1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static enum ice_status 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 enum ice_status status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 enum ice_status 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 enum ice_status 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_aqc_txsched_elem_data elem; 153 struct ice_sched_node *parent; 154 struct ice_sched_node *node; 155 enum ice_status status; 156 struct ice_hw *hw; 157 158 if (!pi) 159 return ICE_ERR_PARAM; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 168 le32_to_cpu(info->parent_teid)); 169 return ICE_ERR_PARAM; 170 } 171 172 /* query the current node information from FW before adding it 173 * to the SW DB 174 */ 175 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 176 if (status) 177 return status; 178 179 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 180 if (!node) 181 return ICE_ERR_NO_MEMORY; 182 if (hw->max_children[layer]) { 183 /* coverity[suspicious_sizeof] */ 184 node->children = devm_kcalloc(ice_hw_to_dev(hw), 185 hw->max_children[layer], 186 sizeof(*node), GFP_KERNEL); 187 if (!node->children) { 188 devm_kfree(ice_hw_to_dev(hw), node); 189 return ICE_ERR_NO_MEMORY; 190 } 191 } 192 193 node->in_use = true; 194 node->parent = parent; 195 node->tx_sched_layer = layer; 196 parent->children[parent->num_children++] = node; 197 node->info = elem; 198 return 0; 199 } 200 201 /** 202 * ice_aq_delete_sched_elems - delete scheduler elements 203 * @hw: pointer to the HW struct 204 * @grps_req: number of groups to delete 205 * @buf: pointer to buffer 206 * @buf_size: buffer size in bytes 207 * @grps_del: returns total number of elements deleted 208 * @cd: pointer to command details structure or NULL 209 * 210 * Delete scheduling elements (0x040F) 211 */ 212 static enum ice_status 213 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 214 struct ice_aqc_delete_elem *buf, u16 buf_size, 215 u16 *grps_del, struct ice_sq_cd *cd) 216 { 217 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 218 grps_req, (void *)buf, buf_size, 219 grps_del, cd); 220 } 221 222 /** 223 * ice_sched_remove_elems - remove nodes from HW 224 * @hw: pointer to the HW struct 225 * @parent: pointer to the parent node 226 * @num_nodes: number of nodes 227 * @node_teids: array of node teids to be deleted 228 * 229 * This function remove nodes from HW 230 */ 231 static enum ice_status 232 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 233 u16 num_nodes, u32 *node_teids) 234 { 235 struct ice_aqc_delete_elem *buf; 236 u16 i, num_groups_removed = 0; 237 enum ice_status status; 238 u16 buf_size; 239 240 buf_size = struct_size(buf, teid, num_nodes); 241 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 242 if (!buf) 243 return ICE_ERR_NO_MEMORY; 244 245 buf->hdr.parent_teid = parent->info.node_teid; 246 buf->hdr.num_elems = cpu_to_le16(num_nodes); 247 for (i = 0; i < num_nodes; i++) 248 buf->teid[i] = cpu_to_le32(node_teids[i]); 249 250 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 251 &num_groups_removed, NULL); 252 if (status || num_groups_removed != 1) 253 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 254 hw->adminq.sq_last_status); 255 256 devm_kfree(ice_hw_to_dev(hw), buf); 257 return status; 258 } 259 260 /** 261 * ice_sched_get_first_node - get the first node of the given layer 262 * @pi: port information structure 263 * @parent: pointer the base node of the subtree 264 * @layer: layer number 265 * 266 * This function retrieves the first node of the given layer from the subtree 267 */ 268 static struct ice_sched_node * 269 ice_sched_get_first_node(struct ice_port_info *pi, 270 struct ice_sched_node *parent, u8 layer) 271 { 272 return pi->sib_head[parent->tc_num][layer]; 273 } 274 275 /** 276 * ice_sched_get_tc_node - get pointer to TC node 277 * @pi: port information structure 278 * @tc: TC number 279 * 280 * This function returns the TC node pointer 281 */ 282 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 283 { 284 u8 i; 285 286 if (!pi || !pi->root) 287 return NULL; 288 for (i = 0; i < pi->root->num_children; i++) 289 if (pi->root->children[i]->tc_num == tc) 290 return pi->root->children[i]; 291 return NULL; 292 } 293 294 /** 295 * ice_free_sched_node - Free a Tx scheduler node from SW DB 296 * @pi: port information structure 297 * @node: pointer to the ice_sched_node struct 298 * 299 * This function frees up a node from SW DB as well as from HW 300 * 301 * This function needs to be called with the port_info->sched_lock held 302 */ 303 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 304 { 305 struct ice_sched_node *parent; 306 struct ice_hw *hw = pi->hw; 307 u8 i, j; 308 309 /* Free the children before freeing up the parent node 310 * The parent array is updated below and that shifts the nodes 311 * in the array. So always pick the first child if num children > 0 312 */ 313 while (node->num_children) 314 ice_free_sched_node(pi, node->children[0]); 315 316 /* Leaf, TC and root nodes can't be deleted by SW */ 317 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 318 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 321 u32 teid = le32_to_cpu(node->info.node_teid); 322 323 ice_sched_remove_elems(hw, node->parent, 1, &teid); 324 } 325 parent = node->parent; 326 /* root has no parent */ 327 if (parent) { 328 struct ice_sched_node *p; 329 330 /* update the parent */ 331 for (i = 0; i < parent->num_children; i++) 332 if (parent->children[i] == node) { 333 for (j = i + 1; j < parent->num_children; j++) 334 parent->children[j - 1] = 335 parent->children[j]; 336 parent->num_children--; 337 break; 338 } 339 340 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 341 while (p) { 342 if (p->sibling == node) { 343 p->sibling = node->sibling; 344 break; 345 } 346 p = p->sibling; 347 } 348 349 /* update the sibling head if head is getting removed */ 350 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 351 pi->sib_head[node->tc_num][node->tx_sched_layer] = 352 node->sibling; 353 } 354 355 /* leaf nodes have no children */ 356 if (node->children) 357 devm_kfree(ice_hw_to_dev(hw), node->children); 358 devm_kfree(ice_hw_to_dev(hw), node); 359 } 360 361 /** 362 * ice_aq_get_dflt_topo - gets default scheduler topology 363 * @hw: pointer to the HW struct 364 * @lport: logical port number 365 * @buf: pointer to buffer 366 * @buf_size: buffer size in bytes 367 * @num_branches: returns total number of queue to port branches 368 * @cd: pointer to command details structure or NULL 369 * 370 * Get default scheduler topology (0x400) 371 */ 372 static enum ice_status 373 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 374 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 375 u8 *num_branches, struct ice_sq_cd *cd) 376 { 377 struct ice_aqc_get_topo *cmd; 378 struct ice_aq_desc desc; 379 enum ice_status status; 380 381 cmd = &desc.params.get_topo; 382 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 383 cmd->port_num = lport; 384 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 385 if (!status && num_branches) 386 *num_branches = cmd->num_branches; 387 388 return status; 389 } 390 391 /** 392 * ice_aq_add_sched_elems - adds scheduling element 393 * @hw: pointer to the HW struct 394 * @grps_req: the number of groups that are requested to be added 395 * @buf: pointer to buffer 396 * @buf_size: buffer size in bytes 397 * @grps_added: returns total number of groups added 398 * @cd: pointer to command details structure or NULL 399 * 400 * Add scheduling elements (0x0401) 401 */ 402 static enum ice_status 403 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 404 struct ice_aqc_add_elem *buf, u16 buf_size, 405 u16 *grps_added, struct ice_sq_cd *cd) 406 { 407 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 408 grps_req, (void *)buf, buf_size, 409 grps_added, cd); 410 } 411 412 /** 413 * ice_aq_cfg_sched_elems - configures scheduler elements 414 * @hw: pointer to the HW struct 415 * @elems_req: number of elements to configure 416 * @buf: pointer to buffer 417 * @buf_size: buffer size in bytes 418 * @elems_cfgd: returns total number of elements configured 419 * @cd: pointer to command details structure or NULL 420 * 421 * Configure scheduling elements (0x0403) 422 */ 423 static enum ice_status 424 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 425 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 426 u16 *elems_cfgd, struct ice_sq_cd *cd) 427 { 428 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 429 elems_req, (void *)buf, buf_size, 430 elems_cfgd, cd); 431 } 432 433 /** 434 * ice_aq_move_sched_elems - move scheduler elements 435 * @hw: pointer to the HW struct 436 * @grps_req: number of groups to move 437 * @buf: pointer to buffer 438 * @buf_size: buffer size in bytes 439 * @grps_movd: returns total number of groups moved 440 * @cd: pointer to command details structure or NULL 441 * 442 * Move scheduling elements (0x0408) 443 */ 444 static enum ice_status 445 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 446 struct ice_aqc_move_elem *buf, u16 buf_size, 447 u16 *grps_movd, struct ice_sq_cd *cd) 448 { 449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 450 grps_req, (void *)buf, buf_size, 451 grps_movd, cd); 452 } 453 454 /** 455 * ice_aq_suspend_sched_elems - suspend scheduler elements 456 * @hw: pointer to the HW struct 457 * @elems_req: number of elements to suspend 458 * @buf: pointer to buffer 459 * @buf_size: buffer size in bytes 460 * @elems_ret: returns total number of elements suspended 461 * @cd: pointer to command details structure or NULL 462 * 463 * Suspend scheduling elements (0x0409) 464 */ 465 static enum ice_status 466 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 467 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 468 { 469 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 470 elems_req, (void *)buf, buf_size, 471 elems_ret, cd); 472 } 473 474 /** 475 * ice_aq_resume_sched_elems - resume scheduler elements 476 * @hw: pointer to the HW struct 477 * @elems_req: number of elements to resume 478 * @buf: pointer to buffer 479 * @buf_size: buffer size in bytes 480 * @elems_ret: returns total number of elements resumed 481 * @cd: pointer to command details structure or NULL 482 * 483 * resume scheduling elements (0x040A) 484 */ 485 static enum ice_status 486 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 487 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 488 { 489 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 490 elems_req, (void *)buf, buf_size, 491 elems_ret, cd); 492 } 493 494 /** 495 * ice_aq_query_sched_res - query scheduler resource 496 * @hw: pointer to the HW struct 497 * @buf_size: buffer size in bytes 498 * @buf: pointer to buffer 499 * @cd: pointer to command details structure or NULL 500 * 501 * Query scheduler resource allocation (0x0412) 502 */ 503 static enum ice_status 504 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 505 struct ice_aqc_query_txsched_res_resp *buf, 506 struct ice_sq_cd *cd) 507 { 508 struct ice_aq_desc desc; 509 510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 511 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 512 } 513 514 /** 515 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 516 * @hw: pointer to the HW struct 517 * @num_nodes: number of nodes 518 * @node_teids: array of node teids to be suspended or resumed 519 * @suspend: true means suspend / false means resume 520 * 521 * This function suspends or resumes HW nodes 522 */ 523 static enum ice_status 524 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 525 bool suspend) 526 { 527 u16 i, buf_size, num_elem_ret = 0; 528 enum ice_status status; 529 __le32 *buf; 530 531 buf_size = sizeof(*buf) * num_nodes; 532 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 533 if (!buf) 534 return ICE_ERR_NO_MEMORY; 535 536 for (i = 0; i < num_nodes; i++) 537 buf[i] = cpu_to_le32(node_teids[i]); 538 539 if (suspend) 540 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 541 buf_size, &num_elem_ret, 542 NULL); 543 else 544 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 545 buf_size, &num_elem_ret, 546 NULL); 547 if (status || num_elem_ret != num_nodes) 548 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 549 550 devm_kfree(ice_hw_to_dev(hw), buf); 551 return status; 552 } 553 554 /** 555 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 556 * @hw: pointer to the HW struct 557 * @vsi_handle: VSI handle 558 * @tc: TC number 559 * @new_numqs: number of queues 560 */ 561 static enum ice_status 562 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 563 { 564 struct ice_vsi_ctx *vsi_ctx; 565 struct ice_q_ctx *q_ctx; 566 567 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 568 if (!vsi_ctx) 569 return ICE_ERR_PARAM; 570 /* allocate LAN queue contexts */ 571 if (!vsi_ctx->lan_q_ctx[tc]) { 572 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 573 new_numqs, 574 sizeof(*q_ctx), 575 GFP_KERNEL); 576 if (!vsi_ctx->lan_q_ctx[tc]) 577 return ICE_ERR_NO_MEMORY; 578 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 579 return 0; 580 } 581 /* num queues are increased, update the queue contexts */ 582 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 583 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 584 585 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 586 sizeof(*q_ctx), GFP_KERNEL); 587 if (!q_ctx) 588 return ICE_ERR_NO_MEMORY; 589 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 590 prev_num * sizeof(*q_ctx)); 591 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 592 vsi_ctx->lan_q_ctx[tc] = q_ctx; 593 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 594 } 595 return 0; 596 } 597 598 /** 599 * ice_aq_rl_profile - performs a rate limiting task 600 * @hw: pointer to the HW struct 601 * @opcode: opcode for add, query, or remove profile(s) 602 * @num_profiles: the number of profiles 603 * @buf: pointer to buffer 604 * @buf_size: buffer size in bytes 605 * @num_processed: number of processed add or remove profile(s) to return 606 * @cd: pointer to command details structure 607 * 608 * RL profile function to add, query, or remove profile(s) 609 */ 610 static enum ice_status 611 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 612 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 613 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 614 { 615 struct ice_aqc_rl_profile *cmd; 616 struct ice_aq_desc desc; 617 enum ice_status status; 618 619 cmd = &desc.params.rl_profile; 620 621 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 622 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 623 cmd->num_profiles = cpu_to_le16(num_profiles); 624 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 625 if (!status && num_processed) 626 *num_processed = le16_to_cpu(cmd->num_processed); 627 return status; 628 } 629 630 /** 631 * ice_aq_add_rl_profile - adds rate limiting profile(s) 632 * @hw: pointer to the HW struct 633 * @num_profiles: the number of profile(s) to be add 634 * @buf: pointer to buffer 635 * @buf_size: buffer size in bytes 636 * @num_profiles_added: total number of profiles added to return 637 * @cd: pointer to command details structure 638 * 639 * Add RL profile (0x0410) 640 */ 641 static enum ice_status 642 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 643 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 644 u16 *num_profiles_added, struct ice_sq_cd *cd) 645 { 646 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 647 buf, buf_size, num_profiles_added, cd); 648 } 649 650 /** 651 * ice_aq_remove_rl_profile - removes RL profile(s) 652 * @hw: pointer to the HW struct 653 * @num_profiles: the number of profile(s) to remove 654 * @buf: pointer to buffer 655 * @buf_size: buffer size in bytes 656 * @num_profiles_removed: total number of profiles removed to return 657 * @cd: pointer to command details structure or NULL 658 * 659 * Remove RL profile (0x0415) 660 */ 661 static enum ice_status 662 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 663 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 664 u16 *num_profiles_removed, struct ice_sq_cd *cd) 665 { 666 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 667 num_profiles, buf, buf_size, 668 num_profiles_removed, cd); 669 } 670 671 /** 672 * ice_sched_del_rl_profile - remove RL profile 673 * @hw: pointer to the HW struct 674 * @rl_info: rate limit profile information 675 * 676 * If the profile ID is not referenced anymore, it removes profile ID with 677 * its associated parameters from HW DB,and locally. The caller needs to 678 * hold scheduler lock. 679 */ 680 static enum ice_status 681 ice_sched_del_rl_profile(struct ice_hw *hw, 682 struct ice_aqc_rl_profile_info *rl_info) 683 { 684 struct ice_aqc_rl_profile_elem *buf; 685 u16 num_profiles_removed; 686 enum ice_status status; 687 u16 num_profiles = 1; 688 689 if (rl_info->prof_id_ref != 0) 690 return ICE_ERR_IN_USE; 691 692 /* Safe to remove profile ID */ 693 buf = &rl_info->profile; 694 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 695 &num_profiles_removed, NULL); 696 if (status || num_profiles_removed != num_profiles) 697 return ICE_ERR_CFG; 698 699 /* Delete stale entry now */ 700 list_del(&rl_info->list_entry); 701 devm_kfree(ice_hw_to_dev(hw), rl_info); 702 return status; 703 } 704 705 /** 706 * ice_sched_clear_rl_prof - clears RL prof entries 707 * @pi: port information structure 708 * 709 * This function removes all RL profile from HW as well as from SW DB. 710 */ 711 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 712 { 713 u16 ln; 714 715 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 716 struct ice_aqc_rl_profile_info *rl_prof_elem; 717 struct ice_aqc_rl_profile_info *rl_prof_tmp; 718 719 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 720 &pi->rl_prof_list[ln], list_entry) { 721 struct ice_hw *hw = pi->hw; 722 enum ice_status status; 723 724 rl_prof_elem->prof_id_ref = 0; 725 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 726 if (status) { 727 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 728 /* On error, free mem required */ 729 list_del(&rl_prof_elem->list_entry); 730 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 731 } 732 } 733 } 734 } 735 736 /** 737 * ice_sched_clear_agg - clears the aggregator related information 738 * @hw: pointer to the hardware structure 739 * 740 * This function removes aggregator list and free up aggregator related memory 741 * previously allocated. 742 */ 743 void ice_sched_clear_agg(struct ice_hw *hw) 744 { 745 struct ice_sched_agg_info *agg_info; 746 struct ice_sched_agg_info *atmp; 747 748 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 749 struct ice_sched_agg_vsi_info *agg_vsi_info; 750 struct ice_sched_agg_vsi_info *vtmp; 751 752 list_for_each_entry_safe(agg_vsi_info, vtmp, 753 &agg_info->agg_vsi_list, list_entry) { 754 list_del(&agg_vsi_info->list_entry); 755 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 756 } 757 list_del(&agg_info->list_entry); 758 devm_kfree(ice_hw_to_dev(hw), agg_info); 759 } 760 } 761 762 /** 763 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 764 * @pi: port information structure 765 * 766 * This function removes all the nodes from HW as well as from SW DB. 767 */ 768 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 769 { 770 if (!pi) 771 return; 772 /* remove RL profiles related lists */ 773 ice_sched_clear_rl_prof(pi); 774 if (pi->root) { 775 ice_free_sched_node(pi, pi->root); 776 pi->root = NULL; 777 } 778 } 779 780 /** 781 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 782 * @pi: port information structure 783 * 784 * Cleanup scheduling elements from SW DB 785 */ 786 void ice_sched_clear_port(struct ice_port_info *pi) 787 { 788 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 789 return; 790 791 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 792 mutex_lock(&pi->sched_lock); 793 ice_sched_clear_tx_topo(pi); 794 mutex_unlock(&pi->sched_lock); 795 mutex_destroy(&pi->sched_lock); 796 } 797 798 /** 799 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 800 * @hw: pointer to the HW struct 801 * 802 * Cleanup scheduling elements from SW DB for all the ports 803 */ 804 void ice_sched_cleanup_all(struct ice_hw *hw) 805 { 806 if (!hw) 807 return; 808 809 if (hw->layer_info) { 810 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 811 hw->layer_info = NULL; 812 } 813 814 ice_sched_clear_port(hw->port_info); 815 816 hw->num_tx_sched_layers = 0; 817 hw->num_tx_sched_phys_layers = 0; 818 hw->flattened_layers = 0; 819 hw->max_cgds = 0; 820 } 821 822 /** 823 * ice_sched_add_elems - add nodes to HW and SW DB 824 * @pi: port information structure 825 * @tc_node: pointer to the branch node 826 * @parent: pointer to the parent node 827 * @layer: layer number to add nodes 828 * @num_nodes: number of nodes 829 * @num_nodes_added: pointer to num nodes added 830 * @first_node_teid: if new nodes are added then return the TEID of first node 831 * 832 * This function add nodes to HW as well as to SW DB for a given layer 833 */ 834 static enum ice_status 835 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 836 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 837 u16 *num_nodes_added, u32 *first_node_teid) 838 { 839 struct ice_sched_node *prev, *new_node; 840 struct ice_aqc_add_elem *buf; 841 u16 i, num_groups_added = 0; 842 enum ice_status status = 0; 843 struct ice_hw *hw = pi->hw; 844 size_t buf_size; 845 u32 teid; 846 847 buf_size = struct_size(buf, generic, num_nodes); 848 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 849 if (!buf) 850 return ICE_ERR_NO_MEMORY; 851 852 buf->hdr.parent_teid = parent->info.node_teid; 853 buf->hdr.num_elems = cpu_to_le16(num_nodes); 854 for (i = 0; i < num_nodes; i++) { 855 buf->generic[i].parent_teid = parent->info.node_teid; 856 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 857 buf->generic[i].data.valid_sections = 858 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 859 ICE_AQC_ELEM_VALID_EIR; 860 buf->generic[i].data.generic = 0; 861 buf->generic[i].data.cir_bw.bw_profile_idx = 862 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 863 buf->generic[i].data.cir_bw.bw_alloc = 864 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 865 buf->generic[i].data.eir_bw.bw_profile_idx = 866 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 867 buf->generic[i].data.eir_bw.bw_alloc = 868 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 869 } 870 871 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 872 &num_groups_added, NULL); 873 if (status || num_groups_added != 1) { 874 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 875 hw->adminq.sq_last_status); 876 devm_kfree(ice_hw_to_dev(hw), buf); 877 return ICE_ERR_CFG; 878 } 879 880 *num_nodes_added = num_nodes; 881 /* add nodes to the SW DB */ 882 for (i = 0; i < num_nodes; i++) { 883 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 884 if (status) { 885 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 886 status); 887 break; 888 } 889 890 teid = le32_to_cpu(buf->generic[i].node_teid); 891 new_node = ice_sched_find_node_by_teid(parent, teid); 892 if (!new_node) { 893 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 894 break; 895 } 896 897 new_node->sibling = NULL; 898 new_node->tc_num = tc_node->tc_num; 899 900 /* add it to previous node sibling pointer */ 901 /* Note: siblings are not linked across branches */ 902 prev = ice_sched_get_first_node(pi, tc_node, layer); 903 if (prev && prev != new_node) { 904 while (prev->sibling) 905 prev = prev->sibling; 906 prev->sibling = new_node; 907 } 908 909 /* initialize the sibling head */ 910 if (!pi->sib_head[tc_node->tc_num][layer]) 911 pi->sib_head[tc_node->tc_num][layer] = new_node; 912 913 if (i == 0) 914 *first_node_teid = teid; 915 } 916 917 devm_kfree(ice_hw_to_dev(hw), buf); 918 return status; 919 } 920 921 /** 922 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 923 * @pi: port information structure 924 * @tc_node: pointer to TC node 925 * @parent: pointer to parent node 926 * @layer: layer number to add nodes 927 * @num_nodes: number of nodes to be added 928 * @first_node_teid: pointer to the first node TEID 929 * @num_nodes_added: pointer to number of nodes added 930 * 931 * Add nodes into specific HW layer. 932 */ 933 static enum ice_status 934 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 935 struct ice_sched_node *tc_node, 936 struct ice_sched_node *parent, u8 layer, 937 u16 num_nodes, u32 *first_node_teid, 938 u16 *num_nodes_added) 939 { 940 u16 max_child_nodes; 941 942 *num_nodes_added = 0; 943 944 if (!num_nodes) 945 return 0; 946 947 if (!parent || layer < pi->hw->sw_entry_point_layer) 948 return ICE_ERR_PARAM; 949 950 /* max children per node per layer */ 951 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 952 953 /* current number of children + required nodes exceed max children */ 954 if ((parent->num_children + num_nodes) > max_child_nodes) { 955 /* Fail if the parent is a TC node */ 956 if (parent == tc_node) 957 return ICE_ERR_CFG; 958 return ICE_ERR_MAX_LIMIT; 959 } 960 961 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 962 num_nodes_added, first_node_teid); 963 } 964 965 /** 966 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 967 * @pi: port information structure 968 * @tc_node: pointer to TC node 969 * @parent: pointer to parent node 970 * @layer: layer number to add nodes 971 * @num_nodes: number of nodes to be added 972 * @first_node_teid: pointer to the first node TEID 973 * @num_nodes_added: pointer to number of nodes added 974 * 975 * This function add nodes to a given layer. 976 */ 977 static enum ice_status 978 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 979 struct ice_sched_node *tc_node, 980 struct ice_sched_node *parent, u8 layer, 981 u16 num_nodes, u32 *first_node_teid, 982 u16 *num_nodes_added) 983 { 984 u32 *first_teid_ptr = first_node_teid; 985 u16 new_num_nodes = num_nodes; 986 enum ice_status status = 0; 987 988 *num_nodes_added = 0; 989 while (*num_nodes_added < num_nodes) { 990 u16 max_child_nodes, num_added = 0; 991 /* cppcheck-suppress unusedVariable */ 992 u32 temp; 993 994 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 995 layer, new_num_nodes, 996 first_teid_ptr, 997 &num_added); 998 if (!status) 999 *num_nodes_added += num_added; 1000 /* added more nodes than requested ? */ 1001 if (*num_nodes_added > num_nodes) { 1002 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1003 *num_nodes_added); 1004 status = ICE_ERR_CFG; 1005 break; 1006 } 1007 /* break if all the nodes are added successfully */ 1008 if (!status && (*num_nodes_added == num_nodes)) 1009 break; 1010 /* break if the error is not max limit */ 1011 if (status && status != ICE_ERR_MAX_LIMIT) 1012 break; 1013 /* Exceeded the max children */ 1014 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1015 /* utilize all the spaces if the parent is not full */ 1016 if (parent->num_children < max_child_nodes) { 1017 new_num_nodes = max_child_nodes - parent->num_children; 1018 } else { 1019 /* This parent is full, try the next sibling */ 1020 parent = parent->sibling; 1021 /* Don't modify the first node TEID memory if the 1022 * first node was added already in the above call. 1023 * Instead send some temp memory for all other 1024 * recursive calls. 1025 */ 1026 if (num_added) 1027 first_teid_ptr = &temp; 1028 1029 new_num_nodes = num_nodes - *num_nodes_added; 1030 } 1031 } 1032 return status; 1033 } 1034 1035 /** 1036 * ice_sched_get_qgrp_layer - get the current queue group layer number 1037 * @hw: pointer to the HW struct 1038 * 1039 * This function returns the current queue group layer number 1040 */ 1041 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1042 { 1043 /* It's always total layers - 1, the array is 0 relative so -2 */ 1044 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1045 } 1046 1047 /** 1048 * ice_sched_get_vsi_layer - get the current VSI layer number 1049 * @hw: pointer to the HW struct 1050 * 1051 * This function returns the current VSI layer number 1052 */ 1053 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1054 { 1055 /* Num Layers VSI layer 1056 * 9 6 1057 * 7 4 1058 * 5 or less sw_entry_point_layer 1059 */ 1060 /* calculate the VSI layer based on number of layers. */ 1061 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1062 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1063 1064 if (layer > hw->sw_entry_point_layer) 1065 return layer; 1066 } 1067 return hw->sw_entry_point_layer; 1068 } 1069 1070 /** 1071 * ice_sched_get_agg_layer - get the current aggregator layer number 1072 * @hw: pointer to the HW struct 1073 * 1074 * This function returns the current aggregator layer number 1075 */ 1076 static u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1077 { 1078 /* Num Layers aggregator layer 1079 * 9 4 1080 * 7 or less sw_entry_point_layer 1081 */ 1082 /* calculate the aggregator layer based on number of layers. */ 1083 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1084 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1085 1086 if (layer > hw->sw_entry_point_layer) 1087 return layer; 1088 } 1089 return hw->sw_entry_point_layer; 1090 } 1091 1092 /** 1093 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1094 * @pi: port information structure 1095 * 1096 * This function removes the leaf node that was created by the FW 1097 * during initialization 1098 */ 1099 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1100 { 1101 struct ice_sched_node *node; 1102 1103 node = pi->root; 1104 while (node) { 1105 if (!node->num_children) 1106 break; 1107 node = node->children[0]; 1108 } 1109 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1110 u32 teid = le32_to_cpu(node->info.node_teid); 1111 enum ice_status status; 1112 1113 /* remove the default leaf node */ 1114 