point_layer 874 */ 875 /* calculate the VSI layer based on number of layers. */ 876 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 877 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 878 879 if (layer > hw->sw_entry_point_layer) 880 return layer; 881 } 882 return hw->sw_entry_point_layer; 883 } 884 885 /** 886 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 887 * @pi: port information structure 888 * 889 * This function removes the leaf node that was created by the FW 890 * during initialization 891 */ 892 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 893 { 894 struct ice_sched_node *node; 895 896 node = pi->root; 897 while (node) { 898 if (!node->num_children) 899 break; 900 node = node->children[0]; 901 } 902 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 903 u32 teid = le32_to_cpu(node->info.node_teid); 904 enum ice_status status; 905 906 /* remove the default leaf node */ 907 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 908 if (!status) 909 ice_free_sched_node(pi, node); 910 } 911 } 912 913 /** 914 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 915 * @pi: port information structure 916 * 917 * This function frees all the nodes except root and TC that were created by 918 * the FW during initialization 919 */ 920 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 921 { 922 struct ice_sched_node *node; 923 924 ice_rm_dflt_leaf_node(pi); 925 926 /* remove the default nodes except TC and root nodes */ 927 node = pi->root; 928 while (node) { 929 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 930 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 931 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 932 ice_free_sched_node(pi, node); 933 break; 934 } 935 936 if (!node->num_children) 937 break; 938 node = node->children[0]; 939 } 940 } 941 942 /** 943 * ice_sched_init_port - Initialize scheduler by querying information from FW 944 * @pi: port info structure for the tree to cleanup 945 * 946 * This function is the initial call to find the total number of Tx scheduler 947 * resources, default topology created by firmware and storing the information 948 * in SW DB. 949 */ 950 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 951 { 952 struct ice_aqc_get_topo_elem *buf; 953 enum ice_status status; 954 struct ice_hw *hw; 955 u8 num_branches; 956 u16 num_elems; 957 u8 i, j; 958 959 if (!pi) 960 return ICE_ERR_PARAM; 961 hw = pi->hw; 962 963 /* Query the Default Topology from FW */ 964 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 965 if (!buf) 966 return ICE_ERR_NO_MEMORY; 967 968 /* Query default scheduling tree topology */ 969 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 970 &num_branches, NULL); 971 if (status) 972 goto err_init_port; 973 974 /* num_branches should be between 1-8 */ 975 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 976 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 977 num_branches); 978 status = ICE_ERR_PARAM; 979 goto err_init_port; 980 } 981 982 /* get the number of elements on the default/first branch */ 983 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 984 985 /* num_elems should always be between 1-9 */ 986 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 987 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 988 num_elems); 989 status = ICE_ERR_PARAM; 990 goto err_init_port; 991 } 992 993 /* If the last node is a leaf node then the index of the queue group 994 * layer is two less than the number of elements. 