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1115 if (!status) 1116 ice_free_sched_node(pi, node); 1117 } 1118 } 1119 1120 /** 1121 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1122 * @pi: port information structure 1123 * 1124 * This function frees all the nodes except root and TC that were created by 1125 * the FW during initialization 1126 */ 1127 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1128 { 1129 struct ice_sched_node *node; 1130 1131 ice_rm_dflt_leaf_node(pi); 1132 1133 /* remove the default nodes except TC and root nodes */ 1134 node = pi->root; 1135 while (node) { 1136 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1137 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1138 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1139 ice_free_sched_node(pi, node); 1140 break; 1141 } 1142 1143 if (!node->num_children) 1144 break; 1145 node = node->children[0]; 1146 } 1147 } 1148 1149 /** 1150 * ice_sched_init_port - Initialize scheduler by querying information from FW 1151 * @pi: port info structure for the tree to cleanup 1152 * 1153 * This function is the initial call to find the total number of Tx scheduler 1154 * resources, default topology created by firmware and storing the information 1155 * in SW DB. 1156 */ 1157 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 1158 { 1159 struct ice_aqc_get_topo_elem *buf; 1160 enum ice_status status; 1161 struct ice_hw *hw; 1162 u8 num_branches; 1163 u16 num_elems; 1164 u8 i, j; 1165 1166 if (!pi) 1167 return ICE_ERR_PARAM; 1168 hw = pi->hw; 1169 1170 /* Query the Default Topology from FW */ 1171 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1172 if (!buf) 1173 return ICE_ERR_NO_MEMORY; 1174 1175 /* Query default scheduling tree topology */ 1176 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1177 &num_branches, NULL); 1178 if (status) 1179 goto err_init_port; 1180 1181 /* num_branches should be between 1-8 */ 1182 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1183 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1184 num_branches); 1185 status = ICE_ERR_PARAM; 1186 goto err_init_port; 1187 } 1188 1189 /* get the number of elements on the default/first branch */ 1190 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1191 1192 /* num_elems should always be between 1-9 */ 1193 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1194 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1195 num_elems); 1196 status = ICE_ERR_PARAM; 1197 goto err_init_port; 1198 } 1199 1200 /* If the last node is a leaf node then the index of the queue group 1201 * layer is two less than the number of elements. 1202 */ 1203 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1204 ICE_AQC_ELEM_TYPE_LEAF) 1205 pi->last_node_teid = 1206 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1207 else 1208 pi->last_node_teid = 1209 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1210 1211 /* Insert the Tx Sched root node */ 1212 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1213 if (status) 1214 goto err_init_port; 1215 1216 /* Parse the default tree and cache the information */ 1217 for (i = 0; i < num_branches; i++) { 1218 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1219 1220 /* Skip root element as already inserted */ 1221 for (j = 1; j < num_elems; j++) { 1222 /* update the sw entry point */ 1223 if (buf[0].generic[j].data.elem_type == 1224 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1225 hw->sw_entry_point_layer = j; 1226 1227 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1228 if (status) 1229 goto err_init_port; 1230 } 1231 } 1232 1233 /* Remove the default nodes. */ 1234 if (pi->root) 1235 ice_sched_rm_dflt_nodes(pi); 1236 1237 /* initialize the port for handling the scheduler tree */ 1238 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1239 mutex_init(&pi->sched_lock); 1240 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1241 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1242 1243 err_init_port: 1244 if (status && pi->root) { 1245 ice_free_sched_node(pi, pi->root); 1246 pi->root = NULL; 1247 } 1248 1249 devm_kfree(ice_hw_to_dev(hw), buf); 1250 return status; 1251 } 1252 1253 /** 1254 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1255 * @hw: pointer to the HW struct 1256 * 1257 * query FW for allocated scheduler resources and store in HW struct 1258 */ 1259 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1260 { 1261 struct ice_aqc_query_txsched_res_resp *buf; 1262 enum ice_status status = 0; 1263 __le16 max_sibl; 1264 u16 i; 1265 1266 if (hw->layer_info) 1267 return status; 1268 1269 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1270 if (!buf) 1271 return ICE_ERR_NO_MEMORY; 1272 1273 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1274 if (status) 1275 goto sched_query_out; 1276 1277 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1278 hw->num_tx_sched_phys_layers = 1279 le16_to_cpu(buf->sched_props.phys_levels); 1280 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1281 hw->max_cgds = buf->sched_props.max_pf_cgds; 1282 1283 /* max sibling group size of current layer refers to the max children 1284 * of the below layer node. 1285 * layer 1 node max children will be layer 2 max sibling group size 1286 * layer 2 node max children will be layer 3 max sibling group size 1287 * and so on. This array will be populated from root (index 0) to 1288 * qgroup layer 7. Leaf node has no children. 1289 */ 1290 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1291 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1292 hw->max_children[i] = le16_to_cpu(max_sibl); 1293 } 1294 1295 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1296 (hw->num_tx_sched_layers * 1297 sizeof(*hw->layer_info)), 1298 GFP_KERNEL); 1299 if (!hw->layer_info) { 1300 status = ICE_ERR_NO_MEMORY; 1301 goto sched_query_out; 1302 } 1303 1304 sched_query_out: 1305 devm_kfree(ice_hw_to_dev(hw), buf); 1306 return status; 1307 } 1308 1309 /** 1310 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1311 * @hw: pointer to the HW struct 1312 * 1313 * Determine the PSM clock frequency and store in HW struct 1314 */ 1315 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1316 { 1317 u32 val, clk_src; 1318 1319 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1320 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1321 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1322 1323 #define PSM_CLK_SRC_367_MHZ 0x0 1324 #define PSM_CLK_SRC_416_MHZ 0x1 1325 #define PSM_CLK_SRC_446_MHZ 0x2 1326 #define PSM_CLK_SRC_390_MHZ 0x3 1327 1328 switch (clk_src) { 1329 case PSM_CLK_SRC_367_MHZ: 1330 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1331 break; 1332 case PSM_CLK_SRC_416_MHZ: 1333 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1334 break; 1335 case PSM_CLK_SRC_446_MHZ: 1336 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1337 break; 1338 case PSM_CLK_SRC_390_MHZ: 1339 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1340 break; 1341 default: 1342 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1343 clk_src); 1344 /* fall back to a safe default */ 1345 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1346 } 1347 } 1348 1349 /** 1350 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1351 * @hw: pointer to the HW struct 1352 * @base: pointer to the base node 1353 * @node: pointer to the node to search 1354 * 1355 * This function checks whether a given node is part of the base node 1356 * subtree or not 1357 */ 1358 static bool 1359 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1360 struct ice_sched_node *node) 1361 { 1362 u8 i; 1363 1364 for (i = 0; i < base->num_children; i++) { 1365 struct ice_sched_node *child = base->children[i]; 1366 1367 if (node == child) 1368 return true; 1369 1370 if (child->tx_sched_layer > node->tx_sched_layer) 1371 return false; 1372 1373 /* this recursion is intentional, and wouldn't 1374 * go more than 8 calls 1375 */ 1376 if (ice_sched_find_node_in_subtree(hw, child, node)) 1377 return true; 1378 } 1379 return false; 1380 } 1381 1382 /** 1383 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1384 * @pi: port information structure 1385 * @vsi_node: software VSI handle 1386 * @qgrp_node: first queue group node identified for scanning 1387 * @owner: LAN or RDMA 1388 * 1389 * This function retrieves a free LAN or RDMA queue group node by scanning 1390 * qgrp_node and its siblings for the queue group with the fewest number 1391 * of queues currently assigned. 1392 */ 1393 static struct ice_sched_node * 1394 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1395 struct ice_sched_node *vsi_node, 1396 struct ice_sched_node *qgrp_node, u8 owner) 1397 { 1398 struct ice_sched_node *min_qgrp; 1399 u8 min_children; 1400 1401 if (!qgrp_node) 1402 return qgrp_node; 1403 min_children = qgrp_node->num_children; 1404 if (!min_children) 1405 return qgrp_node; 1406 min_qgrp = qgrp_node; 1407 /* scan all queue groups until find a node which has less than the 1408 * minimum number of children. This way all queue group nodes get 1409 * equal number of shares and active. The bandwidth will be equally 1410 * distributed across all queues. 1411 */ 1412 while (qgrp_node) { 1413 /* make sure the qgroup node is part of the VSI subtree */ 1414 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1415 if (qgrp_node->num_children < min_children && 1416 qgrp_node->owner == owner) { 1417 /* replace the new min queue group node */ 1418 min_qgrp = qgrp_node; 1419 min_children = min_qgrp->num_children; 1420 /* break if it has no children, */ 1421 if (!min_children) 1422 break; 1423 } 1424 qgrp_node = qgrp_node->sibling; 1425 } 1426 return min_qgrp; 1427 } 1428 1429 /** 1430 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1431 * @pi: port information structure 1432 * @vsi_handle: software VSI handle 1433 * @tc: branch number 1434 * @owner: LAN or RDMA 1435 * 1436 * This function retrieves a free LAN or RDMA queue group node 1437 */ 1438 struct ice_sched_node * 1439 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1440 u8 owner) 1441 { 1442 struct ice_sched_node *vsi_node, *qgrp_node; 1443 struct ice_vsi_ctx *vsi_ctx; 1444 u16 max_children; 1445 u8 qgrp_layer; 1446 1447 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1448 max_children = pi->hw->max_children[qgrp_layer]; 1449 1450 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1451 if (!vsi_ctx) 1452 return NULL; 1453 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1454 /* validate invalid VSI ID */ 1455 if (!vsi_node) 1456 return NULL; 1457 1458 /* get the first queue group node from VSI sub-tree */ 1459 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1460 while (qgrp_node) { 1461 /* make sure the qgroup node is part of the VSI subtree */ 1462 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1463 if (qgrp_node->num_children < max_children && 1464 qgrp_node->owner == owner) 1465 break; 1466 qgrp_node = qgrp_node->sibling; 1467 } 1468 1469 /* Select the best queue group */ 1470 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1471 } 1472 1473 /** 1474 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1475 * @pi: pointer to the port information structure 1476 * @tc_node: pointer to the TC node 1477 * @vsi_handle: software VSI handle 1478 * 1479 * This function retrieves a VSI node for a given VSI ID from a given 1480 * TC branch 1481 */ 1482 static struct ice_sched_node * 1483 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1484 u16 vsi_handle) 1485 { 1486 struct ice_sched_node *node; 1487 u8 vsi_layer; 1488 1489 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1490 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1491 1492 /* Check whether it already exists */ 1493 while (node) { 1494 if (node->vsi_handle == vsi_handle) 1495 return node; 1496 node = node->sibling; 1497 } 1498 1499 return node; 1500 } 1501 1502 /** 1503 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1504 * @pi: pointer to the port information structure 1505 * @tc_node: pointer to the TC node 1506 * @agg_id: aggregator ID 1507 * 1508 * This function retrieves an aggregator node for a given aggregator ID from 1509 * a given TC branch 1510 */ 1511 static struct ice_sched_node * 1512 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1513 u32 agg_id) 1514 { 1515 struct ice_sched_node *node; 1516 struct ice_hw *hw = pi->hw; 1517 u8 agg_layer; 1518 1519 if (!hw) 1520 return NULL; 1521 agg_layer = ice_sched_get_agg_layer(hw); 1522 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1523 1524 /* Check whether it already exists */ 1525 while (node) { 1526 if (node->agg_id == agg_id) 1527 return node; 1528 node = node->sibling; 1529 } 1530 1531 return node; 1532 } 1533 1534 /** 1535 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1536 * @hw: pointer to the HW struct 1537 * @num_qs: number of queues 1538 * @num_nodes: num nodes array 1539 * 1540 * This function calculates the number of VSI child nodes based on the 1541 * number of queues. 1542 */ 1543 static void 1544 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1545 { 1546 u16 num = num_qs; 1547 u8 i, qgl, vsil; 1548 1549 qgl = ice_sched_get_qgrp_layer(hw); 1550 vsil = ice_sched_get_vsi_layer(hw); 1551 1552 /* calculate num nodes from queue group to VSI layer */ 1553 for (i = qgl; i > vsil; i--) { 1554 /* round to the next integer if there is a remainder */ 1555 num = DIV_ROUND_UP(num, hw->max_children[i]); 1556 1557 /* need at least one node */ 1558 num_nodes[i] = num ? num : 1; 1559 } 1560 } 1561 1562 /** 1563 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1564 * @pi: port information structure 1565 * @vsi_handle: software VSI handle 1566 * @tc_node: pointer to the TC node 1567 * @num_nodes: pointer to the num nodes that needs to be added per layer 1568 * @owner: node owner (LAN or RDMA) 1569 * 1570 * This function adds the VSI child nodes to tree. It gets called for 1571 * LAN and RDMA separately. 1572 */ 1573 static enum ice_status 1574 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1575 struct ice_sched_node *tc_node, u16 *num_nodes, 1576 u8 owner) 1577 { 1578 struct ice_sched_node *parent, *node; 1579 struct ice_hw *hw = pi->hw; 1580 enum ice_status status; 1581 u32 first_node_teid; 1582 u16 num_added = 0; 1583 u8 i, qgl, vsil; 1584 1585 qgl = ice_sched_get_qgrp_layer(hw); 1586 vsil = ice_sched_get_vsi_layer(hw); 1587 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1588 for (i = vsil + 1; i <= qgl; i++) { 1589 if (!parent) 1590 return ICE_ERR_CFG; 1591 1592 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1593 num_nodes[i], 1594 &first_node_teid, 1595 &num_added); 1596 if (status || num_nodes[i] != num_added) 1597 return ICE_ERR_CFG; 1598 1599 /* The newly added node can be a new parent for the next 1600 * layer nodes 1601 */ 1602 if (num_added) { 1603 parent = ice_sched_find_node_by_teid(tc_node, 1604 first_node_teid); 1605 node = parent; 1606 while (node) { 1607 node->owner = owner; 1608 node = node->sibling; 1609 } 1610 } else { 1611 parent = parent->children[0]; 1612 } 1613 } 1614 1615 return 0; 1616 } 1617 1618 /** 1619 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1620 * @pi: pointer to the port info structure 1621 * @tc_node: pointer to TC node 1622 * @num_nodes: pointer to num nodes array 1623 * 1624 * This function calculates the number of supported nodes needed to add this 1625 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1626 * layers 1627 */ 1628 static void 1629 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1630 struct ice_sched_node *tc_node, u16 *num_nodes) 1631 { 1632 struct ice_sched_node *node; 1633 u8 vsil; 1634 int i; 1635 1636 vsil = ice_sched_get_vsi_layer(pi->hw); 1637 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1638 /* Add intermediate nodes if TC has no children and 1639 * need at least one node for VSI 1640 */ 1641 if (!tc_node->num_children || i == vsil) { 1642 num_nodes[i]++; 1643 } else { 1644 /* If intermediate nodes are reached max children 1645 * then add a new one. 1646 */ 1647 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1648 /* scan all the siblings */ 1649 while (node) { 1650 if (node->num_children < pi->hw->max_children[i]) 1651 break; 1652 node = node->sibling; 1653 } 1654 1655 /* tree has one intermediate node to add this new VSI. 1656 * So no need to calculate supported nodes for below 1657 * layers. 1658 */ 1659 if (node) 1660 break; 1661 /* all the nodes are full, allocate a new one */ 1662 num_nodes[i]++; 1663 } 1664 } 1665 1666 /** 1667 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1668 * @pi: port information structure 1669 * @vsi_handle: software VSI handle 1670 * @tc_node: pointer to TC node 1671 * @num_nodes: pointer to num nodes array 1672 * 1673 * This function adds the VSI supported nodes into Tx tree including the 1674 * VSI, its parent and intermediate nodes in below layers 1675 */ 1676 static enum ice_status 1677 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1678 struct ice_sched_node *tc_node, u16 *num_nodes) 1679 { 1680 struct ice_sched_node *parent = tc_node; 1681 enum ice_status status; 1682 u32 first_node_teid; 1683 u16 num_added = 0; 1684 u8 i, vsil; 1685 1686 if (!pi) 1687 return ICE_ERR_PARAM; 1688 1689 vsil = ice_sched_get_vsi_layer(pi->hw); 1690 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1691 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1692 i, num_nodes[i], 1693 &first_node_teid, 1694 &num_added); 1695 if (status || num_nodes[i] != num_added) 1696 return ICE_ERR_CFG; 1697 1698 /* The newly added node can be a new parent for the next 1699 * layer nodes 1700 */ 1701 if (num_added) 1702 parent = ice_sched_find_node_by_teid(tc_node, 1703 first_node_teid); 1704 else 1705 parent = parent->children[0]; 1706 1707 if (!parent) 1708 return ICE_ERR_CFG; 1709 1710 if (i == vsil) 1711 parent->vsi_handle = vsi_handle; 1712 } 1713 1714 return 0; 1715 } 1716 1717 /** 1718 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1719 * @pi: port information structure 1720 * @vsi_handle: software VSI handle 1721 * @tc: TC number 1722 * 1723 * This function adds a new VSI into scheduler tree 1724 */ 1725 static enum ice_status 1726 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1727 { 1728 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1729 struct ice_sched_node *tc_node; 1730 1731 tc_node = ice_sched_get_tc_node(pi, tc); 1732 if (!tc_node) 1733 return ICE_ERR_PARAM; 1734 1735 /* calculate number of supported nodes needed for this VSI */ 1736 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1737 1738 /* add VSI supported nodes to TC subtree */ 1739 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1740 num_nodes); 1741 } 1742 1743 /** 1744 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1745 * @pi: port information structure 1746 * @vsi_handle: software VSI handle 1747 * @tc: TC number 1748 * @new_numqs: new number of max queues 1749 * @owner: owner of this subtree 1750 * 1751 * This function updates the VSI child nodes based on the number of queues 1752 */ 1753 static enum ice_status 1754 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1755 u8 tc, u16 new_numqs, u8 owner) 1756 { 1757 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1758 struct ice_sched_node *vsi_node; 1759 struct ice_sched_node *tc_node; 1760 struct ice_vsi_ctx *vsi_ctx; 1761 enum ice_status status = 0; 1762 struct ice_hw *hw = pi->hw; 1763 u16 prev_numqs; 1764 1765 tc_node = ice_sched_get_tc_node(pi, tc); 1766 if (!tc_node) 1767 return ICE_ERR_CFG; 1768 1769 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1770 if (!vsi_node) 1771 return ICE_ERR_CFG; 1772 1773 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1774 if (!vsi_ctx) 1775 return ICE_ERR_PARAM; 1776 1777 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1778 /* num queues are not changed or less than the previous number */ 1779 if (new_numqs <= prev_numqs) 1780 return status; 1781 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1782 if (status) 1783 return status; 1784 1785 if (new_numqs) 1786 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1787 /* Keep the max number of queue configuration all the time. Update the 1788 * tree only if number of queues > previous number of queues. This may 1789 * leave some extra nodes in the tree if number of queues < previous 1790 * number but that wouldn't harm anything. Removing those extra nodes 1791 * may complicate the code if those nodes are part of SRL or 1792 * individually rate limited. 1793 */ 1794 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1795 new_num_nodes, owner); 1796 if (status) 1797 return status; 1798 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1799 1800 return 0; 1801 } 1802 1803 /** 1804 * ice_sched_cfg_vsi - configure the new/existing VSI 1805 * @pi: port information structure 1806 * @vsi_handle: software VSI handle 1807 * @tc: TC number 1808 * @maxqs: max number of queues 1809 * @owner: LAN or RDMA 1810 * @enable: TC enabled or disabled 1811 * 1812 * This function adds/updates VSI nodes based on the number of queues. If TC is 1813 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1814 * disabled then suspend the VSI if it is not already. 1815 */ 1816 enum ice_status 1817 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1818 u8 owner, bool enable) 1819 { 1820 struct ice_sched_node *vsi_node, *tc_node; 1821 struct ice_vsi_ctx *vsi_ctx; 1822 enum ice_status status = 0; 1823 struct ice_hw *hw = pi->hw; 1824 1825 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1826 tc_node = ice_sched_get_tc_node(pi, tc); 1827 if (!tc_node) 1828 return ICE_ERR_PARAM; 1829 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1830 if (!vsi_ctx) 1831 return ICE_ERR_PARAM; 1832 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1833 1834 /* suspend the VSI if TC is not enabled */ 1835 if (!enable) { 1836 if (vsi_node && vsi_node->in_use) { 1837 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1838 1839 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1840 true); 1841 if (!status) 1842 vsi_node->in_use = false; 1843 } 1844 return status; 1845 } 1846 1847 /* TC is enabled, if it is a new VSI then add it to the tree */ 1848 if (!vsi_node) { 1849 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1850 if (status) 1851 return status; 1852 1853 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1854 if (!vsi_node) 1855 return ICE_ERR_CFG; 1856 1857 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1858 vsi_node->in_use = true; 1859 /* invalidate the max queues whenever VSI gets added first time 1860 * into the scheduler tree (boot or after reset). We need to 1861 * recreate the child nodes all the time in these cases. 1862 */ 1863 vsi_ctx->sched.max_lanq[tc] = 0; 1864 } 1865 1866 /* update the VSI child nodes */ 1867 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1868 owner); 1869 if (status) 1870 return status; 1871 1872 /* TC is enabled, resume the VSI if it is in the suspend state */ 1873 if (!vsi_node->in_use) { 1874 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1875 1876 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1877 if (!status) 1878 vsi_node->in_use = true; 1879 } 1880 1881 return status; 1882 } 1883 1884 /** 1885 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1886 * @pi: port information structure 1887 * @vsi_handle: software VSI handle 1888 * 1889 * This function removes single aggregator VSI info entry from 1890 * aggregator list. 1891 */ 1892 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1893 { 1894 struct ice_sched_agg_info *agg_info; 1895 struct ice_sched_agg_info *atmp; 1896 1897 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1898 list_entry) { 1899 struct ice_sched_agg_vsi_info *agg_vsi_info; 1900 struct ice_sched_agg_vsi_info *vtmp; 1901 1902 list_for_each_entry_safe(agg_vsi_info, vtmp, 1903 &agg_info->agg_vsi_list, list_entry) 1904 if (agg_vsi_info->vsi_handle == vsi_handle) { 1905 list_del(&agg_vsi_info->list_entry); 1906 devm_kfree(ice_hw_to_dev(pi->hw), 1907 agg_vsi_info); 1908 return; 1909 } 1910 } 1911 } 1912 1913 /** 1914 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1915 * @node: pointer to the sub-tree node 1916 * 1917 * This function checks for a leaf node presence in a given sub-tree node. 1918 */ 1919 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1920 { 1921 u8 i; 1922 1923 for (i = 0; i < node->num_children; i++) 1924 if (ice_sched_is_leaf_node_present(node->children[i])) 1925 return true; 1926 /* check for a leaf node */ 1927 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1928 } 1929 1930 /** 1931 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1932 * @pi: port information structure 1933 * @vsi_handle: software VSI handle 1934 * @owner: LAN or RDMA 1935 * 1936 * This function removes the VSI and its LAN or RDMA children nodes from the 1937 * scheduler tree. 1938 */ 1939 static enum ice_status 1940 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1941 { 1942 enum ice_status status = ICE_ERR_PARAM; 1943 struct ice_vsi_ctx *vsi_ctx; 1944 u8 i; 1945 1946 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 1947 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 1948 return status; 1949 mutex_lock(&pi->sched_lock); 1950 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1951 if (!vsi_ctx) 1952 goto exit_sched_rm_vsi_cfg; 1953 1954 ice_for_each_traffic_class(i) { 1955 struct ice_sched_node *vsi_node, *tc_node; 1956 u8 j = 0; 1957 1958 tc_node = ice_sched_get_tc_node(pi, i); 1959 if (!tc_node) 1960 continue; 1961 1962 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1963 if (!vsi_node) 1964 continue; 1965 1966 if (ice_sched_is_leaf_node_present(vsi_node)) { 1967 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 1968 status = ICE_ERR_IN_USE; 1969 goto exit_sched_rm_vsi_cfg; 1970 } 1971 while (j < vsi_node->num_children) { 1972 if (vsi_node->children[j]->owner == owner) { 1973 ice_free_sched_node(pi, vsi_node->children[j]); 1974 1975 /* reset the counter again since the num 1976 * children will be updated after node removal 1977 */ 1978 j = 0; 1979 } else { 1980 j++; 1981 } 1982 } 1983 /* remove the VSI if it has no children */ 1984 if (!vsi_node->num_children) { 1985 ice_free_sched_node(pi, vsi_node); 1986 vsi_ctx->sched.vsi_node[i] = NULL; 1987 1988 /* clean up aggregator related VSI info if any */ 1989 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 1990 } 1991 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1992 vsi_ctx->sched.max_lanq[i] = 0; 1993 } 1994 status = 0; 1995 1996 exit_sched_rm_vsi_cfg: 1997 mutex_unlock(&pi->sched_lock); 1998 return status; 1999 } 2000 2001 /** 2002 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2003 * @pi: port information structure 2004 * @vsi_handle: software VSI handle 2005 * 2006 * This function clears the VSI and its LAN children nodes from scheduler tree 2007 * for all TCs. 2008 */ 2009 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2010 { 2011 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2012 } 2013 2014 /** 2015 * ice_get_agg_info - get the aggregator ID 2016 * @hw: pointer to the hardware structure 2017 * @agg_id: aggregator ID 2018 * 2019 * This function validates aggregator ID. The function returns info if 2020 * aggregator ID is present in list otherwise it returns null. 2021 */ 2022 static struct ice_sched_agg_info * 2023 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2024 { 2025 struct ice_sched_agg_info *agg_info; 2026 2027 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2028 if (agg_info->agg_id == agg_id) 2029 return agg_info; 2030 2031 return NULL; 2032 } 2033 2034 /** 2035 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2036 * @hw: pointer to the HW struct 2037 * @node: pointer to a child node 2038 * @num_nodes: num nodes count array 2039 * 2040 * This function walks through the aggregator subtree to find a free parent 2041 * node 2042 */ 2043 static struct ice_sched_node * 2044 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2045 u16 *num_nodes) 2046 { 2047 u8 l = node->tx_sched_layer; 2048 u8 vsil, i; 2049 2050 vsil = ice_sched_get_vsi_layer(hw); 2051 2052 /* Is it VSI parent layer ? */ 2053 if (l == vsil - 1) 2054 return (node->num_children < hw->max_children[l]) ? node : NULL; 2055 2056 /* We have intermediate nodes. Let's walk through the subtree. If the 2057 * intermediate node has space to add a new node then clear the count 2058 */ 2059 if (node->num_children < hw->max_children[l]) 2060 num_nodes[l] = 0; 2061 /* The below recursive call is intentional and wouldn't go more than 2062 * 2 or 3 iterations. 2063 */ 2064 2065 for (i = 0; i < node->num_children; i++) { 2066 struct ice_sched_node *parent; 2067 2068 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2069 num_nodes); 2070 if (parent) 2071 return parent; 2072 } 2073 2074 return NULL; 2075 } 2076 2077 /** 2078 * ice_sched_update_parent - update the new parent in SW DB 2079 * @new_parent: pointer to a new parent node 2080 * @node: pointer to a child node 2081 * 2082 * This function removes the child from the old parent and adds it to a new 2083 * parent 2084 */ 2085 static void 2086 ice_sched_update_parent(struct ice_sched_node *new_parent, 2087 struct ice_sched_node *node) 2088 { 2089 struct ice_sched_node *old_parent; 2090 u8 i, j; 2091 2092 old_parent = node->parent; 2093 2094 /* update the old parent children */ 2095 for (i = 0; i < old_parent->num_children; i++) 2096 if (old_parent->children[i] == node) { 2097 for (j = i + 1; j < old_parent->num_children; j++) 2098 old_parent->children[j - 1] = 2099 old_parent->children[j]; 2100 old_parent->num_children--; 2101 break; 2102 } 2103 2104 /* now move the node to a new parent */ 2105 new_parent->children[new_parent->num_children++] = node; 2106 node->parent = new_parent; 2107 node->info.parent_teid = new_parent->info.node_teid; 2108 } 2109 2110 /** 2111 * ice_sched_move_nodes - move child nodes to a given parent 2112 * @pi: port information structure 2113 * @parent: pointer to parent node 2114 * @num_items: number of child nodes to be moved 2115 * @list: pointer to child node teids 2116 * 2117 * This function move the child nodes to a given parent. 