995 */ 996 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 997 ICE_AQC_ELEM_TYPE_LEAF) 998 pi->last_node_teid = 999 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1000 else 1001 pi->last_node_teid = 1002 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1003 1004 /* Insert the Tx Sched root node */ 1005 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1006 if (status) 1007 goto err_init_port; 1008 1009 /* Parse the default tree and cache the information */ 1010 for (i = 0; i < num_branches; i++) { 1011 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1012 1013 /* Skip root element as already inserted */ 1014 for (j = 1; j < num_elems; j++) { 1015 /* update the sw entry point */ 1016 if (buf[0].generic[j].data.elem_type == 1017 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1018 hw->sw_entry_point_layer = j; 1019 1020 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1021 if (status) 1022 goto err_init_port; 1023 } 1024 } 1025 1026 /* Remove the default nodes. */ 1027 if (pi->root) 1028 ice_sched_rm_dflt_nodes(pi); 1029 1030 /* initialize the port for handling the scheduler tree */ 1031 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1032 mutex_init(&pi->sched_lock); 1033 1034 err_init_port: 1035 if (status && pi->root) { 1036 ice_free_sched_node(pi, pi->root); 1037 pi->root = NULL; 1038 } 1039 1040 devm_kfree(ice_hw_to_dev(hw), buf); 1041 return status; 1042 } 1043 1044 /** 1045 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1046 * @hw: pointer to the HW struct 1047 * 1048 * query FW for allocated scheduler resources and store in HW struct 1049 */ 1050 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1051 { 1052 struct ice_aqc_query_txsched_res_resp *buf; 1053 enum ice_status status = 0; 1054 __le16 max_sibl; 1055 u8 i; 1056 1057 if (hw->layer_info) 1058 return status; 1059 1060 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1061 if (!buf) 1062 return ICE_ERR_NO_MEMORY; 1063 1064 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1065 if (status) 1066 goto sched_query_out; 1067 1068 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1069 hw->num_tx_sched_phys_layers = 1070 le16_to_cpu(buf->sched_props.phys_levels); 1071 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1072 hw->max_cgds = buf->sched_props.max_pf_cgds; 1073 1074 /* max sibling group size of current layer refers to the max children 1075 * of the below layer node. 1076 * layer 1 node max children will be layer 2 max sibling group size 1077 * layer 2 node max children will be layer 3 max sibling group size 1078 * and so on. This array will be populated from root (index 0) to 1079 * qgroup layer 7. Leaf node has no children. 1080 */ 1081 for (i = 0; i < hw->num_tx_sched_layers; i++) { 1082 max_sibl = buf->layer_props[i].max_sibl_grp_sz; 1083 hw->max_children[i] = le16_to_cpu(max_sibl); 1084 } 1085 1086 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1087 (hw->num_tx_sched_layers * 1088 sizeof(*hw->layer_info)), 1089 GFP_KERNEL); 1090 if (!hw->layer_info) { 1091 status = ICE_ERR_NO_MEMORY; 1092 goto sched_query_out; 1093 } 1094 1095 sched_query_out: 1096 devm_kfree(ice_hw_to_dev(hw), buf); 1097 return status; 1098 } 1099 1100 /** 1101 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1102 * @hw: pointer to the HW struct 1103 * @base: pointer to the base node 1104 * @node: pointer to the node to search 1105 * 1106 * This function checks whether a given node is part of the base node 1107 * subtree or not 1108 */ 1109 static bool 1110 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1111 struct ice_sched_node *node) 1112 { 1113 u8 i; 1114 1115 for (i = 0; i < base->num_children; i++) { 1116 struct ice_sched_node *child = base->children[i]; 1117 1118 if (node == child) 1119 return true; 1120 1121 if (child->tx_sched_layer > node->tx_sched_layer) 1122 return false; 1123 1124 /* this recursion is intentional, and wouldn't 1125 * go more than 8 calls 1126 */ 1127 if (ice_sched_find_node_in_subtree(hw, child, node)) 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 /** 1134 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1135 * @pi: port information structure 1136 * @vsi_handle: software VSI handle 1137 * @tc: branch number 1138 * @owner: LAN or RDMA 1139 * 1140 * This function retrieves a free LAN or RDMA queue group node 1141 */ 1142 struct ice_sched_node * 1143 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1144 u8 owner) 1145 { 1146 struct ice_sched_node *vsi_node, *qgrp_node = NULL; 1147 struct ice_vsi_ctx *vsi_ctx; 1148 u16 max_children; 1149 u8 qgrp_layer; 1150 1151 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1152 max_children = pi->hw->max_children[qgrp_layer]; 1153 1154 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1155 if (!vsi_ctx) 1156 return NULL; 1157 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1158 /* validate invalid VSI ID */ 1159 if (!vsi_node) 1160 goto lan_q_exit; 1161 1162 /* get the first queue group node from VSI sub-tree */ 1163 qgrp_node = ice_sched_get_first_node(pi->hw, vsi_node, qgrp_layer); 1164 while (qgrp_node) { 1165 /* make sure the qgroup node is part of the VSI subtree */ 1166 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1167 if (qgrp_node->num_children < max_children && 1168 qgrp_node->owner == owner) 1169 break; 1170 qgrp_node = qgrp_node->sibling; 1171 } 1172 1173 lan_q_exit: 1174 return qgrp_node; 1175 } 1176 1177 /** 1178 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1179 * @hw: pointer to the HW struct 1180 * @tc_node: pointer to the TC node 1181 * @vsi_handle: software VSI handle 1182 * 1183 * This function retrieves a VSI node for a given VSI ID from a given 1184 * TC branch 1185 */ 1186 static struct ice_sched_node * 1187 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, 1188 u16 vsi_handle) 1189 { 1190 struct ice_sched_node *node; 1191 u8 vsi_layer; 1192 1193 vsi_layer = ice_sched_get_vsi_layer(hw); 1194 node = ice_sched_get_first_node(hw, tc_node, vsi_layer); 1195 1196 /* Check whether it already exists */ 1197 while (node) { 1198 if (node->vsi_handle == vsi_handle) 1199 return node; 1200 node = node->sibling; 1201 } 1202 1203 return node; 1204 } 1205 1206 /** 1207 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1208 * @hw: pointer to the HW struct 1209 * @num_qs: number of queues 1210 * @num_nodes: num nodes array 1211 * 1212 * This function calculates the number of VSI child nodes based on the 1213 * number of queues. 1214 */ 1215 static void 1216 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1217 { 1218 u16 num = num_qs; 1219 u8 i, qgl, vsil; 1220 1221 qgl = ice_sched_get_qgrp_layer(hw); 1222 vsil = ice_sched_get_vsi_layer(hw); 1223 1224 /* calculate num nodes from queue group to VSI layer */ 1225 for (i = qgl; i > vsil; i--) { 1226 /* round to the next integer if there is a remainder */ 1227 num = DIV_ROUND_UP(num, hw->max_children[i]); 1228 1229 /* need at least one node */ 1230 num_nodes[i] = num ? num : 1; 1231 } 1232 } 1233 1234 /** 1235 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1236 * @pi: port information structure 1237 * @vsi_handle: software VSI handle 1238 * @tc_node: pointer to the TC node 1239 * @num_nodes: pointer to the num nodes that needs to be added per layer 1240 * @owner: node owner (LAN or RDMA) 1241 * 1242 * This function adds the VSI child nodes to tree. It gets called for 1243 * LAN and RDMA separately. 1244 */ 1245 static enum ice_status 1246 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1247 struct ice_sched_node *tc_node, u16 *num_nodes, 1248 u8 owner) 1249 { 1250 struct ice_sched_node *parent, *node; 1251 struct ice_hw *hw = pi->hw; 1252 enum ice_status status; 1253 u32 first_node_teid; 1254 u16 num_added = 0; 1255 u8 i, qgl, vsil; 1256 1257 qgl = ice_sched_get_qgrp_layer(hw); 1258 vsil = ice_sched_get_vsi_layer(hw); 1259 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1260 for (i = vsil + 1; i <= qgl; i++) { 1261 if (!parent) 1262 return ICE_ERR_CFG; 1263 1264 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1265 num_nodes[i], 1266 &first_node_teid, 1267 &num_added); 1268 if (status || num_nodes[i] != num_added) 1269 return ICE_ERR_CFG; 1270 1271 /* The newly added node can be a new parent for the next 1272 * layer nodes 1273 */ 1274 if (num_added) { 1275 parent = ice_sched_find_node_by_teid(tc_node, 1276 first_node_teid); 1277 node = parent; 1278 while (node) { 1279 node->owner = owner; 1280 node = node->sibling; 1281 } 1282 } else { 1283 parent = parent->children[0]; 1284 } 1285 } 1286 