2118 */ 2119 static enum ice_status 2120 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2121 u16 num_items, u32 *list) 2122 { 2123 struct ice_aqc_move_elem *buf; 2124 struct ice_sched_node *node; 2125 enum ice_status status = 0; 2126 u16 i, grps_movd = 0; 2127 struct ice_hw *hw; 2128 u16 buf_len; 2129 2130 hw = pi->hw; 2131 2132 if (!parent || !num_items) 2133 return ICE_ERR_PARAM; 2134 2135 /* Does parent have enough space */ 2136 if (parent->num_children + num_items > 2137 hw->max_children[parent->tx_sched_layer]) 2138 return ICE_ERR_AQ_FULL; 2139 2140 buf_len = struct_size(buf, teid, 1); 2141 buf = kzalloc(buf_len, GFP_KERNEL); 2142 if (!buf) 2143 return ICE_ERR_NO_MEMORY; 2144 2145 for (i = 0; i < num_items; i++) { 2146 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2147 if (!node) { 2148 status = ICE_ERR_PARAM; 2149 goto move_err_exit; 2150 } 2151 2152 buf->hdr.src_parent_teid = node->info.parent_teid; 2153 buf->hdr.dest_parent_teid = parent->info.node_teid; 2154 buf->teid[0] = node->info.node_teid; 2155 buf->hdr.num_elems = cpu_to_le16(1); 2156 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2157 &grps_movd, NULL); 2158 if (status && grps_movd != 1) { 2159 status = ICE_ERR_CFG; 2160 goto move_err_exit; 2161 } 2162 2163 /* update the SW DB */ 2164 ice_sched_update_parent(parent, node); 2165 } 2166 2167 move_err_exit: 2168 kfree(buf); 2169 return status; 2170 } 2171 2172 /** 2173 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2174 * @pi: port information structure 2175 * @vsi_handle: software VSI handle 2176 * @agg_id: aggregator ID 2177 * @tc: TC number 2178 * 2179 * This function moves a VSI to an aggregator node or its subtree. 2180 * Intermediate nodes may be created if required. 2181 */ 2182 static enum ice_status 2183 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2184 u8 tc) 2185 { 2186 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2187 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2188 u32 first_node_teid, vsi_teid; 2189 enum ice_status status; 2190 u16 num_nodes_added; 2191 u8 aggl, vsil, i; 2192 2193 tc_node = ice_sched_get_tc_node(pi, tc); 2194 if (!tc_node) 2195 return ICE_ERR_CFG; 2196 2197 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2198 if (!agg_node) 2199 return ICE_ERR_DOES_NOT_EXIST; 2200 2201 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2202 if (!vsi_node) 2203 return ICE_ERR_DOES_NOT_EXIST; 2204 2205 /* Is this VSI already part of given aggregator? */ 2206 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2207 return 0; 2208 2209 aggl = ice_sched_get_agg_layer(pi->hw); 2210 vsil = ice_sched_get_vsi_layer(pi->hw); 2211 2212 /* set intermediate node count to 1 between aggregator and VSI layers */ 2213 for (i = aggl + 1; i < vsil; i++) 2214 num_nodes[i] = 1; 2215 2216 /* Check if the aggregator subtree has any free node to add the VSI */ 2217 for (i = 0; i < agg_node->num_children; i++) { 2218 parent = ice_sched_get_free_vsi_parent(pi->hw, 2219 agg_node->children[i], 2220 num_nodes); 2221 if (parent) 2222 goto move_nodes; 2223 } 2224 2225 /* add new nodes */ 2226 parent = agg_node; 2227 for (i = aggl + 1; i < vsil; i++) { 2228 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2229 num_nodes[i], 2230 &first_node_teid, 2231 &num_nodes_added); 2232 if (status || num_nodes[i] != num_nodes_added) 2233 return ICE_ERR_CFG; 2234 2235 /* The newly added node can be a new parent for the next 2236 * layer nodes 2237 */ 2238 if (num_nodes_added) 2239 parent = ice_sched_find_node_by_teid(tc_node, 2240 first_node_teid); 2241 else 2242 parent = parent->children[0]; 2243 2244 if (!parent) 2245 return ICE_ERR_CFG; 2246 } 2247 2248 move_nodes: 2249 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2250 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2251 } 2252 2253 /** 2254 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2255 * @pi: port information structure 2256 * @agg_info: aggregator info 2257 * @tc: traffic class number 2258 * @rm_vsi_info: true or false 2259 * 2260 * This function move all the VSI(s) to the default aggregator and delete 2261 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2262 * caller holds the scheduler lock. 2263 */ 2264 static enum ice_status 2265 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2266 struct ice_sched_agg_info *agg_info, u8 tc, 2267 bool rm_vsi_info) 2268 { 2269 struct ice_sched_agg_vsi_info *agg_vsi_info; 2270 struct ice_sched_agg_vsi_info *tmp; 2271 enum ice_status status = 0; 2272 2273 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2274 list_entry) { 2275 u16 vsi_handle = agg_vsi_info->vsi_handle; 2276 2277 /* Move VSI to default aggregator */ 2278 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2279 continue; 2280 2281 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2282 ICE_DFLT_AGG_ID, tc); 2283 if (status) 2284 break; 2285 2286 clear_bit(tc, agg_vsi_info->tc_bitmap); 2287 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2288 list_del(&agg_vsi_info->list_entry); 2289 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2290 } 2291 } 2292 2293 return status; 2294 } 2295 2296 /** 2297 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2298 * @pi: port information structure 2299 * @node: node pointer 2300 * 2301 * This function checks whether the aggregator is attached with any VSI or not. 2302 */ 2303 static bool 2304 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2305 { 2306 u8 vsil, i; 2307 2308 vsil = ice_sched_get_vsi_layer(pi->hw); 2309 if (node->tx_sched_layer < vsil - 1) { 2310 for (i = 0; i < node->num_children; i++) 2311 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2312 return true; 2313 return false; 2314 } else { 2315 return node->num_children ? true : false; 2316 } 2317 } 2318 2319 /** 2320 * ice_sched_rm_agg_cfg - remove the aggregator node 2321 * @pi: port information structure 2322 * @agg_id: aggregator ID 2323 * @tc: TC number 2324 * 2325 * This function removes the aggregator node and intermediate nodes if any 2326 * from the given TC 2327 */ 2328 static enum ice_status 2329 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2330 { 2331 struct ice_sched_node *tc_node, *agg_node; 2332 struct ice_hw *hw = pi->hw; 2333 2334 tc_node = ice_sched_get_tc_node(pi, tc); 2335 if (!tc_node) 2336 return ICE_ERR_CFG; 2337 2338 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2339 if (!agg_node) 2340 return ICE_ERR_DOES_NOT_EXIST; 2341 2342 /* Can't remove the aggregator node if it has children */ 2343 if (ice_sched_is_agg_inuse(pi, agg_node)) 2344 return ICE_ERR_IN_USE; 2345 2346 /* need to remove the whole subtree if aggregator node is the 2347 * only child. 2348 */ 2349 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2350 struct ice_sched_node *parent = agg_node->parent; 2351 2352 if (!parent) 2353 return ICE_ERR_CFG; 2354 2355 if (parent->num_children > 1) 2356 break; 2357 2358 agg_node = parent; 2359 } 2360 2361 ice_free_sched_node(pi, agg_node); 2362 return 0; 2363 } 2364 2365 /** 2366 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2367 * @pi: port information structure 2368 * @agg_info: aggregator ID 2369 * @tc: TC number 2370 * @rm_vsi_info: bool value true or false 2371 * 2372 * This function removes aggregator reference to VSI of given TC. It removes 2373 * the aggregator configuration completely for requested TC. The caller needs 2374 * to hold the scheduler lock. 2375 */ 2376 static enum ice_status 2377 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2378 u8 tc, bool rm_vsi_info) 2379 { 2380 enum ice_status status = 0; 2381 2382 /* If nothing to remove - return success */ 2383 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2384 goto exit_rm_agg_cfg_tc; 2385 2386 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2387 if (status) 2388 goto exit_rm_agg_cfg_tc; 2389 2390 /* Delete aggregator node(s) */ 2391 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2392 if (status) 2393 goto exit_rm_agg_cfg_tc; 2394 2395 clear_bit(tc, agg_info->tc_bitmap); 2396 exit_rm_agg_cfg_tc: 2397 return status; 2398 } 2399 2400 /** 2401 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2402 * @pi: port information structure 2403 * @agg_id: aggregator ID 2404 * @tc_bitmap: 8 bits TC bitmap 2405 * 2406 * Save aggregator TC bitmap. This function needs to be called with scheduler 2407 * lock held. 2408 */ 2409 static enum ice_status 2410 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2411 unsigned long *tc_bitmap) 2412 { 2413 struct ice_sched_agg_info *agg_info; 2414 2415 agg_info = ice_get_agg_info(pi->hw, agg_id); 2416 if (!agg_info) 2417 return ICE_ERR_PARAM; 2418 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2419 ICE_MAX_TRAFFIC_CLASS); 2420 return 0; 2421 } 2422 2423 /** 2424 * ice_sched_add_agg_cfg - create an aggregator node 2425 * @pi: port information structure 2426 * @agg_id: aggregator ID 2427 * @tc: TC number 2428 * 2429 * This function creates an aggregator node and intermediate nodes if required 2430 * for the given TC 2431 */ 2432 static enum ice_status 2433 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2434 { 2435 struct ice_sched_node *parent, *agg_node, *tc_node; 2436 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2437 enum ice_status status = 0; 2438 struct ice_hw *hw = pi->hw; 2439 u32 first_node_teid; 2440 u16 num_nodes_added; 2441 u8 i, aggl; 2442 2443 tc_node = ice_sched_get_tc_node(pi, tc); 2444 if (!tc_node) 2445 return ICE_ERR_CFG; 2446 2447 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2448 /* Does Agg node already exist ? */ 2449 if (agg_node) 2450 return status; 2451 2452 aggl = ice_sched_get_agg_layer(hw); 2453 2454 /* need one node in Agg layer */ 2455 num_nodes[aggl] = 1; 2456 2457 /* Check whether the intermediate nodes have space to add the 2458 * new aggregator. If they are full, then SW needs to allocate a new 2459 * intermediate node on those layers 2460 */ 2461 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2462 parent = ice_sched_get_first_node(pi, tc_node, i); 2463 2464 /* scan all the siblings */ 2465 while (parent) { 2466 if (parent->num_children < hw->max_children[i]) 2467 break; 2468 parent = parent->sibling; 2469 } 2470 2471 /* all the nodes are full, reserve one for this layer */ 2472 if (!parent) 2473 num_nodes[i]++; 2474 } 2475 2476 /* add the aggregator node */ 2477 parent = tc_node; 2478 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2479 if (!parent) 2480 return ICE_ERR_CFG; 2481 2482 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2483 num_nodes[i], 2484 &first_node_teid, 2485 &num_nodes_added); 2486 if (status || num_nodes[i] != num_nodes_added) 2487 return ICE_ERR_CFG; 2488 2489 /* The newly added node can be a new parent for the next 2490 * layer nodes 2491 */ 2492 if (num_nodes_added) { 2493 parent = ice_sched_find_node_by_teid(tc_node, 2494 first_node_teid); 2495 /* register aggregator ID with the aggregator node */ 2496 if (parent && i == aggl) 2497 parent->agg_id = agg_id; 2498 } else { 2499 parent = parent->children[0]; 2500 } 2501 } 2502 2503 return 0; 2504 } 2505 2506 /** 2507 * ice_sched_cfg_agg - configure aggregator node 2508 * @pi: port information structure 2509 * @agg_id: aggregator ID 2510 * @agg_type: aggregator type queue, VSI, or aggregator group 2511 * @tc_bitmap: bits TC bitmap 2512 * 2513 * It registers a unique aggregator node into scheduler services. It 2514 * allows a user to register with a unique ID to track it's resources. 2515 * The aggregator type determines if this is a queue group, VSI group 2516 * or aggregator group. It then creates the aggregator node(s) for requested 2517 * TC(s) or removes an existing aggregator node including its configuration 2518 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2519 * resources and remove aggregator ID. 2520 * This function needs to be called with scheduler lock held. 2521 */ 2522 static enum ice_status 2523 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2524 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2525 { 2526 struct ice_sched_agg_info *agg_info; 2527 enum ice_status status = 0; 2528 struct ice_hw *hw = pi->hw; 2529 u8 tc; 2530 2531 agg_info = ice_get_agg_info(hw, agg_id); 2532 if (!agg_info) { 2533 /* Create new entry for new aggregator ID */ 2534 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2535 GFP_KERNEL); 2536 if (!agg_info) 2537 return ICE_ERR_NO_MEMORY; 2538 2539 agg_info->agg_id = agg_id; 2540 agg_info->agg_type = agg_type; 2541 agg_info->tc_bitmap[0] = 0; 2542 2543 /* Initialize the aggregator VSI list head */ 2544 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2545 2546 /* Add new entry in aggregator list */ 2547 list_add(&agg_info->list_entry, &hw->agg_list); 2548 } 2549 /* Create aggregator node(s) for requested TC(s) */ 2550 ice_for_each_traffic_class(tc) { 2551 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2552 /* Delete aggregator cfg TC if it exists previously */ 2553 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2554 if (status) 2555 break; 2556 continue; 2557 } 2558 2559 /* Check if aggregator node for TC already exists */ 2560 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2561 continue; 2562 2563 /* Create new aggregator node for TC */ 2564 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2565 if (status) 2566 break; 2567 2568 /* Save aggregator node's TC information */ 2569 set_bit(tc, agg_info->tc_bitmap); 2570 } 2571 2572 return status; 2573 } 2574 2575 /** 2576 * ice_cfg_agg - config aggregator node 2577 * @pi: port information structure 2578 * @agg_id: aggregator ID 2579 * @agg_type: aggregator type queue, VSI, or aggregator group 2580 * @tc_bitmap: bits TC bitmap 2581 * 2582 * This function configures aggregator node(s). 