1287 return 0; 1288 } 1289 1290 /** 1291 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1292 * @hw: pointer to the HW struct 1293 * @tc_node: pointer to TC node 1294 * @num_nodes: pointer to num nodes array 1295 * 1296 * This function calculates the number of supported nodes needed to add this 1297 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1298 * layers 1299 */ 1300 static void 1301 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, 1302 struct ice_sched_node *tc_node, u16 *num_nodes) 1303 { 1304 struct ice_sched_node *node; 1305 u8 vsil; 1306 int i; 1307 1308 vsil = ice_sched_get_vsi_layer(hw); 1309 for (i = vsil; i >= hw->sw_entry_point_layer; i--) 1310 /* Add intermediate nodes if TC has no children and 1311 * need at least one node for VSI 1312 */ 1313 if (!tc_node->num_children || i == vsil) { 1314 num_nodes[i]++; 1315 } else { 1316 /* If intermediate nodes are reached max children 1317 * then add a new one. 1318 */ 1319 node = ice_sched_get_first_node(hw, tc_node, (u8)i); 1320 /* scan all the siblings */ 1321 while (node) { 1322 if (node->num_children < hw->max_children[i]) 1323 break; 1324 node = node->sibling; 1325 } 1326 1327 /* tree has one intermediate node to add this new VSI. 1328 * So no need to calculate supported nodes for below 1329 * layers. 1330 */ 1331 if (node) 1332 break; 1333 /* all the nodes are full, allocate a new one */ 1334 num_nodes[i]++; 1335 } 1336 } 1337 1338 /** 1339 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1340 * @pi: port information structure 1341 * @vsi_handle: software VSI handle 1342 * @tc_node: pointer to TC node 1343 * @num_nodes: pointer to num nodes array 1344 * 1345 * This function adds the VSI supported nodes into Tx tree including the 1346 * VSI, its parent and intermediate nodes in below layers 1347 */ 1348 static enum ice_status 1349 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1350 struct ice_sched_node *tc_node, u16 *num_nodes) 1351 { 1352 struct ice_sched_node *parent = tc_node; 1353 enum ice_status status; 1354 u32 first_node_teid; 1355 u16 num_added = 0; 1356 u8 i, vsil; 1357 1358 if (!pi) 1359 return ICE_ERR_PARAM; 1360 1361 vsil = ice_sched_get_vsi_layer(pi->hw); 1362 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1363 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1364 i, num_nodes[i], 1365 &first_node_teid, 1366 &num_added); 1367 if (status || num_nodes[i] != num_added) 1368 return ICE_ERR_CFG; 1369 1370 /* The newly added node can be a new parent for the next 1371 * layer nodes 1372 */ 1373 if (num_added) 1374 parent = ice_sched_find_node_by_teid(tc_node, 1375 first_node_teid); 1376 else 1377 parent = parent->children[0]; 1378 1379 if (!parent) 1380 return ICE_ERR_CFG; 1381 1382 if (i == vsil) 1383 parent->vsi_handle = vsi_handle; 1384 } 1385 1386 return 0; 1387 } 1388 1389 /** 1390 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1391 * @pi: port information structure 1392 * @vsi_handle: software VSI handle 1393 * @tc: TC number 1394 * 1395 * This function adds a new VSI into scheduler tree 1396 */ 1397 static enum ice_status 1398 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1399 { 1400 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1401 struct ice_sched_node *tc_node; 1402 struct ice_hw *hw = pi->hw; 1403 1404 tc_node = ice_sched_get_tc_node(pi, tc); 1405 if (!tc_node) 1406 return ICE_ERR_PARAM; 1407 1408 /* calculate number of supported nodes needed for this VSI */ 1409 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); 1410 1411 /* add VSI supported nodes to TC subtree */ 1412 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1413 num_nodes); 1414 } 1415 1416 /** 1417 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1418 * @pi: port information structure 1419 * @vsi_handle: software VSI handle 1420 * @tc: TC number 1421 * @new_numqs: new number of max queues 1422 * @owner: owner of this subtree 1423 * 1424 * This function updates the VSI child nodes based on the number of queues 1425 */ 1426 static enum