2583 */ 2584 enum ice_status 2585 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2586 u8 tc_bitmap) 2587 { 2588 unsigned long bitmap = tc_bitmap; 2589 enum ice_status status; 2590 2591 mutex_lock(&pi->sched_lock); 2592 status = ice_sched_cfg_agg(pi, agg_id, agg_type, 2593 (unsigned long *)&bitmap); 2594 if (!status) 2595 status = ice_save_agg_tc_bitmap(pi, agg_id, 2596 (unsigned long *)&bitmap); 2597 mutex_unlock(&pi->sched_lock); 2598 return status; 2599 } 2600 2601 /** 2602 * ice_get_agg_vsi_info - get the aggregator ID 2603 * @agg_info: aggregator info 2604 * @vsi_handle: software VSI handle 2605 * 2606 * The function returns aggregator VSI info based on VSI handle. This function 2607 * needs to be called with scheduler lock held. 2608 */ 2609 static struct ice_sched_agg_vsi_info * 2610 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2611 { 2612 struct ice_sched_agg_vsi_info *agg_vsi_info; 2613 2614 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2615 if (agg_vsi_info->vsi_handle == vsi_handle) 2616 return agg_vsi_info; 2617 2618 return NULL; 2619 } 2620 2621 /** 2622 * ice_get_vsi_agg_info - get the aggregator info of VSI 2623 * @hw: pointer to the hardware structure 2624 * @vsi_handle: Sw VSI handle 2625 * 2626 * The function returns aggregator info of VSI represented via vsi_handle. The 2627 * VSI has in this case a different aggregator than the default one. This 2628 * function needs to be called with scheduler lock held. 2629 */ 2630 static struct ice_sched_agg_info * 2631 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2632 { 2633 struct ice_sched_agg_info *agg_info; 2634 2635 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2636 struct ice_sched_agg_vsi_info *agg_vsi_info; 2637 2638 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2639 if (agg_vsi_info) 2640 return agg_info; 2641 } 2642 return NULL; 2643 } 2644 2645 /** 2646 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2647 * @pi: port information structure 2648 * @agg_id: aggregator ID 2649 * @vsi_handle: software VSI handle 2650 * @tc_bitmap: TC bitmap of enabled TC(s) 2651 * 2652 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2653 * lock held. 2654 */ 2655 static enum ice_status 2656 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2657 unsigned long *tc_bitmap) 2658 { 2659 struct ice_sched_agg_vsi_info *agg_vsi_info; 2660 struct ice_sched_agg_info *agg_info; 2661 2662 agg_info = ice_get_agg_info(pi->hw, agg_id); 2663 if (!agg_info) 2664 return ICE_ERR_PARAM; 2665 /* check if entry already exist */ 2666 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2667 if (!agg_vsi_info) 2668 return ICE_ERR_PARAM; 2669 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2670 ICE_MAX_TRAFFIC_CLASS); 2671 return 0; 2672 } 2673 2674 /** 2675 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2676 * @pi: port information structure 2677 * @agg_id: aggregator ID 2678 * @vsi_handle: software VSI handle 2679 * @tc_bitmap: TC bitmap of enabled TC(s) 2680 * 2681 * This function moves VSI to a new or default aggregator node. If VSI is 2682 * already associated to the aggregator node then no operation is performed on 2683 * the tree. This function needs to be called with scheduler lock held. 2684 */ 2685 static enum ice_status 2686 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2687 u16 vsi_handle, unsigned long *tc_bitmap) 2688 { 2689 struct ice_sched_agg_vsi_info *agg_vsi_info; 2690 struct ice_sched_agg_info *agg_info; 2691 enum ice_status status = 0; 2692 struct ice_hw *hw = pi->hw; 2693 u8 tc; 2694 2695 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2696 return ICE_ERR_PARAM; 2697 agg_info = ice_get_agg_info(hw, agg_id); 2698 if (!agg_info) 2699 return ICE_ERR_PARAM; 2700 /* check if entry already exist */ 2701 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2702 if (!agg_vsi_info) { 2703 /* Create new entry for VSI under aggregator list */ 2704 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2705 sizeof(*agg_vsi_info), GFP_KERNEL); 2706 if (!agg_vsi_info) 2707 return ICE_ERR_PARAM; 2708 2709 /* add VSI ID into the aggregator list */ 2710 agg_vsi_info->vsi_handle = vsi_handle; 2711 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2712 } 2713 /* Move VSI node to new aggregator node for requested TC(s) */ 2714 ice_for_each_traffic_class(tc) { 2715 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2716 continue; 2717 2718 /* Move VSI to new aggregator */ 2719 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2720 if (status) 2721 break; 2722 2723 set_bit(tc, agg_vsi_info->tc_bitmap); 2724 } 2725 return status; 2726 } 2727 2728 /** 2729 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2730 * @pi: port information structure 2731 * 2732 * This function removes unused rate limit profiles from the HW and 2733 * SW DB. The caller needs to hold scheduler lock. 2734 */ 2735 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2736 { 2737 u16 ln; 2738 2739 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2740 struct ice_aqc_rl_profile_info *rl_prof_elem; 2741 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2742 2743 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2744 &pi->rl_prof_list[ln], list_entry) { 2745 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2746 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2747 } 2748 } 2749 } 2750 2751 /** 2752 * ice_sched_update_elem - update element 2753 * @hw: pointer to the HW struct 2754 * @node: pointer to node 2755 * @info: node info to update 2756 * 2757 * Update the HW DB, and local SW DB of node. Update the scheduling 2758 * parameters of node from argument info data buffer (Info->data buf) and 2759 * returns success or error on config sched element failure. The caller 2760 * needs to hold scheduler lock. 2761 */ 2762 static enum ice_status 2763 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2764 struct ice_aqc_txsched_elem_data *info) 2765 { 2766 struct ice_aqc_txsched_elem_data buf; 2767 enum ice_status status; 2768 u16 elem_cfgd = 0; 2769 u16 num_elems = 1; 2770 2771 buf = *info; 2772 /* Parent TEID is reserved field in this aq call */ 2773 buf.parent_teid = 0; 2774 /* Element type is reserved field in this aq call */ 2775 buf.data.elem_type = 0; 2776 /* Flags is reserved field in this aq call */ 2777 buf.data.flags = 0; 2778 2779 /* Update HW DB */ 2780 /* Configure element node */ 2781 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2782 &elem_cfgd, NULL); 2783 if (status || elem_cfgd != num_elems) { 2784 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2785 return ICE_ERR_CFG; 2786 } 2787 2788 /* Config success case */ 2789 /* Now update local SW DB */ 2790 /* Only copy the data portion of info buffer */ 2791 node->info.data = info->data; 2792 return status; 2793 } 2794 2795 /** 2796 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2797 * @hw: pointer to the HW struct 2798 * @node: sched node to configure 2799 * @rl_type: rate limit type CIR, EIR, or shared 2800 * @bw_alloc: BW weight/allocation 2801 * 2802 * This function configures node element's BW allocation. 2803 */ 2804 static enum ice_status 2805 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2806 enum ice_rl_type rl_type, u16 bw_alloc) 2807 { 2808 struct ice_aqc_txsched_elem_data buf; 2809 struct ice_aqc_txsched_elem *data; 2810 2811 buf = node->info; 2812 data = &buf.data; 2813 if (rl_type == ICE_MIN_BW) { 2814 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2815 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2816 } else if (rl_type == ICE_MAX_BW) { 2817 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2818 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2819 } else { 2820 return ICE_ERR_PARAM; 2821 } 2822 2823 /* Configure element */ 2824 return ice_sched_update_elem(hw, node, &buf); 2825 } 2826 2827 /** 2828 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2829 * @pi: port information structure 2830 * @agg_id: aggregator ID 2831 * @vsi_handle: software VSI handle 2832 * @tc_bitmap: TC bitmap of enabled TC(s) 2833 * 2834 * Move or associate VSI to a new or default aggregator node. 2835 */ 2836 enum ice_status 2837 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2838 u8 tc_bitmap) 2839 { 2840 unsigned long bitmap = tc_bitmap; 2841 enum ice_status status; 2842 2843 mutex_lock(&pi->sched_lock); 2844 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2845 (unsigned long *)&bitmap); 2846 if (!status) 2847 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2848 (unsigned long *)&bitmap); 2849 mutex_unlock(&pi->sched_lock); 2850 return status; 2851 } 2852 2853 /** 2854 * ice_set_clear_cir_bw - set or clear CIR BW 2855 * @bw_t_info: bandwidth type information structure 2856 * @bw: bandwidth in Kbps - Kilo bits per sec 2857 * 2858 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2859 */ 2860 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2861 { 2862 if (bw == ICE_SCHED_DFLT_BW) { 2863 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2864 bw_t_info->cir_bw.bw = 0; 2865 } else { 2866 /* Save type of BW information */ 2867 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2868 bw_t_info->cir_bw.bw = bw; 2869 } 2870 } 2871 2872 /** 2873 * ice_set_clear_eir_bw - set or clear EIR BW 2874 * @bw_t_info: bandwidth type information structure 2875 * @bw: bandwidth in Kbps - Kilo bits per sec 2876 * 2877 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2878 */ 2879 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2880 { 2881 if (bw == ICE_SCHED_DFLT_BW) { 2882 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2883 bw_t_info->eir_bw.bw = 0; 2884 } else { 2885 /* EIR BW and Shared BW profiles are mutually exclusive and 2886 * hence only one of them may be set for any given element. 2887 * First clear earlier saved shared BW information. 2888 */ 2889 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2890 bw_t_info->shared_bw = 0; 2891 /* save EIR BW information */ 2892 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2893 bw_t_info->eir_bw.bw = bw; 2894 } 2895 } 2896 2897 /** 2898 * ice_set_clear_shared_bw - set or clear shared BW 2899 * @bw_t_info: bandwidth type information structure 2900 * @bw: bandwidth in Kbps - Kilo bits per sec 2901 * 2902 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 2903 */ 2904 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2905 { 2906 if (bw == ICE_SCHED_DFLT_BW) { 2907 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2908 bw_t_info->shared_bw = 0; 2909 } else { 2910 /* EIR BW and Shared BW profiles are mutually exclusive and 2911 * hence only one of them may be set for any given element. 2912 * First clear earlier saved EIR BW information. 2913 */ 2914 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2915 bw_t_info->eir_bw.bw = 0; 2916 /* save shared BW information */ 2917 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2918 bw_t_info->shared_bw = bw; 2919 } 2920 } 2921 2922 /** 2923 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 2924 * @hw: pointer to the HW struct 2925 * @bw: bandwidth in Kbps 2926 * 2927 * This function calculates the wakeup parameter of RL profile. 2928 */ 2929 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 2930 { 2931 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 2932 s32 wakeup_f_int; 2933 u16 wakeup = 0; 2934 2935 /* Get the wakeup integer value */ 2936 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2937 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 2938 if (wakeup_int > 63) { 2939 wakeup = (u16)((1 << 15) | wakeup_int); 2940 } else { 2941 /* Calculate fraction value up to 4 decimals 2942 * Convert Integer value to a constant multiplier 2943 */ 2944 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 2945 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 2946 hw->psm_clk_freq, bytes_per_sec); 2947 2948 /* Get Fraction value */ 2949 wakeup_f = wakeup_a - wakeup_b; 2950 2951 /* Round up the Fractional value via Ceil(Fractional value) */ 2952 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 2953 wakeup_f += 1; 2954 2955 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 2956 ICE_RL_PROF_MULTIPLIER); 2957 wakeup |= (u16)(wakeup_int << 9); 2958 wakeup |= (u16)(0x1ff & wakeup_f_int); 2959 } 2960 2961 return wakeup; 2962 } 2963 2964 /** 2965 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 2966 * @hw: pointer to the HW struct 2967 * @bw: bandwidth in Kbps 2968 * @profile: profile parameters to return 2969 * 2970 * This function converts the BW to profile structure format. 2971 */ 2972 static enum ice_status 2973 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 2974 struct ice_aqc_rl_profile_elem *profile) 2975 { 2976 enum ice_status status = ICE_ERR_PARAM; 2977 s64 bytes_per_sec, ts_rate, mv_tmp; 2978 bool found = false; 2979 s32 encode = 0; 2980 s64 mv = 0; 2981 s32 i; 2982 2983 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 2984 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 2985 return status; 2986 2987 /* Bytes per second from Kbps */ 2988 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2989 2990 /* encode is 6 bits but really useful are 5 bits */ 2991 for (i = 0; i < 64; i++) { 2992 u64 pow_result = BIT_ULL(i); 2993 2994 ts_rate = div64_long((s64)hw->psm_clk_freq, 2995 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 2996 if (ts_rate <= 0) 2997 continue; 2998 2999 /* Multiplier value */ 3000 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3001 ts_rate); 3002 3003 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3004 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3005 3006 /* First multiplier value greater than the given 3007 * accuracy bytes 3008 */ 3009 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3010 encode = i; 3011 found = true; 3012 break; 3013 } 3014 } 3015 if (found) { 3016 u16 wm; 3017 3018 wm = ice_sched_calc_wakeup(hw, bw); 3019 profile->rl_multiply = cpu_to_le16(mv); 3020 profile->wake_up_calc = cpu_to_le16(wm); 3021 profile->rl_encode = cpu_to_le16(encode); 3022 status = 0; 3023 } else { 3024 status = ICE_ERR_DOES_NOT_EXIST; 3025 } 3026 3027 return status; 3028 } 3029 3030 /** 3031 * ice_sched_add_rl_profile - add RL profile 3032 * @pi: port information structure 3033 * @rl_type: type of rate limit BW - min, max, or shared 3034 * @bw: bandwidth in Kbps - Kilo bits per sec 3035 * @layer_num: specifies in which layer to create profile 3036 * 3037 * This function first checks the existing list for corresponding BW 3038 * parameter. If it exists, it returns the associated profile otherwise 3039 * it creates a new rate limit profile for requested BW, and adds it to 3040 * the HW DB and local list. It returns the new profile or null on error. 