ice_status 1427 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1428 u8 tc, u16 new_numqs, u8 owner) 1429 { 1430 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1431 struct ice_sched_node *vsi_node; 1432 struct ice_sched_node *tc_node; 1433 struct ice_vsi_ctx *vsi_ctx; 1434 enum ice_status status = 0; 1435 struct ice_hw *hw = pi->hw; 1436 u16 prev_numqs; 1437 1438 tc_node = ice_sched_get_tc_node(pi, tc); 1439 if (!tc_node) 1440 return ICE_ERR_CFG; 1441 1442 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1443 if (!vsi_node) 1444 return ICE_ERR_CFG; 1445 1446 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1447 if (!vsi_ctx) 1448 return ICE_ERR_PARAM; 1449 1450 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1451 /* num queues are not changed or less than the previous number */ 1452 if (new_numqs <= prev_numqs) 1453 return status; 1454 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1455 if (status) 1456 return status; 1457 1458 if (new_numqs) 1459 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1460 /* Keep the max number of queue configuration all the time. Update the 1461 * tree only if number of queues > previous number of queues. This may 1462 * leave some extra nodes in the tree if number of queues < previous 1463 * number but that wouldn't harm anything. Removing those extra nodes 1464 * may complicate the code if those nodes are part of SRL or 1465 * individually rate limited. 1466 */ 1467 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1468 new_num_nodes, owner); 1469 if (status) 1470 return status; 1471 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1472 1473 return 0; 1474 } 1475 1476 /** 1477 * ice_sched_cfg_vsi - configure the new/existing VSI 1478 * @pi: port information structure 1479 * @vsi_handle: software VSI handle 1480 * @tc: TC number 1481 * @maxqs: max number of queues 1482 * @owner: LAN or RDMA 1483 * @enable: TC enabled or disabled 1484 * 1485 * This function adds/updates VSI nodes based on the number of queues. If TC is 1486 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1487 * disabled then suspend the VSI if it is not already. 1488 */ 1489 enum ice_status 1490 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1491 u8 owner, bool enable) 1492 { 1493 struct ice_sched_node *vsi_node, *tc_node; 1494 struct ice_vsi_ctx *vsi_ctx; 1495 enum ice_status status = 0; 1496 struct ice_hw *hw = pi->hw; 1497 1498 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1499 tc_node = ice_sched_get_tc_node(pi, tc); 1500 if (!tc_node) 1501 return ICE_ERR_PARAM; 1502 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1503 if (!vsi_ctx) 1504 return ICE_ERR_PARAM; 1505 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1506 1507 /* suspend the VSI if TC is not enabled */ 1508 if (!enable) { 1509 if (vsi_node && vsi_node->in_use) { 1510 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1511 1512 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1513 true); 1514 if (!status) 1515 vsi_node->in_use = false; 1516 } 1517 return status; 1518 } 1519 1520 /* TC is enabled, if it is a new VSI then add it to the tree */ 1521 if (!vsi_node) { 1522 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1523 if (status) 1524 return status; 1525 1526 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1527 if (!vsi_node) 1528 return ICE_ERR_CFG; 1529 1530 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1531 vsi_node->in_use = true; 1532 /* invalidate the max queues whenever VSI gets added first time 1533 * into the scheduler tree (boot or after reset). We need to 1534 * recreate the child nodes all the time in these cases. 