3041 * The caller needs to hold the scheduler lock. 3042 */ 3043 static struct ice_aqc_rl_profile_info * 3044 ice_sched_add_rl_profile(struct ice_port_info *pi, 3045 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3046 { 3047 struct ice_aqc_rl_profile_info *rl_prof_elem; 3048 u16 profiles_added = 0, num_profiles = 1; 3049 struct ice_aqc_rl_profile_elem *buf; 3050 enum ice_status status; 3051 struct ice_hw *hw; 3052 u8 profile_type; 3053 3054 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3055 return NULL; 3056 switch (rl_type) { 3057 case ICE_MIN_BW: 3058 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3059 break; 3060 case ICE_MAX_BW: 3061 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3062 break; 3063 case ICE_SHARED_BW: 3064 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3065 break; 3066 default: 3067 return NULL; 3068 } 3069 3070 if (!pi) 3071 return NULL; 3072 hw = pi->hw; 3073 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3074 list_entry) 3075 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3076 profile_type && rl_prof_elem->bw == bw) 3077 /* Return existing profile ID info */ 3078 return rl_prof_elem; 3079 3080 /* Create new profile ID */ 3081 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3082 GFP_KERNEL); 3083 3084 if (!rl_prof_elem) 3085 return NULL; 3086 3087 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3088 if (status) 3089 goto exit_add_rl_prof; 3090 3091 rl_prof_elem->bw = bw; 3092 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3093 rl_prof_elem->profile.level = layer_num + 1; 3094 rl_prof_elem->profile.flags = profile_type; 3095 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3096 3097 /* Create new entry in HW DB */ 3098 buf = &rl_prof_elem->profile; 3099 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3100 &profiles_added, NULL); 3101 if (status || profiles_added != num_profiles) 3102 goto exit_add_rl_prof; 3103 3104 /* Good entry - add in the list */ 3105 rl_prof_elem->prof_id_ref = 0; 3106 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3107 return rl_prof_elem; 3108 3109 exit_add_rl_prof: 3110 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3111 return NULL; 3112 } 3113 3114 /** 3115 * ice_sched_cfg_node_bw_lmt - configure node sched params 3116 * @hw: pointer to the HW struct 3117 * @node: sched node to configure 3118 * @rl_type: rate limit type CIR, EIR, or shared 3119 * @rl_prof_id: rate limit profile ID 3120 * 3121 * This function configures node element's BW limit. 3122 */ 3123 static enum ice_status 3124 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3125 enum ice_rl_type rl_type, u16 rl_prof_id) 3126 { 3127 struct ice_aqc_txsched_elem_data buf; 3128 struct ice_aqc_txsched_elem *data; 3129 3130 buf = node->info; 3131 data = &buf.data; 3132 switch (rl_type) { 3133 case ICE_MIN_BW: 3134 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3135 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3136 break; 3137 case ICE_MAX_BW: 3138 /* EIR BW and Shared BW profiles are mutually exclusive and 3139 * hence only one of them may be set for any given element 3140 */ 3141 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3142 return ICE_ERR_CFG; 3143 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3144 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3145 break; 3146 case ICE_SHARED_BW: 3147 /* Check for removing shared BW */ 3148 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3149 /* remove shared profile */ 3150 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3151 data->srl_id = 0; /* clear SRL field */ 3152 3153 /* enable back EIR to default profile */ 3154 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3155 data->eir_bw.bw_profile_idx = 3156 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3157 break; 3158 } 3159 /* EIR BW and Shared BW profiles are mutually exclusive and 3160 * hence only one of them may be set for any given element 3161 */ 3162 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3163 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3164 ICE_SCHED_DFLT_RL_PROF_ID)) 3165 return ICE_ERR_CFG; 3166 /* EIR BW is set to default, disable it */ 3167 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3168 /* Okay to enable shared BW now */ 3169 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3170 data->srl_id = cpu_to_le16(rl_prof_id); 3171 break; 3172 default: 3173 /* Unknown rate limit type */ 3174 return ICE_ERR_PARAM; 3175 } 3176 3177 /* Configure element */ 3178 return ice_sched_update_elem(hw, node, &buf); 3179 } 3180 3181 /** 3182 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3183 * @node: sched node 3184 * @rl_type: rate limit type 3185 * 3186 * If existing profile matches, it returns the corresponding rate 3187 * limit profile ID, otherwise it returns an invalid ID as error. 3188 */ 3189 static u16 3190 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3191 enum ice_rl_type rl_type) 3192 { 3193 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3194 struct ice_aqc_txsched_elem *data; 3195 3196 data = &node->info.data; 3197 switch (rl_type) { 3198 case ICE_MIN_BW: 3199 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3200 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3201 break; 3202 case ICE_MAX_BW: 3203 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3204 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3205 break; 3206 case ICE_SHARED_BW: 3207 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3208 rl_prof_id = le16_to_cpu(data->srl_id); 3209 break; 3210 default: 3211 break; 3212 } 3213 3214 return rl_prof_id; 3215 } 3216 3217 /** 3218 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3219 * @pi: port information structure 3220 * @rl_type: type of rate limit BW - min, max, or shared 3221 * @layer_index: layer index 3222 * 3223 * This function returns requested profile creation layer. 3224 */ 3225 static u8 3226 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3227 u8 layer_index) 3228 { 3229 struct ice_hw *hw = pi->hw; 3230 3231 if (layer_index >= hw->num_tx_sched_layers) 3232 return ICE_SCHED_INVAL_LAYER_NUM; 3233 switch (rl_type) { 3234 case ICE_MIN_BW: 3235 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3236 return layer_index; 3237 break; 3238 case ICE_MAX_BW: 3239 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3240 return layer_index; 3241 break; 3242 case ICE_SHARED_BW: 3243 /* if current layer doesn't support SRL profile creation 3244 * then try a layer up or down. 3245 */ 3246 if (hw->layer_info[layer_index].max_srl_profiles) 3247 return layer_index; 3248 else if (layer_index < hw->num_tx_sched_layers - 1 && 3249 hw->layer_info[layer_index + 1].max_srl_profiles) 3250 return layer_index + 1; 3251 else if (layer_index > 0 && 3252 hw->layer_info[layer_index - 1].max_srl_profiles) 3253 return layer_index - 1; 3254 break; 3255 default: 3256 break; 3257 } 3258 return ICE_SCHED_INVAL_LAYER_NUM; 3259 } 3260 3261 /** 3262 * ice_sched_get_srl_node - get shared rate limit node 3263 * @node: tree node 3264 * @srl_layer: shared rate limit layer 3265 * 3266 * This function returns SRL node to be used for shared rate limit purpose. 3267 * The caller needs to hold scheduler lock. 3268 */ 3269 static struct ice_sched_node * 3270 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3271 { 3272 if (srl_layer > node->tx_sched_layer) 3273 return node->children[0]; 3274 else if (srl_layer < node->tx_sched_layer) 3275 /* Node can't be created without a parent. It will always 3276 * have a valid parent except root node. 3277 */ 3278 return node->parent; 3279 else 3280 return node; 3281 } 3282 3283 /** 3284 * ice_sched_rm_rl_profile - remove RL profile ID 3285 * @pi: port information structure 3286 * @layer_num: layer number where profiles are saved 3287 * @profile_type: profile type like EIR, CIR, or SRL 3288 * @profile_id: profile ID to remove 3289 * 3290 * This function removes rate limit profile from layer 'layer_num' of type 3291 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3292 * scheduler lock. 3293 */ 3294 static enum ice_status 3295 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3296 u16 profile_id) 3297 { 3298 struct ice_aqc_rl_profile_info *rl_prof_elem; 3299 enum ice_status status = 0; 3300 3301 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3302 return ICE_ERR_PARAM; 3303 /* Check the existing list for RL profile */ 3304 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3305 list_entry) 3306 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3307 profile_type && 3308 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3309 profile_id) { 3310 if (rl_prof_elem->prof_id_ref) 3311 rl_prof_elem->prof_id_ref--; 3312 3313 /* Remove old profile ID from database */ 3314 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3315 if (status && status != ICE_ERR_IN_USE) 3316 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3317 break; 3318 } 3319 if (status == ICE_ERR_IN_USE) 3320 status = 0; 3321 return status; 3322 } 3323 3324 /** 3325 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3326 * @pi: port information structure 3327 * @node: pointer to node structure 3328 * @rl_type: rate limit type min, max, or shared 3329 * @layer_num: layer number where RL profiles are saved 3330 * 3331 * This function configures node element's BW rate limit profile ID of 3332 * type CIR, EIR, or SRL to default. This function needs to be called 3333 * with the scheduler lock held. 3334 */ 3335 static enum ice_status 3336 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3337 struct ice_sched_node *node, 3338 enum ice_rl_type rl_type, u8 layer_num) 3339 { 3340 enum ice_status status; 3341 struct ice_hw *hw; 3342 u8 profile_type; 3343 u16 rl_prof_id; 3344 u16 old_id; 3345 3346 hw = pi->hw; 3347 switch (rl_type) { 3348 case ICE_MIN_BW: 3349 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3350 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3351 break; 3352 case ICE_MAX_BW: 3353 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3354 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3355 break; 3356 case ICE_SHARED_BW: 3357 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3358 /* No SRL is configured for default case */ 3359 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3360 break; 3361 default: 3362 return ICE_ERR_PARAM; 3363 } 3364 /* Save existing RL prof ID for later clean up */ 3365 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3366 /* Configure BW scheduling parameters */ 3367 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3368 if (status) 3369 return status; 3370 3371 /* Remove stale RL profile ID */ 3372 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3373 old_id == ICE_SCHED_INVAL_PROF_ID) 3374 return 0; 3375 3376 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3377 } 3378 3379 /** 3380 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3381 * @pi: port information structure 3382 * @node: pointer to node structure 3383 * @layer_num: layer number where rate limit profiles are saved 3384 * @rl_type: rate limit type min, max, or shared 3385 * @bw: bandwidth value 3386 * 3387 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3388 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3389 * them may be set for any given element. This function needs to be called 3390 * with the scheduler lock held. 3391 */ 3392 static enum ice_status 3393 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3394 struct ice_sched_node *node, 3395 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3396 { 3397 if (rl_type == ICE_SHARED_BW) { 3398 /* SRL node passed in this case, it may be different node */ 3399 if (bw == ICE_SCHED_DFLT_BW) 3400 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3401 * enables EIR to default. EIR is not set in this 3402 * case, so no additional action is required. 3403 */ 3404 return 0; 3405 3406 /* SRL being configured, set EIR to default here. 3407 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3408 * configures SRL 3409 */ 3410 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3411 layer_num); 3412 } else if (rl_type == ICE_MAX_BW && 3413 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3414 /* Remove Shared profile. Set default shared BW call 3415 * removes shared profile for a node. 3416 */ 3417 return ice_sched_set_node_bw_dflt(pi, node, 3418 ICE_SHARED_BW, 3419 layer_num); 3420 } 3421 return 0; 3422 } 3423 3424 /** 3425 * ice_sched_set_node_bw - set node's bandwidth 3426 * @pi: port information structure 3427 * @node: tree node 3428 * @rl_type: rate limit type min, max, or shared 3429 * @bw: bandwidth in Kbps - Kilo bits per sec 3430 * @layer_num: layer number 3431 * 3432 * This function adds new profile corresponding to requested BW, configures 3433 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3434 * ID from local database. The caller needs to hold scheduler lock. 3435 */ 3436 static enum ice_status 3437 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3438 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3439 { 3440 struct ice_aqc_rl_profile_info *rl_prof_info; 3441 enum ice_status status = ICE_ERR_PARAM; 3442 struct ice_hw *hw = pi->hw; 3443 u16 old_id, rl_prof_id; 3444 3445 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3446 if (!rl_prof_info) 3447 return status; 3448 3449 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3450 3451 /* Save existing RL prof ID for later clean up */ 3452 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3453 /* Configure BW scheduling parameters */ 3454 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3455 if (status) 3456 return status; 3457 3458 /* New changes has been applied */ 3459 /* Increment the profile ID reference count */ 3460 rl_prof_info->prof_id_ref++; 3461 3462 /* Check for old ID removal */ 3463 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3464 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3465 return 0; 3466 3467 return ice_sched_rm_rl_profile(pi, layer_num, 3468 rl_prof_info->profile.flags & 3469 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3470 } 3471 3472 /** 3473 * ice_sched_set_node_bw_lmt - set node's BW limit 3474 * @pi: port information structure 3475 * @node: tree node 3476 * @rl_type: rate limit type min, max, or shared 3477 * @bw: bandwidth in Kbps - Kilo bits per sec 3478 * 3479 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3480 * EIR, or SRL. The caller needs to hold scheduler lock. 3481 */ 3482 static enum ice_status 3483 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3484 enum ice_rl_type rl_type, u32 bw) 3485 { 3486 struct ice_sched_node *cfg_node = node; 3487 enum ice_status status; 3488 3489 struct ice_hw *hw; 3490 u8 layer_num; 3491 3492 if (!pi) 3493 return ICE_ERR_PARAM; 3494 hw = pi->hw; 3495 /* Remove unused RL profile IDs from HW and SW DB */ 3496 ice_sched_rm_unused_rl_prof(pi); 3497 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3498 node->tx_sched_layer); 3499 if (layer_num >= hw->num_tx_sched_layers) 3500 return ICE_ERR_PARAM; 3501 3502 if (rl_type == ICE_SHARED_BW) { 3503 /* SRL node may be different */ 3504 cfg_node = ice_sched_get_srl_node(node, layer_num); 3505 if (!cfg_node) 3506 return ICE_ERR_CFG; 3507 } 3508 /* EIR BW and Shared BW profiles are mutually exclusive and 3509 * hence only one of them may be set for any given element 3510 */ 3511 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3512 bw); 3513 if (status) 3514 return status; 3515 if (bw == ICE_SCHED_DFLT_BW) 3516 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3517 layer_num); 3518 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3519 } 3520 3521 /** 3522 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3523 * @pi: port information structure 3524 * @node: pointer to node structure 3525 * @rl_type: rate limit type min, max, or shared 3526 * 3527 * This function configures node element's BW rate limit profile ID of 3528 * type CIR, EIR, or SRL to default. This function needs to be called 3529 * with the scheduler lock held. 3530 */ 3531 static enum ice_status 3532 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3533 struct ice_sched_node *node, 3534 enum ice_rl_type rl_type) 3535 { 3536 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3537 ICE_SCHED_DFLT_BW); 3538 } 3539 3540 /** 3541 * ice_sched_validate_srl_node - Check node for SRL applicability 3542 * @node: sched node to configure 3543 * @sel_layer: selected SRL layer 3544 * 3545 * This function checks if the SRL can be applied to a selected layer node on 3546 * behalf of the requested node (first argument). This function needs to be 3547 * called with scheduler lock held. 3548 */ 3549 static enum ice_status 3550 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3551 { 3552 /* SRL profiles are not available on all layers. Check if the 3553 * SRL profile can be applied to a node above or below the 3554 * requested node. SRL configuration is possible only if the 3555 * selected layer's node has single child. 3556 */ 3557 if (sel_layer == node->tx_sched_layer || 3558 ((sel_layer == node->tx_sched_layer + 1) && 3559 node->num_children == 1) || 3560 ((sel_layer == node->tx_sched_layer - 1) && 3561 (node->parent && node->parent->num_children == 1))) 3562 return 0; 3563 3564 return ICE_ERR_CFG; 3565 } 3566 3567 /** 3568 * ice_sched_save_q_bw - save queue node's BW information 3569 * @q_ctx: queue context structure 3570 * @rl_type: rate limit type min, max, or shared 3571 * @bw: bandwidth in Kbps - Kilo bits per sec 3572 * 3573 * Save BW information of queue type node for post replay use. 3574 */ 3575 static enum ice_status 3576 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3577 { 3578 switch (rl_type) { 3579 case ICE_MIN_BW: 3580 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3581 break; 3582 case ICE_MAX_BW: 3583 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3584 break; 3585 case ICE_SHARED_BW: 3586 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3587 break; 3588 default: 3589 return ICE_ERR_PARAM; 3590 } 3591 return 0; 3592 } 3593 3594 /** 3595 * ice_sched_set_q_bw_lmt - sets queue BW limit 3596 * @pi: port information structure 3597 * @vsi_handle: sw VSI handle 3598 * @tc: traffic class 3599 * @q_handle: software queue handle 3600 * @rl_type: min, max, or shared 3601 * @bw: bandwidth in Kbps 3602 * 3603 * This function sets BW limit of queue scheduling node. 3604 */ 3605 static enum ice_status 3606 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3607 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3608 { 3609 enum ice_status status = ICE_ERR_PARAM; 3610 struct ice_sched_node *node; 3611 struct ice_q_ctx *q_ctx; 3612 3613 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3614 return ICE_ERR_PARAM; 3615 mutex_lock(&pi->sched_lock); 3616 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3617 if (!q_ctx) 3618 goto exit_q_bw_lmt; 3619 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3620 if (!node) { 3621 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3622 goto exit_q_bw_lmt; 3623 } 3624 3625 /* Return error if it is not a leaf node */ 3626 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3627 goto exit_q_bw_lmt; 3628 3629 /* SRL bandwidth layer selection */ 3630 if (rl_type == ICE_SHARED_BW) { 3631 u8 sel_layer; /* selected layer */ 3632 3633 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3634 node->tx_sched_layer); 3635 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3636 status = ICE_ERR_PARAM; 3637 goto exit_q_bw_lmt; 3638 } 3639 status = ice_sched_validate_srl_node(node, sel_layer); 3640 if (status) 3641 goto exit_q_bw_lmt; 3642 } 3643 3644 if (bw == ICE_SCHED_DFLT_BW) 3645 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3646 else 3647 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3648 3649 if (!status) 3650 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3651 3652 exit_q_bw_lmt: 3653 mutex_unlock(&pi->sched_lock); 3654 return status; 3655 } 3656 3657 /** 3658 * ice_cfg_q_bw_lmt - configure queue BW limit 3659 * @pi: port information structure 3660 * @vsi_handle: sw VSI handle 3661 * @tc: traffic class 3662 * @q_handle: software queue handle 3663 * @rl_type: min, max, or shared 3664 * @bw: bandwidth in Kbps 3665 * 3666 * This function configures BW limit of queue scheduling node. 3667 */ 3668 enum ice_status 3669 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3670 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3671 { 3672 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3673 bw); 3674 } 3675 3676 /** 3677 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3678 * @pi: port information structure 3679 * @vsi_handle: sw VSI handle 3680 * @tc: traffic class 3681 * @q_handle: software queue handle 3682 * @rl_type: min, max, or shared 3683 * 3684 * This function configures BW default limit of queue scheduling node. 3685 */ 3686 enum ice_status 3687 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3688 u16 q_handle, enum ice_rl_type rl_type) 3689 { 3690 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3691 ICE_SCHED_DFLT_BW); 3692 } 3693 3694 /** 3695 * ice_cfg_rl_burst_size - Set burst size value 3696 * @hw: pointer to the HW struct 3697 * @bytes: burst size in bytes 3698 * 3699 * This function configures/set the burst size to requested new value. The new 3700 * burst size value is used for future rate limit calls. It doesn't change the 3701 * existing or previously created RL profiles. 3702 */ 3703 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 3704 { 3705 u16 burst_size_to_prog; 3706 3707 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 3708 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 3709 return ICE_ERR_PARAM; 3710 if (ice_round_to_num(bytes, 64) <= 3711 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 3712 /* 64 byte granularity case */ 3713 /* Disable MSB granularity bit */ 3714 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 3715 /* round number to nearest 64 byte granularity */ 3716 bytes = ice_round_to_num(bytes, 64); 3717 /* The value is in 64 byte chunks */ 3718 burst_size_to_prog |= (u16)(bytes / 64); 3719 } else { 3720 /* k bytes granularity case */ 3721 /* Enable MSB granularity bit */ 3722 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 3723 /* round number to nearest 1024 granularity */ 3724 bytes = ice_round_to_num(bytes, 1024); 3725 /* check rounding doesn't go beyond allowed */ 3726 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 3727 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 3728 /* The value is in k bytes */ 3729 burst_size_to_prog |= (u16)(bytes / 1024); 3730 } 3731 hw->max_burst_size = burst_size_to_prog; 3732 return 0; 3733 } 3734 3735 /** 3736 * ice_sched_replay_node_prio - re-configure node priority 3737 * @hw: pointer to the HW struct 3738 * @node: sched node to configure 3739 * @priority: priority value 3740 * 3741 * This function configures node element's priority value. It 3742 * needs to be called with scheduler lock held. 3743 */ 3744 static enum ice_status 3745 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 3746 u8 priority) 3747 { 3748 struct ice_aqc_txsched_elem_data buf; 3749 struct ice_aqc_txsched_elem *data; 3750 enum ice_status status; 3751 3752 buf = node->info; 3753 data = &buf.data; 3754 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3755 data->generic = priority; 3756 3757 /* Configure element */ 3758 status = ice_sched_update_elem(hw, node, &buf); 3759 return status; 3760 } 3761 3762 /** 3763 * ice_sched_replay_node_bw - replay node(s) BW 3764 * @hw: pointer to the HW struct 3765 * @node: sched node to configure 3766 * @bw_t_info: BW type information 3767 * 3768 * This function restores node's BW from bw_t_info. The caller needs 3769 * to hold the scheduler lock. 3770 */ 3771 static enum ice_status 3772 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 3773 struct ice_bw_type_info *bw_t_info) 3774 { 3775 struct ice_port_info *pi = hw->port_info; 3776 enum ice_status status = ICE_ERR_PARAM; 3777 u16 bw_alloc; 3778 3779 if (!node) 3780 return status; 3781 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 3782 return 0; 3783 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 3784 status = ice_sched_replay_node_prio(hw, node, 3785 bw_t_info->generic); 3786 if (status) 3787 return status; 3788 } 3789 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 3790 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 3791 bw_t_info->cir_bw.bw); 3792 if (status) 3793 return status; 3794 } 3795 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 3796 bw_alloc = bw_t_info->cir_bw.bw_alloc; 3797 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 3798 bw_alloc); 3799 if (status) 3800 return status; 3801 } 3802 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 3803 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 3804 bw_t_info->eir_bw.bw); 3805 if (status) 3806 return status; 3807 } 3808 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 3809 bw_alloc = bw_t_info->eir_bw.bw_alloc; 3810 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 3811 bw_alloc); 3812 if (status) 3813 return status; 3814 } 3815 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 3816 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 3817 bw_t_info->shared_bw); 3818 return status; 3819 } 3820 3821 /** 3822 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 3823 * @pi: port info struct 3824 * @tc_bitmap: 8 bits TC bitmap to check 3825 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 3826 * 3827 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 3828 * may be missing, it returns enabled TCs. This function needs to be called with 3829 * scheduler lock held. 3830 */ 3831 static void 3832 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 3833 unsigned long *tc_bitmap, 3834 unsigned long *ena_tc_bitmap) 3835 { 3836 u8 tc; 3837 3838 /* Some TC(s) may be missing after reset, adjust for replay */ 3839 ice_for_each_traffic_class(tc) 3840 if (ice_is_tc_ena(*tc_bitmap, tc) && 3841 (ice_sched_get_tc_node(pi, tc))) 3842 set_bit(tc, ena_tc_bitmap); 3843 } 3844 3845 /** 3846 * ice_sched_replay_agg - recreate aggregator node(s) 3847 * @hw: pointer to the HW struct 3848 * 3849 * This function recreate aggregator type nodes which are not replayed earlier. 3850 * It also replay aggregator BW information. These aggregator nodes are not 3851 * associated with VSI type node yet. 3852 */ 3853 void ice_sched_replay_agg(struct ice_hw *hw) 3854 { 3855 struct ice_port_info *pi = hw->port_info; 3856 struct ice_sched_agg_info *agg_info; 3857 3858 mutex_lock(&pi->sched_lock); 3859 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 3860 /* replay aggregator (re-create aggregator node) */ 3861 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 3862 ICE_MAX_TRAFFIC_CLASS)) { 3863 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3864 enum ice_status status; 3865 3866 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3867 ice_sched_get_ena_tc_bitmap(pi, 3868 agg_info->replay_tc_bitmap, 3869 replay_bitmap); 3870 status = ice_sched_cfg_agg(hw->port_info, 3871 agg_info->agg_id, 3872 ICE_AGG_TYPE_AGG, 3873 replay_bitmap); 3874 if (status) { 3875 dev_info(ice_hw_to_dev(hw), 3876 "Replay agg id[%d] failed\n", 3877 agg_info->agg_id); 3878 /* Move on to next one */ 3879 continue; 3880 } 3881 } 3882 mutex_unlock(&pi->sched_lock); 3883 } 3884 3885 /** 3886 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 3887 * @hw: pointer to the HW struct 3888 * 3889 * This function initialize aggregator(s) TC bitmap to zero. A required 3890 * preinit step for replaying aggregators. 3891 */ 3892 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 3893 { 3894 struct ice_port_info *pi = hw->port_info; 3895 struct ice_sched_agg_info *agg_info; 3896 3897 mutex_lock(&pi->sched_lock); 3898 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 3899 struct ice_sched_agg_vsi_info *agg_vsi_info; 3900 3901 agg_info->tc_bitmap[0] = 0; 3902 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 3903 list_entry) 3904 agg_vsi_info->tc_bitmap[0] = 0; 3905 } 3906 mutex_unlock(&pi->sched_lock); 3907 } 3908 3909 /** 3910 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 3911 * @hw: pointer to the HW struct 3912 * @vsi_handle: software VSI handle 3913 * 3914 * This function replays aggregator node, VSI to aggregator type nodes, and 3915 * their node bandwidth information. This function needs to be called with 3916 * scheduler lock held. 3917 */ 3918 static enum ice_status 3919 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 3920 { 3921 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3922 struct ice_sched_agg_vsi_info *agg_vsi_info; 3923 struct ice_port_info *pi = hw->port_info; 3924 struct ice_sched_agg_info *agg_info; 3925 enum ice_status status; 3926 3927 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3928 if (!ice_is_vsi_valid(hw, vsi_handle)) 3929 return ICE_ERR_PARAM; 3930 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 3931 if (!agg_info) 3932 return 0; /* Not present in list - default Agg case */ 3933 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 3934 if (!agg_vsi_info) 3935 return 0; /* Not present in list - default Agg case */ 3936 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 3937 replay_bitmap); 3938 /* Replay aggregator node associated to vsi_handle */ 3939 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 3940 ICE_AGG_TYPE_AGG, replay_bitmap); 3941 if (status) 3942 return status; 3943 3944 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3945 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 3946 replay_bitmap); 3947 /* Move this VSI (vsi_handle) to above aggregator */ 3948 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 3949 replay_bitmap); 3950 } 3951 3952 /** 3953 * ice_replay_vsi_agg - replay VSI to aggregator node 3954 * @hw: pointer to the HW struct 3955 * @vsi_handle: software VSI handle 3956 * 3957 * This function replays association of VSI to aggregator type nodes, and 3958 * node bandwidth information. 3959 */ 3960 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 3961 { 3962 struct ice_port_info *pi = hw->port_info; 3963 enum ice_status status; 3964 3965 mutex_lock(&pi->sched_lock); 3966 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 3967 mutex_unlock(&pi->sched_lock); 3968 return status; 3969 } 3970 3971 /** 3972 * ice_sched_replay_q_bw - replay queue type node BW 3973 * @pi: port information structure 3974 * @q_ctx: queue context structure 3975 * 3976 * This function replays queue type node bandwidth. This function needs to be 3977 * called with scheduler lock held. 3978 */ 3979 enum ice_status 3980 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 3981 { 3982 struct ice_sched_node *q_node; 3983 3984 /* Following also checks the presence of node in tree */ 3985 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3986 if (!q_node) 3987 return ICE_ERR_PARAM; 3988 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 3989 } 3990