1535 */ 1536 vsi_ctx->sched.max_lanq[tc] = 0; 1537 } 1538 1539 /* update the VSI child nodes */ 1540 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1541 owner); 1542 if (status) 1543 return status; 1544 1545 /* TC is enabled, resume the VSI if it is in the suspend state */ 1546 if (!vsi_node->in_use) { 1547 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1548 1549 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1550 if (!status) 1551 vsi_node->in_use = true; 1552 } 1553 1554 return status; 1555 } 1556 1557 /** 1558 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry 1559 * @pi: port information structure 1560 * @vsi_handle: software VSI handle 1561 * 1562 * This function removes single aggregator VSI info entry from 1563 * aggregator list. 1564 */ 1565 static void 1566 ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1567 { 1568 struct ice_sched_agg_info *agg_info; 1569 struct ice_sched_agg_info *atmp; 1570 1571 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1572 list_entry) { 1573 struct ice_sched_agg_vsi_info *agg_vsi_info; 1574 struct ice_sched_agg_vsi_info *vtmp; 1575 1576 list_for_each_entry_safe(agg_vsi_info, vtmp, 1577 &agg_info->agg_vsi_list, list_entry) 1578 if (agg_vsi_info->vsi_handle == vsi_handle) { 1579 list_del(&agg_vsi_info->list_entry); 1580 devm_kfree(ice_hw_to_dev(pi->hw), 1581 agg_vsi_info); 1582 return; 1583 } 1584 } 1585 } 1586 1587 /** 1588 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1589 * @node: pointer to the sub-tree node 1590 * 1591 * This function checks for a leaf node presence in a given sub-tree node. 1592 */ 1593 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1594 { 1595 u8 i; 1596 1597 for (i = 0; i < node->num_children; i++) 1598 if (ice_sched_is_leaf_node_present(node->children[i])) 1599 return true; 1600 /* check for a leaf node */ 1601 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1602 } 1603 1604 /** 1605 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1606 * @pi: port information structure 1607 * @vsi_handle: software VSI handle 1608 * @owner: LAN or RDMA 1609 * 1610 * This function removes the VSI and its LAN or RDMA children nodes from the 1611 * scheduler tree. 1612 */ 1613 static enum ice_status 1614 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1615 { 1616 enum ice_status status = ICE_ERR_PARAM; 1617 struct ice_vsi_ctx *vsi_ctx; 1618 u8 i; 1619 1620 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 1621 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 1622 return status; 1623 mutex_lock(&pi->sched_lock); 1624 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1625 if (!vsi_ctx) 1626 goto exit_sched_rm_vsi_cfg; 1627 1628 ice_for_each_traffic_class(i) { 1629 struct ice_sched_node *vsi_node, *tc_node; 1630 u8 j = 0; 1631 1632 tc_node = ice_sched_get_tc_node(pi, i); 1633 if (!tc_node) 1634 continue; 1635 1636 vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle); 1637 if (!vsi_node) 1638 continue; 1639 1640 if (ice_sched_is_leaf_node_present(vsi_node)) { 1641 ice_debug(pi->hw, ICE_DBG_SCHED, 1642 "VSI has leaf nodes in TC %d\n", i); 1643 status = ICE_ERR_IN_USE; 1644 goto exit_sched_rm_vsi_cfg; 1645 } 1646 while (j < vsi_node->num_children) { 1647 if (vsi_node->children[j]->owner == owner) { 1648 ice_free_sched_node(pi, vsi_node->children[j]); 1649 1650 /* reset the counter again since the num 1651 * children will be updated after node removal 1652 */ 1653 j = 0; 1654 } else { 1655 j++; 1656 } 1657 } 1658 /* remove the VSI if it has no children */ 1659 if (!vsi_node->num_children) { 1660 ice_free_sched_node(pi, vsi_node); 1661 vsi_ctx->sched.vsi_node[i] = NULL; 1662 1663 /* clean up aggregator related VSI info if any */ 1664 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 1665 } 1666 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1667 vsi_ctx->sched.max_lanq[i] = 0; 1668 } 1669 status = 0; 1670 1671 exit_sched_rm_vsi_cfg: 1672 mutex_unlock(&pi->sched_lock); 1673 return status; 1674 } 1675 1676 /** 1677 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 1678 * @pi: port information structure 1679 * @vsi_handle: software VSI handle 1680 * 1681 * This function clears the VSI and its LAN children nodes from scheduler tree 1682 * for all TCs. 1683 */ 1684 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 1685 { 1686 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 1687 } 1688